diff --git a/1147/lab_3.ipynb b/1147/lab_3.ipynb new file mode 100644 index 0000000..8f89ca2 --- /dev/null +++ b/1147/lab_3.ipynb @@ -0,0 +1,3059 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a83d3451", + "metadata": {}, + "source": [ + "# Лабораторная работа №3" + ] + }, + { + "cell_type": "markdown", + "id": "c4626d84", + "metadata": {}, + "source": [ + "Данная лабораторная предназначена для ознакомления с основными модулями Python используемыми в анализе данных.\n", + "\n", + "NumPy - модуль предназначенный для работы с многомерными массивами. Почитать можно [здесь](https://pythonworld.ru/numpy)\n", + "\n", + "Matplotlib - пакет модулей предназначенный для визуализации данных. Почитать можно [здесь](https://pythonworld.ru/novosti-mira-python/scientific-graphics-in-python.html) \n", + "\n", + "Pandas - модуль для анализа данных и поддерживающий их табличное представление. Почитать можно [здесь](https://pythonworld.ru/obrabotka-dannyx/pandas-cookbook-1-csv-reading.html)\n", + "\n", + "Для углубленного изучения можно почитать книгу Дж. Вандел Плас Python для сложных задач наука о данных:\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "044a3a41", + "metadata": {}, + "source": [ + "## NumPy\n", + "\n", + "Данный модуль создан для ускорения работы с массивами больших размерностей. Для примера рассмотрим сравнение скорости подсчета суммы случайного ряда при помощи встроенных инструментов и инструментов numpy:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "fb97f953", + "metadata": {}, + "outputs": [], + "source": [ + "# импортируем модуль и создадим ему короткий псевдоним для удобства обращения к нему\n", + "import numpy as np\n", + "\n", + "# импортируем этот модуль для генерации случайных данных\n", + "import random" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4d629828", + "metadata": {}, + "outputs": [], + "source": [ + "# создадим список длиной 10_000 случайных целых чисел в диапазоне от -10_000 до 10_000\n", + "arr = random.sample(range(-10_000, 10_000),k=10_000)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0701ca1a", + "metadata": {}, + "outputs": [], + "source": [ + "# Подсчитаем время исполнения ячейки при помощи волшебного оператора %%time" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "062a85f3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "101 µs ± 556 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" + ] + } + ], + "source": [ + "%timeit sum(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "86298baf", + "metadata": {}, + "outputs": [], + "source": [ + "# Подсчитаем теперь преобразованный список в NumPy-массив при помощи np.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ee277123", + "metadata": {}, + "outputs": [], + "source": [ + "arr_2 = np.array(arr)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e58e9290", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.18 µs ± 17.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" + ] + } + ], + "source": [ + "%timeit np.sum(arr_2)" + ] + }, + { + "cell_type": "markdown", + "id": "48501958", + "metadata": {}, + "source": [ + "Как видно алгоритм подсчет суммы ускоряется почти в 20 раз" + ] + }, + { + "cell_type": "markdown", + "id": "06dd75f1", + "metadata": {}, + "source": [ + "NumPy позволяет создавать различного рода матрицы в одно действие: " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9930b6c6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 0.],\n", + " [0., 0.]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#создать матрицу размерности 2х2 заполненную нулями\n", + "np.zeros((2,2))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "55ed68ec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 1.],\n", + " [1., 1.],\n", + " [1., 1.]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#создать матрицу размерности 3х2 заполненную единицами\n", + "np.ones((3,2))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5e86bd15", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2]\n", + " [3 4]\n", + " [5 6]]\n", + "(3, 2)\n" + ] + } + ], + "source": [ + "# размерность массива можно посмотреть вызвав поле shape у np.array\n", + "\n", + "a = np.array([[1, 2], [3, 4], [5, 6]])\n", + "\n", + "print(a)\n", + "print(a.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "166f7114", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" + ] + } + ], + "source": [ + "# len вернет нам вернет размер по первому измерению\n", + "\n", + "print(len(a))" + ] + }, + { + "cell_type": "markdown", + "id": "885f11a7", + "metadata": {}, + "source": [ + "### Задание\n", + "\n", + "Найдите в документации numpy функции для создания диагональной матрицы и заполнения матрицы пользовательским числом.\n", + "\n", + "1) Создайте диагональную единичную матрицу размерности 5х5\n", + "\n", + "2) Создайте матрицу размерности 4х4 заполненную тройками" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6b85793e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "d8cd415d", + "metadata": {}, + "source": [ + "Массивы можно транспонировать и изменять размерности" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8c9ea473", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2]\n", + " [3 4]\n", + " [5 6]]\n" + ] + } + ], + "source": [ + "a = np.array([[1,2],[3,4],[5,6]])\n", + "print(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "058cd289", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2 3]\n", + " [4 5 6]]\n" + ] + } + ], + "source": [ + "print(a.reshape((2,3)))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0c2bd57d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 3 5]\n", + " [2 4 6]]\n" + ] + } + ], + "source": [ + "print(a.T)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8a51aa3b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6]\n" + ] + } + ], + "source": [ + "# можно так же расплющить массив в одномерный\n", + "print(a.flatten())" + ] + }, + { + "cell_type": "markdown", + "id": "5f356c97", + "metadata": {}, + "source": [ + "### Задание\n", + "Создайте матрицу (любым известным вам способом) размерности 2х3х4 и транспонируйте ее. Попробуйте поменять очередность осей (по сути если представить трехмерную матрицу как куб, то это будет поворотом в пространстве на какой-то из боков) при помощи transpose" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "66d95b4c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "3e43e5ea", + "metadata": {}, + "source": [ + "Массивы можно объединять и добавлять новые оси" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "fff1f7a1", + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([[1,2],[3,4]])\n", + "b = np.array([[5,6]])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "7ae37c0a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2]\n", + " [3 4]\n", + " [5 6]]\n" + ] + } + ], + "source": [ + "print(np.concatenate((a,b)))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4aafd0ee", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "old matrix\n", + "[[1 2]\n", + " [3 4]]\n", + "(2, 2) \n", + "\n", + "new matrix\n", + "[[[1]\n", + " [2]]\n", + "\n", + " [[3]\n", + " [4]]]\n", + "(2, 2, 1)\n" + ] + } + ], + "source": [ + "print('old matrix')\n", + "print(a)\n", + "print(a.shape, '\\n') # отступим строку \n", + "\n", + "print('new matrix')\n", + "b = a[:,:,np.newaxis]\n", + "print(b)\n", + "print(b.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "70b9a5c9", + "metadata": {}, + "source": [ + "### Задание\n", + "Создайте матрицу размерности 3х4 и продублируйте ее так, чтобы ее размерность стала 2х3х4 (понадобится newaxis и concatenate или при помощи squeeze)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "90c9b02e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "4a2fc50b", + "metadata": {}, + "source": [ + "### Операции над матрицами" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "b799f6fb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1. 2.]\n", + " [3. 4.]] \n", + "\n", + "[[1. 0.]\n", + " [0. 1.]]\n" + ] + } + ], + "source": [ + "# можно передавать тип данных, к которому требуется привести элементы матрицы, в данном случае float\n", + "a = np.array([[1,2],[3,4]], float)\n", + "# создадим единичную матрицу (на главной диагонали лежат единицы, все остальные элементы равны нулю)\n", + "b = np.eye(2,2)\n", + "\n", + "print(a, '\\n')\n", + "print(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9b91dd3b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2., 2.],\n", + " [3., 5.]])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a + b" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c173c930", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 2.],\n", + " [3., 3.]])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a - b" + ] + }, + { + "cell_type": "markdown", + "id": "aab1e5d7", + "metadata": {}, + "source": [ + "умножение матриц через операнд * работает как поэлементное умножение" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a4b2adeb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 0.],\n", + " [0., 4.]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a * b" + ] + }, + { + "cell_type": "markdown", + "id": "9a1aaf78", + "metadata": {}, + "source": [ + "матрицу можно домножать на скаляр" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "d080e165", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10., 20.],\n", + " [30., 40.]])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a * 10" + ] + }, + { + "cell_type": "markdown", + "id": "642171cc", + "metadata": {}, + "source": [ + "и проводить все базовые математические операции со скалярами поэлементно" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "caf040de", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 0.],\n", + " [1., 1.]])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a // 3" + ] + }, + { + "cell_type": "markdown", + "id": "7ca21353", + "metadata": {}, + "source": [ + "Для матричного перемножения используется метод dot()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "97af84bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 2.],\n", + " [3., 4.]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# т.к. при умножение на единичную матрицу исходная матрица не меняется\n", + "a.dot(b)" + ] + }, + { + "cell_type": "markdown", + "id": "faf8a0f2", + "metadata": {}, + "source": [ + "### Задание\n", + "\n", + "Создайте две матрицы размерности 2х3 и 3х2, перемножьте их" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c2ad3bc9", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "71bc90d2", + "metadata": {}, + "source": [ + "К массивам применимы те же операции, что и для списков. Их можно вызывать либо у массива, как метод, либо как функцию из numpy" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "ef0317fc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n", + "4\n" + ] + } + ], + "source": [ + "a = np.array([[1,2],[3,4]])\n", + "\n", + "print(a.max())\n", + "print(np.max(a))" + ] + }, + { + "cell_type": "markdown", + "id": "448de690", + "metadata": {}, + "source": [ + "### Задание\n", + "\n", + "Используя возможности numpy (БЕЗ SET) напишите функции, которые принимают заданный массив чисел и возвращают:\n", + "\n", + "1) список уникальных значений\n", + "\n", + "2) кортеж из среднего, максимального и минимального" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "dff1fd72", + "metadata": {}, + "outputs": [], + "source": [ + "arr = np.array([1,2,3,4,5,6,7,8,8,8,9,2,3,4,17])\n", + "\n", + "def unique_values(arr):\n", + " \"\"\"\n", + " напишите здесь свое решение\n", + " \"\"\"\n", + " pass\n", + "\n", + "def mean_max_min(arr):\n", + " \"\"\"\n", + " напишите здесь свое решение\n", + " \"\"\"\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "01a9aee8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n", + "None\n" + ] + } + ], + "source": [ + "# тут менять ничего не нужно, просто исполнить ячейку\n", + "print(unique_values(arr))\n", + "print(mean_max_min(arr))" + ] + }, + { + "cell_type": "markdown", + "id": "faf2eea4", + "metadata": {}, + "source": [ + "## Matplotlib" + ] + }, + { + "cell_type": "markdown", + "id": "bc5e0963", + "metadata": {}, + "source": [ + "Данная библиотека используется для визуального представления данных (графики, гистограммы, изображения и т.д.)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "2bd5b586", + "metadata": {}, + "outputs": [], + "source": [ + "# импортируем модуль pyplot из пакета matplotlib и дадим общепринятое сокращенное имя plt\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "225c8dee", + "metadata": {}, + "source": [ + "Рассмотрим для примера отрисовку графика синусоиды" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "1bf1604a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAADCCAYAAAB+MwfTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABN+UlEQVR4nO29d3hb2XWv/W4ABHsBe6+ieiNFtVEZT5+xp8Rl7HGJxyUeT1y+lM838XVuys1NvusUJ7lJHNfYY9/YnpnEbao9fVRGhRQpUV2iWMDeALCTIID9/QFAQ3NIiQXAOQfY7/PoEUmB5ywdYO+99m+tvZaQUqJQKBQKhUKhCA8mrQ1QKBQKhUKhiGaUs6VQKBQKhUIRRpSzpVAoFAqFQhFGlLOlUCgUCoVCEUaUs6VQKBQKhUIRRpSzpVAoFAqFQhFGLFobcCOys7NleXm51mYoFAqFQqFQ3JRTp04NSSlz5v9c185WeXk5DQ0NWpuhUCgUCoVCcVOEEB0L/VyFERUKhUKhUCjCiHK2FAqFQqFQKMJISJwtIcT3hBADQohzi/y7EEL8sxCiRQjRLISoDcV9FQqFQqFQKPROqJStJ4B7b/Dv9wHVgT+PAd8I0X0VCoVCoVAodE1IEuSllIeEEOU3eMlDwA+lv+v1cSFEhhCiQErZG4r7K8KL1yd55WI/J1odSCQ7yzO5c0MeVouKQmtJ+9AEz5/tpXdkisKMRO7fUkhpVpLWZsU0bo+PF8/10mR3YTEJ9lZlcevaHCxmNVa05HLfGC+e62VofIbyrGQe2FZIXlqC1mbFNJNuDy+c7eNsl4uEODMHqnPYtyYLIYTWpoUF4fd/QnAhv7P1nJRy8wL/9hzwVSnlkcD3rwJ/LKV8x1FDIcRj+NUvSktLd3R0LJjYr4gQLQPjfOHHjVzqGyMhzoRAMDXrpSonmf/zSA2bi9K1NjHm8Pokf//SZb59qBWvT2JLisM5OYvFJPjcbWv4/TuqMZmic8LSM2c6XXzxJ03YHZMkWc14fZIZj48tRen80yPbqcpJ0drEmGPG4+V/PnuBH5+wYxKQlhiHa3KWhDgTf3TPej65rzxqF3c9c+TqEF/6zzP0jU6TEm/B7fHh9vrYU5nJ/3mkxtCOsBDilJSybv7PI1X6YaFP84JenpTy28C3Aerq6kLjCSpWxNmuET7y3ePEW0z860dquGdTPgJ47dIAf/7MeT74rWN8/xM72V2ZpbWpMYPXJ/niTxp54WwfD+8o5v+9ex356Qn0uKb4+19f5p9fvYp9eIJ/+OB25XBFkLdahvjEE/XkpMTz/U/s5Na1OXh8khfO9vKXz13g4W8e4z8+vZuNhWlamxozTM96+dQT9bx1bZhP76/gc++qIislnrahCf76+Qv85XMX6HZN8T/es0E5XBHkueYefv/J01RkJ/OPH9rDnspMZjw+ftrYxV8/f5Hf+vpRnv7sXkoyo0ulj5S23QWUzPm+GOiJ0L0VK6DHNcUnnzhJWkIcv/j8Pu7fWkic2YTFbOLuTfn84vP7KEhP4DM/bKB1cFxrc2OGv3r+Ai+c7eMr717P3z28jfx0/w6wMCORr31wG1+6ey2/ON3D3710WWNLY4eWgTE+88MGKrKSefaL+7ltfS4mk8BqMfFbNUX89HdvId5i4tM/qGdgbFprc2MCKSX/7b+aeevaMF97eBt/ev9GslLiAajITubbv13HJ24p59+PtPHvR9o0tjZ2aGh38IdPnaGmNIOffe4W9lb5w4YJcWY+uruMpz+7l4kZD5/4/knGpme1NjekRMrZegb4eOBU4h5gROVr6RevT/IHT51myu3lB5/aRbHtnTuMvLQEnvjkLkwmwe8/dZpZr08DS2OLl8738f2j7XxyXzmPHax6x78LIfj8bWv48K5SvvHGNQ5dGdTAythietbL53/UREKcmR98aheZydZ3vKYiO5nvPlqHc9LNl/6zmVClbigW56n6Tp4908N/u2cd799R/I5/N5kEf3b/Ru7ZlMdXX7xEc5cr8kbGGCNTs/zek6cpyEjgOx+vIzUh7h2v2VyUzrc/Xkfb0AR//sx5DawMH6Eq/fAT4BiwTgjRJYT4tBDicSHE44GXvAC0Ai3Ad4DPheK+ivDwZL2dE20O/vzBTazJXTzPpCQzif/93i00d43wncOtEbQw9piY8fCnvzzHxoI0/vt9GxZ9nRCCP39gI2tyU/jjnzYz6fZE0MrY47uHW7ncP8bfz1EZF2JTYTpfefcGDl0Z5D8buiJoYezRPzrN/3ruAnsrs/jdW9+5KQliMgn+5v1byU6J58s/PYvXp5zgcPK3v7pE3+g0//Sh7WQkvXNTEmRPZRZfuL2anzV288blgQhaGF5C4mxJKT8spSyQUsZJKYullP8upfymlPKbgX+XUsrPSymrpJRbFkqMV+iDkalZvvbSFXaVZ/LwAjvC+dy3pYA7N+Txb69fY3BsJgIWxiZff72F/tEZ/uq9m296CjQhzsxX37eF3pFpvntYhUjCRbdrin99vYX7Nudz2/rcm77+Y7vL2FFm4+9euszEjHKCw8XXXrqM2+vjq+/fctO8xYwkK3/yng1c6B3lqfrOCFkYe1zuG+MnJ+389p4yakptN339F25bQ3lWEn/1/EU8URI1UeeRFb/Bv752Feekmz97YOOSk0a/8u71TM96+cdXroTZutik0zHJdw+38b7aImqXMFEB1JVnct/mfL755jWVJxQm/u5XlwD4H/dvXNLrTSbBV969gcGxGeUEh4kLPaP856kuHt1bTllW8pJ+5/6tBewqz+TvX7ocdXlCeuGvnr9AakIcv39n9ZJeb7WY+Mq7N9AyMM6PT9rDbF1kUM6W4jpD4zP88FgH76spXlZJh8qcFD62p4yn6jvpdEyG0cLY5NuH/CHaP7pn/bJ+74/vXY/b4+PfXr8WDrNimvahCZ4508Oje8spykhc8u/tKLNx3+Z8vnXoGo4JdxgtjE3+4eUrpCXE8cXbl7aogz/0/ifv2YBjws2PTkTHwq4nGtodHL46xBdvX3PD8OF87tqYx57KTL7+egszHm8YLYwMytlSXOcHb7Xj9vr43XctnuewGJ+9tRKTQJ3sCTEDY9M81dDJ+3cU3TAnaCHKs5N5aHsRT9V34lQLe0j5xhvXsJhNfPpAxbJ/9w/uWsuk28uPjqsagqGkZWCMVy728+gt5aQnvTP5+kZsK8ngQHU2/36kjelZ4y/seuKbb17DlhTHR3aXLuv3ggd++kdn+EVTd5isixzK2VIAMD7j4QdvtXPPxvwbJsUvRkF6Ig9tL+LJervasYeQ7x1px+P18dkFTh8uhccOVjI16+VHJ9TCHir6Rqb5WVMXj+wsITd1+cUX1+alcuvaHH5wrEMt7CHkO4faiLeYeHRv2Yp+/3dvrWJwbIb/OqUOMISKK/1jvHJxgEdvKSfJuvyynvvXZLOpMI1vvdlq+AMMytlSAPCzxi5Gpz08vgJVK8hjByuZnvXxY7Wwh4TpWS9P1tu5d3M+5dlLyz+Zz7p8/8L+xFvtUSHF64GfnLTj8Ul+Z3/liq/xmQOVDI3P8MvTxt+x64Gh8Rl+3tTNB+tKrtfTWi57q7LYWpzOE2+1q/IcIeJ7R9pIiDPx6N7yFf2+EILHb62idWjC8CcTlbOlQErJj0/Y2VKUzvaSjBVfZ21eKrdUZfFkfSc+g+9C9MCL53pxTc7ysd0r26kH+eS+cobG3bxywdiTlR7weH08WW/nYHXOqvpQ7luTxbq8VJUjFCJ+eqoLt9fHo7eUr/gaQgg+truMloFx6tudoTMuRhmf8fDMmR4e3FaIbYH6c0vl3s35ZKfE85OTxj4tqpwtBac7XVzqG+PDu5YXU1+IR3aV0uWc4ui1oRBYFtv86Lidiuxk9latrh3SgeocijISebJeLeyr5dVLA/SPzvDRZeafzEcIwYd2ltDcNcLF3tEQWRebSCl5qr6TneW2FaVAzOX+bQWkxlv4SZScgNOSZ073MOn28sgq15U4s4mH64p57VI/fSPGPVmtnC0FPzlpJ8lq5sHthau+1t0b88hIiuNJg+9CtOZq/xgNHU4+sqt01X3bzCbBw3XFHGkZUqdFV8mTJ+3kpyVw+xLqat2M99YUYTWbVH2nVXKyzUHr0AQf2rn6zWKS1cJv1RTx/NleXJMq93Q1PFlvZ11eKjWriJYEeWRnCT4JTzcYd6woZyvGmZ718nxzL/dvLSAlfvV9yRPizLyvppiXLvSpyWoV/OJ0N2aT4L21RSG