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Where we are

NOW...

Computational graphs

f=Wz

Li = ). ,., max(0,s; — sy, +1)
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Where we are now...

Neural Networks
Linear score function: f — Wi

2-layer Neural Network f = Wamax(0, Wiz)

X W1 |h| W2 |g

3072
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Where we are now...

Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsampllng

ion of LeCun et al. 1998 from CS231n 2017 Lecture 1
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Where we are now...
Convolutional Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ a

convolve (slide) over all

spatial locations
32 28
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Where we are now... For example, if we had 6 5x5 filters, we'll
. get 6 separate activation maps:
Convolutional Layer

activation maps

32

28

Convolution Layer

32 28

LINN NN

3 6
We stack these up to get a “new image” of size 28x28x6!
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Where we are now...
Learning network parameters through optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)

Landscape image is CCO 1.0 public domain weights += - step size * weights grad # perform parameter update
Walking man image is CC0 1.0 public domain
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Where we are now...

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph
(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient
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Where we are now...

Hardware + Software

PyTorch

TensorFlow
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Next: Training Neural Networks
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Overview

1. One time setup
activation functions, preprocessing, weight
initialization, regularization, gradient checking

2. Training dynamics
transfer learning, babysitting the learning process,
parameter updates, hyperparameter optimization

3. Evaluation
model ensembles, test-time augmentation
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Part 1

- Activation Functions
- Data Preprocessing
- Weight Initialization

- Batch Normalization
- Transfer learning
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Activation Functions
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Activation Functions
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Activation Functions

S|gmo|d Leaky RelLU
1 max(0.1z, x)
0'(%)  14e*

tanh

Maxout
tanh(x) max(w{ T + by, wd x + by)
ReLU ELU
max (0, ) {x v =0
ae®—1) =<0
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Activation Functions o(z) =1/(1+e7®)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

)
\%J

~70 10

Sigmoid
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Activation Functions o(z) =1/(1+e7®)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

)
\%J

-10 10
1. Saturated neurons “kill” the

Sigmoid gradients
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What happens when x = -107? 299 = 0(x) (1 — 6(x))
What happens when x = 07?
What happens when x = 107
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Activation Functions o(z) =1/(1+e7®)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

)
\%J

-10 10
1. Saturated neurons “kill” the

Sigmoid gradients
2. Sigmoid outputs are not
zero-centered
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Consider what happens when the input to a neuron is
always positive...

f Z’wz‘xi +b

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is
always positive...

f Z’wz‘xi +b

What can we say about the gradients on w?

g_i =0o()_; wiz; +b)(1 — (D, wiz; +b))x X upstream_gradient
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Consider what happens when the input to a neuron is
always positive... =

axon from a neuron
f E w;x; + b
7

What can we say about the gradients on w?

synapse
WoTo

We know that local gradient of sigmoid is always positive

g—i =|o(Q_; wiz; +b)(1 — (D, wiz; + b)jx X upstream_gradient
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Consider what happens when the input to a neuron is

always positive...

f Z’wz‘wi +b

axon from a neuron

o wo
synapse
WoZo

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive
We are assuming x is always positive

oL
ow

={o(3; wizi +b)(1 — o(X; wiz; + b))z

X upstream_gradient

Fei-Fei, Krishna, Xu
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Consider what happens when the input to a neuron is
always positive... =

axon from a neuron ~) o PS®
f E w;z; + b
l

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive
We are assuming x is always positive

So!l Sign of gradient for all w. is the same as the sign of upstream scalar gradient!

oL | o>, wiz; +b)(1 — o (D, wiz; + b)jzc X lupstream_gradient

dw
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Consider what happens when the input to a neuron
always positive...

IS

allowed
gradient
update
directions

gradient
update
directions

f Z w; T; + b allowed

What can we say about the gradients on w?
Always all positive or all negative :(

zig zag path

hypothetical
optimal w
vector
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Consider what happens when the input to a neuron
always positive...

