Lecture 8:
Training Neural Networks,
Part 2
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AddOn: NIHTynumnsa Teopemsbl LIbiIbeHKO:

MoXeT N HeMpoHHas CeTb anmnpPoOKCUMUPOBaTL NPOU3BONbHY (YHKLNIO?
f(z)

1900 - 13 npobnema NnbbepTa - AoKa3aTeNbCTBO CYLLECTBOBaHUS PELLEHNA NS BCEX YPaBHEHUIN 7-MOW
cTeneHn B Buae anrebpanyeckmx (HenpepbiBHbIX) OYHKLUA.

1956 - Teopema KonmoropoBa-ApHornbaa o0 npeacTaBneHnn.
Kaxxgyto MHOroMepHYyt0 HeENpepbIBHYIO OYHKLMIO MOXHO 3anncaTtb B BUAE KOHEYHOW KOMMO3ULIMN HEMPEPbIBHbIX
JYHKUMIA OQHOM NepeMeHHON N DMHapHOM onepaunmn CroXeHus.

1989 - YHuBepcanbHasa Teopema annpokcumauunu. JTiobyro oyHKLMIO MOXKHO annpoKCUMUPOBaTL CETbIO NPSIMOro
pacnpoCTpaHEeHNs C OOAHUM CKPbITbIM CIOEM U (PYHKUUSMU akTUBaLUUM cMrMonaanbHOro Tmna.
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user
Печатный текст
Может ли нейронная сеть аппроксимировать произвольную функцию?

user
Печатный текст
1900 - 13 проблема Гильберта - доказательство существования решений для всех уравнений 7-мой степени в виде алгебраических (непрерывных) функций.

1956 - Теорема Колмогорова-Арнольда о представлении.
Каждую многомерную непрерывную функцию можно записать в виде конечной композиции непрерывных функций одной переменной и бинарной операции сложения.

1989 - Универсальная теорема аппроксимации. Любую функцию можно аппроксимировать сетью прямого распространения с одним скрытым слоем и функциями активации сигмоидального типа.


AddOn: NHTynumnsa Teopemsbl LIbiIbeHKO:

Output from top hidden neuron
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The diagram on the left depicts continuous function approximation with a
series of step functions, while the diagram on the right illustrates a single

boxcar step function
Ha ocHoBe egMHNYHbBIX CKa4YKOB MOXHO "MOCTPOUTL"
annpokcnumMaLmio nNpon3BOSIbHON PYHKLINK

Lecture 7
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The neuron output based on different values of w and b. The network input x is
represented on the x ax
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Npoeqa oTcroga:
http://neuralnetworksanddeeplearning.com/chap4.html
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Advanced Deep Learning with Python. By lvan Vasilev
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user
Печатный текст
Сигмоидальный нейрон дает 
единичный скачок

user
Печатный текст
Сигмоидальный нейрон дает 
прямоугольный импульс

user
Печатный текст
На основе единичных скачков можно "построить"
аппроксимацию произвольной функции 

user
Печатный текст
Идея отсюда:
http://neuralnetworksanddeeplearning.com/chap4.html
Книга:
Advanced Deep Learning with Python. By Ivan Vasilev


Last time: Activation Functions

S|gmo|d Leaky RelLLU
o max(0.1z, x)
0'(%) T 14e =

tanh

Maxout
tanh(x) max(w{ T + by, wd x + by)
ReLU ELU
max (0, ) {x v =0
: ale* —1) <0
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Last time: Activation Functions

S|gmo|d Leaky RelLU )
_ 1 max(0.1z, )
O-(x)  14e=
-1 g 10 —177 10

tanh Maxout

max(wi x + by, wi z + by)

tanh(x)

RelLU ELU
max (0, ) {“” 20

ae®—1) =<0

Good default choice
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Last time: Weight Initialization

i

Initialization too small:
Activations go to zero, gradients also zero,

No learning =(

L

L

Initialization too big:
Activations saturate (for tanh),
, Gradients zero, no learning =(