53sN1/tak/6mSf1fM8PgMh64O8VBNIRbz6qdOW7KVuzbl8YvT3SqfbhU83dBFaryF92wpCMn1PrSzBLfHxwtn+0JyvVjkSv8YzV0jfGhnSUiafJdlJbO3MoufNnYZNp9OOVsxzuuXBphwe3lwW2gWdYD31RYx65X86pyarFaClJJnz/RyS1UW2StM9p1PUUYieyuzePZMj2EnK6154VwfXp/koRCOlYd3FOOanOXNy6qP5UqYnvXy0vk+7t2cT6LVHJJrbipMoyonWR1eWAXPnunBJOCBbauPlgR5b00RHcOTNHeNhOyakUQ5WzHOs809ZKdY2VOZGbJrbipMoyI7mWfO9ITsmrHEma4R7I7JkE5U4J/42oYmON+jcoRWwrOne1iTm8KGgtSQXXPfmmxsSXE819wbsmvGEoevDjE24+E9W0OjaoE/n+6h7UWcbHfQ45oK2XVjBSklzzX3sqcyi5zU0GwWAe7ZnI/VbOKXp425rihnK4YZn/Hw6sUB3r2lICRhkSBCCB7YVsix1mEGRo2b0KgVz5zuwWo2cc+m/JBe995N+VhMgmebjTlZaUmPa4qT7Q4e3FYYkrBIkDiziXs3F/DKxX6m3CqUuFyea+7BlhTHvjXZIb3ug9sKkdJ/fcXyON8zStvQBPdvDe1mMT0xjnety+G55h5D1txSzlYM88qFfmY8vpArKAAPbitASnj+rNqxLwevT/Jccw/vWpdDeuLyqmDfDFuylYNrc3juTK8KJS6TZwMq7YNhGCsPbCtg0u3ldYPXEYo007NeXrnQz72b84kL4WYR/N0XthWn87xSHJfNc829mE2CezeHdrMI8OD2QgbGZjjZ5gj5tcONcrZimGfP9FCQnsCOJTY3Xg5rclNZm5fCS+f7Q37taKah3cHA2ExYHGCA92wpoNs1Zdi8B6144WwvW4vTV1xc9kbsrvCHW9TCvjyC+aahVlCC3L0pnzNdI4YuNxBp/CHEHvavySZzFbW1FuO2dblYLSZeumC8fGDlbMUok24Ph1uGuHdzPiZT6MIic7lrYx4n2x3qVOIyePlCP1azKSSlBRbi9vW5mAS8elE5wUulf3SaM10j3L0xLyzXN5sEd27I5c0rg7g9vrDcIxp54VwfWclWdleELt90Lvds8r/fL6uxsmTO94zS5ZwKaQ7dXJLjLeyryuLlC/2GU+eVsxWjHL46hNvj464N4VlAAO7ckIfXJ3lDnbRaElJKXrnYz96qLJJDUIZjIWzJVurKM3n5ogpZLZVXA8/qzjA5W+AfK+MzHk60DYftHtHErNfHG5cHuHNDXkjzTedSlZNCRXYyL19QztZSeeViP0IQts0iwF0b8+lyTnG5fyxs9wgHytmKUV67OEBqvIWdYdoVAmwrziAnNV5NVkvk2uAE7cOT3LkhfBMVwF0b8rjYO0qXUxU4XQqvXuyn2JbIurzQnUKcz7412STEma47doob09DuZGzaw+1hHCtCCO7emMexa0OMTs+G7T7RxGuXBqgpyQhZyZqFCM6PLxssRUU5WzGIzyd59dIAB9flhDyxdC6mOeERVbTx5gRDe7eHUW2EtxUatbDfnEm3hyMtQ9y5IS+kpxDnkxBnZv+aHEOGR7TgtUv+cPv+EJ9CnM9dG/OY9UpVB20JDIxO09w1wh1hnr9y0xLYXpJhuPCucrZikObuEYbGZ8KuoIB/shqf8XC81XinRyLNqxcH2FiQRlFGYljvU5GdTFWOCo8shSNXh5jx+LgrjCHEIHduyKXbNcWlPmOFR7Tg1UsD7K7MDFu4PUhNqY3sFCsvqbFyU1675N+8hTOEGOSujXk0d43QO2KcOmjK2YpBXr3Yj0nAu9aGf1DcUpVNYpxZJWTfBOeEm4YOR0QcYPCrW8dbh1V45Ca8crHfH24vD1+4PUgwJKbGyo1pH5qgdXCCOyKwqJtNglvX5nL46qAhaztFklcvDVCUkcj6/PCF24MENz9GygdWzlYM8urFAerKMrGF4WjufBLizOytyuLw1aGw38vIHLo6iE+GP4QY5PZ1uXh8kmPXVEL2YkgpefPKIAfWZmO1hH+qzE1NYFtx+nWFQLEwbysokRkrB9dm45qc5Wy3KpeyGNOzXo5cHeL29blhDbcHqc5NIT8tgUNXlLOl0ClD4zNc6B3l1nU5Ebvngeps2oYm6HSohOzFOHx1iIykOLYUpUfkfjWlNpKtZg5fNc5kFWlaBsbpH53hQHXkxsrBtTmc6RpRiuMNeP3yAGtyUyjNSorI/Q5U5yAEhlrYI01Du5OpWW9EQojgP7xwcG02R1uG8HiNUS5FOVsxxtEWv8IU7sTSuQQXq0NqYV8QKSVHrg6xryobc5hqns3HajEpxfEmBJ9NJMfK/jXZeJXiuCjTs17q2x0cjKADnJlsZUtROm8qZ2tRjrQMEWcW7Arj6fb5HFybw+i0hzMGKdCsnK0Y42jLEOmJcWyOkIICUJWTTFFGotoZLsK1wXH6RqdD3t/tZuxfk03H8CQdwxMRva9RONIyRHlWEiWZkVFQQCmON6PR7mR61se+NVkRve/B6hxOd7oYmVKK40IcbRnyf3bDfGBhLvuqshECw4wV5WzFEEEF5ZaqrIgpKOCXfA9UZ/NWy7BhJN9IciSgoByojqyzdWCtXx1Q6tY7cXt8HG8dZn+E3xOlON6Yoy1DmE2C3ZURdrbW5uD1Sd5qUe/LfJwTbs71jERUAQZ/geatxRmG2cQrZyuGaBuaoGdkOuILCPhDiWMzHs50uSJ+b71zpGWIsggrKACV2X7F0Sg7w0jSZHcy6fayf03kwlVBgoqjfVjlOM7nSMswNSUZpERQQQGoKfXfU6VCvJO3rg0jJRFX5gFurc72K46T+lcclbMVQxzRIF8ryL41WZgEvHlF7QznMuv1cbzVoclEpRTHxTnSMoRJwN6qyCooMEdxbFEL+1xGJmc52+XSZKzEmf2K49EWlUs3nyMtQ6TEW9hWHLnUlCAH1ubgk3CsVf/rinK2YogjV4coyUykLCs54vfOSPInmR5Xib+/wZlOF+MzHg5osIAA7K/OZmzGQ7M61v4bHL46xLaSDNIT4yJ+76DieESFEn+DY63D+DRSUAD2VmZhd0zS7TJOIc1IcLRliD2VWWHrUXkjtpdkkBhnNkTR7JA8HSHEvUKIy0KIFiHElxf493cJIUaEEKcDf/4sFPdVLB2P18exa8OaqFpB9lRmcbrTxZRbte4JcvjqEEL4i79qwZ5A7ssJA0xWkWJkcpbmLldESz7MRQjB3qosTrQ58KlCmtc52jJEktXM9pIMTe4fHCtqw/g29uFJ7I5J9kf4wEKQOLOJunKbIU7vrtrZEkKYga8D9wEbgQ8LITYu8NLDUsrtgT9/udr7KpZHc/cIYzMezXaF4J+s3F4fTXanZjbojaMtQ2wtSic9KfIKCkB2SjzVuSkcb9X/ZBUpjrf5FRQtNya7KzJxTLi5OjCumQ1642jLELsrMiNSYHYh1uenkpEUp8bKHI5eC6SmaLQxAf+6crl/jOHxGc1sWAqh+NTuAlqklK1SSjfwJPBQCK6rCCFBz18rBQWgrtyGSaAmqwBTbi+nO13s1fA9Af9k1dDuYFblbQH+z2e8xaSZggJzVBQ1VgDocU3ROjSh6WbRZBLsrsjkmHpPrnO0ZYi8tHiqciKfmhIkOFZOtulbnQ+Fs1UEdM75vivws/nsFUKcEUK8KITYtNjFhBCPCSEahBANg4MqQTRUnGhzsC4vlcwItOhZjNQEf4V0I8TXI0GT3YnHJ9ldGblCgAuxuzKTCbeXcypvC/BP2rWlNs0UFICSzCSKMhI50aYWdnjb6dTiwMJc9lZm0eWcUt0w8JcSOtHmYG9lVkRa9CzG1uJ0kqxm3TvBoZhNFnrK8xMNGoEyKeU24F+AXyx2MSnlt6WUdVLKupwc7aTJaMLj9XGq3cHOCpvWpqi8rTmcaHNgErCjTNv3ZXdFUEVRTvDI1CwXekc1d4DB7wSfaHUgpcrbqm93kJpgYX1+mqZ27KlSimOQjuFJBsdm2BnBqvEL4c/bytT9exIKZ6sLKJnzfTHQM/cFUspRKeV44OsXgDghhLaxkxjiYu8YE24vuyq03RWCytuay8k2BxsL00hL0CZfK0hOajxrclOUigI0tDuQ8m0HVEv2VGYxPOGmReVtcaLNwc7yzIgWY16Itbn+6IDamLwdttutsbMFsKcykyv94wzpOG8rFM5WPVAthKgQQliBR4Bn5r5ACJEvAjqjEGJX4L5qZo8QwUV0V7n2g0Llbflxe3w02p3sKtd+UQf/ZFXf5oj5elsn2xxYzSZqSjO0NoU9FUpFARgan6F1cIKdOpi/gnlbx1uHY15xPNHmIDPZSlVOitamsNcAp6pX7WxJKT3AF4BfAxeBp6WU54UQjwshHg+87APAOSHEGeCfgUdkrH9SI8jJNgdlWUnkpydobYrK2wpwttvFjMcX0catN2JPZZY/b6tnVGtTNOV4m4NtJekkxJm1NoWSzEQK0xNifqzUBxQUvYyVvVVZdLum6HLGdr2t+nYHO8ttmuZrBdlclE6y1azrjUlIMkCllC9IKddKKauklH8d+Nk3pZTfDHz9r1LKTVLKbVLKPVLKt0JxX8XN8fkk9e0OXahaQfZUZtHU6YzpvK0TgQVkZ7n2eXTw9kKm58kq3IzPeDjXPaKbRV0IwZ7KLE60xbaKcrLdQUKciS1Fka9QvhC7leJI78gUdsekLlJTwBh5W6qCfJTTMjiOc3JWNwsI+BN/Z72S050urU3RjJNtDqpzU8hKidfaFAByUxOoyknmhI4nq3DT2OHE65O6yNcKsrsyk6FxN9cGYzdv62Sbg5oSbU+HzqU6N4W0BAunOmI37zSYr6WnTfyuikyuDozjmnRrbcqC6OPTqwgbJ3QmwQPUlvrVnFMdsRke8fokDe1OXb0nADvLMznV4YzZquUn2oYxm4Tmp0PnElQO6ttjc2EfnZ7lYu+o5ife5mIyCerKM2mIYWervt1BSryFDQWpWptyneC41asTrJytKKe+zUFeWjylmUlam3KdjCQr1bkpMTtZXewdZXzGoztna0eZjdFpT8xWLT/Z5vDnfsRbtDblOuVZSWQlW2mIUWfrVIcTn9THibe57Ciz0TIwjnNCnypKuDnZ5mBHmU2TfoiLsa04gziz0O26op8npQg5UkpOtjnYVaFt0bmFqIthFUWPaiP43xOAhhhUHGc8Xs50jbBTR6oW+PO2dpTZYlYFrm9zYDEJXZwOnUvwZKReVZRw4pxwc6V/XHfzV6LVzKbCdBra9TlWlLMVxXQ6pugbndbdoACoK7MxNu3hysCY1qZEnJNtw5RmJlGQnqi1Kb9BUEU5FYMqyrnuUdweH3U6ObAwl7pyG+2BApKxxsk2B5uK0kmy6kdtBH/VcqvZRH0MOsH17frcLIJ/XTnTNcKMR3+Hr5SzFcUE62vpTYIHri9qsRYekVJS3+7URc2g+QghqCu36VaGDyeNgf9zrc6ULYAdZbGpokzPemnuGtHl/JUQZ2ZzUVpMbkxOtjmwWkxsLdbH6dC51JVn4vb4ONetvxI2ytmKYk51OElLsLBGB0Xn5lOamUR2SnzMLSDtw5M4Jty6VFAA6soysTsmGRib1tqUiHKqw0lpZhK5qdrXopvP5qI0rBZTzIUSz3S6cHt9utyYgD+U2Nw1wvSs/lSUcFLf4WR7cQbxFu1r0c0nmCSvx1CicraimEa7k9oyGyaNW1wshBCCujJbzOUHXVdQSvXpbO0IOIGxtGOXUnLK7tTVKcS5xFvMbC1KjznF8VSgpZde35cdZTbcXl9MNXCfnvVyvntElwow+FuPlWcl6XKsKGcrShmdnuXqwLhuF3XwhxI7HVP0j8aOinLK7iQ13kJ1rv7URoDNhenEW0y6nKzCRZdzisGxGd0uIOB3gs91x5aK0tjhoiI7mcxkq9amLEjQCYylshxnu0fw+CS1OjuwMJfg4Su9FQJWzlaUctruQkr9Kigw5/RbDE1WjR1Otpdm6FJtBLBaTGwrzogpZysYyt6h57FS5i8E3NwVGyqKlJImu1N3pxDnkpUST2VOsi5DVuFCz7mNQerKbDgm3LQOTWhtym+gnK0o5VSHE5OAbSX6S2IMsqkwjYQ4U8yEEsemZ7ncP6ZrBxj8Ksr57pGYaafU0OEv0LguXz8FGudzPRclRsaK3THJ8IRb92NlZ1kmp+yxU8Km0e6kLMufb6tX6nSaCqGcrSil0e5kbV4qqQlxWpuyKHFmv4oSK0nyZzpHkFK/OShBdpbb8PgkZ7pcWpsSEU51uKgpzcCsU7URIDPZSmVOsu4WkHDRaNd3bmOQunIbrsnZmGinJKWk0e7S/XtSlZOCLSlOdxsT5WxFIT6f5LTdpWupN0hduY3zPaNMzHi0NiXsNNqdCAHbdRwagbntlKJ/YR+bnuVy36juFxDwh0diRUVp7HCRbDXrWm2EuYWAo3+sXM9t1Pn8FSwErLf0FOVsRSFXB8YZm/HoOgclSF1ZJt4YUVFOdThZm5tKmo7VRpjTTikGclHOdI7gM4DaCP6x4pqcpXUo+lWURrs/t1HPaiP4CwHbkuI4bXdpbUrYCaqNNQZYV2rLbLQOTeiqnZJytqKQ6xK8ARaQ7SUZADRF+WTl8/kTfmvLMrQ2ZUnsKLPR1OnS3YmeUHOqwxhqI7xdlkNvO/ZQM+n2cKlP/7mN4FdRakpt1+fcaKaxw0mS1cx6nauNADUl/s/O6U6XtobMQTlbUUhjh5PMZCvlWfppPr0YtmQrldnJUe9sXRscZ3TaY4gFBKCmNAPX5Cztw5NamxJWTtmdrMvTv9oIUJmdTEZSXNQv7Gc6R/D6pHHGSkkGVwfGGZma1dqUsNJod7G1OF1XzacXY1tJOiYBTToaK/p/aoplc8rupKYkQ3fNpxdje2kGpzv1VxcllBhJbYS3QwV6mqxCjdcnaepwGuY9EUJQW2qjMco3Jm+HqzK0NWSJBMdKcxSnQky5vVzsNUZuI0CS1cL6/DSalLKlCBeuSTetgxOGWUDAP1kNjbvpck5pbUrYONXhJCMpjsrsZK1NWRJrclJIjbdEtYpydWDMMLmNQWpLM2gZGMc1qZ9clFDT2OGkMieZjCR9FjOdz7aSdISI7lSI5i4XHp80RG5jkJrSDE7bXbo5UKKcrSgjOOCNsgMBrp9uieaFPXhk2ihqo8kk2FaSEdULyPVipgZaQIKbKD3t2EOJlJKmTv2XF5hLakIca3NTo37+AmMkxwepLbUxNuOhRSdlOZSzFWWc6nBiNgldFzOdz7q8VBLjzFG7sLsm3bQMjOv+yPR8akozuNQ3xqQ7OstyNNldZCZbKTNAbmOQbcUZmMTblbyjjWCjdiM5W+AfK0326D1Q0mh36rp10kIEw9B6SYVQzlaU0Wh3sqEglSSrRWtTlozFbGJrcbpuBkWoCaoQRgrtgn9n6PVJzkZpi5gmg+U2AiTHW9hQkBa1Ksrb7WAytDVkmdSUZjAyNUubzlrEhAIjtE5aiIrggZIOl9amAMrZiio8Xh9nDCbBB6kp9Rc3jcZGu43B1knFGVqbsiyul+WIwpDVyOQs1wyW2xikttTGabsLr05yUUJJo91JSryF6lz9lxeYy9sHSlzaGhIGOh1TDI0bT20UQlBTkkFTpz42JsrZiiIu948x4fYablCAf2fo8UnO90SfiuJXG9NIjjeO2gj+shwV2clRqTieDpwcqwk4lEZiR5mNCbeXy31jWpsSchrtLraX6L+Y6Xyi+UDJKbu/uLEx1xUbVwfGGZ3WviyHcraiiGASo5ESfoO8HV93aWpHqPEGWycZcKICvzPSGIW5KI2BYqZbDehsXW+nFGUL+/iMJ9A6KUNrU5aNySTYXhqdB0qM0jppIWpLbUgJZ3SgzitnK4posjvJTrFSbEvU2pRlk5uaQLEtMep2hlcHAmqjwXJQgtSUZjA4NkO3K7rKcjR1uliXl0qKwdRGgJLMRLJT4mmKsiT55k4XPgk1Btwsgn9jcqlvNOoOlDTanWwzoNoIsFVHZTmUsxVFNNld1BiovMB8akptuhgUoST4/wm2jzAa0ZiL4m/UbryE3yD+4qYZUadsXS/8a+Cx4pP+CvjRQrB1khGjJQBpCXFU56boYhOvnK0owTnhpm1owrALCPh3hr0j0/SORI+KEmydZKTyAnNZn59KQpwpqpyt1qEJRqc9hnWAwZ8q0DE8ydD4jNamhIxGu4uqnGTSk/TfOmkh3j5Qov3CHiqM1jppIWoDm3itUyGUsxUlBBtuGnkBCTqKp6NoYW/qdBmuvMBc/GU59HOiJxQ02Y1ZXmAuwVOU0VJvK1hewMiLejT2eQ2O++0GzG0MopeyHCFxtoQQ9wohLgshWoQQX17g34UQ4p8D/94shKgNxX0Vb9NkD5QXMFAx0/lsKkzHajFFTamBkalZWgbGDa02gn+yOt89yownOspyNHW6SE2wUJmdorUpK2ZLUTpxZhE1fRI7hidxTs4ashTHXLZHWXHTJruLyuxkbAYqZjqfYCqE1mNl1c6WEMIMfB24D9gIfFgIsXHey+4DqgN/HgO+sdr7Kn6Tpk4X6/PTDFXMdD5Wi4nNhWlRU2ogeALGSC0uFqKmxIbb6+N8z6jWpoSExg4n20syMBkw4TdIQpyZjYXpUaNsGa359GL4+7zOREWf16DauN3g70mwLIfW60oolK1dQIuUslVK6QaeBB6a95qHgB9KP8eBDCFEQQjuvSqePGnn2TM9WpuxanyB8gJGn6jAP1k1d43g9vi0NmXVNNld/vICxcZVGyG6ynKMz3i40j9meAcYYEepjTNdLma90TFWjFjMdD7R1Oe1y+kvZmr0sRIsy2F4ZQsoAjrnfN8V+NlyXwOAEOIxIUSDEKJhcHAwBOYtzpP1nfzwWHtY7xEJWgbHGZvxGH5QgH9hn/H4uNRnfBWlqdPJ2txUUhOMmfAbJC8tgaKMRM13hqGguStQXiAKNia1Zf6xciEKFMemTifbStINWV5gLtHU5/X66dAoGCs1pTa6nJOapkKEwtlaaHTMD1gv5TX+H0r5bSllnZSyLicnZ9XG3YjagIpi9J1hU5RI8BA9pQb8Enx0qI3wdqNdo/N2KY4MTe0IBcHj+EZXUSbdHi72jhn6cE+Q631eoyDvtMnuIjHOzLo8Y6uNAI/fWknTn95FvMWsmQ2hcLa6gJI53xcD82NzS3lNxAnuDC/2Gntn2GR3kZ4YR2V2stamrJrC9ATy0uINr6K0Dk0wMjVr6NNVc6kptdHtmmJgdFprU1ZFk91FZU4yGUnGTfgNUpCeSEF6gubhkdVytstfXiB6NiY2LvSMGL7Pa5PdydbidCxm4xctSLJaNP9/hOLu9UC1EKJCCGEFHgGemfeaZ4CPB04l7gFGpJS9Ibj3qgguhEZPMg0qKEYtLzAXf/NQm+F3htcVlKhZQDIAYzelDib8RoOCEqS2zGb8+StKDpIEqS3NYNZr7D6v07NezveMRs17ogdW7WxJKT3AF4BfAxeBp6WU54UQjwshHg+87AWgFWgBvgN8brX3DQWFGYnkpxl7Zzg6PcuVgeiQ4IPUlGYYvmBjk91JaryFqhzjlheYy6bCNKxmk6FDVp2OKYYn3FHjAIN/w9jtmqJvxLiKY2OHk/KsJDINXF5gLtdLDXS4tDVkFZzvGcHjk1GRr6UXQlInQEr5An6Hau7Pvjnnawl8PhT3CjW1ZRmGXkCaO0eQUZLwGyQ4WZ22u7hzY57G1qyMJruL7aXGLi8wl3iLmY2FaYbO2woWaIymsTI3b+vdWzQ/4L1spJQ0dbrYvyZba1NCRk5qvOH7vAbHudHLPugJ4wdjV0lNiY0u5xQDY8bcGQZzm7ZFQcJvkC1F6VhMwrBVy/39xEajIgl7LjWlGTR3ufAY9EBJk91FkjU6En6DbCxII95iMmwosds1xeDYTFQ5wOB3ghvtTsMWN22yuyi2JZKbmqC1KVFDzDtbwZYdRpV8mzpdVOemkJ5o7PICc0m0mtlQkGbY96S5ayRQXiB6QrvgD1lNz/q41DemtSkrIpoSfoNYLf7Tb0ZtSh1M4YiWgyRBaktt9I/O0GPQ8G6jwVsn6ZHomXVWyKZCf9sLI55+u57wG2W7QvCrKGcMqqJcl+CjUNkCYybJR3PCb22pjfPdo4Y8/dZkd5IQZ2JdfvSojWDsw1e9I1P0jkxH5bqiJTHvbCXEmdlUmG7I+Hp7oJ9YNC4gO8psTLq9XO43norSaHcavp/YQhRlJJKTGk+TAReQc93+hN9oC+2C/0Siv52S8U6/NdldbC3KIC6K1EaA9QWpJMQZ80DJ6esnqaNvXdGS6PqErxCjFjeNpmKm8zHqzjBYzDQaE0v9ZTmMeaAkmhN+aw16+m3G4+VCzyg1gVSOaCLObGJrsfYtYlZCU6cLq8XExoI0rU2JKpSzhXGLm0ZLP7GFKLb5VRSjTVb+fmIzUbsr3FFmo314kmGDleVo6nRGbcJvTmo8pZlJnDLYxuRc9yhury+qytbMpdagxU0bO5xsKUrHalHuQShRTxPjqijR0k9sIYQQ1JYaT0W5XqAxCsNVMLfUgEtbQ5ZJk90V1Qm/taUZnDLY6bemKOq9txDB4qZnu40T3nV7fJztHona+UtLlLOFMYubRlM/scWoLbUZrrhpk91JYpyZ9VGW8Btkc5H/QImRVJRYSPjdUWZjcGyGLueU1qYsmaZOF0UZieSmRZ/aCP5cOjDWJv5S3ygzHl/UKvNaopytAEYrbhpt/cQWYocBJ6smuyvqygvM5fqBEoO9JxDdCb/Xq5YbaA5r6ojOk9RBslP84V1DvSdR1mZMT0TnirACakuNVdw0GK6KtvICc7muohhksrqe8BvFizr4neAzXS7cHmMcKGmyO6M+4Xd9fipJVrNhnOC+kWl6Rqajfqz4UyFchgnvNtqd5KclUJiRqLUpUYdytgIEPXmjnOhpsjspy0oiKyVea1PCRlBFaTLIe3I94TfKd4U7ymzMeHxcMMiBkia7i82FaVGd8Gsxm9hmoNNvp6OwddJCGC2822R3Rf17ohXRO/ssEyMVN5VS0hjlCb9Bakv9KooRynJcL8URxWojvB3eNULe1vWE3xgYKzvKbFzoHWXS7dHalJvSaHdhNZvYVBi9aiMYK7w7ND6D3TGpnK0woZytAEYqbtrl9PcTi+YQYpBgWY4LPfpXURrtgfICUZrwGyQvLYGijERDhKzO9Yww4/FRVxb9zlZtWQZen6S5S/+n35rsTjYVpRFvMWttSlgJhneN0MBdFTMNL8rZmoNRipsGFYUdMbCAvF1qQN8Lu5SShnZnTCzq4H9fjKBsnWoPjJXy6H9fgieT9T5W3B4fzV0jUX2SOojF7O9dqff3BKChw0mcWbClKF1rU6IS5WzNwSjFTRs6HKTEW6K2vMBcCtITKUhP0P3C3umYYmBshh3lmVqbEhF2lNnoG52mx6XvXJSGDgelmUlRWcx0PrZkK5U5ybpXHINq484YcIAhWNxU/70rT3U42FyUTkJcdKuNWqGcrTkYpbhpQ7v/yHS0lheYT22ZTfcyfEOHAyCmlC3Qd96WlJJTHbGjNoJ/DtP76bdYUhvB/554dB7enfF4OdM1ElNjJdLExmq9RIxQ3HRkapbL/WMxEUIMUltqo9s1Rd+IfstyNHQ4SY23sDYv+tVG8OeiJMaZde1s+QviumNmUQe/E+yYcNM+PKm1KYtS3+6gLCs21EaYc9Jdx6HEc90juD0+6mJEmdcC5WzNQ+/FTZvsTqSEnTE0KGoNMFmdandSU2aLytZJC2Exm9iu86bUDQFHsK4slsaKvtX5oNoYS5vFrJR4yrP03buyvj128oC1Qjlb89B7cdNTHU7MJhETJxGDbCr0N0XV6wIyMjnLlYExdsbYRLWjzMb5Hv2WGjjV4SAtwUJ1borWpkSM6twUUuMtui0E3DY0wfCEO6Y2i+BfV5p03Luyod1JZXYy2VFct1FrlLM1jxqd7wwb2p1sKEglOd6itSkRw2oxsbUo/bpSoTcaA2pjLIWrQP+lBhrandSW2TDFiNoIYDIJtpdm6Hr+AmImOT7IjnIbQ+P6DO/61UaHUrXCjHK25rGlKJ2EOBMn2/Q3Wc16fTR1OmMqLBKkrjyTc90jTLn1d6KnocMRc2ojvF1qQI/hEdekm6sD4zGZ8LujzMbl/jHGpme1NuUdNHQ4yEiKozI7dtRGgN0V/jm7vs2hsSXv5NrgBM7JWepizAGONMrZmofVYqKmxMbJ9mGtTXkH/uPDvpgcFLsrMvH4JE2d+lvYG9qdbCpMI8kaO2oj+EsNVOm01EAwl2xHDG5MakttSAlnOvWnOAZr0cWS2ghQlZNCZrKVEzp0thraAyepYyy0G2mUs7UAuyoyudAzyqjOdoaxmPAbZEe5DSHgpM4mK7fHx5kuV8xK8DvKbDR0OPH59JWL0tDuxBKDaiPA9tIMhNCf4jg8PkPr0ERMOsBCCHaW26hv19f8Bf51JTPZSmV2stamRDXK2VqA3RWZ+KT+JqtTHQ6KbYnkp8fGkem5pCXEsbEgTXfO1vmeEb/aGIMLCMCuiixGpvwHBPREQ4dfbUy0xl6BxrSEONbmpurupGhwsxhr+VpBdpZnYndM6q6ETUO7P19LiNhSGyONcrYWoKbUhsUkdBVfl1JSH0PtYBZiV0UmjXYnbo9+2ikFHfJYDO3C27koJ1r1M1bcHh9nOl0xqaAEqS2z0WjXl+J4qsOJ1WJiS3FstoPZXZEFwEkdqVuDYzO0D0/G9LoSKZSztQCJVjNbitN1paLYHZMMxlA7mIXYVZ7J9KyPs936yUU52eagJDORvChvPr0YxbZECtMTdDVWmrtczHh87KqI3bFSW5rB2LSHa4PjWptynfp2B1uL0qO++fRibChIJdlq5mSbfvKBTwU7X8ToZjGSKGdrEXZVZHKmy6WbflZB5WBPDC8gOwP/d70s7D6f5ESbgz2BHWssIoRgd2UWJ9qGdVND6HirfzHbHcNjRW/tlKbcXs51j8RceZS5WMwmdpRn6mb+AjjR5iDeYmKzaj4ddpSztQi7yjOZ9Urd9OQ73jpMdoqVNTFUoHE+2SnxVOUk62ZneKlvjJGpWfZUxq6zBf6NydC4m9ahCa1NAfwLyPr8VGzJVq1N0YyK7GRsSXG6yds61eFk1ivVWCm3caV/HOeEW2tTADh2bZi6clvMqo2RZFXOlhAiUwjxshDiauDvBbctQoh2IcRZIcRpIUTDau4ZKerKMhECXZwekVJyvHWY3ZVZMZ/EuKsii4Z2J14d5KJcV1AqY1dBAX3lbbk9PhranTG/qAshqC216UbZOtY6hNkkYq5y/Hx2BVRwPawrzgk3l/rGYlqZjySrVba+DLwqpawGXg18vxi3SSm3SynrVnnPiJCeFMf6fH2cfrM7JukZmY75BQT8C/vYjIeLvaNam8Lx1mFKMhMptiVpbYqmVATafOhBcTzb7WJq1sueGHeAwV8u5drgBEPjM1qbwvFWB1uL00mJoc4XC7G1OB2r2aQLZytY82tPlVpXIsFqna2HgB8Evv4B8FurvJ6u2F2RGZC/tT39FlRQ9qoF5HrSs9ZOsM8nOdke2/laQfx5W5mcaHNonrd1PKCu7VLvC7dUZQNvzx9aMTHj4UynS20WgYQ4M9tLMjSfv8D/uUiIM7GtOENrU2KC1TpbeVLKXoDA37mLvE4CLwkhTgkhHrvRBYUQjwkhGoQQDYODg6s0b3XsLM9kataf2Kklx1sdZKdYqcqJ3XytIIUZiRTbEjWfrC73j+GaVPlaQXZXZNI7Mk2Xc0pTO463DrM+P5XMGM7XCrK5MI3UeAtHW7R1tho6nHh8kr1qrAD+DeO5nlHGZ7Rt4H68dZi6skysFpW6HQlu+pSFEK8IIc4t8OehZdxnn5SyFrgP+LwQ4uBiL5RSfltKWSelrMvJyVnGLUJPMBfnmIY7Q5Wv9U52VWRyom1Y0xpCKl/rNwnWENJyrMx6/flasXwKcS4Ws4ndlZkcuzakqR3HW4exmIQqLxDglqosvD6padh9eHyGS31j7FUhxIhxU2dLSnmnlHLzAn9+CfQLIQoAAn8PLHKNnsDfA8DPgV2h+y+Ej+yUeNbnp3LkqnaTld0xSa/K1/oN9lVl45yc5YKGeVsqX+s3qc5NITvFylst2o2V5q6RQL6WGitBbqnKpn14km6XdorjsWvDbCvJiLneoYtRW2Yj3mLiyFXtnK1gZEDlNkaO1eqHzwCPBr5+FPjl/BcIIZKFEKnBr4G7gXOrvG/EOFCdTUO7kym3NvW23s7XUgtIkP3V/lyUoxot7Kq+1jsxmQS3VGVzpEW7elsnAkpBLBcznc8tawKK4zVtFvbxGQ9nu0fU/DWHhDgzuyoyNZu/wL+uJMaZ2VKUoZkNscZqna2vAncJIa4CdwW+RwhRKIR4IfCaPOCIEOIMcBJ4Xkr5q1XeN2LsW5ON2+ujoUObHKFj14av15dS+MlLS6A6N4UjGk1WF/tGVb7WAuyvzmYoEJ7QgqMtQ6zPTyUrJV6T++uRtbmpZCVrpzjWtzvw+qQKV81j35psLvePMTCmTZ/EY63++loqXytyrOpJSymHpZR3SCmrA387Aj/vkVK+O/B1q5RyW+DPJinlX4fC8EixqyKTOLPQJJTo80mOtAyxb43K15rP/upsTrY5NKnwfzjwWQgqbAo/BzRUHKfcXurbnNdtUPgxmQR7qrJ465o2iuOxa8NYzSZqS1W+1lz2r/F/Tt/S4PDCwOg0V/rHlQMcYZRbexOSrBZqS22aqCgX+0YZGndzsFrbgwJ65EB1NjMenyZFGw9fHWR9fmrM9kNcjIL0RKpykq87o5HkRNswbq+PA2qsvINbqrLoG52mTYMK/4euDFJXbiPRqiqUz2VjQRoZSXGarCuHAuNTrSuRRTlbS2D/mmzO94ziiHCLhUNX/INC7dbfya6KLCwmEfHJSikoN+ZAdQ4n2oaZ8URWcTx8dQirxaTytRZgX6De1tEI5231j05zqW+Mg2vVoj4fk0mwryqboy1DEVccD18dJDvFysaCtIjeN9ZRztYSCIaL3orwEeqggpKrFJR3kBIfUBwjrKIoBeXG7F+TzfRs5BXHw1cH2V2RSUKcUlDmU5aVRFFGIoeuRLZuYfB+SkFZmH1rsukdmY5oT1GfT3L46hAHqnMwmVRqSiRRztYS2FKUTmqCJaIL+6TbQ0O7U+0Kb8C+Ndmc6xmJaFPXw1eHiFcKyqLsrszEbIpsjmN/IAclmAej+E2EENy2Poe3WoYiqjgeujpETmo8GwpSI3ZPIxH8vEYyxzEYoTm4Vo2VSKOcrSVgMZvYW5nF4auRk3xPtDpwe31qV3gD9ldnIyUcjaDiePjqILuUgrIoqQlx1JRkRHQBCeaIKbVxcW5bl8uE20tDe2QUR69PcuTqIAeqs9XhnkUozUqiNDOJNy9HTnE8dNV/r/1r1FiJNMrZWiK3rc+l2zXF5f7IHGt/88og8RaTqrp8A7YVp5ORFMfrlyIzWfWOTHGlf1w5wDfh4NocmrtHItYA+Y3LA9cLECsWZm9VFlazidcvLVh3OuSc6x7BOTnLrUqZvyG3r8/lSMtQxOo4HroyyMaCNHJSVXmUSKOcrSVyx3p/28dXL4Z/spJS8vrlAfZUZikF5QZYzCbetTaH1y8P4I1A657ge/+udWoBuRG3r89FSngtAgu72+PjzSuD3LE+V+Wg3IAkq4XdlZm8fjkyztabVwYRAhXavQl3bMhlxuPjWGv4leDR6VlOdajUFK1QztYSyU1LYGtxOq9e7A/7va4OjNMxPMldG/PCfi+jc8eGPBwTbk53hj888vKFfsqzkliTqxqC34hNhWkUpCdEZKzUtzsYm/Zwx4bcsN/L6Ny2LpdrgxN0OibDfq9XLvazrThDFZi9CbsqMkm2mnklApv4Ny4P4vFJ7tqoxooWKGdrGdy+PpemTlfYwyMvX/AvUsrZujm3rsvBYhK8fCG8k9X4jIdj14a5c0OeykG5CUII7tiQy6ErQ2EvOvvKxX7iLSZVYHYJBBXZcKtbvSNTNHeNcM+m/LDeJxqIt5g5UJ3DaxcHwp4P/PKFfrJTrGwvUakpWqCcrWVw54Y8pCTseQ8vX+hnW3G6Kpq5BNIS4thVkRl2FeXwlUHcXp9ygJfInRvymJr1cqw1fLWdpJS8crGf/WuyVZPjJVCRnUxFdvL1zVy4eEVtFpfF7Rty6Rud5kLvaNju4fb4eOPSAHesz8Oswu2aoJytZbCpMI28tPiw5qIMjE5zutPFnRvURLVU7tiQx9WBcezD4QuPvHyhn4ykOHaUqV3hUthTmUWS1Xx94Q0HV/rH6XRMcada1JeEEIJ7N+fz1rXhsJZLeelCP5U5ySrcvkRuW5eLEOHNBz7eOszYjEc5wBqinK1l4A+P5PHmlcGwnR4Jxu7v2qQGxVK5M5Cv89KFvrBc3+P18drlAW5fl4vFrIbMUkiIM3OwOodXLw7gC9PhhVcCambw8Iri5ty3OR+vT/JymJTgkalZjl0b5u6NKoS4VHJS46kttfHC2d6w3ePlC/0kxplVuF1D1MqxTO7fUsCk2xs2devlC32UZCayLk8dY18qZVnJbCxI4/kwTVYn2xy4JmeVgrJM7tmcR9/oNI328BxeePFcL9tLMlSHhWWwpSidooxEfnUuPBuTNy4P4PFJ7labxWXxni0FXOobo2VgPOTXDobbD1Rnq9PtGqKcrWWyuzKL7JR4nmvuCfm1nRNuDl8d4t2bC1QS9jJ5cHshTXZXWE5aPdvcQ5LVzG3rlIKyHO7amE+8xcQzZ0I/VloHxznXPcr9WwtCfu1oRgjBfZvzOXJ1iLHp2ZBf/8WzfeSkxrO9OCPk145m3rO1ACEIy7rSaHfSOzLNvZuV2qglytlaJmaT4P6tBbx2aYDxGU9Ir/3iuT48PskD2wpDet1Y4D1b/IvusyGerNweHy+e6+OujXkkWtWucDmkxFu4Y0MuL5ztxeP1hfTazzX3IgTcv1WNleVy35Z83F5fyNX5kalZXrs0wANbC1XNs2WSl5bAzvJMnm8OvTr/y9M9xFtM3K1Oh2qKcrZWwP1bC5jx+EKe/PvMmW4qc5LZVKi6sS+XkswkakszePZMaCeroy1DuCZneUAt6iviwW1FDI27eetaaE8lPtfcw86yTPLTVQhxudSU2MhPS+CZ06HdmPz6XB9ur4+HtquxshIe2FrA1YFxLveFrkvJrNfH88293Lkhj5R4dWJXS5SztQJqS20UpifwbAjDI/2j05xoc/DgtkIVQlwhD2wr5GLvKC0DoZusnjnTQ1qCRVVdXiHvWpdDarwlpKHECz2jXOkf5/5tKoS4EkwmwW/VFPHGlUEGx0JXM/AXp7spz0pia3F6yK4ZS9y7uQCTIKTrytGWIYYn3DyoHGDNUc7WCjCZBA9sK+TNEE5WP23sQkp4UIUQV8x7tvonq583dYfkeiNTs7x4rpf7txVitaihshIS4szcszmfX5/rC9kJ3qcbOrGaTUptXAUf2FGE1yf55enQjJXekSmOtQ7z4PYitVlcITmp8eyvzuFnjV0haz/2s8Zu0hIsqsWYDlAryAr54M4SPD7Jf53qWvW1fD7Jkyc72V2RSWWOqk2zUnJTE7htXS5PN3QxG4IcoWdOdzM96+PDO0tDYF3s8v7aYsZmPCE5LTo96+XnTd3cvSkPW7I1BNbFJmtyU9lWkhGS+QvgyZOdADy8ozgk14tVHtlZQs/INIeuDq76Wo4JN78618f7aouJt6h8U61RztYKqcpJYXdFJk/W21ddR+hY6zB2xyQf2a0W9dXy4V2lDI7NhKSi/JP1nWwsSGNzkcqhWw17KjOpzEnmRyc6Vn2tX5/vY2RqlkeUA7xqPrCjmEt9YzStsjSHx+vjqfpODlTnUJKZFCLrYpM7N+SRlWzlyZP2VV/rZ41duL0+PrxLjRU9oJytVfCR3aV0DE+uOvn3xyfsZCTFqV5iIeBd63IoSE/gx4Gd9ko50+nifM8oj+wqUWGRVSKE4KO7y2iyu7jQs7qWJD86bqfYlsgtVVkhsi52eW9NEanxFp54q31V13n98iB9o9N8RC3qq8ZqMfH+HcW8enGA/tHpFV9HSsmPT9rZUWZjXb6q2agHlLO1Cu7ZlE9WspV/P9K64mt0Oib51fk+Ht5RrArOhQCL2cQjO0s5dGWQq/0rT5T/9uFWUuMtvLemKITWxS7vry0i3mLih8faV3yN050uTrY7+MQt5aq0QAhIibfwcF0Jzzf3rmphf+KtNvLS4rljg6pDFwo+ursUn5SrcoLfuDJI6+AEH1XREt2gnK1VkBBn5hO3lPP65UEurrCJ6HcPt2IS8Kn9FSG2Lnb57b1lJMaZ+cab11b0+/bhSV4828tH9pSSmhAXYutik4wkKx+sK+GnjV30jaxsYf/O4VZSEyw8ohSUkPHxvWV4peT/HltZiPd0p4ujLcN8en8FcaqVVUgoy0rmvs0F/MfxjhUXnv3GG9coTE9Qdeh0hBodq+S395aRZDXzrRUs7I4JN081dPLQ9iIK0hPDYF1skpls5ZFdJTxzuocu5/Iryn/3SCtmk+BT+5QDHEoeO1iJT8K3Dy1fCe4YnvA7wLtLVb2gEFKencw9G/N54q32FTWn/rfXW0hPjOMju8vCYF3s8tjBSsamPfz4xPJzt051ODjZ5uB3DlSqU9Q6Qr0TqyQjycpHd5fyzJmeZRej+9fXWnB7fHz2YGWYrItdPnOgEiHgX15tWdbvdQxP8JOTdj6wo5g81XMvpJRkJvHQ9kJ+fLJj2WGrv/31ZeItZj6tHOCQ8wd3rWXC7eFby3SCz3WP8NKFfh69pVw5wCFmW0kG+9dk8803rzEytXR1S0rJP7x8BVtSHI/sKgmjhYrlopytEPC5d60hNSGO//XcBaRc2snEa4Pj/PBYOx/aWUK1ajodcgozEvn43nKePtXJ2a6RJf/e3/zqEnFmE39w59owWhe7/N4d1fh88NUXLy35d5rsTp5v7uUzBytV0+kwsC4/lQe3FfLEW230jkwt6XeklPzPZ8+TmWzl0yoFIix8+b71uKZm+frrS98wvnyhn6Mtw/zeHdUkWZUDrCeUsxUCbMlWfv/Oao60DPHyElr4SCn5q+cukBBn5g/vWhcBC2OT/+eOajKTrPzPZ88vqTzHsWvDvHC2j88erFKLepgoy0rmMwcr+HlTN/Xtjpu+3uP18RfPXiA7xcpjSgEOG1+62z8P/cnPzy1pw/jMmR7q25380T3rSE9UeY3hYHNROh+oLeb7R9u4Njh+09dPz3r56xcuUp2bwkf3qLCu3lDOVoj42J4y1uen8pWfn2No/MZV5Z9u6OT1y4P8/p3V5KTGR8jC2CM9MY4/vnc9DR1Ovne07YavHZ2e5Uv/eYbyrCQ+c1Dt1MPJ529bQ2F6An/0X803beb+rUOtnOl08af3b1ShqjBSkpnEl+5ex2uXBm7agaFvZJq/eOY8W4vTebhOharCyX+7dx3J8Rb+8KnTNy3U/NUXL9ExPMlfPLhJHVbQIat6R4QQDwshzgshfEKIuhu87l4hxGUhRIsQ4suruadeiTOb+KdHtjM6Pcvn/qOR6dmFW5M02p382S/Pc0tVlkrAjgAP1xVz98Y8/uZXlzjaMrTgazxeH1/8cRN9o9N87YPblfweZpKsFv7xQ9vpGJ7g/336NJ5FFpHXLw/wtZcuc//WAtXGKgJ8cl8FdWU2/uTn5zjXvXDofdLt4Xd/dIoZj49//NB2zKoER1jJTU3g/3vvFs50jfBnv1xcdfzpqS6eeKudT+2rYN+a7AhbqVgKq3V/zwHvAw4t9gIhhBn4OnAfsBH4sBBi4yrvq0vW56fx9w9v42S7g8/8sIGRyd9MbHzr2hCf+N5J8tMT+JcP16haQRFACMHfPbyNyuwUHvthwzsqy4/PeHj8Pxp588og/+uhzewos2lkaWyxuzKLP71/I78+38/vPXmaSfdvKly/OtfH4//3FOvz0/jbD2xVhWUjgNkk+LeP1WJLiuNj/37iHWFex4SbTz1Rz5lOF//wwW1UqdZiEeHdWwr4/G1V/ORkJ//jF+dwe97enEgpefKknT/+aTO3VGXxx/eptBS9Ipaa0H3DiwjxBvAlKWXDAv+2F/gLKeU9ge//O4CU8n/f7Lp1dXWyoeEdl9Q9Tzd08pWfnSU90X8iJD8tgeOtDp4/28ua3BS+/4mdqq1FhOkfnebTP6jnXPcod23MY/+abIYn3Dxd30n/2DR/8cAmHr2lXGszY45vH7rG/37xEgVpCXxwZwm2JCtvXhnktUsDbCtO5/uf3EWm6oEYUezDk3z8eyfocEzywNZCdlZk0u2c4ql6OxNuL3/3ga08tF0V+40kPp/kb399mW++eY3KnGTeX1tMYpyZly/0c6x1mAPV2fzbR2tVXUAdIIQ4JaV8R6QvEs7WB4B7pZS/E/j+t4HdUsovLHKtx4DHAEpLS3d0dKy+n5oWnOse4W9+dYm3rg3j9UlsSXF8cGcJX7y9WuWeaMSU28u3Dl3j/x7rYHjCjRCwuyKTP7p3PbWlStHSihOtw/z9S5dp6HAiJeSkxvPxPWU8dmulaqCrEWPTs/zTK1f5r1NdjEzNYjEJ9ldn80f3rGdjoeoVqhWvXxrgH16+wtlAmLcwPYHfOVDJx/eWYVF5Wrpgxc6WEOIVYKGmfX8ipfxl4DVvsLiz9TBwzzxna5eU8os3M9qoytZcxmc8TM54yEqJV/kNOkFKycDYDElWs9oJ6oix6VmmZ31kJVtViF0nzHp9OCfcpCRYVC6jjhiZnMXt9ZGdYlUhdp2xmLN109EjpbxzlffuAuYeWSkGelZ5TcOQEm9RSpbOEEKogqU6JDUhjlT1tuiKOLNJlUHRIelJapNoNCKhO9YD1UKICiGEFXgEeCYC91UoFAqFQqHQnNWWfnivEKIL2As8L4T4deDnhUKIFwCklB7gC8CvgYvA01LK86szW6FQKBQKhcIYrCq+JaX8OfDzBX7eA7x7zvcvAC+s5l4KhUKhUCgURkQdX1AoFAqFQqEII8rZUigUCoVCoQgjIamzFS6EEIOAngptZQML93xRLBX1DFePeoarRz3D1aGe3+pRz3D16PEZlkkpc+b/UNfOlt4QQjQsVD9DsXTUM1w96hmuHvUMV4d6fqtHPcPVY6RnqMKICoVCoVAoFGFEOVsKhUKhUCgUYUQ5W8vj21obEAWoZ7h61DNcPeoZrg71/FaPeoarxzDPUOVsKRQKhUKhUIQRpWwpFAqFQqFQhBHlbC0BIcTDQojzQgifEKJuzs/LhRBTQojTgT/f1NJOPbPYMwz8238XQrQIIS4LIe7RykYjIYT4CyFE95zP3rtv/lsKIcS9gc9ZixDiy1rbY0SEEO1CiLOBz12D1vYYASHE94QQA0KIc3N+limEeFkIcTXwt01LG/XOIs/QMPOgcraWxjngfcChBf7tmpRye+DP4xG2y0gs+AyFEBvxNyffBNwL/JsQwhx58wzJP8757Kl2WDch8Ln6OnAfsBH4cODzp1g+twU+d4Y4dq8DnsA/v83ly8CrUspq4NXA94rFeYJ3PkMwyDyonK0lIKW8KKW8rLUdRuYGz/Ah4Ekp5YyUsg1oAXZF1jpFjLALaJFStkop3cCT+D9/CkVYkVIeAhzzfvwQ8IPA1z8AfiuSNhmNRZ6hYVDO1uqpEEI0CSHeFEIc0NoYA1IEdM75vivwM8XN+YIQojkgr6sQxM1Rn7XQIIGXhBCnhBCPaW2MgcmTUvYCBP7O1dgeo2KIeVA5WwGEEK8IIc4t8OdGO99eoFRKWQP8IfBjIURaZCzWHyt8hmKBn6kjstz0eX4DqAK24/8cfk1LWw2C+qyFhn1Sylr84djPCyEOam2QImYxzDxo0doAvSClvHMFvzMDzAS+PiWEuAasBWIyaXQlzxC/ulAy5/tioCc0FhmbpT5PIcR3gOfCbE40oD5rIUBK2RP4e0AI8XP84dmF8lkVN6ZfCFEgpewVQhQAA1obZDSklP3Br/U+DyplaxUIIXKCydxCiEqgGmjV1irD8QzwiBAiXghRgf8ZntTYJt0TmJyDvBf/AQTFjakHqoUQFUIIK/6DGc9obJOhEEIkCyFSg18Dd6M+eyvlGeDRwNePAr/U0BZDYqR5UClbS0AI8V7gX4Ac4HkhxGkp5T3AQeAvhRAewAs8LqU0bAJfOFnsGUopzwshngYuAB7g81JKr5a2GoS/FUJsxx8Gawc+q6k1BkBK6RFCfAH4NWAGvielPK+xWUYjD/i5EAL868ePpZS/0tYk/SOE+AnwLiBbCNEF/DnwVeBpIcSnATvwsHYW6p9FnuG7jDIPqgryCoVCoVAoFGFEhREVCoVCoVAowohythQKhUKhUCjCiHK2FAqFQqFQKMKIcrYUCoVCoVAowohythQKhUKhUCjCiHK2FAqFQqFQKMKIcrYUCoVCoVAowohythQKhUKhUCjCyP8PvmH2ulh1XaUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# зададим функцию для подсчета значения синуса в точке\n", + "def func(x):\n", + " return np.sin(x)\n", + "\n", + "# при помощи linspace создадим массив значений в 1000 шагов от минус 5Пи до плюс 5пи \n", + "x = np.linspace(-np.pi * 5, np.pi * 5, 1000)\n", + "\n", + "# зададим параметр пропорций и размеров нашего графика (можете поменять эти значения или вообще удалить эту строчку для интереса)\n", + "plt.figure(figsize=(10,3))\n", + "# выведем график при помощи функции plot\n", + "plt.plot(x, func(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "4ab380ee", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAADCCAYAAAB+MwfTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABOfElEQVR4nO29d3yb133v/z4ACO4B7j1FbYkiRS1LsuNtJx7NcOKMxhmNm2bcpvfmpml6u+5tfzdt03F7myZxM5zcJrHdTM/E2xrWIEWK1JYoDnAvANwkCOD8/gAg0zQlkSKA53mA8369+BIBPnier3h4zvmez/me71dIKVEoFAqFQqFQhAeT1gYoFAqFQqFQRDPK2VIoFAqFQqEII8rZUigUCoVCoQgjytlSKBQKhUKhCCPK2VIoFAqFQqEII8rZUigUCoVCoQgjFq0NuBbZ2dmyvLxcazMUCoVCoVAorsuJEydGpJQ5i9/XtbNVXl5OY2Oj1mYoFAqFQqFQXBchRNdS76ttRIVCoVAoFIowopwthUKhUCgUijASEmdLCPF9IcSQEOL0VX4uhBD/IoRoE0K0CiHqQvFchUKhUCgUCr0TKmXrceCea/z8XqA68PUo8K0QPVehUCgUCoVC14QkQF5KeUAIUX6NSx4EfiT9Va+PCiEyhBAFUsr+UDxfEV68PsnL5wY51u5AItlRnskdG/KwWtQutJZ0jkzx3Kl++sdmKMxI5L4thZRmJWltVkzj9vh44XQ/zXYXFpNgT1UWt6zNwWJWfUVLLgxM8MLpfkYm5yjPSub+mkLy0hK0NiummXZ7eP7UAKd6XCTEmdlfncPeNVkIIbQ2LSwIv/8Tghv5na1npZSbl/jZs8DXpZSHAq9fAf5YSvmOo4ZCiEfxq1+UlpZu7+paMrBfESHahib5wk+aOD8wQUKcCYFgZt5LVU4y/+fhWjYXpWttYszh9Um+8eIFHjvQjtcnsSXF4Zyex2ISfO7WNXzp9mpMpugcsPRMS7eLL/60GbtjmiSrGa9PMufxsaUonX9+eBtVOSlamxhzzHm8/NUzZ/nJMTsmAWmJcbim50mIM/GVu9fzyb3lUTu565lDl0b48n+2MDA+S0q8BbfHh9vrY3dlJv/n4VpDO8JCiBNSyvrF70cq9cNSf81LenlSyseAxwDq6+tD4wkqbohTPWN85LtHibeY+NeP1HL3pnwE8Or5If7i6TN88DtH+MEndrCrMktrU2MGr0/yxZ828fypAR7aXsx/u2sd+ekJ9Llm+MZvL/Avr1zCPjrFP35wm3K4IsibbSN84vEGclLi+cEndnDL2hw8Psnzp/r5n8+e5aFvH+E/Pr2LjYVpWpsaM8zOe/nU4w28eXmUT++r4HPvqiIrJZ6OkSn+5rmz/M9nz9LrmuF/vGeDcrgiyLOtfXzpiZNUZCfzTx/aze7KTOY8Pn7e1MPfPHeO3/nmYZ76/T2UZEaXSh8pbbsHKFnwuhjoi9CzFTdAn2uGTz5+nLSEOH71+b3ct7WQOLMJi9nEXZvy+dXn91KQnsBnftRI+/Ck1ubGDH/93FmePzXA1969nr9/qIb8dP8KsDAjkX/4YA1fvmstvzrZx9+/eEFjS2OHtqEJPvOjRiqyknnmi/u4dX0uJpPAajHxO7VF/PwPbiLeYuLTP2xgaGJWa3NjAikl//1nrbx5eZR/eKiGP7tvI1kp8QBUZCfz2O/W84mbyvneoQ6+d6hDY2tjh8ZOB//1yRZqSzP4xeduYk+Vf9swIc7MR3eV8dTv72FqzsMnfnCcidl5rc0NKZFytp4GPh44lbgbGFPxWvrF65P80ZMnmXF7+eGndlJse+cKIy8tgcc/uROTSfClJ08y7/VpYGls8eKZAX5wuJNP7i3n0Zur3vFzIQSfv3UNH95Zyrdev8yBi8MaWBlbzM57+fyPm0mIM/PDT+0kM9n6jmsqspP57iP1OKfdfPk/WwlV6Ibi6jzZ0M0zLX3897vX8f7txe/4uckk+PP7NnL3pjy+/sJ5WntckTcyxhibmecPnzhJQUYC//7xelIT4t5xzeaidB77eD0dI1P8xdNnNLAyfIQq9cNPgSPAOiFEjxDi00KIzwohPhu45HmgHWgD/h34XCieqwgPTzTYOdbh4C8e2MSa3KvHmZRkJvG/37uF1p4x/v1gewQtjD2m5jz82a9Ps7EgjT+5d8NVrxNC8Bf3b2RNbgp//PNWpt2eCFoZe3z3YDsXBif4xgKVcSk2FabztXdv4MDFYf6zsSeCFsYeg+Oz/K9nz7KnMos/uOWdi5IgJpPgb9+/leyUeL7681N4fcoJDid/95vzDIzP8s8f2kZG0jsXJUF2V2bxhduq+UVTL69fGIqgheElJM6WlPLDUsoCKWWclLJYSvk9KeW3pZTfDvxcSik/L6WsklJuWSowXqEPxmbm+YcXL7KzPJOHllgRLubeLQXcsSGPf3vtMsMTcxGwMDb55mttDI7P8dfv3XzdU6AJcWa+/r4t9I/N8t2DaoskXPS6ZvjX19q4d3M+t67Pve71H9tVxvYyG3//4gWm5pQTHC7+4cULuL0+vv7+LdeNW8xIsvKn79nA2f5xnmzojpCFsceFgQl+etzO7+4uo7bUdt3rv3DrGsqzkvjr587hiZJdE3UeWfE2/vXVSzin3fz5/RuXHTT6tXevZ3beyz+9fDHM1sUm3Y5pvnuwg/fVFVG3jIEKoL48k3s35/PtNy6rOKEw8fe/OQ/A/7hv47KuN5kEX3v3BoYn5pQTHCbO9o3znyd6eGRPOWVZycv6zH1bC9hZnsk3XrwQdXFCeuGvnztLakIcX7qjelnXWy0mvvbuDbQNTfKT4/YwWxcZlLOluMLI5Bw/OtLF+2qLV5TSoTInhY/tLuPJhm66HdNhtDA2eeyAf4v2K3evX9Hn/vie9bg9Pv7ttcvhMCum6RyZ4umWPh7ZU05RRuKyP7e9zMa9m/P5zoHLOKbcYbQwNvnHly6SlhDHF29b3qQO/q33P33PBhxTbn58LDomdj3R2Ong4KURvnjbmmtuHy7mzo157K7M5JuvtTHn8YbRwsignC3FFX74Zidur48/eNfV4xyuxu/fUolJoE72hJihiVmebOzm/duLrhkTtBTl2ck8uK2IJxu6caqJPaR86/XLWMwmPr2/YsWf/aM71zLt9vLjoyqHYChpG5rg5XODPHJTOelJ7wy+vhY1JRnsr87me4c6mJ03/sSuJ779xmVsSXF8ZFfpij4XPPAzOD7Hr5p7w2Rd5FDOlgKAyTkPP3yzk7s35l8zKP5qFKQn8uC2Ip5osKsVewj5/qFOPF4fv7/E6cPl8OjNlczMe/nxMTWxh4qBsVl+0dzDwztKyE1defLFtXmp3LI2hx8e6VITewj59wMdxFtMPLKn7IY+/we3VDE8McfPTqgDDKHi4uAEL58b4pGbykmyrjyt57412WwqTOM7b7Qb/gCDcrYUAPyiqYfxWQ+fvQFVK8ijN1cyO+/jJ2piDwmz816eaLBzz+Z8yrOXF3+ymHX5/on98Tc7o0KK1wM/PW7H45P83r7KG77HZ/ZXMjI5x69PGn/FrgdGJuf4ZXMvH6wvuZJPa6Xsqcpia3E6j7/ZqdJzhIjvH+ogIc7EI3vKb+jzQgg+e0sV7SNThj+ZqJwtBVJKfnLMzpaidLaVZNzwfdbmpXJTVRZPNHTjM/gqRA+8cLof1/Q8H9t1Yyv1IJ/cW87IpJuXzxp7sNIDHq+PJxrs3Fyds6o6lHvXZLEuL1XFCIWIn5/owe318chN5Td8DyEEH9tVRtvQJA2dztAZF6NMznl4uqWPB2oKsS2Rf2653LM5n+yUeH563NinRZWzpeBkt4vzAxN8eOfK9tSX4uGdpfQ4Zzh8eSQElsU2Pz5qpyI7mT1VqyuHtL86h6KMRJ5oUBP7annl/BCD43N8dIXxJ4sRQvChHSW09oxxrn88RNbFJlJKnmzoZke57YZCIBZyX00BqfEWfholJ+C05OmTfUy7vTy8ynklzmziofpiXj0/yMCYcU9WK2dLwU+P20mymnlgW+Gq73XXxjwykuJ4wuCrEK25NDhBY5eTj+wsXXXdNrNJ8FB9MYfaRtRp0VXyxHE7+WkJ3LaMvFrX4721RVjNJpXfaZUc73DQPjLFh3asfrGYZLXwO7VFPHeqH9e0ij1dDU802FmXl0rtKnZLgjy8owSfhKcajdtXlLMV48zOe3mutZ/7thaQEr/6uuQJcWbeV1vMi2cH1GC1Cn51shezSfDeuqKQ3O+hen9p0v9Uwb83zOjkHAcujfBgbSEW8+qHTluylTs35fGrk70qnm4VPNXYQ2q8hfdsKQjJ/T60owS3x8fzpwZCcr9Y5OLgBK09Y3xoR0lIinyXZSWzpzKLnzf1GDaeTjlbMc5r54eYcnt5oCY0kzrA++qKmPdKfnNaDVY3gpSSZ1r6uakqi+wbDPZdTFFGInsqs3impc+wg5XWPH96AK9P8mAI+8pD24txTc/zxgVVx/JGmJ338uKZAe7ZnE+i1RySe24qTKMqJ1kdXlgFz7T0YRJwf83qd0uCvLe2iK7RaVp7xkJ2z0iinK0Y55nWPrJTrOyuzAzZPTcVplGRnczTLX0hu2cs0dIzht0xHdKBCvwDX8fIFGf6VIzQjfDMyT7W5KawoSA1ZPfcuyYbW1Icz7b2h+yescTBSyNMzHl4z9bQqFrgj6d7cFsRxzsd9LlmQnbfWEFKybOt/eyuzCInNTSLRYC7N+djNZv49UljzivK2YphJuc8vHJuiHdvKQjJtkgQIQT31xRypH2UoXHjBjRqxdMn+7CaTdy9KT+k971nUz4Wk+CZVmMOVlrS55rheKeDB2oKQ7ItEiTObOKezQW8fG6QGbfaSlwpz7b2YUuKY++a7JDe94GaQqT031+xMs70jdMxMsV9W0O7WExPjONd63J4trXPkDm3lLMVw7x8dpA5jy/kCgrAAzUFSAnPnVIr9pXg9Umebe3jXetySE9cWRbs62FLtnLz2hyebelXW4kr5JmASvtAGPrK/TUFTLu9vGbwPEKRZnbey8tnB7lncz5xIVwsgr/6Qk1xOs8pxXHFPNvaj9kkuGdzaBeLAA9sK2RoYo7jHY6Q3zvcKGcrhnmmpY+C9AS2L7O48UpYk5vK2rwUXjwzGPJ7RzONnQ6GJubC4gADvGdLAb2uGcPGPWjF86f62VqcfsPJZa/Frgr/doua2FdGMN401ApKkLs25dPSM2bodAORxr+F2Me+NdlkriK31tW4dV0uVouJF88aLx5YOVsxyrTbw8G2Ee7ZnI/JFLptkYXcuTGP450OdSpxBbx0dhCr2RSS1AJLcdv6XEwCXjmnnODlMjg+S0vPGHdtzAvL/c0mwR0bcnnj4jBujy8sz4hGnj89QFaylV0VoYs3Xcjdm/zt/ZLqK8vmTN84Pc6ZkMbQLSQ53sLeqixeOjtoOHVeOVsxysFLI7g9Pu7cEJ4JBOCODXl4fZLX1UmrZSGl5OVzg+ypyiI5BGk4lsKWbKW+PJOXzqktq+XySuB3dUeYnC3w95XJOQ/HOkbD9oxoYt7r4/ULQ9yxIS+k8aYLqcpJoSI7mZfOKmdrubx8bhAhCNtiEeDOjfn0OGe4MDgRtmeEA+VsxSivnhsiNd7CjjCtCgFqijPISY1Xg9UyuTw8RefoNHdsCN9ABXDnhjzO9Y/T41QJTpfDK+cGKbYlsi4vdKcQF7N3TTYJcaYrjp3i2jR2OpmY9XBbGPuKEIK7NuZx5PII47PzYXtONPHq+SFqSzJClrJmKYLj40sGC1FRzlYM4vNJXjk/xM3rckIeWLoQ04LtEZW08foEt/ZuC6PaCG8pNGpivz7Tbg+H2ka4Y0NeSE8hLiYhzsy+NTmG3B7RglfP+7fb94X4FOJi7tyYx7xXqjxoy2BofJbWnjFuD/P4lZuWwLaSDMNt7ypnKwZp7R1jZHIu7AoK+AeryTkPR9uNd3ok0rxyboiNBWkUZSSG9TkV2clU5ajtkeVw6NIIcx4fd4ZxCzHIHRty6XXNcH7AWNsjWvDK+SF2VWaGbbs9SG2pjewUKy+qvnJdXj3vX7yFcwsxyJ0b82jtGaN/zDh50JSzFYO8cm4Qk4B3rQ1/p7ipKpvEOLMKyL4Ozik3jV2OiDjA4Fe3jraPqu2R6/DyuUH/dnt5+LbbgwS3xFRfuTadI1O0D09xewQmdbNJcMvaXA5eGjZkbqdI8sr5IYoyElmfH77t9iDBxY+R4oGVsxWDvHJuiPqyTGxhOJq7mIQ4M3uqsjh4aSTszzIyBy4N45Ph30IMctu6XDw+yZHLKiD7akgpeePiMPvXZmO1hH+ozE1NoKY4/YpCoFiatxSUyPSVm9dm45qe51SvSpdyNWbnvRy6NMJt63PDut0epDo3hfy0BA5cVM6WQqeMTM5xtn+cW9blROyZ+6uz6RiZotuhArKvxsFLI2QkxbGlKD0iz6sttZFsNXPwknEGq0jTNjTJ4Pgc+6sj11duXptDS8+YUhyvwWsXhliTm0JpVlJEnre/OgchMNTEHmkaO53MzHsjsoUI/sMLN6/N5nDbCB6vMdKlKGcrxjjc5leYwh1YupDgZHVATexLIqXk0KUR9lZlYw5TzrPFWC0mpTheh+DvJpJ9Zd+abLxKcbwqs/NeGjod3BxBBzgz2cqWonTeUM7WVTnUNkKcWbAzjKfbF3Pz2hzGZz20GCRBs3K2YozDbSOkJ8axOUIKCkBVTjJFGYlqZXgVLg9PMjA+G/L6btdj35psukan6RqdiuhzjcKhthHKs5IoyYyMggJKcbweTXYns/M+9q7Jiuhzb67O4WS3i7EZpTguxeG2Ef/fbpgPLCxkb1U2QmCYvqKcrRgiqKDcVJUVMQUF/JLv/ups3mwbNYzkG0kOBRSU/dWRdbb2r/WrA0rdeiduj4+j7aPsi3CbKMXx2hxuG8FsEuyqjLCztTYHr0/yZptql8U4p9yc7huLqAIM/gTNW4szDLOIV85WDNExMkXf2GzEJxDwbyVOzHlo6XFF/Nl651DbCGURVlAAKrP9iqNRVoaRpNnuZNrtZd+ayG1XBQkqjvZRFeO4mENto9SWZJASQQUFoLbU/0wVCvFO3rw8ipREXJkHuKU62684TutfcVTOVgxxSIN4rSB712RhEvDGRbUyXMi818fRdocmA5VSHK/OobYRTAL2VEVWQYEFimObmtgXMjY9z6kelyZ9Jc7sVxwPt6lYusUcahshJd5CTXHkQlOC7F+bg0/CkXb9zyvK2YohDl0aoSQzkbKs5Ig/OyPJH2R6VAX+vo2WbheTcx72azCBAOyrzmZizkOrOtb+Ng5eGqGmJIP0xLiIPzuoOB5SW4lv40j7KD6NFBSAPZVZ2B3T9LqMk0gzEhxuG2F3ZVbYalRei20lGSTGmQ2RNDskvx0hxD1CiAtCiDYhxFeX+Pm7hBBjQoiTga8/D8VzFcvH4/Vx5PKoJqpWkN2VWZzsdjHjVqV7ghy8NIIQ/uSvWrA7EPtyzACDVaQYm56ntccV0ZQPCxFCsKcqi2MdDnwqkeYVDreNkGQ1s60kQ5PnB/uKWjC+hX10Grtjmn0RPrAQJM5sor7cZojTu6t2toQQZuCbwL3ARuDDQoiNS1x6UEq5LfD1P1f7XMXKaO0dY2LOo9mqEPyDldvro9nu1MwGvXG4bYStRemkJ0VeQQHITomnOjeFo+36H6wixdEOv4Ki5cJkV0Umjik3l4YmNbNBbxxuG2FXRWZEEswuxfr8VDKS4lRfWcDhy4HQFI0WJuCfVy4MTjA6OaeZDcshFH+1O4E2KWW7lNINPAE8GIL7KkJI0PPXSkEBqC+3YRKowSrAjNvLyW4XezRsE/APVo2dDuZV3Bbg//uMt5g0U1BggYqi+goAfa4Z2kemNF0smkyCXRWZHFFtcoXDbSPkpcVTlRP50JQgwb5yvEPf6nwonK0ioHvB657Ae4vZI4RoEUK8IITYdLWbCSEeFUI0CiEah4dVgGioONbhYF1eKpkRKNFzNVIT/BnSjbC/Hgma7U48PsmuysglAlyKXZWZTLm9nFZxW4B/0K4rtWmmoACUZCZRlJHIsQ41scNbTqcWBxYWsqcyix7njKqGgT+V0LEOB3sqsyJSoudqbC1OJ8lq1r0THIrRZKnf8uJAgyagTEpZA/xf4FdXu5mU8jEpZb2Usj4nRztpMprweH2c6HSwo8KmtSkqbmsBxzocmARsL9O2XXZVBFUU5QSPzcxztn9ccwcY/E7wsXYHUqq4rYZOB6kJFtbnp2lqx+4qpTgG6RqdZnhijh0RzBq/FP64rUzdt0konK0eoGTB62Kgb+EFUspxKeVk4PvngTghhLZ7JzHEuf4JptxedlZouyoEFbe1kOMdDjYWppGWoE28VpCc1HjW5KYoFQVo7HQg5VsOqJbsrsxidMpNm4rb4liHgx3lmRFNxrwUa3P9uwNqYfLWtt0ujZ0tgN2VmVwcnGREx3FboXC2GoBqIUSFEMIKPAw8vfACIUS+COiMQoidgeeqkT1CBCfRneXadwoVt+XH7fHRZHeys1z7SR38g1VDhyPm820d73BgNZuoLc3Q2hR2VygVBWBkco724Sl26GD8CsZtHW0fjXnF8ViHg8xkK1U5KVqbwh4DnKpetbMlpfQAXwB+C5wDnpJSnhFCfFYI8dnAZR8ATgshWoB/AR6Wsf6XGkGOdzgoy0oiPz1Ba1NU3FaAU70u5jy+iBZuvRa7K7P8cVt941qboilHOxzUlKSTEGfW2hRKMhMpTE+I+b7SEFBQ9NJX9lRl0euaoccZ2/m2Gjod7Ci3aRqvFWRzUTrJVrOuFyYhiQCVUj4vpVwrpaySUv5N4L1vSym/Hfj+X6WUm6SUNVLK3VLKN0PxXMX18fkkDZ0OXahaQXZXZtHc7YzpuK1jgQlkR7n2cXTw1kSm58Eq3EzOeTjdO6abSV0Iwe7KLI51xLaKcrzTQUKciS1Fkc9QvhS7lOJI/9gMdse0LkJTwBhxWyqDfJTTNjyJc3peNxMI+AN/572Sk90urU3RjOMdDqpzU8hKidfaFAByUxOoyknmmI4Hq3DT1OXE65O6iNcKsqsyk5FJN5eHYzdu63iHg9oSbU+HLqQ6N4W0BAsnumI37jQYr6WnRfzOikwuDU3imnZrbcqS6OOvVxE2julMggeoK/WrOSe6YnN7xOuTNHY6ddUmADvKMznR5YzZrOXHOkYxm4Tmp0MXElQOGjpjc2Ifn53nXP+45ifeFmIyCerLM2mMYWerodNBSryFDQWpWptyhWC/1asTrJytKKehw0FeWjylmUlam3KFjCQr1bkpMTtYnesfZ3LOoztna3uZjfFZT8xmLT/e4fDHfsRbtDblCuVZSWQlW2mMUWfrRJcTn9THibeFbC+z0TY0iXNKnypKuDne4WB7mU2TeohXo6Y4gziz0O28op/flCLkSCk53uFgZ4W2SeeWoj6GVRQ9qo3gbxOAxhhUHOc8Xlp6xtihI1UL/HFb28tsMasCN3Q4sJiELk6HLiR4MlKvKko4cU65uTg4qbvxK9FqZlNhOo2d+uwrytmKYrodMwyMz+quUwDUl9mYmPVwcWhCa1MizvGOUUozkyhIT9TalLcRVFFOxKCKcrp3HLfHR71ODiwspL7cRmcggWSscbzDwaaidJKs+lEbwZ+13Go20RCDTnBDpz4Xi+CfV1p6xpjz6O/wlXK2ophgfi29SfDAlUkt1rZHpJQ0dDp1kTNoMUII6sttupXhw0lT4P9cpzNlC2B7WWyqKLPzXlp7xnQ5fiXEmdlclBaTC5PjHQ6sFhNbi/VxOnQh9eWZuD0+TvfqL4WNcraimBNdTtISLKzRQdK5xZRmJpGdEh9zE0jn6DSOKbcuFRSA+rJM7I5phiZmtTYlopzoclKamURuqva56BazuSgNq8UUc1uJLd0u3F6fLhcm4N9KbO0ZY3ZefypKOGnocrKtOIN4i/a56BYTDJLX41aicraimCa7k7oyGyaNS1wshRCC+jJbzMUHXVFQSvXpbG0POIGxtGKXUnLC7tTVKcSFxFvMbC1KjznF8USgpJde22V7mQ231xdTBdxn572c6R3TpQIM/tJj5VlJuuwrytmKUsZn57k0NKnbSR38W4ndjhkGx2NHRTlhd5Iab6E6V39qI8DmwnTiLSZdDlbhosc5w/DEnG4nEPA7wad7Y0tFaepyUZGdTGayVWtTliToBMZSWo5TvWN4fJI6nR1YWEjw8JXeEgErZytKOWl3IaV+FRRYcPothgarpi4n20ozdKk2AlgtJmqKM2LK2QpuZW/Xc18p8ycCbu2JDRVFSkmz3am7U4gLyUqJpzInWZdbVuFCz7GNQerLbDim3LSPTGltyttQzlaUcqLLiUlATYn+ghiDbCpMIyHOFDNbiROz81wYnNC1Awx+FeVM71jMlFNq7PInaFyXr58EjYu5EosSI33F7phmdMqt+76yoyyTE/bYSWHTZHdSluWPt9Ur9ToNhVDOVpTSZHeyNi+V1IQ4rU25KnFmv4oSK0HyLd1jSKnfGJQgO8pteHySlh6X1qZEhBNdLmpLMzDrVG0EyEy2UpmTrLsJJFw02fUd2xikvtyGa3o+JsopSSlpsrt03yZVOSnYkuJ0tzBRzlYU4vNJTtpdupZ6g9SX2zjTN87UnEdrU8JOk92JELBNx1sjsLCcUvRP7BOz81wYGNf9BAL+7ZFYUVGaulwkW826VhthYSLg6O8rV2IbdT5+BRMB6y08RTlbUciloUkm5jy6jkEJUl+WiTdGVJQTXU7W5qaSpmO1ERaUU4qBWJSW7jF8BlAbwd9XXNPztI9Ev4rSZPfHNupZbQR/ImBbUhwn7S6tTQk7QbWx1gDzSl2ZjfaRKV2VU1LOVhRyRYI3wASyrSQDgOYoH6x8Pn/Ab11ZhtamLIvtZTaau126O9ETak50GUNthLfScuhtxR5qpt0ezg/oP7YR/CpKbantypgbzTR1OUmymlmvc7URoLbE/7dzstulrSELUM5WFNLU5SQz2Up5ln6KT18NW7KVyuzkqHe2Lg9PMj7rMcQEAlBbmoFrep7O0WmtTQkrJ+xO1uXpX20EqMxOJiMpLuon9pbuMbw+aZy+UpLBpaFJxmbmtTYlrDTZXWwtTtdV8emrUVOSjklAs476iv5/a4oVc8LupLYkQ3fFp6/GttIMTnbrLy9KKDGS2ghvbRXoabAKNV6fpLnLaZg2EUJQV2qjKcoXJm9tV2Voa8gyCfaV1igOhZhxeznXb4zYRoAkq4X1+Wk0K2VLES5c027ah6cMM4GAf7AamXTT45zR2pSwcaLLSUZSHJXZyVqbsizW5KSQGm+JahXl0tCEYWIbg9SVZtA2NIlrWj+xKKGmqctJZU4yGUn6TGa6mJqSdISI7lCI1h4XHp80RGxjkNrSDE7aXbo5UKKcrSgj2OGNsgIBrpxuieaJPXhk2ihqo8kkqCnJiOoJ5EoyUwNNIMFFlJ5W7KFESklzt/7TCywkNSGOtbmpUT9+gTGC44PUldqYmPPQppO0HMrZijJOdDkxm4Suk5kuZl1eKolx5qid2F3TbtqGJnV/ZHoxtaUZnB+YYNodnWk5mu0uMpOtlBkgtjFITXEGJvFWJu9oI1io3UjOFvj7SrM9eg+UNNmdui6dtBTBbWi9hEIoZyvKaLI72VCQSpLVorUpy8ZiNrG1OF03nSLUBFUII23tgn9l6PVJTkVpiZhmg8U2AiTHW9hQkBa1Kspb5WAytDVkhdSWZjA2M0+HzkrEhAIjlE5aiorggZIul9amAMrZiio8Xh8tBpPgg9SW+pObRmOh3aZg6aTiDK1NWRFX0nJE4ZbV2PQ8lw0W2xikrtTGSbsLr05iUUJJk91JSryF6lz9pxdYyFsHSlzaGhIGuh0zjEwaT20UQlBbkkFztz4WJsrZiiIuDE4w5fYarlOAf2Xo8UnO9EWfiuJXG9NIjjeO2gj+tBwV2clRqTieDJwcqw04lEZie5mNKbeXCwMTWpsScprsLraV6D+Z6WKi+UDJCbs/ubEx5xUbl4YmGZ/VPi2HcraiiGAQo5ECfoO8tb/u0tSOUOMNlk4y4EAFfmekKQpjUZoCyUy3GtDZulJOKcom9sk5T6B0UobWpqwYk0mwrTQ6D5QYpXTSUtSV2pASWnSgzitnK4potjvJTrFSbEvU2pQVk5uaQLEtMepWhpeGAmqjwWJQgtSWZjA8MUevK7rScjR3u1iXl0qKwdRGgJLMRLJT4mmOsiD51m4XPgm1Blwsgn9hcn5gPOoOlDTZndQYUG0E2KqjtBzK2Yoimu0uag2UXmAxtaU2XXSKUBL8/wTLRxiNaIxF8RdqN17AbxB/ctOMqFO2riT+NXBf8Ul/BvxoIVg6yYi7JQBpCXFU56boYhGvnK0owTnlpmNkyrATCPhXhv1js/SPRY+KEiydZKT0AgtZn59KQpwpqpyt9pEpxmc9hnWAwR8q0DU6zcjknNamhIwmu4uqnGTSk/RfOmkp3jpQov3EHiqMVjppKeoCi3itQyGUsxUlBAtuGnkCCTqKJ6NoYm/udhkuvcBC/Gk59HOiJxQ0242ZXmAhwVOU0ZJvK5hewMiTejTWeQ32+20GjG0Mope0HCFxtoQQ9wghLggh2oQQX13i50II8S+Bn7cKIepC8VzFWzTbA+kFDJTMdDGbCtOxWkxRk2pgbGaetqFJQ6uN4B+szvSOM+eJjrQczd0uUhMsVGanaG3KDbOlKJ04s4iaOoldo9M4p+cNmYpjIduiLLlps91FZXYyNgMlM11MMBRC676yamdLCGEGvgncC2wEPiyE2LjosnuB6sDXo8C3Vvtcxdtp7naxPj/NUMlMF2O1mNhcmBY1qQaCJ2CMVOJiKWpLbLi9Ps70jWttSkho6nKyrSQDkwEDfoMkxJnZWJgeNcqW0YpPXw1/nde5qKjzGlQbtxm8TYJpObSeV0KhbO0E2qSU7VJKN/AE8OCiax4EfiT9HAUyhBAFIXj2qnjiuJ1nWvq0NmPV+ALpBYw+UIF/sGrtGcPt8Wltyqpptrv86QWKjas2QnSl5Zic83BxcMLwDjDA9lIbLT0u5r3R0VeMmMx0MdFU57XH6U9mavS+EkzLYXhlCygCuhe87gm8t9JrABBCPCqEaBRCNA4PD4fAvKvzREM3PzrSGdZnRIK24Ukm5jyG7xTgn9jnPD7ODxhfRWnudrI2N5XUBGMG/AbJS0ugKCNR85VhKGjtCaQXiIKFSV2Zv6+cjQLFsbnbSU1JuiHTCywkmuq8XjkdGgV9pbbURo9zWtNQiFA4W0v1jsUb1su5xv+mlI9JKeullPU5OTmrNu5a1AVUFKOvDJujRIKH6Ek14Jfgo0NthLcK7Rqdt1JxZGhqRygIHsc3uooy7fZwrn/C0Id7glyp8xoFcafNdheJcWbW5RlbbQT47C2VNP/ZncRbzJrZEApnqwcoWfC6GFi8N7ecayJOcGV4rt/YK8Nmu4v0xDgqs5O1NmXVFKYnkJcWb3gVpX1kirGZeUOfrlpIbamNXtcMQ+OzWpuyKprtLipzkslIMm7Ab5CC9EQK0hM03x5ZLad6/OkFomdhYuNs35jh67w2251sLU7HYjZ+0oIkq0Xz/0cont4AVAshKoQQVuBh4OlF1zwNfDxwKnE3MCal7A/Bs1dFcCI0epBpUEExanqBhfiLh9oMvzK8oqBEzQSSARi7KHUw4DcaFJQgdWU2449fUXKQJEhdaQbzXmPXeZ2d93Kmbzxq2kQPrNrZklJ6gC8AvwXOAU9JKc8IIT4rhPhs4LLngXagDfh34HOrfW4oKMxIJD/N2CvD8dl5Lg5FhwQfpLY0w/AJG5vtTlLjLVTlGDe9wEI2FaZhNZsMvWXV7ZhhdModNQ4w+BeMva4ZBsaMqzg2dTkpz0oi08DpBRZyJdVAl0tbQ1bBmb4xPD4ZFfFaeiEkeQKklM/jd6gWvvftBd9L4POheFaoqSvLMPQE0to9hoySgN8gwcHqpN3FHRvzNLbmxmi2u9hWauz0AguJt5jZWJhm6LitYILGaOorC+O23r1F8wPeK0ZKSXO3i31rsrU2JWTkpMYbvs5rsJ8bPe2DnjD+ZuwqqS2x0eOcYWjCmCvDYGxTTRQE/AbZUpSOxSQMm7XcX09sPCqCsBdSW5pBa48Lj0EPlDTbXSRZoyPgN8jGgjTiLSbDbiX2umYYnpiLKgcY/E5wk91p2OSmzXYXxbZEclMTtDYlaoh5ZytYssOokm9zt4vq3BTSE42dXmAhiVYzGwrSDNsmrT1jgfQC0bO1C/4tq9l5H+cHJrQ25YaIpoDfIFaL//SbUYtSB0M4ouUgSZC6UhuD43P0GXR7t8ngpZP0SPSMOjfIpkJ/2Qsjnn67EvAbZatC8KsoLQZVUa5I8FGobIExg+SjOeC3rtTGmd5xQ55+a7Y7SYgzsS4/etRGMPbhq/6xGfrHZqNyXtGSmHe2EuLMbCpMN+T+emegnlg0TiDby2xMu71cGDSeitJkdxq+nthSFGUkkpMaT7MBJ5DTvf6A32jb2gX/iUR/OSXjnX5rtrvYWpRBXBSpjQDrC1JJiDPmgZKTV05SR9+8oiXR9Rd+gxg1uWk0JTNdjFFXhsFkptEYWOpPy2HMAyXRHPBbZ9DTb3MeL2f7xqkNhHJEE3FmE1uLtS8RcyM0d7uwWkxsLEjT2pSoQjlbGDe5abTUE1uKYptfRTHaYOWvJzYXtavC7WU2OkenGTVYWo7mbmfUBvzmpMZTmpnECYMtTE73juP2+qIqbc1C6gya3LSpy8mWonSsFuUehBL128S4Kkq01BNbCiEEdaXGU1GuJGiMwu0qWJhqwKWtISuk2e6K6oDfutIMThjs9FtzFNXeW4pgctNTvcbZ3nV7fJzqHYva8UtLlLOFMZObRlM9satRV2ozXHLTZruTxDgz66Ms4DfI5iL/gRIjqSixEPC7vczG8MQcPc4ZrU1ZNs3dLooyEslNiz61EfyxdGCsRfz5gXHmPL6oVea1RDlbAYyW3DTa6oktxXYDDlbNdlfUpRdYyJUDJQZrE4jugN8rWcsNNIY1d0XnSeog2Sn+7V1DtUmUlRnTE9E5I9wAdaXGSm4a3K6KtvQCC7miohhksLoS8BvFkzr4neCWHhdujzEOlDTbnVEf8Ls+P5Ukq9kwTvDA2Cx9Y7NR31f8oRAuw2zvNtmd5KclUJiRqLUpUYdytgIEPXmjnOhptjspy0oiKyVea1PCRlBFaTZIm1wJ+I3yVeH2MhtzHh9nDXKgpNnuYnNhWlQH/FrMJmoMdPrtZBSWTloKo23vNttdUd8mWhG9o88KMVJyUyklTVEe8BukrtSvohghLceVVBxRrDbCW9u7RojbuhLwGwN9ZXuZjbP940y7PVqbcl2a7C6sZhObCqNXbQRjbe+OTM5hd0wrZytMKGcrgJGSm/Y4/fXEonkLMUgwLcfZPv2rKE32QHqBKA34DZKXlkBRRqIhtqxO940x5/FRXxb9zlZdWQZen6S1R/+n35rtTjYVpRFvMWttSlgJbu8aoYC7SmYaXpSztQCjJDcNKgrbY2ACeSvVgL4ndikljZ3OmJjUwd8uRlC2TnQG+kp59LdL8GSy3vuK2+OjtWcsqk9SB7GY/bUr9d4mAI1dTuLMgi1F6VqbEpUoZ2sBRklu2tjlICXeErXpBRZSkJ5IQXqC7if2bscMQxNzbC/P1NqUiLC9zMbA+Cx9Ln3HojR2OSjNTIrKZKaLsSVbqcxJ1r3iGFQbd8SAAwzB5Kb6r115osvB5qJ0EuKiW23UCuVsLcAoyU0bO/1HpqM1vcBi6spsupfhG7scADGlbIG+47aklJzoih21EfxjmN5Pv8WS2gj+NvHofHt3zuOlpWcspvpKpImN2XqZGCG56djMPBcGJ2JiCzFIXamNXtcMA2P6TcvR2OUkNd7C2rzoVxvBH4uSGGfWtbPlT4jrjplJHfxOsGPKTefotNamXJWGTgdlWbGhNsKCk+463ko83TuG2+OjPkaUeS1QztYi9J7ctNnuRErYEUOdos4Ag9WJTie1ZbaoLJ20FBaziW06L0rdGHAE68tiqa/oW50Pqo2xtFjMSomnPEvftSsbOmMnDlgrlLO1CL0nNz3R5cRsEjFxEjHIpkJ/UVS9TiBj0/NcHJpgR4wNVNvLbJzp02+qgRNdDtISLFTnpmhtSsSozk0hNd6i20TAHSNTjE65Y2qxCP55pVnHtSsbO51UZieTHcV5G7VGOVuLqNX5yrCx08mGglSS4y1amxIxrBYTW4vSrygVeqMpoDbG0nYV6D/VQGOnk7oyG6YYURsBTCbBttIMXY9fQMwExwfZXm5jZFKf27t+tdGhVK0wo5ytRWwpSichzsTxDv0NVvNeH83dzpjaFglSX57J6d4xZtz6O9HT2OWIObUR3ko1oMftEde0m0tDkzEZ8Lu9zMaFwQkmZue1NuUdNHY5yEiKozI7dtRGgF0V/jG7ocOhsSXv5PLwFM7peepjzAGONMrZWoTVYqK2xMbxzlGtTXkH/uPDvpjsFLsqMvH4JM3d+pvYGzudbCpMI8kaO2oj+FMNVOk01UAwlmx7DC5M6kptSAkt3fpTHIO56GJJbQSoykkhM9nKMR06W42dgZPUMba1G2mUs7UEOysyOds3zrjOVoaxGPAbZHu5DSHguM4GK7fHR0uPK2Yl+O1lNhq7nPh8+opFaex0YolBtRFgW2kGQuhPcRydnKN9ZComHWAhBDvKbTR06mv8Av+8kplspTI7WWtTohrlbC3BropMfFJ/g9WJLgfFtkTy02PjyPRC0hLi2FiQpjtn60zfmF9tjMEJBGBnRRZjM/4DAnqiscuvNiZaYy9BY1pCHGtzU3V3UjS4WIy1eK0gO8ozsTumdZfCprHTH68lRGypjZFGOVtLUFtqw2ISutpfl1LSEEPlYJZiZ0UmTXYnbo9+yikFHfJY3NqFt2JRjrXrp6+4PT5aul0xqaAEqSuz0WTXl+J4osuJ1WJiS3FsloPZVZEFwHEdqVvDE3N0jk7H9LwSKZSztQSJVjNbitN1paLYHdMMx1A5mKXYWZ7J7LyPU736iUU53uGgJDORvCgvPn01im2JFKYn6KqvtPa4mPP42FkRu32lrjSDiVkPl4cntTblCg2dDrYWpUd98emrsaEglWSrmeMd+okHPhGsfBGji8VIopytq7CzIpOWHpdu6lkFlYPdMTyB7Aj83/Uysft8kmMdDnYHVqyxiBCCXZVZHOsY1U0OoaPt/slsVwz3Fb2VU5pxezndOxZz6VEWYjGb2F6eqZvxC+BYh4N4i4nNqvh02FHO1lXYWZ7JvFfqpibf0fZRslOsrImhBI2LyU6JpyonWTcrw/MDE4zNzLO7MnadLfAvTEYm3bSPTGltCuCfQNbnp2JLtmptimZUZCdjS4rTTdzWiS4n816p+kq5jYuDkzin3FqbAsCRy6PUl9tiVm2MJKtytoQQmUKIl4QQlwL/LrlsEUJ0CiFOCSFOCiEaV/PMSFFflokQ6OL0iJSSo+2j7KrMivkgxp0VWTR2OvHqIBblioJSGbsKCugrbsvt8dHY6Yz5SV0IQV2pTTfK1pH2EcwmEXOZ4xezM6CC62FecU65OT8wEdPKfCRZrbL1VeAVKWU18Erg9dW4VUq5TUpZv8pnRoT0pDjW5+vj9JvdMU3f2GzMTyDgn9gn5jyc6x/X2hSOto9SkplIsS1Ja1M0pSJQ5kMPiuOpXhcz8152x7gDDP50KZeHpxiZnNPaFI62O9hanE5KDFW+WIqtxelYzSZdOFvBnF+7q9S8EglW62w9CPww8P0Pgd9Z5f10xa6KzID8re3pt6CCskdNIFeCnrV2gn0+yfHO2I7XCuKP28rkWIdD87itowF1badqF26qygbeGj+0YmrOQ0u3Sy0WgYQ4M9tKMjQfv8D/d5EQZ6KmOENrU2KC1TpbeVLKfoDAv7lXuU4CLwohTgghHr3WDYUQjwohGoUQjcPDw6s0b3XsKM9kZt4f2KklR9sdZKdYqcqJ3XitIIUZiRTbEjUfrC4MTuCaVvFaQXZVZNI/NkuPc0ZTO462j7I+P5XMGI7XCrK5MI3UeAuH27R1thq7nHh8kj2qrwD+BePpvnEm57Qt4H60fZT6skysFhW6HQmu+1sWQrwshDi9xNeDK3jOXillHXAv8HkhxM1Xu1BK+ZiUsl5KWZ+Tk7OCR4SeYCzOEQ1Xhipe653srMjkWMeopjmEVLzW2wnmENKyr8x7/fFasXwKcSEWs4ldlZkcuTyiqR1H20exmIRKLxDgpqosvD6p6bb76OQc5wcm2KO2ECPGdZ0tKeUdUsrNS3z9GhgUQhQABP4duso9+gL/DgG/BHaG7r8QPrJT4lmfn8qhS9oNVnbHNP0qXutt7K3Kxjk9z1kN47ZUvNbbqc5NITvFyptt2vWV1p6xQLyW6itBbqrKpnN0ml6Xdorjkcuj1JRkxFzt0KtRV2Yj3mLi0CXtnK3gzoCKbYwcq9UPnwYeCXz/CPDrxRcIIZKFEKnB74G7gNOrfG7E2F+dTWOnkxm3Nvm23orXUhNIkH3V/liUwxpN7Cq/1jsxmQQ3VWVzqE27fFvHAkpBLCczXcxNawKK42VtJvbJOQ+nesfU+LWAhDgzOysyNRu/wD+vJMaZ2VKUoZkNscZqna2vA3cKIS4BdwZeI4QoFEI8H7gmDzgkhGgBjgPPSSl/s8rnRoy9a7Jxe300dmkTI3Tk8uiV/FIKP3lpCVTnpnBIo8Hq3MC4itdagn3V2YwEtie04HDbCOvzU8lKidfk+XpkbW4qWcnaKY4NnQ68Pqm2qxaxd002FwYnGJrQpk7ikXZ/fi0VrxU5VvWbllKOSilvl1JWB/51BN7vk1K+O/B9u5SyJvC1SUr5N6EwPFLsrMgkziw02Ur0+SSH2kbYu0bFay1mX3U2xzscmmT4Pxj4WwgqbAo/+zVUHGfcXho6nFdsUPgxmQS7q7J487I2iuORy6NYzSbqSlW81kL2rfH/nb6pweGFofFZLg5OKgc4wii39jokWS3Uldo0UVHODYwzMunm5mptDwrokf3V2cx5fJokbTx4aZj1+akxWw/xahSkJ1KVk3zFGY0kxzpGcXt97Fd95R3cVJXFwPgsHRpk+D9wcZj6chuJVpWhfCEbC9LISIrTZF45EOifal6JLMrZWgb71mRzpm8cR4RLLBy46O8UarX+TnZWZGExiYgPVkpBuTb7q3M41jHKnCeyiuPBSyNYLSYVr7UEewP5tg5HOG5rcHyW8wMT3LxWTeqLMZkEe6uyOdw2EnHF8eClYbJTrGwsSIvoc2Md5Wwtg+B20ZsRPkIdVFBylYLyDlLiA4pjhFUUpaBcm31rspmdj7ziePDSMLsqMkmIUwrKYsqykijKSOTAxcjmLQw+TykoS7N3TTb9Y7MRrSnq80kOXhphf3UOJpMKTYkkytlaBluK0klNsER0Yp92e2jsdKpV4TXYuyab031jES3qevDSCPFKQbkquyozMZsiG+M4GIhBCcbBKN6OEIJb1+fwZttIRBXHA5dGyEmNZ0NBasSeaSSCf6+RjHEM7tDcvFb1lUijnK1lYDGb2FOZxcFLkZN8j7U7cHt9alV4DfZVZyMlHI6g4njw0jA7lYJyVVIT4qgtyYjoBBKMEVNq49W5dV0uU24vjZ2RURy9PsmhS8Psr85Wh3uuQmlWEqWZSbxxIXKK44FL/mftW6P6SqRRztYyuXV9Lr2uGS4MRuZY+xsXh4m3mFTW5WtQU5xORlIcr52PzGDVPzbDxcFJ5QBfh5vX5tDaOxaxAsivXxi6koBYsTR7qrKwmk28dn7JvNMh53TvGM7peW5Ryvw1uW19LofaRiKWx/HAxWE2FqSRk6rSo0Qa5Wwtk9vX+8s+vnIu/IOVlJLXLgyxuzJLKSjXwGI28a61Obx2YQhvBEr3BNv+XevUBHItblufi5TwagQmdrfHxxsXh7l9fa6KQbkGSVYLuyozee1CZJytNy4OIwRqa/c63L4hlzmPjyPt4VeCx2fnOdGlQlO0QjlbyyQ3LYGtxem8cm4w7M+6NDRJ1+g0d27MC/uzjM7tG/JwTLk52R3+7ZGXzg5SnpXEmlxVEPxabCpMoyA9ISJ9paHTwcSsh9s35Ib9WUbn1nW5XB6eotsxHfZnvXxukJriDJVg9jrsrMgk2Wrm5Qgs4l+/MIzHJ7lzo+orWqCcrRVw2/pcmrtdYd8eeemsf5JSztb1uWVdDhaT4KWz4R2sJuc8HLk8yh0b8lQMynUQQnD7hlwOXBwJe9LZl88NEm8xqQSzyyCoyIZb3eofm6G1Z4y7N+WH9TnRQLzFzP7qHF49NxT2eOCXzg6SnWJlW4kKTdEC5WytgDs25CElYY97eOnsIDXF6Spp5jJIS4hjZ0Vm2FWUgxeHcXt9ygFeJndsyGNm3suR9vDldpJS8vK5QfatyVZFjpdBRXYyFdnJVxZz4eJltVhcEbdtyGVgfJaz/eNhe4bb4+P180Pcvj4Ps9pu1wTlbK2ATYVp5KXFhzUWZWh8lpPdLu7YoAaq5XL7hjwuDU1iHw3f9shLZwfJSIpje5laFS6H3ZVZJFnNVybecHBxcJJuxwx3qEl9WQghuGdzPm9eHg1rupQXzw5SmZOsttuXya3rchEivPHAR9tHmZjzKAdYQ5SztQL82yN5vHFxOGynR4J793duUp1iudwRiNd58exAWO7v8fp49cIQt63LxWJWXWY5JMSZubk6h1fODeEL0+GFlwNqZvDwiuL63Ls5H69P8lKYlOCxmXmOXB7lro1qC3G55KTGU1dq4/lT/WF7xktnB0mMM6vtdg1RM8cKuW9LAdNub9jUrZfODlCSmci6PHWMfbmUZSWzsSCN58I0WB3vcOCanlcKygq5e3MeA+OzNNnDc3jhhdP9bCvJUBUWVsCWonSKMhL5zenwLExevzCExye5Sy0WV8R7thRwfmCCtqHJkN87uN2+vzpbnW7XEOVsrZBdlVlkp8TzbGtfyO/tnHJz8NII795coIKwV8gD2wpptrvCctLqmdY+kqxmbl2nFJSVcOfGfOItJp5uCX1faR+e5HTvOPdtLQj5vaMZIQT3bs7n0KURJmbnQ37/F04NkJMaz7bijJDfO5p5z9YChCAs80qT3Un/2Cz3bFZqo5YoZ2uFmE2C+7YW8Or5ISbnPCG99wunB/D4JPfXFIb0vrHAe7b4J91nQjxYuT0+Xjg9wJ0b80i0qlXhSkiJt3D7hlyeP9WPx+sL6b2fbe1HCLhvq+orK+XeLfm4vb6Qq/NjM/O8en6I+7cWqpxnKyQvLYEd5Zk81xp6df7XJ/uIt5i4S50O1RTlbN0A920tYM7jC3nw79MtvVTmJLOpUFVjXyklmUnUlWbwTEtoB6vDbSO4pue5X03qN8QDNUWMTLp583JoTyU+29rHjrJM8tPVFuJKqS2xkZ+WwNMnQ7sw+e3pAdxeHw9uU33lRrh/awGXhia5MBC6KiXzXh/PtfZzx4Y8UuLViV0tUc7WDVBXaqMwPYFnQrg9Mjg+y7EOBw/UFKotxBvk/ppCzvWP0zYUusHq6ZY+0hIsKuvyDfKudTmkxltCupV4tm+ci4OT3FejthBvBJNJ8Du1Rbx+cZjhidDlDPzVyV7Ks5LYWpwesnvGEvdsLsAkCOm8crhthNEpNw8oB1hzlLN1A5hMgvtrCnkjhIPVz5t6kBIeUFuIN8x7tvoHq18294bkfmMz87xwup/7agqxWlRXuRES4szcvTmf354eCNkJ3qcau7GaTUptXAUf2F6E1yf59cnQ9JX+sRmOtI/ywLYitVi8QXJS49lXncMvmnpCVn7sF029pCVYVIkxHaBmkBvkgztK8PgkPzvRs+p7+XySJ453s6sik8oclZvmRslNTeDWdbk81djDfAhihJ4+2cvsvI8P7ygNgXWxy/vripmY84TktOjsvJdfNvdy16Y8bMnWEFgXm6zJTaWmJCMk4xfAE8e7AXhoe3FI7herPLyjhL6xWQ5cGl71vRxTbn5zeoD31RUTb1HxplqjnK0bpConhV0VmTzRYF91HqEj7aPYHdN8ZJea1FfLh3eWMjwxF5KM8k80dLOxII3NRSqGbjXsrsykMieZHx/rWvW9fntmgLGZeR5WDvCq+cD2Ys4PTNC8ytQcHq+PJxu62V+dQ0lmUoisi03u2JBHVrKVJ47bV32vXzT14Pb6+PBO1Vf0gHK2VsFHdpXSNTq96uDfnxyzk5EUp2qJhYB3rcuhID2BnwRW2jdKS7eLM33jPLyzRG2LrBIhBB/dVUaz3cXZvtWVJPnxUTvFtkRuqsoKkXWxy3tri0iNt/D4m52rus9rF4YZGJ/lI2pSXzVWi4n3by/mlXNDDI7P3vB9pJT85Lid7WU21uWrnI16QDlbq+DuTflkJVv53qH2G75Ht2Oa35wZ4KHtxSrhXAiwmE08vKOUAxeHuTR444Hyjx1sJzXewntri0JoXezy/roi4i0mfnSk84bvcbLbxfFOB5+4qVylFggBKfEWHqov4bnW/lVN7I+/2UFeWjy3b1B56ELBR3eV4pNyVU7w6xeHaR+e4qNqt0Q3KGdrFSTEmfnETeW8dmGYczdYRPS7B9sxCfjUvooQWxe7/O6eMhLjzHzrjcs39Hn76DQvnOrnI7tLSU2IC7F1sUlGkpUP1pfw86YeBsZubGL/94PtpCZYeFgpKCHj43vK8ErJ/ztyY1u8J7tdHG4b5dP7KohTpaxCQllWMvduLuA/jnbdcOLZb71+mcL0BJWHTkeo3rFKfndPGUlWM9+5gYndMeXmycZuHtxWREF6Yhisi00yk608vLOEp0/20eNceUb57x5qx2wSfGqvcoBDyaM3V+KT8NiBlSvBXaNTfgd4V6nKFxRCyrOTuXtjPo+/2XlDxan/7bU20hPj+MiusjBYF7s8enMlE7MefnJs5bFbJ7ocHO9w8Hv7K9Upah2hWmKVZCRZ+eiuUp5u6VtxMrp/fbUNt8fH799cGSbrYpfP7K9ECPi/r7St6HNdo1P89LidD2wvJk/V3AspJZlJPLitkJ8c71rxttXf/fYC8RYzn1YOcMj5ozvXMuX28J0VOsGne8d48ewgj9xUrhzgEFNTksG+Ndl8+43LjM0sX92SUvKPL13ElhTHwztLwmihYqUoZysEfO5da0hNiON/PXsWKZd3MvHy8CQ/OtLJh3aUUK2KToecwoxEPr6nnKdOdHOqZ2zZn/vb35wnzmzij+5YG0brYpc/vL0anw++/sL5ZX+m2e7kudZ+PnNzpSo6HQbW5afyQE0hj7/ZQf/YzLI+I6Xkr545Q2aylU+rEIiw8NV71+Oameebry1/wfjS2UEOt43yh7dXk2RVDrCeUM5WCLAlW/nSHdUcahvhpWWU8JFS8tfPniUhzsx/vXNdBCyMTf7L7dVkJln5q2fOLCs9x5HLozx/aoDfv7lKTephoiwrmc/cXMEvm3tp6HRc93qP18dfPnOW7BQrjyoFOGx8+S7/OPSnvzy9rAXj0y19NHQ6+crd60hPVHGN4WBzUTofqCvmB4c7uDw8ed3rZ+e9/M3z56jOTeGju9W2rt5QzlaI+NjuMtbnp/K1X55mZPLaWeWfauzmtQvDfOmOanJS4yNkYeyRnhjHH9+znsYuJ98/3HHNa8dn5/nyf7ZQnpXEZ25WK/Vw8vlb11CYnsBXftZ63WLu3znQTku3iz+7b6PaqgojJZlJfPmudbx6fui6FRgGxmb5y6fPsLU4nYfq1VZVOPnv96wjOd7Cf33y5HUTNX/9hfN0jU7zlw9sUocVdMiqWkQI8ZAQ4owQwieEqL/GdfcIIS4IIdqEEF9dzTP1SpzZxD8/vI3x2Xk+9x9NzM4vXZqkye7kz399hpuqslQAdgR4qL6Yuzbm8be/Oc/htpElr/F4fXzxJ80MjM/yDx/cpuT3MJNktfBPH9pG1+gU/+2pk3iuMom8dmGIf3jxAvdtLVBlrCLAJ/dWUF9m409/eZrTvUtvvU+7PfzBj08w5/HxTx/ahlml4AgruakJ/H/v3UJLzxh//uurq44/P9HD42928qm9Fexdkx1hKxXLYbXu72ngfcCBq10ghDAD3wTuBTYCHxZCbFzlc3XJ+vw0vvFQDcc7HXzmR42MTb89sPHNyyN84vvHyU9P4P9+uFblCooAQgj+/qEaKrNTePRHje/ILD855+Gz/9HEGxeH+V8PbmZ7mU0jS2OLXZVZ/Nl9G/ntmUH+8ImTTLvfrnD95vQAn/1/J1ifn8bffWCrSiwbAcwmwb99rA5bUhwf+96xd2zzOqbcfOrxBlq6XfzjB2uoUqXFIsK7txTw+Vur+Onxbv7Hr07j9ry1OJFS8sRxO3/881Zuqsrij+9VYSl6RSw3oPuaNxHideDLUsrGJX62B/hLKeXdgdd/AiCl/N/Xu299fb1sbHzHLXXPU43dfO0Xp0hP9J8IyU9L4Gi7g+dO9bMmN4UffGKHKmsRYQbHZ/n0Dxs43TvOnRvz2Lcmm9EpN081dDM4Mctf3r+JR24q19rMmOOxA5f53y+cpyAtgQ/uKMGWZOWNi8O8en6ImuJ0fvDJnWSqGogRxT46zce/f4wuxzT3by1kR0Umvc4ZnmywM+X28vcf2MqD21Sy30ji80n+7rcX+PYbl6nMSeb9dcUkxpl56ewgR9pH2V+dzb99tE7lBdQBQogTUsp37PRFwtn6AHCPlPL3Aq9/F9glpfzCVe71KPAoQGlp6faurtXXU9OC071j/O1vzvPm5VG8PoktKY4P7ijhi7dVq9gTjZhxe/nOgcv8vyNdjE65EQJ2VWTylXvWU1eqFC2tONY+yjdevEBjlxMpISc1no/vLuPRWypVAV2NmJid559fvsTPTvQwNjOPxSTYV53NV+5ez8ZCVStUK147P8Q/vnSRU4Ft3sL0BH5vfyUf31OGRcVp6YIbdraEEC8DSxXt+1Mp5a8D17zO1Z2th4C7FzlbO6WUX7ye0UZVthYyOedhes5DVkq8im/QCVJKhibmSLKa1UpQR0zMzjM77yMr2aq22HXCvNeHc8pNSoJFxTLqiLHpedxeH9kpVrXFrjOu5mxdt/dIKe9Y5bN7gIVHVoqBvlXe0zCkxFuUkqUzhBAqYakOSU2II1U1i66IM5tUGhQdkp6kFolGIxK6YwNQLYSoEEJYgYeBpyPwXIVCoVAoFArNWW3qh/cKIXqAPcBzQojfBt4vFEI8DyCl9ABfAH4LnAOeklKeWZ3ZCoVCoVAoFMZgVftbUspfAr9c4v0+4N0LXj8PPL+aZykUCoVCoVAYEXV8QaFQKBQKhSKMKGdLoVAoFAqFIoyEJM9WuBBCDAPhTrSVDSxdx0WhFapN9IlqF32i2kV/qDbRJ5FolzIpZc7iN3XtbEUCIUTjUjkxFNqh2kSfqHbRJ6pd9IdqE32iZbuobUSFQqFQKBSKMKKcLYVCoVAoFIowopwteExrAxTvQLWJPlHtok9Uu+gP1Sb6RLN2ifmYLYVCoVAoFIpwopQthUKhUCgUijASs86WEOIeIcQFIUSbEOKrWtsTSwghSoQQrwkhzgkhzggh/jDwfqYQ4iUhxKXAv7YFn/mTQFtdEELcrZ310Y0QwiyEaBZCPBt4rdpEY4QQGUKInwkhzgf6zB7VLtoihPijwNh1WgjxUyFEgmqTyCOE+L4QYkgIcXrBeytuByHEdiHEqcDP/kUIIUJta0w6W0IIM/BN4F5gI/BhIcRGba2KKTzAf5NSbgB2A58P/P6/CrwipawGXgm8JvCzh4FNwD3AvwXaUBF6/hB/DdMgqk205/8Av5FSrgdq8LePaheNEEIUAf8FqJdSbgbM+H/nqk0iz+P4f6cLuZF2+BbwKFAd+Fp8z1UTk84WsBNok1K2SyndwBPAgxrbFDNIKfullE2B7yfwTx5F+Nvgh4HLfgj8TuD7B4EnpJRzUsoOoA1/GypCiBCiGHgP8N0Fb6s20RAhRBpwM/A9ACmlW0rpQrWL1liARCGEBUgC+lBtEnGklAcAx6K3V9QOQogCIE1KeUT6g9h/tOAzISNWna0ioHvB657Ae4oII4QoB2qBY0CelLIf/A4ZkBu4TLVXZPhn4CuAb8F7qk20pRIYBn4Q2N79rhAiGdUumiGl7AW+AdiBfmBMSvkiqk30wkrboSjw/eL3Q0qsOltL7ceqY5kRRgiRAvwc+JKUcvxaly7xnmqvECKEuA8YklKeWO5HlnhPtUnosQB1wLeklLXAFIFtkaug2iXMBGKAHgQqgEIgWQjxsWt9ZIn3VJtEnqu1Q0TaJ1adrR6gZMHrYvwysCJCCCHi8DtaP5ZS/iLw9mBA0iXw71DgfdVe4Wcv8IAQohP/tvptQoj/QLWJ1vQAPVLKY4HXP8PvfKl20Y47gA4p5bCUch74BXATqk30wkrboSfw/eL3Q0qsOlsNQLUQokIIYcUfNPe0xjbFDIGTHt8Dzkkp/3HBj54GHgl8/wjw6wXvPyyEiBdCVOAPYDweKXtjASnln0gpi6WU5fj7w6tSyo+h2kRTpJQDQLcQYl3grduBs6h20RI7sFsIkRQYy27HH3eq2kQfrKgdAluNE0KI3YH2/PiCz4QMS6hvaASklB4hxBeA3+I/SfJ9KeUZjc2KJfYCvwucEkKcDLz3NeDrwFNCiE/jH9AeApBSnhFCPIV/kvEAn5dSeiNudWyi2kR7vgj8OLAwbAc+iX+hrNpFA6SUx4QQPwOa8P+Om/FnJk9BtUlEEUL8FHgXkC2E6AH+ghsbs/4A/8nGROCFwFdobVUZ5BUKhUKhUCjCR6xuIyoUCoVCoVBEBOVsKRQKhUKhUIQR5WwpFAqFQqFQhBHlbCkUCoVCoVCEEeVsKRQKhUKhUIQR5WwpFAqFQqFQhBHlbCkUCoVCoVCEEeVsKRQKhUKhUISR/x/OLbmIFYPBVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# в аргументы передается сначала значения оси Х (можно не задавать), а потом значения по оси Y\n", + "\n", + "# обратите внимание на значения оси Х, которые мы сами не задаем\n", + "plt.figure(figsize=(10,3))\n", + "plt.plot(func(x))" + ] + }, + { + "cell_type": "markdown", + "id": "4e3a173a", + "metadata": {}, + "source": [ + "графики можно накладывать друг на друга, менять цвета и тип