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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20203

Administrative

Midterm: Take-home (1hr 40min), Tue May 12. Covers 
material through Lecture 10 (Thu May 7). 

Midterm review session: Fri May 8 discussion section

Sample midterm has been released on Piazza.

OAE accommodations: If you have not received an email 
from us, please reach out to the staff mailing list ASAP.
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20204

Administrative

A3 will be released next Wed May 13, due Wed May 27

Project milestone due Mon May 18
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Transfer learning
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

“You need a lot of a data if you want to 
train/use CNNs”
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

“You need a lot of a data if you want to 
train/use CNNs”

7

BU
ST
ED
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20208

Transfer Learning with CNNs
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20209

Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11 

(More on this in Lecture 13)
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202010

Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

(More on this in Lecture 13)
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202011

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202012

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202013

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for 
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202014

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202015

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202016

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Finetune 
linear 
classifier on
top layer

?

quite a lot of 
data

Finetune a 
few layers

?

Fei-Fei Li, Ranjay Krishna, Danfei Xu          Lecture 7        Adapted by Artem Nikonorov



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202017

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Finetune 
linear 
classifier on 
top layer

You’re in trouble… 
Try data 
augmentation / 
collect more data

quite a lot of 
data

Finetune a 
few layers 

Finetune a larger 
number 
of layers
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202018

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202019

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202020

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet

Word vectors pretrained 
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202021

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

1. Train CNN on ImageNet
2. Fine-Tune (1) for object detection on 

Visual Genome
3. Train BERT language model on lots of text
4. Combine(2) and (3), train for joint image / 

language modeling
5. Fine-tune (4) for imagecaptioning, visual

question answering, etc.

Zhou et al, “Unified Vision-Language Pre-Training for Image Captioning and VQA” CVPR 2020
Figure copyright Luowei Zhou, 2020. Reproduced with permission.

Krishna et al, “Visual genome: Connecting language and vision using crowdsourced dense image annotations” IJCV 2017
Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” ArXiv 2018
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Training from scratch can work just as 
well as training from a pretrained 
ImageNet model for object detection

But it takes 2-3x as long to train.

They also find that collecting more data 
is better than finetuning on a related 
task

22

Transfer learning with CNNs is pervasive…
But recent results show it might not always be necessary!

He et al, “Rethinking ImageNet Pre-training”, ICCV 2019
Figure copyright Kaiming He, 2019. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu          Lecture 7        Adapted by Artem Nikonorov



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Takeaway for your projects and beyond:

23

Source: AI & Deep Learning Memes For Back-propagated Poets
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202024

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~10k images?

1. Find a very large dataset that has similar data, train a 
big ConvNet there (or take pretrained models)

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained 
models so you don’t need to train your own

TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

CNN Architectures 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202026

Review: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Review: Convolution

27

32

32

3

32x32x3 image
3x3x3 filter

Padding:
Preserve
input spatial 
dimensions in 
output activations

Stride:
Downsample 
output activations
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Review: Convolution

28

32

32

3

Convolution Layer

activation maps

6

32

32

Each conv filter outputs a “slice” in the activation
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Review: Pooling

29

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Today: CNN Architectures 

30

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

- DenseNet
- MobileNets
- NASNet
- EfficientNet

Also....
- SENet
- Wide ResNet
- ResNeXT
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202031

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202032

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202033

Case Study: AlexNet
[Krizhevsky et al. 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Fei-Fei Li, Ranjay Krishna, Danfei Xu          Lecture 7        Adapted by Artem Nikonorov



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202034

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

W’ = (W - F + 2P) / S + 1
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202035

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

96
55 x 55

227

227

3

W’ = (W - F + 2P) / S + 1
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202036

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

11 x 11

3
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202037

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

11 x 11

3
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202038

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

W’ = (W - F + 2P) / S + 1
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202039

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

W’ = (W - F + 2P) / S + 1
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202040

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202041

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202042

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202043

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202044

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 
GPU with only 3 GB of memory. 
Network spread across 2 GPUs, half 
the neurons (feature maps) on each 
GPU.

