| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -370,6 +370,106 @@ class SRMsbLsbR90Net(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        raise NotImplementedError
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class SRMsbLsbR90v2Net(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(SRMsbLsbR90v2Net, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.hidden_dim = hidden_dim
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.layers_count = layers_count
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.msb_fn = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=255,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=255
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.lsb_fn = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=15,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=255
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rot_x = torch.rot90(x, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = rot_x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = rot_x - rotated_lsb           
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, self.msb_fn)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, self.lsb_fn)        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           if not config is None and config.current_iter % config.display_step == 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				              config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				              config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output += torch.rot90(output_msb + output_lsb, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        raise NotImplementedError
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class SRMsbLsbFlipNet(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(SRMsbLsbFlipNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.hidden_dim = hidden_dim
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.layers_count = layers_count
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.msb_fn = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=255,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=255
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.lsb_fn = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=15,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=255
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.flip_functions = [
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            lambda x: x,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            lambda x: x[:,:,::-1,:],
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            lambda x: x[:,:,:,::-1],
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            lambda x: x[:,:,::-1,::-1],
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for flip_f in self.flips_functions:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           fliped_x = flip_f(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           fliped_lsb = fliped_x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           fliped_msb = fliped_x - fliped_lsb           
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb = self.forward_stage(fliped_msb, self.scale, self._extract_pattern_S, self.msb_fn)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb = self.forward_stage(fliped_lsb, self.scale, self._extract_pattern_S, self.lsb_fn)        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           if not config is None and config.current_iter % config.display_step == 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				              config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				              config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output += torch.rot90(output_msb + output_lsb, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        raise NotImplementedError
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class SRMsbLsb4R90Net(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(SRMsbLsb4R90Net, self).__init__()
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
			
			 | 
			 | 
			
				
 
 |