| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -5,25 +5,26 @@ import numpy as np
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from common.utils import round_func
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from common import lut
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from pathlib import Path
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				# from . import srlut 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from . import hdblut
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from common import layers
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from itertools import cycle
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        assert scale == 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2*2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2*2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2*2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2*2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2*2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # self.stage2_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # self.stage2_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # self.stage2_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # self.stage2_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # self.stage2_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[0,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -41,59 +42,213 @@ class HDBNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb     
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*2*2, w*2*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*2*2, w*2*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage1_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage1_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage1_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage1_2H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage1_2D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2*2, self._extract_pattern_3H, self.stage1_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2*2, self._extract_pattern_3D, self.stage1_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2*2, self._extract_pattern_3B, self.stage1_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2*2, self._extract_pattern_2H, self.stage1_2H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2*2, self._extract_pattern_2D, self.stage1_2D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4*2
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*4, w*4], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*4, w*4], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage2_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage2_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage2_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage2_2H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage2_2D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4*2
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = round_func((output_msb / 255) * 16) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = (output_lsb / 255) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # print(output_msb.min(), output_msb.max(), output_lsb.min(), output_lsb.max())
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # msb = x - lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # output_msb = torch.zeros([b*c, 1, h*4, w*4], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # output_lsb = torch.zeros([b*c, 1, h*4, w*4], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage2_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage2_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage2_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage2_2H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #    output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage2_2D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # output_msb /= 4*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # output_lsb /= 4*2
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # output_msb = round_func((output_msb / 255) * 16) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # output_lsb = (output_lsb / 255) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # # print(output_msb.min(), output_msb.max(), output_lsb.min(), output_lsb.max())
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        # x = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3H = lut.transfer_2x2_input_SxS_output(self.stage1_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3D = lut.transfer_2x2_input_SxS_output(self.stage1_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3B = lut.transfer_2x2_input_SxS_output(self.stage1_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2H = lut.transfer_2x2_input_SxS_output(self.stage1_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2D = lut.transfer_2x2_input_SxS_output(self.stage1_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3H = lut.transfer_2x2_input_SxS_output(self.stage2_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3D = lut.transfer_2x2_input_SxS_output(self.stage2_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3B = lut.transfer_2x2_input_SxS_output(self.stage2_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2H = lut.transfer_2x2_input_SxS_output(self.stage2_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2D = lut.transfer_2x2_input_SxS_output(self.stage2_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3H = lut.transfer_3_input_SxS_output(self.stage1_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3D = lut.transfer_3_input_SxS_output(self.stage1_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3B = lut.transfer_3_input_SxS_output(self.stage1_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2H = lut.transfer_2_input_SxS_output(self.stage1_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2D = lut.transfer_2_input_SxS_output(self.stage1_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3H = lut.transfer_3_input_SxS_output(self.stage2_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3D = lut.transfer_3_input_SxS_output(self.stage2_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3B = lut.transfer_3_input_SxS_output(self.stage2_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2H = lut.transfer_2_input_SxS_output(self.stage2_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2D = lut.transfer_2_input_SxS_output(self.stage2_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lut_model = hdblut.HDBLut.init_from_numpy(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            stage1_3H, stage1_3D, stage1_3B, stage1_2H, stage1_2D, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            stage2_3H, stage2_3D, stage2_3B, stage2_2H, stage2_2D
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_loss_fn(self):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        def loss_fn(pred, target):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return F.mse_loss(pred/255, target/255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBLNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBLNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3L = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[0,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3L = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb     
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, self.scale, self._extract_pattern_3H, self.stage1_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, self.scale, self._extract_pattern_3D, self.stage1_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, self.scale, self._extract_pattern_3B, self.stage1_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_3L, self.stage1_3L), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = round_func((output_msb / 255) * 16) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = (output_lsb / 255) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_loss_fn(self):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        def loss_fn(pred, target):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return F.mse_loss(pred/255, target/255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    # def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage1_3H = lut.transfer_3_input_SxS_output(self.stage1_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage1_3D = lut.transfer_3_input_SxS_output(self.stage1_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage1_3B = lut.transfer_3_input_SxS_output(self.stage1_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage1_2H = lut.transfer_2_input_SxS_output(self.stage1_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage1_2D = lut.transfer_2_input_SxS_output(self.stage1_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage2_3H = lut.transfer_3_input_SxS_output(self.stage2_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage2_3D = lut.transfer_3_input_SxS_output(self.stage2_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage2_3B = lut.transfer_3_input_SxS_output(self.stage2_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage2_2H = lut.transfer_2_input_SxS_output(self.stage2_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     stage2_2D = lut.transfer_2_input_SxS_output(self.stage2_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     lut_model = hdblut.HDBLut.init_from_numpy(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #         stage1_3H, stage1_3D, stage1_3B, stage1_2H, stage1_2D, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #         stage2_3H, stage2_3D, stage2_3B, stage2_2H, stage2_2D
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #     return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBHNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBHNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.hidden_dim = hidden_dim
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.layers_count = layers_count
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.msb_fns = nn.ModuleList([layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ) for x in range(1)])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.lsb_fns = nn.ModuleList([layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ) for x in range(1)])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count, msb_fn, lsb_fn in zip(range(4), cycle(self.msb_fns), cycle(self.lsb_fns)):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, msb_fn)           
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, lsb_fn)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = round_func((output_msb_r / 255)*16) * 15 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = (output_lsb_r / 255) * 15  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(output_msb_r, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(output_lsb_r, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if not config is None and config.current_iter % config.display_step == 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        raise NotImplementedError
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_loss_fn(self):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fourier_loss_fn = FocalFrequencyLoss()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        high_frequency_loss_fn = FourierLoss()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        def loss_fn(pred, target):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            a = fourier_loss_fn(pred/255, target/255) * 1e8
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            # b = F.mse_loss(pred/255, target/255) #* 1e3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            # c = high_frequency_loss_fn(pred/255, target/255) * 1e6
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return a #+ b #+ c
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 |