IS

allowed
gradient
update
directions

gradient
update
directions

f Z w; T; + b allowed

What can we say about the gradients on w?
Always all positive or all negative :(
(For a single element! Minibatches help)

zig zag path

hypothetical
optimal w
vector
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Activation Functions o(z)=1/(1+e7")

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

)
\%J

-10 10
1. Saturated neurons “kill” the

Sigmoid gradients
2. Sigmoid outputs are not
zero-centered
3. exp()is a bit compute expensive

Fei-Fei, Krishna, Xu Lecture 6 Adapted by Nikonorov



Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10

-10 10

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10

-10 10

- Not zero-centered output

RelLU
(Rectified Linear Unit)
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Activation Functions Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10

-10 10

- Not zero-centered output
RelLU - An annoyance:

(Rectified Linear Unit) _ _ |
hint: what is the gradient when x < 07
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10,

X 55| ReLU o(z) = max(0, x)
>
- 8_ gate -
0L 80 0L\ oL
or B oxr Oo oo -10 v 10

What happens when x = -107?
What happens when x = 07?
What happens when x = 107?
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> DATA

%

CLOUD

active ReLU

Fei-Fei, Krishna, Xu

dead RelLU
will never activate

=> never update
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0
\ pamcLoun

active ReLU

=> people like to initialize
RelLU neurons with slightly
positive biases (e.g. 0.01)

RS

dead RelLU
will never activate

Fei-Fei, Krishna, Xu

=> never update
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Activation Functions {M:ZS{ o Izofg; :

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10,

- =1 10

Leaky ReLU
f(z) = max(0.01z, )
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Activation Functions {M:fi o Izofg; :

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10,

Parametric Rectifier (PReLU)
Leaky RelLU f(a:) — max(aa:, :c)
flz] = max(DUlz, =) Y
backprop into \alpha
(parameter)
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Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

o - All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime
compared with Leaky RelLU

. - adds some robustness to noise

T if 2 >0
f(z) = {a(exp(x)_l) ;fizo - Computation requires exp()

(Alpha default = 1)
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Activation Functions [Klambauer et al. ICLR 2017]

Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that
works better for deep networks

- “Self-normalizing” property;

- Can train deep SELU networks

o o without BatchNorm

- - (will discuss more later)

10

f(z) = AT ifz >0
Aa(e” —1) otherwise

a=1.6733, A =1.0507
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Maxout “Neuron” [Goodfellow et al., 2013]

- Does not have the basic form of dot product ->

nonlinearity
- Generalizes RelLU and Leaky RelL U
- Linear Regime! Does not saturate! Does not die!

max(w] z + by, w; = + b)

Problem: doubles the number of parameters/neuron :(
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Activation Functions
Swish

B =0.01
B=1
B =10

-10

[Ramachandran et al. 2018]

- They trained a neural network
to generate and test out
different non-linearities.

- Swish outperformed all other
options for CIFAR-10 accuracy

Fei-Fei, Krishna, Xu
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TLDR: In practice:

- Use RelU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU / SELU
- To squeeze out some marginal gains
- Try PReLU with smaller learning rate
- Don’t use sigmoid or tanh

Fei-Fei, Krishna, Xu Lecture 6 Adapted by Nikonorov



Data Preprocessing
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Data Preprocessing

original data zero-centered data normalized data
10 - 10 10 -
. 4
S| 5 S|
o .. . ,I

-10 -10
1g -10 -5 0 5 19 -10 -5 0 5 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Remember: Consider what happens when

the input to a neuron is always positive...

|

allowed
gradient
update
directions

f Zwixi + b

allowed
gradient
update
directions

What can we say about the gradients on w?

Always all positive or all negative :(

(this is also why you want zero-mean data!)

zig zag path

hypothetical
optimal w
vector
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Data Preprocessing

original data zero-centered data normalized data
10 - 10 10 -
. 4
S| 5 S|
o .. . ,I

-10 -10
1g -10 -5 0 5 19 -10 -5 0 5 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)
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Data Preprocessing

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

1g 210 = 0 5 1 210 s 0 5 10

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)
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Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small
very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize
A
®
\ A
o
® o\A “
A
® A
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TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)
- Subtract per-channel mean and
Not common

Divide by per-channel std (e.g. ResNet) " “5o,
(mean along each channel = 3 numbers) whitening

