{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.insert(0, \"/wd/lut_reproduce/src/\")\n", "import torch \n", "import torch.nn as nn" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SRNet(\n", " (stage1_S): UpscaleBlock(\n", " (stage): LinearUpscaleBlockNet(\n", " (embed): Linear(in_features=4, out_features=64, bias=True)\n", " (linear_projections): ModuleList(\n", " (0): Linear(in_features=64, out_features=64, bias=True)\n", " (1): Linear(in_features=128, out_features=64, bias=True)\n", " (2): Linear(in_features=192, out_features=64, bias=True)\n", " (3): Linear(in_features=256, out_features=64, bias=True)\n", " )\n", " (project_channels): Linear(in_features=320, out_features=16, bias=True)\n", " )\n", " )\n", ")" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from models.srnet import SRNet\n", "m = SRNet()\n", "m" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'model': 'SRNet', 'state_dict': OrderedDict([('stage1_S.stage.embed.weight', tensor([[-0.0253, -0.4412, -0.0024, 0.2879],\n", " [-0.4040, 0.4668, -0.4595, -0.2025],\n", " [ 0.4482, 0.3149, 0.3542, 0.1291],\n", " [-0.4060, -0.0809, -0.2587, -0.3048],\n", " [ 0.1974, -0.3897, -0.0906, 0.2352],\n", " [ 0.2794, -0.1026, 0.0138, -0.2727],\n", " [ 0.3783, 0.1517, 0.3843, -0.4109],\n", " [-0.3406, 0.3860, -0.4475, -0.1571],\n", " [-0.3769, 0.3830, -0.3000, 0.2455],\n", " [-0.4775, -0.1346, -0.0637, 0.2347],\n", " [-0.1363, 0.3854, -0.1956, -0.2955],\n", " [-0.3117, 0.0876, -0.1226, -0.4492],\n", " [-0.1892, -0.3556, 0.3783, -0.2503],\n", " [-0.3045, 0.0499, -0.0771, 0.4266],\n", " [ 0.2473, 0.3793, 0.0359, 0.0251],\n", " [ 0.3619, -0.1112, 0.3312, -0.4303],\n", " [-0.4009, 0.2448, -0.0599, 0.3132],\n", " [-0.0767, -0.4169, 0.0757, 0.2411],\n", " [ 0.0737, -0.3395, 0.1832, 0.3778],\n", " [-0.2745, 0.0727, 0.0867, 0.2240],\n", " [-0.3126, 0.0648, 0.3711, 0.1059],\n", " [-0.0979, -0.1503, 0.3616, -0.2803],\n", " [ 0.0526, -0.4584, -0.4819, -0.0686],\n", " [-0.1868, -0.0314, -0.3542, -0.3738],\n", " [ 0.2840, 0.2142, -0.1869, -0.4703],\n", " [ 0.3206, -0.0918, -0.3098, -0.4021],\n", " [-0.3123, 0.4510, 0.2308, -0.2746],\n", " [-0.4112, -0.3694, 0.3115, -0.4725],\n", " [-0.0811, -0.4338, -0.4049, -0.2217],\n", " [ 0.1770, -0.4668, -0.4236, 0.0669],\n", " [-0.3496, -0.2422, 0.0082, -0.0800],\n", " [-0.0872, 0.1045, -0.2423, 0.0061],\n", " [-0.4699, -0.0114, 0.1787, 0.1136],\n", " [-0.1158, 0.1920, 0.0490, -0.2604],\n", " [ 0.0905, -0.3447, -0.2933, 0.1534],\n", " [ 0.3786, -0.3368, -0.2267, -0.0637],\n", " [-0.3253, 0.2898, -0.4821, 0.2361],\n", " [ 0.2511, -0.0113, -0.2648, -0.2893],\n", " [-0.3391, 0.3984, 0.1798, -0.0510],\n", " [ 0.0632, -0.1729, 0.2432, 0.4393],\n", " [ 0.3068, 0.0589, -0.1240, -0.4894],\n", " [ 0.4783, -0.4755, -0.4248, -0.2703],\n", " [ 0.2463, 0.4504, -0.0309, -0.4195],\n", " [ 0.2179, 0.4899, -0.1630, 0.3325],\n", " [ 0.4716, -0.3464, 0.2196, 0.2983],\n", " [-0.0060, 0.4115, -0.0897, 0.0360],\n", " [-0.0596, 0.3664, 0.3627, -0.0557],\n", " [-0.0973, 0.1725, 0.4973, -0.0020],\n", " [-0.0719, 0.1429, 0.2226, 0.0154],\n", " [ 0.1857, 0.4028, 0.3537, -0.3603],\n", " [ 0.0747, -0.1395, -0.2458, 0.0466],\n", " [ 0.1691, 0.0077, 0.0886, 0.1578],\n", " [ 0.3517, 0.0851, -0.1926, 0.4995],\n", " [ 0.2492, 0.2715, 0.3288, 0.1646],\n", " [-0.4640, 0.2993, 0.2791, -0.0479],\n", " [-0.2637, 0.2571, 0.2183, 0.4896],\n", " [-0.3249, 0.3510, 0.1921, 0.2085],\n", " [ 0.4758, -0.1555, 0.2139, 0.1738],\n", " [ 0.3982, -0.0321, -0.3206, -0.4328],\n", " [-0.2878, -0.3635, -0.3578, -0.4451],\n", " [-0.1185, -0.0753, -0.3556, -0.3871],\n", " [-0.2362, 0.4108, -0.4676, 0.3483],\n", " [ 0.1125, -0.1724, 0.0176, 0.3585],\n", " [ 0.1441, -0.4189, -0.2095, 0.3831]])), ('stage1_S.stage.embed.bias', tensor([ 0.1337, -0.4950, -0.1285, 0.1869, 0.3147, -0.1418, -0.3539, 0.1054,\n", " -0.2653, -0.1229, 0.3689, 0.1249, -0.3297, -0.3988, 0.4600, 0.2281,\n", " 0.2770, 0.3378, -0.3391, -0.3007, 0.3253, 0.1519, 0.1275, -0.4581,\n", " 0.0256, 0.3242, 0.2018, -0.2630, -0.1126, 0.2209, 0.0715, 0.4257,\n", " -0.4122, 0.3846, 0.1195, 0.3221, 0.3299, -0.4031, 0.2908, 0.0360,\n", " -0.4905, 0.1207, 0.2371, 0.1904, -0.1338, 0.1235, -0.3449, -0.1224,\n", " -0.1723, -0.3731, -0.2638, -0.4013, 0.4585, -0.4426, 0.0282, 0.2191,\n", " 0.2065, -0.1062, -0.4942, 0.3909, -0.0967, -0.1260, 0.0802, 0.0668])), ('stage1_S.stage.linear_projections.0.weight', tensor([[-0.0864, 0.0272, 0.0433, ..., -0.0082, 0.1140, 0.0496],\n", " [ 0.1228, -0.0632, -0.0392, ..., 0.0353, -0.0151, -0.0225],\n", " [ 0.0788, -0.0220, 0.0053, ..., 0.0827, 0.0668, 0.0879],\n", " ...,\n", " [-0.0922, -0.0352, 0.0326, ..., -0.0695, 0.0862, 0.0792],\n", " [ 0.0052, -0.0179, -0.1132, ..., 0.0583, -0.0230, -0.0475],\n", " [-0.0095, 0.0872, -0.0171, ..., -0.0517, -0.0062, 0.0154]])), ('stage1_S.stage.linear_projections.0.bias', tensor([-0.0723, 0.0986, -0.1016, -0.0824, 0.1208, 0.0636, 0.1071, 0.0285,\n", " 0.0125, 0.0116, 0.0375, 0.0015, 0.0261, 0.0313, -0.1148, -0.1144,\n", " 0.0576, 0.0931, 0.0302, 0.0748, -0.1125, -0.0657, 0.0765, -0.0301,\n", " -0.0840, 0.1041, 0.0215, -0.0872, -0.1011, 0.0927, -0.0729, -0.0491,\n", " 0.0833, -0.0657, -0.1031, -0.0436, 0.0184, 0.0451, 0.0417, 0.0120,\n", " -0.0344, -0.0832, 0.0589, -0.0006, 0.0818, 0.0908, -0.0166, -0.0847,\n", " 0.0739, 0.0991, 0.0053, 0.0709, 0.0723, 0.0033, 0.0730, 0.0097,\n", " 0.1094, 0.0197, 0.0570, -0.1046, 0.0727, 0.0329, -0.0801, -0.0962])), ('stage1_S.stage.linear_projections.1.weight', tensor([[-0.0347, 0.0608, 0.0654, ..., -0.0114, 0.0011, -0.0792],\n", " [ 0.0693, 0.0715, 0.0307, ..., -0.0388, -0.0847, 0.0452],\n", " [ 0.0086, -0.0698, 0.0153, ..., -0.0650, 0.0730, -0.0036],\n", " ...,\n", " [-0.0114, 0.0041, 0.0072, ..., 0.0661, -0.0044, 0.0727],\n", " [ 0.0186, 0.0451, -0.0837, ..., 0.0247, 0.0281, 0.0544],\n", " [ 0.0858, -0.0027, -0.0771, ..., 0.0264, -0.0057, 0.0090]])), ('stage1_S.stage.linear_projections.1.bias', tensor([-0.0163, 0.0398, -0.0382, 0.0665, -0.0558, 0.0209, -0.0412, 0.0749,\n", " 0.0842, 0.0629, -0.0434, 0.0604, 0.0076, -0.0168, 0.0280, 0.0762,\n", " -0.0485, 0.0060, -0.0054, 0.0753, -0.0383, 0.0808, -0.0412, -0.0576,\n", " 0.0482, -0.0715, 0.0793, 0.0511, 0.0635, -0.0306, 0.0115, -0.0322,\n", " 0.0745, 0.0256, -0.0634, -0.0354, -0.0759, -0.0044, -0.0324, -0.0550,\n", " -0.0461, -0.0008, 0.0015, -0.0686, -0.0200, -0.0008, 0.0422, 0.0558,\n", " -0.0875, 0.0136, -0.0469, -0.0316, -0.0690, 0.0275, -0.0306, -0.0040,\n", " -0.0867, -0.0407, 0.0166, -0.0355, 0.0319, -0.0111, -0.0293, -0.0266])), ('stage1_S.stage.linear_projections.2.weight', tensor([[-0.0354, -0.0249, -0.0026, ..., 0.0331, 0.0462, -0.0676],\n", " [-0.0480, -0.0502, -0.0065, ..., -0.0669, 0.0412, 0.0211],\n", " [-0.0443, 0.0634, 0.0204, ..., 0.0334, 0.0066, 0.0681],\n", " ...,\n", " [-0.0466, 0.0070, 0.0327, ..., -0.0202, 0.0449, -0.0673],\n", " [-0.0358, -0.0191, -0.0214, ..., -0.0090, 0.0642, 0.0665],\n", " [-0.0572, -0.0325, 0.0096, ..., 0.0717, 0.0586, -0.0256]])), ('stage1_S.stage.linear_projections.2.bias', tensor([-0.0129, -0.0292, -0.0098, 0.0193, 0.0142, 0.0114, -0.0522, -0.0616,\n", " -0.0017, -0.0095, -0.0297, -0.0401, 0.0681, -0.0398, 0.0429, -0.0200,\n", " -0.0628, 0.0025, 0.0289, -0.0610, 0.0657, 0.0578, -0.0262, -0.0659,\n", " -0.0614, -0.0348, 0.0240, -0.0214, 0.0677, -0.0420, 0.0007, 0.0320,\n", " 0.0048, 0.0421, -0.0172, 0.0348, -0.0018, 0.0689, 0.0587, 0.0342,\n", " -0.0004, -0.0696, 0.0686, 0.0341, -0.0457, 0.0588, 0.0383, -0.0696,\n", " -0.0335, 0.0059, -0.0649, -0.0082, 0.0435, 0.0024, -0.0439, -0.0326,\n", " -0.0627, -0.0180, -0.0359, 0.0411, 0.0588, 0.0515, 0.0250, -0.0369])), ('stage1_S.stage.linear_projections.3.weight', tensor([[ 0.0411, 0.0088, 0.0451, ..., -0.0366, -0.0272, -0.0006],\n", " [ 0.0225, -0.0412, 0.0501, ..., 0.0235, -0.0413, 0.0080],\n", " [ 0.0376, 0.0611, 0.0112, ..., 0.0313, 0.0168, -0.0531],\n", " ...,\n", " [ 0.0488, 0.0365, 0.0425, ..., 0.0417, 0.0035, -0.0370],\n", " [-0.0288, 0.0234, 0.0499, ..., 0.0594, -0.0181, -0.0009],\n", " [ 0.0008, 0.0293, -0.0569, ..., 0.0233, -0.0185, -0.0272]])), ('stage1_S.stage.linear_projections.3.bias', tensor([-0.0581, 0.0002, -0.0173, 0.0241, -0.0550, 0.0465, -0.0083, -0.0554,\n", " -0.0190, 0.0325, 0.0589, 0.0551, 0.0141, -0.0604, 0.0137, 0.0516,\n", " -0.0367, -0.0263, 0.0008, -0.0533, 0.0325, 0.0522, -0.0468, -0.0450,\n", " -0.0415, 0.0590, -0.0522, 0.0272, 0.0528, 0.0139, 0.0223, 0.0184,\n", " -0.0413, 0.0441, -0.0226, -0.0147, 0.0064, 0.0443, 0.0033, -0.0235,\n", " 0.0497, 0.0584, -0.0285, 0.0537, 0.0026, 0.0303, 0.0499, -0.0174,\n", " -0.0583, -0.0216, 0.0365, 0.0192, -0.0559, 0.0085, -0.0544, -0.0007,\n", " -0.0184, -0.0372, -0.0351, 0.0138, -0.0605, 0.0413, 0.0401, 0.0251])), ('stage1_S.stage.project_channels.weight', tensor([[ 0.0186, 0.0146, -0.0030, ..., 0.0346, -0.0124, 0.0032],\n", " [-0.0038, -0.0267, -0.0546, ..., -0.0383, -0.0557, 0.0521],\n", " [ 0.0233, -0.0094, -0.0518, ..., 0.0124, -0.0234, -0.0205],\n", " ...,\n", " [-0.0395, 0.0298, -0.0207, ..., -0.0226, -0.0164, 0.0287],\n", " [ 0.0386, 0.0111, 0.0040, ..., 0.0433, -0.0246, 0.0538],\n", " [-0.0537, 0.0493, -0.0389, ..., -0.0328, 0.0453, -0.0452]])), ('stage1_S.stage.project_channels.bias', tensor([-0.0218, -0.0052, -0.0080, -0.0389, 0.0083, 0.0243, 0.0349, 0.0332,\n", " -0.0213, 0.0421, 0.0201, 0.0198, -0.0520, 0.0508, -0.0076, 0.0497]))]), 'scale': 4, 'hidden_dim': 64, 'layers_count': 4, 'is_lut': False, 'quantization_interval': 16}\n", "['hidden_dim', 'layers_count', 'scale', 'is_lut', 'quantization_interval']\n" ] }, { "data": { "text/plain": [ "SRNet(\n", " (stage1_S): UpscaleBlock(\n", " (stage): LinearUpscaleBlockNet(\n", " (embed): Linear(in_features=4, out_features=64, bias=True)\n", " (linear_projections): ModuleList(\n", " (0): Linear(in_features=64, out_features=64, bias=True)\n", " (1): Linear(in_features=128, out_features=64, bias=True)\n", " (2): Linear(in_features=192, out_features=64, bias=True)\n", " (3): Linear(in_features=256, out_features=64, bias=True)\n", " )\n", " (project_channels): Linear(in_features=320, out_features=16, bias=True)\n", " )\n", " )\n", ")" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from models import SaveCheckpoint, LoadCheckpoint\n", "SaveCheckpoint(m, \"test_net.pth\")\n", "m = LoadCheckpoint(\"test_net.pth\")\n", "m" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "stage1_S\n", " LinearUpscaleBlockNet 83521/83521 \n" ] }, { "data": { "text/plain": [ "SRNet(\n", " (stage1_S): UpscaleBlock(\n", " (stage): LinearUpscaleBlockLut\n", " lut size: torch.Size([17, 17, 17, 17, 4, 4])\n", " )\n", ")" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = m.get_lut_model()\n", "m" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('stage1_S.stage.stage',\n", " tensor([[[[[[121., 133., 118., 138.],\n", " [118., 128., 125., 109.],\n", " [124., 114., 140., 120.],\n", " [101., 129., 112., 127.]],\n", " \n", " [[120., 133., 119., 137.],\n", " [119., 129., 125., 109.],\n", " [123., 114., 138., 121.],\n", " [101., 129., 112., 127.]],\n", " \n", " [[120., 134., 119., 135.],\n", " [120., 129., 125., 109.],\n", " [123., 114., 136., 122.],\n", " [101., 129., 112., 127.]],\n", " \n", " ...,\n", " \n", " [[114., 142., 119., 126.],\n", " [123., 136., 126., 111.],\n", " [120., 103., 117., 132.],\n", " [103., 127., 109., 137.]],\n", " \n", " [[113., 142., 119., 125.],\n", " [123., 137., 126., 112.],\n", " [120., 102., 115., 132.],\n", " [103., 127., 108., 139.]],\n", " \n", " [[113., 143., 118., 125.],\n", " [122., 138., 127., 112.],\n", " [120., 100., 114., 133.],\n", " [103., 126., 108., 140.]]],\n", " \n", " \n", " [[[122., 133., 118., 137.],\n", " [119., 128., 126., 110.],\n", " [125., 115., 140., 120.],\n", " [101., 130., 114., 126.]],\n", " \n", " [[121., 133., 118., 136.],\n", " [120., 128., 126., 110.],\n", " [124., 115., 138., 122.],\n", " [101., 129., 113., 127.]],\n", " \n", " [[121., 134., 119., 135.],\n", " [121., 129., 125., 110.],\n", " [124., 115., 136., 123.],\n", " [101., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[114., 141., 119., 125.],\n", " [124., 136., 126., 112.],\n", " [121., 104., 117., 132.],\n", " [103., 127., 110., 137.]],\n", " \n", " [[113., 142., 119., 125.],\n", " [123., 137., 127., 113.],\n", " [121., 103., 116., 132.],\n", " [103., 127., 110., 138.]],\n", " \n", " [[113., 142., 118., 125.],\n", " [123., 138., 127., 113.],\n", " [121., 101., 115., 133.],\n", " [103., 127., 109., 139.]]],\n", " \n", " \n", " [[[122., 133., 118., 137.],\n", " [120., 128., 127., 111.],\n", " [126., 116., 140., 121.],\n", " [102., 130., 115., 126.]],\n", " \n", " [[122., 133., 118., 135.],\n", " [121., 128., 127., 110.],\n", " [125., 116., 138., 122.],\n", " [102., 130., 114., 127.]],\n", " \n", " [[121., 134., 118., 134.],\n", " [122., 129., 126., 110.],\n", " [125., 115., 136., 123.],\n", " [102., 129., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[114., 141., 119., 125.],\n", " [125., 136., 127., 113.],\n", " [122., 105., 118., 132.],\n", " [102., 128., 111., 136.]],\n", " \n", " [[113., 141., 119., 125.],\n", " [124., 137., 127., 113.],\n", " [122., 103., 117., 132.],\n", " [102., 128., 111., 137.]],\n", " \n", " [[113., 142., 118., 124.],\n", " [124., 138., 128., 114.],\n", " [122., 102., 116., 132.],\n", " [102., 128., 110., 139.