| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -11,10 +11,11 @@ from itertools import cycle
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from models.base import SRNetBase
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBNet(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4, rotations = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        assert scale == 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.rotations = rotations
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -31,9 +32,7 @@ class HDBNet(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_2H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.rotations = 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -113,6 +112,102 @@ class HDBNet(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return F.mse_loss(pred/255, target/255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBNetv2(SRNetBase):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4, rotations = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBNetv2, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        assert scale == 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.rotations = rotations
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[0,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_2H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb     
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(self.rotations):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msbt = self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage1_3H) + \
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                         self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage1_3D) + \
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                         self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage1_3B)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsbt = self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage1_2H) + \
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                         self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage1_2D)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           if not config is None and config.current_iter % config.display_step == 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                config.writer.add_histogram('s1_output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                config.writer.add_histogram('s1_output_msb', output_msb.detach().cpu().numpy(), config.current_iter) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(output_msbt, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(output_lsbt, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= self.rotations*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= self.rotations*2
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output.clamp(0, 255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*2*2, w*2*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*2*2, w*2*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(self.rotations):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msbt = self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage2_3H) + \
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                         self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage2_3D) + \
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                         self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage2_3B)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsbt = self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage2_2H) + \
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                         self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage2_2D)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           if not config is None and config.current_iter % config.display_step == 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                config.writer.add_histogram('s2_output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                config.writer.add_histogram('s2_output_msb', output_msb.detach().cpu().numpy(), config.current_iter) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(output_msbt, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(output_lsbt, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= self.rotations*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= self.rotations*2
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output.clamp(0, 255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3H = lut.transfer_3_input_SxS_output(self.stage1_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3D = lut.transfer_3_input_SxS_output(self.stage1_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3B = lut.transfer_3_input_SxS_output(self.stage1_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2H = lut.transfer_2_input_SxS_output(self.stage1_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2D = lut.transfer_2_input_SxS_output(self.stage1_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3H = lut.transfer_3_input_SxS_output(self.stage2_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3D = lut.transfer_3_input_SxS_output(self.stage2_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3B = lut.transfer_3_input_SxS_output(self.stage2_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2H = lut.transfer_2_input_SxS_output(self.stage2_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2D = lut.transfer_2_input_SxS_output(self.stage2_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lut_model = hdblut.HDBLut.init_from_numpy(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            stage1_3H, stage1_3D, stage1_3B, stage1_2H, stage1_2D, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            stage2_3H, stage2_3D, stage2_3B, stage2_2H, stage2_2D
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_loss_fn(self):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        def loss_fn(pred, target):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return F.mse_loss(pred/255, target/255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBLNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
			
			 | 
			 | 
			
				
 
 |