From 627c363ef3a4b269d288faf69c2741f0af1f28fb Mon Sep 17 00:00:00 2001 From: Artem Nikonorov Date: Sun, 2 Oct 2022 00:21:31 +0400 Subject: [PATCH] Add files via upload --- Lectures/Lecture_3.ipynb | 176 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 176 insertions(+) create mode 100644 Lectures/Lecture_3.ipynb diff --git a/Lectures/Lecture_3.ipynb b/Lectures/Lecture_3.ipynb new file mode 100644 index 0000000..34f0adb --- /dev/null +++ b/Lectures/Lecture_3.ipynb @@ -0,0 +1,176 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 27, + "id": "753d746a", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "a0449fde", + "metadata": {}, + "outputs": [], + "source": [ + "def softmax(s, y):\n", + " l_i = -np.log(np.exp(s[y])/sum(np.exp(s)))\n", + " return l_i\n", + "\n", + "\n", + "\n", + "def svm(s, y):\n", + " m = np.maximum(np.zeros_like(s), s - s[y] + 1)\n", + " m[y] = 0 \n", + " l_i = np.sum(m)\n", + " return l_i\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "7531b4de", + "metadata": {}, + "outputs": [], + "source": [ + "s = np.array([[10, -2, 3],\n", + " [10, 9, 9],\n", + " [10, -100, -100]])\n", + "\n", + "y = 0\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "c1bf4f3b", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "softmax:\n", + "\n", + "0.0009176050495943237\n", + "0.5514447139320511\n", + "-0.0\n", + "\n", + "SVM:\n", + "\n", + "0\n", + "0\n", + "0\n" + ] + } + ], + "source": [ + "print(\"softmax:\\n\")\n", + "for i in range(s.shape[0]):\n", + " print(softmax(s[i,:], y))\n", + "\n", + "print(\"\\nSVM:\\n\")\n", + "for i in range(s.shape[0]):\n", + " print(svm(s[i,:], y))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "49662904", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 20, -2, 3],\n", + " [ 10, 9, 9],\n", + " [ 10, -100, -100]])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s[0,0] += 10\n", + "s" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "3c85dfef", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "softmax:\n", + "\n", + "4.167832299541146e-08\n", + "0.5514447139320511\n", + "-0.0\n", + "\n", + "SVM:\n", + "\n", + "0\n", + "0\n", + "0\n" + ] + } + ], + "source": [ + "print(\"softmax:\\n\")\n", + "for i in range(s.shape[0]):\n", + " print(softmax(s[i,:], y))\n", + "\n", + "print(\"\\nSVM:\\n\")\n", + "for i in range(s.shape[0]):\n", + " print(svm(s[i,:], y))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9bac1fcb", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}