You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
3.5 KiB
Python
88 lines
3.5 KiB
Python
7 months ago
|
import sys
|
||
6 months ago
|
|
||
7 months ago
|
import logging
|
||
|
import math
|
||
|
import os
|
||
|
import time
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.optim as optim
|
||
|
from PIL import Image
|
||
|
from pathlib import Path
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
from torch.utils.data import Dataset, DataLoader
|
||
|
from common.data import SRTrainDataset, SRTestDataset
|
||
|
from common.utils import PSNR, cal_ssim, logger_info, _rgb2ycbcr, modcrop
|
||
|
from common.validation import valid_steps
|
||
|
from models import LoadCheckpoint
|
||
|
torch.backends.cudnn.benchmark = True
|
||
|
from datetime import datetime
|
||
|
import argparse
|
||
|
|
||
|
class ValOptions():
|
||
|
def __init__(self):
|
||
|
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
self.parser.add_argument('--model_path', type=str, help="Model path.")
|
||
6 months ago
|
self.parser.add_argument('--datasets_dir', type=str, default="../data/", help="Path to datasets.")
|
||
7 months ago
|
self.parser.add_argument('--val_datasets', type=str, default='Set5,Set14', help="Names of validation datasets.")
|
||
7 months ago
|
self.parser.add_argument('--save_predictions', action='store_true', default=True, help='Save model predictions to exp_dir/val/dataset_name')
|
||
7 months ago
|
|
||
|
def parse_args(self):
|
||
|
args = self.parser.parse_args()
|
||
|
args.datasets_dir = Path(args.datasets_dir).resolve()
|
||
|
args.val_datasets = args.val_datasets.split(',')
|
||
|
args.exp_dir = Path(args.model_path).absolute().parent.parent
|
||
|
args.model_path = Path(args.model_path)
|
||
|
args.model_name = args.model_path.stem
|
||
|
args.valout_dir = Path(args.exp_dir)/ 'val'
|
||
|
if not args.valout_dir.exists():
|
||
|
args.valout_dir.mkdir()
|
||
|
args.current_iter = args.model_name.split('_')[-1]
|
||
|
# Tensorboard for monitoring
|
||
|
writer = SummaryWriter(log_dir=args.valout_dir)
|
||
|
logger_name = f'val_{args.model_path.stem}'
|
||
|
logger_info(logger_name, os.path.join(args.valout_dir, logger_name + '.log'))
|
||
|
logger = logging.getLogger(logger_name)
|
||
|
args.writer = writer
|
||
|
args.logger = logger
|
||
|
|
||
|
return args
|
||
|
|
||
7 months ago
|
def __repr__(self):
|
||
|
config = self.parser.parse_args()
|
||
7 months ago
|
message = ''
|
||
|
message += '----------------- Options ---------------\n'
|
||
7 months ago
|
for k, v in sorted(vars(config).items()):
|
||
7 months ago
|
comment = ''
|
||
|
default = self.parser.get_default(k)
|
||
|
if v != default:
|
||
|
comment = '\t[default: %s]' % str(default)
|
||
|
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
|
||
|
message += '----------------- End -------------------'
|
||
7 months ago
|
return message
|
||
7 months ago
|
|
||
|
|
||
|
# TODO with unified save/load function any model file of net or lut can be tested with the same script.
|
||
|
if __name__ == "__main__":
|
||
7 months ago
|
script_start_time = datetime.now()
|
||
7 months ago
|
config_inst = ValOptions()
|
||
|
config = config_inst.parse_args()
|
||
|
|
||
7 months ago
|
config.logger.info(config_inst)
|
||
7 months ago
|
|
||
|
model = LoadCheckpoint(config.model_path)
|
||
|
model = model.cuda()
|
||
|
print(model)
|
||
|
|
||
|
test_datasets = {}
|
||
|
for test_dataset_name in config.val_datasets:
|
||
|
test_datasets[test_dataset_name] = SRTestDataset(
|
||
|
hr_dir_path = Path(config.datasets_dir) / test_dataset_name / "HR",
|
||
|
lr_dir_path = Path(config.datasets_dir) / test_dataset_name / "LR" / f"X{model.scale}",
|
||
|
)
|
||
|
|
||
7 months ago
|
valid_steps(model=model, datasets=test_datasets, config=config, log_prefix=f"Model {model.__class__.__name__}")
|
||
7 months ago
|
|
||
7 months ago
|
total_script_time = datetime.now() - script_start_time
|
||
|
config.logger.info(f"Completed after {total_script_time}")
|