Fei-Fei, Krishna, Xu Lecture 6 Adapted by Nikonorov



Weight Initialization
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- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer
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- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01 * np.random.randn(Din, Dout)
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- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01 * np.random.randn(Din, Dout)

Works ~okay for small networks, but problems with
deeper networks.
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Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W 0.01 * np.random.randn(Din, Dout)
X np.tanh(x.dot(W))
hs.append (x)

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): @Q: \What do the gradients
W 0.01 * np.random.randn(Din, Dout) TII)
! BN AN ) dL/dW look like"
hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
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Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): @Q: \What do the gradients
W 0.01 * np.random.randn(Din, Dout) TII)
! BN AN ) dL/dW look like

hs.append(x)

A: All zero, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial

hs = [] weights from 0.01 to 0.05

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W 0.05 * np.random.randn(Din, Dout)
X np.tanh(x.dot (W))

hs.append(x)

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05
X = np.random.randn(1l6, dims[0]) Q: What do the gradients
for Din, Dout in zip(dims[:-1], dims[1l:]): |ook like?
W = 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))
hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

-3 0 1 =3 0 1 _ 0 1 -3 0 1 o= | 0 1 =3 0 1
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05
X = np.random.randn(16, dims[0]) Q: What do the gradients
for Din, Dout in zip(dims[:-1], dims[1l:]): |ook like?
W = 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W)) A: Local gradients all zero,
hs.append(x) no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

-3 0 1 =3 0 1 _ 0 1 -3 0 1 =3 0 1 =3 0 1
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization:

hs = [] std = 1/sqrt(Din)

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dimsl[:-11, dims[1:1):

W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.tanh(x.dot(W))

hs.append (x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [ std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dimsl[:-11, dims[1:1):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)

X = np.tanh(x.dot(W))

hs.append (x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

=4 0

=3 0 1 =1 0 1 =k 0 1 =3 0 1 ~1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [ std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dimsl[:-11, dims[1:1):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv Iayers, Din is

A TDRGAT L ESE0R 1)) filter_size? * input_channels

hs.append (x) — —

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

o 0

=3 0 1 =1 0 1 =k 0 1 =3 0 1 ~1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
ha &[] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dimsl[:-11, dims[1:1):

W = np.random.randn(Din, Dout) / np.sqrt(Din)| For conv Iayers, Din is

X = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) N B

Derivation:

y = Wx Var(y.) = Din * Var(xw.) [Assume X, w are iid]

h=1(y)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
ha &[] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dimsl[:-11, dims[1:1):

W np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv Iayers, Din is

X = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) N N

Derivation:
y = Wx Var(y.) = Din * Var(xw.) [Assume X, w are iid]
h = f(y) = Din * (E[x°]E[w?] - E[x]* E[w]*) [Assume x, w independant]

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
ha &[] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dimsl[:-11, dims[1:1):

W np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv Iayers, Din is

X = np.tanh(x.dot(W)) kernel size? * input_channels
hs.append (x) o N

Derivation:
y = Wx Var(y.) = Din * Var(xw.) [Assume X, w are iid]
h = f(y) = Din * (E[x°]E[w?] - E[x]* E[w]*) [Assume x, w independant]
= Din * Var(x,) * Var(w,) [Assume X, w are zero-mean]

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
ha &[] std = 1/sqrt(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dimsl[:-11, dims[1:1):

W np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv Iayers, Din is

X = np.tanh(x.dot(W)) kernel size? * input_channels
hs.append (x) o N

Derivation:
y = Wx Var(y.) = Din * Var(xw.) [Assume X, w are iid]
h = f(y) = Din * (E[x°]E[w?] - E[x]* E[w]*) [Assume x, w independant]
= Din * Var(x,) * Var(w,) [Assume X, w are zero-mean]

If Var(w.) = 1/Din then Var(y.) = Var(x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: What about ReLU?

dims = [4096] * 7
hs = []

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.maximum(0, x.dot(W))

hs.append(x)

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

dims
hs []
X np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

[4096] * 7

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X np.maximum(0, x.dot(W))
hs.append(x)

