Jlekumns 2:

OyHKUUM NOTEPb U ONTUMMU3ALMNS

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 1 Adapted by Artem Nikonorov



Image Classification: A core task in Computer Vision

(assume given a set of labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is
licensed under CC-BY 2.0
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Recall from last time: Challenges of recognition

Viewpoint [llumination Deformation Occlusion

s,

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This im.

is image is CCO 1.0 public domain age by jonsson is licensec

y jonsson is license
under CC-BY 2.0

Clutter Intraclass Variation

public domain public domain
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Recall from last time: data-driven approach, kNN

1-NN classifier 5-NN classifier

train test

train validation test
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Recall from last time: Linear Classifier

Image

o) —— 10 umbors i f(x,W)=Wx+Db

Array of 32x32x3 numbers T

(3072 numbers total) W
parameters
or weights
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Interpreting a Linear Classifier: Visual Viewpoint

airplane ' )ﬁ.== X --. Input image
automoblle- =!3EE

bird SR EETH K

cat I T et 8 R O ' ! '
deer . aﬁ..EE 0.2 | 05 15 | 1.3 0 | .25
dog i ' *E!Hl” W 01 | 20 21 | 00 02 | -03
g BRSNS S E ¥ ¥ '
horse gy e € FOX I S G R b [ i
shup E M;.;.EE Score 9:8 43t9 61*95
truck i Iﬂi. EE

horse
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Visual Viewpoint

Algebraic Viewpoint

Input image
iy e
f(x,W) = Wx 8 o
\
02 | -0.5 1.5 | 1.3 0 | .25
w
01 | 20 21 | 0.0 02 | -0.3
v v v
b 1.1 3.2 1.2
v v v
Score -96.8 437.9 61.95
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Interpreting a Linear Classifier: Geometric Viewpoint

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0
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Recall from last time: Linear Classifier
TODO:

1. Define a loss function
that quantifies our
unhappiness with the

s e ~Uaol T scores across the training
automobile -8.87 6.04 4.64

bird 0.09 Mk 2:; 65 data.

cat 2.9 -4.22 5

e 4.48 ~4.19 2.64 2. Come up with a way of

- 232 3.58 5.55 efficiently finding the

il S ko heir-y parameters that minimize
ship -0.36 ~2.09 _4.79 the loss function.

truck ~0:72 -2.93 6.14 (optimization)

ikita is licensed under CC-BY 2.0; Car image is CCO0 1.0 public domain; Frog image is in

the public domain
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0
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Suppose: 3 training examples, 3 classes.

) A loss function tells how good
With some W the scores f(z, W) = Wz are:

our current classifier is
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Suppose: 3 training examples, 3 classes.

) A loss function tells how good
With some W the scores f(z, W) =Wz are:

our current classifier is
Given a dataset of examples
N

Where I ; is image and

cat 3.2 1.3 292 Y; is (integer) label
car 5.1 4.9 2.5
frog 1.7 20  -3.1
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Suppose: 3 training examples, 3 classes.

) A loss function tells how good
With some W the scores f(z, W) =Wz are:

our current classifier is
Given a dataset of examples

{(CIBZ, yz) il =1

Where I ; is image and

cat 3.2 1.3 292 Y; is (integer) label
car 5 1 49 2 5 Loss over the dataset is a

average of loss over examples:
frog -1.7 20 '31

ZL LUZ, ) yz)
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Z;, Y;)
where x; is the image ana
where g; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0
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Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss:
With some W the scores f(z, W) = Wz are:

Loss

Syi
Score for
correct class
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

Interpreting Multiclass SVM loss:

Loss

. Syi

' Score for
/ Sj correct class
score amongst
other classes
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Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss:

With some W the scores f(z, W) = Wz are:
Loss
. Sy;
' 'W-Jﬂcore for
/ Sj correct class
score amongst 1 \
Margin
Cat 3 .2 1 . 3 2 . 2 other classes
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

Interpreting Multiclass SVM loss:

“Hinge loss”
Loss

' core for
/ Sj correct class
score amongst 1
other classes Margin
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Z;, Y;)
where g, is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Z;, Y;)
where g; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 22 ST
car 5.1 4.9 2.5 = max(0, 5.1 - 3.2 + 1)

+max(0, -1.7-3.2+ 1)
frog -1.7 2.0 -3.1 = max(0, 2.9) + max(0, -3.9)

=29+0
Losses: | 2.9 oo
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Z;, Y;)
where g; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 22 ST
car 5.1 4.9 2.5 = max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

frog -1.7 2.0 -3.1 = max(0, -2.6) + max(0, -1.9)
Losses: 2.9 0 :8+0
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Z;, Y;)
where g; is the image ana
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

cat 3.2 1.3 22| ST .Y
car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 12.9 ©6.3+66

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Multiclass SVM loss:
Given an example (Z;, Y;)
where g, is the image ana
where Yi is the (integer) label,
and using the shorthand for the

scores vector: s = f(z;, W)

the SVM loss has the form:

Loss over full dataset is average:
i N
by = N D i1 Li
L=(29+0+12.9)/3
= 5.27
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With W th W) =W ;
ith some e scores f(x, W) xr are Lo = Zj—#yz- max(0,5; — sy, + 1)

Q1: What happens to loss if car
scores decrease by 0.5 for this
training example?

cat 1.3 Q2: what is the min/max possible
SVM loss L.?
car 4.9
20 Q3: At initialization W is small so
frog ' all s = 0. What is the loss L,
Losses: 0 assuming N examples and C
classes?
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Multiclass SVM loss:
Given an example (Z;, Y;)
where g, is the image ana
where Yi is the (integer) label,
and using the shorthand for the

scores vector: s = f(z;, W)

the SVM loss has the form:

Q4: What if the sum
was over all classes?
(including j =y i)
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Multiclass SVM loss:
Given an example (Z;, Y;)
where g, is the image ana
where Yi is the (integer) label,
and using the shorthand for the

scores vector: s = f(z;, W)

the SVM loss has the form:

Q5: What if we used
mean instead of
sum?
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Multiclass SVM loss:
Given an example (Z;, Y;)
where g, is the image ana
where Yi is the (integer) label,
and using the shorthand for the

scores vector: s = f(z;, W)

the SVM loss has the form:

Q6: What if we used

L; = Z#yi max(0, s; — sy, + 1)°
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Multiclass SVM Loss: Example code

Li =) ., max(0,s; — sy, +1)

def L_i vectorized(x, y, W):

scores = W.dot(x) # First calculate scores
margins = np.maximum(®, scores - scores[y] + 1) #Then calculate the marginss, -s + 1
margins[y] = 0 # only sum j is not y,, so when | =y, set to zero.

i i m acr Il j
loss i = np.sum(margins) # sum across all j

return loss i
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flx, W) =Wz

L= ity Xz, max(0, f(2i; W); — f(2:; W)y, +1)

Q7. Suppose that we found a W such that L = 0.
Is this W unique?”?
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flx, W) =Wz
L= ity Xz, max(0, f(2i; W); — f(2:; W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Suppose: 3 training examples, 3 classes. Li =»_;,, max(0,s; — sy, + 1)
With some W the scores f(z, W) = Wz are: 1

Before:

=max(0,1.3-49+1)
+max(0, 2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0
cat 3.2 1.3 2.2 With W twice as large:
car 51 | 49 | 25 | “mec26.e8.n
frog _1 7 20 _31 : Bnixéo, -6.2) + max(0, -4.8)
Losses: 2.9 0 -0
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HekoppekTHaa 3agava, lll-posed problem

flx, W) =Wz
L= ity Xz, max(0, f(2i; W); — f(2:; W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!
How do we choose between W and 2W?
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user
Печатный текст
Некорректная задача, Ill-posed problem


Regularization

NZL xza ) y’&)
N J

~

Data loss: Model predictions
should match training data
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Regularization

N J W_/
V
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization intuition: toy example training data