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 130., 114., 130.],\n", " [127., 129., 139., 119.],\n", " [135., 120., 141., 125.],\n", " [107., 135., 126., 130.]],\n", " \n", " [[131., 131., 114., 129.],\n", " [128., 130., 138., 118.],\n", " [135., 120., 139., 125.],\n", " [106., 135., 126., 130.]],\n", " \n", " [[130., 131., 115., 128.],\n", " [128., 130., 138., 118.],\n", " [135., 120., 138., 126.],\n", " [106., 135., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[117., 136., 116., 123.],\n", " [131., 136., 134., 118.],\n", " [136., 113., 129., 128.],\n", " [100., 137., 125., 135.]],\n", " \n", " [[116., 137., 116., 123.],\n", " [130., 137., 134., 118.],\n", " [136., 111., 128., 128.],\n", " [100., 137., 124., 136.]],\n", " \n", " [[115., 137., 116., 123.],\n", " [130., 137., 134., 119.],\n", " [137., 110., 128., 128.],\n", " [ 99., 138., 124., 137.]]],\n", " \n", " \n", " [[[132., 130., 114., 129.],\n", " [127., 130., 140., 119.],\n", " [135., 121., 141., 125.],\n", " [107., 136., 127., 131.]],\n", " \n", " [[131., 131., 114., 128.],\n", " [128., 130., 140., 119.],\n", " [135., 121., 140., 125.],\n", " [107., 136., 127., 131.]],\n", " \n", " [[130., 131., 114., 127.],\n", " [128., 130., 139., 118.],\n", " [136., 121., 139., 126.],\n", " [106., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 116., 123.],\n", " [131., 136., 135., 118.],\n", " [137., 113., 130., 128.],\n", " [100., 138., 126., 135.]],\n", " \n", " [[117., 136., 116., 123.],\n", " [130., 137., 135., 119.],\n", " [137., 112., 129., 128.],\n", " [100., 138., 125., 136.]],\n", " \n", " [[116., 136., 116., 123.],\n", " [130., 137., 135., 119.],\n", " [138., 110., 129., 128.],\n", " [ 99., 138., 125., 137.]]],\n", " \n", " \n", " [[[133., 130., 113., 129.],\n", " [127., 130., 141., 120.],\n", " [136., 121., 141., 125.],\n", " [108., 137., 128., 131.]],\n", " \n", " [[132., 130., 114., 128.],\n", " [128., 130., 141., 119.],\n", " [136., 121., 140., 125.],\n", " [107., 137., 128., 131.]],\n", " \n", " [[131., 131., 114., 127.],\n", " [129., 131., 140., 119.],\n", " [136., 121., 139., 126.],\n", " [107., 137., 128., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 116., 123.],\n", " [131., 136., 135., 118.],\n", " [138., 113., 130., 128.],\n", " [101., 139., 127., 136.]],\n", " \n", " [[117., 136., 115., 123.],\n", " [130., 137., 135., 119.],\n", " [139., 112., 130., 127.],\n", " [100., 139., 126., 136.]],\n", " \n", " [[116., 136., 115., 123.],\n", " [130., 137., 136., 119.],\n", " [139., 111., 130., 127.],\n", " [ 99., 139., 126., 137.]]]],\n", " \n", " \n", " \n", " [[[[121., 134., 118., 138.],\n", " [117., 129., 126., 109.],\n", " [124., 114., 139., 118.],\n", " [102., 129., 113., 126.]],\n", " \n", " [[121., 135., 119., 137.],\n", " [118., 130., 125., 109.],\n", " [123., 114., 138., 119.],\n", " [102., 129., 113., 127.]],\n", " \n", " [[120., 135., 119., 135.],\n", " [119., 130., 125., 109.],\n", " [123., 114., 136., 121.],\n", " [102., 129., 112., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 143., 119., 125.],\n", " [122., 137., 126., 111.],\n", " [121., 103., 116., 130.],\n", " [104., 127., 109., 138.]],\n", " \n", " [[114., 143., 119., 125.],\n", " [122., 138., 127., 111.],\n", " [121., 102., 115., 131.],\n", " [104., 127., 109., 139.]],\n", " \n", " [[114., 144., 119., 124.],\n", " [122., 139., 128., 112.],\n", " [121., 100., 114., 131.],\n", " [104., 127., 109., 140.]]],\n", " \n", " \n", " [[[122., 134., 118., 137.],\n", " [118., 129., 126., 110.],\n", " [125., 115., 139., 119.],\n", " [102., 130., 114., 126.]],\n", " \n", " [[121., 134., 118., 136.],\n", " [119., 129., 126., 110.],\n", " [124., 115., 138., 120.],\n", " [102., 129., 114., 127.]],\n", " \n", " [[121., 135., 119., 135.],\n", " [120., 130., 126., 110.],\n", " [124., 115., 136., 121.],\n", " [102., 129., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 142., 119., 125.],\n", " [123., 137., 127., 111.],\n", " [122., 104., 117., 130.],\n", " [104., 127., 110., 137.]],\n", " \n", " [[114., 143., 119., 124.],\n", " [123., 138., 127., 112.],\n", " [122., 103., 116., 130.],\n", " [104., 127., 110., 138.]],\n", " \n", " [[114., 144., 119., 124.],\n", " [123., 139., 128., 112.],\n", " [122., 101., 114., 131.],\n", " [104., 127., 110., 140.]]],\n", " \n", " \n", " [[[122., 134., 118., 137.],\n", " [119., 129., 127., 111.],\n", " [125., 115., 140., 119.],\n", " [103., 130., 115., 126.]],\n", " \n", " [[122., 134., 118., 135.],\n", " [120., 129., 127., 111.],\n", " [125., 115., 138., 121.],\n", " [103., 130., 115., 126.]],\n", " \n", " [[121., 135., 119., 134.],\n", " [121., 130., 127., 111.],\n", " [125., 115., 136., 122.],\n", " [103., 129., 115., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 142., 119., 124.],\n", " [124., 137., 127., 112.],\n", " [123., 105., 118., 130.],\n", " [103., 128., 112., 137.]],\n", " \n", " [[114., 143., 119., 124.],\n", " [124., 138., 128., 112.],\n", " [123., 103., 117., 130.],\n", " [103., 128., 111., 138.]],\n", " \n", " [[114., 143., 119., 124.],\n", " [124., 139., 129., 113.],\n", " [123., 102., 115., 131.],\n", " [104., 128., 111., 139.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 131., 114., 129.],\n", " [126., 130., 139., 119.],\n", " [134., 120., 140., 123.],\n", " [108., 135., 126., 130.]],\n", " \n", " [[130., 132., 115., 128.],\n", " [127., 130., 138., 119.],\n", " [134., 120., 139., 124.],\n", " [107., 135., 126., 130.]],\n", " \n", " [[129., 132., 115., 127.],\n", " [128., 130., 138., 118.],\n", " [135., 121., 138., 124.],\n", " [107., 135., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[117., 137., 117., 122.],\n", " [130., 136., 134., 118.],\n", " [137., 113., 128., 127.],\n", " [101., 137., 124., 135.]],\n", " \n", " [[116., 137., 117., 123.],\n", " [130., 137., 134., 118.],\n", " [137., 111., 128., 127.],\n", " [101., 137., 124., 136.]],\n", " \n", " [[115., 138., 117., 123.],\n", " [129., 138., 134., 118.],\n", " [137., 110., 127., 126.],\n", " [100., 138., 124., 137.]]],\n", " \n", " \n", " [[[132., 131., 114., 129.],\n", " [126., 130., 140., 120.],\n", " [135., 121., 140., 123.],\n", " [108., 136., 127., 130.]],\n", " \n", " [[131., 131., 114., 128.],\n", " [127., 130., 139., 119.],\n", " [135., 121., 139., 124.],\n", " [108., 136., 127., 130.]],\n", " \n", " [[130., 132., 115., 127.],\n", " [128., 131., 139., 119.],\n", " [135., 121., 138., 124.],\n", " [107., 136., 127., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 117., 122.],\n", " [131., 136., 135., 118.],\n", " [138., 113., 129., 126.],\n", " [101., 138., 125., 135.]],\n", " \n", " [[117., 137., 116., 122.],\n", " [130., 137., 135., 118.],\n", " [138., 112., 129., 126.],\n", " [101., 138., 125., 136.]],\n", " \n", " [[116., 137., 116., 123.],\n", " [130., 138., 135., 119.],\n", " [139., 111., 128., 126.],\n", " [100., 138., 125., 137.]]],\n", " \n", " \n", " [[[133., 130., 114., 128.],\n", " [126., 130., 141., 120.],\n", " [135., 121., 141., 123.],\n", " [109., 136., 127., 131.]],\n", " \n", " [[132., 131., 114., 127.],\n", " [127., 131., 140., 120.],\n", " [136., 121., 139., 124.],\n", " [108., 136., 127., 131.]],\n", " \n", " [[131., 131., 114., 127.],\n", " [128., 131., 140., 119.],\n", " [136., 121., 138., 124.],\n", " [108., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 116., 122.],\n", " [131., 136., 135., 118.],\n", " [139., 114., 130., 126.],\n", " [101., 139., 126., 136.]],\n", " \n", " [[117., 136., 116., 122.],\n", " [130., 137., 136., 118.],\n", " [139., 112., 130., 126.],\n", " [101., 139., 126., 136.]],\n", " \n", " [[116., 136., 116., 123.],\n", " [130., 138., 136., 119.],\n", " [140., 111., 129., 125.],\n", " [100., 139., 126., 137.]]]],\n", " \n", " \n", " \n", " [[[[122., 135., 118., 138.],\n", " [116., 130., 126., 109.],\n", " [124., 114., 139., 117.],\n", " [103., 129., 114., 126.]],\n", " \n", " [[121., 136., 119., 137.],\n", " [117., 131., 126., 109.],\n", " [123., 114., 137., 118.],\n", " [103., 129., 113., 127.]],\n", " \n", " [[121., 136., 119., 135.],\n", " [118., 131., 125., 109.],\n", " [123., 114., 136., 119.],\n", " [103., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 144., 120., 125.],\n", " [122., 138., 127., 110.],\n", " [122., 103., 116., 128.],\n", " [105., 127., 110., 138.]],\n", " \n", " [[115., 145., 120., 124.],\n", " [122., 139., 128., 111.],\n", " [122., 102., 115., 129.],\n", " [105., 127., 110., 139.]],\n", " \n", " [[115., 145., 119., 124.],\n", " [121., 140., 129., 111.],\n", " [122., 100., 113., 129.],\n", " [105., 127., 109., 141.]]],\n", " \n", " \n", " [[[122., 135., 118., 137.],\n", " [118., 130., 127., 110.],\n", " [124., 114., 139., 117.],\n", " [103., 130., 115., 126.]],\n", " \n", " [[122., 136., 119., 136.],\n", " [118., 130., 126., 110.],\n", " [124., 114., 138., 118.],\n", " [103., 129., 115., 126.]],\n", " \n", " [[121., 136., 119., 135.],\n", " [119., 131., 126., 110.],\n", " [124., 114., 136., 119.],\n", " [104., 129., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 144., 120., 124.],\n", " [123., 138., 128., 111.],\n", " [123., 104., 117., 128.],\n", " [105., 127., 111., 137.]],\n", " \n", " [[115., 144., 120., 124.],\n", " [123., 139., 128., 111.],\n", " [123., 103., 115., 129.],\n", " [105., 127., 111., 139.]],\n", " \n", " [[114., 145., 119., 124.],\n", " [122., 140., 129., 112.],\n", " [123., 101., 114., 129.],\n", " [105., 127., 111., 140.]]],\n", " \n", " \n", " [[[123., 135., 118., 137.],\n", " [119., 130., 128., 111.],\n", " [125., 115., 139., 118.],\n", " [104., 130., 116., 126.]],\n", " \n", " [[122., 135., 118., 135.],\n", " [119., 130., 127., 111.],\n", " [125., 115., 138., 119.],\n", " [104., 130., 116., 126.]],\n", " \n", " [[122., 136., 119., 134.],\n", " [120., 130., 127., 111.],\n", " [125., 115., 136., 120.],\n", " [104., 130., 115., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 143., 120., 124.],\n", " [124., 138., 128., 111.],\n", " [124., 105., 117., 128.],\n", " [104., 128., 112., 137.]],\n", " \n", " [[115., 144., 120., 124.],\n", " [124., 138., 129., 112.],\n", " [124., 103., 116., 128.],\n", " [105., 128., 112., 138.]],\n", " \n", " [[114., 144., 119., 123.],\n", " [123., 139., 129., 112.],\n", " [124., 102., 115., 129.],\n", " [105., 128., 112., 139.