Lecture 11:
Generative Models
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Administrative

e A3 is out. Due May 27.
e Milestone is due May48 — May 20

o Read website page for milestone requirements.

o Need to Finish data preprocessing and initial results by then.
e Don't discuss exam yet since people might be taking make-ups.
e Anonymous midterm survey: Link will be posted on Piazza today
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

X is data, y is label
— Cat

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification, DOG. DOG. CAT
regression, object detection, ’
semantic segmentation, image Object Detection

captioning, etc.

his image is CCO public domain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS, :

Examples: Classification, TREE, SKY

regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

A cat sitting on a suitcase on the floor

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 7 May 14, 2020


https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Unsupervised Learning ) o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, density
estimation, etc.

K-means clustering
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

component space

Data: x
Just data, no labels!

+
_¢=+

Lt
L

Goal: Learn some underlying
hidden structure of the data

2-d
E-xamplles: Qlustering, _ Principal Component Analysis
dimensionality reduction, density (Dimensionality reduction)

estimation, etc.
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

N— ’/\
Data: x

Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering, RS
dimensionality reduction, density 2-d density estimation

estimation, etc. Modeling p(x) S
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https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y  Goal: Learn some underlying

hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, density
captioning, etc. estimation, etc.
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Generative Modeling
Given training data, generate new samples from same distribution

J‘ learning L mo()je|(x} sampling F;#

Training data ~ p,,.(X)

Objectives:
1. Learnp__. (X)that approximates p_._(x)
2. Sampling new x from p_ . (x)
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Generative Modeling
Given training data, generate new samples from same distribution

oA - 7 () g

-

Training data ~ p,,.(X)

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve forp __ . (X)
- Implicit density estimation: learn model that can sample from p_ . (x) without
explicitly defining it.
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Why Generatlve Models?

- Reallstlc samples for artwork, super-resolution, colorization, etc.

- Learn useful features for downstream tasks such as classification.

- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and
reinforcement learning applications)

- Many more ...

Flgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) Phillip Isola et al. 2017. Reproduced with authors permission (3) BAIR Blog
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https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/

Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ GSN

- NADE — :

- MADE Variational Markov Chain

: Ejl|)é;e||5r\>/NRl\g§|[’:lj\l\/lp Variational Autoencoder Boltzmann Machine

- Glow . . _ _ _

_ Ffjord Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models Direct

Today: discuss 3 most ‘ GAN
popular types of generative Generative models
models today /\
Explicit density Implicit density
Tractable density Approximate density Markov Chain

Fully Visible Belief Nets / \ GSN

- NADE — :

- MADE Variational Markov Chain

- | PixelRNN/CNN T .

. 'NICETRealNVP Variational Autoencoder Boltzmann Machine

-  Glow

_ Ffjord Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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PixelRNN and PixelCNN

(A very brief overview)
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n T

p(x) — H p(:cz-|a:1, cens xi—l)
T i=1 T

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Then maximize likelihood of training data
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n T

p(x) — H p(:cz-|a:1, cens xi—l)
T i=1 T

Likelihood of Probability of i'th pixel value
Image X given all previous pixels
Complex distribution over pixel
o o o values => Express using a neural
Then maximize likelihood of training data  ctwork!
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Recurrent Neural Network
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

@ O
o O
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

.l

© 0 O O O

Dependency on previous pixels modeled
using an RNN (LSTM)
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© 0 O O
© 0 O O O
© 0 O O O

© O O

@)
@)
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow
in both training and inference!

o O&—

o O

© O O

© 0 O O
© 0 O O O
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P IX9|C N N [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now il
modeled using a CNN over context region / / / /

(masked convolution)

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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P IX9|C N N [van der Oord et al. 2016]

Still generate image pixels starting from

corner

: : AT~
Dependency on previous pixels now
modeled using a CNN over context region /
(masked convolution)

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation is still slow:

For a 32x32 image, we need to do forward passes of
the network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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Generation Samples
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32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.
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PixelRNN and PixelCNN

Improving PixelCNN performance

Pros: - Gated convolutional layers
- Can explicitly compute likelihood - Short-cut connections
pP(X) - Discretized logistic loss
- Easy to optimize - |V|U|.tl—.808|e.
- Good samples - Training tricks
- Etc...
Con:
- Sequential generation => slow See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)
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Taxonomy of Generative Models

Generative models

/\

Explicit density

L

Direct

GAN

Implicit density

\

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

i

- NADE
- MADE

Variational

\

GSN

Markov Chain

- PixelRNN/CNN

Variational Autoencoder

- NICE / RealNVP
- Glow
- Ffjord

Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Variational
Autoencoders (VAE)
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So far...

PixeIRNN/CNNs define tractable density function, optimize likelihood of training data:

n
pG(x) = Hpg(a:ikcl, ...,.’L'z'_l)
1=1
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
pG(x) = Hpe(a:ikcl, ...,.’L‘i_l)
1=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = [ po(eIpo(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
pG(x) = Hpe(a:ikcl, ...,.’L‘i_l)
1=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Why latent z?
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Decoder

Encoder

45
Features z
Zr

Input data
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

T
Q: Why dimensionality
reduction? T Decoder

Features

A
I Encoder
Input data T
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction? Decoder

T

A: Want features to Feat T
capture meaningful ealures Z
ZT

factors of variation in

data Encoder

Input data
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Some background first: Autoencoders _Reconstructed data

e . T [
PN LalE
T S A

How to learn this feature

representation? Reconstructed Pkl <
nput data -Iq‘IE
Train such that features A

Encoder: 4-layer conv
Decoder: 4-layer upconv

can be used to
reconstruct original data
“Autoencoding” - Input data

X
encoding input itself ~ Features Z mﬁﬁ: *
T

Encoder Eﬁ@
ol o RS
el Rl | T
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Some background first: Autoencoders

Train such that features . Doesn’t use labels!
can be used to L2 Loss function:
reconstruct original data HCE _ 5,5”2 <

T

Decoder

Encoder

T
Features z
ZT

Input data

Reconstructed data

e .
ENL&0S
o il S Y A
-H** iy

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data
e i = TR
e L

N L&le

ool RS
sl < 8
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Some background first: Autoencoders

Reconstructed
input data

throw away decoder
Encoder

5y
Features YA \ After training,
b

Input data
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Some background first: Autoencoders

Transfer from large, unlabeled
dataset to small, labeled dataset. Loss function

(Softmax, etc) bird  plane

/ \ dog deer truck

Predicted Label

Train for final task
(sometimes with
small data)

Classifier Fine-tune
Encoder can be encoder

)
used to initialize a Features z jointly with
€I

supervised model classifier
Encoder

o R

Input data
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Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed T Features capture factors of
input data variation in training data.
I Decoder
But we can’t generate new
Features % images from an autoencoder
because we don’t know the
I Encoder space of z.
Input data €I How do we make autoencoder a

generative model?
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(V}  is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional T

po-(x | %)

Sample from
true prior >

2% ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(V}  is generated from the distribution of unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from _ ) ,
T generate x: attributes, orientation, etc.

true conditional
po- (x| 2V))

Sample from
true prior >

2% ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional T

po-(x | %)

Sample from
true prior >

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 46 May 14, 2020



Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional T

po-(x | %)

How should we represent this model?

Sample from
true prior >

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional T

po-(x | %)

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,

Sample from e.g. pose, how much smile.

true prior >
20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional T

po-(x | %)

How should we represent this model?

Decoder Choose prior p(z) to be simple, e.g.
Samole from network Gaussian. Reasonable for latent attributes,
PX e.g. pose, how much smile.
true prior >
20 ~ py (2)

Conditional p(x|z) is complex (generates
image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional T

po-(x | %)

How to train the model?

Decoder
network
Sample from

true prior >
29 ~ pg (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr.o_m How to train the model?
true conditional h
po-( | Z(Z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior > fpg pe 33|z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr.o_m How to train the model?
true conditional €I
po-( | Z(Z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior P = [ po(2)pe(z|z)dz

Q: What is the problem with this?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr.o_m How to train the model?
true conditional €I
po-( | Z(Z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior P = [ po(2)pe(z|z)dz

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v,

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

AN A

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pg(x f pgypg (z]z)dz

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pg(x f pg}/pg (z]z)dz

Intractable to compute p(x|z) for every z!

log p(z) ~ log % Zle p(z|2), where 2 ~ p(2)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pgypg (z]z)dz