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely =)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov



Last time: Data Preprocessing

original data zero-centered data normalized data
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Last Time: Batch Normalization [loffe and Szegedy, 2015]

N
Input: : N x D _ 4 Per-channel mean
. . e 4 ’
Hg N Z “J shapeis D
e
Learnable scale and 2 Per-channe
. er-channel var,
shift parameters: Z (®i; — shape is D
Li; = b J Normalized x,

' — 2 Shapeis N xD
Learning v=o, Joi+e pe is N x

_B = 1+ will recover the Output,
identity function! Shape is N x D
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Today

- Improve your training error:
- (Fancier) Optimizers
- Learning rate schedules

- Improve your test error:

- Regularization
- Choosing Hyperparameters
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Minimizing of the cost function J(8) over the data Momentum y:

0=0—n-VyJ(0) «BaHM/IBHBIN» I'PaIUEHTHBIN CITYCK

0=0—n-VoJ(6;z®;yl) Croxactrueckuii ['C n(A) — learning rate
6 =0—n-VeJ(0;z“;yE4m) - Mini-batch SGD - makermsiit CI'C Pery/sipusaniys Haie see!
ve = Y01 + nVeJ(6) - Weight decay
0—0—u, - Dropout
- Pruning - xoHTpacTupoBaHHe
Mopudukarnuu SGD yuureiBatoT aHM30TpOnHIO PazoBoro - Batch-norm

npocTpaHcTBa — Adam etc.
2. Weight penalty terms

SGD
Momentum

— i .
— NAG )
s S0y 30w E=20(-y) <20l
Adadelta - o o
Rmsprop Aw;; = ) X — W Aw;; = £0; X — eAsign(W;; )
weight elimination with Wo = 1
1 ) W/ W | e
e-i0(-n 0 il
25 Llwgwg z

weight pen:
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Optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

w1
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problems with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?
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Optimization: Problems with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N

1
LW) =% D Li(zi,5:, W)
1=1

N
i
VwL(W) = N Z VwLi(zi,yi, W)

i=1
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SGD + Momentum

SGD SGD+Momentum

Vep1 = pvr + V f(x4)

Lit+l = Tt — OUL41

Tt41 = Tt — avf(xt)

while True: vx = 0
dx = compute_gradient(x) while True:
x -= learning_rate * dx dx = compute_gradient(x)
vX = rho x vx + dx
x == learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning

B
«qu‘;‘flygﬁigﬂ'.

mm—— SGD+Momentum
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SGD + Momentum

SGD+Momentum SGD+Momentum
vir1 = pug — aV f(xy) ver1 = pue + Vf(xy)
Tt4+1 = Tt T Vgt1 Tt+1 = Tt — QU1
VX = 0 VX = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vX = rho * vx - learning_rate * dx vX = rho * vx + dx
X += VX X —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7
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Nesterov Momentum

Momentum update: Nesterov Momentum
: Gradient
Velocity Velocity
actual step actual step
=
Gradient

Combine gradient at current point with “Look ahead” to the point where updating using

velocity to get step used to update weights velocity would take us; compute gradient there and
Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983 miX |t W|th VeIOC|ty tO get aCtua| Update d|reCt|On

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Nesterov Momentum

Ver1 = puy — aV f(xzs + pvy)

Ti+1 = Tt + Vg1

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of Z¢, V f(z¢)

T —

vir1 = pvy — aV fxy + puy

Tt+1 = Tt T Vg41

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



Nesterov Momentum

Annoying, usually we want
update in terms of Z¢, V. f(x¢)

T —

vir1 = pvy — aV fxy + puy

Tt41 = Tt + Vg1

Gradient

Velocity

Change of variables T3 = Ty + pv; and

rearrange: actual step

Vt+1 = PVt — Oévf(it)

Ti+1 = Tt — PVt T (1 + p)vt-i-l “Look ahead” to the point where updating using
o~ velocity would take us; compute gradient there and
— Xt -+ O A | =t p(’Ut—i—l - Ut) mix it with velocity to get actual update direction

https://cs231n.qgithub.io/neural-networks-3/
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Nesterov Momentum

— SGD+Momentum

= Nesterov
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sgrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“‘Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + 1le-7)

—

Q: What happens with AdaGrad?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + 1le-7)

—

Q: What happens Wlth AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time? Decays to zero

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



RMSProp: “Leaky AdaGrad”

grad_squared = 0
while True:

AdaG rad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

v

grad_squared = 0
while True:
RMSPrOp dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012
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RMSProp

SGD

SGD+Momentum

RMSProp

AdaGrad

(stuck due to
decaying Ir)
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Adam (almost)

first_moment = 0
second_moment = 0
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

first_moment = 0

second_moment = 0

while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx| Momentum
second_moment = beta second_moment + - beta A
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPFOD

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |
first_unbias = first_moment / (1 - betal ** t) . )
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
| ' AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias

first_moment / (1 - betal ** t)

Momentum

Bias correction

AdaGrad / RMSProp

second_unbias = second_moment / (1 - beta2 ** t)
| x -= learning_rate * first_unbias / (np.sqgrt(second_unbias) + 1e-7))|

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam
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Learning rate schedules
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

/. very hi Q: Which one of these learning
N rates is best to use?

low learning rate

high learning rate

good learning rate

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

TR 1 A: All of them! Start with large
e learning rate and decay over time

good learning rate
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Learning Rate Decay

Training Loss

Step: Reduce learning rate at a few fixed
Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
l after epochs 30, 60, and 90.

0 20 40 60 80 100
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Learning Rate Decay

Learning rate

10 Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
0.8 1
after epochs 30, 60, and 90.
0.6 1 1
Cosine: «; = 50 (1 4 cos(tn/T))
0.4 1
0.2 1
0.0 1
0 20 a0 60 80 100
Epoch
Q0 : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 . .
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at . Learnlng rate at epOCh t
Feichtenhofer et al, “SlowFast Networks for Video R ition”, arXiv 2018 .
C?\Iicl;d aetnaI(,)“eGreenearatingotvonagSSegL:Aéz::; cv)\;ithlSepc;rszc'?rgzlslg:m::s”l,varXiv 2019 T . TOtal number Of epOChS
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Learning Rate Decay

Training Loss

10 1

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.8 1

0.6 1

Loss

1
Cosine: «; = 500 (1 4 cos(tn/T))

0.4 1

0.2 1

0.0

0 50 100 150 200 250 300

Epoch
Q0 : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 . .
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at : Lea rning rate at epOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T . TOtal number Of epOChS

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



Learning Rate Decay

Learning rate _ _
10 Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.8 1

0.6 1

1
n Cosine: oy = 5040 (1 I COS(tW/T))
02 Linear: «a; = ag(1 —t/T)
0 20 4OEpOCh60 80 100

() : Initial learning rate
(vt - Learning rate at epoch t

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for T . Total number Of epOChS
Language Understanding”, 2018
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Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
08 after epochs 30, 60, and 90.
| 1
0.6

Cosine: «; = 50 (1 4 cos(tn/T))
0.4 4

Linear: «a; = ag(1 —t/T)

0.2 1

Inverse sqrt: vy = ao/\/;f

0 20 a0 60 80 100
Epoch » _
() : Initial learning rate
(vt - Learning rate at epoch t
Vaswani et al, “Attention is all you need”, NIPS 2017 T : TOtaI number Of epOChS
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Learning Rate Decay: Linear Warmup

Learning rate L. :
06 d High initial learning rates can make loss

05 explode; linearly increasing learning rate
from O over the first ~5000 iterations can
prevent this

