
Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem NikonorovFei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20203

Administrative

Midterm: Take-home (1hr 40min), Tue May 12. Covers
material through Lecture 10 (Thu May 7).

Midterm review session: Fri May 8 discussion section

Sample midterm has been released on Piazza.

OAE accommodations: If you have not received an email
from us, please reach out to the staff mailing list ASAP.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20204

Administrative

A3 will be released next Wed May 13, due Wed May 27

Project milestone due Mon May 18

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Transfer learning

5Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

“You need a lot of a data if you want to
train/use CNNs”

6Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

“You need a lot of a data if you want to
train/use CNNs”

7

BU
ST
ED

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20208

Transfer Learning with CNNs

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 20209

Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11

(More on this in Lecture 13)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202010

Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

(More on this in Lecture 13)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202011

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202012

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202013

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202014

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202015

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data

? ?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202016

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Finetune
linear
classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202017

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Finetune
linear
classifier on
top layer

You’re in trouble…
Try data
augmentation /
collect more data

quite a lot of
data

Finetune a
few layers

Finetune a larger
number
of layers

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202018

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202019

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202020

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202021

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

1. Train CNN on ImageNet
2. Fine-Tune (1) for object detection on

Visual Genome
3. Train BERT language model on lots of text
4. Combine(2) and (3), train for joint image /

language modeling
5. Fine-tune (4) for imagecaptioning, visual

question answering, etc.

Zhou et al, “Unified Vision-Language Pre-Training for Image Captioning and VQA” CVPR 2020
Figure copyright Luowei Zhou, 2020. Reproduced with permission.

Krishna et al, “Visual genome: Connecting language and vision using crowdsourced dense image annotations” IJCV 2017
Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” ArXiv 2018

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Training from scratch can work just as
well as training from a pretrained
ImageNet model for object detection

But it takes 2-3x as long to train.

They also find that collecting more data
is better than finetuning on a related
task

22

Transfer learning with CNNs is pervasive…
But recent results show it might not always be necessary!

He et al, “Rethinking ImageNet Pre-training”, ICCV 2019
Figure copyright Kaiming He, 2019. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Takeaway for your projects and beyond:

23

Source: AI & Deep Learning Memes For Back-propagated Poets

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202024

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~10k images?

1. Find a very large dataset that has similar data, train a
big ConvNet there (or take pretrained models)

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained
models so you don’t need to train your own

TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

CNN Architectures

25Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202026

Review: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Review: Convolution

27

32

32

3

32x32x3 image
3x3x3 filter

Padding:
Preserve
input spatial
dimensions in
output activations

Stride:
Downsample
output activations

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Review: Convolution

28

32

32

3

Convolution Layer

activation maps

6

32

32

Each conv filter outputs a “slice” in the activation

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Review: Pooling

29

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Today: CNN Architectures

30

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

- DenseNet
- MobileNets
- NASNet
- EfficientNet

Also....
- SENet
- Wide ResNet
- ResNeXT

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202031

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202032

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202033

Case Study: AlexNet
[Krizhevsky et al. 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202034

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

W’ = (W - F + 2P) / S + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202035

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

96
55 x 55

227

227

3

W’ = (W - F + 2P) / S + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202036

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

11 x 11

3

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202037

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

11 x 11

3

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202038

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

W’ = (W - F + 2P) / S + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202039

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

W’ = (W - F + 2P) / S + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202040

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202041

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202042

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202043

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202044

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580
GPU with only 3 GB of memory.
Network spread across 2 GPUs, half
the neurons (feature maps) on each
GPU.

[55x55x48] x 2

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202045

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5:
Connections only with feature maps
on same GPU

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202046

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8:
Connections with all feature maps in
preceding layer, communication
across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202047

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202048

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
ZFNet: Improved
hyperparameters over
AlexNet

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202049

ZFNet [Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202050

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

51

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 (ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

52

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

AlexNet VGG16 VGG19

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

53

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

54

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

55

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

56

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

57

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

58

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

59

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

[7x7]

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

60

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.
72C2 for C channels per layer

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202061

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202062

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202063

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in
early CONV

Most params are
in late FC

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202064

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

VGG16

Common namesTOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: VGGNet

65

[Simonyan and Zisserman, 2014]

Details:
- ILSVRC’14 2nd in classification, 1st in

localization
- Similar training procedure as Krizhevsky

2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only

slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other

tasks

AlexNet VGG16 VGG19

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202066

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202067

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- ILSVRC’14 classification winner
(6.7% top 5 error)

- 22 layers
- Only 5 million parameters!