[55x55x48] x 2

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202045

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: 
Connections only with feature maps 
on same GPU

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8: 
Connections with all feature maps in 
preceding layer, communication 
across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
ZFNet: Improved 
hyperparameters over 
AlexNet
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ZFNet [Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks
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Case Study: VGGNet

51

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 (ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19
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Case Study: VGGNet

52

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19
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Case Study: VGGNet

53

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

Q: What is the effective receptive field of 
three 3x3 conv (stride 1) layers?
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Case Study: VGGNet

54

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

55

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

56

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

57

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

58

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

59

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

[7x7]

Fei-Fei Li, Ranjay Krishna, Danfei Xu          Lecture 7        Adapted by Artem Nikonorov



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

60

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 
72C2 for C channels per layer
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in 
early CONV

Most params are
in late FC
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

Common namesTOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
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Case Study: VGGNet

65

[Simonyan and Zisserman, 2014]

Details:
- ILSVRC’14 2nd in classification, 1st in 

localization
- Similar training procedure as Krizhevsky 

2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only 

slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other 

tasks

AlexNet VGG16 VGG19
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- ILSVRC’14 classification winner 
(6.7% top 5 error)

- 22 layers
- Only 5 million parameters!          

12x less than AlexNet
27x less than VGG-16

- Efficient “Inception” module
- No FC layers
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on 
the input from previous layer:

- Multiple receptive field sizes 
for convolution (1x1, 3x3, 
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs 
together channel-wise
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on 
the input from previous layer:

- Multiple receptive field sizes 
for convolution (1x1, 3x3, 
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs 
together channel-wise

Q: What is the problem with this?
[Hint: Computational complexity]
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q1: What are the output sizes of 
all different filter operations?
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q1: What are the output sizes of 
all different filter operations?

28x28x128 28x28x192 28x28x96 28x28x256
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q2:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q2:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q2:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
Conv Ops:
[1x1 conv, 128]  28x28x128x1x1x256
[3x3 conv, 192]  28x28x192x3x3x256
[5x5 conv, 96]  28x28x96x5x5x256
Total: 854M ops
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q2:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
Conv Ops:
[1x1 conv, 128]  28x28x128x1x1x256
[3x3 conv, 192]  28x28x192x3x3x256
[5x5 conv, 96]  28x28x96x5x5x256
Total: 854M ops

Very expensive compute

Pooling layer also preserves feature 
depth, which means total depth after 
concatenation can only grow at every 
layer!
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q2:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that 
use 1x1 convolutions to reduce 
feature channel size
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Review: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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Review: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

FC

Alternatively, interpret it as applying 
the same FC layer on each input pixel

1x1x64 1x1x32
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Review: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56

preserves spatial 
dimensions, reduces depth!

Projects depth to lower 
dimension (combination of 
feature maps)

FC

Alternatively, interpret it as applying 
the same FC layer on each input pixel

64 32
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Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module
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Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

1x1 conv “bottleneck” 
layers

Fei-Fei Li, Ranjay Krishna, Danfei Xu          Lecture 7        Adapted by Artem Nikonorov



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202084

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module with dimension reduction

Using same parallel layers as 
naive example, and adding “1x1 
conv, 64 filter” bottlenecks:

Module input: 
28x28x256

28x28x64 28x28x64 28x28x256

28x28x128 28x28x192 28x28x96 28x28x64

Conv Ops:
[1x1 conv, 64]  28x28x64x1x1x256
[1x1 conv, 64]  28x28x64x1x1x256
[1x1 conv, 128]  28x28x128x1x1x256
[3x3 conv, 192]  28x28x192x3x3x64
[5x5 conv, 96]  28x28x96x5x5x64
[1x1 conv, 64]  28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after 
pooling layer

28x28x480
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Stack Inception modules 
with dimension reduction 

on top of each other
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Stem Network: 
Conv-Pool-

2x Conv-Pool

Full GoogLeNet 
architecture
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet 
architecture

Stacked Inception 
Modules
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet 
architecture

Classifier output
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet 
architecture

Note: after the last convolutional layer, a global 
average pooling layer is used that spatially averages 
across each feature map, before final FC layer. No 

longer multiple expensive FC layers!