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 132., 115., 129.],\n", " [126., 130., 139., 120.],\n", " [134., 120., 140., 122.],\n", " [109., 135., 126., 129.]],\n", " \n", " [[130., 132., 115., 128.],\n", " [127., 130., 138., 120.],\n", " [134., 121., 139., 122.],\n", " [108., 135., 126., 129.]],\n", " \n", " [[129., 133., 116., 127.],\n", " [127., 131., 138., 119.],\n", " [134., 121., 138., 123.],\n", " [108., 135., 126., 129.]],\n", " \n", " ...,\n", " \n", " [[117., 138., 118., 122.],\n", " [130., 137., 134., 117.],\n", " [138., 113., 128., 125.],\n", " [102., 137., 124., 135.]],\n", " \n", " [[116., 138., 117., 122.],\n", " [130., 137., 134., 118.],\n", " [138., 112., 127., 125.],\n", " [101., 137., 124., 136.]],\n", " \n", " [[115., 138., 117., 122.],\n", " [129., 138., 135., 118.],\n", " [138., 110., 127., 125.],\n", " [101., 137., 124., 137.]]],\n", " \n", " \n", " [[[132., 131., 114., 129.],\n", " [126., 130., 140., 121.],\n", " [134., 121., 140., 122.],\n", " [109., 136., 127., 130.]],\n", " \n", " [[131., 132., 115., 128.],\n", " [127., 130., 139., 120.],\n", " [134., 121., 139., 122.],\n", " [109., 136., 127., 130.]],\n", " \n", " [[130., 132., 115., 127.],\n", " [128., 131., 139., 120.],\n", " [135., 121., 138., 123.],\n", " [108., 136., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 137., 117., 122.],\n", " [130., 137., 135., 118.],\n", " [139., 113., 129., 125.],\n", " [102., 138., 125., 135.]],\n", " \n", " [[117., 137., 117., 122.],\n", " [130., 137., 135., 118.],\n", " [139., 112., 128., 124.],\n", " [101., 138., 125., 136.]],\n", " \n", " [[116., 138., 117., 122.],\n", " [129., 138., 135., 118.],\n", " [139., 111., 128., 124.],\n", " [101., 138., 125., 137.]]],\n", " \n", " \n", " [[[133., 131., 114., 128.],\n", " [126., 130., 141., 121.],\n", " [135., 121., 140., 122.],\n", " [110., 136., 127., 131.]],\n", " \n", " [[132., 131., 114., 127.],\n", " [127., 131., 140., 121.],\n", " [135., 121., 139., 122.],\n", " [109., 136., 127., 131.]],\n", " \n", " [[131., 132., 115., 126.],\n", " [128., 131., 140., 120.],\n", " [135., 121., 138., 123.],\n", " [109., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 117., 122.],\n", " [130., 137., 136., 118.],\n", " [140., 114., 130., 124.],\n", " [102., 138., 126., 136.]],\n", " \n", " [[117., 137., 117., 122.],\n", " [130., 137., 136., 118.],\n", " [140., 113., 129., 124.],\n", " [101., 139., 126., 136.]],\n", " \n", " [[116., 137., 116., 122.],\n", " [130., 138., 136., 119.],\n", " [140., 111., 129., 124.],\n", " [101., 139., 125., 137.]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[130., 147., 119., 142.],\n", " [105., 147., 125., 113.],\n", " [118., 103., 137., 98.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[130., 148., 120., 140.],\n", " [107., 147., 125., 112.],\n", " [119., 103., 135., 98.],\n", " [115., 127., 117., 129.]],\n", " \n", " [[129., 149., 120., 139.],\n", " [108., 147., 125., 112.],\n", " [119., 103., 133., 99.],\n", " [115., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 156., 124., 125.],\n", " [116., 151., 134., 106.],\n", " [132., 97., 113., 104.],\n", " [117., 126., 113., 147.]],\n", " \n", " [[127., 156., 124., 125.],\n", " [116., 152., 135., 105.],\n", " [134., 96., 112., 104.],\n", " [117., 126., 113., 148.]],\n", " \n", " [[127., 157., 124., 124.],\n", " [116., 152., 136., 105.],\n", " [135., 95., 110., 104.],\n", " [118., 126., 112., 150.]]],\n", " \n", " \n", " [[[130., 147., 119., 141.],\n", " [107., 146., 125., 114.],\n", " [118., 104., 137., 98.],\n", " [115., 127., 117., 127.]],\n", " \n", " [[129., 147., 120., 140.],\n", " [108., 146., 125., 114.],\n", " [119., 104., 135., 99.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[129., 148., 120., 138.],\n", " [109., 146., 126., 113.],\n", " [120., 104., 134., 100.],\n", " [115., 127., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[127., 155., 124., 125.],\n", " [117., 150., 134., 107.],\n", " [133., 99., 114., 104.],\n", " [117., 126., 113., 146.]],\n", " \n", " [[127., 155., 124., 124.],\n", " [117., 151., 135., 106.],\n", " [134., 97., 112., 104.],\n", " [117., 126., 113., 147.]],\n", " \n", " [[127., 156., 124., 124.],\n", " [117., 152., 136., 106.],\n", " [135., 96., 111., 104.],\n", " [117., 126., 112., 149.]]],\n", " \n", " \n", " [[[130., 146., 119., 140.],\n", " [108., 145., 126., 116.],\n", " [118., 105., 137., 99.],\n", " [115., 127., 117., 127.]],\n", " \n", " [[129., 146., 120., 139.],\n", " [109., 145., 126., 115.],\n", " [119., 105., 135., 100.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[129., 147., 120., 137.],\n", " [110., 146., 126., 114.],\n", " [120., 105., 134., 100.],\n", " [115., 127., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[126., 154., 124., 124.],\n", " [118., 150., 134., 107.],\n", " [134., 100., 115., 104.],\n", " [117., 127., 113., 145.]],\n", " \n", " [[126., 154., 124., 124.],\n", " [118., 150., 135., 107.],\n", " [135., 98., 113., 104.],\n", " [117., 127., 113., 147.]],\n", " \n", " [[126., 155., 124., 123.],\n", " [118., 151., 136., 107.],\n", " [136., 97., 112., 104.],\n", " [116., 127., 113., 148.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 135., 119., 132.],\n", " [117., 139., 134., 130.],\n", " [122., 116., 139., 103.],\n", " [119., 130., 119., 128.]],\n", " \n", " [[129., 135., 120., 131.],\n", " [119., 139., 133., 129.],\n", " [123., 117., 137., 104.],\n", " [119., 130., 118., 129.]],\n", " \n", " [[129., 136., 120., 129.],\n", " [120., 139., 133., 128.],\n", " [124., 117., 136., 104.],\n", " [119., 130., 118., 129.]],\n", " \n", " ...,\n", " \n", " [[120., 142., 122., 120.],\n", " [127., 144., 135., 117.],\n", " [142., 111., 125., 104.],\n", " [113., 133., 117., 139.]],\n", " \n", " [[120., 142., 122., 120.],\n", " [127., 144., 136., 117.],\n", " [144., 110., 124., 104.],\n", " [113., 133., 116., 140.]],\n", " \n", " [[119., 143., 122., 120.],\n", " [127., 145., 137., 116.],\n", " [145., 109., 123., 103.],\n", " [112., 133., 116., 141.]]],\n", " \n", " \n", " [[[130., 134., 119., 132.],\n", " [118., 138., 134., 131.],\n", " [122., 117., 139., 104.],\n", " [120., 131., 119., 129.]],\n", " \n", " [[129., 134., 120., 130.],\n", " [119., 138., 134., 130.],\n", " [123., 117., 137., 104.],\n", " [119., 131., 118., 129.]],\n", " \n", " [[129., 135., 120., 129.],\n", " [120., 138., 134., 129.],\n", " [125., 118., 136., 104.],\n", " [119., 131., 118., 129.]],\n", " \n", " ...,\n", " \n", " [[120., 141., 122., 120.],\n", " [128., 143., 135., 118.],\n", " [143., 112., 125., 104.],\n", " [113., 133., 117., 139.]],\n", " \n", " [[119., 141., 122., 120.],\n", " [128., 144., 136., 118.],\n", " [145., 111., 125., 103.],\n", " [113., 134., 117., 140.]],\n", " \n", " [[119., 142., 122., 120.],\n", " [127., 145., 137., 117.],\n", " [146., 109., 124., 103.],\n", " [112., 134., 117., 141.]]],\n", " \n", " \n", " [[[130., 133., 119., 131.],\n", " [118., 138., 135., 132.],\n", " [122., 118., 139., 104.],\n", " [120., 131., 119., 129.]],\n", " \n", " [[129., 133., 120., 130.],\n", " [119., 138., 135., 131.],\n", " [124., 118., 138., 104.],\n", " [120., 131., 118., 129.]],\n", " \n", " [[129., 134., 120., 129.],\n", " [121., 138., 134., 130.],\n", " [125., 118., 137., 104.],\n", " [120., 131., 118., 130.]],\n", " \n", " ...,\n", " \n", " [[119., 140., 122., 120.],\n", " [128., 143., 136., 119.],\n", " [144., 113., 126., 104.],\n", " [113., 134., 117., 138.]],\n", " \n", " [[119., 140., 122., 120.],\n", " [128., 144., 136., 118.],\n", " [145., 111., 126., 103.],\n", " [112., 134., 117., 140.]],\n", " \n", " [[118., 141., 122., 120.],\n", " [128., 144., 137., 118.],\n", " [147., 110., 125., 103.],\n", " [112., 135., 117., 141.]]]],\n", " \n", " \n", " \n", " [[[[130., 148., 120., 143.],\n", " [104., 149., 124., 113.],\n", " [117., 102., 137., 96.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[130., 149., 120., 141.],\n", " [106., 149., 125., 113.],\n", " [118., 102., 135., 97.],\n", " [116., 126., 116., 129.]],\n", " \n", " [[130., 149., 120., 139.],\n", " [107., 149., 125., 112.],\n", " [119., 102., 133., 98.],\n", " [116., 126., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 156., 124., 126.],\n", " [116., 152., 134., 106.],\n", " [133., 97., 113., 102.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[129., 157., 125., 125.],\n", " [116., 153., 135., 105.],\n", " [134., 96., 112., 102.],\n", " [118., 126., 112., 149.]],\n", " \n", " [[128., 157., 125., 125.],\n", " [116., 154., 136., 105.],\n", " [136., 94., 110., 102.],\n", " [118., 126., 112., 151.]]],\n", " \n", " \n", " [[[130., 147., 120., 142.],\n", " [106., 148., 125., 115.],\n", " [117., 103., 137., 97.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[130., 148., 120., 140.],\n", " [107., 148., 125., 114.],\n", " [118., 103., 135., 97.],\n", " [116., 127., 116., 129.]],\n", " \n", " [[130., 149., 121., 139.],\n", " [108., 148., 125., 113.],\n", " [119., 103., 133., 98.],\n", " [116., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 155., 124., 125.],\n", " [117., 152., 134., 106.],\n", " [134., 98., 114., 102.],\n", " [118., 126., 113., 147.]],\n", " \n", " [[128., 156., 125., 125.],\n", " [117., 152., 135., 106.],\n", " [135., 97., 112., 102.],\n", " [118., 126., 112., 149.]],\n", " \n", " [[128., 156., 125., 124.],\n", " [117., 153., 136., 106.],\n", " [136., 95., 111., 102.],\n", " [118., 126., 112., 150.]]],\n", " \n", " \n", " [[[130., 146., 120., 141.],\n", " [107., 147., 125., 116.],\n", " [117., 104., 137., 97.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[130., 147., 120., 139.],\n", " [108., 147., 125., 115.],\n", " [118., 104., 135., 98.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[130., 148., 121., 138.],\n", " [110., 147., 126., 115.],\n", " [119., 104., 134., 99.],\n", " [116., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 155., 124., 125.],\n", " [118., 151., 134., 107.],\n", " [134., 99., 114., 102.],\n", " [118., 126., 113., 146.]],\n", " \n", " [[127., 155., 124., 124.],\n", " [118., 151., 135., 107.],\n", " [135., 98., 113., 102.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[127., 156., 125., 124.],\n", " [118., 152., 136., 107.],\n", " [137., 96., 112., 102.],\n", " [117., 126., 112., 149.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 135., 120., 133.],\n", " [117., 140., 133., 131.],\n", " [120., 116., 139., 102.],\n", " [120., 130., 118., 128.]],\n", " \n", " [[129., 135., 120., 131.],\n", " [118., 140., 133., 130.],\n", " [122., 116., 137., 102.],\n", " [120., 130., 117., 129.]],\n", " \n", " [[129., 136., 121., 130.],\n", " [119., 140., 132., 129.],\n", " [123., 116., 136., 103.],\n", " [120., 130., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[121., 142., 123., 120.],\n", " [127., 145., 135., 118.],\n", " [142., 110., 124., 102.],\n", " [114., 132., 116., 140.]],\n", " \n", " [[120., 143., 123., 120.],\n", " [127., 145., 136., 117.],\n", " [144., 109., 124., 102.],\n", " [114., 132., 115., 141.]],\n", " \n", " [[120., 143., 123., 120.],\n", " [127., 146., 137., 117.],\n", " [145., 108., 123., 102.],\n", " [113., 133., 115., 142.]]],\n", " \n", " \n", " [[[130., 134., 120., 132.],\n", " [117., 139., 134., 132.],\n", " [121., 117., 139., 102.],\n", " [121., 130., 118., 129.]],\n", " \n", " [[129., 134., 120., 131.],\n", " [118., 140., 133., 131.],\n", " [122., 117., 137., 102.],\n", " [120., 130., 117., 129.]],\n", " \n", " [[129., 135., 120., 130.],\n", " [120., 140., 133., 130.],\n", " [124., 117., 136., 103.],\n", " [120., 130., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 141., 122., 120.],\n", " [127., 144., 135., 119.],\n", " [143., 111., 125., 102.],\n", " [114., 133., 116., 139.]],\n", " \n", " [[120., 142., 122., 120.],\n", " [127., 145., 136., 118.],\n", " [145., 110., 125., 102.],\n", " [114., 133., 116., 140.]],\n", " \n", " [[119., 142., 122., 120.],\n", " [127., 146., 137., 117.],\n", " [146., 109., 124., 101.],\n", " [113., 133., 116., 142.]]],\n", " \n", " \n", " [[[130., 132., 120., 132.],\n", " [117., 139., 134., 133.],\n", " [121., 117., 139., 102.],\n", " [121., 131., 118., 129.]],\n", " \n", " [[129., 133., 120., 131.],\n", " [119., 139., 134., 132.],\n", " [123., 118., 138., 103.],\n", " [121., 131., 117., 130.]],\n", " \n", " [[129., 134., 120., 129.],\n", " [120., 139., 134., 131.],\n", " [124., 118., 137., 103.],\n", " [120., 131., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 140., 122., 120.],\n", " [128., 144., 136., 119.],\n", " [144., 112., 126., 102.],\n", " [114., 133., 116., 139.]],\n", " \n", " [[119., 140., 122., 120.],\n", " [128., 145., 136., 119.],\n", " [146., 111., 126., 101.],\n", " [113., 134., 116., 140.]],\n", " \n", " [[118., 141., 122., 120.],\n", " [127., 145., 137., 118.],\n", " [147., 110., 125., 101.],\n", " [113., 134., 116., 141.]]]],\n", " \n", " \n", " \n", " [[[[131., 149., 120., 143.],\n", " [104., 150., 124., 114.],\n", " [116., 100., 137., 94.],\n", " [116., 126., 116., 129.]],\n", " \n", " [[131., 149., 120., 142.],\n", " [105., 150., 124., 113.],\n", " [117., 101., 135., 95.],\n", " [117., 126., 116., 130.]],\n", " \n", " [[131., 150., 121., 140.],\n", " [106., 151., 125., 112.],\n", " [118., 101., 133., 96.],\n", " [117., 126., 116., 131.]],\n", " \n", " ...,\n", " \n", " [[130., 157., 125., 126.],\n", " [115., 154., 134., 106.],\n", " [134., 96., 113., 100.],\n", " [119., 126., 112., 149.]],\n", " \n", " [[130., 157., 125., 126.],\n", " [115., 154., 135., 105.],\n", " [135., 95., 112., 100.],\n", " [119., 