Change from tanh to ReLU

Xavier assumes zero
centered activation function

Activations collapse to zero
again, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

Fei-Fei, Krishna, Xu
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Weight Initialization: Kaiming / MSRA Initialization

dims = [4096] * 7

ha o [} Rel U correction: std = sqrt(2 / Din) Just right™: Activations are
x = np.random.randn(16, dims[0]) nicely scaled for all layers!
for Din, D in zi ims[:-1 ims[1:1):

W =
X = np.maximum(0, x.dot(W))

np.random.randn(Din, Dout) * np.sqrt(2/Din)

hs.append (x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

—3 0 1 ) 0 1 = 0 1 |

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Fei-Fei, Krishna, Xu
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Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015
All you need is a good init, Mishkin and Matas, 2015
Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Batch Normalization
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Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ E[(F)

V/ Var[z(%)] this is a vanilla
differentiable function...
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Batch Normalization [loffe and Szegedy, 2015]

N
Input: : N x D _ 4 Per-channel mean
. . e Ts 2 y
Hg N z_: ' shapeis D
AAA N
1
2, . = . __ .. \2 Per-channel var,
95 = N (.5 — Hj) shape is D
N X i=1
x. " cm— .
Fag = i.j — My Normalized x,
’ 2 Shapeis N xD
O g
\AA i
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Batch Normalization [loffe and Szegedy, 2015]

Per-channel mean,

Input: z : N x D pj = shape is D

ZI'—‘

2 Per-channel var,
shape is D

ZI'—‘

N

DT
AAA ;

Zf”m

x. ¢ cm— . .
by — B Normalized x,

/\. .
-.7

D Problem: What if zero-mean, unit
variance is too hard of a constraint?
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Batch Normalization [loffe and Szegedy, 2015]

N
Input: : N x D _ 4 Per-channel mean
. . , — x : y
Fi= N z_: " shapeis D
Learnable scale and , 1 N ) Perchanmol
. _ o er-channel var,
shift parameters: =N 1(%,3 1j) Shape is D
YD "
2 x””g o /’L] ;
Tij = Normalllzed X,
Learning v=o, 02 4¢  ShapeisNxD
@: p will recover the G = s 4 3, Output
identity function! “ e 7 Shapeis Nx D
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Estimates depend on minibatch;

BatCh NOrmal ization : TeSt'Ti me can’t do this at test-time!

Input: »: N x D . x; ; Per-channel mean,
shape is D

=1

Learnable scale and 1 X ) Perchanmol
. - o er-channel var,
shift parameters: N ;(wm 1) Shape is D
° 1=
TP i —
Li; = 2 J Normalized x,
Learning vy=o0, 0-]2_ + e ShapeisNx D

Output,

£ =k will recover the b4 3
Yij = Vitig 7 Shape is N x D

identity function!
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Batch Normalization: Test-Time

Input: +: N x D y1; = (Running) average of Per-channel mean,
J values seen during training shape is D

Learnable scale and

. 2 __ (Running) average of Per-channel var,
shift parameters: 05 = S/alues sge)en duri?\g training  shape is D
V8D i — 0
| | $as = >J J Normalized x,
During testing batchnorm /0_2 +e Shapeis N x D
becomes a linear operator! J
Can be fused with the previous Output,

fully-connected or conv layer Yij = VjTig T ﬁj Shape is N x D
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Batch Normalization [loffe and Szegedy, 2015]

|

FC Usually inserted after Fully

BlN Connected or Convolutional layers,

l and before nonlinearity.
tanh

(K _ r(k) _ E[x(k)]
: v/ Var[z(¥)]
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Batch Normalization

|

FC

:

BN

!

tanh

[loffe and Szegedy, 2015]

Makes deep networks much easier to train!
Improves gradient flow

Allows higher learning rates, faster convergence
Networks become more robust to initialization

Acts as regularization during training

Zero overhead at test-time: can be fused with conv!
Behaves differently during training and testing: this
is a very common source of bugs!

