Lecture 4:

Convolutional Neural Networks:
Basic operations
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Last time: Neural Networks
Linear score function: f = W
2-layer Neural Network f = Wamax(0, Wix)
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So far: backprop with scalars

What about vector-valued functions?
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Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

dy
— R
(9:1:6

If x changes by a
small amount, how
much will y change?
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Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

reR,yeR reRY yeR
Regular derivative: Derivative is Gradient:
ay 83/ N (9 dy
R crY () -2
85[3 = @f dzt. Oy
If x changes by a For each element of x,
small amount, how if it changes by a small

much will y change? amount then how much
will y change?
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Recap: Vector derivatives

Scalar to Scalar
reR,yeR
Regular derivative:

dy
oz
If x changes by a

small amount, how
much will y change?

eR

Vector to Scalar

reRY yeR

Derivative is Gradient:

ay N (9y) _ Oy

For each element of x,
if it changes by a small
amount then how much
will y change?

Vector to Vector
zeRN yeRM

Derivative is Jacobian:

5'3/ NxM (8_y) —
e RY*
or Ox n,m

Ol
0z,

For each element of x, if it
changes by a small amount
then how much will each
element of y change?

Adapted by Artem Nikonorov
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Backprop with Vectors

Loss L still a scalar!
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Backprop with Vectors

D Loss L still a scalar!

X \
f .
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Backprop with Vectors

D Loss L still a scalar!

X \ f DZJ
D / %

“Upstream gradient”
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Backprop with Vectors

D Loss L still a scalar!
D

OL
D / E DZ

“Upstream gradient”

For each element of z, how
much does it influence L?
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Backprop with Vectors

D,

“Downstream
gradients”

D, 44

“local
gradients”

Loss L still a scalar!

.I.'

o,

oL
0z

D

Z

“Upstream gradient”

For each element of z, how
much does it influence L?
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Backprop with Vectors

Loss L still a scalar!

D “local
9: 57~/[2] D, xD, 0. J
——

“‘Downstream &Z 0z f

gradients” 0z B

[D xD.] oL
D / Jy bi . E Dz
y 37 L acobian

—, matrices “Upstream gradient”
Y For each element of z, how
much does it influence L?
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Backprop with Vectors

Loss L still a scalar!

B “local
y \ gradients”
D, X DX D] :
“D ﬁzi 6\
OWNSIream -\ +ix-vector
. ” az )
gradients ultiply =T [D x D ] b
D / i~ 0]
y 0 L acobian

—, matrices “Upstream gradient”
D Y For each element of z, how
y much does it influence L?
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Gradients of variables wrt loss have same dims as the original variable

D Loss L still a scalar!

x DX 5
-

aL
D 0z Dz
y
“Upstream gradient”
D For each element of z, how
y much does it influence L?
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Backprop with Vectors
4D input x: 4D output z:
4] ) .

(2] ——

— [ 1

_—

f(x) = max(0,x)
(elementwise)

1] —— S

3] —

[ 0 ]
. [3]
0 ]
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Backprop with Vectors

4D input x: 4D output z:
[ 1 — [ 1]
2 f(x) =max(0,x) | | g |
: 31-_ "| (elementwise) 0

4D dL/dz:
e

-1 — Upstream
[ 5 1]——— gradient

9'.—
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Backprop with Vectors

4D input x: 4D output z:

[ 1] — [ 1]

2 f(x) = max(0,x) | LY

: 31-_ "| (elementwise) : 8 :
Jacobian dz/dx 4D dL/dz:
(1000] — [ 4]
[ 0000] [ -1] = Upstream
(0010] ~—— [ 5 ]——— gradient
(0000] — [ 9] —
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Backprop with Vectors

4D input x: 4D output z:
[ 1 — [ 1]
2 f(x)=max(0,x) | | 0|
: _31-_ "| (elementwise) : 8 :

dz/dx] [dL/dz] 4D dL/dz:

(1000]1[4] ~—1[4]
0000][-1] ~—— [ -1]— Upstream
(0010][5] ——[5 ]~ gradient
0000119 ] ~—1[9]——
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Backprop with Vectors

4D input x: 4D output z:
[ 1 — [ 1]
2 f(x)=max(0,x) | | 0|
: 31-_ "| (elementwise) : 8 :

4D dL/dx: [dz/dx] [dL/dZz] 4D dL/dz:

| —[1000]1[4] ~——1[4]
— [0000][-1] ~—— [ -1]——— Upstream
— [0010][5] ——[5]—— gradient
— [0000][9] —[9]——

o o110 B~
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Backprop with Vectors

4D input x: 4D output z:
1] — [ 1
o ] _ 0
Jacobian is sparse: - 3 ; f(X) - max(Q,x) i 3 :
off-diagonal entries . : ( elementwise ) : :
always zero! Never [ 1] ——— — [ 0]
explicitly form

Jacobian -- instead

use implicit 4D dL/dx: [dz/dx] [dL/dz] 4D dL/dz:
multiplication [ — :1 ()()O: :4 — 4
— [0000][-1] ~—— [ -1]——— Upstream
— [0010][5] ——[5]—— gradient
— [0000][9] —[9]——

o o110 B~
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Backprop with Vectors

4D input x: 4D output z:
[ 1] — [ 1]
21— | gy = . [0]
Jacobian is sparse: ' 3 ] f(X) - max(Q,x) , 3 :
off-diagonal entries - 7| (elementwise) ! :
always zero! Never i -1 | —— — | 0) ]

explicitly form
Jacobian -- instead

use implicit 4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:

multiplication ] 4

f‘_ (8L) _ {(%)Z it ;>0 - -1 ~— Upstream

ox

9

0 otherwise — [ 5 ] ——— 9gradient

-+

o o110 B~
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Backprop with Matrices (or Tensors) Loss L still a scalar!

[D,*xM ]

D,*M,}

dL/dx always has the

same shape as x!

[D_xM_]

>

.I.'

Jacobian
matrices

Matrix-vector

multiply
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Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[DXXMX] same shape as x!
[D_xM_] \
o iggi& [szMz]
. L0 .
Downlstrea”m Matrix-vector v f <
gradients y 5L
[D,xM,] / 8z | [P*M,]

oL Jacobian
0:0L !
é y 07 matrices “Upstream gradient”
[DyXMy] For each element of z, how

much does it influence L?
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Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[D,<M,] ‘local same shape as x!
D XM \
[D,xM,] >%5L [D.xM_]
a$ 6\ Z Z
‘Downstream . .- = >
_ , atrix-vector Oz -
gradients multiply e
[DyxMy] ‘/L 62 [ zx z]

9z 0L Jacobian
D xM ] By 07 matrices “Upstream gradient”
y -y For each element of y, how much For each element of z, how

does it influence each element of z? Much does it influence L?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[DXX |V|X] “|0.03| same shape as x!
\ gradients’
D xM
[ X X] § %al [(DxxMx)x(Dle\/lZ)] [D_xM_]
| a$ ﬁ? _ Z Z
Down_strealm Matrix-vector Oz <
gradients w' o [(D,xM,)x(D,*xM,)] OL
[DyxMy] ‘/L E I:DZXMZ:I

9z 0L Jacobian
D xM ] By 07 matrices “Upstream gradient”
y -y For each element of y, how much For each element of z, how

does it influence each element of z? Much does it influence L?
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Wrapping up: Neural Networks
Linear score function: f = W
2-layer Neural Network f = Wamax(0, Wix)
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Next: Convolutional Neural Networks

ion of LeCun et al. 1998 from CS231n 2017 Lecture 1
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A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

QOOOOOﬂm

SEOUENCE lNDlCATORS

The machine was connected to a camera that used
20x20 cadmium sulfide photocells to produce a 400-pixel

image.

1 fw-24+b6>0
| fla) = -
recognized 0 otherwise

letters of the alphabet

MAIN
SEQUENCE

update rule: e STEP BUTTONS
wilt+ 1) = wi(t) + a(d; — y;(t))5

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0
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A bit of history...

+|

Quantizer

Input + l:;X b )
lines —>——oOutput 1 % e
= Z A\ \2 one
7 of /
: b
9 o

d's are adjustable

Loo o Reforen e , . Desired
switch cutput
AA

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical

Wi d rOW a n d H Off, ~ 1 960 : Ad al i n e/M ad al i n e Report with permission from Stanford University Special Collections.
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A bit of history...

recognizable math

lllustration of Rumelhart et al., 1986 by Lane MclIntosh,
copyright CS231n 2017

Rumelhart et al., 1986: First time back-propagation became popular
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A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in
Deep Learning

lllustration of Hinton and Salakhutdinov 2006 by Lane
Mclintosh, copyright CS231n 2017
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First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks

for Large Vocabulary Speech Recognition

George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional
neural networks

Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

lllustration of Dahl et al. 2012 by Lane Mclintosh, copyright
CS231n 2017

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
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A bit of history:

Hubel & Wiesel,
1959

RECEPTIVE FIELDS OF SINGLE

NEURONES IN
THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR

INTERACTION
AND FUNCTIONAL ARCHITECTURE IN

THE CAT'S VISUAL CORTEX
Cat image by CNX OpenStax is licensed

1 9 6 8 under CC BY 4.0; changes made
| B B |
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A bit of hiStory Human brain

Topographical mapping in the cortex:
nearby cells in cortex represent
nearby regions in the visual field

Visual
cortex

Retinotopy images courtesy of Jesse Gomez in the
Stanford Vision & Perception Neuroscience Lab.
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Hierarchical organization

lllustration of hierarchical organization in early visual
pathways by Lane MclIntosh, copyright CS231n 2017
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A bit of history
o

Decoding Imagined Letter Shapes from V1-v3 i;\cc‘;vity @7

Rainer Goebel
Professor of Cognitive Neuroscience, Maastricht University.
Verified email at maastrichtuniversity.nl - Homepage

>
2]
j=)
18]
E

Ultra-High Field fMRI  Human Brain Research Cognitive Neuroscience

Neural Network Modelling  Brain-Computer Interfaces c
=
)
ARTICLES CITEDBY CO-AUTHORS 8‘
Q
o
All Since 2015 o
Citations 34458 15380
hindex 101 67 Decoded Images of the “mind’s eye” (top row) when using
10-index 274 241 auto-encoder neural network for “de-noising

Senden, Emmerling, van Hoof, Frost, Goebel (2019). Brain Structure and Functio

Cospatens Turbo BrainVoyajer
Hawa anbtepHaTtuea ansa TBV:
http://opennft.org/
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user
Печатный текст
Создатель Turbo BrainVoyajer
Наша альтернатива для TBV:
http://opennft.org/ 


A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

L&
\

AT
(N
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A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5
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A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

[} X | |
= (KT % [y £ 8 . R
,‘I Y| \ L\ g A "
N A\ \ ) P 4 [ A\ “I o 1\ ! x ‘ g ’ "" N\ ,‘" \
4 ":Z;.‘ ‘I - 1 \ e 153 . 57 \ 128 / 2048 ‘ 2048 \I.‘J“"""'
‘l'-_(.‘. AY "-__4‘ ? \ \ > \
" iy ) o —3 . \ | ¥
[ { V-
(224 (] 3 —3H\ J
\ . \
[ Pt | o 3L =
| | 1.\
\ ‘ \ | H— — ) A A\
\ prdg. N \\ 3 F T
’ \ 155 W l 1 o - X i ) , Fero— ord
11 N A\l 192 192 128 Max j-. | =
\ \ oal 0%
224y Stridel Max : 128 M pooling <068
‘4 pooling pooling

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”
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A bit of history

1989 G C;gbenko Approximation by superpositions of a sigmoidal function - Springer Link
https:/Mlink.springer.com/article/10.1007/BF02551274 - NMepeBecTH 3Ty CTpaHWLY
Teopema 06 Pps. TN Springer.com o DeouTZI% - 1iep TY CTpaHuLY
aetop: G Cybenko - 1989 - Uutupyetca: 10688 - MNoxoxwme cTaTom
YHI/IBepCEU'IbHOI/I ieeexplore.ieee.org » document- MepesecTy 3Ty CTPaHULLY
AIIITPpOKCHUMAITH Gradient-based learning applied to document recognition ...
Gradient-based learning applied to document recognition A new learning paradigm,
1998 Yann LeCun called graph transformer networks (GTN), allows such multimodule systems to be trained
globally using gradient-based methods so as to minimize an overall performance measure. Two
QEQPIQEHI?JQ CeTH systems for online handwriting recognition are described
aBTop. Y Lecun - 1998 - Liutupyetca: 26105 - Moxoxue cTatbmn

< NVIDIA.

CUDA.

2007 — Beixom NVIDIA CUDA,

2009 — Google oTKassIBaeTCst OT HEHPOHHBIX CeTeH

FoFl ImageNet Classification with Deep Convolutional Neural Networks
hitps://papers.nips.cc/.../[4824-imagenet-classification-with-de... v MepeBecTH 3Ty CTPaHULY
aetop: A Krizhevsky - 2012 - Uutupyetca: 34232 - MNoxoxwe ctatbm

2012 — AlexNet

Delving Deep into Rectifiers: Surpassing Human-Level Performance .
https://arxiv.org > cs ~ MNepesecTu 3Ty CTPaHMLyY
aetop: K He - 2015 - Uuupyetca: 3856 - Moxoxwue cTaTem

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of thy
negative part is not constant and is adaptively keamed.

IEEE CVPR Cite Score: 3.23 (2012), 6.19 (2015), 18.18 (2018)
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Fast-forward to today: ConvNets are everywhere

Fast Detection Tracking

All windows

BerauciurensHas potorpadust —
- Crexusnr ¢orto

- (CeepxpaspenieHue

- (CpeMKa B TeMHOTE

Class probability map

YOLO - You Only Look Once - Yes!

Openpose Light.co
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Fast-forward to today: ConvNets are everywhere

Segmentation
g S W ity b
= g

A}
) Y .
X

TR, | )
D

oo | AVRBT %
.v.
~ = &
|2

. U
%

ool

r g K
: 7
A

-

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jan Sun, 2015. Reprotiuced with A Figures céyright Clemen bt2012. )
permission. . ) Reproduced with permission. [Farabet et al,, 20 1 2]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]
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Fast-forward to today: ConvNets are everywhere

e,

This image by GBPublic_PR is
licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

Photo by Lane McIntosh. Copyright CS231n 2017.

self-driving cars
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Fast-forward to today: ConvNets are everywhere

[Taigman et a/ 2014] Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma Mclintosh,
used with permission. Figure and architecture not from Taigman et al. 2014.

Spatial stream ConvNet

convi || conv2 || conv3 || conv4 || conv5 || fullé fullz
7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2

Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 || fullé full7 ft
7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. |{pool 2x2 pool 2x2
pool 2x2

Illustration by Lane Mclintosh,

. Figures copyright Simonyan et al., 2014. photos of Katie Cumnock
[Slmonyan et al- 2014] used with permission.

Reproduced with permission.
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Fast-forward to today: ConvNets are everywhere

Classification Retrieval

motor scooter

mite container ship motor scooter ec
black widow lifeboat go-kart jaguar | k=
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Yo Vs

rilie mushroom cherry adagascar ca
vertible | agaric N_m_dg el monkey

grille | mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus 'ﬂordshlro buliterrier indri
fire i dead-man's-fingers currant howler monkey

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
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Fast-forward to today: ConvNets are everywhere

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane MclIntosh.

[Toshev, Szegedy 2014]

frame: t-3

“enemy+diver”

[GUO et al 2014] Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,
and Xiaoshi Wang, 2014. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



Fast-forward to today: ConvNets are everywhere

Mahgnant Malignant

[Levy et a/_ 2016] Figure copyright Levy et al. 2016.

Reproduced with permission.

PARKING|%

Photos by Lane Mclntosh.

[Sermanet etal. 2011]  conriantcszsinz0n7.

. From left tourigh: gubliic dorr:aiirr\1 by NASA, L:]age Qeirmitt(:: :::]y Clresan et al
[Dieleman et al. 2014] EoATIbtle, Bl s ndusiosens [ I
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This image by Christin Khan is in the public domain Photo and figure by Lane Mclintosh; not actual
and originally came from the U.S. NOAA. example from Mnih and Hinton, 2010 paper.

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010
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No errors Image
Captioning

[Vinyals et al., 2015]
[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a cat
the grass uniform throwing a ball in her hand

All images are CC0 Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
T vy . https://pixabay.com/en/handstand-lake-meditation-496008/
A man riding a wave on A cat sitting on a A woman standing on a htips://pixabay com/en/baseball-plaver-shortstop-infield-1045263/

top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk?
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Original image is CCO public domain
Starry Night and Tree Roots by Van Gogh are in the public domain

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach Bokeh image is in the public domain Gatys etal, Hlmage Sfyle Transfer using Conyolutmnal Neural Netwsrks » CVPR 2016
from a blog nost by Google Research. Stylized images copyright Justin Johnson, 2017; Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017

reproduced with permission
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Convolutional Neural Networks
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

activation

— 4 (O

10 x 3072

weights 10

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

10 x 3072
weights

activation
—> 1 [O
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth
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Convolution Layer

32x32x3 image

oxox3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32
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CO nVO| Utlon Layer Filters always extend the full
S depth of the input volume

32x32x3 image /
oxox3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32
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Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wliz+b

~~ 1 number:
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Convolution Layer

32

0

32
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Convolution Layer

32

==

32
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Convolution Layer

32
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Convolution Layer

32
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Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28
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Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
2
@>@ &

convolve (slide) over all

spatial locations
32 / 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

T

Convolution Layer

g .

3 6

28

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g.6
5x5x3
filters

32 28
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 o4
CONV, CONV, CONV,
RelU RelU RelU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 fltors 24
3 6 10
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P review [Zeller and FergUS 2013] Visualization of VGG-16 by Lane Mcintosh. VGG-16

architecture from [Simonyan and Zisserman 2014].
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Preview
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SJECINEERONZIIANEENESESIRSTSNEREERS

one filter => _
one activation map example 5x5 filters
~ (32 total)

»
-

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

fleylegleyl = Y, Y, fln,n,) glx—n,y—n,]

ny=—c0 Ny =—00 T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.
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preview:

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV [CONV CONV [CONV

N N RN

.\ \v\{
W
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A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter
2
@>@ ”

convolve (slide) over all
spatial locations

32 28
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?
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A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride 2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\
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n practice: Common to zero pad the border

0/|0]0(0|O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o | O | O O | ©O

(recall:)
(N - F)/ stride + 1
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n practice: Common to zero pad the border

0/|0]0(0|O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o | O | O O | ©O

7x7 output!

(recall:)
(N + 2P - F) / stride + 1
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0

0

0

0

0

o | O | O O | ©O

n practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3
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Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

CONYV,
RelLU
e.g.6
ox5x3
filters

28

28

Fei-Fei Li, Ranjay Krishna, Danfei Xu

CONYV,
RelLU
e.g. 10
ox5x6
filters

Lecture 4 Adapted by Artem Nikonorov

24

CONV,
RelLU

24



Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
<

Output volume size: ?
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?
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Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*2 + 1 = 76 params  (+1 for bias)
=>/6*10 =760
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Convolution layer: summary

Let's assume inputis W, x H, x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P
This will produce an output of W, x H, x K
where:
- W, =(W, -F +2P)/S +1
- H, —(H F+2P)/S + 1
Number of parameters F?°CK and K biases
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Convolution layer: summary Common settings:

Let's assume inputis W, x H, x C = (Ifiwffrsz oY 132 04, 128, 512
Conv layer needs 4 hyperparameters: _ F- 5: S = 1: P=2
- Number of filters K - F=5,S =2, P=7? (whatever fits)
- F=1,8S=1,P=0

- The filter size F

- The stride S

- The zero padding P
This will produce an output of W, x H, x K
where:

- W, =(W, -F +2P)/S +1

- H,=(H,-F +2P)/S + 1

Number of parameters F?°CK and K biases
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(btw, 1x1 convolution layers make perfect sense)

1x1 CONV

o6 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56
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(btw, 1x1 convolution layers make perfect sense)

L

1x1 CONV
o6 with 32 filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56
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Example: CONV
layer in TF

TensorFlow > APl > TensorFlow Core v2.3.0 > Python ‘ﬁi"f\i’ﬁﬁﬁ

tf.keras.layers.Conv2D

1 TensorFlow 1 version o View source on GitHub

2D convolution layer (e.g. spatial convolution over images).

@ View aliases

¢ D

tf.keras.layers.Conv2D(
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), groups=1, activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, **kwargs

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Keras is licensed under the MIT license.
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Example: CONV
xample:
I . keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, d:

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of
outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if

activation is not None , it is applied to the outputs as well.
When using this layer as the first layer in a model, provide the keyword argument input_shape
(tuple of integers, does not include the batch axis), e.g. input_shape=(128, 128, 3) for 128x128

RGB pictures in data_format="channels_last" .

Arguments

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the

convolution).

« kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial dimensions.

« strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the

height and width. Can be a single integer to specify the same value for all spatial dimensions.

Conv Iayer needs 4 hype rpa ra mete I'S Specifying any stride value != 1 is incompatible with specifying any dilation_rate value!= 1.
. « padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent
= N u m ber Of f| Ite rS K across backends with strides != 1, as described here
_ The fl|tel’ SIZG F « data_format: A string, one of "channels_last" or "channels_first" . The ordering of the
. dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height,
- The Strlde S width, channels) while "channels_first" corresponds to inputs with shape (batch, channels,
- The Zero paddlng P height, width) . It defaults to the image_data_format value found in your Keras config file at

~/.keras/keras. json . If you never set it, then it will be "channels_last".

Keras is licensed under the MIT license.
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https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE

Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:
- Number of filters K
- Thefilter size F
-  The stride S
- The zero padding P

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=Tzrue)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Couty Houty Wout) can be precisely described as:
Cin—1
out(N;, Cout;) = bias(Cout, ) + Z weight(Cou, , k) * input(NV;, k)
k=0
where * is the valid 2D cross-correlation operator, IV is a batch size, C denotes a number of channels, H isa height of

input planes in pixels,and W is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
« padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
¢ dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
« groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o Atgroups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.
o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: [%‘“-J :
n

The parameters kernel_size, stride, padding, dilation can either be:

¢ asingle int -in which case the same value is used for the height and
width dimension
¢ a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension

PyTorch is licensed under BSD 3-clause.
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The brain/neuron view of CONV Layer

__— 32x32x3 image

5x5x3 filter
2
\ 1 number:

32 the result of taking a dot product between
3 the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)
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The brain/neuron view of CONV Layer

__— 32x32x3 image . -

5x5x3 filter e
V cell body
1 number:
32 the result of taking a dot product between

Zwimi-i-b
3 the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

f (Zwm + b)

output axon

activation
function

It's just a neuron with local
connectivity...
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The brain/neuron view of CONV Layer

32 /

XO 28 An activation map is a 28x28 sheet of neuron
_— outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

32 AS “5x5 filter” -> “5x5 receptive field for each neuron”
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The brain/neuron view of CONV Layer

32

. 28 E.g. with 5 filters,

II O O O O CD CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
32 28 neurons all looking at the same
3 5 region in the input volume
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Reminder: Fully Connected Layer

Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full

input

1 —
3072

10 x 3072
weights

iInput volume

activation

— 4 (O

/4 10

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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two more layers to go: POOL/FC

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV [CONV FC

T Tl e et

)
\

S
RS

"
"

'\‘\,\{

0

AL BEEE
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

 —

— 112
downsampling
112

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



MAX POOLING

Single depth slice

« 11112 | 4
max pool with 2x2 filters
5O | 6 |7 |8 and stride 2 6 | 8
312[1]0 3| 4
112 |3 | 4
y
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Pooling layer: summary

Let's assume inputis W, x H, x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W, x H, x C where:
- W, =(W,-F)/S+1
- H,=(H,-F)/[S+1

Number of parameters: O
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Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

ELU RELU RELU RELU RELU RELU
CONV CONVl 6{0]\\V CONVl

}

VIR TR -—

'
F{r
=
=
i =
&
@
=
g
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[ConvNetdS demo: training on CIFAR-10]

Network Visualization

input (32x32x3 Activations:
ConvNetJS CIFAR-10 demo ik a&iv:tion):(o).34313. min: -0.49608
e e max gradient: 0.04754, min: -0.0368
Description
4 . 2 . g . conv (32x32x16) Activations:
This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but LRl e g
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% max gradient. 0.03521, fin: -0.03962 ‘

(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python parameters: 16x5x5x3+16 = 1216
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

®
-HanE =
¥

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we R il
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields -...!--
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy. .....-.

Weights:
PRENEAANFEONNEEE
Weight Gradients:
CLLERE LR T L]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 4 Adapted by Artem Nikonorov



Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Historically architectures looked like
[([CONV-RELU)*N-POOL?1*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

have challenged this paradigm
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3agadya Ha OoMm:

BxogHoe nsobpaxeHne: CONV doumnbTp:

[12345] [0-10]
[22111] 1 11]
[32111] [0-10]
[41111]
51111]

Mocuntatb BbIXOA ceTun: conv(depth=1, stride=2) -> ReLU -> MaxPool
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user
Печатный текст
Входное изображение:

[1 2 3 4 5]
[2 2 1 1 1]
[3 2 1 1 1]
[4 1 1 1 1]
[5 1 1 1 1]

user
Печатный текст
CONV фильтр:

[0 -1 0]
[1  1 1]
[0 -1 0]

user
Печатный текст
Посчитать выход сети: conv(depth=1, stride=2) -> ReLU -> MaxPool

user
Печатный текст
Задача на дом:


