0311219835 | 4 years ago | |
---|---|---|
lab_1-2 | 4 years ago | |
LICENSE | 4 years ago | |
README.md | 4 years ago |
README.md
Курс "Нейронные сети и глубокое обучение" Самарского Университета
Лектор Артем Владимирович Никоноров, д.т.н., artniko@gmail.com
Ассистент Виктория Витальевна Евдокимова, аспирант Самарского Университета, data.science.sbj@gmail.com
Курс основывается на предыдущих более обзорных лекциях и туториалах по глубокому обучению и его приложениях, в частности, вот небольшая обзорная лекция в Кавказском Математическом Центре. Также во многом этот курс является адаптацией известнейшего курса http://cs231n.stanford.edu/
Предварительный график проведения курса.
Третья лекция в 14-30 МСК (15-30 по Самаре) 12.10.2020 в Zoom.
Ссылка будет приведена позднее.
Телеграмм группа курса: https://t.me/DL_SamU_2020
Предположительно, лекции будут вестись раз в две недели по понедельникам. Продолжительность лекции два астрономических часа.
Предварительный лекционный план.
План может менятся в процессе курса.
Лекция 1. Классификация, основанная на данных
Видеозапись лекции 14.09.2020
Введение в курс.
Задача классификации изображений.
Подходы основанные на данных.
Линейная классификация и knn-классификатор.
Лекция 2. Функции потерь и оптимизация.
Мультиклассовый SVM и его функция потерь.
Софтмакс и мультимодальная логистическая регрессия.
Оптимизация функции потерь.
Стохастический градиентный спуск (SGD).
Лекция 3. Нейронные сети и обратное распространение ошибки.
Классификация с точки зрения нейронной сети.
Многослойный перцептрон.
Представление сети в виде вычислительного графа.
Алгоритм обратного распространения ошибки на вычислительном графе.
Лекция 4. Сверточные сети (СНС).
История.
Основные операции СНС.
Применение СНС вне задач машинного зрения.
Лекция 5. Инструментарий глубокого обучения.
CPU vs GPU vs TPU.
Пакеты глубокого обучения, Tensorflow, Keras и другие.
Вычислительные графы СНС.
Лекция 6. Обучение СНС, часть 1.
Активационные функции, обработка данных сетью.
Пакетная нормализация и другие трюки.
Transfer learning.
Лекция 7. Обучение СНС, часть 2.
Политики обновления гиперпараметров.
Тюнинг процесса обучения.
Аугментация данных.
Лекция 8. Архитектуры СНС
Базовые архитектуры - AlexNet, VGG, GoogleNet, ResNet, UNET и другие.
Лекция 9. Генеративные и рекуррентные модели
RNN/LSTM.
Механизм attention.
Обработка естественного языка.
GAN сети.
Лекция 10. Прикладные сценарии использования СНС
TBD.
Лекция 11. Перспективы развития ИИ
TBD.
Предварительный план лабораторных работ.
План может менятся в процессе курса.
Л.Р. 1
kNN, многоклассовый SVM, SoftMax.
Материалы к лабораторной.
Л.Р. 2
Двухслойная сеть.
Материалы к лабораторной.
Л.Р. 3
Многослойный перцептрон, обратное распространение ошибки, сверточные сети.
Л.Р. 4
Использование различных архитектуры СНС в Tensorflow/Keras.
Л.Р. 5
Решение прикладной задачи с применением СНС.
Литература и дополнительные источнки
-
Отличная книга на русском по глубокому обучению -
С. И. Николенко, А. Кадурин, Е. В. Архангельская, Глубокое обучение. Погружение в мир нейронных сетей. 2018 -
Отличная книга по техническим аспектам реализации на Python -
Шолле Франсуа, Глубокое обучение на Python -
Видеолекция академика Ю.И. Жкравлева об истоках машинного обучения в СССР и о сочетании эвристики и науки в распознавании образов.
-
Видеолекции С.И. Николенко по GAN сетям 1, 2. Хорошая проерка ваших знаний, на выходе из настоящего курса вы полностью понимать то, что говорится в этих лекциях по GAN.