126., 112., 150.]],\n", " \n", " [[130., 158., 125., 125.],\n", " [115., 155., 137., 105.],\n", " [136., 94., 110., 100.],\n", " [119., 126., 111., 152.]]],\n", " \n", " \n", " [[[131., 148., 120., 143.],\n", " [105., 150., 124., 115.],\n", " [117., 101., 137., 95.],\n", " [116., 126., 116., 128.]],\n", " \n", " [[131., 149., 120., 141.],\n", " [106., 150., 125., 114.],\n", " [118., 102., 135., 96.],\n", " [117., 126., 116., 129.]],\n", " \n", " [[131., 149., 121., 139.],\n", " [107., 150., 125., 114.],\n", " [119., 102., 133., 96.],\n", " [117., 126., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 156., 125., 126.],\n", " [116., 153., 134., 106.],\n", " [134., 97., 114., 100.],\n", " [119., 126., 112., 148.]],\n", " \n", " [[129., 157., 125., 125.],\n", " [116., 154., 135., 106.],\n", " [135., 96., 112., 100.],\n", " [119., 126., 112., 150.]],\n", " \n", " [[129., 157., 125., 125.],\n", " [116., 154., 137., 106.],\n", " [137., 95., 111., 100.],\n", " [119., 126., 112., 151.]]],\n", " \n", " \n", " [[[131., 147., 120., 142.],\n", " [106., 149., 125., 117.],\n", " [117., 103., 137., 96.],\n", " [117., 126., 117., 128.]],\n", " \n", " [[131., 148., 120., 140.],\n", " [107., 149., 125., 116.],\n", " [118., 103., 135., 96.],\n", " [117., 126., 116., 129.]],\n", " \n", " [[131., 148., 121., 138.],\n", " [109., 149., 125., 115.],\n", " [119., 103., 134., 97.],\n", " [117., 126., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 155., 125., 125.],\n", " [117., 152., 134., 107.],\n", " [135., 98., 114., 101.],\n", " [119., 126., 113., 147.]],\n", " \n", " [[128., 156., 125., 125.],\n", " [117., 153., 135., 107.],\n", " [136., 97., 113., 100.],\n", " [118., 126., 112., 149.]],\n", " \n", " [[128., 156., 125., 124.],\n", " [117., 153., 137., 106.],\n", " [137., 96., 112., 100.],\n", " [118., 126., 112., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 135., 120., 134.],\n", " [116., 141., 132., 132.],\n", " [119., 115., 139., 100.],\n", " [121., 129., 117., 129.]],\n", " \n", " [[130., 135., 120., 132.],\n", " [117., 141., 132., 131.],\n", " [121., 115., 137., 101.],\n", " [121., 129., 116., 129.]],\n", " \n", " [[129., 136., 121., 131.],\n", " [119., 141., 132., 129.],\n", " [122., 115., 136., 101.],\n", " [120., 129., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[121., 142., 123., 121.],\n", " [127., 146., 135., 118.],\n", " [142., 110., 124., 101.],\n", " [115., 132., 115., 140.]],\n", " \n", " [[121., 143., 123., 120.],\n", " [127., 146., 136., 117.],\n", " [144., 109., 123., 100.],\n", " [115., 132., 114., 141.]],\n", " \n", " [[120., 143., 123., 120.],\n", " [127., 147., 137., 117.],\n", " [146., 108., 123., 100.],\n", " [114., 132., 114., 143.]]],\n", " \n", " \n", " [[[130., 133., 120., 133.],\n", " [116., 141., 133., 133.],\n", " [120., 116., 139., 101.],\n", " [121., 130., 117., 129.]],\n", " \n", " [[129., 134., 120., 132.],\n", " [118., 141., 133., 132.],\n", " [121., 116., 138., 101.],\n", " [121., 130., 116., 129.]],\n", " \n", " [[129., 135., 121., 130.],\n", " [119., 141., 132., 130.],\n", " [123., 116., 136., 101.],\n", " [121., 130., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[121., 141., 123., 121.],\n", " [127., 145., 135., 119.],\n", " [143., 111., 125., 100.],\n", " [115., 132., 115., 140.]],\n", " \n", " [[120., 142., 123., 120.],\n", " [127., 146., 136., 118.],\n", " [145., 110., 124., 100.],\n", " [115., 132., 115., 141.]],\n", " \n", " [[119., 142., 122., 120.],\n", " [127., 147., 137., 118.],\n", " [147., 109., 124., 100.],\n", " [114., 133., 115., 142.]]],\n", " \n", " \n", " [[[130., 132., 120., 133.],\n", " [117., 140., 134., 134.],\n", " [120., 117., 139., 101.],\n", " [122., 130., 116., 129.]],\n", " \n", " [[129., 133., 120., 131.],\n", " [118., 141., 133., 133.],\n", " [122., 117., 138., 101.],\n", " [122., 130., 116., 130.]],\n", " \n", " [[129., 133., 121., 130.],\n", " [119., 141., 133., 132.],\n", " [123., 117., 137., 101.],\n", " [121., 130., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 140., 122., 121.],\n", " [127., 145., 135., 120.],\n", " [144., 112., 126., 100.],\n", " [115., 133., 115., 140.]],\n", " \n", " [[119., 140., 122., 120.],\n", " [127., 146., 136., 119.],\n", " [146., 111., 125., 100.],\n", " [115., 133., 115., 141.]],\n", " \n", " [[119., 141., 122., 120.],\n", " [127., 146., 137., 118.],\n", " [147., 109., 125., 99.],\n", " [114., 133., 115., 142.]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[121., 132., 120., 138.],\n", " [118., 128., 125., 110.],\n", " [123., 115., 139., 121.],\n", " [100., 129., 112., 127.]],\n", " \n", " [[121., 133., 121., 136.],\n", " [119., 129., 125., 110.],\n", " [123., 115., 138., 123.],\n", " [100., 129., 112., 127.]],\n", " \n", " [[120., 134., 121., 135.],\n", " [120., 129., 124., 110.],\n", " [122., 115., 136., 124.],\n", " [101., 129., 111., 128.]],\n", " \n", " ...,\n", " \n", " [[115., 140., 121., 125.],\n", " [124., 136., 125., 113.],\n", " [119., 104., 117., 134.],\n", " [102., 126., 108., 138.]],\n", " \n", " [[114., 141., 120., 125.],\n", " [123., 137., 125., 114.],\n", " [119., 103., 115., 134.],\n", " [102., 126., 108., 139.]],\n", " \n", " [[114., 141., 120., 125.],\n", " [123., 138., 126., 114.],\n", " [119., 101., 114., 134.],\n", " [103., 126., 107., 140.]]],\n", " \n", " \n", " [[[122., 132., 120., 137.],\n", " [119., 128., 126., 111.],\n", " [124., 116., 139., 122.],\n", " [101., 130., 113., 127.]],\n", " \n", " [[121., 133., 120., 136.],\n", " [120., 128., 125., 111.],\n", " [124., 115., 138., 123.],\n", " [101., 129., 113., 127.]],\n", " \n", " [[121., 133., 121., 134.],\n", " [121., 129., 125., 111.],\n", " [123., 115., 136., 124.],\n", " [101., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 140., 121., 125.],\n", " [124., 136., 125., 114.],\n", " [120., 105., 117., 134.],\n", " [102., 127., 109., 137.]],\n", " \n", " [[114., 141., 120., 125.],\n", " [124., 137., 126., 114.],\n", " [120., 103., 116., 134.],\n", " [102., 127., 109., 138.]],\n", " \n", " [[114., 141., 120., 124.],\n", " [124., 137., 127., 115.],\n", " [120., 102., 115., 134.],\n", " [102., 127., 109., 139.]]],\n", " \n", " \n", " [[[123., 132., 120., 136.],\n", " [120., 128., 127., 112.],\n", " [125., 116., 139., 123.],\n", " [101., 130., 114., 127.]],\n", " \n", " [[122., 133., 120., 135.],\n", " [121., 128., 126., 112.],\n", " [125., 116., 138., 124.],\n", " [101., 130., 114., 127.]],\n", " \n", " [[121., 133., 120., 134.],\n", " [122., 129., 126., 112.],\n", " [124., 116., 136., 125.],\n", " [101., 129., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 140., 120., 125.],\n", " [125., 136., 126., 115.],\n", " [121., 106., 118., 133.],\n", " [102., 128., 110., 137.]],\n", " \n", " [[114., 140., 120., 124.],\n", " [125., 136., 126., 115.],\n", " [121., 104., 117., 134.],\n", " [102., 128., 110., 138.]],\n", " \n", " [[113., 141., 120., 124.],\n", " [125., 137., 127., 116.],\n", " [121., 103., 116., 134.],\n", " [102., 128., 110., 139.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[132., 130., 116., 130.],\n", " [126., 129., 139., 120.],\n", " [134., 120., 141., 126.],\n", " [107., 135., 126., 130.]],\n", " \n", " [[131., 130., 116., 129.],\n", " [127., 130., 138., 120.],\n", " [134., 121., 139., 127.],\n", " [107., 135., 126., 130.]],\n", " \n", " [[130., 131., 117., 128.],\n", " [128., 130., 137., 119.],\n", " [134., 121., 138., 128.],\n", " [106., 135., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 118., 123.],\n", " [131., 136., 133., 120.],\n", " [135., 113., 129., 130.],\n", " [101., 137., 124., 135.]],\n", " \n", " [[117., 136., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [135., 112., 128., 130.],\n", " [100., 137., 124., 136.]],\n", " \n", " [[116., 136., 117., 123.],\n", " [130., 137., 134., 121.],\n", " [136., 110., 128., 130.],\n", " [100., 137., 124., 137.]]],\n", " \n", " \n", " [[[133., 130., 115., 129.],\n", " [127., 130., 140., 120.],\n", " [134., 121., 141., 126.],\n", " [108., 136., 127., 131.]],\n", " \n", " [[132., 130., 116., 128.],\n", " [128., 130., 139., 120.],\n", " [135., 121., 140., 127.],\n", " [107., 136., 127., 131.]],\n", " \n", " [[131., 131., 116., 127.],\n", " [129., 130., 139., 120.],\n", " [135., 121., 139., 128.],\n", " [107., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [136., 114., 130., 130.],\n", " [101., 137., 125., 136.]],\n", " \n", " [[117., 135., 117., 123.],\n", " [131., 136., 134., 120.],\n", " [136., 112., 129., 129.],\n", " [100., 138., 125., 136.]],\n", " \n", " [[116., 135., 117., 123.],\n", " [131., 137., 134., 121.],\n", " [137., 111., 129., 129.],\n", " [100., 138., 125., 137.]]],\n", " \n", " \n", " [[[133., 129., 115., 129.],\n", " [127., 130., 141., 121.],\n", " [135., 121., 141., 126.],\n", " [108., 137., 127., 132.]],\n", " \n", " [[133., 130., 115., 128.],\n", " [128., 130., 140., 120.],\n", " [135., 121., 140., 127.],\n", " [108., 137., 127., 132.]],\n", " \n", " [[132., 130., 116., 127.],\n", " [129., 131., 140., 120.],\n", " [135., 121., 139., 128.],\n", " [107., 137., 127., 132.]],\n", " \n", " ...,\n", " \n", " [[119., 134., 117., 123.],\n", " [131., 136., 135., 120.],\n", " [137., 114., 131., 129.],\n", " [101., 138., 126., 136.]],\n", " \n", " [[118., 135., 117., 123.],\n", " [131., 136., 135., 120.],\n", " [137., 113., 130., 129.],\n", " [100., 138., 126., 137.]],\n", " \n", " [[117., 135., 117., 124.],\n", " [131., 137., 135., 121.],\n", " [138., 111., 130., 129.],\n", " [100., 138., 126., 137.]]]],\n", " \n", " \n", " \n", " [[[[122., 134., 120., 138.],\n", " [117., 129., 125., 110.],\n", " [123., 115., 139., 120.],\n", " [101., 129., 113., 127.]],\n", " \n", " [[121., 134., 121., 136.],\n", " [118., 129., 125., 110.],\n", " [123., 115., 137., 121.],\n", " [101., 129., 113., 127.]],\n", " \n", " [[121., 135., 121., 135.],\n", " [119., 130., 125., 110.],\n", " [122., 114., 136., 122.],\n", " [102., 129., 112., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 142., 121., 125.],\n", " [123., 137., 126., 113.],\n", " [120., 104., 116., 132.],\n", " [103., 126., 109., 138.]],\n", " \n", " [[115., 142., 121., 124.],\n", " [123., 138., 126., 113.],\n", " [120., 103., 115., 132.],\n", " [104., 126., 108., 139.]],\n", " \n", " [[114., 143., 121., 124.],\n", " [123., 138., 127., 114.],\n", " [120., 101., 114., 132.],\n", " [104., 126., 108., 140.]]],\n", " \n", " \n", " [[[122., 134., 120., 137.],\n", " [118., 129., 126., 111.],\n", " [124., 115., 139., 121.],\n", " [102., 130., 114., 126.]],\n", " \n", " [[122., 134., 120., 135.],\n", " [119., 129., 126., 111.],\n", " [124., 115., 138., 122.],\n", " [102., 129., 114., 127.]],\n", " \n", " [[121., 135., 121., 134.],\n", " [120., 130., 125., 111.],\n", " [123., 115., 136., 123.],\n", " [102., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 141., 121., 124.],\n", " [124., 137., 126., 113.],\n", " [121., 105., 117., 132.],\n", " [103., 127., 110., 137.]],\n", " \n", " [[115., 142., 121., 124.],\n", " [124., 137., 127., 114.],\n", " [121., 103., 116., 132.],\n", " [103., 127., 110., 139.]],\n", " \n", " [[114., 142., 120., 124.],\n", " [124., 138., 128., 114.],\n", " [121., 102., 114., 132.],\n", " [103., 127., 109., 140.]]],\n", " \n", " \n", " [[[123., 133., 120., 136.],\n", " [119., 129., 127., 112.],\n", " [125., 116., 139., 121.],\n", " [102., 130., 115., 126.]],\n", " \n", " [[122., 134., 120., 135.],\n", " [120., 129., 127., 112.],\n", " [124., 116., 138., 122.],\n", " [102., 130., 115., 127.]],\n", " \n", " [[122., 134., 121., 133.],\n", " [121., 129., 126., 112.],\n", " [124., 116., 136., 123.],\n", " [102., 130., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 141., 121., 124.],\n", " [125., 136., 127., 114.],\n", " [122., 106., 118., 132.],\n", " [103., 128., 111., 137.]],\n", " \n", " [[115., 141., 121., 124.],\n", " [125., 137., 127., 114.],\n", " [122., 104., 117., 132.],\n", " [103., 128., 111., 138.]],\n", " \n", " [[114., 142., 120., 124.],\n", " [124., 138., 128., 115.],\n", " [122., 103., 115., 132.],\n", " [103., 128., 110., 139.