Posterior density:  pg(z|z) = pg(x|2)pe(2)/po(T)
f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

Posterior density also intractable: p9(2|$) = Peo (SU|Z)P9 (Z)/Pe (37)

Solution: In addition to modeling p,(x|z), learn q¢(z|x) that approximates the true
posterior p,(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the
data likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from
only the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

log po(z(V) = E. gy (zlz®) {logpe(x(i))} (pe (') Does not depend on z)
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Variational Autoencoders

log po(z(V) = E. gy (zlz®) {logpe(x(i))} (pe (') Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later
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Variational Autoencoders

log o (z'?) = E. gy (zlz®) {logpe(x(i))} (pe (') Does not depend on z)

po(z™ | 2)py(2)
po(z | @)

=B, [log ] (Bayes’ Rule)
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Variational Autoencoders

log pg(zV) = E. q,(z|2®) {logpg(x(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | z®)

po(z® | 2)pa(z) qg(z | V)
po(z | 2®)  gg(z | 2®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)
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Variational Autoencoders

log pg(zV) = E. g, (zlz) {logpg(x(i))} (pe (') Does not depend on z)

po(z® | z)ps(2)
po(z | ™)

po(z® | 2)pa(z) qg(z | V)
po(z | 2®)  gg(z | 2®)

gp(z | )
po(2)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

gs(2 | 21V)
po(z | x1)

=E, -logpg(x(i) | z)} —E, [log ] +E, [log ] (Logarithms)
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Variational Autoencoders

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | ™)

po(z™ | 2)pa(z) gg(z | V)
po(z |2®)  qy(z | 2®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

= -o AN 0 M o) M ogarithms
E, :l gpo(z™ | )} E, [1 I ]+Ez [1 gp@(zm(i))] (Logarithms)
= E. [logpo(2) | 2)| = Dicr(as(z | #9) 1po(2)) + Dicr(as(z | ) Il po(z | )
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms
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Variational Autoencoders

log pp () = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
po(z | 2®)

po (2 | 2)po(2) g (z | V)
po(z | 2®)  gy(z | 2®)

= E. |log ] (Multiply by constant)

- . (4) (4)
=E. |logpg(z | z)} —E, [log M] +E, [log M] (Logarithms)

po(2) po(z | )
= E. [logpo(z” | 2)| = Dicr(as(= | 29) || po(2)) + Drcraolz | 2@) || po (= | )
Decoder network gives py(x|z), can This KL term (between Pg(2x) intractable (saw
compute estimate of this term through Gaussians for encoder and z  €arlier), can’t compute this KL
sampling (need some trick to prior) has nice closed-form tgrm :( But we know KL
differentiate through sampling). solution! divergence always >=0.
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Variational Autoencoders

log pp () = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

/

—E,
We want to
maximize the
data =E,
likelihood

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

[ (4)
o 20 | 2pa2)

] (Bayes’ Rule)

po(z | 2)
(4) (4)

log po(a™ | z)pg(z) 42| 2 . )] (Multiply by constant)

po(z |2@)  qy(z | 2®)
i ; (@) (z | ™)
lo D 2)| — E, [lo M] + E, [lo %—] Logarithms
logpo(a? | 2)] g 8 | (Logarithms)
logpo (¢ | 2)] — Dicr(go(= | 2®) || po(2)) + Dcr(g0(= | 2©) || po(z | 7))

Pg(z|x) intractable (saw
earlier), can’t compute this KL
term :( But we know KL
divergence always >= 0.

Lecture 11 - 68

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!

May 14, 2020



Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(w(i))} (pe(z'?) Does not depend on z)

[ (2)
/ =E. |log po(a™” | Z)(ZZ)Q(Z)] (Bayes’ Rule)
We want to L po(z | z1)) .
(rjna}[xmlze - E. |log po(a™ | z)pg(z) 42| @ . ) (Multiply by constant)
ata po(z | 2)  qp(z | 2¥)
likelihood ] ) (i)
= E, |logpe(z@ | z)} —E, [log M] + E, [log 92 | T )] (Logarithms)
I po(2) po(z |z
=|E. |logps(z"" | Z)} — Drcr(as(2 | 29) || po(2))|+ Drcr(4(2 | 2 )Hpe(z | 2))

L(z9),6, ¢) >0
Tractable lower bound which we can take

gradient of and optimize! (pe(x|z) differentiable,
KL term differentiable)
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Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (po(2'?) Does not depend on z)
po (=" | 2)pe(2)

R truct Po(z | =)
econstruc : Q) )
the input data= E; |log Po(™ | 2)pe(2) 452 | 2 )] (Multiply

po(z | 2®)  gy(z | z)
- . (i))
=E. |lo 20 | 5| — E, [10 M
_X@ )] - o 2512
N

©) SONT
—[E. [logps(2?) | 2)| = Dicr (o | 29) || po(2)

L(".0.9) =
Tractable lower bound which we can take

gradient of and optimize! (pe(x|z) differentiable,
KL term differentiable)

=E, |log ] (Bayes’ Rule)

Make approximate
posterior distribution
onstant) close to prior

(4)
M} (Logarithms)

\ —

+ Drr(as(z | 21) || po(2 | 21))

4
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
N N
Hz|x Ez|x Hx|z Em|z
Encoder network Decoder network
q4(2|2) pe(z|2)
(parameters ¢) (parameters 0)
X Z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 27) || po(2))

£(z9,0,9)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a® | 2)| -|Dicslas(= | 2D)|po(2)

L(z?,0,9)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data v
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —|DKL<q¢<z B Hpe<z>2|

L(z?,0,9)

Hz|x Zz|m
Encoder network \/
q¢(z|z)
Input Data v
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —|DKL<q¢<z B Hpe<z>2|

L(z?,0,9)

DKL (N(,u'z\an 2z|a:)HN(O7 ]‘))

Have analytical solution

Make approximate
posterior distribution

close to prior Hz|x Zz|x
Encoder network \/
9(2|2)
Input Data v
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

Make approximate
posterior distribution
close to prior

Not part of the computation graph!

|

<

Sample z from z|a: ~ N(/Lz|m, Ez|:z:)

/

Hz|x

Encoder network
wil) N

23z|:1r:

Input Data

b

Lecture 11 - 76

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Va r atl on al AUtOe N COd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
likelihood lower bound sample € ~ N (0, I)

. | — €T
E. [logpo(a® | 2)] |- Dics(gol= | 29) I po(2)) 2= Hojz T €04y

L(z,0,9)
YA
Sample z from z|x ~ N )y
Make approximate P | ('U’zlm ZICL')
posterior distribution /
close to prior /-"z|m Zz|x
Encoder network \/
q4(z|2)
Input Data v
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Va r atl on al AUtOe N COd ers Reparameterization trick to make

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

Make approximate
posterior distribution
close to prior

sampling differentiable:

Sample € ~~ N(O, I
2 =|Hzlx

Part of computation graph

Input to
the graph

VA
Sample z from z|a: ~ N(/Lz|m, Ez|:z:)

/

Hz|x 2z|x
Encoder network \/
q¢(2|z)
Input Data v

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

Make approximate
posterior distribution
close to prior

M|z

Zmlz

Decoder network \/
pe(z|2)

<

Sample z from z|a: ~ N(/Lz|m, Ez|:z:)

/

Hz|x

Encoder network
wil) N

23z|:1r:

Input Data

Lecture 11 - 79

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the
likelihood lower bound

T
E. [logpa(a? | 2)] [+ Dcnlaolz | ) | po(2)) Kz Xiz)z

L(zD,0,¢) Decoder network \/
po(x|z)

VA
Sample z from z|a: ~ N(/Lz|m, Ez|:z:)

/

Make approximate
posterior distribution

close to prior Hz|z Ez|m
Encoder network \/
9¢(2|)
Input Data v
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Variational Autoencoders

Putting it all together: maximizing the

U T
likelihood lower bound / \

E. [logpo(a®) | 2)] = Dics(as(z | 29) || o) Ha)z i)z

Decoder network \/
po(z|2)

Z

Sample z from z|a: ~ N(/Lz|m, Ez|:z:)

/

L(z?,0,9)

Make approximate
posterior distribution

close to prior /,l,z|m Zz|x
Encoder network
For every minibatch of input \/
data: compute this forward q¢(z|a:)
pass, and then backprop! Input Data i
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Variational Autoencoders: Generating Data!

Our assumption about data generation
process

Sample from
true conditional T

pe-(z | 2%)

Decoder
network
Sample from

true prior >
20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Now given a trained VAE:
Our assumption about data generation  yse decoder network & sample z from prior!

process
Sample from L
true conditipnal XL Sample x|z from |z ~ N (z|, Xz|2)
po-(z | 29)
Decoder / \
network Hz|z 23a:lz
Samplfe from Decoder network
true prior > po(x|2)
20~ pg (2) <

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 83 May 14, 2020



ing Data!

Generat

| Autoencoders:

lona

t

Ia

Var

Use decoder network. Now sample z from prior!

QAN NANNNANNNN N SNNNNS
QAVAN O LELLLLLWN NN~
QAN LLLLVVYY YN~~~
QUAVVDNININLn Gyt G W YVVVY W~~~
QAVVHHINNKVW B BVIVIYY W - - —
QAOOVOHINININNHOEBPBDIYOVIYY W = ——
QAQOOIOMHIMNMNMMON N DIOID D W = ——
QOODOMMNMMMN MM ®O DD D w o — —
QODWMIN MM N MDD WS DD e e —
OODOMM MMM N D0 WD DD e e e —
QOMME MMM NN LW on om om o —
DA I8 0% 0?07 000000 0 &n & O~ 0~ P o~
RN e I L N Nl ol o
SRS K K G a al all ok ol S S NN
Sl ogororrorrrrTaNNN
SdadadaddorrrrrrTrTIIIINN
SddddgorrrrrrdFdTIITIXINN
SAdAddTTTTrrrrrrrrI™2r22NN
S I e glie e i <l el el ol ol ol ol O N NI NI NN

N

8

Sk

N

= N

,w\

A..lMN N

ﬂv/

£

o

N X

< 8

o 3

Q.

£ 5

n .M\}
O N
C
82

D

S &
()
a)

Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

May 14, 2020
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ing Data!
Data manifold for 2-d z

Generati

| Autoencoders:

lona

t

Ia

Var

Use decoder network. Now sample z from prior!

QAN NANNNANNNN N SNNNNS
QAVAN O LELLLLLWN NN~
QAN LLLLVVYY YN~~~
QUAVVDNININLn Gyt G W YVVVY W~~~
QAVVHHINNKVW B BVIVIYY W - - —

QO0DHINININMHEBIVVIV®w w—— 4

QAQOOIOMHIMNMNMMON N DIOID D W = ——
QOODOMMNMMMN MM ®O DD D w o — —
QODWMIN MM N MDD WS DD e e —
OODOMM MMM N D0 WD DD e e e —
QOMME MMM NN LO LW e o o om o —
DA I8 0% 0?07 000000 0 &n & O~ 0~ P o~
RN e I L N Nl ol o
SRS K K G a al all ok ol S S NN
Sl ogororrorrrrTaNNN
SdadadaddorrrrrrTrTIIIINN
SddddgorrrrrrdFdTIITIXINN
SAdAddTTTTrrrrrrrrI™2r22NN
I g gl il ol ol ol ol ol ol SN NI NN N LN

< >

Vary z,

Zmlz

N

Sample x|z from :1:|z ~ N(Mm|z, Zmlz)
Hx|z

Decoder network
po(x|z)

Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,

May 14, 2020
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Variational Autoencoders: Generating Data!

Diagonal prior on z

=> independent Degree of smile

latent variables \ N '
Different

dimensions of z Vary z,
encode

interpretable factors

of variation \/

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders:

Diagonal prior on z
=> independent

f
latent variables Degree o
Different
dimensions of z
encode
interpretable factors
of variation

\

Also good feature representation that
can be computed using q¢(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

smile

Vary z,

Nt
7

Generating Data!

SEEES

PP, P

TEIT

Q"i’ﬂ -

Head pose

Lecture 11 - 87 May 14, 2020
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Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.
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Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixeIRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ GSN

- NADE — :

- MADE Variational Markov Chain

: Ejl|)é;e||5r\>/NRl\g§|[’:lj\l\/lp Variational Autoencoder Boltzmann Machine

- Glow . . _ _ _

_ Ffjord Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Generative Adversarial
Networks (GANS)
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
p9($) = Hpe(a:ikcl, ...,.’L‘i_l)
1=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

n
pG(x) = Hpe(a:ikcl, ...,.’L‘i_l)
1=1

VAEs define intractable density function with latent z:
po(z) = [ po(eIpo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
pG(x) = Hpe(a:ikcl, ...,.’L‘i_l)
1=1

VAEs define intractable density function with latent z:

po(z) = [ po(eIpo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: not modeling any explicit density function!
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Generative Adversarial Networks Adversarial Neis” NIPS 2074

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

Q: What can we use to
represent this complex
transformation?
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Generative Adversarial Networks Adversarial Neis” NIPS 2074

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

Q: What can we use to Output: Sample from
represent this Comp|ex training distribution
transformation? *
A: A neural network! Generator
Network
f
Input: Random noise z
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Generative Adversarial Networks Adversarial Neis” NIPS 2074

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

But we don’t know which

sample z maps to which =

training image -> can’t

learn by reconstructing f
Generator

Network

;

training images
Input: Random noise z

Output: Sample from
training distribution
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets’, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.
=_>

But we don’t know which

_ Output: Sample from
sample z maps to which

Discriminator . Real?

M ) training distribution Network Fake?
training image -> can't
I ' .
tea_rr? by.reconstructlng f gradient
raining images Generator
Solution: Use a Network v
discriminator network to 4
tell whether the generate Input: Random noise z

image is within data
distribution or not
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

*

Discriminator Network

Fake Images - | Real Images
from generator) | ' - (from training set)
9 >
A

Generator Network

*

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 100 May 14, 2020




lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake o S
* \ Discriminator learning signal

Discriminator Network

~ | Real Images
5 (from training set)
A
Generator Network

*

Random noise Z

Generator learning sigry

Fake Images
(from generator) |

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Adversarial Nets”, NIPS 2014

Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game
Minimax objective function:

min max [Ewpdm log Dg, () + Enp(z) log(1 — Dy, (G, (z)))]
g d

Genérator Discriminat
objective iscriminator

objective

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Trammg GANS TWO-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [EmNPdata log Dy, (z) + E,~p(z) log(1l — Dg,(Go, (Z)))]
0y 04 — \ !

Discriminator output

Discrimina'tor output for
for real data x

generated fake data G(z)

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Training GANs: Two-player game peversara NS NIPS 2016

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Em,\,pdata log Dy, (z) + E,~p(z) log(1l — Dg,(Go, (Z)))]
0y 04 — \ !

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z2)) is close to 0 (fake)

- Generator (Gg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%a‘x []E-’Bdiata log Dy, (m) + Il:-‘:zrvp(z) log(l - Ded(Ggg (z)))]
d

2. Gradient descent on generator
r%in E,rp(z) log(1 — Dg,(Ge,(2)))
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%a‘x []E-’Bdiata log Dy, (m) + Il:-‘:zrvp(z) log(l - Ded(Ggg (z)))]
d

2. Gradient descent on generator

) When sample is likely
i E,p(z) log(1l — Do, (G, (2))) fake, want to learn from
g it to improve generator

| ’ — e |

: . : — (move to the right on X o |

In practice, optimizing this generator objective : |
axis).

does not work well! 1
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

néax [Eaxrvpdata log Dy, (z) + Ezwp(z) log(1 — DOd(GGQ (z)))] dominated by region
d where sample is

2. Gradient descent on generator already QO\Od

. When sample is likely
i E,p(z) log(1l — Do, (G, (2))) fake, want to learn from
g it to improve generator |

In practice, optimizing this generator objective ;Tiz\)/e to the right on X/;’ :
does not work well! ' |
But gradient in this ‘ 3 ‘ j

region is relatively flat! |
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 2 | Egnpy,q, 108 Do, () + Eanpie) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%a‘x [Em"’pdata log Dy, (x) + IE:zrvp(z) log(l - Dad(Ggg (z)))]
d

max E,~p(z) log(Dg,(Go,(2))) )

Instead of minimizing likelihood of discriminator being correct, now High gradi
maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

nt signal

1
€
2
3
4

2. Instead: Gradient ascent on generator, different objective

L
0 0.2

Cow gradient signal
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(),...,2(™} from data generating distribution

pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

1 & . .
Vou— > | 10g Do,(29) + log(1 — Do, (G, (:)))]
i=1

end for
e Sample minibatch of m noise samples {z(*), ..., z(™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 & ,
V6, 1y 22 108(Das(Go, (7))
1=

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do

frf sicps o

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).
Some find k=1 . Sa(ml))le minibatch of m examples {z(1),..., (™)} from data generating distribution

Pdata\ T ).
rT][ﬁre Stablek’ > 1 e Update the discriminator by ascending its stochastic gradient:
others use m

’ 1 : .
no best rule. Vo, 3 [log Dy, (z) + log(1 — Dp, (G, (z(l))))]
i=1
Followup work s
(e.g. Wasserstein Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
GAN, BEGAN) e Update the generator by ascending its stochastic gradient (improved objective):
alleviates this m
1 .
problem, better Vo, —  log(Dg,(Gs, (7))
stability! mi=
end for
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lan Goodfellow et al., “Generative

Training GANS: TWO—pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images - | Real Images
(from generator) | ' ~ - (from training set)
* ‘

Generator Network
A After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 111 May 14, 2020




lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 112 May 14, 2020



lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

- s
»

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

,,,,,,

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Interpolating |
between

random
points in laten 7
space " ;

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

i =
Samples S
from the <
model

\_
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

4 *f

Samples
from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

r =

Samples Smiling Man

from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman Radford ot al,

Woman with glasses
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. I See also: https://github.com/soumith/ganhacks for tips
201 7 EXDIOSIO” Of GANS and tricks for trainings GANs
“The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling ¢ CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

¢ acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

* AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution g

i ; . DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
¢ AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
o ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild

o ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw

o b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks GeneGAI?I - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

« Bayesian GAN - Deep and Hierarchical Implicit Models
¢ BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
¢ BiGAN - Adversarial Feature Learning

« BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. . " . . . ’ " + ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 g g

L . A « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks = i 5 %

o . & 2 . . . InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
« CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

* CoGAN - Coupled Generative Adversarial Networks

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 121 May 14, 2020


https://github.com/soumith/ganhacks

2017: Explosion of GANs

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN,
Arjovsky 2017.
Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 11 - 122 May 14, 2020



201 [ EXpIOSiOn Of GANS Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

: breast and crown, and black almost all black with a red
SO u rce_>Ta rg et d omain tra n Sfe r primaries and secondaries. crest, and white cheek patch.

Input Output

Input Output

S T A e
Py . TS o5 b P T
e -

h Rt §
il i "

zcbra = horsc

ci ®
"9

apple - orane

b | e oo Pix2pix. Isola 2017. Many examples at
CycleGAN. Zhu et al. 2017. https://phillipi.github.io/pix2pix/
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2019: BigGAN

Brock et al., 2019
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Scene graphs to GANs

Scene Graph
sheep = by + sheep
Specifying exactly what kind of image you boat + in ;tanding on

want to generate. ¥ \
ocean = by grass *sky

v 4
behind < tree above

C

Figures copyright 2019. Reproduced with permission.

The explicit structure in scene graphs
provides better image generation for complex
scenes.

Ours

Johnson et al. Image Generation from Scene Graphs, CVPR 2019
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HYPE: Human eYe Perceptual Evaluations
hype.stanford.edu

50%

Highest
HYPE

| ] | |

0 == 100
CelebA 1 1 T ==
38 10.0 40.3 50.7
WGAN-GP BEGAN ProGAN StyleGAN e

Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurlPS 2019 Figures copyright 2019. Reproduced with permission.
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https://hype.stanford.edu/

GANSs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANSs for all kinds of applications
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Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ GSN

- NADE — :

- MADE Variational Markov Chain

: Z'I)éellzr\;NR'\g;m\'\/lp Variational Autoencoder Boltzmann Machine

- Glow . . _ _ _

_ Ffjord Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Useful Resources on Generative Models

CS 236: Deep Generative Models (Stanford)

CS 294-158 Deep Unsupervised Learning (Berkeley)
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https://deepgenerativemodels.github.io/
https://sites.google.com/view/berkeley-cs294-158-sp19/home

Next: Detection and Segmentation

Semantic Object Instance
Segmentation Detection Segmentation

Classification

e {
) b M
. N e
= — M= =

GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
U RS TREE, SKY RN Y,
Y Y _ _
No spatial extent No objects, just pixels Multiple Object This image s CCO cublic dorgin
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