Fei-Fei, Krishna, Xu
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Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
x: N x D X: NxCxHxW
Normalize * Normalize * * *
MH,0: 1 x D MH,0: 1xCx1lx1
Y,p: 1 x D Y,B: 1xCx1lx1l
y = Y(x-M)/o+p y = Y(x-M)/0o+p
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Layer Normalization

Batch Normalization for
fully-connected networks

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

X: N x D X: N x D
Normalize * Normalize *
MH,0: 1 x D MH,0: N x 1
Y,B: 1 x D Y,B: 1 x D

y = Y(x-M)/o+p y = Y(x-M)/o+p

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

Batch Normalization for Instance Normalization for
convolutional networks convolutional networks
Same behavior at train / test!
X: NxXCxHxW X: NXCxHxW
Normalize * * * Normalize * *
H,0: 1xCx1lx1l MH,0: NxCx1xl
Y,P: 1IxCx1lxl Y,B: 1xCx1lxl

y = Y(x-M) /o+B y = Y(x-M)/o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H,W
Lo
oy

H,W
H,W

Lt ) F o F

AN AN

AV

[T 7777
e B h

Wu and He, “Group Normalization”, ECCV 2018
S
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Transfer learning
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“You need a lot of a data if you want to
train/luse CNNs”
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“You need a lot of a&tg(you want to

train/use CNNs” 6

Q,\B
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e s o e VPR o

2014
1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128
MaxPool

Conv-64

Conv-64
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e s o e VPR o

2014
1. Train on Imagenet 2. Small Dataset (C classes)

T
TR T\ Roinitialize

FC-4096 FC-4096 . .
this and train

MaxPool MaxPool

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxPool

Conv-512 Conv-512

Conv-512 Conv-512

MaxPool MaxPool > Freeze these

Conv-256 Conv-256

Conv-256 Conv-256

MaxPool MaxPool

Conv-128 Conv-128

Conv-128 Conv-128

MaxPool MaxPool

Conv-64 Conv-64

Conv-64 Conv-64 j
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e s o e VPR o

2014
1. Train on Imagenet 2. Small Dataset (C classes)

FC-1000

FC-4096 FC-4096 \ e T

FC-4096 FC4096 Reinitialize Finetuned from AlexNet

this and train

Conv-512 Conv-512

Conv-512 Conv-512
70

Conv-512 Conv-512

Conv-512 Conv-512 = 64.96
> Freeze these 60

Conv-256 Conv-256 58.75

Conv-256 Conv-256 55 20,78

50 50.98
Conv-128 Conv-128
Conv-128 Conv-128 45
DPD (Zhang et POOF (Berg & AlexNet FC6 + AlexNet FC6 +
al., 2013) Belhumer, logistic DPD
13) regression
Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for

) Generic Visual Recognition”, ICML 2014
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e hscne o o oo wkahos

2014
1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

T

> Reinitialize <— Train these

e,
MaxPool MaxPool MaxPool
Conv-512 Conv-512 Conv-512 Wlth blgger
Conv-512 Conv-512 conv-512 dataset, train
MaxPool MaxPool MaxPool more Ia’yerS
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxPool > Freeze these MaxPool
Conv-256 Conv-256 Conv-256 > Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxPool MaxPool ]
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxPool MaxPool 1/10 of Original LR
Conv-64 Conv-64 Conv-64 is gOOd Starting
Conv-64 Conv-64 j Conv-64 j p Oint
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar very different
dataset dataset

very little data | ? ?

quite a lot of ? ?

data

Fei-Fei, Krishna, Xu
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

More specific

MaxPool
Conv-256

Cony 256 More generic

MaxPool

Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

very similar very different
dataset dataset
very little data | Use Linear ?
Classifier on
top layer
quite a lot of Finetune a ?
data few layers

Fei-Fei, Krishna, Xu
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

More specific

MaxPool
Conv-256

Cony 256 More generic

MaxPool

Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

Fei-Fei, Krishna, Xu
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection
(Fast R-CNN)

Proposal | Linear +
classifier | softma

External proposal ———
algorithm
e.g. selective search

Girshick, “Fast R-CNN", ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Image Captioning: CNN + RNN

“straw” “hat” END

START "StraW" llhat"

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Fei-Fei, Krishna, Xu
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection .
(Fast R-CNN) T — CNN pretrained Image Captioning: CNN + RNN
on ImageNet

