Lecture 3: Neural Networks and Backpropagation

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3

Adapted by Artem Nikonorov

Where we are...

$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

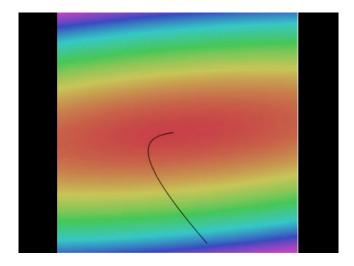
$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Finding the best W: Optimize with Gradient Descent



Vanilla Gradient Descent

while True:

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain weights grad = evaluate gradient(loss fun, data, weights)

weights += - step size * weights grad # perform parameter update

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 7

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 8

Where we are...

$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

April 16, 2020

How to find the best W?

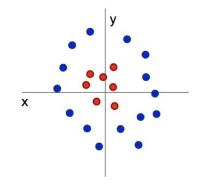
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint



Linear classifiers can only draw linear decision boundaries

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 10

Pixel Features

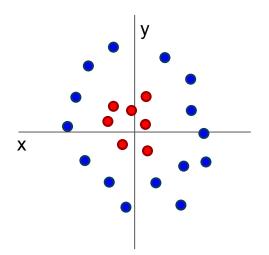
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 11

Image Features

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Image Features: Motivation



Cannot separate red and blue points with linear classifier

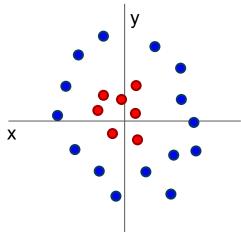
Fei-Fei Li, Ranjay Krishna, Danfei Xu

April 16, 2020

Lecture 4 -

13

Image Features: Motivation



Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

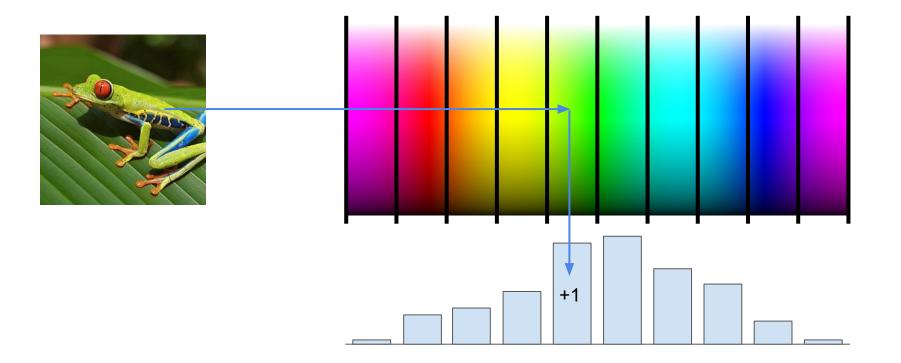
 $f(x, y) = (r(x, y), \theta(x, y))$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 14

r

Example: Color Histogram



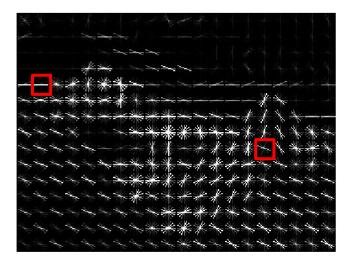
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 15

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

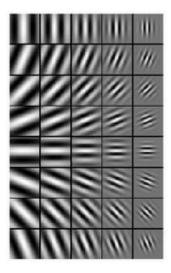


Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Пример: Фильтры Габора



Применение фильтров Габора

April 16, 2020

Lecture 4 - 16

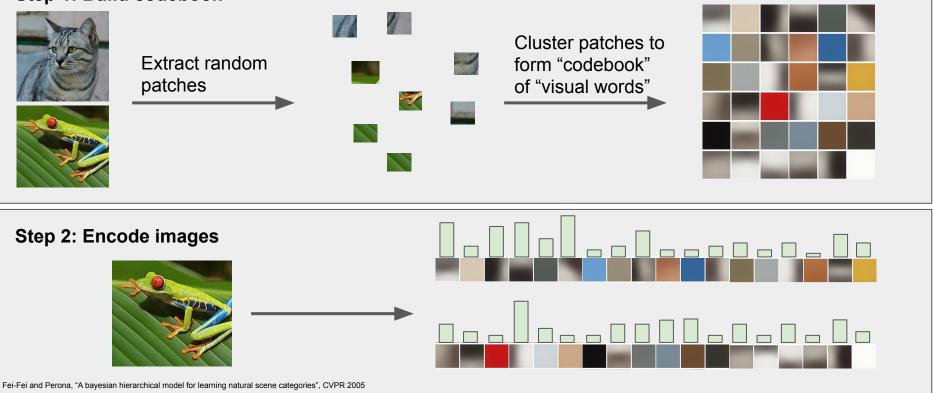
Примеры фильтров Габора разных размеров и ориентаций

Gabor, D. 1946. Theory of communication. J. Inst. Electr. Eng., 93:429-457

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Example: Bag of Words

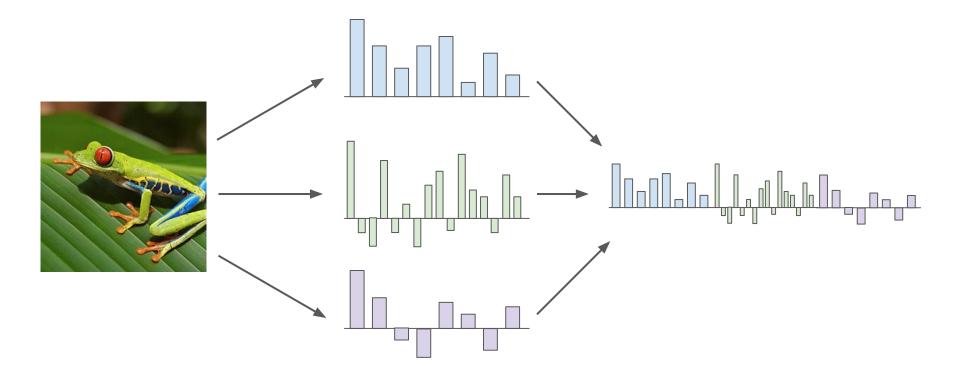
Step 1: Build codebook



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 17

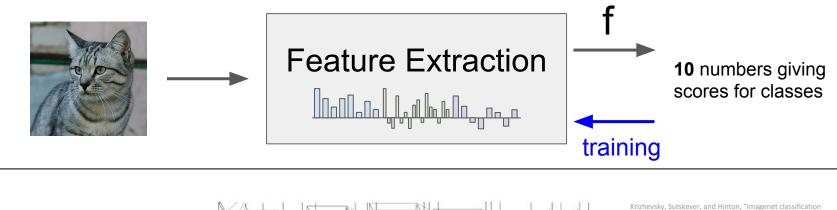
Image Features

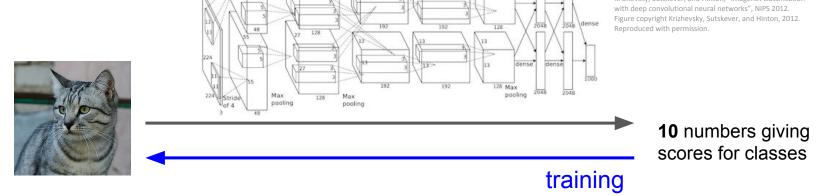


Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 18

Image features vs ConvNets





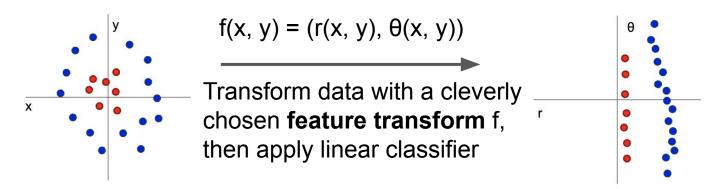
Lecture 4 -

19

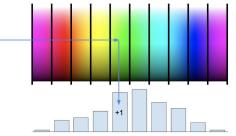
April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

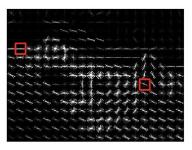
One Solution: Feature Transformation



Color Histogram



Histogram of Oriented Gradients (HoG)



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 20

Today: Neural Networks

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 21

(**Before**) Linear score function: f=Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 22

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network
$$f = W_2 \max(0, W_1 x)$$
 or 3-layer Neural Network

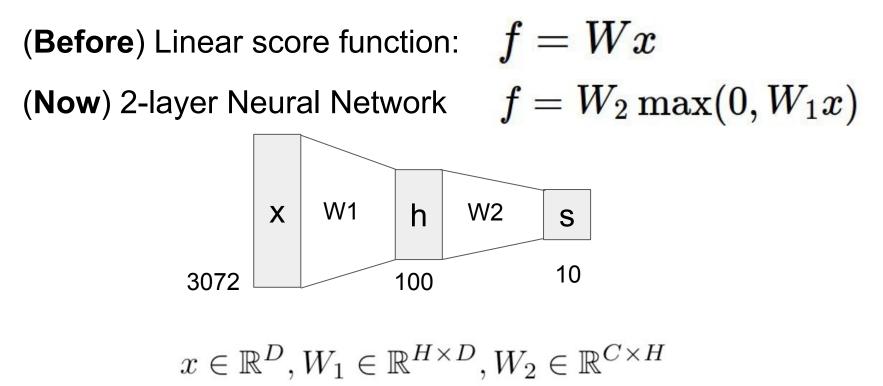
$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

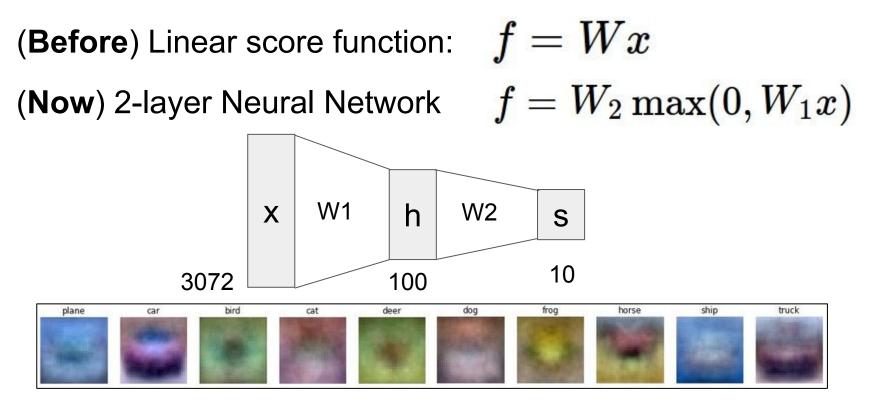
April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 26



Learn 100 templates instead of 10.

Share templates between classes

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

(**Before**) Linear score function:
$$f = Wx$$

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

Lecture 4 - 28

April 16, 2020

$$f = W_2 W_1 x$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

(**Before**) Linear score function:
$$f = Wx$$

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q:** What if we try to build a neural network without one?

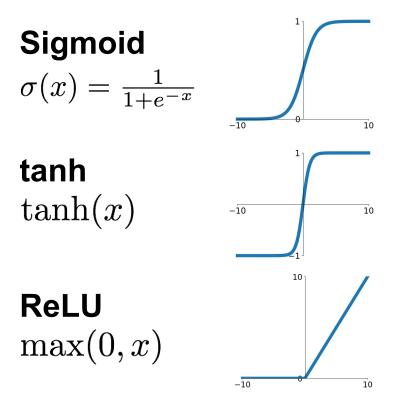
$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

Lecture 4 - 29

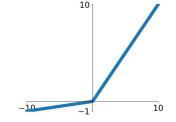
April 16, 2020

A: We end up with a linear classifier again!

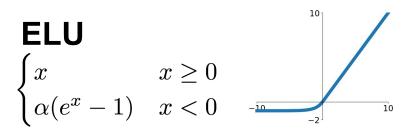
Activation functions



Leaky ReLU $\max(0.1x, x)$



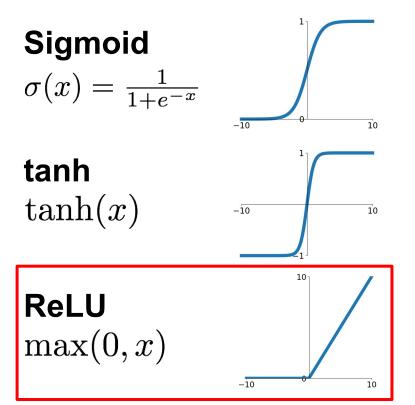
 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



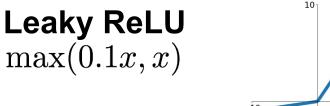
Fei-Fei Li, Ranjay Krishna, Danfei Xu

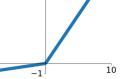
Lecture 4 - 30

Activation functions

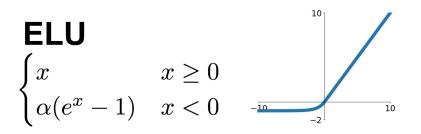


Rectified Linear Unit Fei-Fei Li, Ranjay Krishna, Danfei Xu ReLU is a good default choice for most problems



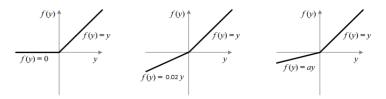


 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



Lecture 4 - 31

PReLU - Parametric ReLU



www.cv-foundation.org > He_... 🔻 PDF Перевести эту страницу

Delving Deep into Rectifiers: Surpassing Human-Level ...

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. Kaiming He. Xiangyu Zhang. Shaoqing Ren. Jian Sun. автор: К He <u>- 2015</u> - Цитируется: 9211 - Похожие статьи

Сравните с цитируемостью работ Колмогорова и Цибенко

link.springer.com > article - Перевести эту страницу

Approximation by superpositions of a sigmoidal function ...