O
O
© @
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Regularization intuition: Prefer Simpler Models

f, £

Yy 2

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Regularization: Prefer Simpler Models

f, £

Regularization pushes against fitting the data
too well so we don't fit noise in the data
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Regularization

= o ZL (zi, W), 4i) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Occam’s Razar: Among multiple competing
hypotheses, the simplest is the best,
William of Ockham 1285-1347
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Regularization )\ = regularization strength
(hyperparameter)

N J W_/
V
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization )\ = regularization strength
(hyperparameter)

= o ZL (zi, W), 4i) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 reqularization: R(W) = >, >, W,

L1 regularization: R(W) = >, >, [Wk,

Elastic net (L1 + L2): R(W) = 3_, 32, W, + [Wi,|
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Regularization )\ = regularization strength
(hyperparameter)

N ZL (25, W), 4:) + AR(W)

\ \ J H/_/

Data loss: Model predictions  Regularization: Prevent the model

should match training data from doing too well on training data
Simple examples More complex:
L2 reqularization: R(W) = >, >, W, Dropout
L1 regularization: R(W) = >, >, [Wk, Batch normalization

Elastic net (L1 + L2): R(W) = 3>, -, W, + [Wi| Stochastic depth, fractional pooling, etc
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Regularization )\ = regularization strength
(hyperparameter)

N ZL (25, W), 4:) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Regularization: Expressing Preferences

L2 Regularization

R(W) — Zk Zl Wk2,l

Which of w1 or w2 will
the L2 reqularizer prefer?

= |1, 1, 1, 1]
1,0,0,0]

S
||

$
||

0.25,0.25,0.25, 0.25]

7 LT | ¢ S
wlm—me—l
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Regularization: Expressing Preferences

L2 Regularization

R(W) — Zk Zl Wk2,l

Which of w1 or w2 will
the L2 reqularizer prefer?

0.25,0.25,0.25,0.25] L2 regularization likes to

“spread out” the weights

= |1, 1, 1, 1]
1,0,0,0]

S
||

$
||
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Regularization: Expressing Preferences

L2 Regularization

R(W) — Zk Zl Wk2,l

Which of w1 or w2 will
the L2 reqularizer prefer?

Wy = 025, 0.25.0.25. 025] L2 regularization likes to

“spread out” the weights

= |1, 1, 1, 1]
w; = [1,0,0,0]

r=1 Which one would L1
regularization prefer?
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Softmax classifier
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Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities

cat 3.2
car 5.1
frog -1.7

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Softmax Classifier (Multinomial Logistic Regression)

s = flz; W)

cat 3.2
car 5.1
frog -1.7

PY = &X' =wy)

(R eSk

— Ej e

. Want to interpret raw classifier scores as probabilities

Softmax
Function
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Softmax Classifier (Multinomial Logistic Regression)

s = flz; W)

Probabilities
must be >=0

24.5
car 51 —164.0
frog -1.7 0.18

unnormalized
probabilities

PY = &X' =wy)

(R eSk

— Ej e

. Want to interpret raw classifier scores as probabilities

Softmax
Function
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Softmax Classifier (Multinomial Logistic Regression)

-~ Want to interpret raw classifier scores as probabilities
8§ = f(a:z, W) P(Y = k|X - a’;z) — _€* | Softmax

>>; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1

24.5 0.13
car 51 —164.0/=™=% 0.87
frog -1.7 018 OOO

unnormalized probabilities
probabilities
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S = f(a:z, W) P(Y — k|X — a’;z) . €k Softmax

>>; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1
cat 3.2 24.5 0.13

exp

car 51 —164.0|="™"% 0.87
frog -1.7 018 OOO

Unnormalized unnormalized probabilities
log-probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S = f(a:z, W) P(Y — k|X — a’;z) . &k Softmax

>>; €7 | Function

b e0  mustaomtaq Li = ~1ogP(Y = ulX = =)
cat 3.2 24.5 0.13 | - L =-l0g(0.13)
car 51 [+164.0|~™=| 0.87 -0
fog | -1.7 0.18 0.00
Unnormalized unnormalized probabilities

log-probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S = f(a:z, W) P(Y — k|X — a’;z) . €k Softmax