линии" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "dd0fa23a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAADCCAYAAACCJiwZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABg0klEQVR4nO2dd3gUVdvG77Ob3kmB9AJJgNAhQBJ670WlCRZQQVGUVwVEbFjRT7EgiDQRpUsNvYeQkAChE3p6IL33tuf7Y7KEkp7ZPbO753dducjszpxzk9mdeeY5TyGUUnA4HA6Hw+FwGo6MtQAOh8PhcDgcTYUbUhwOh8PhcDiNhBtSHA6Hw+FwOI2EG1IcDofD4XA4jYQbUhwOh8PhcDiNhBtSHA6Hw+FwOI1Ej8Wktra21N3dncXUHA6Hw+FwOA3i4sWL6ZRSu+reY2JIubu7IyIigsXUHA6Hw+FwOA2CEBJX03t8aY/D4XA4HA6nkXBDisPhcDgcDqeRcEOKw+FwOBwOp5FwQ4rD4XA4HA6nkTAJNudIh1tpt7Dj5g4k5yejlXUrTGo3Cc4Wzqxl6TRFZUXYHrkdEQ8jYKRnhBldZsDHzoe1LJ0n4mEEbIxt4NHMAxWKCmQWZcLOtNokHo4aicqMwq/hv8Lc0BwjvUait2tv1pJ0GkopQuJDcPDeQeSV5qGzfWdMajcJFoYWrKWpDEIpVfukvr6+lGftSYP/Iv/D5B2T0cy4GTKLMmGsZ4xvBn6D9/3eByGEtTyd41TMKby8+2U8yHsAcwNzlFaU4tSrp+Dv4s9ams6SV5KHN/e/iS03tmDp0KX4wP8DHLl/BBP/m4hlI5ZheufprCXqJCXlJTDUM0RuSS68fvdCVlEWyhRlGO09GhvGb4C1sTVriTpHYVkhJv03CQfuHYC+TB/G+sbILcnFh/4f4qehP7GW1yQIIRcppb7VvceX9nSQkvIShMSHAAAm+ExA2vw0ZCzIwN05dzGk1RD8ceEP5JXmMVape2QUZuD57c/D3NAcJ185ieyF2chemI2ezj0BAN+HfI+ozCjGKnWL3JJcDPxnILZFbsPnfT/H611eBwB4Wnuim2M3zNg7A9+d+Y6xSt1jVcQqdFvdDZlFmbAwtEDKvBRkfZSFH4f8iKNRR+G/zh+ZRZmsZeocxnrG8Lbxxk9DfkLWR1nI/igbYa+H4aNeHwEAKhQVjBWqBu6R0jEopXhp90vYHrkdd+fchUczjyfeV1AF0gvT0dy0OSOFus3V5KvwaObxjBs8rSANbVe0hZ2pHcJeD4OVkRUbgTpEhaICIzaNwKnYU9g1aRfGtB7zxPvlinJM3zMdm65vwsbnNmJax2mMlOoWB+8dxJgtYzDCcwR2TNoBIz2jJ94/E3cG++/ux5LBSyAj3FegDorKipBWmAZXS9ca90nOT8aozaPw7cBvMdxzuBrViQP3SHEesf7Kemy+vhmL+y1+xogCABmRoblpc+SX5mP2/tm48OACA5W6RU5xDjZf3wxKKTrZd6o2lsDO1A67Ju/C/cz7mHNwDgOVukdCbgJupt3EylErnzGiAEBPpof149ajn1s/zNw3Ew9yHzBQqVsk5SXhld2voGOLjtg2YdszRhQA9HHrgx+G/AAZkaGorIiBSt3j4xMfo+fansgrqXklw8zADBWKCryy+xWk5KeoUZ3q4YaUDpFakIr3j7yP/u798XGfj2vdt1xRjv339mPG3hkoV5SrSaFu8vmpz/Hy7pdxL/Nerfv1deuLT/t8ik3XN2HfnX1qUqe7uFu54+Y7Nx8t51WHvlwfm57fhDVj1sDR3FGN6nSTOYfmoKCsAFte2AJTA9Na941MjYT3cm9cfHhRTep0k/DEcPx27jdMaDsB5obmNe5nZmCGzS9sRl5pHuYenqtGhaqHG1I6xKcnP0VhWSH+HPVnnS5vKyMrLBu+DJFpkVh7aa2aFOoekamRWHFhBd7s9ia8bbzr3H9Rn0Voa9sW847N09p4Aymw7cY2lJSXwMLQos6kCycLJ0zrOA2EECioQk0KdY/80nzEZcfhkz6foI1tmzr3d7ZwRmlFKd47/B5YhLDoApRS/O/w/+Bg5oAlg5fUub+PnQ8WBCzAtshtCI0PVYNC9cANKR2ijW0bfNz7Y7S2bV2v/ce3GY9+bv3w+anPkVOco2J1usmHRz+EhaEFvh7wdb3215frY9XoVfh73N+Qy+QqVqebHI8+jik7p2D9lfUNOu6vy3+hx5oeKKsoU5Ey3cbMwAznZ57Hgl4L6rW/pZEllgxagrMJZ7H1xlYVq9NNttzYgnMPzuG7Qd/BzMCsXscs6LUAjuaOWHZ+mYrVqQ9uSOkQH/h/gK8GfFXv/QkhWDp0KdIK0/D7+d9VqEw3Of/gPI5EHcGiPotgY2JT7+P6uPXh5RBUyNfBX8PJ3AkzOs9o0HHNTZvjYtJF/HX5LxUp011upd1CRmEGZEQGA7lBvY+b3nk62jdvj2/OfMO9hSogND4Une0745VOr9T7GFMDUxx7+Rj+fe5fFSpTL9yQ0gHuZ97HlutbGhXr1M2xG34d9ism+kxUgTLdJrckFz2deuLNbm82+NiisiK8ue9NrL/cMK8Jp3ZC4kMQHBeM+QHzYahn2KBjR3mNQnfH7lgatpTftEWEUorXAl/DgA0DGrxEJyMyLOy1EDfTbuJ49HEVKdRdVoxagdDXQhucHelj5wMDuYHWeG+5IaUDfB/yPV4LfK3RdVXm+s2t93Igp/4MbjkY4W+E1xqgWRNGeka4mHQRS0KW8Ju2iCwJWQI7EzvM7DazwccSQvCh/4e4l3mPJwOISGhCKMITw/FmtzcbVSR4cvvJODztMIa0HKICdboJpfRRlqqJvkmjxricdBnuv7lrRawUN6S0nIzCDGy8thEzOs9oUm2oq8lXMefgHB60KRKh8aHIL81v9PGEEMwPmM9v2iJSUl6CrKIsvN397UbfHF7weQFulm74KUyzqzhLiaVhS2FjbIMZXRq21KpET6aHYZ7DeKcGETmbcBZuv7rhWNSxRo/hbeON4vJi/BL+i4jK2CCaIUUIkRNCLhNC9os1Jqfp/HP1H5RUlGC27+wmjXMt5RpWXFiBoNggcYTpMPml+RixaQTmHmpaCvALPi/AydwJqy+tFkmZbmOoZ4izr5/FZ30/a/QYejI9rBq9Cj8M/kFEZbrLw7yH2HdnH97o+kajjVslX5z6AguO1S9QnVM7qy+thom+CQJcAho9hqmBKaZ3mo69d/ZqfF0pMT1ScwHcEnE8ThOhlGLVxVXwd/ZHhxYdmjTWBJ8JsDS0xNrLvBRCU9l6YyvySvPwWpfXmjSOnkwPMzrPwOH7h5GQkyCSOt2ktKIUGYUZANDkbMhhnsOadIPhVHEi+gQUVFFrLa/68jDvIVZcWMEzkJtIdnE2/ov8D1M7TK2zllddzOw2E+WKcvx95W9xxDFCFEOKEOIMYBQAfpeVECkFKZARGWZ1m9XksYz1jfFSx5ew8+ZO3sOqiay5tAbtm7cX5Wb7WpfX8Lbv23zZoonsvb0XTj874XrKdVHGu5N+B+8ffh+lFaWijKervNzpZSS8nwAvG68mjzWr2ywUlhVi0/VNIijTXTZd24Si8iLM7NrwOMKnaWPbBn1c+2DNpTUaHesplkfqVwALAGjuX0ILsTezR+TbkXi548uijDez60yUVJRg8/XNooyni9zLuIfzD85jRucZohg/Hs088PvI3+Fs4SyCOt1l843NsDa2ho+djyjjxWTH4NdzvyLwTqAo4+kiynhMJwsnUcbzdfRFh+Yd8O817Um7Z8GGqxvQ2b4zujl2E2W87wZ9h+Ujl4syFiuabEgRQkYDSKWU1lqHnxAyixASQQiJSEtLa+q0nDooV5SjqKwIhBDRCjd2su+E4Z7DeSPQJnA06igICCa3myzamAqqQHBcMO5m3BVtTF0iuzgbB+8dxOR2k0X7rgxpOQQOZg7c+9EE/nf4f5i6c6po4xFCMK3DNIQnhiM6K1q0cXWNnZN2Ys2YNaKN19u1t8bfV8RQ3gvAWEJILICtAAYSQjY+vROldDWl1JdS6mtnZyfCtJzaOBp1FC1+aoEryVdEHffQtEN4u/vboo6pS7zT4x1EvRcl2lM2IASvD/13KJaf1+ynOlbsurULpRWlmNpBvJu2XCbHpHaTcOjeIR6T0wjKFeXYfGMzKMTNEp7SfgpmdJ7Bs4+bgIulC3wdfUUdMyozCl+c+kJj60o12ZCilH5MKXWmlLoDmALgJKX0pSYr4zSJLTe2QC6Ti7ZU8TgVigok5iaKPq6u4NHMQ9TxLAwtMMp7FP67+R/vv9cIttzYglbNWol+c5jcbjJKKkqw985eUcfVBU7FnEJ6YTom+UwSdVw3Kzf8Ne4vtLJuJeq4usK7B9/F0aijoo97I/UGvgr+CidiTog+tjrQXF8ap0aKyoqw5/YevND2hQa1U6gv47aOw9gtY0UfV9v5NvhbzNirmqfhKe2mIDk/GcFxwaKPre38PuJ3rB6zWvSAfT9nP3Sx74LcklxRx9UFtkVug5mBGUZ4jRB9bEopLiddRlJekuhjazO3029j+YXluJ1+W/Sxh3sOh5WRlcb2RBTVkKKUBlFKR4s5JqfhHLx3EPml+ZjSfopKxu/v3h+Xky8jLjtOJeNrI5RSrLu8Dsn5ySrJsBvlPQom+ibYcXOH6GNrO21s22Cgx0DRxyWE4OKsi5jTY47oY2szZRVl2HVrF8a1HgcjPSPRx0/KT0LX1V01PuVe3Wy7sQ0EBBN8Jog+tqGeIUZ7j8b+u/sb1cqMNdwjpYXsubMHNsY26O/eXyXjj2s9DgB4RlIDuJF6AzHZMXi+zfMqGd9E3wRDWw1FSEKISsbXVn46+1OTqjPXBSEElFIUlBaobA5to6SiBO/7vS9Ken11OJo7ortjd+y5s0cl42srO2/tRB+3PnA0d1TJ+GO9xyKjKANnE86qZHxVwg0pLWRuz7n4Y9Qf0JPpqWR8LxsvtLFtw2M/GsC+u0Ibl9HeqnPY/jnqT0TMjFDZ+NpGXkkePjn5CY5EHVHpPP7r/DFrf9NruekKZgZm+KzfZ+jn3k9lc4xvMx7nH5zHw7yHKptDm4jLjsP11OsY6626kI7hnsNhbWyNqMwolc2hKrghpYX4OvpiUjtxgzSfZlzrcTgddxrZxdkqnUdbCLwTiO6O3eFg7qCyOVqYtYC+XF9l42sbR6OOorSiFGNbqzber61dWxy8d1BjM5LUCaUUB+8dVLkHj3vVG0ZyfjI6teik0gdBc0NzpMxLaXRPRZZwQ0rLCLwTiBPRqs98eKPrGzgw9QBM9ZvWIkAXoJSir1tfvNH1DZXPtfLCSkz8b6LK59EGAu8GwtrYWuXtXMZ6j0V2cTZCEzS/y72qiUyLxKjNo1Ref8vHzgee1p44cO+ASufRFno698SVt66gtW1rlc6jXEXRtCrnqln74TBj4fGFcLJwwqCWg1Q6j6e1JzytPVU6h7ZACMH/Dfk/tcyVW5KLHTd3IDE3kVc7r4UKRQUO3D2AkV4jVbYErmRIqyEwkBsg8E6gyuIWtYUDdwXDZpTXKJXOQwjB3il74W7lrtJ5tIHSilIoqEIlgf9PU1xeDL+1fpjUbhIW9Vmk8vnEgnuktIiozCjcSr+F0V7qSZy8nX4bX5z6QiOzLNTJjdQbalvWUS5T7buzTy3zaSoJuQkwNzRXacyHEjMDMwzyGITAO4G8EGQd7L+3H10duopasLYmfOx8YKJvovJ5NJ2D9w7C9v9sRetDWRtGekbQl+trnKeQG1JaxP67+wEAY1qPUct8yiJq5x+cV8t8mkhJeQn81vph/rH5apmvjW0beFh5qDyAWtNxt3JH9HvReL6tarIon2ZBrwVYMmiJ6JW6tYmMQiFjS10PggDwY+iP+DnsZ7XNp4nsu7MPejI9tLFto5b5hrUahnOJ5zQq/pYbUlrE0eij8LbxRstmLdUy30CPgZARGY7c5zftmghPDEdBWQEGuA9Qy3yEEAxpOQQnY07y4OZaoJSK2oeyLvq798fEdhM1up+YqjkRcwIKqsAob9Uu6z3OmfgzWH5+OfcU1gClFEeijmBoq6FqS2QZ1moYKmgFTsacVMt8YsC/1VqCgioQmRqJwR6D1TantbE1ujt2x9Fo8VsGaAvHoo9BTuRqjY0Z32Y8RnuP1qgnOnWSWZQJx58d1V689FbaLey6tUutc2oSE3wm4OpbV9HNoZva5hzWahhismNwP/O+2ubUJG6n38aDvAcY0nKI2ub0c/aDuYG5Rj2g82BzLUFGZIieG632wn9DWw3Ft2e+RVZRFpoZN1Pr3JrAsehj6OncE5ZGlmqbc4TXCJW01tAWTsacRHJ+MhzMVFeKojp+O/cbNl/fjDHeY3iZimqQERk6tuio1jmHeQ4DAByJOgIvGy+1zq0JHI8+DgAY3FJ9D+j6cn181vczjUoE4B4pLUJGZDA3NFfrnMNaDYOJvgki0yLVOq8mkFWUhYiHEWr1Ej4ObyxdPceijsHC0AI9nHqodd6hrYYirzQP5x6cU+u8mkBUZhRmBs5Uu2fI09oTLZu15DGFNTDQYyB+GvKT6I3W62J+r/mY2E5zyrhwQ0pLmLpzKpaeXar2ef2c/ZC5IBO9XXurfW6pY2ZghlOvnsL0ztPVPvdPZ3+C269uyCzKVPvcUudY9DEMcB+gdq+QMqbwaBRfCn+aI1FHsPbyWiZzP9fmORjrGTOZW+q0a94OHwZ8yGTuuOw4RKZqxgM6N6S0gJziHGyP3M4kJkYuk/NlihrQl+ujr1tftT/NAYC/sz8UVKFRAZvqICozCjHZMWqN+VBiZWSFHk49cCxadb39NJXj0cfhZumGVs1aqX3un4b+hO0Tt6t9XqkTnRWNg/cOoqS8hMn8g/8djI9PfMxk7obCDSktICg2CBW0Qq3r2I8TEh+CTn920sgeSarkuzPf4VLSJSZz93DqAXMD80cxDhwBPZke5vaci+Gew5nMP7TlUFxOuoz80nwm80uRCkUFTsWewiCPQSCEMNPB6+E9yaZrmzB682hmn9WB7gMRHBeMCkUFk/kbAjektIBj0cdgom8Cfxd/JvNbG1vjWso1nI47zWR+KRKbHYtPTn6CkPgQJvPry/XRx60PPydP4Wblhl+H/4pW1ur3fADAXL+5SF+QDjMDMybzS5FLSZeQXZzN7EEQEEIjhm9kY1xLleMxx9HVoStsTGyYzN/fvT9ySnJwJfkKk/kbAjektIDj0cfRz60fDOQGTOZva9sWdiZ2CIoNYjK/FGGR7fI0/d3643b6bSTnJzPTICUUVIFzieeY1teyNrbmRtRTpBakwt3KHQM9BjLTYG9mj9CEUBSXFzPTICXyS/MRlhDG9PrVz70fAGjEfYUbUhpOWUUZ/JyF3kSsIISgv3t/BMUG8cJ2lQTFBqGFaQu0tW3LTMMLPi9g6wtb+Y27kusp1+G3zg9bb2xlqmPDlQ14a/9bTDVIiVHeoxAzNwYtzFow09DfvT+Ky4t5l4ZKQuJDUKYowyAP1fZsrQ1Hc0d423jjVOwpZhrqCzekNBx9uT7+Hv83k8ywx+nv3h8JuQmIyY5hqkMKUEpxOu40+rn3Yxrz0bJZS0xuP5kbUpUolzmVT7qsiM6KxppLa5BTnMNUhxSglEri4auvW18QEJyKkf5NWx2ExodCT6aHXq69mOrY+NxGrBmzhqmG+sANKQ0nozBDEheiQR6DMLndZJRWlLKWwpyMogzkl+ajr2tf1lJwP/M+1l9ez1qGJAiOC4abpRtcLV2Z6ujv3h8KqmAWPyclwhLD4LDUAecS2dbWsjKyQheHLgiKC2KqQyp8OeBL3Hz7JvOmzt2dusPBXL2FcxsDN6Q0nP4b+mPKzimsZaC1bWtsnbBVbY0tpYytiS0yFmTgja5vsJaCXbd24bXA15CSn8JaClMopQiOC2bujQKE2msGcgOeCADBuE0pSFFbf9DaeN/vfbzU4SXWMiSBjMgkUemdUopl55Zh7+29rKXUCjekNJiMwgzcSL2BTi06sZbyiPiceEl4yFgjIzIY6hmylvGox5+u37Rvpd9CWmEa+rmxN6SM9Y3R06mnRgTRqpoz8WfQxrYN7EztWEvBSx1fwutdX2ctgzkXHlzAW/vfwsO8h6ylgBCCPy78gTWXpL2812RDihDiQgg5RQi5RQiJJITMFUMYp26USwN93dgvIQHA+svr4farm87HSY3aPAp/RvzJWgYAoKtDV5gZmOn8Tbtls5Y49eopjPYezVoKAGCk10jYmdpBQRWspTCjQlGB0PhQSSyBK4nPicfV5KusZTDl0P1DWH1xNfNlPSUD3AcgOC5Y0nW+xPBIlQP4kFLaFoAfgHcIIT4ijMupg+C4YBjKDdHdsTtrKQCAns49AUCnAzaT8pJw8N5BtTePrgk9mR56u/bWeUPKSM8I/d37o7lpc9ZSAAALey/EgakHICO6uyhwPfU6ckpy0MetD2spj3h+2/OYe1i3fQFn4s+gY4uOsDKyYi0FgOBVzyvNw+Wky6yl1EiTv8WU0iRK6aXK3/MA3ALg1NRxOXUTHB8MP2c/SSwhAVX1pM7En2EthRnK/7tUvISAUE/qbsZdne27RynFN8HfSLKwn5SfslWNmYEZ5vac+2j5WQr0du2N8w/OM601xpKyijKcTTgrqeuX0tCWcnKGqI9DhBB3AF0A8PbmauDTPp9iQa8FrGU8ghCCAJcAhCaEspbCjOC4YJjqm6KLQxfWUh7xpu+byPooC9bG1qylMOF+5n18duozhCeGs5byBNP3TMeADQNYy2CGp7Unfh3+K5wtnFlLeURv194oKi/C5WTpej9UyaWkSygsK0QfV+l4CR3NHeFp7SmJmK2aEM2QIoSYAdgJ4H+U0txq3p9FCIkghESkpaWJNa1OM67NOIz0GslaxhP0du2N+5n3dTZLLDguGL1ce0FPpsdayiOsjKxgbmjOWgYzguOCAUASgeaP09y0Oc4/OK+T1bQppbjw4ILkPD+9XIS6SVL2fqiSjKIMuFm6SWq5FQBuvn0TPw79kbWMGhHFkCKE6EMwojZRSndVtw+ldDWl1JdS6mtnxz5DQ9MJiQ9BxMMI1jKe4bk2z2HT85skE6ioTioUFeji0AXjW49nLeUZ/r7yN+Ye0s3Yj9CEUNgY20iuNEcvl14orSiV5PdY1dzLvIcea3vg7yt/s5byBA7mDmjZrKXOGlIjvUYi9n+xsDezZy3lCfTl+qwl1IoYWXsEwDoAtyilPzddEqc+LDqxCO8cfIe1jGdoZd0KUztM1UkPiFwmx4bxGzC7+2zWUp7hVtotrIxYiaKyItZS1E5oQigCXAKYVpmvDmWT8dB43VsKPxMnxBJKzfMBAJuf34zfR/zOWobakUqV+epIL0zHwA0DsT1yO2sp1SKGR6oXgJcBDCSEXKn8kdZ6k5ZRXF6Mcw/OSSpt+HHupN/BthvbWMtQOznFOZK9EPVy7YUyRZnOeT/yS/ORnJ+MAJcA1lKeoblpc3hZe+lkTGFwfDDsTOzQ2qY1aynP0NO5J5wsdC9f6kbqDTj97ITTsdKrOWdtbI1LSZdwIvoEaynV0uRADkppCABpPeppORcfXkRpRSnzPkg1sf7Kevwc9jPGth4LY31j1nLUxsjNI2FtbI19L+5jLeUZlIZEaEKoJL0AqsLMwAyZCzIl27roA/8PYKRnxFqG2jkTdwa9XXtLzksIACXlJVh9cTU6tugoiUr46iIkPgRJ+UlwsXRhLeUZZEQm6UQm3S1iosGEJYYBAPyd/RkrqZ5eLoL348LDC6ylqI2S8hJEPIyQ5BM2ILStaW3TWrIXIlUil8kla9C/5fsW84bj6iY5Pxkx2TGPArulhr5cH18EfYGN1zaylqJWziaeRQvTFvCw8mAtpVp6ufRCZFqkJMu4cENKAwlPDEfLZi3RwqwFaynVovR+6FLA5uXkyyitKJXkEpKS4Z7DYawnTYNCVbwR+AZ+OvsTaxm1Ep8Tj+isaNYy1EYzo2Y48coJTGw3kbWUalF6P0ISdOf6BQBhCWHwd/GXpJcQwKMVmLCEMMZKnoUbUhrIhvEbcGDqAdYyasTGxAZtbdvqlPfjbMJZANL1EgLAr8N/xfaJ0gzWVAWlFaXYdH2TpOvPUErRZVUXfBP8DWspasNQzxADPQbC1dKVtZQa6e3aG7fTbyO9MJ21FLWQWpCKqKwoSV+/ejj1wLBWwyS5FM4NKQ3E1MBUcqncT9PLpRfOJZ6TbPC12IQlhsHdyh0O5g6spdSJrpyTK8lXUFxeLGkvoS4WsV17aa0kvQqPo1x2VD4gaTvlinK82+NdDGk5hLWUGjHRN8Hhlw5jUMtBrKU8AzekNIxTMafwyYlPkFeSx1pKrXw54EtEvRclWTex2MzoPANf9v+StYw6GbZxGGbtm8VahlpQ3gSlbEgBwk37bsZdpBVof6Hi0opSvHvoXfx38z/WUmqlu1N3GOsZ437mfdZS1IKjuSOWjVgmqY4MNZFbkiu51krckNIwdt/ejd/O/SbZ4FkljuaOsDSyZC1DbYz0GolXOr3CWkadGOsZ43Sc9NKbVcHZhLNws3SDo7kjaym1okvej6vJV1FcXizpJSRAaHKdviAdH/h/wFqKWriXcU9yxkl1HIs6hmY/NMOFB9JKZOKGlIZxNuEsujt1l1QLkpr4Lfw3/Bym/TVa72bcxfkH51GhqGAtpU56ufTCvcx7SC1IZS1F5TiZO+H5ts+zllEnvo6+0Jfp68Ty3qOMYxdpG1IAdKY7Q7miHJ1Xdcb8o/NZS6mT9s3bQ0EVkuubyQ0pDaKwrBBXU64iwFnaSxVKTsaexKqLq1jLUDl/XPgD/f/uDwVVsJZSJ8plrnOJ2t9X/Jfhv+DnYdI35I31jRH4YiDe6/keaykqJywxDM4WzpJqVFwTN9NuYui/Q3E5SbsbGF9LuYbCskL0dO7JWkqdOJg7wM3SDeEPuCHFaSQRDyNQrigX72muoACIiBD+BYCMDODGDaBYnCaqfk5+uJtxFxmFGaKMJ1WUXkJR+kGVlQE5OVXbx44Bd+40fdxKujp0hZ5M75FnQFspKS9RTVB9VBQQGAiUlIg67HDP4RphXDSV6ynXxV3WKy0FTp0SzouSpCRAhHNvYWiBY9HHtL6MizLwX7TzkpEh3FeUxMUBt24BCnEeNP1d/CWXrMANKQ3iYd5DWBpaws/Zr3ED5OcD//4LpFem9AYGAt27Cx90ADh4EOjQAYiJEbZv3xZeK2tch3alwXf+wfnG6dUAisqKcDn5cuO9hJQCWVlVvzs5AR9+WPX+Sy8Bv/zy5Pbu3Y3Wa6xvjHn+8+Dr6NvoMTSBeUfnoe2Ktk03pjZtAuztgbzK5I6dO4Fx44CKymXcX34RvjOPG7+NILMoEyvOr8C9jHtN0ytxrr51FX+O/rPxA5SXA/PnA1u2VL02eDCwsbJ4ZlER4OgILFkibFMKJCc3aipnC2c4mTtp/UNHWGIYHM0dG1+OIiUF+Pvvqu0vvwQGDqza/uEHICAAUCYenToFhDZ+GdvPyQ8JuQl4kPug0WOIDTekNIgp7acg86NM2JrYNuxA5c3k+nXglVeAoCBhu18/4absWvkF6t8f2L4d8PYWttetA55/vspD1cCbkq+jL2REptUXoiZ7CUeMAMaOFX4nRLjoTHysUOGhQ1WGVUEBcOkS8KDyAlJWBhw40OAnvSWDl2hE7FBTOJt4Fk4WTg3PGr1/H5g0Cbh7V9h2dweGDhVu0ADw8svAhQuAcWWyh7Mz4O8PWFYmVixZAnz7bYP1FpcXY86hOTh472CDj9Uk5DI5rI2tG3ZQbi5wrnIpWk8POHwYuHZN2DYwAIKDgRkzhG1CgGXLgOHDhe3r14WHk717G6XX38VfcvE4YnM24Sz8nRtYiJPSqvvBpk3C3z8hQdh+/XXhPqLkrbeAbduqDKnPPwfmzq16v4HXrxFeI/D7iN+llXCl7Piszp9u3bpRjhooKqJ0/HhKFy8WthUKSsPDhX/rQ3ExpRcuVG1PmEDpokUNkhCwLoDOOzKvQcdoEj+E/ECxGDQ1P7V+BxQXU7pyJaUVFcL2zp2UrllT/3NCadWxO3YIl7MDBxommlKamJNIMwszG3ycJpBfkk/lX8rpJyc+qf9B5eXCv4mJlDo4ULp/f+MmnzqV0hdfrNouKan3oa6/uNJJ/01q3LwawLLwZfT9w+83/MBx4yi1t6/6WyrPVX14+FC4ZmVWftYjIig9fbreh/8U+hPFYtDkvOT6z6lBKBQKevT+UXo2/mz9D7p/n9KAAEoPHxa209MpjYys//HZ2VX7FxVR2r49pf/+W//jGQEggtZg00g/9YsDAIjKjMJz257D8pHL0detb+07V1QAcjlgZAQ0bw6YmQmvEwL0bEBAoaEh4Fu5BFReDtjaAlZWVe8rFICsdqdmyIwQra4lNdt3NgJcAmBnale/A3bvBmbPBtq1A/r0ETx+DUX5Nx87VnjSHjFC2D5+XPAuKj2KNRCTFYOWy1pi1ehVmNVN+2pKRTyMQAWtqH/MxzvvCHEdW7cK3ov4eMHz0Rg2bapa9ouPB3r0AP75R/Bq1UGASwBC47U3c29b5DZU0HpktlIK7NgheJXMzYWlovJywfsECNe2+uLg8KSH8LvvgLAwIXzB0LDOw/u49cEgj0HIKs6SbEuupkAIwZBW9SzCqbzeOzkJ9xblSoWNjfBTXywtqzy42dlAy5bCmIDw3ZHJqrxXNfAg9wFupt2sv3YVw5f2NISzCWdxPfU6mhk1q33HkBCgbduq5Z9Vq56MuWksenrAypVCfAIAnDz5ZHxVDWizEQUA5obm6O3au/adMjOrgi8nTRLOUZ8+TZ9cX18wpggRLkBvvw3MnFnnYe5W7rAzsdPaJVflUky9YwldXIQlPOUSQ2ONKCXKG31FhfAg0rZtvQ7zd/ZHQm4CEnMTmza/BCmtKEXEw4j6xRLeuCF8T1avFrY7dQK6dRNHyMaNQtynoaFgsO3cWevSUg+nHjj+ynHJd5JoLMejj+NkzMm6d/z7b6B3b8GgNTICTpwQYgWbir298DA4YICw/f33wJgxdSY8/Rz2M8ZuHYvSitKmaxABbkhpCGGJYTA3MIePnU/tOzo4CE8H+fmqFVRaCpiaCh6vWkgvTIfval/8c/Uf1ephQGJuIj4/9Tnisms3JjFtmuB5Ki0VnrZ6qaDrvVwOnD4NrF0rbBcXA4nV35AJIfBz9tPa2A9/F3980e8L2JjU8JSckyME7YdVGpILFwoX8Dq8qw3GwwPYv18w1ADBE7l+fY27B7gEgIDgesp1cXVIgCvJV1BSUVJ7LGFsrPBvhw7Cg9r//ie+EGNjoHNn4feDB4EJE+qVvCGVG7bYfHX6Kyw6sajuHa2sAAuLqqQLVWFlBdjZCcZaLfg5+6G4vBhXk6+qVk894YaUhnA24Sx6OveEXFaNW/vu3aoslVatgLNngdatVSto+HDhxm1sLAQ9L1okLI88hbWxNaKzorUyhTgoNghfB3+NnJJqMrYqKqqWeP7v/4SLtXJpQlU4OABeXsLvixYJN4z06puu+jn74Xb6bWQVZalWEwP6uvXF4v6La96BEOD8+aqAZXVQVCSUsYiPr3GXzvadkfVRFkZ4jVCfLjVRZ4r9778DbdoAN28K2wMGNGwJrzGMHAns2VO1vF5YWO1u34d8j+Y/NteIyt8NoayiDBEPI2o+J6dOVQWNjx8vJL40q2NFpKm8807Vw8bDh8J1rJpSI0pvs1QeBrkhpQHkl+bjeur1mt3if/0F/PxzlSGjruU05TwXLgBLlwpfvKeQERl6OveUzAdeTMISwmBmYIZ2du2efKO0VHBPL6p80uvQQbylifoye7aQHWNbfYan8kKkbaUpsoqycCnpEsoqqinZcfy4sIxjYSFkc735pvqEGRsLNcE+/VTYjowEoqOf2EVPpqe1bZWUzZmdLJyq32HKFOCzzwBPT3WKEpanCBGunT4+QqbyU7hauiKnJAc3Um+oT5sauJpyFUXlRdV7CSkFvvpKuK8os/PUHaYRGChkYD5eI6wSF0sXOJk7SaYwJzekNICc4hxMaT/lya7XlFYZTt98A1y+3LCAPzEJCBC8YhMmCNtZT3o5/Jz8cCP1BnJLchmIUx3hD8LR06kaL6GBgeAZ8vBgIwwQ5n+vslL2zZtCerKy8CqE2I+Nz23UiCalDeFI1BF0W90N11OfWh47cwYYMqSq3k09Ao1FRy4XfigFXn1VeMp/Kj7nePRxjNw0EkVlRerXp0Le6/keQl97KpA+IgJ4913h72FnB3zyieq9tjVhYCAsuXd59vsgNe+HWFTrJSwpEbynhAglC44eVb8BpeStt4RyJD6V4SxpTzb1llJ4AjekNAAnCydsen7Tk9l6c+YAffsK7mg9PaGeDUvc3IR/798XniofiwXxd/EHBZVco8mmUFBagKvJV58MaD51qmrp5rffhAuBFDh3TrggZmY+esnMwAzTOk5Dc9PaY9w0jfDEcBjrGaNji45PvtG7N7B5s1BHjTXKm9T69c/EZRWUFuDQ/UO4lHSJkTjxoTXVnwsOBvbta3TBTFExNxcyLrt2Fba3bXv0oOph5YHmps0lc9MWiwsPL8DZwhkulpUxfGVlwKBBwBtvCNvNmwveW5bY2wv/BgYK2X3KemIAvhn4DU68coKRsCfhhpQGkFGY8ezFaMIEIYjZWEJFyQAhjXXSpKosDAjejxfavgBTA1OGwsQlKisKxvrGVYZUQQEweTIwbx5bYdUxY4ZQpV4Z9JyUBACIzY7F6ourNaJHYH0JTwyvauqdlSWck/h4wXh58cWmZ+SJRatWVcu9v/wiLMNS+miZ5WzCWYbixGXnrZ1w+cUF9zPvCy8oPenvvw9cvSrE9kmJpCThO/P11wC0Nznjr3F/4cyMM1Uv6OsL8WLjxzPTVCM9egjFcDt1evRSG9s2cLdyZ6fpMbghJXEopfD5wwfvHXpPeHLbv194Y8AAIQZHauUFjI2FMgnu7sL2hg2woobYMWlH41vbSJCOLToi+6NsDPesrKBsaiqcG2XKttQwNxf+/fNPIaj39m2cijmFN/e/ibsZd9lqE4mS8hJcTr4MP6fKz9nDh0IVf3UGlTcUSoV4qZs3AUrR3LQ5WjVrpVWlKcITw5FWkCa0IPm//wM6dhSMFUKq6glJCQcHoYXJ998/eum1zq9htu9s1fRvZISeTE8wRK5dq/qOfPDBk50VpIK9PfDHH1X1q/78E1AosPriamyP3F738SpGFEOKEDKcEHKHEHKfELJQjDE5AjHZMUgtSEW75u2ENO2XXxaKmGkCV64IT3aVxkVyfrJWXYjkINCb/1FVn68ePZ4sWCpFRo4Ugqy9vLQu9uNS0iWUVpTCz6oy+L9dOyFQdfRotsJqgxBgzRph2VEmA7KyEGDfHWcTzmrNdyU8MRzdHLvBQG4gFI+dMqXOsinM6dKl6qY9dizGJVlgrt9cramLdzr2NN49+C4y8tOAqVOF+nOa8nnbtElIpgkPx5pLa7AyYiVrRU03pAghcgArAIwA4APgRUJIHcWOOPVFeZPzd/YX4m5OnJD+zVpJ585CkO+cOfjn6j9wWOqAqKxnMzA0DUophm0chr8v/SUE+V+5wlpS/XGt9ArI5Wgts4OlzERrDKmOLTriaO9V6D/2PaFKOVBV1V/KECIEO1MKvPACBv4Xgba2bZFXquKaPWpAWYjTr6Cyv16HDkKGr6pLG4hFdrZQ3yolBYm5ibiZdpO1IlE4dP8QVl1cBVMjc6HEwY4d0lvdqInXXgPCw4GAAPg7++PCgwvMS1OI4ZHqAeA+pTSaUloKYCsAEUqeNpG0tKo6PhpMeOg2mCr00M66teAGVwZDagq9egFyOTobCxls4ed3MhbUdBIe3MTRqKPIVxQLtVV+/JG1pEYh+/kX9LxfhPDoYNZSRMHUwBRDer+KZmMmCY2ENQ1CgA8/xPSJ3+LU9FOwMGQc6CsCV5OvCoU4Vx+sNo1d8tjbAxcvAlOmYPTm0fjfHokkkDSRsHM70IXaw0jPSMiKU8ZPagKPtTrzK7dHQVkBbiSxLcwphiHlBCDhse3EyteegBAyixASQQiJSHsqjVFszt47iZ5fuyJ69hSVzqMOwtKvoHuGEfTyqy8Wpym0K7GAaRlBeIKGez/KyhA+ewyASi+hoaHmPMk9zeLF8BsyA5E591BYptmfL/z3H5aeXoKrWbeFpWRlFqmmMWqUkKwBoOLEMaFGmwZjbmiOd7q+hYCf/xMC7DURfX0AgJ95G5yLOQPF78sYC2oa5RVluFAaC79Ug1rb42gCQxQeONxiHrzs2LbwEcOQqu4u8sxiK6V0NaXUl1Lqa2dXzwavjcTU3AbnbYpxdlDtzVslC6WPUoIXPPcTPpi9AbC2Ziyqacg7dEKPVn0RTitt7ocP2QpqLPr6CO/bEkbE4NkUe01DXx/vPv8DUuelwiQoVLiBF2lg/aKbN/HwjcmYF7QIQbFBrNWIwtv7ZyMgcJzQJkVTYlce5/Jl4Lnn0MbYBcvHrITjkEY055YY/m2HItcQuD2gA2spjaOsDMjOxvXUGyiSVcB/1lfit0VSM3bjXsSwt35knhEuxl8xEcDjfkFnAEzvku2bt4eZgRnCzStbd+zZU2PfMUny/fdCZktiIia2m4gx7TT/IgQA/q69cDXlKgpPHxdqguzbx1pS/bl06VHj4TDrAvi69IC+XJ+xqKZja2KLZsbNhGWXe/eEquyaho8Pwtd+AaABjYoljo2JLS7alCJ/89+Cx1PTjKm4OODKFUTeOcM8fkUs/FyFHpnhZTHC+Vi58okit5Jn6lRg+HCk5D6Eo7kj/Fzr0UCaUy/EMKQuAPAihHgQQgwATAEQKMK4jUYuk6OHUw8hhTg3Vygw9vHHLCU1jBdeAGbNwmWSgosPL7JWIxqT2k3CurHrBCNx9myhoKgmoFAI2YezZ4MqFPC28cYY7zGsVYnG6our8XXbNKHYnaWl0OFd6h7DvDyh5k3l0le4VQEM5AbobN+ZrS6R8HfxRwWtwAVFonDTfvtt4IcfWMuqG2XYxvjxSIkIQvt9I7DsnGYvhSnxsvFCM6NmQkXwy5eFosjKSvmawLRpwIwZGN56FB588ABulhq6/C1BmmxIUUrLAcwBcATALQDbKaWRTR23qfg7++Nq8lUUGMmFWjIrVrCWVDtZWVXVwL29gW++wbehSzDxPwnW9Ggknew74ZVOr8CkWXOhCKHypr1ihfCvFKFUcH/v3Ans3Qsik2HD+A1Y0GsBa2WicTbhLJZfWA5aGQuCBQsAX99qm1BLhsJC4MYNoTURhOzWrg5dYajHoPWLClB61sISw4SkmZwc4UfKbNsmeJqvCoG/59KFf3s69WSpSjRkRIYdk3bg076fCkk/588LBi4gXY/h/ftCVwNAKLT5WH9JbSnlIAVEWSCllB6klHpTSltRSr8VY8ymMshjEMa2Hous4iygfXuh1H15uRAHoqz7IyWULUUea2QanhiuNUsVSm6n38axqGNVLxw8KDzZKb/sUkGhAD76SKg4DQhtbxwdUVxezFaXCvBz9kNqQSpis2OFF15/Xag6zap3Y21ERQnnpkULofHwtGlQUAVup9+uKsSpBVgbW6ONbRuhwrmennDN+rby0pqQINQ3khr9+wsteLyF2NSwhDDoyfTQ1UHDMo1rYaDHQLhZVXpyunUTll1TU4UWRGclWI3+3XeBWbMeLdlnFGbA4zcP7L29l7Ew7UKzI81qYYDHAOyavAvOFo/1oCsoEFzP+fnshD2N0hPzySdCbYyWLQEAibmJeJD3QOsMqW+Cv8Gre16tKjY4dqxQRXjkSGG7rIyduMdRdoTPyHjiaXP6nunwX6eBqfW18IT3AxAKWc6fL/x+965Q3kEKT9x37wrLwr/8ImxXNh6WERkefvgQi/svZqdNBbzX4z2Ma11ZSUYmEz6TJSXAwIGPMvuYk54OLFkifD5atBC8y5Vtq8IfhKOLfRcY60usjVUTyCvJw8oLK3E95bGm2Dk5wj1FKu2HgKrSP3/9JdQerGwGfe7BOcRmx8LKyIqdNi1Eaw0pJfmljxlNlpbA8eNVzWQvXXqikavaWbVKqHeTny+k2D7WebzaztxagJ+zH5Lyk5CQ+1jFjIDKoMfoaOFp9tix6g9WB7duCQX4CBHOz4oVT5Q3CE8Mh4uFBtVcqQftm7eHiX4NhTk3bBAKeKamql/Y03h5AZ99JsR6PIWeTA+WRhJsN9IEZnefjZndZj75oqEh8NNPgrdUCmzZAnz5pdDi5jHKFeW48OCC1j0IUlC8c/Ad7L69u+pFLy8hZqpHD2H7+HF2SRuUCh7+114TfndweKLsRFhCGOREDl9HXzb6tBStNqQ+PPIhPJd5PtlqQVlRt6QEGDeObTd4d3eh3k01tTzCE8NhKDdEJ/tOzx6nwTzyfiRU00vMwEAwpCq9cmqnpAQYPFhwhwPCZ+UxIyopLwlxOXFad3PQk+mhn1s/lJSXPPvmN98IBQlbtBAuzDEx6hWXmCg06Fb2Zlu4sKojfCVfBn2JxUGL1atLTSTlJSE+J/7JF8eNEwrdAoKh/9136q0HRGlVFvScOcISa7t2z+y2c9JOvNH1DfXpUgMWhhZo17zds70QlWUE7t0Dhg0TvHQsIASwtRVa8FR3X3kQjo4tOjIvF6BtaLUh5WXjhZSCFMRkV3PxNzQUAoiVjSlLS9XzFHH0qPAUBwhfuB07hPitp/i83+cInhEs9KfSIjq16ARjPePqm7I6OwNHjlQ9QX33nXoazubmCjcHQ0MhFmXVqmp3O/fgHADtSbF/nANTD2DVmGr+34QIbWUA4W/Tpo0QZKsu8vKENkPXr9e4y8brG3EtRcKNiRuJgirg84cPvgn+pvodKBXCAc6fV29R2PfeEzzpOTnCvF5ez+yiJ9PDMM9hml9rrRr8nf0RnhgOBa3GePXyAvbuFWIMAeHzq+plcUqBtWuFFRYA+OILYTn+qTY8FYoKnEs8p5XXL9ZotSGlXBar1vsBCK7Y9u2F3z/7DOjeXfUFCX/9VfiQ19G+xtLIEj2ceqhWCwP05fro7tS97u726enAsmVVPdNUxe3bwsVvxw5he8AAwNGx2l3DE8OhL9PXquBZJfXK4BkxQigj0q2bsF2oomroCQlVxmzbtoIXbOjQandNL0zH/cz7WnlzkBEZ/Jz9av6uEAL884/wHSFE8NotXaqaOEOFomrcV18VMjureQBUEngnECHxIeLrkAD+zv7ILs7GnfQ71e8werTwt6moECrVT52qWkEFBcDixVWZ6TV8lwvLCjGtwzSM8hqlWj06iFYbUsrCnHXetAHBVT5y5KNASWRliSOisFAwnFJShO0NG4Tsjlqadt5Ov43FQYuRnJ8sjgaJsXr0ahycerD2nWxtBS/E4sXC9oULQnq1WP0Ts7OFfz09hQtf69Z1HjLIYxC+HvC10J9KyyguL0bPtT3xW/hvNe9kayucD7lcuHi3by8Yu2KzYgXw4YePqvvDxKTGXc8laq+XEBBu2pGpkcgprqH0ASGAUeXncetWYNEiID6++n0bS1GR4IH67jth29dXWP6uxfhecGwBfjyrmT0o68LfRXhAv5F6o/YdCRGSApSJNAqFeCVF0tKE1RSFQmjMHRoKrFlT6yHmhuZYOXolRnlzQ0pstNqQeqIwZ12MHVu1rp2QADg5CU97jUXpzn3wQHiK37VL2Lazq7rw1cCxqGP48vSXWlMR+Gla27aGjUk9Uuvt7B5lm+D334EPPqjKcmyKu/yzz4Q6MCUlQqbNusoioXUwpNUQfNRbIkG+ImOkZ4TMokycjjtdvwMUCuEG0aGyXUZeHnCnhif0usjLEwKWlUuGn30m1Ih6KhaqOsITwyEncnRz6Na4uSVOgEsAKOijZeVaef994e+mXBr/4gvgwIHGTVxeXrVUZGwsGFLVLOFVR2ZRJu5k3NGqchSP423jjayPsjCxXR01/mQyIYbs5ZeF7cBAYZlc+XdtCseOCZneyl6Mbm51tntJyktChUKkB1HOE2i1IQUIKcRze85t2EFGRkLl7X79hO3LlwUjKze3fsfPmlWVGejlJdxgZs+u9/ThD8LhZO70ZOkGLUJBFVhyZgl23dpV/4PWrxcKqxoaCkaUv7+QvVQfEhKEdH7l02CvXkKtpAYYY6kFqbiSfEWrL0T+zv44m3D2yeSMmjA3B5YvF5ZCAcHQbdNGaA0CCJmotXkPY2KE7xUgZKwuXw4cOiRsm5oKiRj1wFDPEMM8h2lt8GwPpx4gIEI9qfqgNHaKi4Ht24X4MkAwfPfvF4zWmsjNrXpQ+fRTIZtW+Z359dd6L1EpvYRKz422ISOyxpUP8PER7g3Kh7adO4E//6zfsYWFwKBBVUveU6YIYQk961/sdMi/Q7SqwLOkoJSq/adbt25Uo/j2W0oNDSktLBS2//yT0nHjqt7//HNKe/eu2v7kE0rnz2/0dB6/etAXtr3Q6OM1Ac9lnnT81vGNO7iggNLp0yn9919hOyeHUgcHSjduFLZjYynt14/SY8eE7fPnKdXXp/Tw4Ubr/eP8HxSLQWOyYho9htRZeWElxWLQqMyohh+clETpP/9Ubc+cSambW9X2jz9SOndu1ba/P6UBAVXb2dkNn1NH2H1rN43Ljmv4geXllObmCr9fuUIpQOnmzcL2zZuUjhpF6cWLwvbevcL7ly8L23fuULprF6VlZQ2e9vOTn1PZlzKaV5LXcM0aQnBsMB25aSTNKspq/CDjxlHao0fV9nvvUfrRR1Xb48dT+s47T26vXt2oqbKLsilZTOhXQV81TiuHAoigNdg0Eqogpjpupd1CmaKs8RkkixYJrQCU8VPFxU8Gpbu4CE8bCoXgXv2mhiybepCSL2QZvt397UaPoQn4O/vjSNQRUEob3qrAxKSqnQ4gnI/hw4XzAAjnSaGo8oh07izUQbKyarTe8AfhaGHaQqv7UwW4CPW8ziacRctmDSxBYW9ftYQBCEG2nR4r3REbWxUnCAi1qaytq7YtG14DSkEVkBGtd6pjfJvxjTtQLhc8h4DgLTx16lHVcRQXCzFoSg9Uly7CdUtZzd7bu2rfBhKRFIEOzTvAzMCscbo1gJKKEhy8dxDnEs9hmOewxg2yZ8+TqxyFhU8W9fT0FMoYKNn9WO2qBnL+wXlQUK31EjKnJgtLlT/q9kh5/+5Nx24Zq9Y5G8uZuDPU9FtTGhIXwlqKSmmS94MB3r9703FbxrGWoVLKK8rp5P8m06P3j7KWUi/WXFxD3X5xo8l5yaylqJSMwgy6KmIVjc2KZS2lXpSWl9L47HjWMlRKTnEOJYsJ/eLUF6yl1Iuvgr6iZDGh2UXc89tYUItHSvsf5yBk9IQlhNUv9oMxvV17I3thttZmISmpszSFhMgsysTdjLtaf07kMjm2TtiKIa2GsJZSL8ISwpBXmofmps3r3lmDySjMwJv738SRqCOspdQLfbk+XCy1q/r/01gYWqB98/b1S2SSAGGJYfCx89G66v9SQScMKX9nf6QVpiE6K7runSWAnkwPclnN5RG0gfbN28POxA5J+UmspdSJtrbrqYmU/JTqq5xLjNCEUAS4BGh9F3tPa0/YmthqxE17/939mHtoLgpKC1hLUTn+zv44l3iu+sKcEuND/w/xzcDGh5xwakdnDCkAkr8QlVWUIWBdAHbe3MlaisqRy+RI+jAJ8wLmsZZSJ33d+uLQtENaWSD1aU7Hnob9UnvJF1NML0zHnYw76OXSi7UUlUMIeZRRKXX23N6Df6/9q1WNimtigMcAdLLvhMwihv1a68mgloMaH2vHqROdMKQeFeaU+DLS5eTLCEsM04gnHDHQFK+buaE5hnsO14mbQ2f7zg1Lt2eEUp8uGFKAkAhwN+MuMgpFKuioIkLiQ9DLtZdOJAFMaT8Fp6efhq2JLWsptXI56TKCYoN05r7CAu3/tEO4YR+edhiL+y9mLaVWQuNDAQC9XHXj5nAn/Q781/kjOC6YtZQaKSkvwdenv665HYSWYWlkifbN2+NsorQNKWcLZ7zV7S2d6WKv9KpfSb7CVkgtpBWk6YyX8HGkbqAsO78ME7ZPAIF2L4GzRCcMKUAwTuxM7VjLqJXQhFC4W7nD0bz6Xm/aRnPT5ghPDJf0MtKlpEv4POjzuttBaBH+zv4IS5C2Z7SrQ1esHL1SJ7yEgFDcMn1+Oga1HMRaSo0ovYS9XXszVqI+PjjyAbqs6sJaRq2Exoeit2tvrY8lZInOGFIZhRn4IeQHXE+puYs8SyilCIkP0amLUDPjZmhj20bSy0ihCbrlJQSEZaSckhzcSrvFWkq1lFaU4lrKNa2uMv80BnKD+rVVYkhOSQ5cLV11xksIADbGNriWck2ycVIp+Sm4l3lP57yE6kZnDCkKioUnFuLAvUb2nlIxhWWF6OvWFyM8R7CWolYCnAMQlijd0hShCaFo2awl7M3q7vumLQxpNQR/jf1Lsv/niIcR6PRnJ+y7u4+1FLVyNOoont/2vGR7cL7S6RXE/S9OK5t614SywKWyLY7U0EUvIQt0xpCyNbGFt423ZL0fpgam2D5xO6Z2qF8/K23B38X/UZ0mqUEpRWh8qM49zTmaO2JGlxmS9YAoYwl1pRyFkozCDOy+vVuSXnWpPgipmh5OPSAncsmGJ4QmhMJQboiuDl1ZS9FqmmRIEUJ+JITcJoRcI4TsJoRYiaRLJfRx7YOQ+BBJxn7kldTSTFSL6efWD2Nbj0VpRSlrKc/wMO8h8kvzdc6QAoDY7Fhsub6FtYxqCU0Ihae1J1qYtWAtRa083sJHaoTEh6Dlby1xKekSaylqxczADN0cu+FM/BnWUqrlu0Hf4eKsizDUM2QtRatpqkfqGID2lNKOAO4C+LjpklRHX7e+yCrOQmRqJGspz+C3zg/T90xnLUPteNl4Ye+UvejQogNrKc/gZOGEnIU5eKXTK6ylqJ1tN7Zh6q6pSC9MZy3lCSilOJtwVieNW1dLVziYOUiyHl5IfAhismPgaunKWoraedv3bUz0mchaRrUYyA3Qrnk71jK0niYZUpTSo5RS5YJ9OADnpktSHX3d+sJAboA7GdJKZc8sysTNtJvwtmlck1BtQGo3bCX6cn2dyQx7HKX3Q7mMJhXuZd5DWmGaThpShBAEuARI0iMVmhCKNrZtJF9TSRW82vlVvNvzXdYynuHiw4v44MgHSM5PZi1F6xEzRuo1AIdEHE903CzdkP1RNib4TGAt5Ql0rbjg06y/vB52P9ohPieetZQnmLxjMtZeWstaBhO6O3WHodxQcjW+nC2ccWDqAYz2Hs1aChP6u/eHo7kjisqKWEt5hIIqEJoQit4uuhvQnFqQKrlac4fvH8Yv4b/AQG7AWorWU6chRQg5Tgi5Uc3PuMf2+QRAOYBNtYwzixASQQiJSEtLE0d9AyGESNK7EBofCj2ZHro7dWcthQmd7TsDAM7ESSfOIKMwA9sjtyOtgM1nlTVGekbo6dwTwfHSMqRM9E0w0mskHMwdWEthwpwecxDyWoikrmO30m4huzhbpzPDBv0zCHMPz2Ut4wlCE0LhY+cDa2Nr1lK0njoNKUrpYEpp+2p+9gIAIeRVAKMBTKO1pG5QSldTSn0ppb52duwKY55/cB69/uqF+5n3mWl4mpCEEHR16AoTfRPWUpjQsUVHWBhaSMr7oczC0aX6UU/Tz60friRfkVQD2mXnlulUcdSakFKWnL5cHzO7zkQ/936spTCjj2sfhCaESqY0hYIqdDaWkAVNzdobDuAjAGMppYXiSFIt5gbmOJtwVlI37Xd7vIv5AfNZy2CGXCZHb9fekvJ+BMUGwUjPSCcaFdfEnB5z8PCDhzA1MGUtBQDwIPcB5h6ei2NRx1hLYcqb+97EkH+HsJbxCG8bb6wesxruVu6spTCjr1tf5JfmS6aFz7WUa8gpyUEf1z6spegETY2RWg7AHMAxQsgVQsifImhSKcqASCkZUpPaTZJc3Ja66evaF7fTbyO1IJW1FABAUFwQ/J39daq44NM0N20uqbZKp+NOAxDihHQZMwMzhMSHSKJkCKUUkamRkiwpo06UBotUwhMScxNha2Kr898VddHUrD1PSqkLpbRz5c9bYglTFYQQ9HHtI5m6H+cSz0myHIO6Gd9mPNaOWQtDOft6JxWKCnjbeGNc63F176zlbLm+BfOPSsNbGhQbBCsjK3Rs0ZG1FKYEuASgpKJEEt6P+5n30X5le6y7tI61FKY4WTihZbOWkvGqj/YejdR5qXCxdGEtRSfQYy2ABX3d+mL37d1IzE2EswXbig3zjs1DaUUpzr0hzRYD6qK1bWu0tm3NWgYAYalx24RtrGVIgqspV/Hbud/w5YAvmcfwBcUGoY9rH8hlcqY6WKOM2zsde5r50nNQbBAA4Zqq66wft15SDed5k2L1oTMtYh5noMdAjPYezbyaeGFZIc4lnkN/t/5MdUiFuOw47Ly5k7UMSQVXs6afWz+UKcoQlsC2CGRWURYScxP5UgUAezN7tLVti5OxJ1lLwanYU7A3s9fpGnhK+rr1hae1J2sZuJx0GZ7LPBGeGM5ais6gk4ZUxxYdse/FfWhr15apjrCEMJQpyvjNoZK/r/yNif9NRE5xDlMdfdb3wUu7XmKqQSr0cu0FGZExjylsZtwMWR9lYVa3WUx1SIX3er6H0V5sa2lRSnEq9hQGuA/g3g8A5YpyrLu0Didj2Bq4QbFBiMqKgosFX9ZTFzppSCnJKMxgOn9QbBDkRK7TKfaP09etLygo05t2VlEWriRf4U/YlVgYWqCLfRcExQWxlgJDPUOYGZixliEJ3vJ9C+/0eIephrsZd5Gcn4wB7gOY6pAKciLH4tOLsTJiJVMdp2JPwcvaC04WTkx16BI6a0htuLIBtj/aMq2mfTruNLo5doOFoQUzDVLC30XIkjsefZyZhjPxZ0BBuZfwMYa2Ggo9mR7TzKwJ2yfg7yt/M5tfiqQXpuNW2i1m8ztbOCNwSqDOVpl/GkIIBrccjJMxJ1GhqGCioUJRgeC4YH79UjM6a0h1degKADgRfYKZhsAXA/H3uL+ZzS81jPSM0NetL47HsDOkeP2oZ/l24Lc48coJyAiby0VSXhJ23trJ3IMsNYZvHI7ZB2Yzm9/UwBRjWo/R2Srz1THYYzAyizKZZVReSb6CnJIc7iVUMzprSLVv3h4tTFswvWlbGVkxj9OSGoM9BuNm2k1m9aROxpzU+fpRT6OMf2HlkToRIzzsDPDgN4fHGeA+AGGJYSgsU38tZEopfgz9EbfTb6t9bikzqOUgAGDmVTfWN8brXV7nHik1o7OGlNINezz6OJMbxNpLa/Fz2M9qn1fqvNblNSR/mIzmps3VPjelFPMD5uMD/w/UPrfUmXd0HrqvYdML8mjUUdiZ2D3qycgRGOgxEKUVpY+anquTm2k3seD4AoTGh6p9biljb2aP9s3b417mPSbz+9j5YO3YtdxLqGZ01pACgMEtByO1IJVJ767l55dj3919ap9X6tiY2KCFWQsmcxNCMK3jNB7zUQ12Jna4lHQJSXlJap2XUoqjUUcxuOVgZkuLUqWPWx/oyfSYZIkdiToCQIif4zzJuTfOYe3YtWqft6S8BDdSb0iqD6OuoNNXphGeI7Bq9Cq1F1FLzk/G1ZSrGNZqmFrn1RQO3z+Mabumqf2CcDTqKO5lsHmSlDpDWgm93ZTLbOoityQXAS4BvMp8NZgZmKGnU0+1nxNAMKTa2rbllbOrgVXh2uC4YHRY2QFHo44ymV+X0WlDqoVZC8zqNgu2JrZqnVfZdJU/zVXPw7yH2Hx9MyLT1Nc6h1KKV3a/gi+CvlDbnJpEZ/vOsDWxxbFo9TYMtjSyxK7JuzC5/WS1zqspLB26FJue36TWOYvKihAcF8wfBGuAUoqJ/03Et8HfqnXeI1FHYCA3QG/X3mqdl6PjhhQApOSnYN2ldSgpL1HbnEeijvCYj1oY3HIwAPUGbF5PvY6UghRu3NaAjMgwyGMQjkUdU6unkGfq1U5P555qr6atfMAZ5skNqeoghCA5Pxl77uxR67xHoo6gt2tvmBqYqnVeDjekEJ4Yjjf2vaHWgM1yRTlGe4/mMR814GrpCm8bb7W6qJVzcUOqZqZ3no7/+f0PZYoytcxXVFYE51+c1f5kr2nsurULf1z4Q23z+Tr6InNBJgZ5DFLbnJrG0JZDcfHhRbVlHz/Me4gbqTe4l5AROn8nH9RyEAzkBth/d7/a5tw6YSvWjdXtbul1MbzVcJyKPaW21O4jUUfQvnl7STUdlRrDPYdjQa8FMJAbqGW+03GnUVxe/KjmG6d6dt/ejS+CvlBrEUhjfWPoy/XVNp+mMdp7NCgoDt07pJb5lA+C3JBig84bUmYGZhjgPgD776nHkCqrEJ7meW+q2hnXZhw6teiEh3kPVT5XYVkhQuNDMcJzhMrn0nRyinPUtuS6784+mOib8PpRdTDScyTSC9MR8TBC5XMl5CTAd7UvL3tQB53tO8PR3FFt95Xn2z6PwCmB6Niio1rm4zyJzhtSADDGewzuZtzF3Yy7Kp+rz/o+mL2fXTViTWGgx0CEvxGulvgPE30TJH6QiA/9P1T5XJrOT2d/wvCNw1Ueu0QpReDdQAxtNZQXR62Doa2GQkZkOHRf9d6PwDuBuJh0ETYmNiqfS5MhhGBO9zno5tBNLfNZGFpgTOsx/AGdEdyQAh7VDVJ1nNSD3Ac49+AcXC1dVTqPNpFfmq+WgqnWxtbM6ldpEmNaj0EFrVD5TftK8hUk5iZirPdYlc6jDdiY2KCnU08cuHdA5XPtubMHrW1ao41tG5XPpel83OdjLOy9UOXzhCeG49vgb5FbkqvyuTjVww0pAG5Wbkj6MAnTO09X6TzKApxjW/ObQ304Hn0cNv9ng0tJl1Q2R1lFGUZvHs1rr9QTX0df2JvZq7yYrEczD6wft54XR60no71Ho6isCEVlRSqbI6soC0GxQRjfZrzK5tA2isuLVd5GZ8OVDVgSskRtsYucZ+GGVCX2ZvYqn2Pvnb1o1awVfOx8VD6XNtDFvgvKFeUIvBOosjnOxJ/BgXsHmPQr00RkRIbRXqNx6N4hlFaUqmweKyMrTO88HXamdiqbQ5tY0GsBbrx9A8b6xiqb4+C9gyhXlHNDqgG8uPNFjNo8SmUlQxRUgcC7gRjmOYwvgTOEG1KVZBRmYOyWsdh2Y5tKxs8rycPJmJMY13ocX8euJzYmNghwCcDeO3tVNkfgnUAYyg0xpOUQlc2hbYxtPRZ5pXk4l3hOJeMn5SVh+fnlvIZUA9CT6QEQSquoCgdzB0ztMBU9nHqobA5tY6TnSERnReNK8hWVjH/x4UU8zHvIK/8zhhtSlVgbW+NqylX8c+0flc3x45Af8XKnl1U2vjYyoe0EXEu5phL3OKUUu2/vxuCWg3kRuwYwuOVgRL4diT5ufVQy/o6bO/DuoXeRVpimkvG1lR03d8DuRzuk5KeoZPyBHgOx6flNvP5dA3iu7XOQEzm2R25Xyfh77+yFnMgxymuUSsbn1A9RvhGEkHmEEEoIUW+vFREhhGByu8k4GnUUmUWZoo9vbmiO93q+x6uZN5BJ7SaBgGDrja2ijx2eGI74nHhMbsfbjzQEY31jlS5Pb43cio4tOvKA5gbibeON7OJs7Lm9R/Sx72feV0spEm3D1sQWg1sOxrbIbSpZ3ssuzsbgloN5FiVjmmxIEUJcAAwBEN90OWyZ0n4KyhXl2HVrl6jj5hTnYP3l9TyrohE4mDtg3dh1mNZhmuhjlynK0N+9P8a14W7xhpJWkIZpu6bhyP0joo4bnxOPswlnMaXdFFHH1QU6NO8AL2sv7Ly1U/SxPz35Kbqs6qLWop/awuR2kxGTHaOSpJnlI5fj4LSDoo/LaRhieKR+AbAAgPoacKmILvZd4GntiW2R4sZJ7bm9B68FvoabaTdFHVdXmNFlBrxsvEQft69bX5x69RQsDC1EH1vbsTKywpH7R7Dh6gZRx1UugfAmxQ2HEIKJPhNxMuYkkvOTRRs3ryQPgXcCMaHtBMhlctHG1RWeb/s8wl8PF71Cf0FpAQDwpVYJ0KQzQAgZC+ABpfSqSHqYQgjBB34fYID7AFHdsFtubIG7lTt6OvUUbUxdY//d/dhyfYto48XnxKtkCVdX0JfrY4LPBOy9s/fRBV0MYrJi0MOpB1o2aynamLrEy51eRgWtwObrm0Ubc8/tPSgqL8LUDlNFG1OXsDSyRE/nnqImGVUoKtBmRRt8cuIT0cbkNJ46DSlCyHFCyI1qfsYB+ATA5/WZiBAyixASQQiJSEuTbhDp7O6zsajPItE+9Im5iTgWfQxT20/l2XpN4I8Lf2DB8QWiLS18fOJjtPujHV+qaAIvtn8RhWWFomZVrhi1AkGvBok2nq7RxrYNfhzyo6g91/699i/cLN0Q4BIg2pi6RkZhBt7c9yaCYoNEGe9EzAkk5iaik30nUcbjNI06DSlK6WBKafunfwBEA/AAcJUQEgvAGcAlQki1BZkopasppb6UUl87O2nXhikpL8He23tF8Ur9dfkvKKgCr3d9XQRlusvrXV5HYm4iDt8/3OSxMosysfPmTr5U0UT6uPWBh5UH1lxaI8p4ylpeqqyFpAvMC5iHds3biTJWakEqTsWewozOM/iDYBMwNTDFjls7sDJipSjjrb64GjbGNrzsgURo9NIepfQ6pbQ5pdSdUuoOIBFAV0qpeIvzjNgWuQ3jt41HSHxIk8e6lnINg1sO5ksVTWRs67FoYdoCqy6uavJYG69tRElFCd7o+oYIynQXGZFhfsB8+Dn5NbmNT2FZIVx/ccWv4b+KI07HCUsIw1+X/2ryOM1NmyN2bizm9JgjgirdxUjPCK90fAW7b+1GWkHTVmSS85Ox985eTO88HYZ6hiIp5DQFHqVWDS+0fQEWhhai3LR3TNqBPZP3NF2UjqMv18drXV7DgXsHkJib2OhxKKVYfXE1fB19uVtcBGZ3n40lg5c0OeB1642tyCjKQKcW/JyIwdpLa/HuoXeRVZTV5LGcLJx4er0IvNH1DZQpyvD3lb+bNM6GKxtQrijHrG6zxBHGaTKiGVKVnql0scZjiamBKV7t9Cq2R25v0k07uzj70XicpjOz60y4WLggNju20WNcTLqIyLRIzOnOn7DFQkEVCLwT2OjyHpRSLA1bio4tOqK/e39xxeko7/Z8F4VlhU3ySm2+vhlD/h2C1IJUEZXpLu2at0N/9/5Ydn4ZyirKGj3Om75v4p/x/8DbxltEdZymwD1SNfCB/wdQUEWjlxouPrwIh6UOvBmuiHg080D03Gj0du3d6DF8HX1x8+2beLHDiyIq022uJl/FuK3jsCqicR7cw/cP42baTczzn8fjcESis31n9HXri9/P/96om7aCKvDdme+QnJ8MWxONrbMsOT7u/THGeo9FQVnjM12tjKx4hwyJwQ2pGnC3cseU9lMQlhjWqKDz/zv7fzCQG/CSByIjIzKUVpTiWsq1Bh+rbLLb1q4t75QuIl0cumBwy8FYGrYUxeXFDT7+9/O/w8ncideOEpl5/vMQlxPXqFpf++7sQ2RaJBb2WsjrFInI0FZDsWLUClgZWTX4WAVVYOJ/E/nDuQTh35BaWDlqJUJmhDT4KflS0iX8F/kf3vZ9G5ZGlipSp7u8Hvg6Bm4Y2KD4D0opRm0ehfcOvadCZbrLot6LkFKQ0iiv1Nqxa/HPc/9w41ZkRnuPxrBWwxrskVJQBb4K/goeVh7cuFURofGhDc5A3nx9M3bc3CFK3BtHXLghVQvmhuYghCCjMKPefaYopXj/yPuwMbHBwt4LVaxQN/nA7wNkFmXiy9Nf1vuYg/cO4nj0cXhZi18hnQP0d++PwS0HY/HpxfXOSlJQBSilcDR3xECPgSpWqHsQQnBo2iHM7j67QcdtvLYRl5Iu4ZuB30BPpqcidboLpRRzD8/FzH0zH5X8qIuC0gIsPL4Qvo6+mNhuoooVchoKN6TqoKyiDF1WdcE7B9+p1xLfrfRbCI0PxVf9v+LeKBXRxaELZnadieXnlyMyNbLO/YvLi/Hh0Q/hZe2FN33fVINC3YMQgt+G/wZrY2vEZMfU65g/LvyBfn/34xXmVQghBJRSbLy2ETFZ9TsvE3wm4M9Rf+LF9jyOUBUQQrB06FIk5ibi/0L/r17HLAlZggd5D/Db8N/4UqsE4WekDvTl+nin+zvYc3sPNl7bWOf+PnY+iJgVgZndZqpBne7yzcBvYGlkiVf2vPIo9qkmFp1YhDsZd7B85HK+fKRCfOx8cHfOXfRw6lHnvvcy7uGj4x/BRN8EzYyaqUGd7pJakIrZB2Zj1v5Ztdb7opSioLQAJvomeNP3TR74r0L6uffD1A5T8e2ZbxHxMKLWfW+m3cT3Id/j5Y4v8+ryEoUbUvVgXsA89HHtg7cOvFXjh76orAiH7h0CIGTMcJe4arEztcO6seugoArkleTVuF96YTo2XN2Ad7q/g6GthqpRoW4il8lRVlGGL4O+xN2Mu9Xuk12cjXFbx8FIzwhrx67lN2wV08KsBX4a8hOORx/Hpyc/rXG/X8N/RfuV7ZGQk6BGdbrL8hHLYW9mj+e3PV9r3FNb27ZYPWY1lo1YpkZ1nIZAxGzOW198fX1pRETtVrjUSM5Phv86f+SW5CJ4evATLRgyizIxYfsEnI47jdvv3IaXDY/DURelFaUwkBugoLQA+nL9Rx4nSikqaAX0ZHqIyYqBk4UT90apidjsWPRY0wOGeoYInBKILg5dHr2XWpCK4RuH43rqdRx7+RivG6UmKKV4a/9bWH1pNT7u/TG+HvD1o/ZIlFL8HPYz5h2bh+fbPo/tE7bz1klq4lLSJRyPPo75AfOfeaC4m3EXmUWZ8HP2Y6SO8ziEkIuUUt/q3uNuk3pib2aP4y8fx7dnvoWntScAIPBOIMISwrDm0hrkluRiw/gN3IhSMwZyA1BKMXXXVNxKu4XpnafDVN8UgXcD0d2xO74f/D08mnmwlqlTuFu549jLxzB6y2j0XNsT0zpOwyivUZjgMwEGcgPkleYhcEogN6LUCCEEK0atAAXFkpAlGN9mPHo49UDgnUB8d+Y7nHtwDhN8JuDf5/7lRpQa6erQFV0dugIAjkcfx+5bu9GhRQdcS7mG9VfWw8PKA9dnX+fnROJwj1QjKasog+2PtigoLcCQVkPw/aDvecsRhhy6dwifB33+aOnV1dIV8wPm8x5hDEktSMXioMX45+o/cLZwxu05twEI3x19uT5jdboJpRQRDyPQ3ak7AGDC9gm4mnIVC3stxGtdXuPLrAz57ORnWBq2FEXlRTDWM8YEnwn4duC3cLF0YS2Ng9o9UtyQaiQKqkByfjIsDC1gZmDGWg6nkqyiLJQpymBnYsdvChKhXFGOtII0OJg7sJbCeYq8kjyYG5qzlsGppLi8GJlFmbAxtuENiSUGX9pTATIig6O5I2sZnKdoZswzwKSGnkyPG1EShRtR0sJIz4jfVzQQnrXH4XA4HA6H00i4IcXhcDgcDofTSLghxeFwOBwOh9NIuCHF4XA4HA6H00i4IcXhcDgcDofTSJiUPyCEpAGIU/E0tgDSVTwHp+Hw8yI9+DmRJvy8SBN+XqSHOs6JG6XUrro3mBhS6oAQElFTzQcOO/h5kR78nEgTfl6kCT8v0oP1OeFLexwOh8PhcDiNhBtSHA6Hw+FwOI1Emw2p1awFcKqFnxfpwc+JNOHnRZrw8yI9mJ4TrY2R4nA4HA6Hw1E12uyR4nA4HA6Hw1EpWmlIEUKGE0LuEELuE0IWstajKxBCXAghpwghtwghkYSQuZWvWxNCjhFC7lX+2+yxYz6uPE93CCHD2KnXbgghckLIZULI/sptfk4YQwixIoTsIITcrvzO+PPzwh5CyPuV168bhJAthBAjfl7UCyHkL0JIKiHkxmOvNfgcEEK6EUKuV763jBBCVKFX6wwpQogcwAoAIwD4AHiREOLDVpXOUA7gQ0ppWwB+AN6p/NsvBHCCUuoF4ETlNirfmwKgHYDhAP6oPH8c8ZkL4NZj2/ycsOc3AIcppW0AdIJwfvh5YQghxAnAewB8KaXtAcgh/N35eVEvf0P4ez5OY87BSgCzAHhV/jw9pihonSEFoAeA+5TSaEppKYCtAMYx1qQTUEqTKKWXKn/Pg3BjcILw999QudsGAOMrfx8HYCultIRSGgPgPoTzxxERQogzgFEA1j72Mj8nDCGEWADoC2AdAFBKSyml2eDnRQroATAmhOgBMAHwEPy8qBVKaTCAzKdebtA5IIQ4ALCglIZRIRj8n8eOERVtNKScACQ8tp1Y+RpHjRBC3AF0AXAOQAtKaRIgGFsAmlfuxs+VevgVwAIAisde4+eELS0BpAFYX7nkupYQYgp+XphCKX0A4CcA8QCSAORQSo+Cnxcp0NBz4FT5+9Ovi442GlLVrYHy1EQ1QggxA7ATwP8opbm17VrNa/xciQghZDSAVErpxfoeUs1r/JyIjx6ArgBWUkq7AChA5VJFDfDzogYq427GAfAA4AjAlBDyUm2HVPMaPy/qpaZzoLZzo42GVCIAl8e2nSG4ZjlqgBCiD8GI2kQp3VX5ckqlmxWV/6ZWvs7PlerpBWAsISQWwjL3QELIRvBzwppEAImU0nOV2zsgGFb8vLBlMIAYSmkapbQMwC4AAeDnRQo09BwkVv7+9Ouio42G1AUAXoQQD0KIAYQgtEDGmnSCyoyIdQBuUUp/fuytQACvVv7+KoC9j70+hRBiSAjxgBAMeF5denUBSunHlFJnSqk7hO/CSUrpS+DnhCmU0mQACYSQ1pUvDQJwE/y8sCYegB8hxKTyejYIQqwnPy/sadA5qFz+yyOE+FWey1ceO0ZU9FQxKEsopeWEkDkAjkDIuPiLUhrJWJau0AvAywCuE0KuVL62CMD3ALYTQl6HcKGaCACU0khCyHYIN5ByAO9QSivUrlo34eeEPe8C2FT5wBcNYAaEh1t+XhhBKT1HCNkB4BKEv/NlCFWzzcDPi9oghGwB0B+ALSEkEcAXaNw1azaEDEBjAIcqf8TXyyubczgcDofD4TQObVza43A4HA6Hw1EL3JDicDgcDofDaSTckOJwOBwOh8NpJNyQ4nA4HA6Hw2kk3JDicDgcDofDaSTckOJwOBwOh8NpJNyQ4nA4HA6Hw2kk3JDicDgcDofDaST/D5FpZcy8zvmdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "\n", + "plt.plot(func(x), color='red', linestyle=':')\n", + "plt.plot(func(x)*5, color='green', linestyle='--')" + ] + }, + { + "cell_type": "markdown", + "id": "2e7a25d0", + "metadata": {}, + "source": [ + "### Задание\n", + "Постройте графики функции x^2+2x-1 и ее производной синего и оранжевого цвета соответственно" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edf87e95", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "6183ff76", + "metadata": {}, + "source": [ + "При помощи imshow можно смотреть на тепловые (высотные) карты двумерных данных. Например значения функций двух переменных или изображения." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "fd9bad72", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ8AAAD8CAYAAABpXiE9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAANmklEQVR4nO3db6ie9X3H8fdnMSr+Q12wpjFV24aBE7q6EOMcI2O1aCikD2TTB1VkcFAU2qIPpII+GmyDFeYUs0ClCkX3wFbDlq6zUqp9EKeGRI3WeXSCh4SGqYt/p0v33YNzuR2O98k553df577v2PcLbu7run6/+/p9/Rk+uf5qqgpJWq7fGncBko5NhoekJoaHpCaGh6QmhoekJoaHpCbHDfPjJGcC/wCcB7wG/GlVvTWg32vAO8CvgSNVtXGYcSWN37BHHrcCj1XVBuCxbn0hf1xVv2dwSJ8Ow4bHNuC+bvk+4OtD7k/SMSLDPGGa5D+r6vQ5629V1RkD+v078BZQwN9X1Y6j7HMKmAJYxarfP4nTmuv7tPtw/cnjLmHinfD6e+MuYaL9F+/xUX2Ylt8ues0jyU+Bswc03baMcS6tqgNJzgIeTfLLqnp8UMcuWHYAnJYz6+L8yTKG+c0yffPmcZcw8b747d3jLmGiPVmPNf920fCoqq8s1JbkV0nWVtXBJGuBQwvs40D3fSjJj4BNwMDwkHRsGPaax07g2m75WuCR+R2SnJzk1I+Xga8Czw85rqQxGzY8/hK4LMnLwGXdOkk+m2RX1+czwC+S7AP+FfinqvrnIceVNGZDPedRVW8An7go0Z2mbO2WXwW+NMw4kiaPT5hKamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhq0kt4JLk8yUtJppPcOqA9Se7s2p9NclEf40oan6HDI8kq4G7gCuAC4OokF8zrdgWwoftMAfcMO66k8erjyGMTMF1Vr1bVR8CDwLZ5fbYB99es3cDpSdb2MLakMekjPNYBr89Zn+m2LbePpGPIcT3sIwO2VUOf2Y7JFLOnNpzIScNVJmnF9HHkMQOsn7N+DnCgoQ8AVbWjqjZW1cbVnNBDeZJWQh/h8RSwIcn5SY4HrgJ2zuuzE7imu+uyGThcVQd7GFvSmAx92lJVR5LcBPwEWAXcW1X7k1zftW8HdgFbgWngfeC6YceVNF59XPOgqnYxGxBzt22fs1zAjX2MJWky+ISppCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCaGh6QmhoekJoaHpCa9hEeSy5O8lGQ6ya0D2rckOZxkb/e5vY9xJY3PccPuIMkq4G7gMmAGeCrJzqp6YV7XJ6rqa8OOJ2ky9HHksQmYrqpXq+oj4EFgWw/7lTTBhj7yANYBr89ZnwEuHtDvkiT7gAPALVW1f9DOkkwBUwCrzjiD6Ts291Dip9Mrf7Z93CVMvC9w/bhLmGgf/s3u5t/2ceSRAdtq3voe4Nyq+hLwd8DDC+2sqnZU1caq2rjqlJN7KE/SSugjPGaA9XPWz2H26OL/VNXbVfVut7wLWJ1kTQ9jSxqTPsLjKWBDkvOTHA9cBeyc2yHJ2UnSLW/qxn2jh7EljcnQ1zyq6kiSm4CfAKuAe6tqf5Lru/btwJXADUmOAB8AV1XV/FMbSceQPi6Yfnwqsmvetu1zlu8C7upjLEmTwSdMJTUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNTE8JDUxPCQ1MTwkNeklPJLcm+RQkucXaE+SO5NMJ3k2yUV9jCtpfPo68vg+cPlR2q8ANnSfKeCensaVNCa9hEdVPQ68eZQu24D7a9Zu4PQka/sYW9J4jOqaxzrg9TnrM922T0gyleTpJE//+t33RlKcpOUbVXhkwLYa1LGqdlTVxqrauOqUk1e4LEmtRhUeM8D6OevnAAdGNLakFTCq8NgJXNPdddkMHK6qgyMaW9IKOK6PnSR5ANgCrEkyA9wBrAaoqu3ALmArMA28D1zXx7iSxqeX8KiqqxdpL+DGPsaSNBl8wlRSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1ITw0NSE8NDUhPDQ1KTXsIjyb1JDiV5foH2LUkOJ9nbfW7vY1xJ49PL/+ga+D5wF3D/Ufo8UVVf62k8SWPWy5FHVT0OvNnHviQdG/o68liKS5LsAw4At1TV/kGdkkwBUwAnchJf/PbuEZZ4bPkC14+7hInnn5+je6Pea/7tqMJjD3BuVb2bZCvwMLBhUMeq2gHsADgtZ9aI6pO0TCO521JVb1fVu93yLmB1kjWjGFvSyhhJeCQ5O0m65U3duG+MYmxJK6OX05YkDwBbgDVJZoA7gNUAVbUduBK4IckR4APgqqrylEQ6hvUSHlV19SLtdzF7K1fSp4RPmEpqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGpieEhqYnhIamJ4SGoydHgkWZ/kZ0leTLI/yTcH9EmSO5NMJ3k2yUXDjitpvPr4H10fAW6uqj1JTgWeSfJoVb0wp88VwIbuczFwT/ct6Rg19JFHVR2sqj3d8jvAi8C6ed22AffXrN3A6UnWDju2pPHp9ZpHkvOALwNPzmtaB7w+Z32GTwaMpGNIH6ctACQ5BXgI+FZVvT2/ecBPaoH9TAFTACdyUl/lSepZL0ceSVYzGxw/qKofDugyA6yfs34OcGDQvqpqR1VtrKqNqzmhj/IkrYA+7rYE+B7wYlV9d4FuO4Frursum4HDVXVw2LEljU8fpy2XAt8Ankuyt9v2HeBzAFW1HdgFbAWmgfeB63oYV9IYDR0eVfULBl/TmNungBuHHUvS5PAJU0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNDA9JTQwPSU0MD0lNhg6PJOuT/CzJi0n2J/nmgD5bkhxOsrf73D7suJLG67ge9nEEuLmq9iQ5FXgmyaNV9cK8fk9U1dd6GE/SBBj6yKOqDlbVnm75HeBFYN2w+5U02VJV/e0sOQ94HLiwqt6es30L8BAwAxwAbqmq/QvsYwqY6lYvBJ7vrcDhrQH+Y9xFzGE9i5u0miatnt+pqlNbfthbeCQ5Bfg58BdV9cN5bacB/1NV7ybZCvxtVW1Ywj6frqqNvRTYA+s5ukmrByavpk9TPb3cbUmymtkjix/MDw6Aqnq7qt7tlncBq5Os6WNsSePRx92WAN8DXqyq7y7Q5+yuH0k2deO+MezYksanj7stlwLfAJ5Lsrfb9h3gcwBVtR24ErghyRHgA+CqWtr50o4e6uuT9RzdpNUDk1fTp6aeXi+YSvrN4ROmkpoYHpKaTEx4JDkzyaNJXu6+z1ig32tJnusec396Beq4PMlLSaaT3DqgPUnu7NqfTXJR3zU01DSyx/+T3JvkUJKBz9+MaX4Wq2mkr0cs8ZWNkc3Tir1CUlUT8QH+Gri1W74V+KsF+r0GrFmhGlYBrwCfB44H9gEXzOuzFfgxEGAz8OQKz8tSatoC/OOI/j39EXAR8PwC7SOdnyXWNLL56cZbC1zULZ8K/Ns4/xwtsZ5lz9HEHHkA24D7uuX7gK+PoYZNwHRVvVpVHwEPdnXNtQ24v2btBk5PsnbMNY1MVT0OvHmULqOen6XUNFK1tFc2RjZPS6xn2SYpPD5TVQdh9h8WOGuBfgX8S5JnukfZ+7QOeH3O+gyfnOSl9Bl1TQCXJNmX5MdJfncF61nMqOdnqcYyP90rG18GnpzXNJZ5Oko9sMw56uM5jyVL8lPg7AFNty1jN5dW1YEkZwGPJvll9zdPHzJg2/x72Uvp06eljLcHOLf+//H/h4FFH/9fIaOen6UYy/x0r2w8BHyr5rzr9XHzgJ+s6DwtUs+y52ikRx5V9ZWqunDA5xHgVx8ftnXfhxbYx4Hu+xDwI2YP6/syA6yfs34Osy/yLbdPnxYdrybr8f9Rz8+ixjE/i72ywYjnaSVeIZmk05adwLXd8rXAI/M7JDk5s//NEJKcDHyVft+6fQrYkOT8JMcDV3V1za/zmu5q+Wbg8MenWytk0ZoyWY//j3p+FjXq+enGOuorG4xwnpZST9McreRV52VeEf5t4DHg5e77zG77Z4Fd3fLnmb3bsA/YD9y2AnVsZfZq9Csf7x+4Hri+Ww5wd9f+HLBxBHOzWE03dfOxD9gN/MEK1vIAcBD4b2b/9vzzCZifxWoa2fx04/0hs6cgzwJ7u8/Wcc3TEutZ9hz5eLqkJpN02iLpGGJ4SGpieEhqYnhIamJ4SGpieEhqYnhIavK/Iv79kctBHkIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "arr = np.array([[0,1,0],[1,2,1],[0,1,0]])\n", + "plt.imshow(arr)" + ] + }, + { + "cell_type": "markdown", + "id": "420a9abe", + "metadata": {}, + "source": [ + "При помощи hist можно отобразить сравнительное графическое представление данных в виде гистограммы.\n", + "\n", + "Указывая количество бинов, мы можем регулировать промежутки на которых будут формироваться столбцы" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "f2c4d922", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ9UlEQVR4nO3dXYxcZ33H8e+vxlYLRFDwJiC/4Fz4goDiEK1MUFDjoBI5vNRFopItCggRWUGJBBWlMlwQld5QIaEKErAssAIqSVQJAlYxJBGlDSUK9ToNSUwSujJps3KEDaHhVY1M/73YYzrZzHqOvbO7zrPfjzSac56XM8954vz27LNnZlJVSJLa9XvLPQBJ0uIy6CWpcQa9JDXOoJekxhn0ktS45y33AIZZu3Ztbdq0abmHIUnPGYcPH/5JVU0Mqzsng37Tpk1MTU0t9zAk6TkjyX/OV+fSjSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWrcyKBPsiHJt5M8nORIkvcPaZMkn0oyneSBJJcO1G1P8mhXt2fcJyBJOr0+V/QngQ9W1SuBy4Drklw0p83VwObusRv4LECSVcBNXf1FwK4hfSVJi2hk0FfVE1V1X7f9C+BhYN2cZjuAL9ase4EXJ3k5sBWYrqqjVfU0cFvXVpK0RM7onbFJNgGvAb43p2od8PjA/kxXNqz8tfMcezezvw2wcePGMxnWM2za8/Wz7rsQj338zcvyupI0Su8/xiZ5IfBl4ANV9fO51UO61GnKn11Yta+qJqtqcmJi6Mc1SJLOQq8r+iSrmQ35L1XVV4Y0mQE2DOyvB44Ba+YplyQtkT533QT4PPBwVX1ynmYHgHd1d99cBjxVVU8Ah4DNSS5MsgbY2bWVJC2RPlf0lwPvBB5Mcn9X9hFgI0BV7QUOAm8CpoFfA+/p6k4muR64A1gF7K+qI+M8AUnS6Y0M+qr6V4avtQ+2KeC6eeoOMvuDQJK0DHxnrCQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcSO/eCTJfuAtwPGqevWQ+g8B7xg43iuBiap6MsljwC+A3wInq2pyXAOXJPXT54r+ZmD7fJVV9YmquqSqLgE+DPxLVT050OTKrt6Ql6RlMDLoq+pu4MlR7Tq7gFsXNCJJ0liNbY0+yfOZvfL/8kBxAXcmOZxk97heS5LU38g1+jPwVuC7c5ZtLq+qY0nOB+5K8kj3G8KzdD8IdgNs3LhxjMOSpJVtnHfd7GTOsk1VHeuejwO3A1vn61xV+6pqsqomJyYmxjgsSVrZxhL0SV4EXAF8baDsBUnOO7UNXAU8NI7XkyT11+f2yluBbcDaJDPADcBqgKra2zV7G3BnVf1qoOsFwO1JTr3OLVX1zfENXZLUx8igr6pdPdrczOxtmINlR4EtZzswSdJ4+M5YSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatzIoE+yP8nxJEO/7zXJtiRPJbm/e3x0oG57kkeTTCfZM86BS5L66XNFfzOwfUSb71TVJd3jYwBJVgE3AVcDFwG7kly0kMFKks7cyKCvqruBJ8/i2FuB6ao6WlVPA7cBO87iOJKkBRjXGv3rknw/yTeSvKorWwc8PtBmpisbKsnuJFNJpk6cODGmYUmSxhH09wGvqKotwKeBr3blGdK25jtIVe2rqsmqmpyYmBjDsCRJMIagr6qfV9Uvu+2DwOoka5m9gt8w0HQ9cGyhrydJOjMLDvokL0uSbntrd8yfAoeAzUkuTLIG2AkcWOjrSZLOzPNGNUhyK7ANWJtkBrgBWA1QVXuBtwPvS3IS+A2ws6oKOJnkeuAOYBWwv6qOLMpZSJLmNTLoq2rXiPobgRvnqTsIHDy7oUmSxsF3xkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjRgZ9kv1Jjid5aJ76dyR5oHvck2TLQN1jSR5Mcn+SqXEOXJLUT58r+puB7aep/xFwRVVdDPwNsG9O/ZVVdUlVTZ7dECVJC9HnO2PvTrLpNPX3DOzeC6wfw7gkSWMy7jX69wLfGNgv4M4kh5PsPl3HJLuTTCWZOnHixJiHJUkr18gr+r6SXMls0L9+oPjyqjqW5HzgriSPVNXdw/pX1T66ZZ/Jycka17gkaaUbyxV9kouBzwE7quqnp8qr6lj3fBy4Hdg6jteTJPW34KBPshH4CvDOqvrhQPkLkpx3ahu4Chh6544kafGMXLpJciuwDVibZAa4AVgNUFV7gY8CLwU+kwTgZHeHzQXA7V3Z84Bbquqbi3AOkqTT6HPXza4R9dcA1wwpPwpseXYPSdJS8p2xktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LiRQZ9kf5LjSYZ+32tmfSrJdJIHklw6ULc9yaNd3Z5xDlyS1E+fK/qbge2nqb8a2Nw9dgOfBUiyCripq78I2JXkooUMVpJ05kYGfVXdDTx5miY7gC/WrHuBFyd5ObAVmK6qo1X1NHBb11aStIRGfjl4D+uAxwf2Z7qyYeWvne8gSXYz+xsBGzduHMOwltamPV9fttd+7ONvXpbX9ZyXznKd70rV2n/ncfwxNkPK6jTlQ1XVvqqarKrJiYmJMQxLkgTjuaKfATYM7K8HjgFr5imXJC2hcVzRHwDe1d19cxnwVFU9ARwCNie5MMkaYGfXVpK0hEZe0Se5FdgGrE0yA9wArAaoqr3AQeBNwDTwa+A9Xd3JJNcDdwCrgP1VdWQRzkGSdBojg76qdo2oL+C6eeoOMvuDQJK0THxnrCQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDWuV9An2Z7k0STTSfYMqf9Qkvu7x0NJfpvkJV3dY0ke7Oqmxn0CkqTT6/OdsauAm4A3AjPAoSQHquoHp9pU1SeAT3Tt3wr8RVU9OXCYK6vqJ2MduSSplz5X9FuB6ao6WlVPA7cBO07Tfhdw6zgGJ0lauD5Bvw54fGB/pit7liTPB7YDXx4oLuDOJIeT7J7vRZLsTjKVZOrEiRM9hiVJ6qNP0GdIWc3T9q3Ad+cs21xeVZcCVwPXJfmjYR2ral9VTVbV5MTERI9hSZL66BP0M8CGgf31wLF52u5kzrJNVR3rno8DtzO7FCRJWiJ9gv4QsDnJhUnWMBvmB+Y2SvIi4ArgawNlL0hy3qlt4CrgoXEMXJLUz8i7bqrqZJLrgTuAVcD+qjqS5Nqufm/X9G3AnVX1q4HuFwC3Jzn1WrdU1TfHeQKSpNMbGfQAVXUQODinbO+c/ZuBm+eUHQW2LGiEkqQF8Z2xktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LheQZ9ke5JHk0wn2TOkfluSp5Lc3z0+2revJGlxjfwqwSSrgJuANwIzwKEkB6rqB3Oafqeq3nKWfSVJi6TPFf1WYLqqjlbV08BtwI6ex19IX0nSGPQJ+nXA4wP7M13ZXK9L8v0k30jyqjPsS5LdSaaSTJ04caLHsCRJffQJ+gwpqzn79wGvqKotwKeBr55B39nCqn1VNVlVkxMTEz2GJUnqo0/QzwAbBvbXA8cGG1TVz6vql932QWB1krV9+kqSFlefoD8EbE5yYZI1wE7gwGCDJC9Lkm57a3fcn/bpK0laXCPvuqmqk0muB+4AVgH7q+pIkmu7+r3A24H3JTkJ/AbYWVUFDO27SOciSRpiZNDD75ZjDs4p2zuwfSNwY9++kqSl4ztjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXG9gj7J9iSPJplOsmdI/TuSPNA97kmyZaDusSQPJrk/ydQ4By9JGm3kVwkmWQXcBLwRmAEOJTlQVT8YaPYj4Iqq+lmSq4F9wGsH6q+sqp+McdySpJ76XNFvBaar6mhVPQ3cBuwYbFBV91TVz7rde4H14x2mJOls9Qn6dcDjA/szXdl83gt8Y2C/gDuTHE6ye75OSXYnmUoydeLEiR7DkiT1MXLpBsiQshraMLmS2aB//UDx5VV1LMn5wF1JHqmqu591wKp9zC75MDk5OfT4kqQz1+eKfgbYMLC/Hjg2t1GSi4HPATuq6qenyqvqWPd8HLid2aUgSdIS6RP0h4DNSS5MsgbYCRwYbJBkI/AV4J1V9cOB8hckOe/UNnAV8NC4Bi9JGm3k0k1VnUxyPXAHsArYX1VHklzb1e8FPgq8FPhMEoCTVTUJXADc3pU9D7ilqr65KGciSRqqzxo9VXUQODinbO/A9jXANUP6HQW2zC2XJC0d3xkrSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjesV9Em2J3k0yXSSPUPqk+RTXf0DSS7t21eStLhGBn2SVcBNwNXARcCuJBfNaXY1sLl77AY+ewZ9JUmLqM8V/VZguqqOVtXTwG3AjjltdgBfrFn3Ai9O8vKefSVJi6jPl4OvAx4f2J8BXtujzbqefQFIspvZ3wYAfpnk0R5ja8Fa4CcLOUD+dkwjOff9bq5W0DkDZ3y+C/43tUKcc/O0wH/Xr5ivok/QZ0hZ9WzTp+9sYdU+YF+P8TQlyVRVTS73OJ4LnKt+nKd+VtI89Qn6GWDDwP564FjPNmt69JUkLaI+a/SHgM1JLkyyBtgJHJjT5gDwru7um8uAp6rqiZ59JUmLaOQVfVWdTHI9cAewCthfVUeSXNvV7wUOAm8CpoFfA+85Xd9FOZPnrhW3XLUAzlU/zlM/K2aeUjV0yVyS1AjfGStJjTPoJalxBv0SSrI/yfEkDw2UvSTJXUn+o3v+w+Uc47kgyYYk307ycJIjSd7flTtXA5L8fpJ/S/L9bp7+uit3noZIsirJvyf5x25/xcyTQb+0bga2zynbA3yrqjYD3+r2V7qTwAer6pXAZcB13UdnOFfP9D/AG6pqC3AJsL276815Gu79wMMD+ytmngz6JVRVdwNPzineAXyh2/4C8KdLOaZzUVU9UVX3ddu/YPZ/znU4V8/QfeTIL7vd1d2jcJ6eJcl64M3A5waKV8w8GfTL74LuPQd0z+cv83jOKUk2Aa8Bvodz9SzdcsT9wHHgrqpynob7O+CvgP8dKFsx82TQ65yV5IXAl4EPVNXPl3s856Kq+m1VXcLsu863Jnn1Mg/pnJPkLcDxqjq83GNZLgb98vtx90mfdM/Hl3k854Qkq5kN+S9V1Ve6YudqHlX138A/M/s3IOfpmS4H/iTJY8x+gu4bkvw9K2ieDPrldwB4d7f9buBryziWc0KSAJ8HHq6qTw5UOVcDkkwkeXG3/QfAHwOP4Dw9Q1V9uKrWV9UmZj+G5Z+q6s9ZQfPkO2OXUJJbgW3Mfjzqj4EbgK8C/wBsBP4L+LOqmvsH2xUlyeuB7wAP8v9rqh9hdp3eueokuZjZPyKuYvai7R+q6mNJXorzNFSSbcBfVtVbVtI8GfSS1DiXbiSpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatz/AXhVSugcd0FYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "data = np.array([10,4,26,17,8,45])\n", + "\n", + "plt.hist(data, bins=10)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "913b220c", + "metadata": {}, + "source": [ + "## Pandas" + ] + }, + { + "cell_type": "markdown", + "id": "af08b78f", + "metadata": {}, + "source": [ + "Pandas позволяет обрабатывать и анализировать данные. Можно провести аналогию с Excel.\n", + "В данном разделе рассмотрим основные возможности (т.к. библиотека крайне объемная и всю документацию будет физически невозможно сюда уместить)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7ebddb89", + "metadata": {}, + "outputs": [], + "source": [ + "# Импортируем библотеку pandas и дадим ей сокращенное общепринятое имя pd \n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "id": "e4199517", + "metadata": {}, + "source": [ + "Pandas позволяет считывать табличные данные из файлов в форматах .csv, .xml, .xlsx, .json и т.д.\n", + "\n", + "Скачаем для примера классический датасет с информацией о пассажирах титаника.\n", + "\n", + "Линк на датасет: https://github.com/datasciencedojo/datasets/blob/master/titanic.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "bbf38d57", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "Загрузим данный датасет. \n", + "т.к. он в формате .csv то воспользуемся функцией read_csv() \n", + "в которой укажем относительный путь к этому файлу \n", + "\"\"\"\n", + "df = pd.read_csv('lab_3_titanic.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "268d6ec7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
5603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
6701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "5 6 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "5 Moran, Mr. James male NaN 0 \n", + "6 McCarthy, Mr. Timothy J male 54.0 0 \n", + "7 Palsson, Master. Gosta Leonard male 2.0 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "5 0 330877 8.4583 NaN Q \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# посмотрим первые 10 записей\n", + "df[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "044a069c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
5603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
6701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
7803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "5 6 0 3 \n", + "6 7 0 1 \n", + "7 8 0 3 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "5 Moran, Mr. James male NaN 0 \n", + "6 McCarthy, Mr. Timothy J male 54.0 0 \n", + "7 Palsson, Master. Gosta Leonard male 2.0 3 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S \n", + "5 0 330877 8.4583 NaN Q \n", + "6 0 17463 51.8625 E46 S \n", + "7 1 349909 21.0750 NaN S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C " + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# то же самое можно сделать и так\n", + "df.head(10)" + ] + }, + { + "cell_type": "markdown", + "id": "09d489ac", + "metadata": {}, + "source": [ + "### Задание\n", + "Выведите последние 10 строк таблицы" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "beb0df55", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "ca5614f8", + "metadata": {}, + "source": [ + "Как видим, в таблице имеются столбцы, означающие некоторые признаки:\n", + "- PassengerId: уникальный идентификатор пассажира в данном наборе данных\n", + "- Survived: 0 - погиб, 1 - выжил\n", + "- Pclass: класс обслуживания пассажира\n", + "- Name: ФИО пассажира (как был записан в документах)\n", + "- Sex: пол пассажира\n", + "- Age: возраст пассажира\n", + "- SibSp: сколько братьев/сестер или супругов на борту\n", + "- Parch: сколько детей/родителей на борту\n", + "- Ticket: номер билета\n", + "- Fare: пассажирский тариф\n", + "- Cabin: номер каюты\n", + "- Embarked: порт погрузки. C - Cherbourg, Q - Queenstown, S - Southampton" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "14180f18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['PassengerId',\n", + " 'Survived',\n", + " 'Pclass',\n", + " 'Name',\n", + " 'Sex',\n", + " 'Age',\n", + " 'SibSp',\n", + " 'Parch',\n", + " 'Ticket',\n", + " 'Fare',\n", + " 'Cabin',\n", + " 'Embarked']" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Получить список столбцов можно при помощи следующей функции\n", + "df.columns.to_list()" + ] + }, + { + "cell_type": "markdown", + "id": "0701d6db", + "metadata": {}, + "source": [ + "Краткую статистику по всем данным можно получить при помощи метода describe().\n", + "\n", + "Она будет посчитана только для тех признаков, которые представлены численно." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d0cde577", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "e9c1c6b5", + "metadata": {}, + "source": [ + "Информацию по типам данных и количеству пропусков можно посмотреть при помощи info" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "964c9588", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 891 entries, 0 to 890\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 PassengerId 891 non-null int64 \n", + " 1 Survived 891 non-null int64 \n", + " 2 Pclass 891 non-null int64 \n", + " 3 Name 891 non-null object \n", + " 4 Sex 891 non-null object \n", + " 5 Age 714 non-null float64\n", + " 6 SibSp 891 non-null int64 \n", + " 7 Parch 891 non-null int64 \n", + " 8 Ticket 891 non-null object \n", + " 9 Fare 891 non-null float64\n", + " 10 Cabin 204 non-null object \n", + " 11 Embarked 889 non-null object \n", + "dtypes: float64(2), int64(5), object(5)\n", + "memory usage: 83.7+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "id": "13a039cc", + "metadata": {}, + "source": [ + "Можно применять различные встроенные методы к определенным признакам, обращаясь двумя равнозначными способами:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "375462f9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3838383838383838" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.Survived.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "a7fbc32b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3838383838383838" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Survived'].mean()" + ] + }, + { + "cell_type": "markdown", + "id": "b33c70db", + "metadata": {}, + "source": [ + "### Задание\n", + "Выведите максимальный и минимальный возраст пассажиров" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ef929a7", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "bd46e44e", + "metadata": {}, + "source": [ + "### Задание\n", + "Воспользуйтесь встроенным методом value_counts для признака Pclass." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b38010e0", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "858da916", + "metadata": {}, + "source": [ + "Для получения конкретной строки можно использовать индексацию:" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "890e3a69", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PassengerId 6\n", + "Survived 0\n", + "Pclass 3\n", + "Name Moran, Mr. James\n", + "Sex male\n", + "Age NaN\n", + "SibSp 0\n", + "Parch 0\n", + "Ticket 330877\n", + "Fare 8.4583\n", + "Cabin NaN\n", + "Embarked Q\n", + "Name: 5, dtype: object" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.iloc[5]" + ] + }, + { + "cell_type": "markdown", + "id": "6d365deb", + "metadata": {}, + "source": [ + "### Задание\n", + "Выведите номер билета у 120-го пассажира " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5c8bea19", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "d024a508", + "metadata": {}, + "source": [ + "Возможно применение фильтрации для данных по какому-либо условию:" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "a9f9500d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