Jones, Constructive **approximations** for neural networks by **sigmoidal functions**, Technical Report Series, No. 7, Department of Mathematics, University of Lowell, ... автор: G Cybenko - 1989 - Цитируется: 13151 - Похожие статьи

www.mathnet.ru > dan22050 - Перевести эту страницу

A. N. Kolmogorov, "On the representation of continuous ...

On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition A. N. Kolmogorov Full text: ... автор: AN Kolmogorov - 1957 - Цитируется: 1194 - Похожие статьи

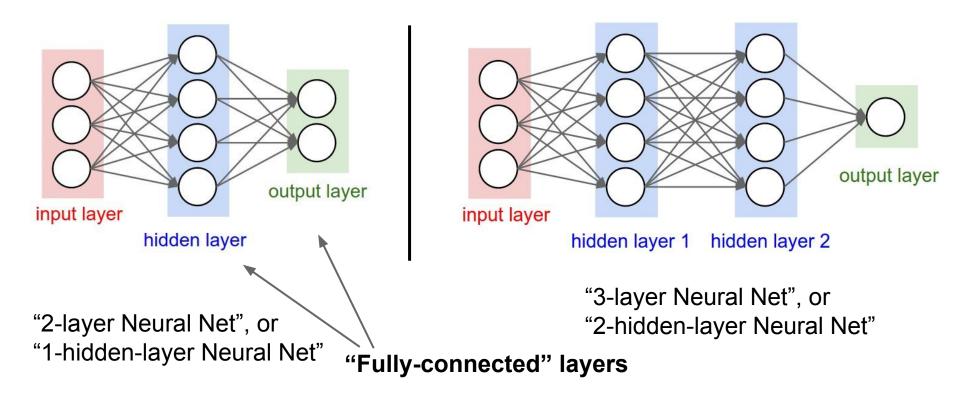
$$f(x_1, \cdots, x_n) = \sum_{i=1}^{2n+1} g_i \left(\sum_{j=1}^n \phi_{ji}(x_j) \right)$$

Kolmogorov's Theorem (1957)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 21

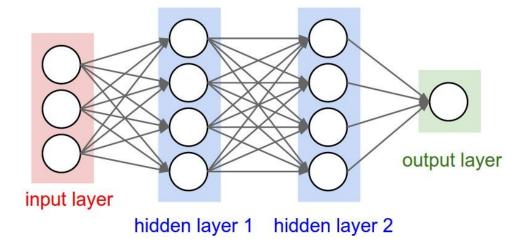
Neural networks: Architectures



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 32

Example feed-forward computation of a neural network



forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 33

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Fei-Fei Li, Ranjay Krishna, Danfei Xu