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[132., 131., 116., 129.],\n", " [126., 130., 139., 121.],\n", " [133., 121., 140., 125.],\n", " [108., 135., 126., 130.]],\n", " \n", " [[131., 131., 117., 128.],\n", " [127., 130., 138., 120.],\n", " [133., 121., 139., 126.],\n", " [108., 135., 126., 130.]],\n", " \n", " [[130., 132., 117., 127.],\n", " [128., 130., 137., 120.],\n", " [134., 121., 138., 126.],\n", " [107., 135., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 118., 123.],\n", " [131., 136., 134., 119.],\n", " [136., 113., 129., 128.],\n", " [102., 137., 124., 135.]],\n", " \n", " [[117., 136., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [136., 112., 128., 128.],\n", " [101., 137., 124., 136.]],\n", " \n", " [[116., 136., 118., 123.],\n", " [130., 137., 134., 120.],\n", " [136., 111., 128., 128.],\n", " [100., 137., 123., 137.]]],\n", " \n", " \n", " [[[132., 130., 116., 129.],\n", " [126., 130., 140., 121.],\n", " [134., 121., 140., 125.],\n", " [108., 136., 127., 131.]],\n", " \n", " [[132., 131., 116., 128.],\n", " [127., 130., 139., 121.],\n", " [134., 121., 139., 126.],\n", " [108., 136., 127., 131.]],\n", " \n", " [[131., 131., 117., 127.],\n", " [128., 130., 138., 120.],\n", " [134., 121., 138., 126.],\n", " [108., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [137., 114., 130., 128.],\n", " [102., 137., 125., 135.]],\n", " \n", " [[117., 136., 118., 123.],\n", " [131., 136., 135., 120.],\n", " [137., 113., 129., 128.],\n", " [101., 137., 125., 136.]],\n", " \n", " [[116., 136., 118., 123.],\n", " [130., 137., 135., 120.],\n", " [138., 111., 129., 127.],\n", " [100., 138., 124., 137.]]],\n", " \n", " \n", " [[[133., 130., 115., 129.],\n", " [126., 130., 141., 122.],\n", " [134., 121., 141., 125.],\n", " [109., 136., 127., 131.]],\n", " \n", " [[132., 130., 116., 128.],\n", " [127., 130., 140., 121.],\n", " [135., 121., 140., 125.],\n", " [109., 136., 127., 131.]],\n", " \n", " [[131., 131., 116., 127.],\n", " [128., 131., 140., 121.],\n", " [135., 121., 139., 126.],\n", " [108., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 118., 123.],\n", " [131., 136., 135., 120.],\n", " [138., 114., 131., 128.],\n", " [102., 138., 126., 136.]],\n", " \n", " [[117., 135., 117., 123.],\n", " [131., 137., 135., 120.],\n", " [138., 113., 130., 127.],\n", " [101., 138., 126., 137.]],\n", " \n", " [[116., 135., 117., 123.],\n", " [130., 137., 135., 121.],\n", " [139., 112., 130., 127.],\n", " [100., 138., 125., 137.]]]],\n", " \n", " \n", " \n", " [[[[122., 135., 120., 137.],\n", " [116., 130., 126., 111.],\n", " [123., 114., 139., 118.],\n", " [102., 129., 114., 126.]],\n", " \n", " [[122., 135., 121., 136.],\n", " [117., 130., 125., 110.],\n", " [123., 114., 137., 120.],\n", " [103., 129., 113., 127.]],\n", " \n", " [[121., 136., 121., 135.],\n", " [118., 131., 125., 110.],\n", " [122., 114., 135., 121.],\n", " [103., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[116., 143., 121., 124.],\n", " [123., 138., 127., 112.],\n", " [121., 104., 116., 130.],\n", " [105., 127., 110., 138.]],\n", " \n", " [[116., 143., 121., 124.],\n", " [123., 138., 127., 112.],\n", " [121., 102., 115., 130.],\n", " [105., 126., 109., 140.]],\n", " \n", " [[115., 144., 121., 124.],\n", " [122., 139., 128., 113.],\n", " [121., 101., 113., 130.],\n", " [105., 126., 109., 141.]]],\n", " \n", " \n", " [[[123., 135., 120., 137.],\n", " [117., 130., 126., 112.],\n", " [124., 115., 139., 119.],\n", " [103., 130., 115., 126.]],\n", " \n", " [[122., 135., 121., 135.],\n", " [118., 130., 126., 111.],\n", " [123., 115., 137., 120.],\n", " [103., 129., 114., 127.]],\n", " \n", " [[122., 136., 121., 134.],\n", " [119., 130., 126., 111.],\n", " [123., 115., 136., 121.],\n", " [103., 129., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[116., 142., 121., 124.],\n", " [124., 137., 127., 113.],\n", " [122., 105., 117., 130.],\n", " [104., 127., 111., 138.]],\n", " \n", " [[115., 143., 121., 124.],\n", " [124., 138., 128., 113.],\n", " [122., 103., 115., 130.],\n", " [104., 127., 110., 139.]],\n", " \n", " [[115., 143., 121., 124.],\n", " [123., 139., 128., 114.],\n", " [122., 102., 114., 130.],\n", " [105., 127., 110., 140.]]],\n", " \n", " \n", " [[[123., 134., 120., 136.],\n", " [118., 129., 127., 113.],\n", " [124., 115., 139., 120.],\n", " [103., 130., 116., 126.]],\n", " \n", " [[123., 135., 120., 135.],\n", " [119., 130., 127., 112.],\n", " [124., 116., 137., 121.],\n", " [103., 130., 115., 126.]],\n", " \n", " [[122., 136., 121., 133.],\n", " [120., 130., 127., 112.],\n", " [124., 115., 136., 122.],\n", " [103., 130., 115., 127.]],\n", " \n", " ...,\n", " \n", " [[116., 142., 121., 124.],\n", " [125., 137., 128., 113.],\n", " [123., 106., 118., 130.],\n", " [104., 128., 112., 137.]],\n", " \n", " [[115., 143., 121., 124.],\n", " [124., 138., 128., 114.],\n", " [123., 104., 116., 130.],\n", " [104., 128., 111., 138.]],\n", " \n", " [[115., 143., 121., 123.],\n", " [124., 139., 129., 114.],\n", " [124., 103., 115., 130.],\n", " [104., 128., 111., 140.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 131., 117., 129.],\n", " [125., 130., 139., 121.],\n", " [133., 121., 140., 123.],\n", " [109., 135., 126., 129.]],\n", " \n", " [[131., 132., 117., 128.],\n", " [126., 130., 138., 121.],\n", " [133., 121., 139., 124.],\n", " [109., 135., 126., 129.]],\n", " \n", " [[130., 132., 117., 127.],\n", " [127., 130., 137., 120.],\n", " [133., 121., 138., 125.],\n", " [108., 135., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 119., 122.],\n", " [131., 136., 134., 119.],\n", " [137., 113., 128., 127.],\n", " [102., 136., 124., 135.]],\n", " \n", " [[117., 137., 119., 122.],\n", " [131., 137., 134., 119.],\n", " [137., 112., 128., 126.],\n", " [102., 137., 124., 136.]],\n", " \n", " [[116., 137., 119., 122.],\n", " [130., 137., 134., 120.],\n", " [137., 111., 127., 126.],\n", " [101., 137., 123., 137.]]],\n", " \n", " \n", " [[[132., 131., 116., 129.],\n", " [125., 130., 140., 122.],\n", " [133., 121., 140., 123.],\n", " [109., 136., 126., 130.]],\n", " \n", " [[131., 131., 117., 128.],\n", " [127., 130., 139., 121.],\n", " [134., 121., 139., 124.],\n", " [109., 136., 126., 130.]],\n", " \n", " [[130., 132., 117., 127.],\n", " [128., 131., 138., 121.],\n", " [134., 121., 138., 125.],\n", " [109., 136., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 136., 119., 122.],\n", " [131., 136., 135., 119.],\n", " [138., 114., 129., 126.],\n", " [102., 137., 125., 135.]],\n", " \n", " [[117., 136., 118., 122.],\n", " [131., 137., 135., 120.],\n", " [138., 113., 129., 126.],\n", " [102., 137., 124., 136.]],\n", " \n", " [[116., 136., 118., 122.],\n", " [130., 137., 135., 120.],\n", " [138., 111., 128., 126.],\n", " [101., 138., 124., 137.]]],\n", " \n", " \n", " [[[133., 130., 116., 128.],\n", " [126., 130., 141., 123.],\n", " [134., 121., 140., 123.],\n", " [110., 136., 127., 131.]],\n", " \n", " [[132., 131., 116., 127.],\n", " [127., 131., 140., 122.],\n", " [134., 121., 139., 124.],\n", " [110., 136., 127., 131.]],\n", " \n", " [[131., 131., 117., 126.],\n", " [128., 131., 139., 121.],\n", " [134., 122., 138., 124.],\n", " [109., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 118., 122.],\n", " [131., 136., 135., 120.],\n", " [139., 114., 130., 126.],\n", " [102., 138., 126., 136.]],\n", " \n", " [[117., 136., 118., 122.],\n", " [131., 137., 135., 120.],\n", " [139., 113., 130., 126.],\n", " [102., 138., 125., 137.]],\n", " \n", " [[116., 136., 118., 122.],\n", " [130., 137., 136., 120.],\n", " [139., 112., 129., 125.],\n", " [101., 138., 125., 137.]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[130., 147., 121., 142.],\n", " [105., 146., 125., 115.],\n", " [117., 104., 137., 99.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[130., 148., 122., 140.],\n", " [107., 146., 125., 114.],\n", " [118., 104., 135., 100.],\n", " [115., 127., 117., 129.]],\n", " \n", " [[130., 148., 122., 138.],\n", " [108., 146., 125., 113.],\n", " [119., 104., 133., 101.],\n", " [115., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 155., 126., 125.],\n", " [117., 150., 134., 107.],\n", " [132., 99., 113., 106.],\n", " [118., 126., 113., 147.]],\n", " \n", " [[128., 155., 126., 125.],\n", " [117., 151., 135., 107.],\n", " [133., 98., 112., 106.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[128., 155., 126., 124.],\n", " [117., 151., 136., 107.],\n", " [134., 96., 110., 105.],\n", " [118., 126., 112., 150.]]],\n", " \n", " \n", " [[[130., 146., 121., 141.],\n", " [107., 145., 126., 116.],\n", " [117., 105., 137., 100.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[130., 147., 122., 139.],\n", " [108., 145., 126., 115.],\n", " [118., 105., 135., 101.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[130., 147., 122., 138.],\n", " [109., 146., 126., 115.],\n", " [119., 105., 134., 101.],\n", " [115., 127., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[127., 154., 126., 125.],\n", " [118., 149., 134., 108.],\n", " [132., 100., 114., 106.],\n", " [117., 126., 113., 146.]],\n", " \n", " [[127., 154., 126., 124.],\n", " [118., 150., 135., 108.],\n", " [134., 99., 113., 106.],\n", " [117., 126., 113., 147.]],\n", " \n", " [[127., 155., 126., 124.],\n", " [118., 151., 136., 108.],\n", " [135., 97., 111., 106.],\n", " [117., 126., 112., 149.]]],\n", " \n", " \n", " [[[130., 145., 121., 140.],\n", " [108., 145., 126., 117.],\n", " [117., 106., 137., 100.],\n", " [115., 128., 118., 127.]],\n", " \n", " [[130., 146., 122., 138.],\n", " [109., 145., 126., 117.],\n", " [118., 106., 135., 101.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[129., 147., 122., 137.],\n", " [110., 145., 126., 116.],\n", " [119., 107., 134., 102.],\n", " [116., 127., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[127., 153., 126., 124.],\n", " [119., 149., 134., 109.],\n", " [133., 101., 115., 106.],\n", " [117., 126., 113., 145.]],\n", " \n", " [[127., 153., 126., 124.],\n", " [119., 149., 135., 109.],\n", " [134., 100., 113., 106.],\n", " [117., 126., 113., 147.]],\n", " \n", " [[126., 154., 126., 123.],\n", " [119., 150., 136., 108.],\n", " [136., 98., 112., 106.],\n", " [117., 126., 113., 148.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 134., 121., 132.],\n", " [117., 138., 134., 132.],\n", " [121., 117., 139., 105.],\n", " [120., 131., 119., 128.]],\n", " \n", " [[130., 135., 121., 131.],\n", " [119., 138., 133., 131.],\n", " [122., 117., 137., 105.],\n", " [120., 131., 118., 128.]],\n", " \n", " [[129., 135., 122., 130.],\n", " [120., 138., 133., 129.],\n", " [123., 118., 136., 106.],\n", " [119., 131., 118., 129.]],\n", " \n", " ...,\n", " \n", " [[120., 141., 124., 121.],\n", " [128., 143., 135., 119.],\n", " [142., 112., 125., 105.],\n", " [114., 132., 117., 139.]],\n", " \n", " [[120., 141., 124., 120.],\n", " [128., 143., 136., 119.],\n", " [143., 111., 124., 105.],\n", " [113., 133., 116., 140.]],\n", " \n", " [[119., 141., 123., 120.],\n", " [128., 144., 137., 118.],\n", " [145., 110., 124., 105.],\n", " [113., 133., 116., 141.]]],\n", " \n", " \n", " [[[130., 133., 121., 132.],\n", " [117., 137., 135., 133.],\n", " [121., 118., 139., 105.],\n", " [121., 131., 119., 129.]],\n", " \n", " [[130., 134., 121., 131.],\n", " [119., 138., 134., 132.],\n", " [122., 118., 138., 105.],\n", " [120., 131., 119., 129.]],\n", " \n", " [[129., 134., 122., 129.],\n", " [120., 138., 134., 130.],\n", " [124., 118., 136., 106.],\n", " [120., 131., 118., 129.]],\n", " \n", " ...,\n", " \n", " [[120., 139., 123., 121.],\n", " [128., 143., 136., 120.],\n", " [143., 113., 126., 105.],\n", " [114., 133., 117., 139.]],\n", " \n", " [[119., 140., 123., 120.],\n", " [128., 143., 136., 119.],\n", " [144., 112., 125., 105.],\n", " [113., 133., 117., 140.]],\n", " \n", " [[119., 140., 123., 120.],\n", " [128., 144., 137., 119.],\n", " [146., 111., 125., 104.],\n", " [113., 133., 117., 141.]]],\n", " \n", " \n", " [[[130., 132., 121., 132.],\n", " [118., 137., 135., 134.],\n", " [121., 119., 139., 105.],\n", " [121., 131., 119., 129.]],\n", " \n", " [[130., 132., 121., 130.],\n", " [119., 137., 135., 133.],\n", " [123., 119., 138., 106.],\n", " [121., 131., 119., 129.]],\n", " \n", " [[129., 133., 122., 129.],\n", " [121., 137., 135., 131.],\n", " [124., 119., 137., 106.],\n", " [120., 131., 118., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 138., 123., 121.],\n", " [129., 142., 136., 121.],\n", " [143., 114., 127., 105.],\n", " [114., 133., 117., 139.]],\n", " \n", " [[119., 139., 123., 120.],\n", " [129., 143., 136., 120.],\n", " [145., 113., 126., 104.],\n", " [113., 134., 117., 140.]],\n", " \n", " [[118., 139., 123., 120.],\n", " [128., 144., 137., 120.],\n", " [146., 111., 126., 104.],\n", " [112., 134., 117., 141.]]]],\n", " \n", " \n", " \n", " [[[[131., 148., 121., 142.],\n", " [104., 148., 125., 115.],\n", " [116., 103., 137., 98.