possible solution for rcconv

main
Vladimir Protsenko 7 months ago
parent ab71a512de
commit 7d077571cf

@ -327,7 +327,6 @@ class RCNetx2(nn.Module):
output = output.view(b, c, h*self.scale, w*self.scale)
return output
class RCNetx2Centered(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(RCNetx2Centered, self).__init__()
@ -390,7 +389,6 @@ class RCNetx2Centered(nn.Module):
output = output.view(b, c, h*self.scale, w*self.scale)
return output
class ReconstructedConvRot90Unlutable(nn.Module):
def __init__(self, hidden_dim, window_size=7):
super(ReconstructedConvRot90Unlutable, self).__init__()
@ -545,4 +543,71 @@ class RCNetx2CenteredUnlutable(nn.Module):
output += torch.rot90(self.stage2_7x7(rotated), k=-rotations_count, dims=[2, 3])
output /= 3*4
output = output.view(b, c, h*self.scale, w*self.scale)
return output
return output
class ReconstructedConvCenteredv2(nn.Module):
def __init__(self, hidden_dim, window_size=7):
super(ReconstructedConvCenteredv2, self).__init__()
self.window_size = window_size
self.projection1 = torch.nn.Parameter(torch.rand((window_size**2, hidden_dim))/window_size)
self.projection2 = torch.nn.Parameter(torch.rand((window_size**2, hidden_dim))/window_size)
def pixel_wise_forward(self, x):
x = (x-127.5)/127.5
out = torch.einsum('bwk,wh,wh -> bwk', x, self.projection1, self.projection2)
out = torch.tanh(out)
out = out*127.5 + 127.5
return out
def forward(self, x):
original_shape = x.shape
x = F.pad(x, pad=[self.window_size//2]*4, mode='replicate')
x = F.unfold(x, self.window_size)
x = self.pixel_wise_forward(x)
x = (x.mean(1) - (x.max().values - x.min().values))/2
x = x.reshape(*original_shape)
x = round_func(x)
return x
def __repr__(self):
return f"{self.__class__.__name__} projection1: {self.projection1.shape} projection2: {self.projection2.shape}"
class RCBlockCenteredv2(nn.Module):
def __init__(self, hidden_dim = 32, window_size=3, dense_conv_layer_count=4, upscale_factor=4):
super(RCBlockCenteredv2, self).__init__()
self.window_size = window_size
self.rc_conv = ReconstructedConvCenteredv2(hidden_dim=hidden_dim, window_size=window_size)
self.dense_conv_block = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=dense_conv_layer_count, upscale_factor=upscale_factor)
def forward(self, x):
b,c,hs,ws = x.shape
x = self.rc_conv(x)
x = F.pad(x, pad=[0,1,0,1], mode='replicate')
x = self.dense_conv_block(x)
return x
class RCNetCentered_7x7v2(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(RCNetCentered_7x7v2, self).__init__()
self.hidden_dim = hidden_dim
self.layers_count = layers_count
self.scale = scale
window_size = 7
self.stage = RCBlockCenteredv2(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=window_size)
def forward(self, x):
b,c,h,w = x.shape
x = x.view(b*c, 1, h, w)
x = self.stage(x)
x = x.view(b, c, h*self.scale, w*self.scale)
return x
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
window_size = self.stage.rc_conv.window_size
rc_conv_luts = lut.transfer_rc_conv(self.stage.rc_conv, quantization_interval=quantization_interval).reshape(window_size,window_size,-1)
dense_conv_lut = lut.transfer_2x2_input_SxS_output(self.stage.dense_conv_block, quantization_interval=quantization_interval, batch_size=batch_size)
lut_model = rclut.RCLutCentered_7x7.init_from_lut(rc_conv_luts, dense_conv_lut)
return lut_model

Loading…
Cancel
Save