12x less than AlexNet
27x less than VGG-16

- Efficient “Inception” module
- No FC layers

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202068

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202069

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together channel-wise

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202070

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together channel-wise

Q: What is the problem with this?
[Hint: Computational complexity]

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202071

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202072

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q1: What are the output sizes of
all different filter operations?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202073

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q1: What are the output sizes of
all different filter operations?

28x28x128 28x28x192 28x28x96 28x28x256

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202074

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q2:What is output size after
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202075

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q2:What is output size after
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202076

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q2:What is output size after
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202077

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q2:What is output size after
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

Very expensive compute

Pooling layer also preserves feature
depth, which means total depth after
concatenation can only grow at every
layer!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202078

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input:
28x28x256

Q2:What is output size after
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that
use 1x1 convolutions to reduce
feature channel size

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202079

Review: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202080

Review: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

FC

Alternatively, interpret it as applying
the same FC layer on each input pixel

1x1x64 1x1x32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202081

Review: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

FC

Alternatively, interpret it as applying
the same FC layer on each input pixel

64 32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202082

Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202083

Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

1x1 conv “bottleneck”
layers

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202084

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module with dimension reduction

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

Module input:
28x28x256

28x28x64 28x28x64 28x28x256

28x28x128 28x28x192 28x28x96 28x28x64

Conv Ops:
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

28x28x480

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202085

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Stack Inception modules
with dimension reduction

on top of each other

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202086

Case Study: GoogLeNet
[Szegedy et al., 2014]

Stem Network:
Conv-Pool-

2x Conv-Pool

Full GoogLeNet
architecture

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202087

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

Stacked Inception
Modules

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202088

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

Classifier output

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202089

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

Note: after the last convolutional layer, a global
average pooling layer is used that spatially averages
across each feature map, before final FC layer. No

longer multiple expensive FC layers!

Classifier output

HxWxc
1x1xc

AvgPool

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202090

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202091

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet
architecture

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don’t count auxiliary output layers)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202092

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC’14 classification winner

(6.7% top 5 error)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202093

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202094

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)
- Swept all classification and

detection competitions in
ILSVRC’15 and COCO’15!

..

.

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202095

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202096

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202097

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202098

Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem,
deeper models are harder to optimize

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 202099

Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem,
deeper models are harder to optimize

What should the deeper model learn to be at least
as good as the shallower model?

A solution by construction is copying the learned
layers from the shallower model and setting
additional layers to identity mapping.

relu

X

H(x)

relu

X

H(x)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020100

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

relu

“Plain” layers
X

H(x)

relu

Residual block

X
identity

H(x) = F(x) + x

F(x)

relu

X

Identity mapping:
H(x) = x if F(x) = 0

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

relu

101

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

Residual block

X
identity

F(x)

relu

relu

“Plain” layers
XX

H(x)

Use layers to
fit residual
F(x) = H(x) - x
instead of
H(x) directly

H(x) = F(x) + x

101

H(x) = F(x) + x

Identity mapping:
H(x) = x if F(x) = 0

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers

102Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)
Reduce the activation
volume by half.

3x3 conv, 64
filters

3x3 conv, 128
filters, /2
spatially with
stride 2

103Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning (stem)

Beginning
conv layer

104Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

..

.

Case Study: ResNet
[He et al., 2015]

relu

Residual block

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning (stem)

- No FC layers at the end
(only FC 1000 to output
classes)

- (In theory, you can train a ResNet with
input image of variable sizes)

No FC layers
besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer

105Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

..

.

Case Study: ResNet
[He et al., 2015]

Total depths of 18, 34, 50,
101, or 152 layers for
ImageNet

106Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: ResNet
[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GoogLeNet)

107

BN, relu

BN, relu

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: ResNet
[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GoogLeNet)

1x1 conv, 64 filters to
project to 28x28x64

3x3 conv operates over
only 64 feature maps

1x1 conv, 256 filters projects
back to 256 feature maps
(28x28x256)

108

BN, relu

BN, relu

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020109

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]
Case Study: ResNet

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep

networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lower training error as expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

110Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep

networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lower training error as expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than “human
performance”! (Russakovsky 2014)

111Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020112

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020113

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity... Inception-v4: Resnet + Inception!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020114

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: most
parameters, most
operations

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020115

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet:
most efficient

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020116

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet:
Smaller compute, still memory
heavy, lower accuracy

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020117

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet:
Moderate efficiency depending on
model, highest accuracy

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020118

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Network ensembling

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Improving ResNets...

119

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,
Wide Resnet models

- ILSVRC’16 classification winner

“Good Practices for Deep Feature Fusion”

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020120

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Adaptive feature map reweighting

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Improving ResNets...