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[131., 148., 122., 141.],\n", " [106., 148., 125., 114.],\n", " [117., 103., 135., 98.],\n", " [116., 127., 116., 129.]],\n", " \n", " [[130., 149., 122., 139.],\n", " [107., 148., 125., 114.],\n", " [118., 103., 133., 99.],\n", " [116., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 155., 126., 126.],\n", " [116., 152., 134., 107.],\n", " [132., 98., 113., 104.],\n", " [119., 126., 113., 148.]],\n", " \n", " [[129., 156., 126., 125.],\n", " [116., 152., 135., 107.],\n", " [134., 97., 112., 103.],\n", " [119., 125., 112., 149.]],\n", " \n", " [[129., 156., 126., 125.],\n", " [117., 153., 137., 107.],\n", " [135., 96., 110., 103.],\n", " [119., 125., 112., 151.]]],\n", " \n", " \n", " [[[131., 147., 121., 142.],\n", " [106., 147., 125., 116.],\n", " [117., 104., 137., 98.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[130., 148., 122., 140.],\n", " [107., 147., 125., 116.],\n", " [117., 104., 135., 99.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[130., 148., 122., 138.],\n", " [108., 147., 126., 115.],\n", " [118., 104., 133., 100.],\n", " [116., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 154., 126., 125.],\n", " [117., 151., 134., 108.],\n", " [133., 99., 114., 104.],\n", " [118., 126., 113., 147.]],\n", " \n", " [[128., 155., 126., 124.],\n", " [118., 151., 135., 108.],\n", " [134., 98., 112., 104.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[128., 155., 126., 124.],\n", " [118., 152., 137., 108.],\n", " [136., 97., 111., 104.],\n", " [118., 126., 112., 150.]]],\n", " \n", " \n", " [[[130., 146., 122., 141.],\n", " [107., 146., 126., 118.],\n", " [117., 105., 137., 99.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[130., 147., 122., 139.],\n", " [108., 146., 126., 117.],\n", " [118., 105., 135., 100.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[130., 147., 122., 137.],\n", " [110., 146., 126., 116.],\n", " [119., 105., 134., 100.],\n", " [117., 127., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 153., 126., 125.],\n", " [119., 150., 134., 109.],\n", " [134., 100., 114., 104.],\n", " [118., 126., 113., 146.]],\n", " \n", " [[128., 154., 126., 124.],\n", " [119., 151., 135., 109.],\n", " [135., 99., 113., 104.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[127., 154., 126., 124.],\n", " [119., 151., 137., 108.],\n", " [136., 98., 112., 104.],\n", " [118., 126., 112., 149.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 134., 121., 133.],\n", " [116., 139., 133., 133.],\n", " [120., 117., 139., 103.],\n", " [121., 130., 118., 128.]],\n", " \n", " [[130., 135., 122., 132.],\n", " [118., 139., 133., 131.],\n", " [121., 117., 137., 104.],\n", " [121., 130., 117., 129.]],\n", " \n", " [[129., 135., 122., 130.],\n", " [119., 139., 133., 130.],\n", " [122., 117., 136., 104.],\n", " [120., 130., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[121., 141., 124., 121.],\n", " [128., 144., 135., 119.],\n", " [142., 112., 125., 104.],\n", " [115., 132., 116., 140.]],\n", " \n", " [[120., 141., 124., 121.],\n", " [128., 144., 136., 119.],\n", " [144., 111., 124., 103.],\n", " [114., 132., 116., 141.]],\n", " \n", " [[120., 142., 124., 121.],\n", " [128., 145., 137., 118.],\n", " [145., 109., 123., 103.],\n", " [114., 132., 115., 142.]]],\n", " \n", " \n", " [[[130., 133., 121., 133.],\n", " [117., 139., 134., 134.],\n", " [120., 117., 139., 104.],\n", " [122., 130., 118., 129.]],\n", " \n", " [[130., 134., 122., 131.],\n", " [118., 139., 134., 132.],\n", " [121., 118., 138., 104.],\n", " [121., 130., 117., 129.]],\n", " \n", " [[129., 134., 122., 130.],\n", " [120., 139., 133., 131.],\n", " [123., 118., 136., 104.],\n", " [121., 130., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[120., 140., 124., 121.],\n", " [128., 144., 136., 120.],\n", " [143., 113., 126., 103.],\n", " [115., 132., 116., 139.]],\n", " \n", " [[120., 140., 124., 121.],\n", " [128., 144., 136., 120.],\n", " [144., 111., 125., 103.],\n", " [114., 133., 116., 140.]],\n", " \n", " [[119., 140., 123., 121.],\n", " [128., 145., 137., 119.],\n", " [146., 110., 124., 102.],\n", " [114., 133., 116., 142.]]],\n", " \n", " \n", " [[[130., 132., 121., 132.],\n", " [117., 138., 135., 135.],\n", " [120., 118., 139., 104.],\n", " [122., 131., 118., 129.]],\n", " \n", " [[130., 132., 122., 131.],\n", " [118., 138., 134., 134.],\n", " [122., 118., 138., 104.],\n", " [122., 131., 117., 129.]],\n", " \n", " [[129., 133., 122., 130.],\n", " [120., 139., 134., 132.],\n", " [123., 119., 137., 104.],\n", " [121., 131., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 138., 123., 121.],\n", " [128., 143., 136., 121.],\n", " [143., 113., 127., 103.],\n", " [115., 133., 116., 139.]],\n", " \n", " [[119., 139., 123., 121.],\n", " [128., 144., 136., 120.],\n", " [145., 112., 126., 103.],\n", " [114., 133., 116., 140.]],\n", " \n", " [[119., 139., 123., 121.],\n", " [128., 145., 137., 120.],\n", " [147., 111., 125., 102.],\n", " [114., 134., 116., 141.]]]],\n", " \n", " \n", " \n", " [[[[131., 149., 122., 143.],\n", " [104., 150., 124., 115.],\n", " [116., 101., 137., 96.],\n", " [116., 126., 116., 129.]],\n", " \n", " [[131., 149., 122., 141.],\n", " [105., 150., 124., 115.],\n", " [117., 102., 135., 97.],\n", " [117., 126., 116., 130.]],\n", " \n", " [[131., 150., 123., 140.],\n", " [106., 150., 125., 114.],\n", " [118., 102., 133., 98.],\n", " [117., 126., 116., 131.]],\n", " \n", " ...,\n", " \n", " [[130., 156., 126., 126.],\n", " [116., 153., 134., 107.],\n", " [133., 97., 113., 102.],\n", " [120., 125., 112., 149.]],\n", " \n", " [[130., 156., 126., 126.],\n", " [116., 153., 136., 107.],\n", " [134., 96., 112., 101.],\n", " [120., 125., 112., 150.]],\n", " \n", " [[130., 157., 126., 125.],\n", " [116., 154., 137., 107.],\n", " [136., 95., 110., 101.],\n", " [120., 125., 112., 152.]]],\n", " \n", " \n", " [[[131., 148., 122., 142.],\n", " [105., 149., 125., 117.],\n", " [116., 103., 137., 97.],\n", " [117., 126., 117., 129.]],\n", " \n", " [[131., 148., 122., 141.],\n", " [106., 149., 125., 116.],\n", " [117., 103., 135., 97.],\n", " [117., 126., 116., 129.]],\n", " \n", " [[131., 149., 123., 139.],\n", " [108., 149., 125., 115.],\n", " [118., 103., 133., 98.],\n", " [117., 126., 116., 131.]],\n", " \n", " ...,\n", " \n", " [[130., 155., 126., 126.],\n", " [117., 152., 134., 108.],\n", " [134., 98., 114., 102.],\n", " [119., 126., 113., 148.]],\n", " \n", " [[129., 156., 126., 125.],\n", " [117., 153., 136., 108.],\n", " [135., 97., 112., 102.],\n", " [119., 126., 112., 150.]],\n", " \n", " [[129., 156., 126., 125.],\n", " [117., 153., 137., 107.],\n", " [136., 96., 111., 102.],\n", " [119., 126., 112., 151.]]],\n", " \n", " \n", " [[[131., 147., 122., 141.],\n", " [106., 148., 125., 118.],\n", " [116., 104., 137., 97.],\n", " [117., 127., 117., 128.]],\n", " \n", " [[131., 147., 122., 140.],\n", " [107., 148., 125., 117.],\n", " [117., 104., 135., 98.],\n", " [117., 126., 116., 129.]],\n", " \n", " [[131., 148., 123., 138.],\n", " [109., 148., 126., 117.],\n", " [118., 104., 133., 99.],\n", " [118., 126., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 154., 126., 125.],\n", " [118., 151., 134., 109.],\n", " [134., 99., 114., 102.],\n", " [119., 126., 113., 147.]],\n", " \n", " [[129., 155., 126., 125.],\n", " [118., 152., 136., 109.],\n", " [136., 98., 113., 102.],\n", " [119., 126., 112., 149.]],\n", " \n", " [[128., 155., 126., 124.],\n", " [118., 152., 137., 108.],\n", " [137., 97., 112., 102.],\n", " [119., 126., 112., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 134., 122., 134.],\n", " [116., 140., 133., 133.],\n", " [118., 116., 139., 102.],\n", " [122., 129., 117., 129.]],\n", " \n", " [[130., 135., 122., 132.],\n", " [117., 140., 132., 132.],\n", " [120., 116., 137., 102.],\n", " [122., 129., 116., 129.]],\n", " \n", " [[129., 135., 122., 131.],\n", " [118., 141., 132., 131.],\n", " [121., 116., 136., 102.],\n", " [121., 129., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[121., 141., 124., 121.],\n", " [127., 145., 135., 120.],\n", " [142., 111., 124., 102.],\n", " [116., 131., 115., 140.]],\n", " \n", " [[121., 141., 124., 121.],\n", " [127., 145., 136., 119.],\n", " [144., 110., 124., 101.],\n", " [115., 131., 115., 141.]],\n", " \n", " [[120., 142., 124., 121.],\n", " [127., 146., 137., 118.],\n", " [145., 109., 123., 101.],\n", " [115., 132., 114., 143.]]],\n", " \n", " \n", " [[[130., 133., 122., 133.],\n", " [116., 140., 133., 134.],\n", " [119., 117., 139., 102.],\n", " [122., 130., 117., 129.]],\n", " \n", " [[130., 133., 122., 132.],\n", " [117., 140., 133., 133.],\n", " [120., 117., 138., 102.],\n", " [122., 130., 116., 129.]],\n", " \n", " [[129., 134., 122., 131.],\n", " [119., 140., 133., 132.],\n", " [122., 117., 136., 103.],\n", " [122., 130., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[121., 140., 124., 121.],\n", " [128., 145., 135., 121.],\n", " [143., 112., 125., 102.],\n", " [116., 132., 115., 140.]],\n", " \n", " [[120., 140., 124., 121.],\n", " [128., 145., 136., 120.],\n", " [145., 111., 125., 101.],\n", " [115., 132., 115., 141.]],\n", " \n", " [[120., 140., 124., 121.],\n", " [128., 146., 137., 119.],\n", " [146., 110., 124., 101.],\n", " [115., 132., 115., 142.]]],\n", " \n", " \n", " [[[130., 132., 121., 133.],\n", " [116., 140., 134., 136.],\n", " [119., 117., 139., 102.],\n", " [123., 130., 117., 129.]],\n", " \n", " [[129., 132., 122., 132.],\n", " [118., 140., 134., 134.],\n", " [121., 118., 138., 102.],\n", " [123., 130., 116., 130.]],\n", " \n", " [[129., 133., 122., 130.],\n", " [119., 140., 133., 133.],\n", " [122., 118., 137., 103.],\n", " [122., 130., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 138., 124., 121.],\n", " [128., 144., 136., 121.],\n", " [144., 113., 126., 101.],\n", " [116., 132., 115., 140.]],\n", " \n", " [[120., 139., 123., 121.],\n", " [128., 145., 136., 121.],\n", " [145., 112., 126., 101.],\n", " [115., 133., 115., 141.]],\n", " \n", " [[119., 139., 123., 121.],\n", " [128., 146., 137., 120.],\n", " [147., 111., 125., 100.],\n", " [115., 133., 115., 142.]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[122., 132., 122., 137.],\n", " [118., 128., 125., 111.],\n", " [123., 115., 139., 123.],\n", " [100., 129., 112., 127.]],\n", " \n", " [[121., 133., 123., 136.],\n", " [119., 129., 124., 111.],\n", " [122., 115., 137., 124.],\n", " [100., 129., 112., 127.]],\n", " \n", " [[121., 133., 123., 134.],\n", " [120., 129., 124., 111.],\n", " [122., 115., 135., 126.],\n", " [100., 129., 111., 128.]],\n", " \n", " ...,\n", " \n", " [[115., 139., 122., 125.],\n", " [124., 136., 124., 115.],\n", " [118., 105., 117., 135.],\n", " [102., 126., 107., 138.]],\n", " \n", " [[115., 140., 122., 125.],\n", " [124., 136., 125., 116.],\n", " [118., 103., 115., 135.],\n", " [102., 126., 107., 139.]],\n", " \n", " [[114., 140., 122., 124.],\n", " [124., 137., 125., 116.],\n", " [118., 102., 114., 136.],\n", " [102., 126., 107., 140.]]],\n", " \n", " \n", " [[[122., 132., 122., 136.],\n", " [119., 128., 125., 112.],\n", " [124., 116., 139., 124.],\n", " [100., 130., 113., 127.]],\n", " \n", " [[122., 132., 122., 135.],\n", " [120., 128., 125., 112.],\n", " [123., 116., 137., 125.],\n", " [100., 129., 113., 127.]],\n", " \n", " [[121., 133., 122., 134.],\n", " [121., 129., 125., 112.],\n", " [123., 116., 136., 126.],\n", " [100., 129., 112., 128.]],\n", " \n", " ...,\n", " \n", " [[115., 139., 122., 125.],\n", " [125., 135., 125., 116.],\n", " [119., 106., 117., 135.],\n", " [102., 127., 109., 137.]],\n", " \n", " [[115., 139., 122., 124.],\n", " [125., 136., 125., 116.],\n", " [119., 104., 116., 135.],\n", " [102., 127., 108., 139.]],\n", " \n", " [[114., 140., 122., 124.],\n", " [125., 137., 126., 117.],\n", " [119., 103., 115., 136.],\n", " [102., 127., 108., 140.]]],\n", " \n", " \n", " [[[123., 132., 122., 136.],\n", " [120., 128., 126., 113.],\n", " [125., 116., 139., 124.],\n", " [101., 130., 114., 127.]],\n", " \n", " [[122., 132., 122., 134.],\n", " [121., 128., 126., 113.],\n", " [124., 116., 137., 126.],\n", " [101., 130., 114., 127.]],\n", " \n", " [[122., 133., 122., 133.],\n", " [122., 129., 125., 113.],\n", " [124., 116., 136., 127.],\n", " [101., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[115., 139., 122., 124.],\n", " [126., 135., 125., 116.],\n", " [120., 106., 118., 135.],\n", " [102., 128., 110., 137.]],\n", " \n", " [[115., 139., 122., 124.],\n", " [126., 136., 126., 117.],\n", " [120., 105., 117., 135.],\n", " [102., 127., 109., 138.]],\n", " \n", " [[114., 140., 121., 124.],\n", " [126., 137., 126., 118.],\n", " [120., 103., 116., 135.],\n", " [102., 127., 109., 139.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[132., 130., 117., 130.],\n", " [126., 129., 139., 121.],\n", " [133., 121., 140., 128.],\n", " [107., 136., 126., 131.]],\n", " \n", " [[131., 130., 118., 129.],\n", " [127., 130., 138., 121.],\n", " [133., 121., 139., 129.],\n", " [107., 136., 126., 131.]],\n", " \n", " [[130., 130., 118., 128.],\n", " [128., 130., 137., 120.],\n", " [133., 121., 138., 129.],\n", " [106., 135., 126., 131.]],\n", " \n", " ...,\n", " \n", " [[118., 134., 119., 123.],\n", " [132., 135., 133., 121.],\n", " [134., 114., 129., 131.],\n", " [101., 136., 124., 136.]],\n", " \n", " [[117., 135., 119., 123.],\n", " [132., 136., 133., 122.],\n", " [134., 112., 129., 131.],\n", " [100., 136., 123., 136.]],\n", " \n", " [[116., 135., 119., 124.],\n", " [131., 136., 133., 122.],\n", " [135., 111., 128., 131.],\n", " [100., 136., 123., 137.]]],\n", " \n", " \n", " [[[133., 129., 117., 129.],\n", " [126., 130., 140., 122.],\n", " [134., 121., 141., 128.],\n", " [108., 136., 126., 131.]],\n", " \n", " [[132., 130., 117., 128.],\n", " [127., 130., 139., 121.],\n", " [134., 121., 140., 129.],\n", " [107., 136., 126., 131.]],\n", " \n", " [[131., 130., 118., 127.],\n", " [128., 130., 138., 121.],\n", " [134., 121., 139., 129.],\n", " [107., 136., 126., 131.]],\n", " \n", " ...,\n", " \n", " [[119., 134., 119., 123.],\n", " [132., 135., 134., 122.],\n", " [135., 114., 130., 131.],\n", " [101., 137., 125., 136.]],\n", " \n", " [[118., 134., 119., 124.],\n", " [132., 136., 134., 122.],\n", " [135., 113., 130., 131.],\n", " [101., 137., 124., 137.]],\n", " \n", " [[117., 134., 118., 124.],\n", " [131., 136., 134., 123.],\n", " [136., 112., 129., 131.],\n", " [100., 137., 124., 137.]]],\n", " \n", " \n", " [[[134., 129., 116., 129.],\n", " [126., 130., 141., 122.],\n", " [134., 121., 141., 128.],\n", " [108., 137., 127., 132.]],\n", " \n", " [[133., 129., 117., 128.],\n", " [128., 130., 140., 122.],\n", " [134., 121., 140., 129.],\n", " [108., 137., 127., 132.]],\n", " \n", " [[132., 130., 117., 127.],\n", " [129., 130., 139., 121.],\n", " [134., 122., 139., 129.],\n", " [108., 137., 127., 132.]],\n", " \n", " ...,\n", " \n", " [[119., 133., 119., 123.],\n", " [132., 135., 135., 122.],\n", " [136., 115., 131., 131.],\n", " [101., 137., 126., 136.]],\n", " \n", " [[118., 134., 118., 124.],\n", " [132., 136., 135., 122.],\n", " [136., 113., 131., 130.],\n", " [101., 138., 125., 137.]],\n", " \n", " [[117., 134., 118., 124.],\n", " [131., 136., 135., 123.],\n", " [137., 112., 131., 130.],\n", " [100., 138., 125., 138.]]]],\n", " \n", " \n", " \n", " [[[[122., 133., 122., 137.],\n", " [117., 129., 125., 112.],\n", " [123., 115., 139., 122.],\n", " [101., 129., 113., 127.]],\n", " \n", " [[121., 134., 123., 136.],\n", " [118., 129., 125., 112.],\n", " [122., 115., 137., 123.],\n", " [101., 129., 112., 127.]],\n", " \n", " [[121., 134., 123., 134.],\n", " [119., 130., 124., 112.],\n", " [122., 115., 135., 124.],\n", " [101., 129., 112., 128.]],\n", " \n", " ...,\n", " \n", " [[116., 140., 123., 125.],\n", " [124., 136., 125., 115.],\n", " [119., 105., 116., 133.],\n", " [103., 126., 108., 138.]],\n", " \n", " [[115., 141., 122., 124.],\n", " [124., 137., 126., 115.],\n", " [119., 103., 115., 134.],\n", " [103., 126., 108., 140.]],\n", " \n", " [[115., 141., 122., 124.],\n", " [124., 138., 126., 116.],\n", " [119., 102., 114., 134.],\n", " [103., 126., 108., 141.]]],\n", " \n", " \n", " [[[122., 133., 122., 136.],\n", " [118., 129., 126., 113.],\n", " [123., 116., 139., 122.],\n", " [101., 130., 114., 127.]],\n", " \n", " [[122., 134., 122., 135.],\n", " [119., 129., 125., 113.],\n", " [123., 116., 137., 124.],\n", " [101., 129., 113., 127.]],\n", " \n", " [[122., 134., 123., 134.],\n", " [120., 129., 125., 112.],\n", " [123., 116., 136., 125.],\n", " [101., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[116., 140., 123., 124.],\n", " [125., 136., 126., 115.],\n", " [120., 106., 117., 133.],\n", " [103., 127., 109., 138.]],\n", " \n", " [[115., 141., 122., 124.],\n", " [125., 137., 126., 116.],\n", " [120., 104., 116., 133.],\n", " [103., 127., 109., 139.]],\n", " \n", " [[115., 141., 122., 124.],\n", " [125., 138., 127., 116.],\n", " [120., 103., 115., 134.],\n", " [103., 127., 109., 140.]]],\n", " \n", " \n", " [[[123., 133., 122., 136.],\n", " [119., 129., 127., 114.],\n", " [124., 116., 139., 123.],\n", " [102., 130., 115., 126.]],\n", " \n", " [[123., 134., 122., 134.],\n", " [120., 129., 126., 113.],\n", " [124., 116., 137., 124.],\n", " [102., 130., 115., 127.]],\n", " \n", " [[122., 134., 122., 133.],\n", " [121., 129., 126., 113.],\n", " [123., 116., 136., 125.],\n", " [102., 130., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[116., 140., 122., 124.],\n", " [126., 136., 126., 116.],\n", " [121., 106., 118., 133.],\n", " [103., 128., 111., 137.]],\n", " \n", " [[115., 140., 122., 124.],\n", " [126., 137., 127., 116.],\n", " [121., 105., 117., 133.],\n", " [103., 128., 110., 138.]],\n", " \n", " [[115., 141., 122., 124.],\n", " [125., 137., 127., 117.],\n", " [121., 103., 115., 134.],\n", " [103., 127., 110., 140.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[132., 130., 118., 129.],\n", " [126., 129., 139., 122.],\n", " [132., 121., 140., 127.],\n", " [108., 135., 126., 130.]],\n", " \n", " [[131., 131., 118., 128.],\n", " [127., 130., 138., 121.],\n", " [133., 121., 139., 127.],\n", " [108., 135., 126., 130.]],\n", " \n", " [[130., 131., 119., 127.],\n", " [128., 130., 137., 121.],\n", " [133., 121., 138., 128.],\n", " [107., 135., 125., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 120., 123.],\n", " [132., 135., 133., 121.],\n", " [135., 114., 129., 130.],\n", " [102., 136., 124., 135.]],\n", " \n", " [[117., 135., 120., 123.],\n", " [131., 136., 134., 121.],\n", " [135., 113., 128., 130.],\n", " [101., 136., 123., 136.]],\n", " \n", " [[116., 135., 119., 123.],\n", " [131., 137., 134., 122.],\n", " [136., 111., 128., 129.],\n", " [101., 136., 123., 137.]]],\n", " \n", " \n", " [[[133., 130., 117., 129.],\n", " [126., 130., 140., 122.],\n", " [133., 121., 140., 127.],\n", " [109., 136., 126., 131.]],\n", " \n", " [[132., 130., 118., 128.],\n", " [127., 130., 139., 122.],\n", " [133., 121., 139., 127.],\n", " [108., 136., 126., 131.]],\n", " \n", " [[131., 131., 118., 127.],\n", " [128., 130., 138., 122.],\n", " [133., 121., 138., 128.],\n", " [108., 136., 126., 131.]],\n", " \n", " ...,\n", " \n", " [[119., 134., 119., 123.],\n", " [132., 135., 134., 121.],\n", " [136., 114., 130., 129.],\n", " [102., 137., 125., 136.]],\n", " \n", " [[118., 135., 119., 123.],\n", " [132., 136., 134., 122.],\n", " [136., 113., 129., 129.],\n", " [101., 137., 124., 137.]],\n", " \n", " [[117., 135., 119., 123.],\n", " [131., 137., 135., 122.],\n", " [137., 112., 129., 129.],\n", " [101., 137., 124., 137.]]],\n", " \n", " \n", " [[[134., 130., 117., 129.],\n", " [126., 130., 141., 123.],\n", " [133., 121., 140., 126.],\n", " [109., 137., 127., 132.]],\n", " \n", " [[133., 130., 117., 128.],\n", " [127., 130., 140., 122.],\n", " [134., 122., 139., 127.],\n", " [109., 136., 127., 132.]],\n", " \n", " [[132., 130., 118., 127.],\n", " [128., 130., 139., 122.],\n", " [134., 122., 139., 128.],\n", " [109., 136., 127., 132.]],\n", " \n", " ...,\n", " \n", " [[119., 134., 119., 123.],\n", " [132., 136., 135., 122.],\n", " [137., 115., 131., 129.],\n", " [102., 137., 126., 136.]],\n", " \n", " [[118., 134., 119., 123.],\n", " [132., 136., 135., 122.],\n", " [137., 114., 130., 129.],\n", " [101., 138., 125., 137.]],\n", " \n", " [[117., 134., 119., 123.],\n", " [131., 137., 135., 122.],\n", " [138., 112., 130., 128.],\n", " [101., 138., 125., 138.]]]],\n", " \n", " \n", " \n", " [[[[122., 135., 122., 137.],\n", " [116., 130., 125., 112.],\n", " [122., 115., 139., 120.],\n", " [102., 130., 113., 127.]],\n", " \n", " [[122., 135., 123., 135.],\n", " [117., 130., 125., 112.],\n", " [122., 115., 137., 121.],\n", " [102., 129., 113., 127.]],\n", " \n", " [[122., 136., 123., 134.],\n", " [118., 131., 125., 112.],\n", " [122., 115., 135., 122.],\n", " [102., 129., 113., 127.]],\n", " \n", " ...,\n", " \n", " [[117., 142., 123., 124.],\n", " [124., 137., 126., 114.],\n", " [120., 105., 116., 131.],\n", " [104., 126., 109., 139.]],\n", " \n", " [[116., 142., 123., 124.],\n", " [123., 138., 127., 114.],\n", " [120., 103., 115., 132.],\n", " [104., 126., 109., 140.]],\n", " \n", " [[116., 143., 123., 124.],\n", " [123., 139., 128., 115.],\n", " [120., 102., 113., 132.],\n", " [104., 126., 108., 141.]]],\n", " \n", " \n", " [[[123., 134., 122., 136.],\n", " [117., 130., 126., 113.],\n", " [123., 115., 139., 121.],\n", " [102., 130., 115., 126.]],\n", " \n", " [[122., 135., 123., 135.],\n", " [118., 130., 126., 113.],\n", " [123., 115., 137., 122.],\n", " [102., 130., 114., 127.]],\n", " \n", " [[122., 135., 123., 133.],\n", " [119., 130., 125., 113.],\n", " [123., 115., 135., 123.],\n", " [103., 129., 114., 127.]],\n", " \n", " ...,\n", " \n", " [[117., 141., 123., 124.],\n", " [124., 137., 127., 114.],\n", " [121., 106., 117., 131.],\n", " [104., 127., 110., 138.]],\n", " \n", " [[116., 142., 123., 124.],\n", " [124., 138., 127., 115.],\n", " [121., 104., 115., 132.],\n", " [104., 127., 110., 139.]],\n", " \n", " [[116., 142., 123., 123.],\n", " [124., 138., 128., 115.],\n", " [122., 103., 114., 132.],\n", " [104., 127., 109., 141.]]],\n", " \n", " \n", " [[[123., 134., 122., 136.],\n", " [118., 129., 127., 114.],\n", " [124., 116., 139., 121.],\n", " [103., 130., 116., 126.]],\n", " \n", " [[123., 135., 122., 134.],\n", " [119., 130., 127., 114.],\n", " [124., 116., 137., 122.],\n", " [103., 130., 115., 127.]],\n", " \n", " [[122., 135., 123., 133.],\n", " [120., 130., 126., 114.],\n", " [123., 116., 136., 124.],\n", " [103., 130., 115., 127.]],\n", " \n", " ...,\n", " \n", " [[116., 141., 123., 124.],\n", " [125., 137., 127., 115.],\n", " [122., 106., 118., 131.],\n", " [104., 128., 111., 137.]],\n", " \n", " [[116., 141., 123., 123.],\n", " [125., 137., 128., 116.],\n", " [123., 105., 116., 131.],\n", " [104., 128., 111., 139.]],\n", " \n", " [[115., 142., 122., 123.],\n", " [125., 138., 128., 116.],\n", " [123., 103., 115., 132.],\n", " [104., 127., 111., 140.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[132., 131., 118., 129.],\n", " [125., 130., 139., 123.],\n", " [132., 121., 140., 125.],\n", " [109., 135., 126., 130.]],\n", " \n", " [[131., 131., 119., 128.],\n", " [126., 130., 138., 122.],\n", " [132., 121., 139., 126.],\n", " [109., 135., 125., 130.]],\n", " \n", " [[130., 132., 119., 127.],\n", " [127., 130., 137., 122.],\n", " [132., 121., 138., 126.],\n", " [108., 135., 125., 130.]],\n", " \n", " ...,\n", " \n", " [[118., 135., 120., 122.],\n", " [132., 136., 134., 121.],\n", " [136., 114., 128., 128.],\n", " [103., 136., 123., 135.]],\n", " \n", " [[117., 136., 120., 122.],\n", " [131., 136., 134., 121.],\n", " [136., 113., 128., 128.],\n", " [102., 136., 123., 136.]],\n", " \n", " [[116., 136., 120., 123.],\n", " [131., 137., 134., 121.],\n", " [136., 111., 128., 127.],\n", " [101., 136., 123., 137.]]],\n", " \n", " \n", " [[[133., 131., 118., 129.],\n", " [125., 130., 140., 123.],\n", " [132., 121., 140., 125.],\n", " [110., 136., 126., 130.]],\n", " \n", " [[132., 131., 118., 128.],\n", " [126., 130., 139., 123.],\n", " [133., 121., 139., 126.],\n", " [109., 136., 126., 130.]],\n", " \n", " [[131., 131., 119., 127.],\n", " [127., 130., 138., 122.],\n", " [133., 122., 138., 126.],\n", " [109., 136., 126., 130.]],\n", " \n", " ...,\n", " \n", " [[119., 135., 120., 122.],\n", " [132., 136., 134., 121.],\n", " [137., 115., 129., 128.],\n", " [103., 137., 124., 136.]],\n", " \n", " [[118., 135., 120., 123.],\n", " [131., 136., 135., 121.],\n", " [137., 113., 129., 127.],\n", " [102., 137., 124., 136.]],\n", " \n", " [[117., 135., 120., 123.],\n", " [131., 137., 135., 122.],\n", " [138., 112., 129., 127.],\n", " [101., 137., 124., 137.]]],\n", " \n", " \n", " [[[133., 130., 117., 129.],\n", " [125., 130., 141., 124.],\n", " [133., 122., 140., 125.],\n", " [110., 136., 127., 131.]],\n", " \n", " [[132., 130., 118., 128.],\n", " [126., 130., 140., 123.],\n", " [133., 122., 139., 126.],\n", " [110., 136., 127., 131.]],\n", " \n", " [[131., 131., 118., 127.],\n", " [128., 131., 139., 123.],\n", " [133., 122., 138., 126.],\n", " [110., 136., 127., 131.]],\n", " \n", " ...,\n", " \n", " [[119., 134., 120., 122.],\n", " [132., 136., 135., 121.],\n", " [138., 115., 131., 127.],\n", " [103., 137., 125., 136.]],\n", " \n", " [[118., 134., 119., 123.],\n", " [131., 136., 135., 122.],\n", " [138., 114., 130., 127.],\n", " [102., 137., 125., 137.]],\n", " \n", " [[117., 135., 119., 123.],\n", " [131., 137., 136., 122.],\n", " [139., 113., 130., 127.],\n", " [101., 138., 125., 138.]