0.4 1
0.3

02 Empirical rule of thumb: If you increase the
batch size by N, also scale the initial
learning rate by N

0.1 1

0.0 1

0 20 20 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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First-Order Optimization

Loss

w1
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

S

Loss

w1
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1
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Second-Order Optimization

second-order Taylor expansion:

J(8) ~ J(80) + (6 — &) T VoJ (60) + 5 (60 — ) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

*— 00— H 'VoJ(0,)

Q: Why is this bad for deep learning?
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Second-Order Optimization

second-order Taylor expansion:

J(0) =~ J(0p) + (60 — &) " VeJ(6) +

1

2(9—90)TH(9— 6, )

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N”*2) elements

% 1
0" =0p—H VgJ(0y) Inverting takes O(NA3)

N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?
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Second-Order Optimization

0" =0, — H 'VoJ(6,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule
- Try cosine schedule, very few hyperparameters!

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)
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Improve test error
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Beyond Training Error

Train Loss Accuracy

ir5

09 - —e— ftrain
«— val
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Better optimization algorithms But we really care about error on
help reduce training loss new data - how to reduce the gap?
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Early Stopping: Always do this

Train

Loss Accuracy

Stop training here

lteration lteration

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot
that worked best on val
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Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance
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How to improve single-model performance?

Train Loss Accuracy
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Regularization
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Regularization: Add term to loss

L=+ >, max(0, f(z;W); — f(zi; W)y, + 1) +AR(W)

In common use:

L2 regularization  E(W) =233 Wy, (Weight decay)
L1 regularization R(W) =25 221 (Wi

Elastic net (L1 + L2) R(W) =3, >, 8W7, + Wil
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



Regularization: Dropout Example forward

pass with a
p = 0.5 # probability of keeping a unit active. higher = less dropout 3_|ayer network

using dropout

def train_step(X):
""" X contains the data """
# forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop!
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail R

is furry —X— . cat
" score

has claws +/
mischievous

look

!

O

T

Fei-Fei Li, Ranjay Krishna, Danfei Xu  Lecture 7 Adapted by Artem Nikonorov



Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
240% ~ 101233 possible masks!
Only ~ 10%% atoms in the universe...
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Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random! Y= fw(a:,z) fnnasim

Want to “average out” the randomness at test-time
y=1@) = E:[f(z,2)] = [ p(:)f (@, 2)dz

But this integral seems hard ...
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Dropout: Test time

Want to approximate
the integral
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY

During training we have: gj4] :%(wlx + way) + i(wlx +0y)

1 1
+ Z(O:v + 0y) + Z(Ox + woy)

1
:§(w133 + way)
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY

During training we have: gj4] :%(wlx + way) + i(wlx +0y)

1 1
+ Z(O:z: + 0y) + Z(Oa: + woy)

At test time, multiply 1
by dropout probability =§(w1x + way)
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Dropout: Test time

def predict(X):
# ensembled forward pass
H1 np.maximum(®, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 np.maximum(@, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time
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""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
""" X contains the data """

#-T

orward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask

H1 *= Ul # drop! . . .
AZ = np.maximum(0, np.dot(WZ, HI) + b2) drop N traln tlme
U2 np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
4 - f o naram or 1nir O N Wi
# perform parameter update... (not shown)

def predict(X):
# ensembled forward pass
H1 = np.maximum(©, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations I
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p # NOTE: scale the activations E;(:EHIEB Eit tEES;t tIrT1€3
out = np.dot(W3, H2) + b3
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More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

# forward pass for example 3-layer neural network

H1 = np.maximum(®, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p)|/ p #|first dropout mask. Notice /p!
H1 *= Ul # drop!
H2 = np.maximum(©, np.dot(W2, H1l) + B2)
U2 = (np.random.rand(*H2.shape) < p) |/ p #|second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

test time Is unchanged!
def predict(X): "——’______,,,,,,,,_————————
# ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3
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Regularization: A common pattern

Training: Add some kind
of randomness

Y = fW(xaz)

Testing: Average out randomness
(sometimes approximate)

y = f@) = B, [f(z,2)] = / p(2)f (2, 2)dz
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Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
y = fw(z, 2) Training:

Normalize using
stats from random

Testing: Average out randomness AN
minibatches

(sometimes approximate)

y = f(z) = E.[f(z,2)] = /P(Z)f(l’az)dz Testing: Use fixed
stats to normalize
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Regularization: Data Augmentation

Load image
and label
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Regularization: Data Augmentation

Load image
and label

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness
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Data Augmentation  pyore complex:

Color Jitter 1. Apply PCAto all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 Adapted by Artem Nikonorov



Data Augmentation
Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)
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Automatic Data Augmentation

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 ~ Sub-policy4  Sub-policy 5

o - - I-ﬁ ﬂ -
—
Baw“- - - -’j - -

ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 0.9, 4 Invert, 0.9, 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 04,8 AutoContrast, 0.8, 3 Equalize, 0.6, 3 AutoContrast, 0.7, 3

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout

Batch Normalization
Data Augmentation
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Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0)
Testing: Use all the connections

Examples:
Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions from several regions

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: Stochastic Depth

Training: Skip some layers in the network
Testing: Use all the layer

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Regularization: Cutout

Training: Set random image regions to zero
Testing: Use full image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop

Works very well for small datasets like CIFAR,
DeVries and Taylor, “Improved Regularization of |eSS Common for Iarge datasets Iike ImageNet

Convolutional Neural Networks with Cutout”, arXiv 2017
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Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout

Batch Normalization
Data Augmentation
DropConnect .
Fractional Max Pooling §/& = )
Stochastic Depth
Cutout / Random Crop Y
Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Target label:

CNN | cat:04
dog: 0.6

4 = i
€. 7 2 | 2
\ b ’ £

&

_ . Y

Randomly blend the pixels
of pairs of training images,
e.g. 40% cat, 60% dog
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Regularization - In practice

Training: Add random noise
Testing: Marginalize over the noise

Examples: |
Dropout - Consider dropout for large
Batch Normalization fully-connected layers

Data Augmentation - Batch normalization and data
DropConnect augmentation almost always a

good idea
- Try cutout and mixup especially
for small classification datasets

Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup
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Choosing Hyperparameters

(without tons of GPUs)
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Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of
training data (~5-10 minibatches); fiddle with architecture,
learning rate, weight initialization

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training
data, turn on small weight decay, find a learning rate that
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20
epochs) without learning rate decay
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss curves
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Look at learning curves!

Training Loss Train / Val Accuracy
01U
9g { =@ frain
0.08 4
0 96 1
7]
L 006
()] 94 -
£
c .
= 004 92 1
| -
|_
0.02 90 -
0.00

0 100000 200000 300000400000 500000600000 ¢ 100000 200000 300000 400000 500000 600000
lteration lteration

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better
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Accuracy t Accuracy still going up, you

need to train longer

Train

__—

time
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Accuracy ! Huge train / val gap means

overfitting! Increase regularization,
get more data

__—

Train

time
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Accuracy ! No gap between train / val means

underfitting: train longer, use a
bigger model

___—

Train

time
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss curves

Step 7: GOTO step 5
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Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)
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Cross-validation
“‘command center”
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Random Search for

Ra N d om S ea rCh VS. G rl d S ea rCh Hyper-Parameter Optimization

Bergstra and Bengio, 2012
Grid Layout Random Layout

o
o
o
Unimportant Parameter
o
Unimportant Parameter

Important Parameter Important Parameter

lllustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017
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Summary

- Improve your training error:
- Optimizers
- Learning rate schedules

- Improve your test error:

- Regularization
- Choosing Hyperparameters
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Next time: CNN Architecture Design
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