@ -25,7 +25,7 @@ class ValOptions():
 
		
	
		
			
				        self . parser  =  argparse . ArgumentParser ( formatter_class = argparse . ArgumentDefaultsHelpFormatter ) 
 
		
	
		
			
				        self . parser . add_argument ( ' --model_path ' ,  type = str ,  default = " ../models/last.pth " ,  help = " Model path. " ) 
 
		
	
		
			
				        self . parser . add_argument ( ' --datasets_dir ' ,  type = str ,  default = " ../data/ " ,  help = " Path to datasets. " ) 
 
		
	
		
			
				        self . parser . add_argument ( ' -- val _datasets' ,  type = str ,  default = ' Set5,Set14 ' ,  help = " Names of  validation  datasets." )         
 
		
	
		
			
				        self . parser . add_argument ( ' -- test _datasets' ,  type = str ,  default = ' Set5,Set14 ' ,  help = " Names of  test  datasets." )         
 
		
	
		
			
				        self . parser . add_argument ( ' --save_predictions ' ,  action = ' store_true ' ,  default = True ,  help = ' Save model predictions to exp_dir/val/dataset_name ' ) 
 
		
	
		
			
				        self . parser . add_argument ( ' --device ' ,  type = str ,  default = ' cuda ' ,  help = ' Device of the model ' ) 
 
		
	
		
			
				        self . parser . add_argument ( ' --color_model ' ,  type = str ,  default = " RGB " ,  help = " Color model for train and test dataset. " )  
 
		
	
	
		
			
				
					
						
						
						
							
								 
						
					 
				
			
			@ -33,7 +33,7 @@ class ValOptions():
 
		
	
		
			
				    def  parse_args ( self ) :          
 
		
	
		
			
				        args  =  self . parser . parse_args ( ) 
 
		
	
		
			
				        args . datasets_dir  =  Path ( args . datasets_dir ) . resolve ( ) 
 
		
	
		
			
				        args . val_datasets =  args . val  _datasets. split ( ' , ' ) 
 
		
	
		
			
				        args . test_datasets =  args . test  _datasets. split ( ' , ' ) 
 
		
	
		
			
				        args . exp_dir  =  Path ( args . model_path ) . resolve ( ) . parent . parent 
 
		
	
		
			
				        args . model_path  =  Path ( args . model_path ) . resolve ( ) 
 
		
	
		
			
				        args . model_name  =  args . model_path . stem 
 
		
	
	
		
			
				
					
						
							
								 
						
						
							
								 
						
						
					 
				
			
			@ -79,7 +79,7 @@ if __name__ == "__main__":
 
		
	
		
			
				    print ( model ) 
 
		
	
		
			
				      
 
		
	
		
			
				    test_datasets  =  { } 
 
		
	
		
			
				    for  test_dataset_name  in  config . val _datasets: 
 
		
	
		
			
				    for  test_dataset_name  in  config . test _datasets: 
 
		
	
		
			
				        test_datasets [ test_dataset_name ]  =  SRTestDataset ( 
 
		
	
		
			
				            hr_dir_path  =  Path ( config . datasets_dir )  /  test_dataset_name   /  " HR " , 
 
		
	
		
			
				            lr_dir_path  =  Path ( config . datasets_dir )  /  test_dataset_name  /  " LR "  /  f " X { model . scale } " , 
 
		
	
	
		
			
				
					
						
						
						
							
								 
						
					 
				
			
			@ -89,7 +89,8 @@ if __name__ == "__main__":
 
		
	
		
			
				    results  =  valid_steps ( model = model ,  datasets = test_datasets ,  config = config ,  log_prefix = f " Model  { config . model_name } " ) 
 
		
	
		
			
				
 
		
	
		
			
				    results . to_csv ( config . results_path ) 
 
		
	
		
			
				    print ( config . exp_dir . stem ,  config . model_name ) 
 
		
	
		
			
				    print ( ) 
 
		
	
		
			
				    print ( f " experiment dir:  { config . exp_dir . stem } , model:  { config . model_name } , test color model:  { config . color_model } " ) 
 
		
	
		
			
				    print ( results ) 
 
		
	
		
			
				    print ( ) 
 
		
	
		
			
				    print ( f " Results saved to  { config . results_path } " )