Bounding box
near
| regressors

Proposal | Linear +
classifier | softma

“straw” “hat” END

External proposal

algorithm
e.g. selective search

ConvNet
(applied to entire
image)

START "StI'aW" llhat"

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015

Girshick, “Fast R-CNN”, ICCV 2015 4 r )
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.
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Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection .
(Fast R-CNN) e — CNN pretrained Image Captioning: CNN + RNN
on ImageNet

Bounding box
~_I regressors

Proposal | Linear +
classifier | softma

“straw” “hat” END

External proposal

algorithm
e.g. selective search

ConvNet
(applied to entire
image)

START straw" “hat”

Word vectors pretrai ned
Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Girshick, “Fast R-CNN”, ICCV 2015 Wlth W rd 2V Generating Image Descriptions”, CVPR 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission. O eC Figure copyright I[EEE, 2015. Reproduced for educational purposes.

]
Fei-Fei, Krishna, Xu Lecture 6 Adapted by Nikonorov




Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Unified Vision-Language Pre-training ::]qezcs::e b':Li“ct“:lga'
1. Train CNN on ImageNet
oo 2. Fine-Tune (1) for object detection on
- Unified Encoder-Decoder Visual Genome

Train BERT language model on lots of text
Combine(2) and (3), train for joint image /
s Ry | e language modeling

R e 5. Fine-tune (4) for image captioning, visual

E g - cows| [mas] | the o IMASK] pasturd [sTOP)

> w

I

1 Image Captioning Visual Question Answering . .

| question answering, etc.
I Agirl with an upside-down umbrella. A:Yes

1

I

=~ » Unified Encoder-Decoder Unified Encoder-Decoder

m E Q: Is the umbrella upside down?

Zhou et al, “Unified Vision-Language Pre-Training for Image Captioning and VQA” CVPR 2020

Krishna et al, “Visual genome: Connecting language and vision using crowdsourced dense image annotations” IJCV 2017
Figure copyright Luowei Zhou, 2020. Reproduced with permission.

Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” ArXiv 2018

n
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Transfer learning with CNNs -
Architecture matters

Object detection on MSCOCO

50

We will discuss different architectures in
detail in two lectures

DPM (Pre DL) Fast R-CNN Fast R-CNN Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN
(AlexNet) (VGG-16) (VGG-16) (ResNet-50) (ResNet-101) FPN
(ResNet-101)

Girshick, “The Generalized R-CNN Framework for Object Detection”, ICCV 2017 Tutorial on Instance-Level Visual Recognition

e
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Transfer learning with CNNs is pervasive...
But recent results show it might not always be necessary!

bbox AP: R50-FPN, GN

45 .. .
Training from scratch can work just as

(,,— /fv—« o well as training from a pretrained
| S N ImageNet model for object detection

40 [

35

301 | But it takes 2-3x as long to train.

25/ |
' | typical

20 ‘( . fine-tuning
|

They also find that collecting more data

| schedule _ _ _
15+ ! is better than finetuning on a related
task
10
5 —random init
‘ w/ pre-train
0 1 L] Il L Il
0 1 2 3 4 5

He et al, “Rethinking ImageNet Pre-training”, ICCV 2019
Figure copyright Kaiming He, 2019. Reproduced with permission.

e
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Takeaway for your projects and beyond:
Transfer learning be like

%"?\

, » “Custom
- é Blayers -

{Pretrained
» layers

:‘1 Source: Al & Deep Learning Memes For Back-propagated Poets
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images”?

1. Find a very large dataset that has
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained
models so you don’t need to train your own

TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

e
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Summary TLDRs

We looked in detalil at:

- Activation Functions (use RelLU)

- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/He init)

- Batch Normalization (use this!)

- Transfer learning (use this if you can!)
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Next time:
Training Neural Networks, Part 2

- Parameter update schemes

- Learning rate schedules

- Gradient checking

- Regularization (Dropout etc.)
- Babysitting learning

- Evaluation (Ensembles etc.)
- Hyperparameter Optimization
- Transfer learning / fine-tuning
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