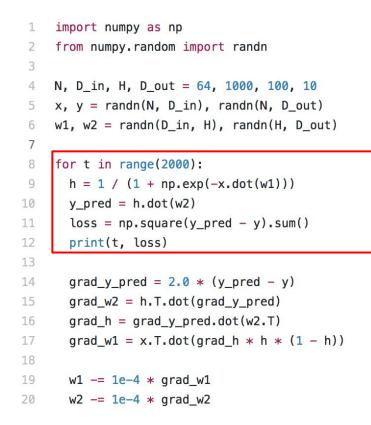
Lecture 4 - 34

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 35

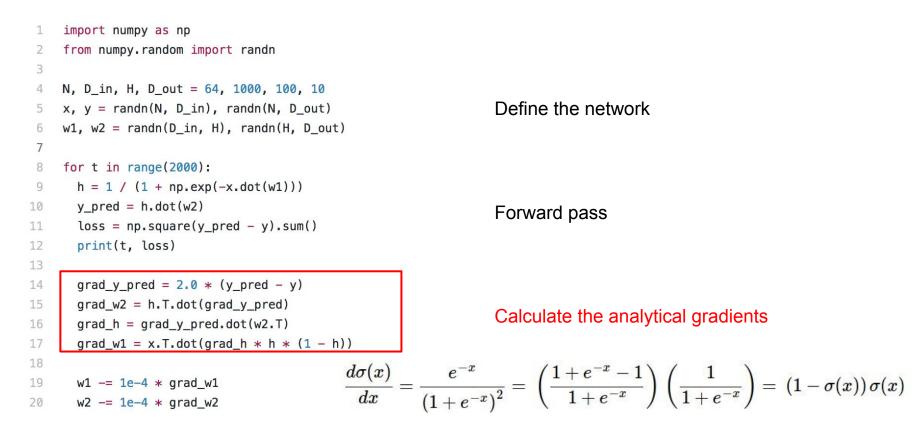


Define the network

Forward pass

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 36



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 37

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
       grad h = grad y pred.dot(w2.T)
       grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
       w1 -= 1e-4 * grad w1
20
       w2 = 1e - 4 * qrad w2
```

Define the network

Forward pass

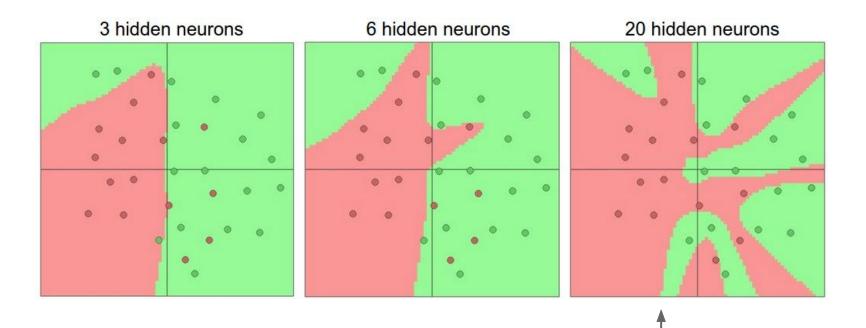
Calculate the analytical gradients

Gradient descent

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 38

Setting the number of layers and their sizes



more neurons = more capacity

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 4 - 39

13 Jan 2016

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 (Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetis/demo /classify2d.html)

 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

13 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

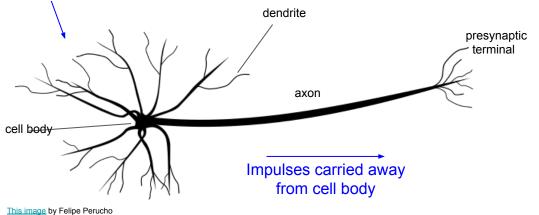
Lecture 4 - 40



This image by Fotis Bobolas is licensed under CC-BY 2.0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

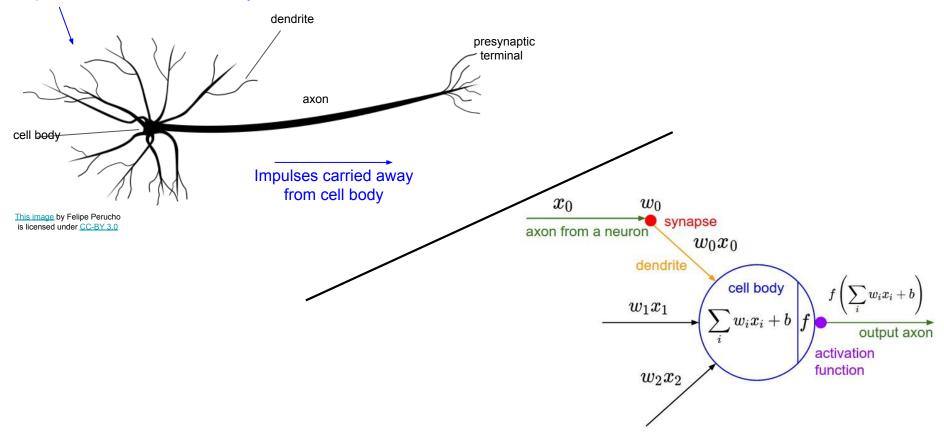
Lecture 4 - 41



is licensed under CC-BY 3.0

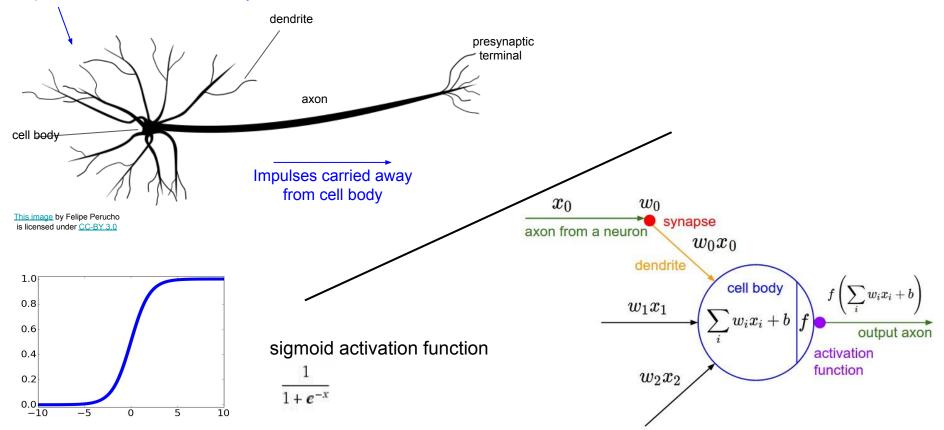
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 42



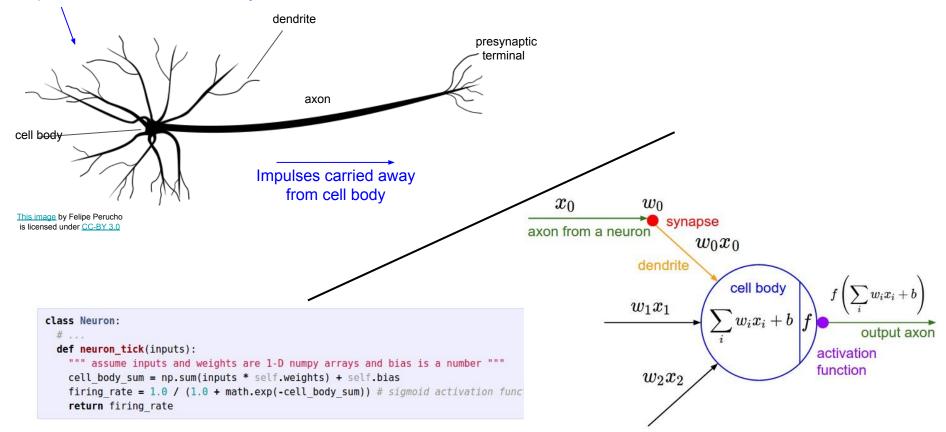
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 43



Fei-Fei Li, Ranjay Krishna, Danfei Xu

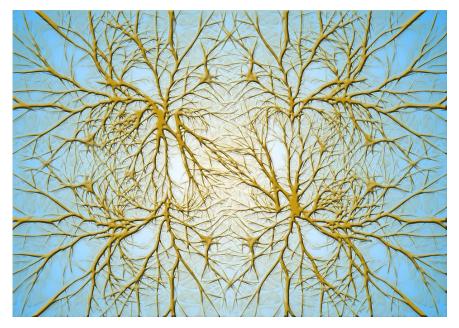
Lecture 4 - 44



Fei-Fei Li, Ranjay Krishna, Danfei Xu

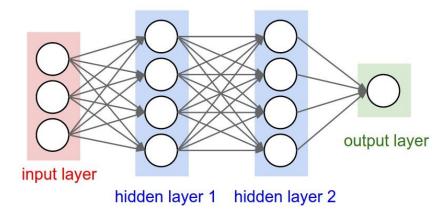
Lecture 4 - 45

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

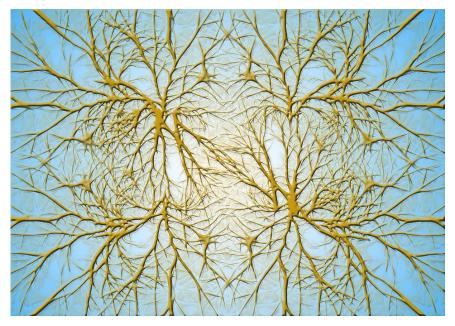


April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

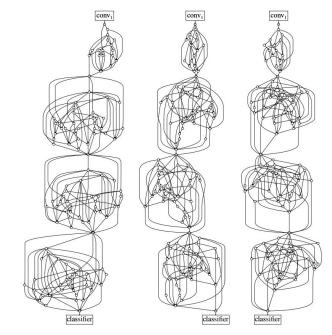
Lecture 4 - 46

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

But neural networks with random connections can work too!



Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 47

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Michael Jordan: Well, I want to be a little careful here. I think it's important to distinguish two areas where the word *neural* is currently being used.

One of them is in deep learning. And there, each "neuron" is really a cartoon.

https://spectrum.ieee.org/artificial-intelligence/machine-learning/machinelearning-maestro-michael-jordan-o n-the-delusions-of-big-data-and-other-huge-engineering-efforts

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 48

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute } \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 49

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

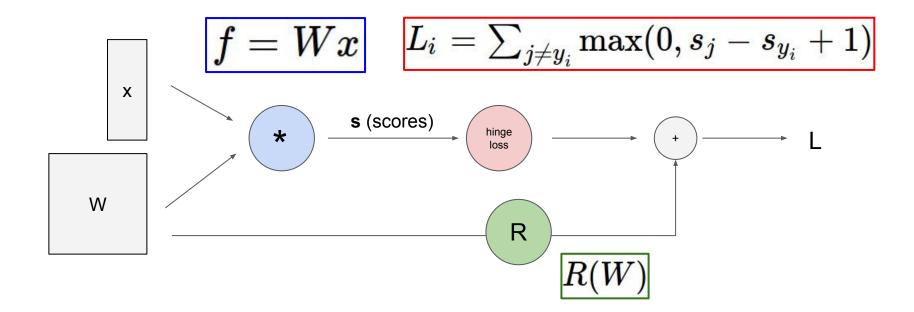
Problem: Not feasible for very complex models!

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 50

Better Idea: Computational graphs + Backpropagation



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 51

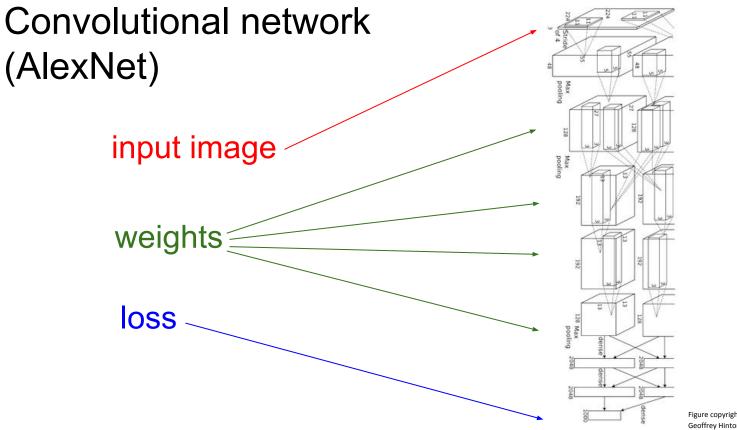


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 52

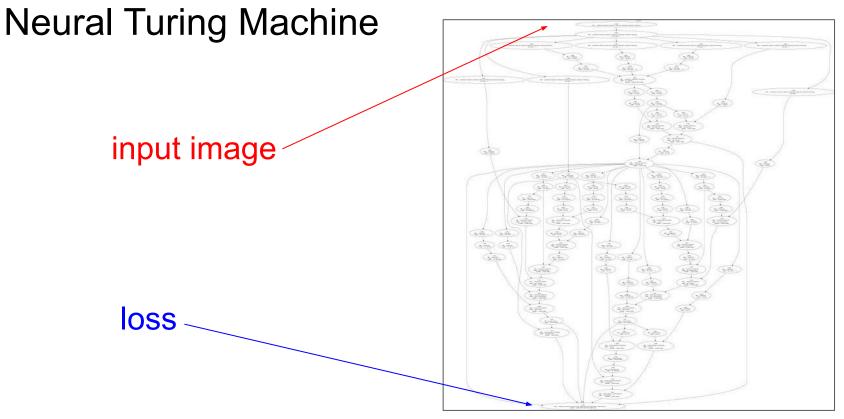
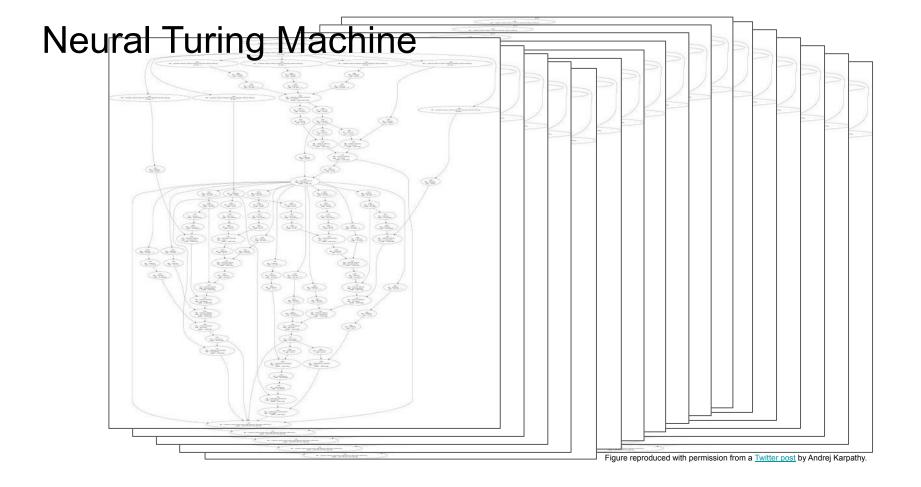


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 53



Lecture 4 -

Solution: Backpropagation

Fei-Fei Li, Ranjay Krishna, Danfei Xu

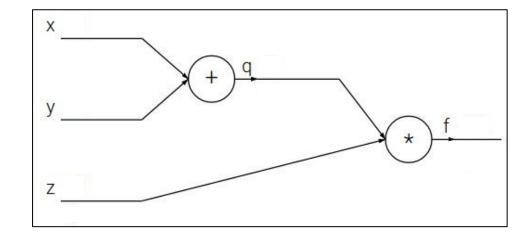
Lecture 4 - 55

$$f(x,y,z) = (x+y)z$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 56

$$f(x,y,z) = (x+y)z$$



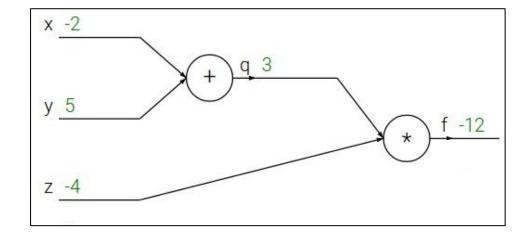
April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 57

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

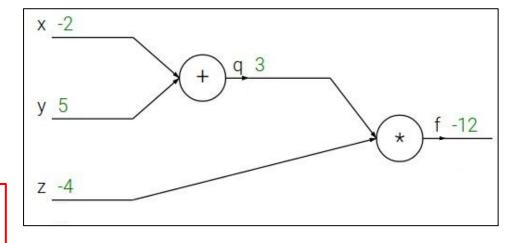


Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 58

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$



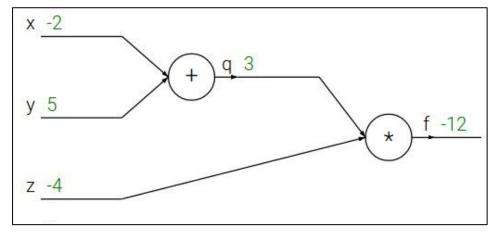
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 59

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{array}{ll} q=x+y & rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1 \ f=qz & rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q \end{array}$$



April 13, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 60

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

$$x \frac{-2}{y 5} + q 3$$

$$x \frac{f -12}{t}$$

$$z \frac{-4}{t}$$

Lecture 4 - 61

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Vant:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

V

Fei-Fei Li & Justin Johnson & Serena Yeung

x
$$\frac{-2}{y 5}$$

y $\frac{5}{z -4}$
 $\frac{\partial f}{\partial f}$

Lecture 4 - 62

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

x
$$\frac{-2}{y 5}$$

y $\frac{5}{z -4}$
 $\frac{1}{2}$
 $\frac{\partial f}{\partial f}$

Lecture 4 - 63

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial y}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Z

x
$$\frac{-2}{y 5}$$

y $\frac{f}{-12}$
z $\frac{-4}{\sqrt{1}}$
 $\frac{\partial f}{\partial z}$

Lecture 4 - 64

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

y
$$\frac{5}{1}$$

z $\frac{-4}{3}$
 $\frac{\partial f}{\partial z}$

q 3

+

Want:

$$rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 65

x -2

Ζ

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

x -2 **q** 3 y 5 f -12 * Ζ -4 3

Lecture 4 - 66

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

$$x \frac{-2}{y 5} + q \frac{3}{-4} + \frac{q -4}{1} + \frac{q -12}{1} + \frac{f -12}{1} + \frac{f -12}{1} + \frac{1}{1} + \frac$$

Lecture 4 - 67

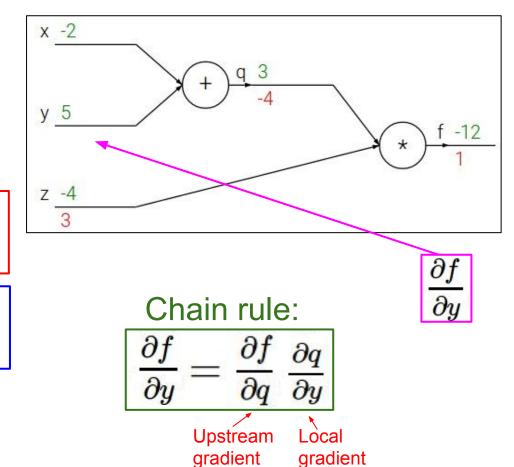
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{1}{\partial x} = 1, \frac{1}{\partial y} = 1$
 $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Vant:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

V



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 68

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

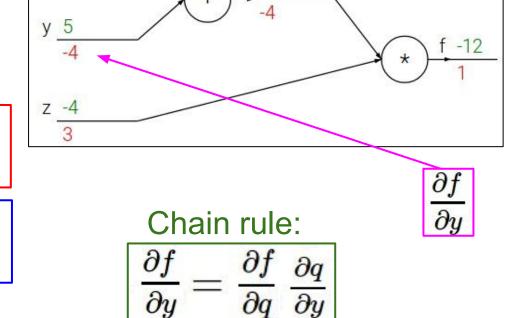
$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂f

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



Upstream

gradient

Lòcal

gradient

3

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 69

x -2

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

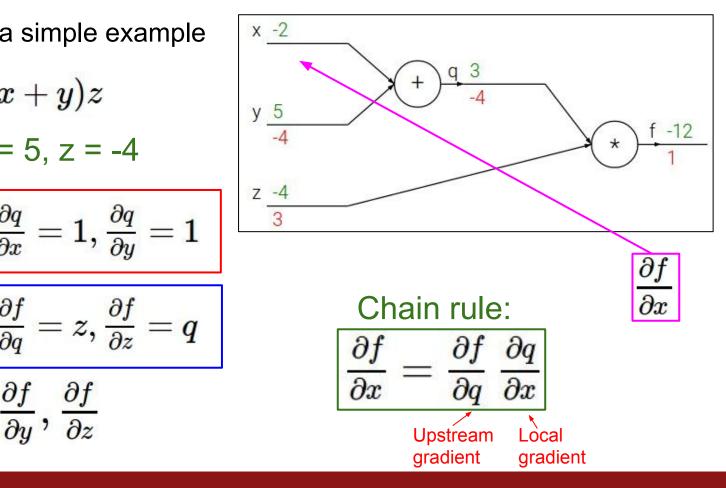
$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 70



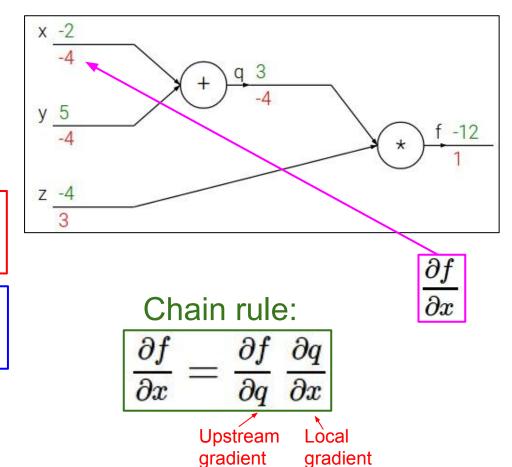
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

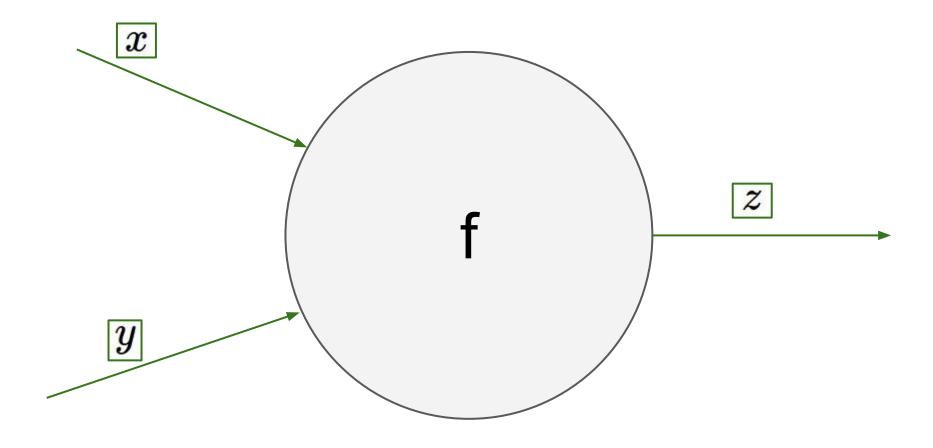


Fei-Fei Li & Justin Johnson & Serena Yeung

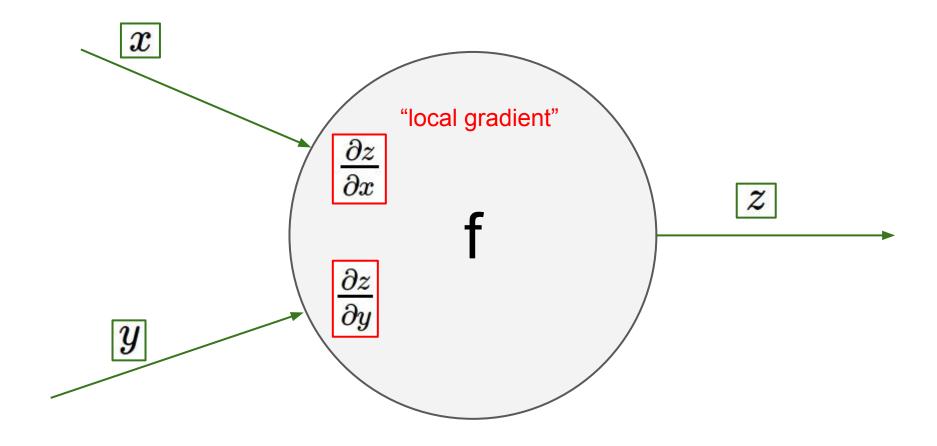
 ∂f

 ∂z

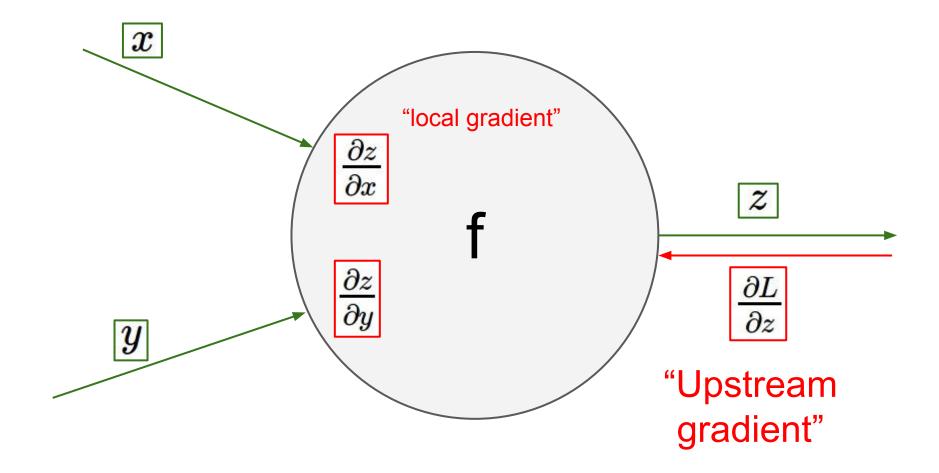
Lecture 4 - 71



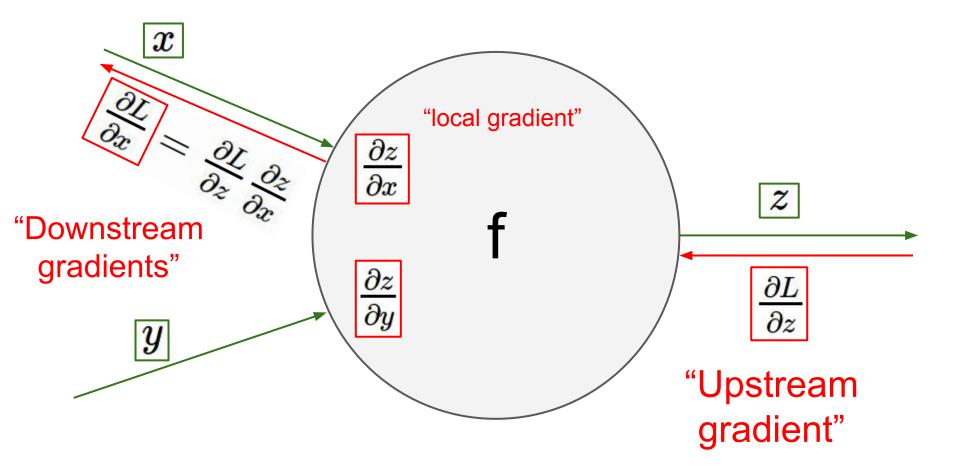
Lecture 4 - 72



Lecture 4 - 73

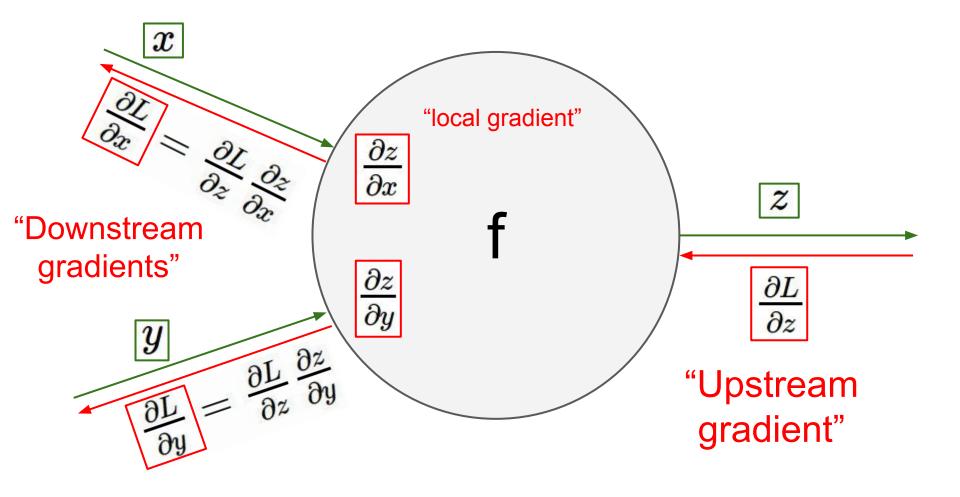


Lecture 4 - 74



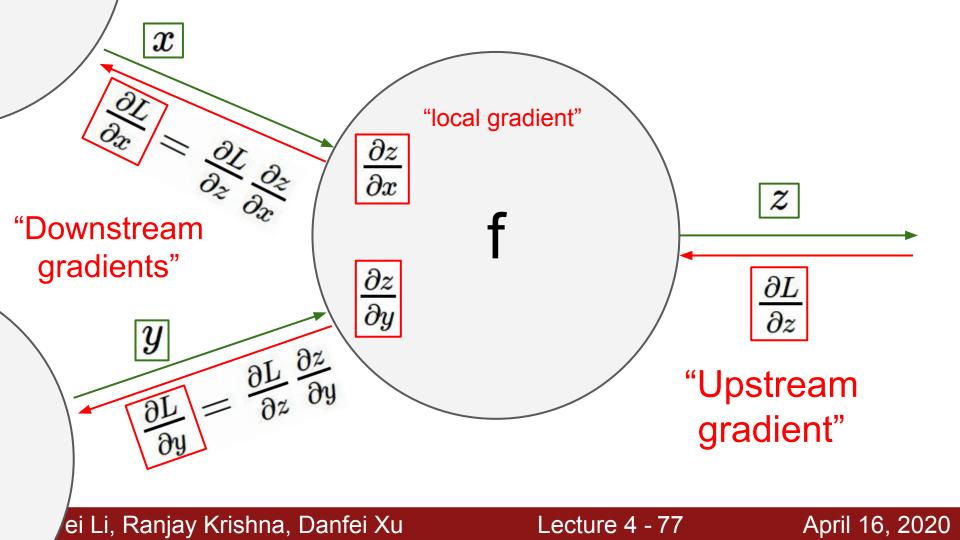
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 75

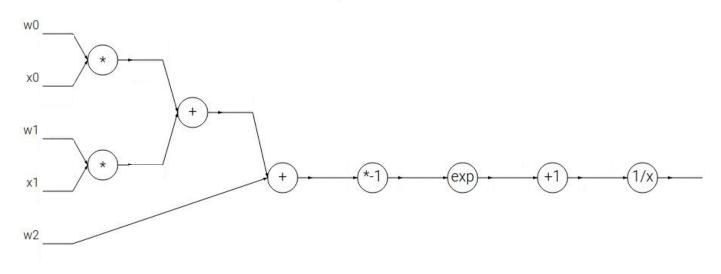


Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 76



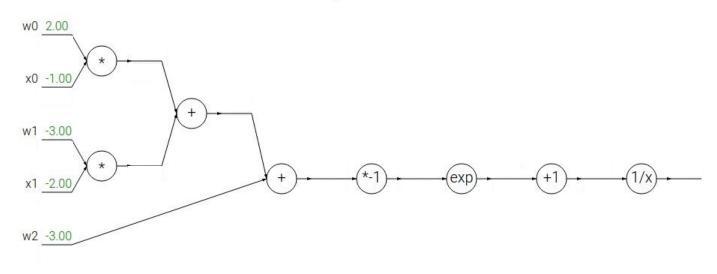
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 78

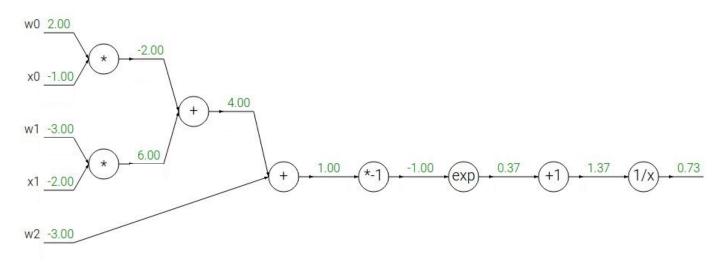
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 79

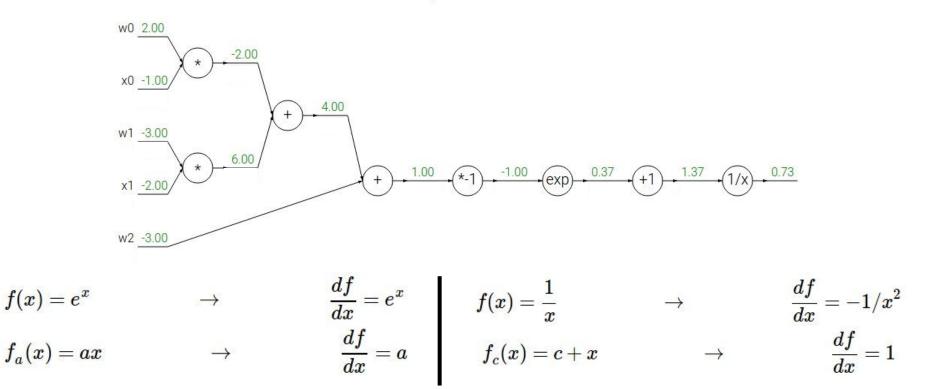
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 80

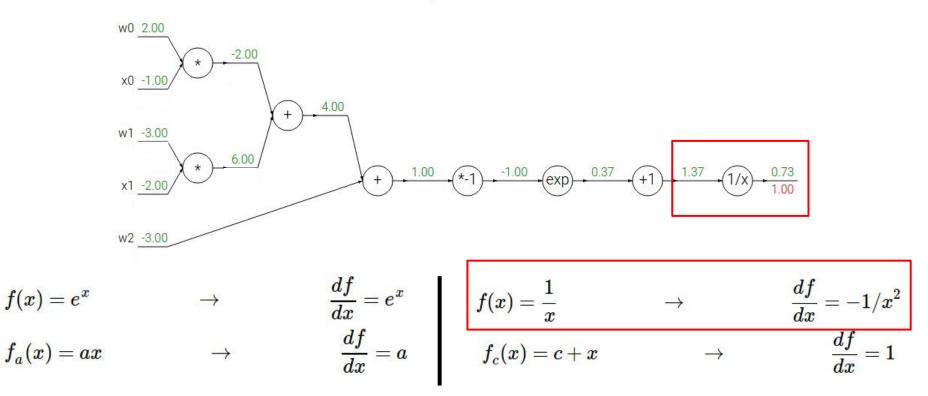
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 81

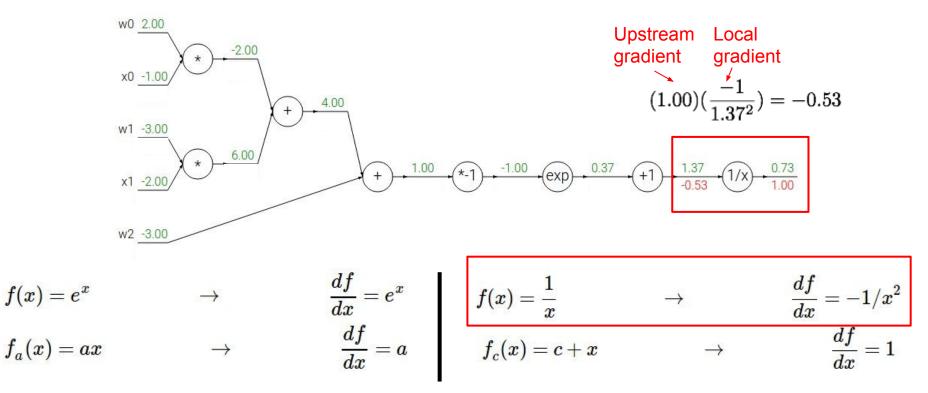
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 82

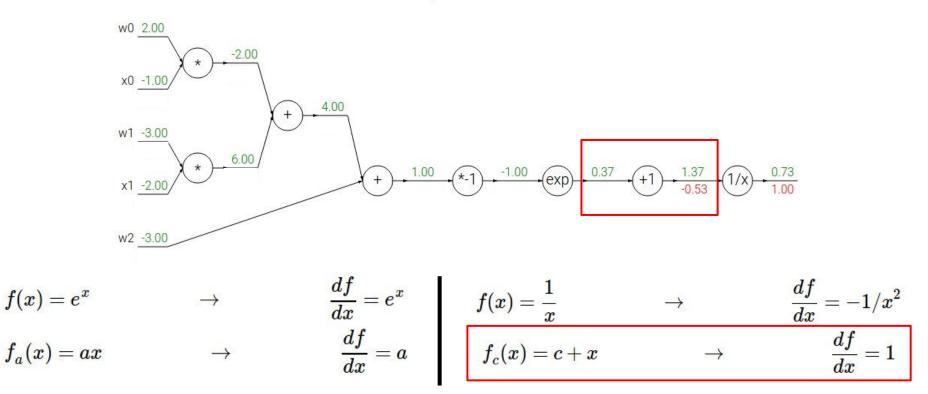
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 83

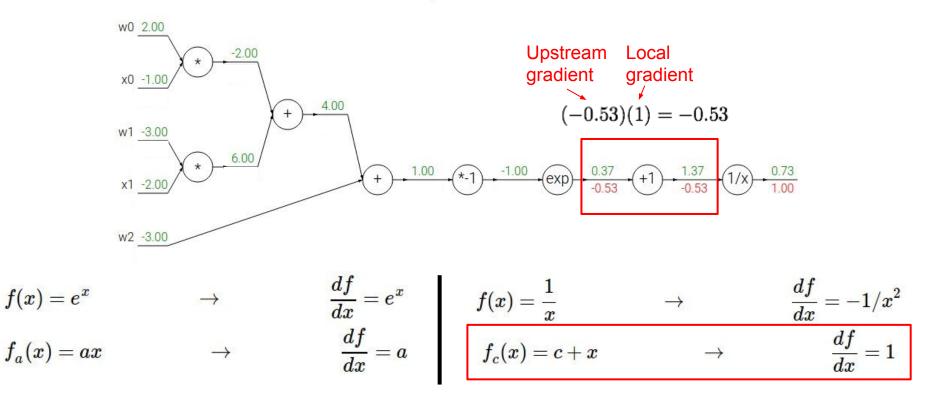
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 84

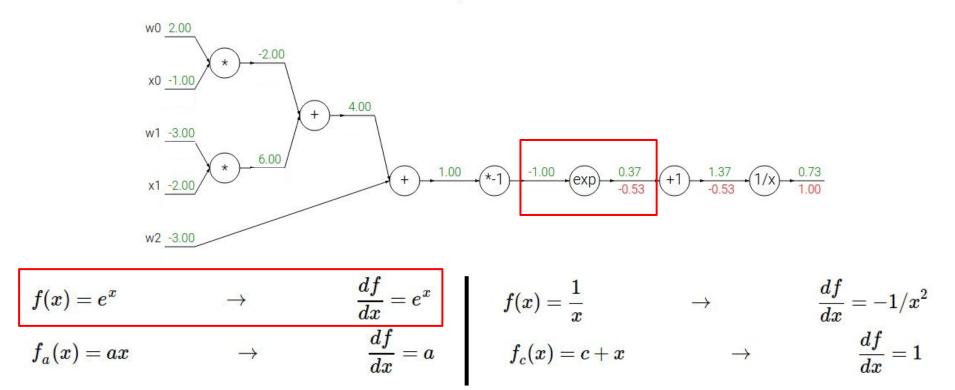
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 85

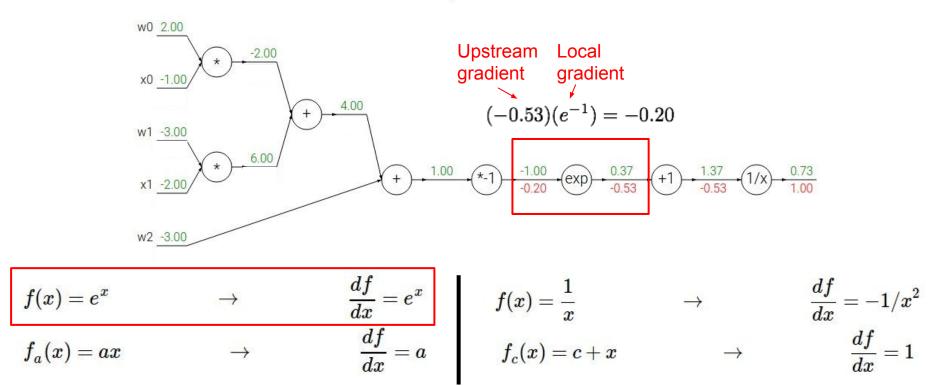
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 86

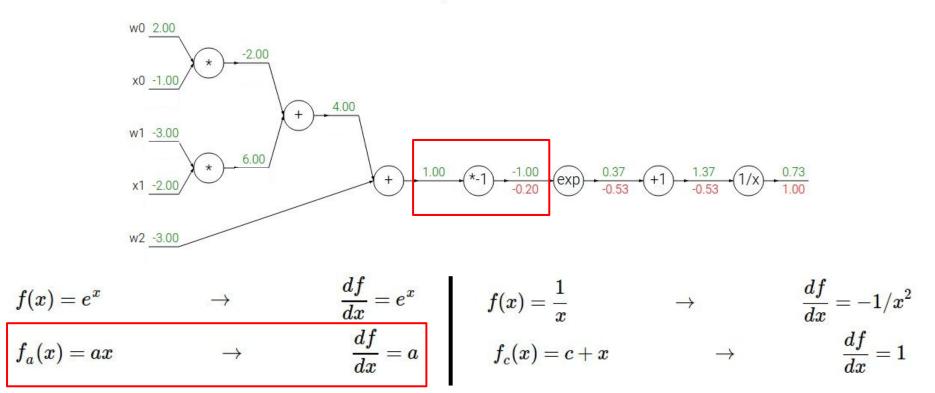
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 87

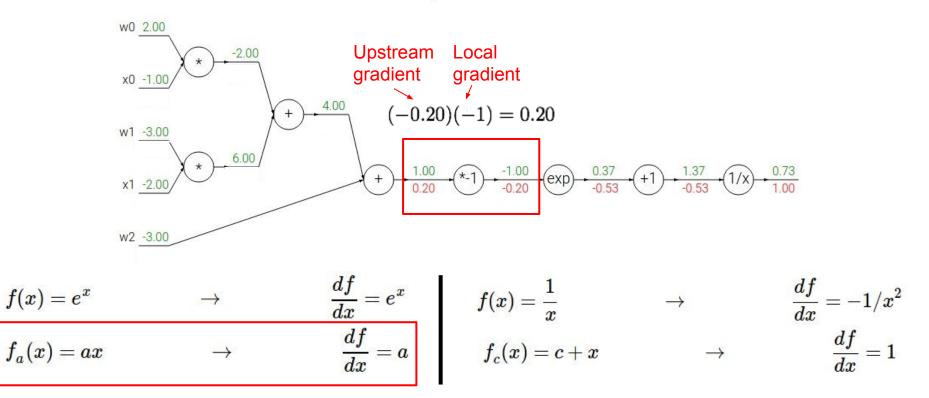
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 88

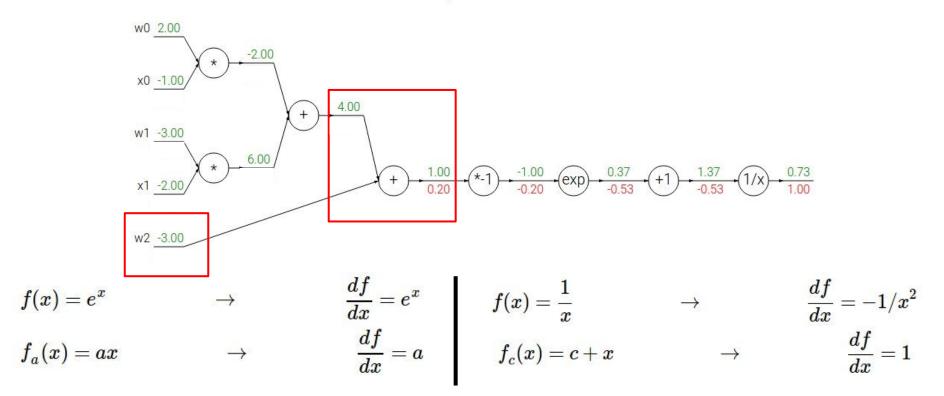
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 89

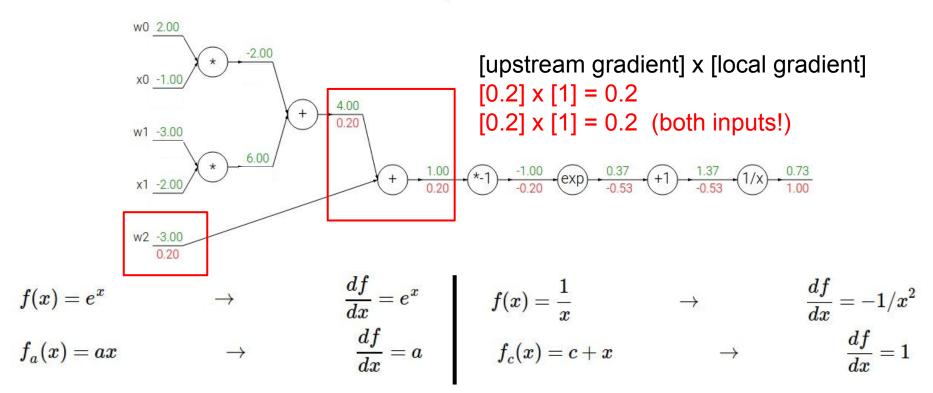
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

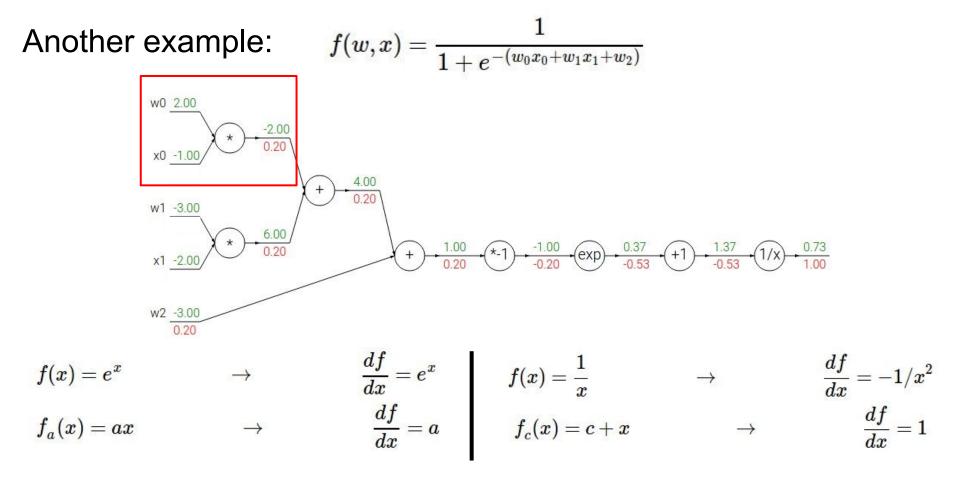
Lecture 4 - 90

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

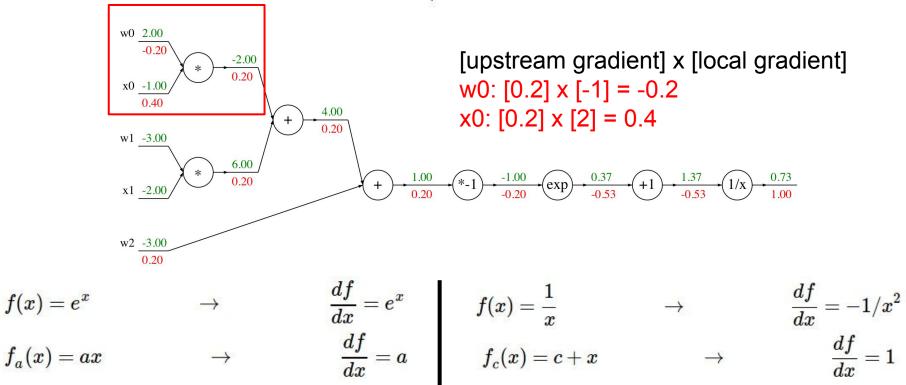
Lecture 4 - 91



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 92

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 93

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 <u>-3.00</u> 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
Complete
Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
Complete
be un
when
each
expression
Sigmoid
(x) = \frac{1}{1 + e^{-x}}
Complete
be un
when
each
expression
(x) = \frac{1}{1 + e^{-x}}
Complete
be un
when
each
expression
(x) = \frac{1}{1 + e^{-x}}
Complete
be un
when
each
expression
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = \frac{1}{1 + e^{-x}}
Complete
(x) = 1
(x) = 1
Complete
(x) = 1
Complete
(x) = 1
Complete
(x) = 1
Com

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 94

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = \frac{1}{1 + e^{-x}}$$

$$f(w,x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

 $\begin{array}{ll} \text{Sigmoid local} & \frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \\ \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \\ \left(1-\sigma(x)\right)\sigma(x) \\ \end{array}$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 95

Another examp

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

ple:
$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Sigmoid
 $function$
 $f(x) = \frac{1}{1+e^{-x}}$
Computational gradient
 $f(x) = \frac{1}{1+e^{-x}}$
Computational gradient
 $g(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $g(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $g(x) = \frac{1}{1+e^{-x}}$
 $g(x) =$

tational graph entation may not ue. Choose one ocal gradients at ode can be easily sed!

0.73

1.00

 $(e^{1})) = 0.2$ $rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1+e^{-x}
ight)^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight) \sigma(x)$ Sigmoid local gradient:

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 96

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
Completing $f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$
Sigmoid function $\sigma(x) = \frac{1}{1 + e^{-x}}$
where each expression expression $\sigma(x) = \frac{1}{1 + e^{-x}}$
Sigmoid expression $\sigma(x) = \frac{1}{$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

[upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2 e^{-x} (1+ e^{-x} - 1) (1)

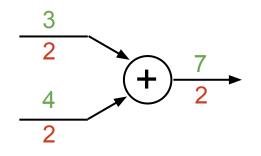
Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{1}{(1)}$

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1+e^{-x}
ight)^2} = \, \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \, \left(1-\sigma(x)
ight) \sigma(x)$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 97

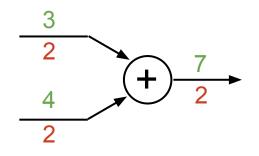
add gate: gradient distributor



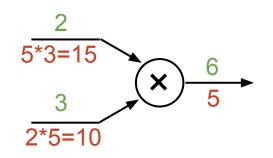
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 98

add gate: gradient distributor



mul gate: "swap multiplier"

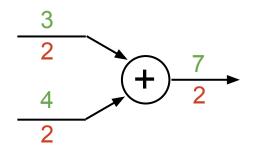


April 16, 2020

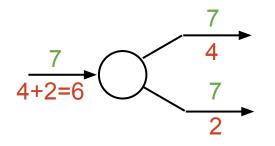
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 99

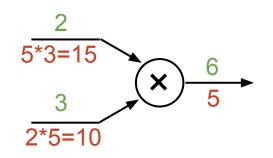
add gate: gradient distributor



copy gate: gradient adder



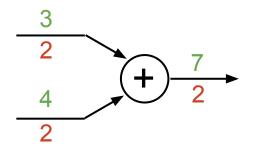
mul gate: "swap multiplier"



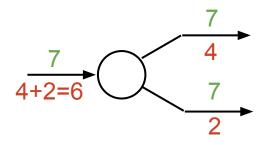
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 100

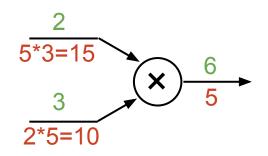
add gate: gradient distributor



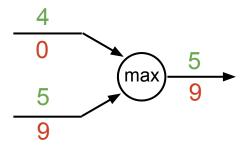
copy gate: gradient adder



mul gate: "swap multiplier"



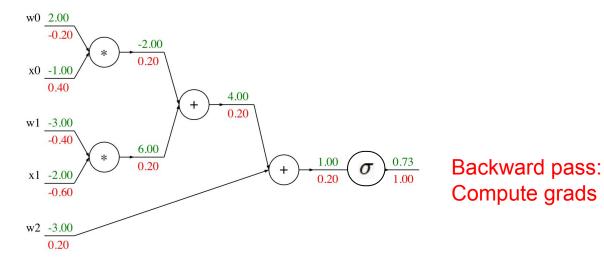
max gate: gradient router



Lecture 4 - 101

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

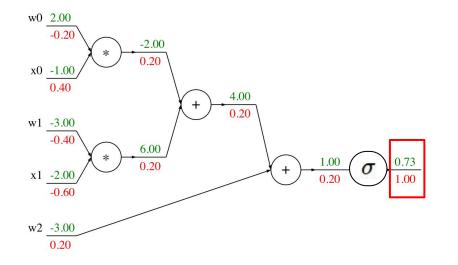


	<pre>def f(w0, x0,</pre>	, w1, x1, w2):
	s0 = w0 * >	(0
Forward pass: Compute output	s1 = w1 * >	(1
	s2 = s0 + s	51
	s3 = s2 + v	v2
	L = sigmoid	1(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 102



def	F(w0,	x0,	w1,	x1,	w2):
s0	= w0	* X	0		
s1	= w1	* X	1		
s2	= w1 = s0	+ s	1		
s3	= s2	+ w	2		
L =	= s2 = sigr	noid	(s3)		

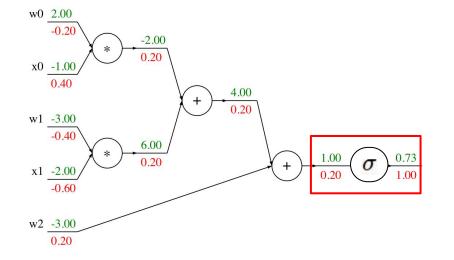
Base case
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 103

Forward pass:

Compute output



	s0
Forward pass:	s1
	s2
Compute output	53

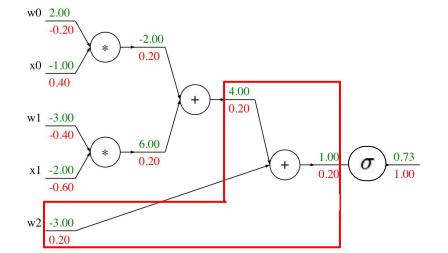
Sigmoid

de	ef	f(v	w0,	x	0,	w1,	x1,	w2):
	s0	=	w0	*	X	0		
	s1	=	w1	*	X	1		
	s2	=	s0	+	S	1		
	s3	=	s2	+	W	2		
l	L	= 9	sigr	no:	id	(s3)		

gr	ad_L =	1.0	
gr	ad_s3 =	grad_L * (1 - L) * L	
gr	~ad_w2 =	grad_s3	
gr	ad_s2 =	grad_s3	
gr	ad_s0 =	grad_s2	
gr	ad_s1 =	grad_s2	
gr	ad_w1 =	grad_s1 * x1	
gr	ad_x1 =	grad_s1 * w1	
gr	ad_w0 =	grad_s0 * x0	
gr	ad_x0 =	grad_s0 \star w0	

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 104



Forward pass: Compute output

Add gate

de	ef	f(v	v0,	x	Э,	w1,	x1,
	s0	=	w0	*	x٥)	
	s1	=	w1	*	x1	Ļ	
			s0				
	s3	=	s2	+	W2	2	
	L	= 9	sigr	no:	id((s3)	

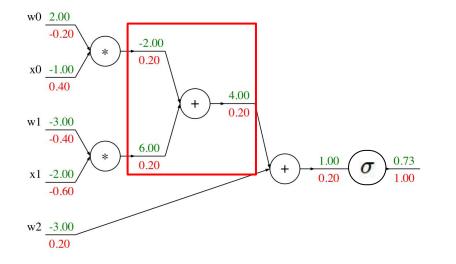
grad_L = 1.0
<u>grad s3 = grad L * (1 - L) * L</u>
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 105

April 16, 2020

w2):



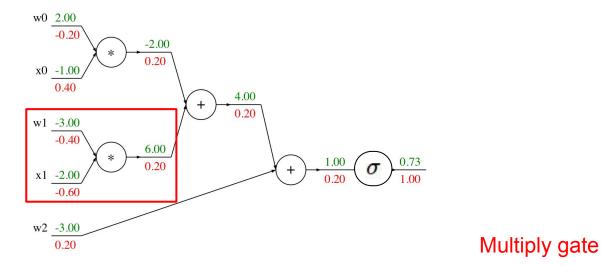
	<pre>def f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass: Compute output	s1 = w1 * x1
	s2 = s0 + s1
	s3 = s2 + w2
	L = sigmoid(s3)

	$grad_L = 1.0$
	$grad_s3 = grad_L * (1 - L) * L$
	grad_w2 = grad_s3
_	grad_s2 = grad_s3
ſ	grad_s0 = grad_s2
I	grad_s1 = grad_s2
1	grad_w1 = grad_s1 * x1
	grad_x1 = grad_s1 * w1
	grad_w0 = grad_s0 * x0
	grad_x0 = grad_s0 * w0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 106

Add gate

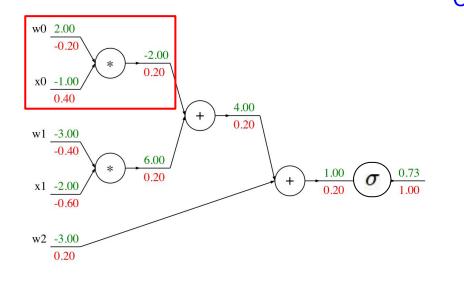


c	<pre>lef f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass:	s1 = w1 * x1
Compute output	s2 = s0 + s1
Compute output	s3 = s2 + w2
	L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 107



def f(w0, x0, w1, x1, w2): s0 = w0 * x0s1 = w1 * x1s2 = s0 + s1Compute output s3 = s2 + w2= sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Multiply gate

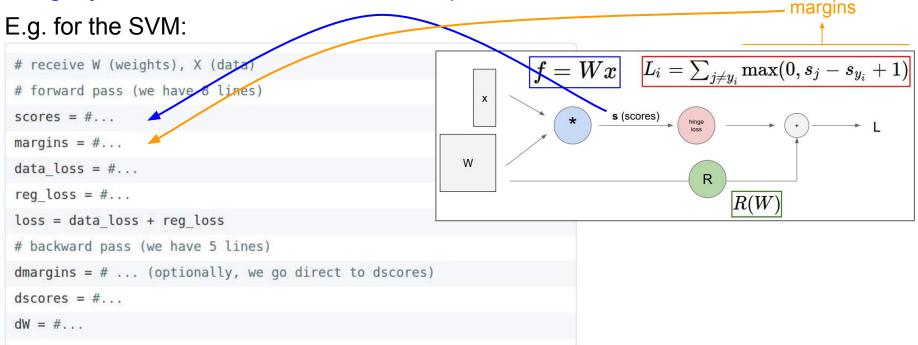
Forward pass:

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 108

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!



Lecture 4 - 109

April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

"Flat" Backprop: Do this for assignment 1!

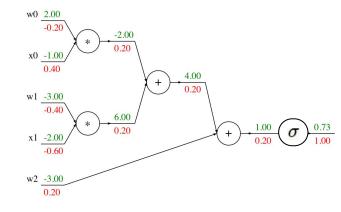
E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

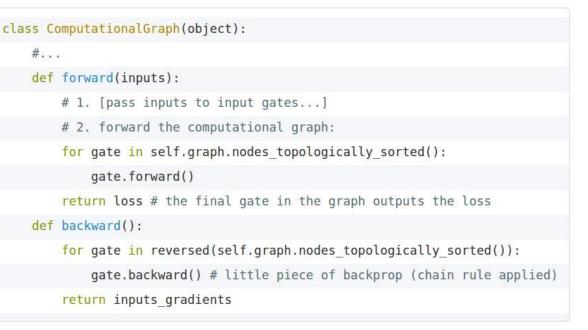
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 110

Backprop Implementation: Modularized API



Graph (or Net) object (rough pseudo code)



April 16, 2020

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 111

So far: backprop with scalars

What about vector-valued functions?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 117

Recap: Vector derivatives

Scalar to Scalar

 $x\in \mathbb{R}, y\in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 118