>~ €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 Li = —log P(Y = ;| X = =)
cat 3.2 24.5 0.13 | - L =-l0g(0.13)
exXp normalize =2.04

car 51 —164.0|—— 0.87
frog 1.7 0.18 0.00 | Chooss weights to mascmize o

likelihood of the observed data
Unnormalized unnormalized probabilities (See CS 229 for details)

log-probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

-~ Want to interpret raw classifier scores as probabilities
8§ = f(a:z, W) P(Y = k|X - a’;z) — _€* | Softmax

>>; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 Li = —log P(Y = ;| X = =)
cat 3.2 24.5 0.13 [ compare=—1 41,00

exp

car 51 —164.0|="™"% 0.87 0.00
frog -17 018 OOO OOO

Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
S = f(:];z, W) P(Y = k|X — a’;z) — _€*__| Softmax

>>; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1

cat 3.2 24.5 0.13 [+ compare <— 41,00
car 51 —~164.0|™=] 0.87 | “hkecktetler | 3 00
frog -1.7 0.18 0.00 - 0.00

Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs

Li = —log P(Y = 4| X = z;)
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Softmax Classifier (Multinomial Logistic Regression)

-~ Want to interpret raw classifier scores as probabilities
8§ = f(a:z, W) P(Y = k|X - a’;z) — _€* | Softmax

>>; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 Li = —log P(Y = ;| X = =)
cat 3.2 24.5 0.13 [ compare=—1 41,00

exp

car 51 —164.0]"""% 0.87 | crossenopy | 0.00
tog |17 | |0.18 0.00] <Y |0.00

Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S = f(a:z, W) P(Y — k|X — a’;z) . €k Softmax

>>; €7 | Function

Maximize probability of correct class Putting it all together:
Li=—-logP(Y =%|X=%) [, = _J]og(--"
2 g S :
cat 3.2 ( > €7 )

5.1 L;‘ Z—fyi+]Dg;Efj

car

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
S = f(;[;z, W) P(Y = k|X — ajz) — _€*__| Softmax

>~ €7 | Function

Maximize probability of correct class Putting it all together:
Li = —logP(Y =ti|X =2:) [, = —log(L2-
cat 3.2 ’ 8( >, € )
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
fro 17 Q2: At initialization all s, will be approximately equal;
9 what is the softmax loss L., assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
S = f(:];z, W) P(Y = k|X — a’;z) — _€*__| Softmax

>~ €7 | Function

Maximize probability of correct class Putting it all together:
Li=—logP(Y=%|X=2) [.=—1¢ esyis‘
cat 3.2 . & > €7 )
car 5 1 Q: What is the min/max
' possible loss L.?
frog -1.7 | A: min 0, max infinity
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
S = f(:];z, W) P(Y = k|X — a’;z) — _€*__| Softmax

>>; €7 | Function

Maximize probability of correct class Putting it all together:
Li=—-logP(Y =%|X=%) [, = _J]og(--"
2 g S :
cat 3.2 ( > €7 )

5 1 Q2: At initialization all s. will be

car approximately equal; what is the loss?

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities
8§ = f(a:z; W) P(Y = k|X — SEZ) — Lk Softmax

>~ €7 | Function

Maximize probability of correct class Putting it all together:
Li=—logP(Y =yi|X =) [; =—log(<%-)
2 g S :
cat 3.2 > €7

Q2: At initialization all s will be
car 5.1 . _ .
approximately equal; what is the loss?

frog -1.7 | A:-log(1/C) = log(C),
If C =10, then L =10g(10) = 2.3
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Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»| | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
o 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 | -045| -02 | 0.03 44 203 cross-entropy loss (Softmax)
-2.85 0.058 0.016
|24 56 b
ex normalize
> | 0.86 _p, 236 |— 5 |0.631 | -l0g(0353)
w?, (to sum =
to one) 0.452
0.28 1.32 0.353
Y | 2
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Softmax vs. SVM

L; = —log( iyésj ) i = Dz, max(0,s; — sy, +1)
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Softmax vs. SVM

L; = —log( ZSZJ ) Li = ). ,., max(0,s; — sy, +1)
assume scores: Q: What is the softmax loss and
_, 0, -2, 3] the SVM loss?