Classifier output

HxWxc
1x1xc

AvgPool
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet 
architecture

Auxiliary classification outputs to inject additional gradient at lower layers 
(AvgPool-1x1Conv-FC-FC-Softmax)
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet 
architecture

22 total layers with weights 
(parallel layers count as 1 layer => 2 layers per Inception module. Don’t count auxiliary output layers)

Fei-Fei Li, Ranjay Krishna, Danfei Xu          Lecture 7        Adapted by Artem Nikonorov



Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202092

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC’14 classification winner 

(6.7% top 5 error)
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!

..

.

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!
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Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power 
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, 
deeper models are harder to optimize
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Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power 
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, 
deeper models are harder to optimize

What should the deeper model learn to be at least 
as good as the shallower model?

A solution by construction is copying the learned 
layers from the shallower model and setting 
additional layers to identity mapping.

relu

X

H(x)

relu

X

H(x)
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Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

relu

“Plain” layers
X

H(x)

relu

Residual block

X
identity

H(x) = F(x) + x

F(x)

relu

X

Identity mapping: 
H(x) = x if F(x) = 0 
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relu

101

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

X
identity

F(x)

relu

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

101

H(x) = F(x) + x

Identity mapping: 
H(x) = x if F(x) = 0 
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..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
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..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension) 
Reduce the activation 
volume by half. 

3x3 conv, 64 
filters

3x3 conv, 128 
filters, /2 
spatially with 
stride 2
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..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning (stem)

Beginning 
conv layer
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..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning (stem)

- No FC layers at the end 
(only FC 1000 to output 
classes)

- (In theory, you can train a ResNet with 
input image of variable sizes)

No FC layers 
besides FC 
1000 to 
output 
classes

Global 
average 
pooling layer 
after last 
conv layer
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..

.

Case Study: ResNet
[He et al., 2015]

Total depths of 18, 34, 50, 
101, or 152 layers for 
ImageNet
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Case Study: ResNet
[He et al., 2015]

For deeper networks 
(ResNet-50+), use “bottleneck” 
layer to improve efficiency 
(similar to GoogLeNet)

107

BN, relu

BN, relu
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Case Study: ResNet
[He et al., 2015]

For deeper networks 
(ResNet-50+), use “bottleneck” 
layer to improve efficiency 
(similar to GoogLeNet)

1x1 conv, 64 filters to 
project to 28x28x64

3x3 conv operates over 
only 64 feature maps

1x1 conv, 256 filters projects 
back to 256 feature maps 
(28x28x256)

108

BN, relu

BN, relu
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Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum (0.9) 
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]
Case Study: ResNet
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Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep 

networks without degrading 
(152 layers on ImageNet, 1202 
on Cifar)

- Deeper networks now achieve 
lower training error as expected

- Swept 1st place in all ILSVRC 
and COCO 2015 competitions 
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Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep 

networks without degrading 
(152 layers on ImageNet, 1202 
on Cifar)

- Deeper networks now achieve 
lower training error as expected

- Swept 1st place in all ILSVRC 
and COCO 2015 competitions 

ILSVRC 2015 classification winner (3.6% 
top 5 error) -- better than “human 
performance”! (Russakovsky 2014)
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity... Inception-v4: Resnet + Inception!
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: most 
parameters, most 
operations
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet: 
most efficient
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet:
Smaller compute, still memory 
heavy, lower accuracy
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet:
Moderate efficiency depending on 
model, highest accuracy
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Network ensembling
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Improving ResNets...

119

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, 
Wide Resnet models

- ILSVRC’16 classification winner

“Good Practices for Deep Feature Fusion”
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Adaptive feature map reweighting
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Improving ResNets...

121

[Hu et al. 2017]
Squeeze-and-Excitation Networks (SENet)

- Add a “feature recalibration” module that 
learns to adaptively reweight feature maps

- Global information (global avg. pooling 
layer) + 2 FC layers used to determine 
feature map weights 

- ILSVRC’17 classification winner (using 
ResNeXt-152 as a base architecture)
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Completion of the challenge:
Annual ImageNet competition no longer 
held after 2017 -> now moved to Kaggle.
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But research into CNN architectures is still flourishing
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Improving ResNets...
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[He et al. 2016]

- Improved ResNet block design from 
creators of ResNet

- Creates a more direct path for 
propagating information throughout 
network

- Gives better performance

Identity Mappings in Deep Residual Networks
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Improving ResNets...
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[Zagoruyko et al. 2016]

- Argues that residuals are the 
important factor, not depth

- User wider residual blocks (F x k 
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms 
152-layer original ResNet

- Increasing width instead of depth 
more computationally efficient 
(parallelizable)

Wide Residual Networks

Basic residual block Wide residual block
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Improving ResNets...
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[Xie et al. 2016]

- Also from creators of 
ResNet

- Increases width of 
residual block through 
multiple parallel 
pathways 
(“cardinality”)

- Parallel pathways 
similar in spirit to 
Inception module

 

Aggregated Residual Transformations for Deep 
Neural Networks (ResNeXt)
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Other ideas...

[Huang et al. 2017]

- Dense blocks where each layer is 
connected to every other layer in 
feedforward fashion

- Alleviates vanishing gradient, 
strengthens feature propagation, 
encourages feature reuse

- Showed that shallow 50-layer 
network can outperform deeper 
152 layer ResNet

Densely Connected Convolutional Networks (DenseNet)
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9CHW

- Depthwise separable 
convolutions replace 
standard convolutions by 
factorizing them into a 
depthwise convolution and a 
1x1 convolution

- Much more efficient, with 
little loss in accuracy

- Follow-up MobileNetV2 work 
in 2018 (Sandler et al.)

- ShuffleNet: Zhang et al, 
CVPR 2018

Efficient networks...

[Howard et al. 2017]
MobileNets: Efficient Convolutional Neural Networks for 
Mobile Applications

Standard network

MobileNets

Depthwise
convolutions

Pointwise
convolutions

9C2HW

C2HW

Total compute:9CHW + C2HW

Total compute:9C2HW
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Learning to search for network architectures...
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[Zoph et al. 2016]

Neural Architecture Search with Reinforcement Learning (NAS)

- “Controller” network that learns to design a good 
network architecture (output a string 
corresponding to network design)

- Iterate:
1) Sample an architecture from search space
2) Train the architecture to get a “reward” R 

corresponding to accuracy
3) Compute gradient of sample probability, and 

scale by R to perform controller parameter 
update (i.e. increase likelihood of good 
architecture being sampled, decrease 
likelihood of bad architecture) 
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Learning to search for network architectures...
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[Zoph et al. 2017]

Learning Transferable Architectures for Scalable Image 
Recognition

- Applying neural architecture search (NAS) to a 
large dataset like ImageNet is expensive

- Design a search space of building blocks 
(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure 
on smaller CIFAR-10 dataset, then transfer 
architecture to ImageNet

- Many follow-up works in this 
space e.g. AmoebaNet (Real et 
al. 2019) and ENAS (Pham, 
Guan et al. 2018)
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But sometimes smart heuristic is better than NAS ...
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[Tan and Le. 2019]

EfficientNet: Smart Compound Scaling

- Increase network capacity by scaling width, 
depth, and resolution, while balancing 
accuracy and efficiency.

- Search for optimal set of compound scaling 
factors given a compute budget (target 
memory & flops).

- Scale up using smart heuristic rules
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Summary: CNN Architectures 
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Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- SENet
- Wide ResNet
- ResNeXT

- DenseNet
- MobileNets
- NASNet
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Main takeaways
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AlexNet showed that you can use CNNs to train Computer Vision models.
ZFNet, VGG shows that bigger networks work better
GoogLeNet is one of the first to focus on efficiency using 1x1 bottleneck 
convolutions and global avg pool instead of FC layers
ResNet showed us how to train extremely deep networks 

- Limited only by GPU & memory!
- Showed diminishing returns as networks got bigger

After ResNet: CNNs were better than the human metric and focus shifted to 
Efficient networks:

- Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet
Neural Architecture Search can now automate architecture design
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Summary: CNN Architectures 
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- Many popular architectures available in model zoos
- ResNet and SENet currently good defaults to use
- Networks have gotten increasingly deep over time
- Many other aspects of network architectures are also continuously 

being investigated and improved

- Next time: Recurrent neural networks 
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Next time: Recurrent Neural Networks
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