| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -11,6 +11,7 @@ from common import layers
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        assert scale == 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -79,203 +80,20 @@ class HDBNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage_lut = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lut_model = srlut.SRLut.init_from_numpy(stage_lut)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class HDBLNet(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(HDBLNet, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage1_3L = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3H = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3D = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3B = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.stage2_3L = layers.UpscaleBlock(in_features=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[0,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_3L = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,1]], center=[0,0], window_size=3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*2, w*2], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage1_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage1_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage1_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_3L, self.stage1_3L), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*4, w*4], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*4, w*4], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3H, self.stage2_3H), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3D, self.stage2_3D), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(self.forward_stage(rotated_msb, 2, self._extract_pattern_3B, self.stage2_3B), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(self.forward_stage(rotated_lsb, 2, self._extract_pattern_3L, self.stage2_3L), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4*3
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage_lut = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lut_model = srlut.SRLut.init_from_numpy(stage_lut)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				# class SRNetY(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         super(SRNetY, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.scale = scale       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.stage1_S = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             hidden_dim=hidden_dim, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             layers_count=layers_count, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.rgb_to_ycbcr = layers.RgbToYcbcr()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.ycbcr_to_rgb = layers.YcbcrToRgb()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def forward(self, x):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = self.rgb_to_ycbcr(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         y = x[:,0:1,:,:]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         cbcr = x[:,1:,:,:]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         cbcr_scaled = F.interpolate(cbcr, size=[h*self.scale, w*self.scale], mode='bilinear')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = y.view(b, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = torch.cat([output, cbcr_scaled], dim=1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = self.ycbcr_to_rgb(output).clamp(0, 255)       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return output
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         lut_model = srlut.SRLutY.init_from_numpy(stage_lut)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				# class SRNetR90(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         super(SRNetR90, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.scale = scale       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.stage1_S = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             hidden_dim=hidden_dim, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             layers_count=layers_count, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def forward(self, x):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         for rotations_count in range(1,4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_S, self.stage1_S), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = output.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return output
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         lut_model = srlut.SRLutR90.init_from_numpy(stage_lut)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				# class SRNetR90Y(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         super(SRNetR90Y, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.scale = scale       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         s_pattern=[[0,0],[0,1],[1,0],[1,1]]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.stage1_S = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             hidden_dim=hidden_dim, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             layers_count=layers_count, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.rgb_to_ycbcr = layers.RgbToYcbcr()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         self.ycbcr_to_rgb = layers.YcbcrToRgb()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def forward(self, x):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = self.rgb_to_ycbcr(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         y = x[:,0:1,:,:]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         cbcr = x[:,1:,:,:]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         cbcr_scaled = F.interpolate(cbcr, size=[h*self.scale, w*self.scale], mode='bilinear')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         x = y.view(b, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = torch.zeros([b, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         for rotations_count in range(1,4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#             output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_S, self.stage1_S), k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = torch.cat([output, cbcr_scaled], dim=1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         output = self.ycbcr_to_rgb(output).clamp(0, 255)       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return output
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#     def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         lut_model = srlut.SRLutR90Y.init_from_numpy(stage_lut)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#         return lut_model
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3H = lut.transfer_2x2_input_SxS_output(self.stage1_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3D = lut.transfer_2x2_input_SxS_output(self.stage1_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_3B = lut.transfer_2x2_input_SxS_output(self.stage1_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2H = lut.transfer_2x2_input_SxS_output(self.stage1_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage1_2D = lut.transfer_2x2_input_SxS_output(self.stage1_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3H = lut.transfer_2x2_input_SxS_output(self.stage2_3H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3D = lut.transfer_2x2_input_SxS_output(self.stage2_3D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_3B = lut.transfer_2x2_input_SxS_output(self.stage2_3B, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2H = lut.transfer_2x2_input_SxS_output(self.stage2_2H, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        stage2_2D = lut.transfer_2x2_input_SxS_output(self.stage2_2D, quantization_interval=quantization_interval, batch_size=batch_size)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lut_model = hdblut.HDBLut.init_from_numpy(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            stage1_3H, stage1_3D, stage1_3B, stage1_2H, stage1_2D, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            stage2_3H, stage2_3D, stage2_3B, stage2_2H, stage2_2D
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return lut_model
 |