|
|
|
@ -11,10 +11,11 @@ from itertools import cycle
|
|
|
|
|
from models.base import SRNetBase
|
|
|
|
|
|
|
|
|
|
class HDBNet(SRNetBase):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4, rotations = 4):
|
|
|
|
|
super(HDBNet, self).__init__()
|
|
|
|
|
assert scale == 4
|
|
|
|
|
self.scale = scale
|
|
|
|
|
self.rotations = rotations
|
|
|
|
|
self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
@ -31,9 +32,7 @@ class HDBNet(SRNetBase):
|
|
|
|
|
self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_2H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1]], center=[0,0], window_size=2)
|
|
|
|
|
self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
|
|
|
|
|
self.rotations = 4
|
|
|
|
|
self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
|
|
|
|
|
def forward_stage(self, x, scale, percieve_pattern, stage):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
@ -113,6 +112,102 @@ class HDBNet(SRNetBase):
|
|
|
|
|
return F.mse_loss(pred/255, target/255)
|
|
|
|
|
return loss_fn
|
|
|
|
|
|
|
|
|
|
class HDBNetv2(SRNetBase):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4, rotations = 4):
|
|
|
|
|
super(HDBNetv2, self).__init__()
|
|
|
|
|
assert scale == 4
|
|
|
|
|
self.scale = scale
|
|
|
|
|
self.rotations = rotations
|
|
|
|
|
self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage1_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
|
|
|
|
|
self.stage1_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
|
|
|
|
|
|
|
|
|
|
self.stage2_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage2_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage2_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=255, output_max_value=255)
|
|
|
|
|
self.stage2_2H = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
|
|
|
|
|
self.stage2_2D = layers.UpscaleBlock(in_features=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2, input_max_value=15, output_max_value=255)
|
|
|
|
|
|
|
|
|
|
self._extract_pattern_3H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[0,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_2H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1]], center=[0,0], window_size=2)
|
|
|
|
|
self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
|
|
|
|
|
def forward(self, x, config=None):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
|
lsb = x % 16
|
|
|
|
|
msb = x - lsb
|
|
|
|
|
output_msb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
|
|
|
|
|
output_lsb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
|
|
|
|
|
for rotations_count in range(self.rotations):
|
|
|
|
|
rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
output_msbt = self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage1_3H) + \
|
|
|
|
|
self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage1_3D) + \
|
|
|
|
|
self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage1_3B)
|
|
|
|
|
output_lsbt = self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage1_2H) + \
|
|
|
|
|
self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage1_2D)
|
|
|
|
|
if not config is None and config.current_iter % config.display_step == 0:
|
|
|
|
|
config.writer.add_histogram('s1_output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
|
config.writer.add_histogram('s1_output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
|
output_msb += torch.rot90(output_msbt, k=-rotations_count, dims=[2, 3])
|
|
|
|
|
output_lsb += torch.rot90(output_lsbt, k=-rotations_count, dims=[2, 3])
|
|
|
|
|
output_msb /= self.rotations*3
|
|
|
|
|
output_lsb /= self.rotations*2
|
|
|
|
|
output = output_msb + output_lsb
|
|
|
|
|
x = output.clamp(0, 255)
|
|
|
|
|
lsb = x % 16
|
|
|
|
|
msb = x - lsb
|
|
|
|
|
output_msb = torch.zeros([b*c, 1, h*2*2, w*2*2], dtype=x.dtype, device=x.device)
|
|
|
|
|
output_lsb = torch.zeros([b*c, 1, h*2*2, w*2*2], dtype=x.dtype, device=x.device)
|
|
|
|
|
for rotations_count in range(self.rotations):
|
|
|
|
|
rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
output_msbt = self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage2_3H) + \
|
|
|
|
|
self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage2_3D) + \
|
|
|
|
|
self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage2_3B)
|
|
|
|
|
output_lsbt = self.forward_stage(rotated_lsb, 2, self._extract_pattern_2H, self.stage2_2H) + \
|
|
|
|
|
self.forward_stage(rotated_lsb, 2, self._extract_pattern_2D, self.stage2_2D)
|
|
|
|
|
if not config is None and config.current_iter % config.display_step == 0:
|
|
|
|
|
config.writer.add_histogram('s2_output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
|
config.writer.add_histogram('s2_output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
|
output_msb += torch.rot90(output_msbt, k=-rotations_count, dims=[2, 3])
|
|
|
|
|
output_lsb += torch.rot90(output_lsbt, k=-rotations_count, dims=[2, 3])
|
|
|
|
|
output_msb /= self.rotations*3
|
|
|
|
|
output_lsb /= self.rotations*2
|
|
|
|
|
output = output_msb + output_lsb
|
|
|
|
|
x = output.clamp(0, 255)
|
|
|
|
|
x = x.reshape(b, c, h*self.scale, w*self.scale)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
|
|
|
|
|
stage1_3H = lut.transfer_3_input_SxS_output(self.stage1_3H, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage1_3D = lut.transfer_3_input_SxS_output(self.stage1_3D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage1_3B = lut.transfer_3_input_SxS_output(self.stage1_3B, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage1_2H = lut.transfer_2_input_SxS_output(self.stage1_2H, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage1_2D = lut.transfer_2_input_SxS_output(self.stage1_2D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
stage2_3H = lut.transfer_3_input_SxS_output(self.stage2_3H, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_3D = lut.transfer_3_input_SxS_output(self.stage2_3D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_3B = lut.transfer_3_input_SxS_output(self.stage2_3B, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_2H = lut.transfer_2_input_SxS_output(self.stage2_2H, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_2D = lut.transfer_2_input_SxS_output(self.stage2_2D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
lut_model = hdblut.HDBLut.init_from_numpy(
|
|
|
|
|
stage1_3H, stage1_3D, stage1_3B, stage1_2H, stage1_2D,
|
|
|
|
|
stage2_3H, stage2_3D, stage2_3B, stage2_2H, stage2_2D
|
|
|
|
|
)
|
|
|
|
|
return lut_model
|
|
|
|
|
|
|
|
|
|
def get_loss_fn(self):
|
|
|
|
|
def loss_fn(pred, target):
|
|
|
|
|
return F.mse_loss(pred/255, target/255)
|
|
|
|
|
return loss_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HDBLNet(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|