10,9, 9]

10, -100, -100]

and 1y, =0

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 2 Adapted by Artem Nikonorov



Softmax vs. SVM

b :—log(z‘;) Li = ). ,., max(0,s; — sy, +1)
assume sScores: Q: What is the softmax loss and

the SVM loss if | double the

10, -2, 3] correct class score from 10 ->
10, 9, 9] 207

10, -100, -100]

and y, =0
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Recap

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z;W) =Wz
- We have a loss function:

Softmax

Li = — log( esyis.)

J e’ SVM regularization loss

g s : W ‘ —
Lz — Z]#yz maX(O, 8] — Syz + 1) scorefunctnor;u'?(mi’w)l i }J‘

-
™

\ 4
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Recap How do we find the best W?

- We have some dataset of (x,y) cq.
- We have a score function: s = f(z;W) =Wz
- We have a loss function:

Softmax

Li = — log( esyis.)

J e’ SVM regularization loss

g s : W ‘ —
Lz — Z]#yz maX(O, 8] — Syz + 1) scorefunctnor;u'?(mi’w)l i >}J‘

-
™
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Optimization
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Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf") # Python assig:
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001 # generate random parametet
loss = L(X train, Y _train, W)
if loss < bestloss: # keeg;
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
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Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols) # 10 x 10000, the class scores fol
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTAis ~99.3%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df(z) _ . fz+h) - f(z)

dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

S

0 0 A "2 "I A S SR VAL

-
u
»

| S |
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current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

.

(1.25322 - 1.25347)/0.0001
=-2.5

df(e) .. He¥h)=flx)
Fr h
7,
?,...]
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim): gradient dW:
[0.34, [-2.5,

-1.11 + 0.0001, 0.6,

0.78, ?, \

0.12, ?,

0.55, (1.25353 - 1.25347)/0.0001
2.81, =0.6

-3.1, df(e) _ . f@t+h) -~ f(@)
_1 .5, dx h —0 h
0.33,...] ?,...]

loss 1.25353
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current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

2
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

0,
I?

")
~n

Numeric Gradient
- Slow! Need to loop over
all dimensions
- Approximate

g—

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 2 Adapted by Artem Nikonorov




This is silly. The loss is just a function of W:
L= %Zf\;l_’i + 30, Wy

Li = ,., max(0,s; — sy, +1)

s=f(z; W) =Wz

want VWL
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This is silly. The loss is just a function of W:
L= %Zf\;[’i + 30, Wy

Li =Y, max(0,s; — sy, + 1)

s=f(z; W) =Wz

want VWL

Use calculus to compute an
analytic gradient
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current W: gradient dW:
[0.34, [-2.5,
-1.11, dwW = ... 0.6,
0.78, (some function 0,

0.12, data and W) 0.2
0.55, 0.7,
2.81, T b
-3, 11,
1.5, 13,
0.33,...] 2.1...]
loss 1.25347
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In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check
iImplementation with numerical gradient. This is called a
gradient check.
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Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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original W

—

negative gradient direction
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Stochastic Gradient Descent (SGD)

Full sum expensive

N
! .
L(W) = I Z Li(zi,y;, W) + AR(W) when N is large!
1 Z? Approximate sum
L = L;(z;. v using a minibatch of
Vi) N ;VW (@0, W) + AVwR(W) examples

32 /64 /128 common

while 7
data batch = sample training data(data, 256) # sample 256 examples
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad # perform parameter update
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Interactive Web Demo
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Singka parameter update [K]

Step sizez 0,10000

»

Start repeated update Total data loss: 0.64
Regularization loss: 1.92

Siop repoated update LOLELLUasT

Randomize parameders

L2 Regularization strength: 0.10000

http://vision.stanford.edu/teachina/cs231n-demos/linear-classify/
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Next time:

Introduction to neural networks

Backpropagation
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