from builtins import range from past.builtins import xrange from math import sqrt, ceil import numpy as np def visualize_grid(Xs, ubound=255.0, padding=1): """ Reshape a 4D tensor of image data to a grid for easy visualization. Inputs: - Xs: Data of shape (N, H, W, C) - ubound: Output grid will have values scaled to the range [0, ubound] - padding: The number of blank pixels between elements of the grid """ (N, H, W, C) = Xs.shape grid_size = int(ceil(sqrt(N))) grid_height = H * grid_size + padding * (grid_size - 1) grid_width = W * grid_size + padding * (grid_size - 1) grid = np.zeros((grid_height, grid_width, C)) next_idx = 0 y0, y1 = 0, H for y in range(grid_size): x0, x1 = 0, W for x in range(grid_size): if next_idx < N: img = Xs[next_idx] low, high = np.min(img), np.max(img) grid[y0:y1, x0:x1] = ubound * (img - low) / (high - low) # grid[y0:y1, x0:x1] = Xs[next_idx] next_idx += 1 x0 += W + padding x1 += W + padding y0 += H + padding y1 += H + padding # grid_max = np.max(grid) # grid_min = np.min(grid) # grid = ubound * (grid - grid_min) / (grid_max - grid_min) return grid def vis_grid(Xs): """ visualize a grid of images """ (N, H, W, C) = Xs.shape A = int(ceil(sqrt(N))) G = np.ones((A * H + A, A * W + A, C), Xs.dtype) G *= np.min(Xs) n = 0 for y in range(A): for x in range(A): if n < N: G[y * H + y : (y + 1) * H + y, x * W + x : (x + 1) * W + x, :] = Xs[ n, :, :, : ] n += 1 # normalize to [0,1] maxg = G.max() ming = G.min() G = (G - ming) / (maxg - ming) return G def vis_nn(rows): """ visualize array of arrays of images """ N = len(rows) D = len(rows[0]) H, W, C = rows[0][0].shape Xs = rows[0][0] G = np.ones((N * H + N, D * W + D, C), Xs.dtype) for y in range(N): for x in range(D): G[y * H + y : (y + 1) * H + y, x * W + x : (x + 1) * W + x, :] = rows[y][x] # normalize to [0,1] maxg = G.max() ming = G.min() G = (G - ming) / (maxg - ming) return G