|
|
|
@ -44,7 +44,7 @@ class ChebyKANBase(SRBase):
|
|
|
|
|
super(ChebyKANBase, self).__init__()
|
|
|
|
|
self.config = None
|
|
|
|
|
self.stage1_S = layers.UpscaleBlock(None)
|
|
|
|
|
window_size = 7
|
|
|
|
|
window_size = 5
|
|
|
|
|
self._extract_pattern = layers.PercievePattern(
|
|
|
|
|
receptive_field_idxes=[[i,j] for i in range(window_size) for j in range(window_size)],
|
|
|
|
|
center=[window_size//2,window_size//2],
|
|
|
|
@ -62,21 +62,21 @@ class ChebyKANNet(ChebyKANBase):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|
super(ChebyKANNet, self).__init__()
|
|
|
|
|
self.config = config
|
|
|
|
|
window_size = 7
|
|
|
|
|
window_size = 5
|
|
|
|
|
self.stage1_S.stage = layers.ChebyKANUpscaleBlockNet(
|
|
|
|
|
in_features=window_size*window_size,
|
|
|
|
|
out_channels=1,
|
|
|
|
|
hidden_dim=16,
|
|
|
|
|
layers_count=self.config.layers_count,
|
|
|
|
|
layers_count=2,#self.config.layers_count,
|
|
|
|
|
upscale_factor=self.config.upscale_factor,
|
|
|
|
|
degree=8
|
|
|
|
|
degree=3
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
class ChebyKANLut(ChebyKANBase):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|
super(ChebyKANLut, self).__init__()
|
|
|
|
|
self.config = config
|
|
|
|
|
window_size = 7
|
|
|
|
|
window_size = 5
|
|
|
|
|
self.stage1_S.stage = layers.ChebyKANUpscaleBlockNet(
|
|
|
|
|
in_features=window_size*window_size,
|
|
|
|
|
out_channels=1,
|
|
|
|
@ -92,4 +92,72 @@ class ChebyKANLut(ChebyKANBase):
|
|
|
|
|
return ssim_loss(pred, target) + l1_loss(pred, target)
|
|
|
|
|
return loss_fn
|
|
|
|
|
|
|
|
|
|
TRANSFERER.register(ChebyKANNet, ChebyKANLut)
|
|
|
|
|
TRANSFERER.register(ChebyKANNet, ChebyKANLut)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HDBNetBase(SRBase):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(HDBNetBase, self).__init__()
|
|
|
|
|
self.config = None
|
|
|
|
|
self.stage_3H = layers.UpscaleBlock(None)
|
|
|
|
|
self.stage_3D = layers.UpscaleBlock(None)
|
|
|
|
|
self.stage_3B = layers.UpscaleBlock(None)
|
|
|
|
|
self.stage_2H = layers.UpscaleBlock(None)
|
|
|
|
|
self.stage_2D = layers.UpscaleBlock(None)
|
|
|
|
|
self._extract_pattern_3H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[0,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_3D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[2,2]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_3B = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,2],[2,1]], center=[0,0], window_size=3)
|
|
|
|
|
self._extract_pattern_2H = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1]], center=[0,0], window_size=2)
|
|
|
|
|
self._extract_pattern_2D = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
|
|
|
|
|
|
def forward(self, x, script_config=None):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
|
lsb = x % 16
|
|
|
|
|
msb = x - lsb
|
|
|
|
|
output = torch.zeros([b*c, 1, h*self.config.upscale_factor, w*self.config.upscale_factor], dtype=x.dtype, device=x.device)
|
|
|
|
|
for rotations_count in range(4):
|
|
|
|
|
rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
output_msb = self.stage_3H( rotated_msb, self._extract_pattern_3H ) + \
|
|
|
|
|
self.stage_3D( rotated_msb, self._extract_pattern_3D ) + \
|
|
|
|
|
self.stage_3B( rotated_msb, self._extract_pattern_3B )
|
|
|
|
|
output_lsb = self.stage_2H( rotated_lsb, self._extract_pattern_2H ) + \
|
|
|
|
|
self.stage_2D( rotated_lsb, self._extract_pattern_2D )
|
|
|
|
|
output_msb /= 3
|
|
|
|
|
output_lsb /= 2
|
|
|
|
|
if not script_config is None and script_config.current_iter % script_config.display_step == 0:
|
|
|
|
|
script_config.writer.add_histogram('s1_output_lsb', output_lsb.detach().cpu().numpy(), script_config.current_iter)
|
|
|
|
|
script_config.writer.add_histogram('s1_output_msb', output_msb.detach().cpu().numpy(), script_config.current_iter)
|
|
|
|
|
output += torch.rot90(output_msb + output_lsb, k=-rotations_count, dims=[2, 3]).clamp(0, 255)
|
|
|
|
|
output /= 4
|
|
|
|
|
x = output
|
|
|
|
|
x = x.reshape(b, c, h*self.config.upscale_factor, w*self.config.upscale_factor)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def get_loss_fn(self):
|
|
|
|
|
def loss_fn(pred, target):
|
|
|
|
|
return F.l1_loss(pred/127.5-127.5, target/127.5-127.5)
|
|
|
|
|
return loss_fn
|
|
|
|
|
|
|
|
|
|
class HDBNet(HDBNetBase):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|
super(HDBNet, self).__init__()
|
|
|
|
|
self.config = config
|
|
|
|
|
self.stage_3H.stage = layers.LinearUpscaleBlockNet(in_features=3, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3D.stage = layers.LinearUpscaleBlockNet(in_features=3, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3B.stage = layers.LinearUpscaleBlockNet(in_features=3, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2H.stage = layers.LinearUpscaleBlockNet(in_features=2, input_max_value=15, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2D.stage = layers.LinearUpscaleBlockNet(in_features=2, input_max_value=15, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
|
|
|
|
|
class HDBLut(HDBNetBase):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|
super(HDBLut, self).__init__()
|
|
|
|
|
self.config = config
|
|
|
|
|
self.stage_3H.stage = layers.LinearUpscaleBlockLut(quantization_interval=self.config.quantization_interval, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3D.stage = layers.LinearUpscaleBlockLut(quantization_interval=self.config.quantization_interval, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3B.stage = layers.LinearUpscaleBlockLut(quantization_interval=self.config.quantization_interval, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2H.stage = layers.LinearUpscaleBlockLut(quantization_interval=self.config.quantization_interval, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2D.stage = layers.LinearUpscaleBlockLut(quantization_interval=self.config.quantization_interval, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
|
|
|
|
|
TRANSFERER.register(HDBNet, HDBLut)
|