6701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
111211Bonnell, Miss. Elizabethfemale58.00011378326.5500C103S
151612Hewlett, Mrs. (Mary D Kingcome)female55.00024870616.0000NaNS
333402Wheadon, Mr. Edward Hmale66.000C.A. 2457910.5000NaNS
545501Ostby, Mr. Engelhart Corneliusmale65.00111350961.9792B30C
.......................................
82082111Hays, Mrs. Charles Melville (Clara Jennings Gr...female52.0111274993.5000B69S
82983011Stone, Mrs. George Nelson (Martha Evelyn)female62.00011357280.0000B28NaN
85185203Svensson, Mr. Johanmale74.0003470607.7750NaNS
85785811Daly, Mr. Peter Denismale51.00011305526.5500E17S
87988011Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)female56.0011176783.1583C50C
\n", + "

64 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "6 7 0 1 \n", + "11 12 1 1 \n", + "15 16 1 2 \n", + "33 34 0 2 \n", + "54 55 0 1 \n", + ".. ... ... ... \n", + "820 821 1 1 \n", + "829 830 1 1 \n", + "851 852 0 3 \n", + "857 858 1 1 \n", + "879 880 1 1 \n", + "\n", + " Name Sex Age SibSp \\\n", + "6 McCarthy, Mr. Timothy J male 54.0 0 \n", + "11 Bonnell, Miss. Elizabeth female 58.0 0 \n", + "15 Hewlett, Mrs. (Mary D Kingcome) female 55.0 0 \n", + "33 Wheadon, Mr. Edward H male 66.0 0 \n", + "54 Ostby, Mr. Engelhart Cornelius male 65.0 0 \n", + ".. ... ... ... ... \n", + "820 Hays, Mrs. Charles Melville (Clara Jennings Gr... female 52.0 1 \n", + "829 Stone, Mrs. George Nelson (Martha Evelyn) female 62.0 0 \n", + "851 Svensson, Mr. Johan male 74.0 0 \n", + "857 Daly, Mr. Peter Denis male 51.0 0 \n", + "879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "6 0 17463 51.8625 E46 S \n", + "11 0 113783 26.5500 C103 S \n", + "15 0 248706 16.0000 NaN S \n", + "33 0 C.A. 24579 10.5000 NaN S \n", + "54 1 113509 61.9792 B30 C \n", + ".. ... ... ... ... ... \n", + "820 1 12749 93.5000 B69 S \n", + "829 0 113572 80.0000 B28 NaN \n", + "851 0 347060 7.7750 NaN S \n", + "857 0 113055 26.5500 E17 S \n", + "879 1 11767 83.1583 C50 C \n", + "\n", + "[64 rows x 12 columns]" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# посмотрим все данные пассажиров, которые старше 50\n", + "df[df.Age > 50]" + ] + }, + { + "cell_type": "markdown", + "id": "fd091601", + "metadata": {}, + "source": [ + "### Задание\n", + "Выведите имена всех мужчин в виде списка" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b52fd60b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "c2a8a119", + "metadata": {}, + "source": [ + "Можно использовать встроенные графики для отображения данных" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "d1066e4c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD5CAYAAADcDXXiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAATvElEQVR4nO3df4xV533n8fcnOHFS0wS8jkcsWIVIKFt7rST1iG1kKRpKW7N1VPyPV0RuRCqv2D+83qzWUgX9Y6v+geRdyVUry14JmbRUpplFcSxQYiWxqGe7kVyTkDgl2GFNY9ZMIdDGP9rJRo5wv/vHHHZv8QxzuXOHmXn0fkmje85zn/Oc53sRnzk8995DqgpJUlves9gTkCQNn+EuSQ0y3CWpQYa7JDXIcJekBhnuktSg6+bqkOSjwH/vafoI8J+BP+3a1wOngX9TVW90x+wG7gfeAf5DVX39Sue46aabav369Vc/+85PfvITbrjhhoGPXypaqQOsZSlqpQ6wlkuOHTv2d1X14RmfrKq+f4AVwI+AXwD+K7Cra98F/Jdu+1bge8D1wAbgr4EVVxr3jjvuqPl47rnn5nX8UtFKHVXWshS1UkeVtVwCfLtmydWrXZbZAvx1Vf1vYBuwv2vfD9zTbW8Dxqvq7ap6FTgFbLrK80iS5uFqw3078MVue6SqzgF0jzd37WuBMz3HTHZtkqRrJNXn7QeSvA84C9xWVeeTvFlVq3qef6OqVid5DHi+qp7s2vcBz1TVU5eNtxPYCTAyMnLH+Pj4wEVMTU2xcuXKgY9fKlqpA6xlKWqlDrCWSzZv3nysqkZnfHK29ZrLf5hebvlGz/5JYE23vQY42W3vBnb39Ps68Mkrje2a+7RW6qiylqWolTqqrOUShrTm/hn+/5IMwGFgR7e9AzjU0749yfVJNgAbgaNXcR5J0jzN+VFIgCQ/B/wa8O96mh8GDia5H3gNuBegqk4kOQi8BFwEHqiqd4Y6a0nSFfUV7lX1f4B/dlnbj5n+9MxM/fcAe+Y9O0nSQPyGqiQ1yHCXpAb1tSyz1B3/m7f43K6vXvPznn747mt+Tknqh1fuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoP6Cvckq5J8KckPkryc5JNJbkzybJJXusfVPf13JzmV5GSSuxZu+pKkmfR75f5HwNeq6l8AHwNeBnYBR6pqI3Ck2yfJrcB24DZgK/B4khXDnrgkaXZzhnuSDwKfAvYBVNXPqupNYBuwv+u2H7in294GjFfV21X1KnAK2DTcaUuSrqSfK/ePAH8L/HGS7yZ5IskNwEhVnQPoHm/u+q8FzvQcP9m1SZKukVTVlTsko8BfAndW1QtJ/gj4e+DBqlrV0++Nqlqd5DHg+ap6smvfBzxTVU9dNu5OYCfAyMjIHePj4wMXceH1tzj/04EPH9jtaz801PGmpqZYuXLlUMdcLNay9LRSB1jLJZs3bz5WVaMzPXddH8dPApNV9UK3/yWm19fPJ1lTVeeSrAEu9PS/pef4dcDZywetqr3AXoDR0dEaGxvrp5YZPXrgEI8c76eU4Tp939hQx5uYmGA+r8NSYi1LTyt1gLX0Y85lmar6EXAmyUe7pi3AS8BhYEfXtgM41G0fBrYnuT7JBmAjcHSos5YkXVG/l7sPAgeSvA/4IfDbTP9iOJjkfuA14F6AqjqR5CDTvwAuAg9U1TtDn7kkaVZ9hXtVvQjMtK6zZZb+e4A9g09LkjQffkNVkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUF9hXuS00mOJ3kxybe7thuTPJvkle5xdU//3UlOJTmZ5K6FmrwkaWZXc+W+uao+XlWj3f4u4EhVbQSOdPskuRXYDtwGbAUeT7JiiHOWJM1hPssy24D93fZ+4J6e9vGqeruqXgVOAZvmcR5J0lXqN9wL+EaSY0l2dm0jVXUOoHu8uWtfC5zpOXaya5MkXSOpqrk7Jf+8qs4muRl4FngQOFxVq3r6vFFVq5M8BjxfVU927fuAZ6rqqcvG3AnsBBgZGbljfHx84CIuvP4W53868OEDu33th4Y63tTUFCtXrhzqmIvFWpaeVuoAa7lk8+bNx3qWyv+J6/oZoKrOdo8XkjzN9DLL+SRrqupckjXAha77JHBLz+HrgLMzjLkX2AswOjpaY2NjfZbzbo8eOMQjx/sqZahO3zc21PEmJiaYz+uwlFjL0tNKHWAt/ZhzWSbJDUl+/tI28OvA94HDwI6u2w7gULd9GNie5PokG4CNwNFhT1ySNLt+LndHgKeTXOr/Z1X1tSTfAg4muR94DbgXoKpOJDkIvARcBB6oqncWZPaSpBnNGe5V9UPgYzO0/xjYMssxe4A9856dJGkgfkNVkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1qO9wT7IiyXeTfKXbvzHJs0le6R5X9/TdneRUkpNJ7lqIiUuSZnc1V+6fB17u2d8FHKmqjcCRbp8ktwLbgduArcDjSVYMZ7qSpH70Fe5J1gF3A0/0NG8D9nfb+4F7etrHq+rtqnoVOAVsGspsJUl96ffK/Q+B3wH+sadtpKrOAXSPN3fta4EzPf0muzZJ0jVy3VwdknwauFBVx5KM9TFmZmirGcbdCewEGBkZYWJioo+hZzbyAXjo9osDHz+o+cx5JlNTU0Mfc7FYy9LTSh1gLf2YM9yBO4HfTPIbwPuBDyZ5EjifZE1VnUuyBrjQ9Z8Ebuk5fh1w9vJBq2ovsBdgdHS0xsbGBi7i0QOHeOR4P6UM1+n7xoY63sTEBPN5HZYSa1l6WqkDrKUfcy7LVNXuqlpXVeuZfqP0z6vqt4DDwI6u2w7gULd9GNie5PokG4CNwNGhz1ySNKv5XO4+DBxMcj/wGnAvQFWdSHIQeAm4CDxQVe/Me6aSpL5dVbhX1QQw0W3/GNgyS789wJ55zk2SNCC/oSpJDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoDnDPcn7kxxN8r0kJ5L8ftd+Y5Jnk7zSPa7uOWZ3klNJTia5ayELkCS9Wz9X7m8Dv1JVHwM+DmxN8svALuBIVW0EjnT7JLkV2A7cBmwFHk+yYgHmLkmaxZzhXtOmut33dj8FbAP2d+37gXu67W3AeFW9XVWvAqeATcOctCTpyvpac0+yIsmLwAXg2ap6ARipqnMA3ePNXfe1wJmewye7NknSNZKq6r9zsgp4GngQ+GZVrep57o2qWp3kMeD5qnqya98HPFNVT1021k5gJ8DIyMgd4+PjAxdx4fW3OP/TgQ8f2O1rPzTU8aampli5cuVQx1ws1rL0tFIHWMslmzdvPlZVozM9d93VDFRVbyaZYHot/XySNVV1Lskapq/qYfpK/Zaew9YBZ2cYay+wF2B0dLTGxsauZir/xKMHDvHI8asqZShO3zc21PEmJiaYz+uwlFjL0tNKHWAt/ejn0zIf7q7YSfIB4FeBHwCHgR1dtx3AoW77MLA9yfVJNgAbgaNDnrck6Qr6udxdA+zvPvHyHuBgVX0lyfPAwST3A68B9wJU1YkkB4GXgIvAA1X1zsJMX5I0kznDvar+CvjEDO0/BrbMcsweYM+8ZydJGojfUJWkBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ2aM9yT3JLkuSQvJzmR5PNd+41Jnk3ySve4uueY3UlOJTmZ5K6FLECS9G79XLlfBB6qql8Efhl4IMmtwC7gSFVtBI50+3TPbQduA7YCjydZsRCTlyTNbM5wr6pzVfWdbvsfgJeBtcA2YH/XbT9wT7e9DRivqrer6lXgFLBpyPOWJF3BVa25J1kPfAJ4ARipqnMw/QsAuLnrthY403PYZNcmSbpGUlX9dUxWAv8D2FNVX07yZlWt6nn+japaneQx4PmqerJr3wc8U1VPXTbeTmAnwMjIyB3j4+MDF3Hh9bc4/9OBDx/Y7Ws/NNTxpqamWLly5VDHXCzWsvS0UgdYyyWbN28+VlWjMz13XT8DJHkv8BRwoKq+3DWfT7Kmqs4lWQNc6NongVt6Dl8HnL18zKraC+wFGB0drbGxsX6mMqNHDxzikeN9lTJUp+8bG+p4ExMTzOd1WEqsZelppQ6wln7082mZAPuAl6vqD3qeOgzs6LZ3AId62rcnuT7JBmAjcHR4U5YkzaWfy907gc8Cx5O82LX9LvAwcDDJ/cBrwL0AVXUiyUHgJaY/afNAVb0z7IlLkmY3Z7hX1TeBzPL0llmO2QPsmce8JEnz4DdUJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoDn/g2zNbv2urw51vIduv8jn+hjz9MN3D/W8ktoz55V7ki8kuZDk+z1tNyZ5Nskr3ePqnud2JzmV5GSSuxZq4pKk2fWzLPMnwNbL2nYBR6pqI3Ck2yfJrcB24LbumMeTrBjabCVJfZkz3KvqL4DXL2veBuzvtvcD9/S0j1fV21X1KnAK2DScqUqS+jXoG6ojVXUOoHu8uWtfC5zp6TfZtUmSrqFhv6GaGdpqxo7JTmAnwMjICBMTEwOfdOQD029GLnf91jGf1+pamZqaWhbz7EcrtbRSB1hLPwYN9/NJ1lTVuSRrgAtd+yRwS0+/dcDZmQaoqr3AXoDR0dEaGxsbcCrw6IFDPHJ8+X/w56HbL/ZVx+n7xhZ+MvM0MTHBfP5Ml5JWammlDrCWfgy6LHMY2NFt7wAO9bRvT3J9kg3ARuDo/KYoSbpac14mJvkiMAbclGQS+D3gYeBgkvuB14B7AarqRJKDwEvAReCBqnpngeYuSZrFnOFeVZ+Z5akts/TfA+yZz6QkSfPj7QckqUHL/11IXVP93nKh31sp9MtbLkhXxyt3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1aMHCPcnWJCeTnEqya6HOI0l6twUJ9yQrgMeAfw3cCnwmya0LcS5J0rtdt0DjbgJOVdUPAZKMA9uAlxbofNKCOf43b/G5XV+95uc9/fDd1/yci219n6/zQ7dfHOqfSYuv9UKF+1rgTM/+JPCvFuhcUpP6Dbp+XU0gthh2VzLs1/pq/MnWGxZk3FTV8AdN7gXuqqp/2+1/FthUVQ/29NkJ7Ox2PwqcnMcpbwL+bh7HLxWt1AHWshS1UgdYyyW/UFUfnumJhbpynwRu6dlfB5zt7VBVe4G9wzhZkm9X1egwxlpMrdQB1rIUtVIHWEs/FurTMt8CNibZkOR9wHbg8AKdS5J0mQW5cq+qi0n+PfB1YAXwhao6sRDnkiS920Ity1BVzwDPLNT4lxnK8s4S0EodYC1LUSt1gLXMaUHeUJUkLS5vPyBJDVrW4d7KLQ6SfCHJhSTfX+y5zFeSW5I8l+TlJCeSfH6x5zSIJO9PcjTJ97o6fn+x5zRfSVYk+W6Sryz2XOYjyekkx5O8mOTbiz2fQSVZleRLSX7Q/X355FDHX67LMt0tDv4X8GtMf/TyW8BnqmrZfQs2yaeAKeBPq+pfLvZ85iPJGmBNVX0nyc8Dx4B7ltufS5IAN1TVVJL3At8EPl9Vf7nIUxtYkv8EjAIfrKpPL/Z8BpXkNDBaVcv6c+5J9gP/s6qe6D5V+HNV9eawxl/OV+7/7xYHVfUz4NItDpadqvoL4PXFnscwVNW5qvpOt/0PwMtMf2N5WalpU93ue7uf5XklBCRZB9wNPLHYcxEk+SDwKWAfQFX9bJjBDss73Ge6xcGyC5GWJVkPfAJ4YZGnMpBuGeNF4ALwbFUtyzo6fwj8DvCPizyPYSjgG0mOdd90X44+Avwt8MfdUtkTSYZ6H4LlHO6ZoW3ZXlm1JslK4CngP1bV3y/2fAZRVe9U1ceZ/ob1piTLcsksyaeBC1V1bLHnMiR3VtUvMX3X2Qe6Zc3l5jrgl4D/VlWfAH4CDPV9w+Uc7nPe4kCLo1ujfgo4UFVfXuz5zFf3z+UJYOvizmRgdwK/2a1VjwO/kuTJxZ3S4KrqbPd4AXia6SXa5WYSmOz51+CXmA77oVnO4e4tDpag7o3IfcDLVfUHiz2fQSX5cJJV3fYHgF8FfrCokxpQVe2uqnVVtZ7pvyd/XlW/tcjTGkiSG7o36umWMX4dWHafMquqHwFnkny0a9rCkG+JvmDfUF1oLd3iIMkXgTHgpiSTwO9V1b7FndXA7gQ+Cxzv1qsBfrf7xvJysgbY330q6z3Awapa1h8hbMQI8PT0NQTXAX9WVV9b3CkN7EHgQHdx+kPgt4c5+LL9KKQkaXbLeVlGkjQLw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAb9X0aaYO0xSCCnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.Parch.hist()" + ] + }, + { + "cell_type": "markdown", + "id": "92e95229", + "metadata": {}, + "source": [ + "### Задание\n", + "Постройте гистограмму на которой будет отображено количество людей в каждом из классов обслуживания" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f3b54a84", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "1ed5afe4", + "metadata": {}, + "source": [ + "Из датафрейма можно выделять подвыборки и делать их самостоятельными датафреймами:" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "b7c07681", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
91012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
.......................................
88088112Shelley, Mrs. William (Imanita Parrish Hall)female25.00123043326.0000NaNS
88288303Dahlberg, Miss. Gerda Ulrikafemale22.000755210.5167NaNS
88588603Rice, Mrs. William (Margaret Norton)female39.00538265229.1250NaNQ
88788811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88888903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.4500NaNS
\n", + "

314 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "8 9 1 3 \n", + "9 10 1 2 \n", + ".. ... ... ... \n", + "880 881 1 2 \n", + "882 883 0 3 \n", + "885 886 0 3 \n", + "887 888 1 1 \n", + "888 889 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 \n", + "9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 \n", + ".. ... ... ... ... \n", + "880 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0 \n", + "882 Dahlberg, Miss. Gerda Ulrika female 22.0 0 \n", + "885 Rice, Mrs. William (Margaret Norton) female 39.0 0 \n", + "887 Graham, Miss. Margaret Edith female 19.0 0 \n", + "888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "8 2 347742 11.1333 NaN S \n", + "9 0 237736 30.0708 NaN C \n", + ".. ... ... ... ... ... \n", + "880 1 230433 26.0000 NaN S \n", + "882 0 7552 10.5167 NaN S \n", + "885 5 382652 29.1250 NaN Q \n", + "887 0 112053 30.0000 B42 S \n", + "888 2 W./C. 6607 23.4500 NaN S \n", + "\n", + "[314 rows x 12 columns]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Выделим в отдельную таблицу всех женщин\n", + "df_2 = df[df.Sex == 'female']\n", + "df_2" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "15eef0ed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAge
0Braund, Mr. Owen Harris22.0
1Cumings, Mrs. John Bradley (Florence Briggs Th...38.0
2Heikkinen, Miss. Laina26.0
3Futrelle, Mrs. Jacques Heath (Lily May Peel)35.0
4Allen, Mr. William Henry35.0
.........
886Montvila, Rev. Juozas27.0
887Graham, Miss. Margaret Edith19.0
888Johnston, Miss. Catherine Helen \"Carrie\"NaN
889Behr, Mr. Karl Howell26.0
890Dooley, Mr. Patrick32.0
\n", + "

891 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Name Age\n", + "0 Braund, Mr. Owen Harris 22.0\n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... 38.0\n", + "2 Heikkinen, Miss. Laina 26.0\n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) 35.0\n", + "4 Allen, Mr. William Henry 35.0\n", + ".. ... ...\n", + "886 Montvila, Rev. Juozas 27.0\n", + "887 Graham, Miss. Margaret Edith 19.0\n", + "888 Johnston, Miss. Catherine Helen \"Carrie\" NaN\n", + "889 Behr, Mr. Karl Howell 26.0\n", + "890 Dooley, Mr. Patrick 32.0\n", + "\n", + "[891 rows x 2 columns]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Выделим датафрейм хранящий только имена и возраст\n", + "df_3 = df[['Name', 'Age']]\n", + "df_3" + ] + }, + { + "cell_type": "markdown", + "id": "985f01cf", + "metadata": {}, + "source": [ + "### Задание\n", + "Создайте датафрейм где будут поля Name и Survived для пассажиров без детей" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6b462754", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "c73eba53", + "metadata": {}, + "source": [ + "Для преобразования значений столбца можно применять метод .apply с указанием в нем функции, применяемой к значению каждой строки. В данном примере применяется анонимная функция (лямбда-функция)." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "4d58666a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedisAdult
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNSTrue
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85CTrue
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNSTrue
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123STrue
4503Allen, Mr. William Henrymale35.0003734508.0500NaNSTrue
..........................................
88688702Montvila, Rev. Juozasmale27.00021153613.0000NaNSTrue
88788811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42STrue
88888903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.4500NaNSFalse
88989011Behr, Mr. Karl Howellmale26.00011136930.0000C148CTrue
89089103Dooley, Mr. Patrickmale32.0003703767.7500NaNQTrue
\n", + "

891 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + ".. ... ... ... \n", + "886 887 0 2 \n", + "887 888 1 1 \n", + "888 889 0 3 \n", + "889 890 1 1 \n", + "890 891 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + ".. ... ... ... ... \n", + "886 Montvila, Rev. Juozas male 27.0 0 \n", + "887 Graham, Miss. Margaret Edith female 19.0 0 \n", + "888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n", + "889 Behr, Mr. Karl Howell male 26.0 0 \n", + "890 Dooley, Mr. Patrick male 32.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked isAdult \n", + "0 0 A/5 21171 7.2500 NaN S True \n", + "1 0 PC 17599 71.2833 C85 C True \n", + "2 0 STON/O2. 3101282 7.9250 NaN S True \n", + "3 0 113803 53.1000 C123 S True \n", + "4 0 373450 8.0500 NaN S True \n", + ".. ... ... ... ... ... ... \n", + "886 0 211536 13.0000 NaN S True \n", + "887 0 112053 30.0000 B42 S True \n", + "888 2 W./C. 6607 23.4500 NaN S False \n", + "889 0 111369 30.0000 C148 C True \n", + "890 0 370376 7.7500 NaN Q True \n", + "\n", + "[891 rows x 13 columns]" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['isAdult'] = df['Age'].apply(lambda x: x > 18)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "id": "51e5b6be", + "metadata": {}, + "source": [ + "### Задание\n", + "Посчитайте среднее значение цены билета на корабле. Введите новый столбец, который будет показывать дешевле или дороже средней цены был купленный билет у каждого человека. Можете заполнить поля значениями True/False или строчными представлениями \"дешевле\"/\"дороже\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "167386f6", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/1147/lab_3_titanic.csv b/1147/lab_3_titanic.csv new file mode 100644 index 0000000..5cc466e --- /dev/null +++ b/1147/lab_3_titanic.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q