Лекция 1:

Классификация основанная на данных

Lecture 1

Adapted by Artem Nikonorov

Today:

- The Image Classification Task
- Nearest Neighbor Classifier
- Linear Classifier

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of labels) {dog, cat, truck, plane, ...}

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1 Ac

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Challenges: Viewpoint variation

This image by Nikita is licensed under <u>CC-BY 2.0</u>

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Challenges: Illumination

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1 Ada

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

licensed under CC-BY 2.0

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Challenges: Искажения и внутриклассовая вариация

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Adapted by Artem Nikonorov

hat

Lecture 1

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapted by Artem Nikonorov

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1 Adapted by Artem Nikonorov

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Nearest Neighbor Classifier

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

First classifier: Nearest Neighbor

Training data with labels

query data

Distance Metric

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	💐 🎽		r	2	-	J.	-	N.	-
automobile		1			7		6	1	-
bird	5		1	-	4	1	2	3.	
cat	1			3h			1	-	
deer	1		A A A	m?	-	÷.		1	
dog	~) 3		The second		- Or	L.		2	30
frog			CALL.	Cer.	27		Ţ	No.	19
horse	-	N.	PP.	5	A	1ª	2	18	S
ship	-	選	3	-	-1923		198-	-	
truck			-	200	- AND	No.		P.	The state

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1 Adap

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	2	1	-		前来
automobile					-
bird		1	*	12	1.
cat	5	AT			
deer	1 30		11/2		
dog	~) ¥	P 3		1. 7	A St
frog	1	30	6 ??	S	30
horse	-	R. C	R M	1	
ship	-	1 3	-		
truck	20		2-	-	

Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
        # using the L1 distance (sum of absolute value differences)
        distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
        min_index = np.argmin(distances) # get the index with smallest distance
        Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
    }
}
```

return Ypred

Nearest Neighbor classifier

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

Fei-Fei Li, Ranjay Krishna, Danfei Xu

return Ypred

Nearest Neighbor classifier

Memorize training data

Lecture 1 Adapted by Artem Nikonorov

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

For each test image: Find closest train image Predict label of nearest image

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num_test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

- A. O(1) for training andO(1) for evaluation
- B. O(1) for training and O(N) for evaluation
- C. O(N) for training and O(1) for evaluation
- D. O(N) for training and O(N) for evaluation

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

- A. O(1) for training andO(1) for evaluation
- B. O(1) for training and O(N) for evaluation
- C. O(N) for training and O(1) for evaluation
- D. O(N) for training and O(N) for evaluation

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows

for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

What does this look like?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K = 1

K = 3

K = 5

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapted by Artem Nikonorov

What does this look like?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

What does this look like?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

K-Nearest Neighbors: Distance Metric

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p ig(I_1^p - I_2^pig)^2}$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

K-Nearest Neighbors: Demo Time

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Very problem-dependent. Must try them all out and see what works best.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset					
Idea #2: Split data into train and test, chooseBAD: Nohyperparameters that work best on test datawill performed	o idea how algo orm on new dat	orithn a			
train	test				

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset						
Idea #2: Split data into train and test, choose hyperparameters that work best on test data	idea how algo rm on new dat	orith a				
train	test					
Idea #3: Split data into train, val, and test; choose Better! hyperparameters on val and evaluate on test						
Idea #3: Split data into train, val, and test; choos hyperparameters on val and evaluate on test	se Bett	er!				
Idea #3: Split data into train, val, and test; choos hyperparameters on val and evaluate on test train	se Bett validation	er! test				
Idea #3: Split data into train, val, and test; choos hyperparameters on val and evaluate on test train Обучающая, проверочная и тестовая	Se Bett validation я выборки!	er! test				

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative
- Very slow at test time

<u>Original image</u> is <u>CC0 public domain</u>

(all 3 images have same L2 distance to the one on the left)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

k-Nearest Neighbor with pixel distance never used.

- Curse of dimensionality

Dimensions = 3 Points = 4^3

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1

K-Nearest Neighbors: Summary

In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on the K nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set;

Only run on the test set once at the very end!

Pixel distance is not very informative.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapted by Artem Nikonorov

Linear Classifier

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Parametric Approach

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapt

Parametric Approach: Linear Classifier

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapte

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapte

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapted by Artem Nikonorov

This image is CC0 1.0 public domain

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Two young girls are plaving with lego toy. on wakeboard

Boy is doing backflip

Man in black shirt is playing guitar.

Construction worker in orange safety vest is working on road.

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figures copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

[He et al. 2015]

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Interpreting a Linear Classifier

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Interpreting a Linear Classifier: Visual Viewpoint

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

$$f(x,W) = Wx$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

Interpreting a Linear Classifier: Geometric Viewpoint

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants Class 1: 1 <= L2 norm <= 2

Class 2: Everything else Class 1: Three modes

Class 2: Everything else

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1 A

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1

f(x,W) = Wx + b

Coming up: - Loss function - Optimization - ConvNets!

(quantifying what it means to have a "good" W)

(start with random W and find a W that minimizes the loss)

(tweak the functional form of f)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 1