121

[Hu et al. 2017]
Squeeze-and-Excitation Networks (SENet)

- Add a “feature recalibration” module that
learns to adaptively reweight feature maps

- Global information (global avg. pooling
layer) + 2 FC layers used to determine
feature map weights

- ILSVRC’17 classification winner (using
ResNeXt-152 as a base architecture)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020122

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020123

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Completion of the challenge:
Annual ImageNet competition no longer
held after 2017 -> now moved to Kaggle.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

But research into CNN architectures is still flourishing

124Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Improving ResNets...

125

[He et al. 2016]

- Improved ResNet block design from
creators of ResNet

- Creates a more direct path for
propagating information throughout
network

- Gives better performance

Identity Mappings in Deep Residual Networks

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Improving ResNets...

126

[Zagoruyko et al. 2016]

- Argues that residuals are the
important factor, not depth

- User wider residual blocks (F x k
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms
152-layer original ResNet

- Increasing width instead of depth
more computationally efficient
(parallelizable)

Wide Residual Networks

Basic residual block Wide residual block

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Improving ResNets...

127

[Xie et al. 2016]

- Also from creators of
ResNet

- Increases width of
residual block through
multiple parallel
pathways
(“cardinality”)

- Parallel pathways
similar in spirit to
Inception module

Aggregated Residual Transformations for Deep
Neural Networks (ResNeXt)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Other ideas...

[Huang et al. 2017]

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

- Showed that shallow 50-layer
network can outperform deeper
152 layer ResNet

Densely Connected Convolutional Networks (DenseNet)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

9CHW

- Depthwise separable
convolutions replace
standard convolutions by
factorizing them into a
depthwise convolution and a
1x1 convolution

- Much more efficient, with
little loss in accuracy

- Follow-up MobileNetV2 work
in 2018 (Sandler et al.)

- ShuffleNet: Zhang et al,
CVPR 2018

Efficient networks...

[Howard et al. 2017]
MobileNets: Efficient Convolutional Neural Networks for
Mobile Applications

Standard network

MobileNets

Depthwise
convolutions

Pointwise
convolutions

9C2HW

C2HW

Total compute:9CHW + C2HW

Total compute:9C2HW

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Learning to search for network architectures...

130

[Zoph et al. 2016]

Neural Architecture Search with Reinforcement Learning (NAS)

- “Controller” network that learns to design a good
network architecture (output a string
corresponding to network design)

- Iterate:
1) Sample an architecture from search space
2) Train the architecture to get a “reward” R

corresponding to accuracy
3) Compute gradient of sample probability, and

scale by R to perform controller parameter
update (i.e. increase likelihood of good
architecture being sampled, decrease
likelihood of bad architecture)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Learning to search for network architectures...

131

[Zoph et al. 2017]

Learning Transferable Architectures for Scalable Image
Recognition

- Applying neural architecture search (NAS) to a
large dataset like ImageNet is expensive

- Design a search space of building blocks
(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure
on smaller CIFAR-10 dataset, then transfer
architecture to ImageNet

- Many follow-up works in this
space e.g. AmoebaNet (Real et
al. 2019) and ENAS (Pham,
Guan et al. 2018)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

But sometimes smart heuristic is better than NAS ...

132

[Tan and Le. 2019]

EfficientNet: Smart Compound Scaling

- Increase network capacity by scaling width,
depth, and resolution, while balancing
accuracy and efficiency.

- Search for optimal set of compound scaling
factors given a compute budget (target
memory & flops).

- Scale up using smart heuristic rules

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Summary: CNN Architectures

133

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- SENet
- Wide ResNet
- ResNeXT

- DenseNet
- MobileNets
- NASNet

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Main takeaways

134

AlexNet showed that you can use CNNs to train Computer Vision models.
ZFNet, VGG shows that bigger networks work better
GoogLeNet is one of the first to focus on efficiency using 1x1 bottleneck
convolutions and global avg pool instead of FC layers
ResNet showed us how to train extremely deep networks

- Limited only by GPU & memory!
- Showed diminishing returns as networks got bigger

After ResNet: CNNs were better than the human metric and focus shifted to
Efficient networks:

- Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet
Neural Architecture Search can now automate architecture design

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Summary: CNN Architectures

135

- Many popular architectures available in model zoos
- ResNet and SENet currently good defaults to use
- Networks have gotten increasingly deep over time
- Many other aspects of network architectures are also continuously

being investigated and improved

- Next time: Recurrent neural networks

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - May 5, 2020

Next time: Recurrent Neural Networks

136Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov

