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Where we are now...

x

W

hinge 
loss

R

+ L
s (scores)

Computational graphs

*
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Where we are now...

Linear score function:

2-layer Neural Network
      

x hW1 sW2

3072 100 10

Neural Networks
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Where we are now...

Convolutional Neural Networks
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Where we are now...
Convolutional Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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Where we are now...
Convolutional Layer

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll 
get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Where we are now...

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Learning network parameters through optimization
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Where we are now...

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph 

(network), get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient
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Where we are now...

Hardware + Software
PyTorch

TensorFlow
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Next: Training Neural Networks 
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Overview
1. One time setup

activation functions, preprocessing, weight 
initialization, regularization, gradient checking

2. Training dynamics
transfer learning, babysitting the learning process, 
parameter updates, hyperparameter optimization

3. Evaluation
model ensembles, test-time augmentation
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Part 1
- Activation Functions
- Data Preprocessing
- Weight Initialization
- Batch Normalization
- Transfer learning
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Activation Functions
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Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients
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sigmoid 
gate

x
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sigmoid 
gate

x

What happens when x = -10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

24Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei, Krishna, Xu Lecture 7 - April 28, 202025

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?

28

We know that local gradient of sigmoid is always positive
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is always positive
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is always positive

So!! Sign of gradient for all wi is the same as the sign of upstream scalar gradient!
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

32Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei, Krishna, Xu Lecture 7 - April 28, 202033

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered

3. exp() is a bit compute expensive
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

42Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei, Krishna, Xu Lecture 7 - April 28, 2020

Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime 

compared with Leaky ReLU 
adds some robustness to noise 

- Computation requires exp()

[Clevert et al., 2015]

43

(Alpha default = 1)
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Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks 

without BatchNorm 
- (will discuss more later)

[Klambauer et al. ICLR 2017]

44

α = 1.6733, λ = 1.0507
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Maxout “Neuron”
- Does not have the basic form of dot product -> 

nonlinearity
- Generalizes ReLU and Leaky ReLU 
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]
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Activation Functions
Swish

- They trained a neural network 
to generate and test out 
different non-linearities.

- Swish outperformed all other 
options for CIFAR-10 accuracy

[Ramachandran et al. 2018]
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TLDR: In practice:

47Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU / SELU

- To squeeze out some marginal gains
- Try PReLU with smaller learning rate
- Don’t use sigmoid or tanh
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Data Preprocessing

48Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei, Krishna, Xu Lecture 7 - April 28, 202049

Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when 
the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing
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Data Preprocessing
In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common 
to do PCA or 
whitening
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Weight Initialization
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- Q: what happens when W=constant init is used?

56Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei, Krishna, Xu Lecture 7 - April 28, 202057

- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

59

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

62

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

A: Local gradients all zero, 
no learning =(
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Weight Initialization: “Xavier” Initialization
“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

y = Wx
h = f(y)

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
          

Derivation:

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

y = Wx
h = f(y)

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
           = Din * (E[xi

2]E[wi
2] - E[xi]

2 E[wi]
2)   [Assume x, w independant]

           

Derivation:

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

y = Wx
h = f(y)

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
           = Din * (E[xi

2]E[wi
2] - E[xi]

2 E[wi]
2)   [Assume x, w independant]

           = Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

Derivation:

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
kernel_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

y = Wx
h = f(y)

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
           = Din * (E[xi

2]E[wi
2] - E[xi]

2 E[wi]
2)   [Assume x, w independant]

           = Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation:

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
kernel_size2 * input_channels
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Weight Initialization: What about ReLU?

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

Xavier assumes zero 
centered activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are 
nicely scaled for all layers!
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Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Batch Normalization
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Batch Normalization
“you want zero-mean unit-variance activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. To make 
each dimension zero-mean unit-variance, apply:

this is a vanilla 
differentiable function...
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D Problem: What if zero-mean, unit 
variance is too hard of a constraint? 
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!

Estimates depend on minibatch; 
can’t do this at test-time!
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

(Running) average of 
values seen during training

(Running) average of 
values seen during training

During testing batchnorm 
becomes a linear operator! 
Can be fused with the previous 
fully-connected or conv layer
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this 

is a very common source of bugs!
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Batch Normalization for ConvNets

  x: N × D

𝞵𝞵,𝝈𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

  x: N×C×H×W

𝞵𝞵,𝝈𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Normalize Normalize

Batch Normalization  for 
fully-connected networks

Batch Normalization for 
convolutional networks
(Spatial Batchnorm, BatchNorm2D)
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Layer Normalization

  x: N × D

𝞵𝞵,𝝈𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

  x: N × D

𝞵𝞵,𝝈𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Normalize Normalize

Layer Normalization for 
fully-connected networks
Same behavior at train and test!
Can be used in recurrent networks

Batch Normalization  for 
fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

  x: N×C×H×W

𝞵𝞵,𝝈𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

  x: N×C×H×W

𝞵𝞵,𝝈𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Normalize Normalize

Instance Normalization for 
convolutional networks
Same behavior at train / test!

Batch Normalization  for 
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018
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Group Normalization

Wu and He, “Group Normalization”, ECCV 2018
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Transfer learning
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“You need a lot of a data if you want to 
train/use CNNs”

91Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

“You need a lot of a data if you want to 
train/use CNNs”

92

BU
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ED
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Fei-Fei, Krishna, Xu Lecture 6   Adapted by Nikonorov

Lecture 6:
Training Neural Networks,
Part I



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201894

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for 
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on
top layer

?

quite a lot of 
data

Finetune a 
few layers

?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet

Word vectors pretrained 
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

1. Train CNN on ImageNet
2. Fine-Tune (1) for object detection on 

Visual Genome
3. Train BERT language model on lots of text
4. Combine(2) and (3), train for joint image / 

language modeling
5. Fine-tune (4) for imagecaptioning, visual

question answering, etc.

Zhou et al, “Unified Vision-Language Pre-Training for Image Captioning and VQA” CVPR 2020
Figure copyright Luowei Zhou, 2020. Reproduced with permission.

Krishna et al, “Visual genome: Connecting language and vision using crowdsourced dense image annotations” IJCV 2017
Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” ArXiv 2018
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We will discuss different architectures in 
detail in two lectures

10
4

Transfer learning with CNNs - 
Architecture matters

Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition
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Training from scratch can work just as 
well as training from a pretrained 
ImageNet model for object detection

But it takes 2-3x as long to train.

They also find that collecting more data 
is better than finetuning on a related 
task

10
5

Transfer learning with CNNs is pervasive…
But recent results show it might not always be necessary!

He et al, “Rethinking ImageNet Pre-training”, ICCV 2019
Figure copyright Kaiming He, 2019. Reproduced with permission.
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Takeaway for your projects and beyond:

106

Source: AI & Deep Learning Memes For Back-propagated Poets
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained 
models so you don’t need to train your own

TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision 
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Summary
We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/He init)
- Batch Normalization (use this!)
- Transfer learning (use this if you can!)

TLDRs
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Next time: 
Training Neural Networks, Part 2
- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Babysitting learning
- Evaluation (Ensembles etc.)
- Hyperparameter Optimization
- Transfer learning / fine-tuning
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