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

Derivative is Gradient:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Lecture 4 - 119

April 16, 2020

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

Derivative is **Gradient**:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

Vector to Scalar

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

Vector to Vector $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Derivative is Jacobian:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change? For each element of x, if it changes by a small amount then how much will each element of y change?

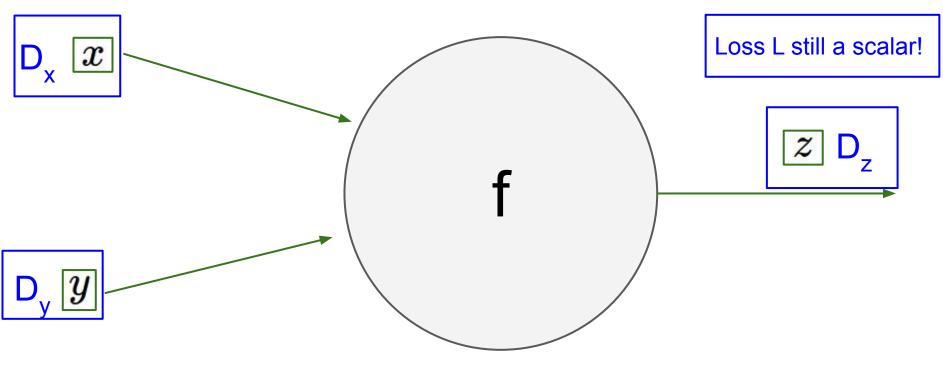
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 120



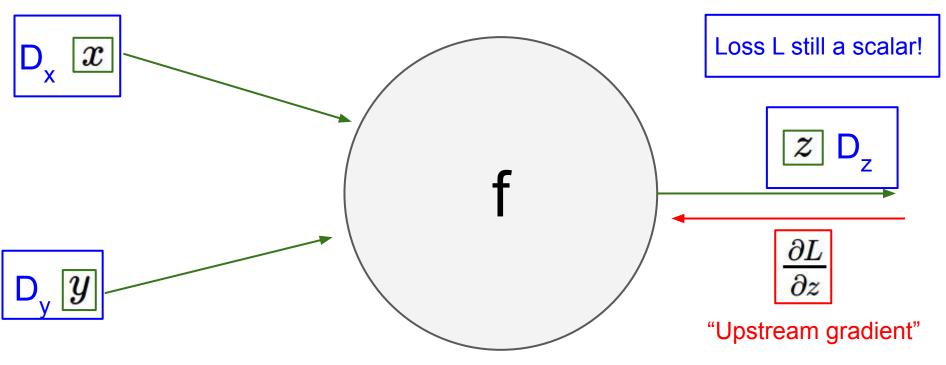
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 121



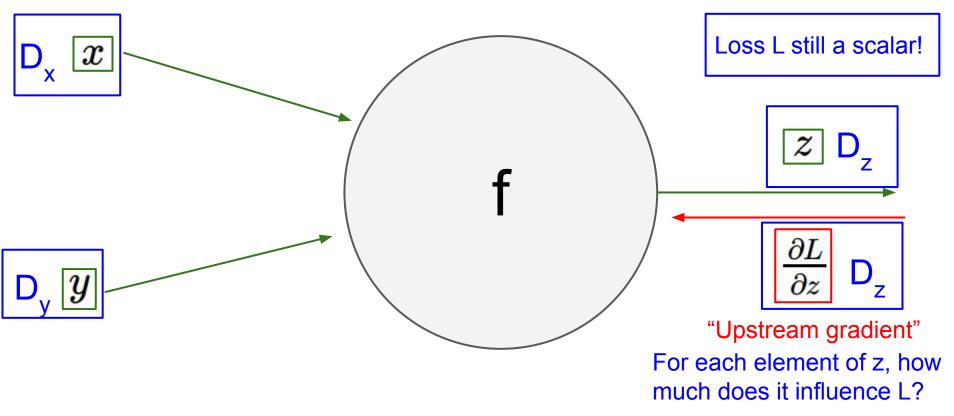
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 122



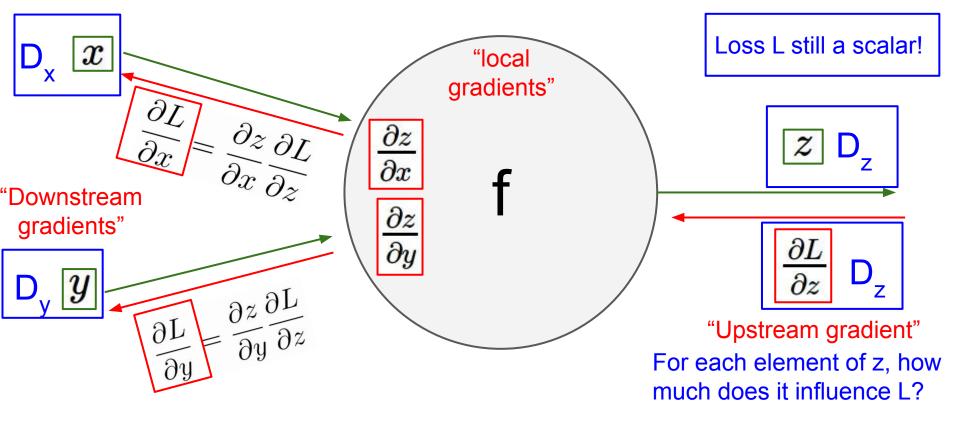
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 123



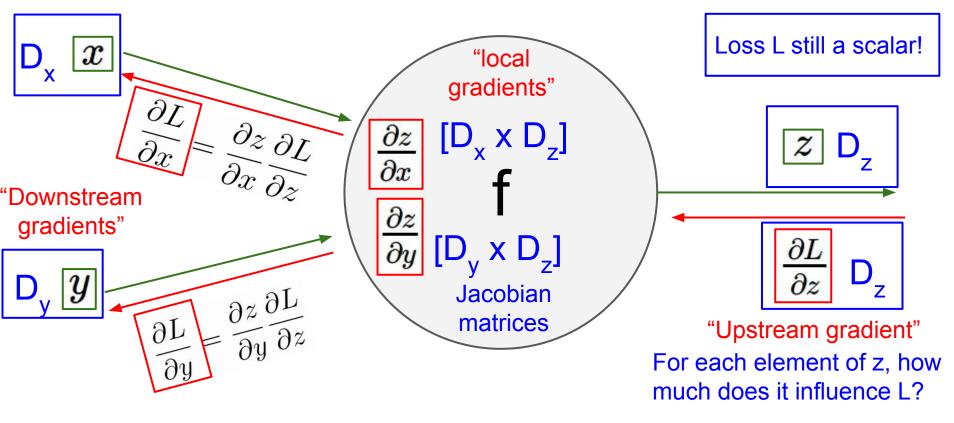
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 124



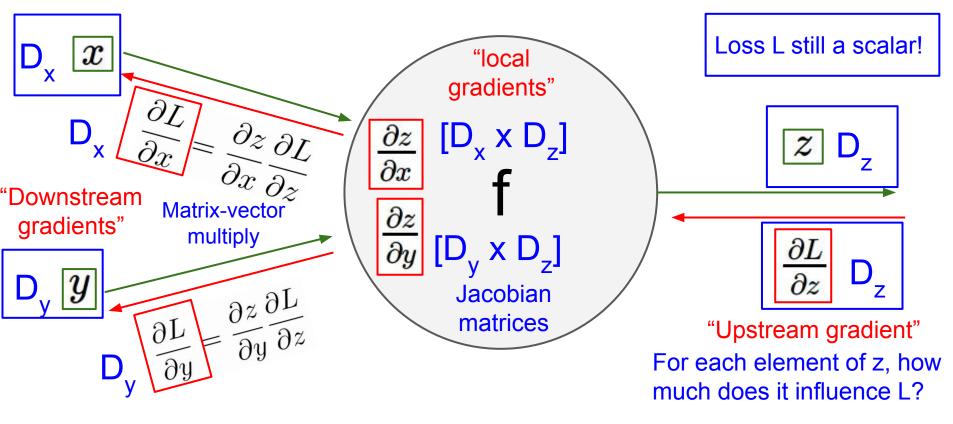
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 125



Fei-Fei Li, Ranjay Krishna, Danfei Xu

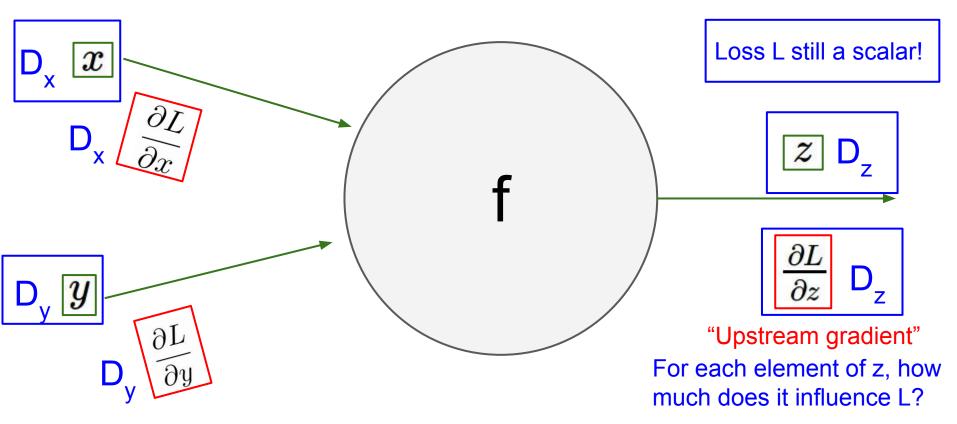
Lecture 4 - 126



Fei-Fei Li, Ranjay Krishna, Danfei Xu

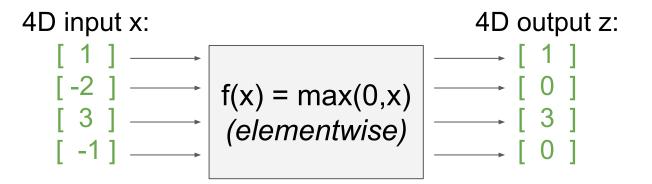
Lecture 4 - 127

Gradients of variables wrt loss have same dims as the original variable



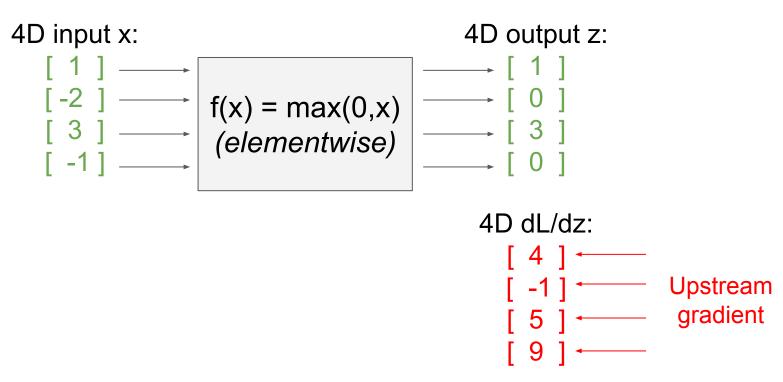
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 128



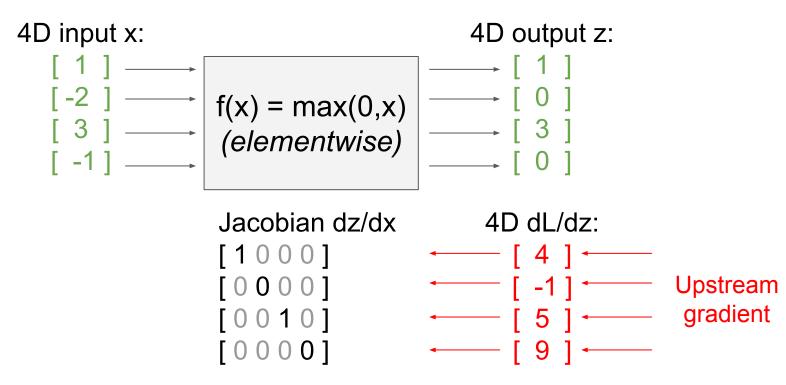
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 129



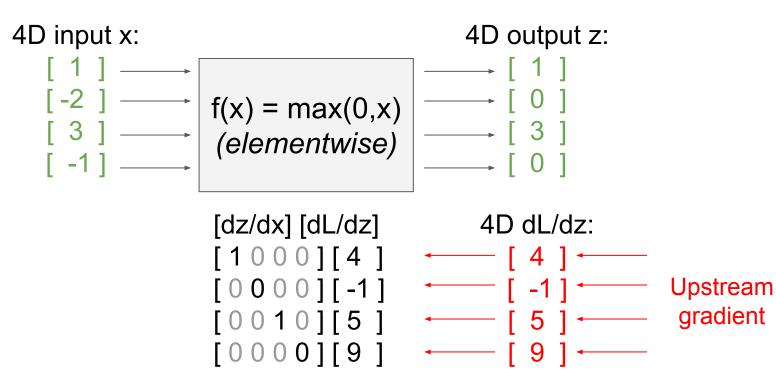
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 130



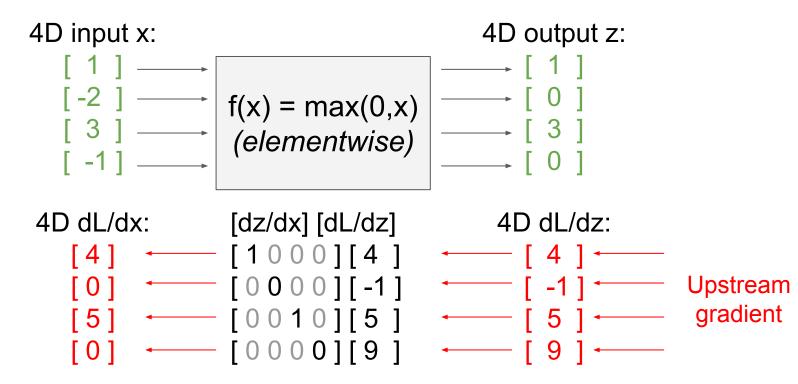
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 131



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 132



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 133

4D input x: 4D output z: f(x) = max(0,x)Jacobian is **sparse**: 3 (elementwise) off-diagonal entries -1 always zero! Never explicitly form Jacobian -- instead 4D dL/dx: $\left[\frac{dz}{dx}\right] \left[\frac{dL}{dz}\right]$ 4D dL/dz: use implicit multiplication 4 [4] [100]01[4] Upstream 01 $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ -11 -1 gradient [5] 1[5] 5 9 0 001[9 _____

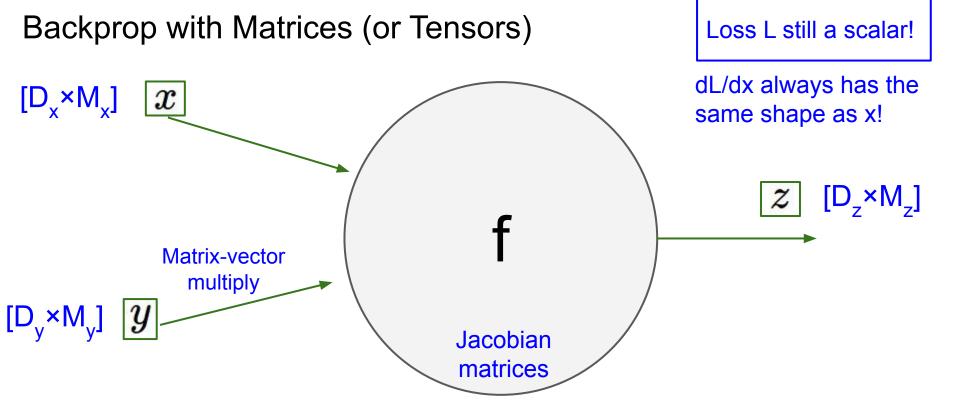
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 134

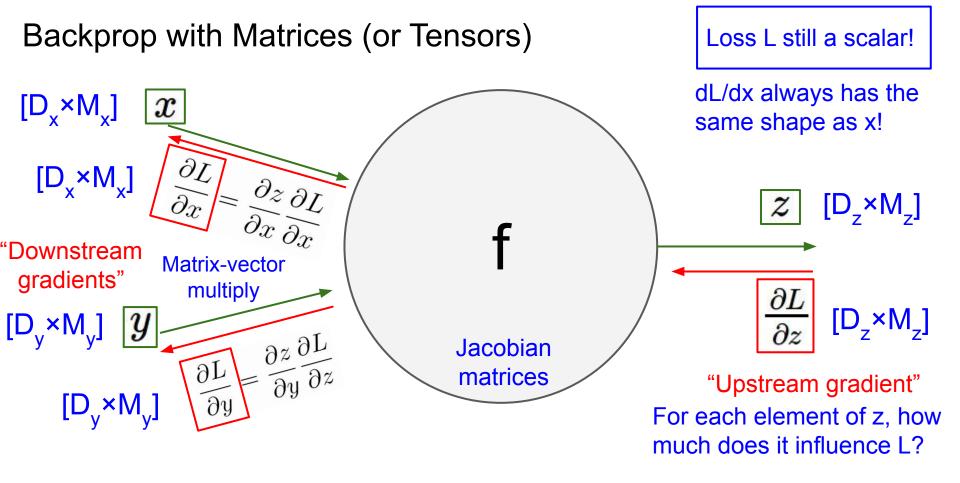
4D input x: 4D output z: f(x) = max(0,x)Jacobian is **sparse**: 3 (elementwise) off-diagonal entries always zero! Never explicitly form Jacobian -- instead 4D dL/dz: 4D dL/dx: [dz/dx] [dL/dz] use implicit $\begin{bmatrix} 4 \end{bmatrix} \leftarrow & \leftarrow \begin{bmatrix} 4 \end{bmatrix} \leftarrow & \\ \begin{bmatrix} 0 \end{bmatrix} \leftarrow & \begin{pmatrix} \frac{\partial L}{\partial x} \end{pmatrix}_i = \begin{cases} \left(\frac{\partial L}{\partial z} \right)_i & \text{if } x_i > 0 \leftarrow \begin{bmatrix} -1 \end{bmatrix} \leftarrow & \\ 0 & \text{otherwise} \leftarrow \begin{bmatrix} 5 \end{bmatrix} \leftarrow & \\ \end{bmatrix}$ multiplication Upstream gradient -101 ← [9] ←

Fei-Fei Li, Ranjay Krishna, Danfei Xu

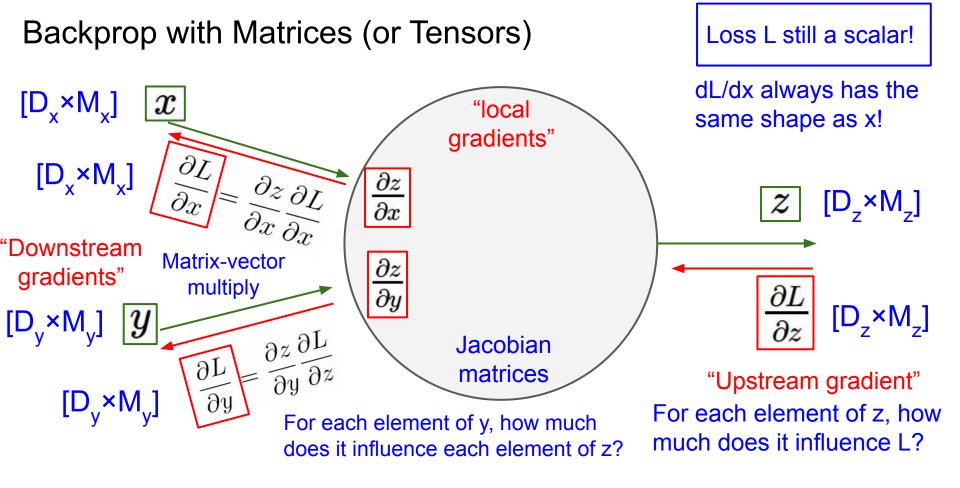
Lecture 4 - 135



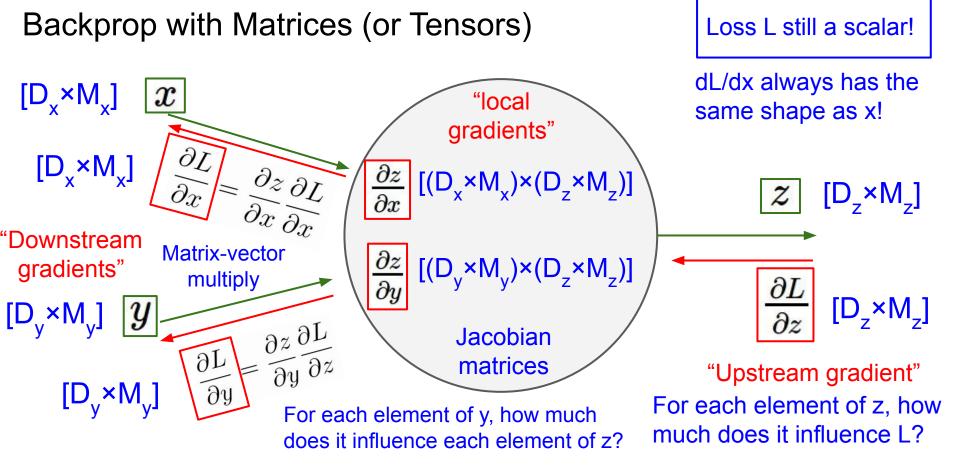
Lecture 4 - 136



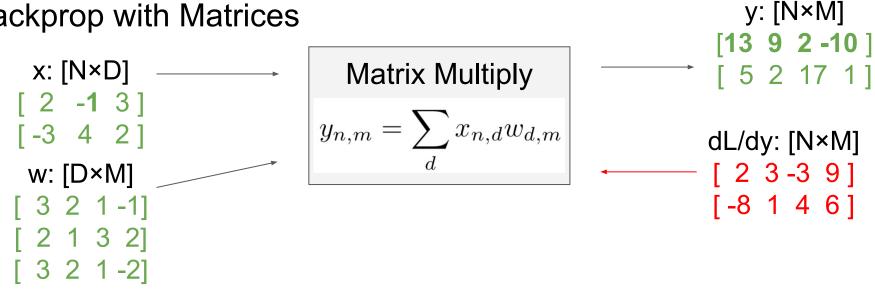
Lecture 4 - 137



Lecture 4 - 138



Lecture 4 - 139



Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 140

x: [N×D] [2 -1 3] [-3 4 2] w: [D×M] [3 2 1 -1] [2 1 3 2] [3 2 1 -2]

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Matrix Multiply $y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$

Jacobians: dy/dx: [(N×D)×(N×M)] dy/dw: [(D×M)×(N×M)]

For a neural net we may have N=64, D=M=4096 Each Jacobian takes 256 GB of memory! Must work with them implicitly!

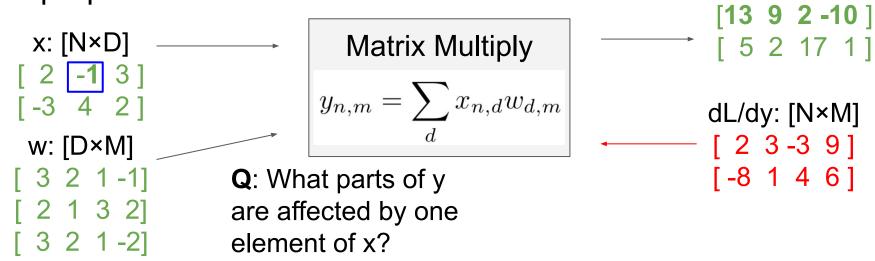
Lecture 4 - 141

[13 9 2 -10] [5 2 17 1] dL/dy: [N×M]

[23-39]

[-8 1 4 6]

y: [N×M]



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 142

April 16, 2020

y: [N×M]

x: [N×D]

-3 4 2]

w: [D×M]

3 2 1 - 1]

2 1 3 2]

[3 2 1 - 2]

-**1**|3]

Μ $y_{n,m}$ **Q**: What parts of y are affected by one element of x? A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$

atrix Multiply
$$=\sum_{d} x_{n,d} w_{d,m}$$

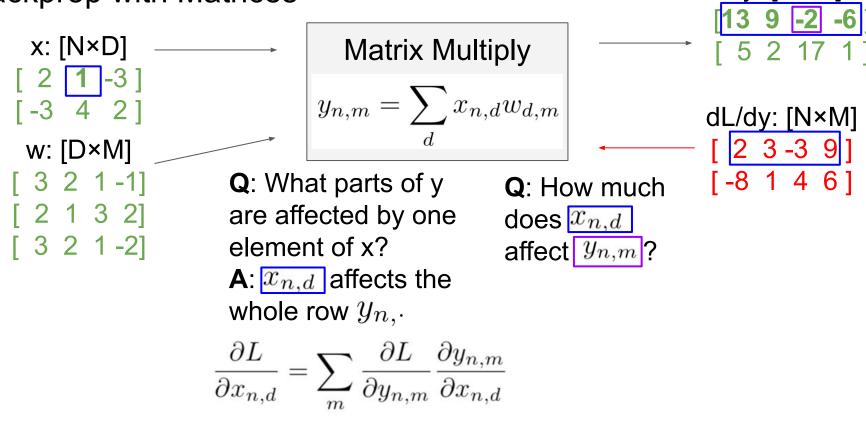
Lecture 4 - 143

dL/dy: [N×M] [2 3 -3 9] [-8 1 4 6]

IN×M

April 16, 2020

3 9 2 - 1



Lecture 4 - 144

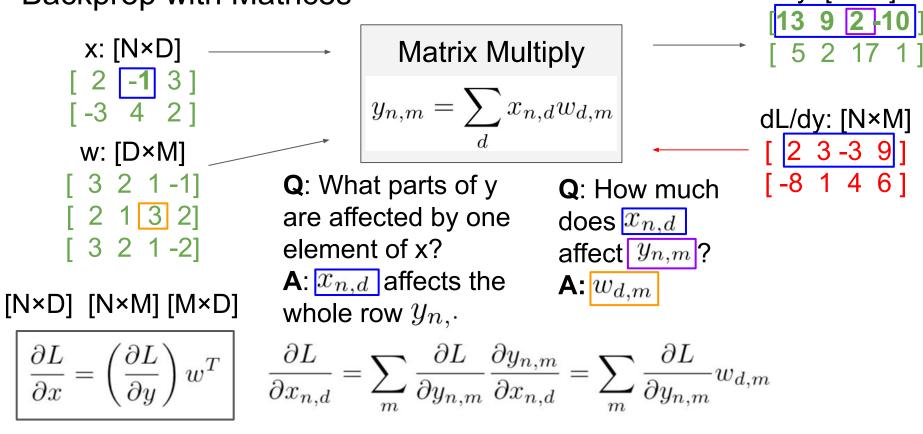
[N×M]

April 16, 2020

IN×M 13 9 2 x: [N×D] Matrix Multiply 2 5 2 -1 3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ -3 4 2] dL/dy: [N×M] w: [D×M] 23-39 $[-8 \ 1 \ 4 \ 6]$ 3 2 1 - 1] **Q**: What parts of y **Q**: How much 2 1 3 2] are affected by one does $\overline{x}_{n,d}$ [3 2 1 - 2] element of x? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} w_{d,m}$

Lecture 4 - 145

April 16, 2020



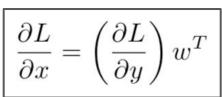
Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 146

IN×M

Lecture 4 - 147

April 16, 2020



 $[N \times D] [N \times M] [M \times D]$

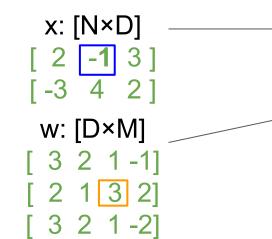
By similar logic:

 $[D \times M]$ $[D \times N]$ $[N \times M]$

 $= x^T$ (

 ∂L

 $\overline{\partial w}$



Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

5 2 dL/dy: [N×M] 2 3-3 9 <mark>8-</mark> ۱ 4 6 1

These formulas are

are the only way to

easy to remember: they

make shapes match up!

[N×M

Backprop with Matrices

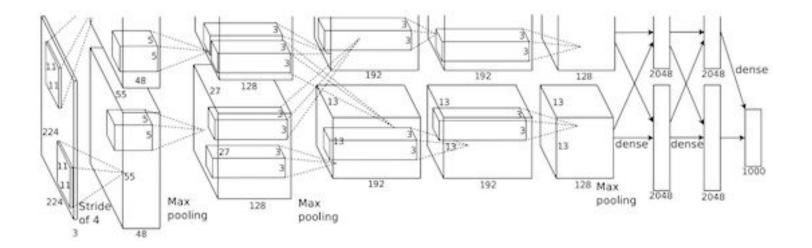
Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API

Lecture 4 - 148

- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Networks!



Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 4 - 149

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

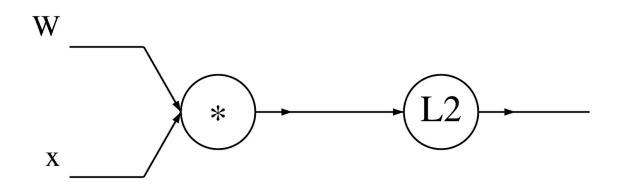
Lecture 4 - 150

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$ $\bigcup_{i \in \mathbb{R}^n \in \mathbb{R}^{n \times n}} ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

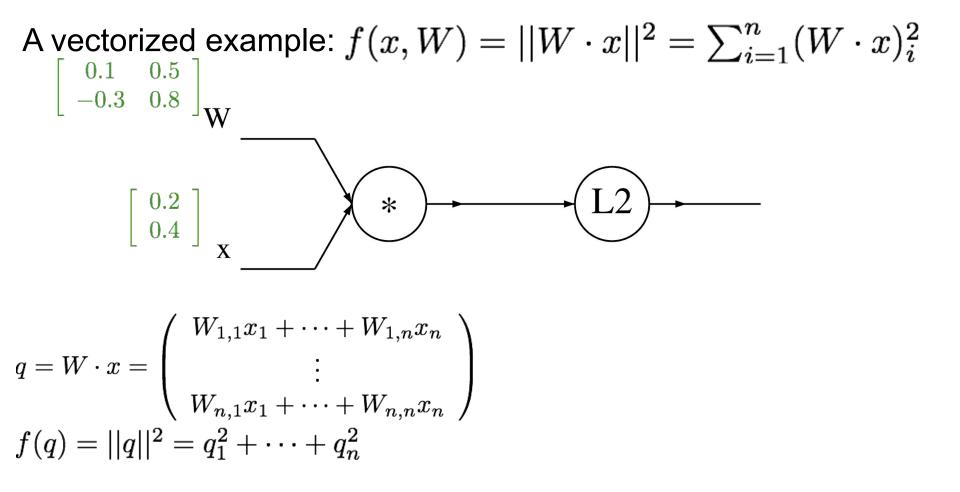
Lecture 4 - 151

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

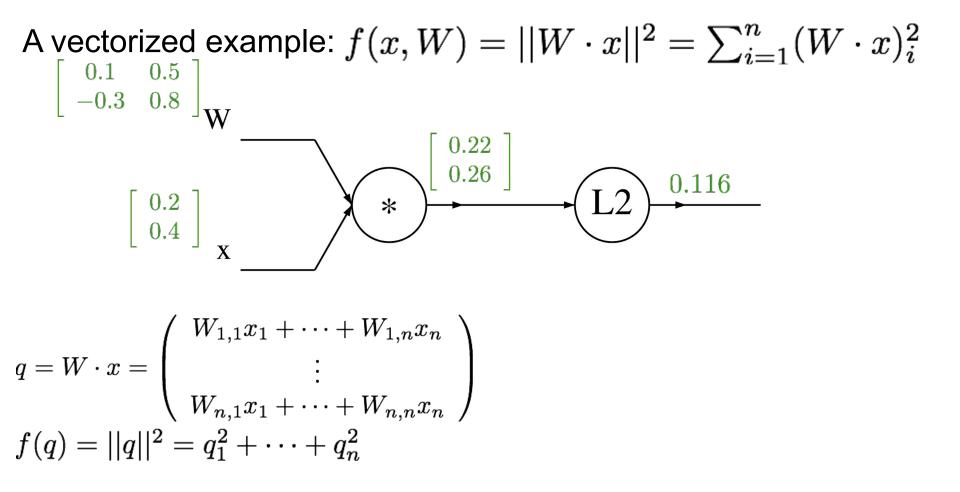


Fei-Fei Li, Ranjay Krishna, Danfei Xu

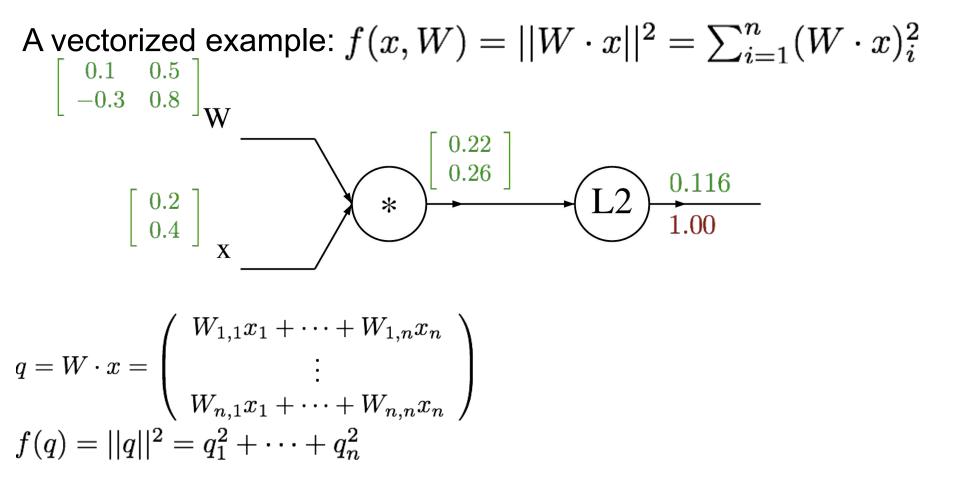
Lecture 4 - 152



Lecture 4 - 153



Lecture 4 - 154



Lecture 4 - 155

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$
 $\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$
 $q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$
 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$
 $\frac{\partial f}{\partial q_i} = 2q_i$
 $\nabla_q f = 2q$

Lecture 4 - 156

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

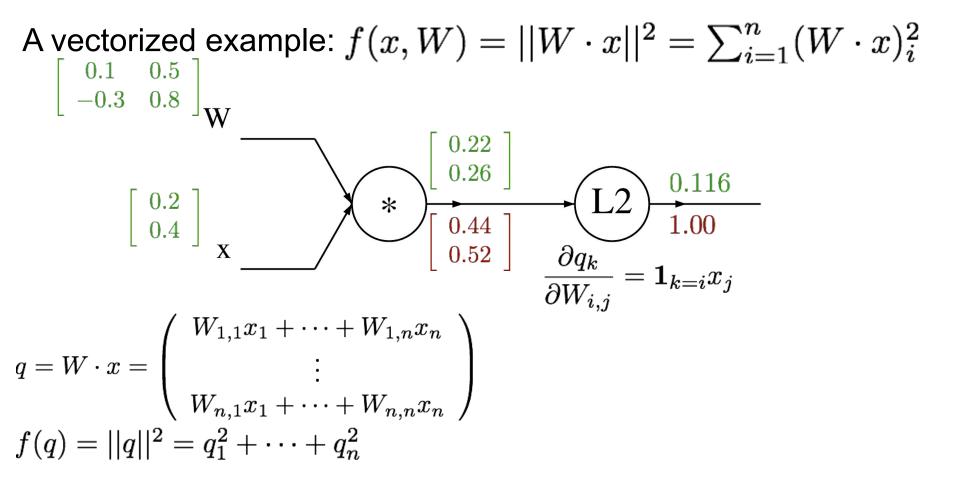
$$\begin{bmatrix} 0.2 \\ 0.116 \\ 1.00 \end{bmatrix}$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

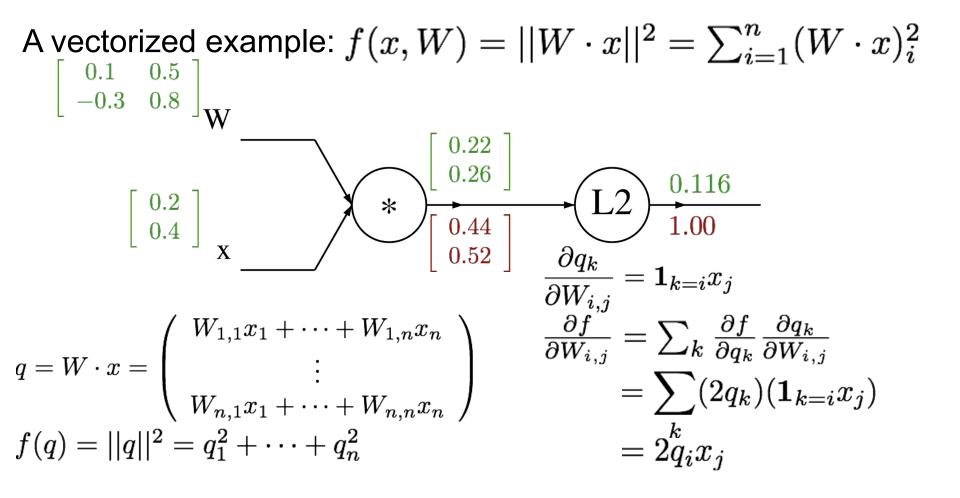
$$\begin{bmatrix} 0 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

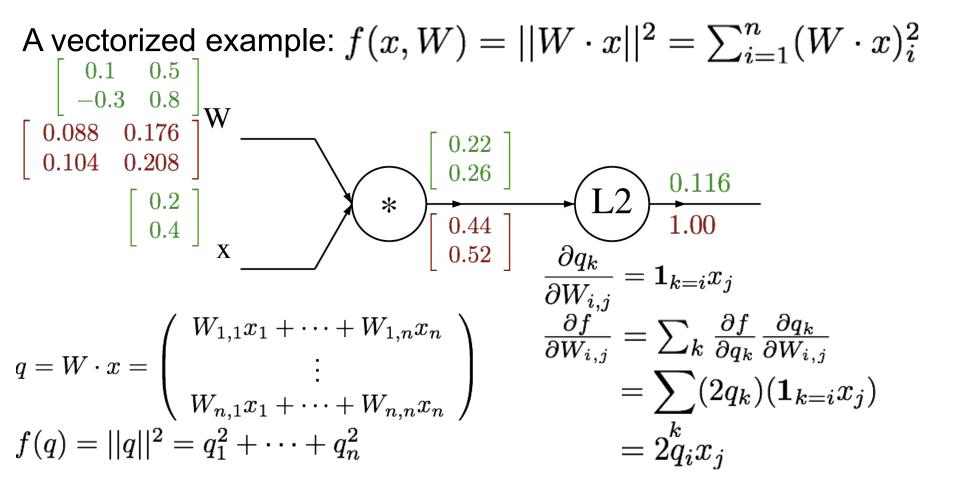
Lecture 4 - 157



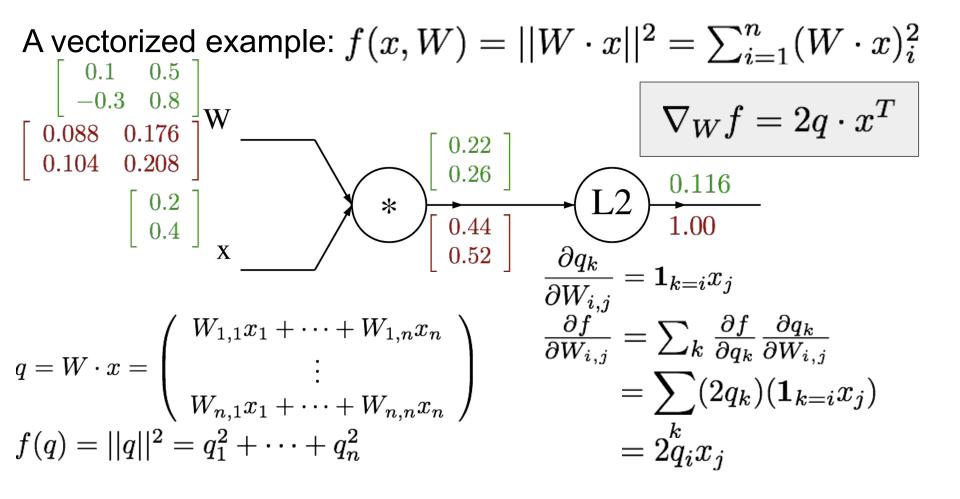
Lecture 4 - 158



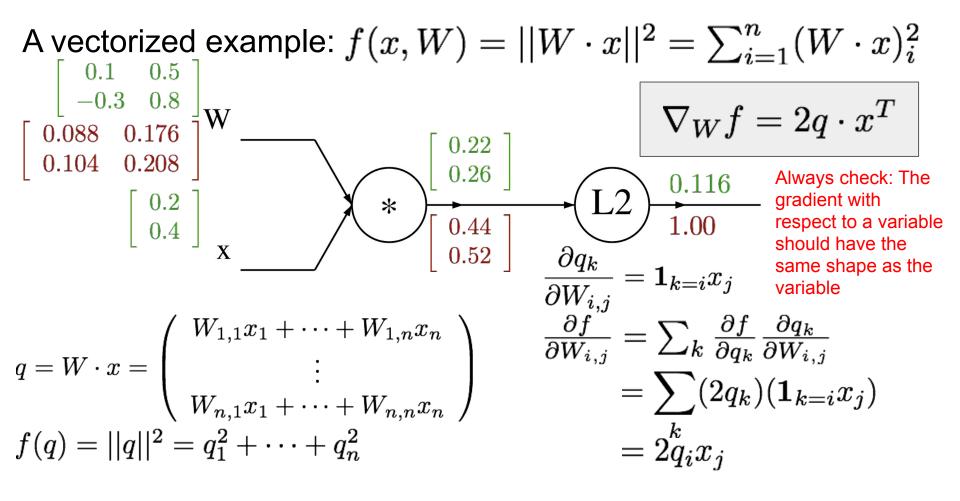
Lecture 4 - 159



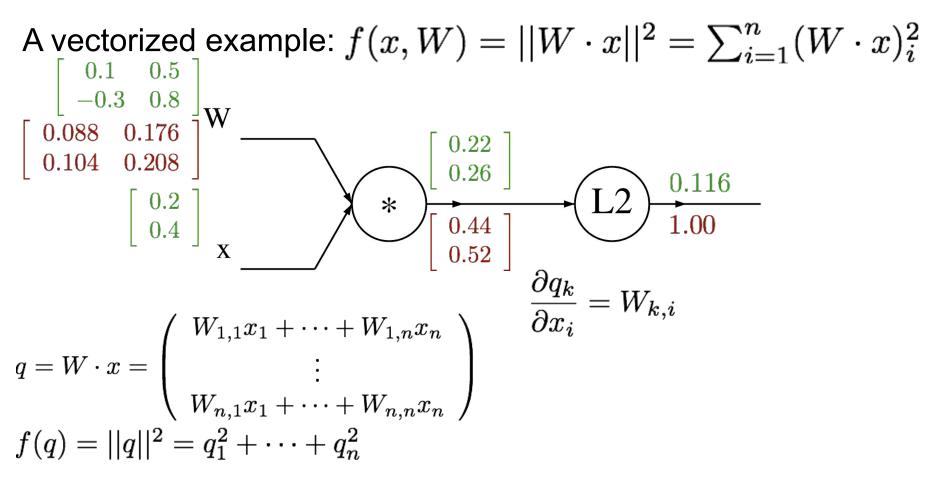
Lecture 4 - 160



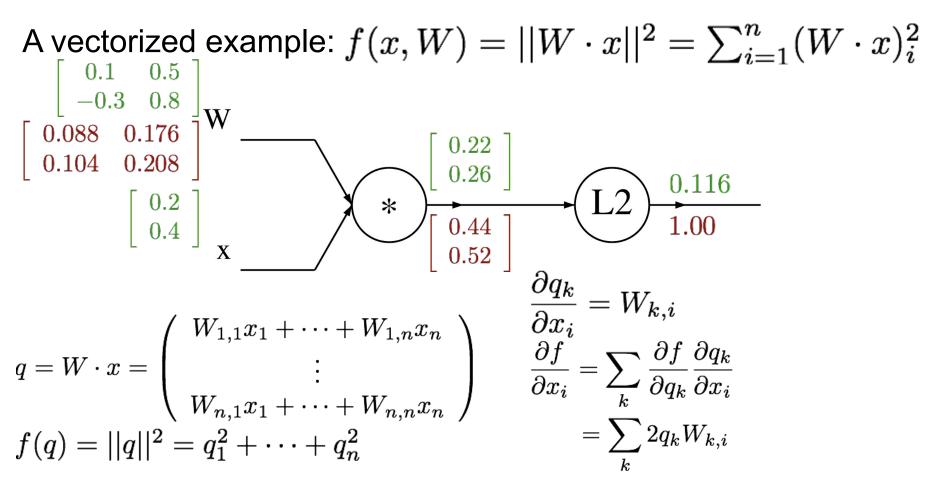
Lecture 4 - 161



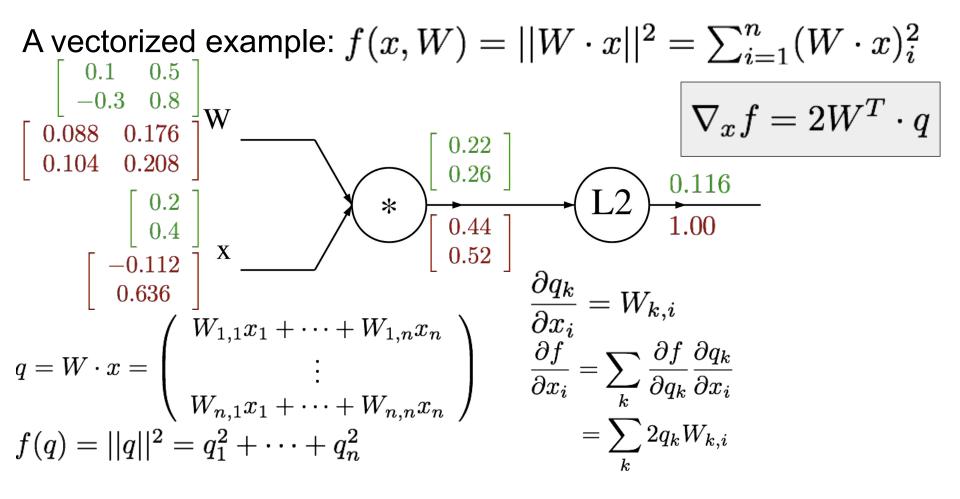
Lecture 4 - 162



Lecture 4 - 163

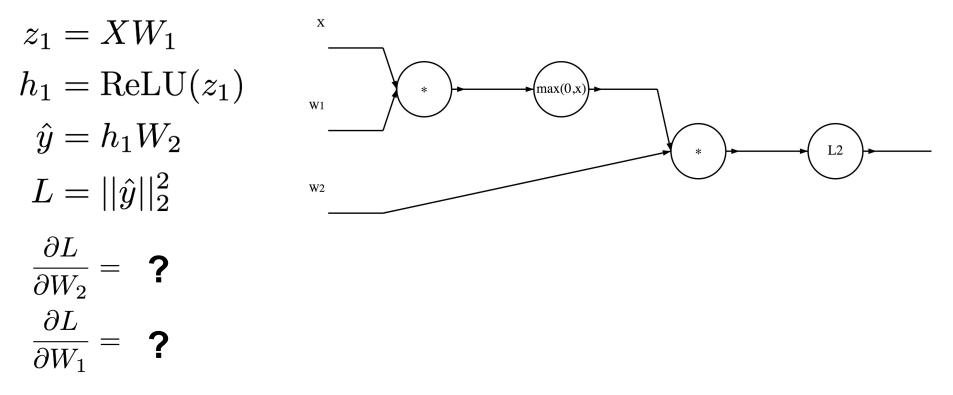


Lecture 4 - 164



Lecture 4 - 165

In discussion section: A matrix example...



Lecture 4 - 16

April 13, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung