|
|
|
@ -8,6 +8,7 @@ from common import layers
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
from . import sdylut
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SDYNetx1(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|
super(SDYNetx1, self).__init__()
|
|
|
|
@ -29,6 +30,101 @@ class SDYNetx1(nn.Module):
|
|
|
|
|
x = x.reshape(b, c, h*scale, w*scale)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
|
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
|
|
|
|
|
output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
|
|
|
|
|
output += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage1_D)
|
|
|
|
|
output += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage1_Y)
|
|
|
|
|
output /= 3
|
|
|
|
|
x = output
|
|
|
|
|
x = round_func(x)
|
|
|
|
|
x = x.reshape(b, c, h*self.scale, w*self.scale)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
|
|
|
|
|
stageS = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stageD = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stageY = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
lut_model = sdylut.SDYLutx1.init_from_numpy(stageS, stageD, stageY)
|
|
|
|
|
return lut_model
|
|
|
|
|
|
|
|
|
|
class SDYNetx2(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|
super(SDYNetx2, self).__init__()
|
|
|
|
|
self.scale = scale
|
|
|
|
|
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3)
|
|
|
|
|
self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1)
|
|
|
|
|
self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1)
|
|
|
|
|
self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1)
|
|
|
|
|
self.stage2_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
self.stage2_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
self.stage2_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
|
|
|
|
|
def forward_stage(self, x, scale, percieve_pattern, stage):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = percieve_pattern(x)
|
|
|
|
|
x = stage(x)
|
|
|
|
|
x = round_func(x)
|
|
|
|
|
x = x.reshape(b, c, h, w, scale, scale)
|
|
|
|
|
x = x.permute(0,1,2,4,3,5)
|
|
|
|
|
x = x.reshape(b, c, h*scale, w*scale)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
|
output = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device)
|
|
|
|
|
output += self.forward_stage(x, 1, self._extract_pattern_S, self.stage1_S)
|
|
|
|
|
output += self.forward_stage(x, 1, self._extract_pattern_D, self.stage1_D)
|
|
|
|
|
output += self.forward_stage(x, 1, self._extract_pattern_Y, self.stage1_Y)
|
|
|
|
|
output /= 3
|
|
|
|
|
x = output
|
|
|
|
|
x = round_func(x)
|
|
|
|
|
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
|
|
|
|
|
output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage2_S)
|
|
|
|
|
output += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage2_D)
|
|
|
|
|
output += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage2_Y)
|
|
|
|
|
output /= 3
|
|
|
|
|
x = output
|
|
|
|
|
x = round_func(x)
|
|
|
|
|
x = x.reshape(b, c, h*self.scale, w*self.scale)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
|
|
|
|
|
stage1_S = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage1_D = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage1_Y = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_S = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_D = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_Y = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
lut_model = sdylut.SDYLutx2.init_from_numpy(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y)
|
|
|
|
|
return lut_model
|
|
|
|
|
|
|
|
|
|
class SDYNetR90x1(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|
super(SDYNetR90x1, self).__init__()
|
|
|
|
|
self.scale = scale
|
|
|
|
|
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3)
|
|
|
|
|
self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
|
|
|
|
|
def forward_stage(self, x, scale, percieve_pattern, stage):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = percieve_pattern(x)
|
|
|
|
|
x = stage(x)
|
|
|
|
|
x = round_func(x)
|
|
|
|
|
x = x.reshape(b, c, h, w, scale, scale)
|
|
|
|
|
x = x.permute(0,1,2,4,3,5)
|
|
|
|
|
x = x.reshape(b, c, h*scale, w*scale)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
@ -51,12 +147,12 @@ class SDYNetx1(nn.Module):
|
|
|
|
|
stageS = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stageD = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stageY = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
lut_model = sdylut.SDYLutx1.init_from_numpy(stageS, stageD, stageY)
|
|
|
|
|
lut_model = sdylut.SDYLutR90x1.init_from_numpy(stageS, stageD, stageY)
|
|
|
|
|
return lut_model
|
|
|
|
|
|
|
|
|
|
class SDYNetx2(nn.Module):
|
|
|
|
|
class SDYNetR90x2(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|
super(SDYNetx2, self).__init__()
|
|
|
|
|
super(SDYNetR90x2, self).__init__()
|
|
|
|
|
self.scale = scale
|
|
|
|
|
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3)
|
|
|
|
@ -113,5 +209,5 @@ class SDYNetx2(nn.Module):
|
|
|
|
|
stage2_S = lut.transfer_2x2_input_SxS_output(self.stage2_S, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_D = lut.transfer_2x2_input_SxS_output(self.stage2_D, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
stage2_Y = lut.transfer_2x2_input_SxS_output(self.stage2_Y, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
lut_model = sdylut.SDYLutx2.init_from_numpy(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y)
|
|
|
|
|
lut_model = sdylut.SDYLutR90x2.init_from_numpy(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y)
|
|
|
|
|
return lut_model
|