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[130., 147., 123., 141.],\n", " [105., 145., 125., 116.],\n", " [116., 105., 137., 101.],\n", " [115., 127., 117., 128.]],\n", " \n", " [[130., 147., 124., 140.],\n", " [107., 145., 125., 115.],\n", " [117., 105., 135., 102.],\n", " [115., 127., 117., 129.]],\n", " \n", " [[130., 148., 124., 138.],\n", " [108., 146., 126., 115.],\n", " [118., 105., 133., 102.],\n", " [115., 127., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 154., 127., 125.],\n", " [118., 149., 134., 109.],\n", " [131., 100., 113., 107.],\n", " [118., 126., 113., 147.]],\n", " \n", " [[128., 154., 127., 124.],\n", " [118., 150., 135., 109.],\n", " [132., 99., 112., 107.],\n", " [118., 125., 113., 148.]],\n", " \n", " [[128., 154., 127., 124.],\n", " [118., 150., 136., 109.],\n", " [134., 97., 110., 107.],\n", " [118., 125., 112., 150.]]],\n", " \n", " \n", " [[[130., 146., 123., 140.],\n", " [107., 145., 126., 117.],\n", " [117., 106., 137., 101.],\n", " [115., 128., 117., 128.]],\n", " \n", " [[130., 147., 124., 139.],\n", " [108., 145., 126., 117.],\n", " [117., 106., 135., 102.],\n", " [115., 127., 117., 129.]],\n", " \n", " [[130., 147., 124., 137.],\n", " [109., 145., 126., 116.],\n", " [118., 106., 133., 103.],\n", " [116., 127., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[128., 153., 127., 124.],\n", " [119., 149., 134., 110.],\n", " [132., 101., 114., 107.],\n", " [117., 126., 113., 146.]],\n", " \n", " [[127., 153., 127., 124.],\n", " [119., 149., 135., 110.],\n", " [133., 100., 113., 107.],\n", " [117., 126., 113., 147.]],\n", " \n", " [[127., 154., 127., 123.],\n", " [119., 150., 136., 109.],\n", " [134., 98., 111., 107.],\n", " [117., 126., 112., 149.]]],\n", " \n", " \n", " [[[130., 145., 123., 140.],\n", " [108., 144., 126., 119.],\n", " [117., 107., 137., 102.],\n", " [115., 128., 118., 127.]],\n", " \n", " [[130., 146., 124., 138.],\n", " [109., 144., 126., 118.],\n", " [118., 107., 135., 103.],\n", " [115., 128., 117., 128.]],\n", " \n", " [[130., 146., 124., 136.],\n", " [110., 144., 127., 117.],\n", " [119., 108., 134., 103.],\n", " [116., 128., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[127., 152., 127., 124.],\n", " [120., 148., 134., 111.],\n", " [132., 102., 115., 107.],\n", " [117., 126., 113., 145.]],\n", " \n", " [[127., 152., 127., 123.],\n", " [120., 148., 135., 110.],\n", " [134., 101., 113., 107.],\n", " [117., 126., 113., 147.]],\n", " \n", " [[127., 153., 127., 123.],\n", " [120., 149., 136., 110.],\n", " [135., 100., 112., 107.],\n", " [117., 126., 113., 148.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 134., 123., 133.],\n", " [117., 137., 134., 133.],\n", " [120., 118., 138., 106.],\n", " [121., 131., 119., 128.]],\n", " \n", " [[130., 134., 123., 131.],\n", " [118., 137., 134., 132.],\n", " [121., 118., 137., 107.],\n", " [121., 131., 119., 128.]],\n", " \n", " [[129., 135., 123., 130.],\n", " [120., 137., 133., 131.],\n", " [123., 119., 136., 107.],\n", " [120., 131., 118., 129.]],\n", " \n", " ...,\n", " \n", " [[121., 139., 125., 121.],\n", " [129., 142., 136., 121.],\n", " [141., 113., 125., 107.],\n", " [114., 132., 117., 139.]],\n", " \n", " [[120., 140., 125., 121.],\n", " [129., 143., 136., 120.],\n", " [143., 112., 124., 106.],\n", " [114., 132., 116., 140.]],\n", " \n", " [[120., 140., 125., 121.],\n", " [129., 143., 137., 120.],\n", " [144., 111., 124., 106.],\n", " [113., 132., 116., 141.]]],\n", " \n", " \n", " [[[130., 133., 122., 132.],\n", " [117., 137., 135., 134.],\n", " [120., 119., 139., 106.],\n", " [121., 131., 119., 128.]],\n", " \n", " [[130., 133., 123., 131.],\n", " [119., 137., 135., 133.],\n", " [122., 119., 137., 107.],\n", " [121., 131., 119., 129.]],\n", " \n", " [[129., 133., 123., 130.],\n", " [120., 137., 134., 132.],\n", " [123., 119., 136., 107.],\n", " [121., 131., 118., 129.]],\n", " \n", " ...,\n", " \n", " [[120., 138., 125., 121.],\n", " [129., 142., 136., 122.],\n", " [142., 114., 126., 106.],\n", " [114., 133., 117., 139.]],\n", " \n", " [[120., 138., 124., 121.],\n", " [129., 142., 136., 121.],\n", " [144., 113., 125., 106.],\n", " [114., 133., 117., 140.]],\n", " \n", " [[119., 139., 124., 121.],\n", " [129., 143., 137., 121.],\n", " [145., 112., 125., 105.],\n", " [113., 133., 117., 141.]]],\n", " \n", " \n", " [[[131., 131., 122., 132.],\n", " [117., 136., 136., 135.],\n", " [121., 119., 139., 107.],\n", " [122., 131., 119., 129.]],\n", " \n", " [[130., 132., 123., 131.],\n", " [119., 137., 135., 134.],\n", " [122., 120., 138., 107.],\n", " [122., 131., 119., 129.]],\n", " \n", " [[129., 132., 123., 129.],\n", " [120., 137., 135., 133.],\n", " [124., 120., 137., 107.],\n", " [121., 131., 118., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 137., 124., 121.],\n", " [129., 142., 136., 122.],\n", " [143., 115., 127., 106.],\n", " [114., 133., 117., 139.]],\n", " \n", " [[119., 137., 124., 121.],\n", " [129., 142., 137., 122.],\n", " [144., 114., 126., 106.],\n", " [114., 133., 117., 140.]],\n", " \n", " [[119., 137., 124., 121.],\n", " [129., 143., 137., 121.],\n", " [146., 113., 126., 105.],\n", " [113., 134., 117., 141.]]]],\n", " \n", " \n", " \n", " [[[[131., 148., 123., 142.],\n", " [104., 147., 125., 116.],\n", " [116., 104., 137., 99.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[131., 148., 124., 140.],\n", " [106., 147., 125., 116.],\n", " [117., 104., 135., 100.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[131., 149., 124., 139.],\n", " [107., 147., 125., 115.],\n", " [118., 104., 133., 101.],\n", " [116., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 154., 127., 125.],\n", " [117., 151., 134., 109.],\n", " [132., 99., 113., 105.],\n", " [119., 125., 113., 148.]],\n", " \n", " [[129., 155., 128., 125.],\n", " [117., 151., 135., 109.],\n", " [133., 98., 112., 105.],\n", " [119., 125., 112., 149.]],\n", " \n", " [[129., 155., 128., 124.],\n", " [117., 152., 137., 108.],\n", " [134., 97., 110., 105.],\n", " [119., 125., 112., 151.]]],\n", " \n", " \n", " [[[131., 147., 123., 141.],\n", " [106., 146., 125., 118.],\n", " [116., 105., 137., 100.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[131., 147., 124., 139.],\n", " [107., 146., 126., 117.],\n", " [117., 105., 135., 101.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[131., 148., 124., 138.],\n", " [108., 146., 126., 117.],\n", " [118., 105., 133., 101.],\n", " [117., 127., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 153., 127., 125.],\n", " [118., 150., 134., 110.],\n", " [132., 100., 114., 105.],\n", " [118., 126., 113., 147.]],\n", " \n", " [[129., 154., 127., 124.],\n", " [118., 150., 136., 110.],\n", " [134., 99., 112., 105.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[128., 154., 127., 124.],\n", " [118., 151., 137., 109.],\n", " [135., 98., 111., 105.],\n", " [118., 125., 112., 150.]]],\n", " \n", " \n", " [[[131., 146., 123., 140.],\n", " [107., 146., 126., 119.],\n", " [116., 106., 137., 100.],\n", " [116., 127., 117., 128.]],\n", " \n", " [[131., 146., 124., 139.],\n", " [108., 146., 126., 119.],\n", " [117., 106., 135., 101.],\n", " [116., 127., 117., 129.]],\n", " \n", " [[130., 147., 124., 137.],\n", " [110., 146., 126., 118.],\n", " [118., 106., 133., 102.],\n", " [117., 127., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[128., 152., 127., 124.],\n", " [119., 149., 135., 111.],\n", " [133., 101., 114., 105.],\n", " [118., 126., 113., 146.]],\n", " \n", " [[128., 153., 127., 124.],\n", " [119., 150., 136., 110.],\n", " [134., 100., 113., 105.],\n", " [118., 126., 113., 148.]],\n", " \n", " [[128., 153., 127., 124.],\n", " [120., 150., 137., 110.],\n", " [136., 99., 112., 105.],\n", " [118., 126., 112., 149.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 134., 123., 133.],\n", " [116., 138., 134., 134.],\n", " [119., 117., 138., 105.],\n", " [122., 130., 118., 128.]],\n", " \n", " [[130., 134., 123., 132.],\n", " [118., 138., 133., 133.],\n", " [120., 118., 137., 105.],\n", " [122., 130., 118., 129.]],\n", " \n", " [[129., 135., 124., 131.],\n", " [119., 138., 133., 132.],\n", " [122., 118., 136., 105.],\n", " [121., 130., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[121., 139., 125., 121.],\n", " [128., 143., 136., 121.],\n", " [141., 113., 125., 105.],\n", " [116., 131., 116., 140.]],\n", " \n", " [[121., 140., 125., 121.],\n", " [128., 144., 136., 120.],\n", " [143., 112., 124., 104.],\n", " [115., 132., 116., 141.]],\n", " \n", " [[120., 140., 125., 121.],\n", " [128., 144., 137., 120.],\n", " [145., 111., 124., 104.],\n", " [114., 132., 115., 142.]]],\n", " \n", " \n", " [[[130., 132., 123., 133.],\n", " [116., 138., 134., 135.],\n", " [119., 118., 139., 105.],\n", " [122., 131., 118., 129.]],\n", " \n", " [[130., 133., 123., 132.],\n", " [118., 138., 134., 134.],\n", " [121., 118., 137., 105.],\n", " [122., 130., 118., 129.]],\n", " \n", " [[129., 133., 124., 130.],\n", " [119., 138., 134., 133.],\n", " [122., 119., 136., 105.],\n", " [122., 130., 117., 129.]],\n", " \n", " ...,\n", " \n", " [[121., 138., 125., 121.],\n", " [129., 143., 136., 122.],\n", " [142., 114., 126., 105.],\n", " [115., 132., 116., 139.]],\n", " \n", " [[120., 138., 125., 121.],\n", " [129., 143., 136., 121.],\n", " [144., 113., 125., 104.],\n", " [115., 132., 116., 141.]],\n", " \n", " [[120., 139., 124., 121.],\n", " [129., 144., 137., 121.],\n", " [146., 112., 125., 104.],\n", " [114., 132., 116., 142.]]],\n", " \n", " \n", " [[[130., 131., 123., 133.],\n", " [117., 138., 135., 136.],\n", " [119., 119., 139., 105.],\n", " [123., 131., 118., 129.]],\n", " \n", " [[130., 132., 123., 131.],\n", " [118., 138., 135., 135.],\n", " [121., 119., 138., 105.],\n", " [123., 131., 118., 129.]],\n", " \n", " [[129., 132., 123., 130.],\n", " [120., 138., 134., 134.],\n", " [123., 119., 137., 106.],\n", " [122., 131., 117., 130.]],\n", " \n", " ...,\n", " \n", " [[120., 137., 125., 121.],\n", " [129., 143., 136., 123.],\n", " [143., 115., 127., 104.],\n", " [115., 133., 116., 139.]],\n", " \n", " [[120., 137., 124., 121.],\n", " [129., 143., 137., 122.],\n", " [145., 114., 126., 104.],\n", " [115., 133., 116., 140.]],\n", " \n", " [[119., 137., 124., 121.],\n", " [129., 144., 137., 122.],\n", " [146., 112., 126., 103.],\n", " [114., 133., 116., 141.]]]],\n", " \n", " \n", " \n", " [[[[131., 148., 123., 143.],\n", " [103., 149., 125., 117.],\n", " [115., 102., 136., 97.],\n", " [117., 127., 117., 129.]],\n", " \n", " [[131., 149., 124., 141.],\n", " [105., 149., 125., 116.],\n", " [116., 103., 135., 98.],\n", " [117., 126., 116., 130.]],\n", " \n", " [[132., 149., 124., 139.],\n", " [106., 149., 125., 116.],\n", " [117., 103., 133., 99.],\n", " [117., 126., 116., 131.]],\n", " \n", " ...,\n", " \n", " [[130., 155., 128., 126.],\n", " [116., 152., 135., 109.],\n", " [132., 98., 113., 103.],\n", " [120., 125., 113., 149.]],\n", " \n", " [[130., 155., 128., 125.],\n", " [117., 152., 136., 109.],\n", " [134., 97., 112., 103.],\n", " [120., 125., 112., 150.]],\n", " \n", " [[130., 156., 128., 125.],\n", " [117., 153., 137., 108.],\n", " [135., 96., 110., 103.],\n", " [120., 125., 112., 152.]]],\n", " \n", " \n", " [[[131., 147., 123., 142.],\n", " [105., 148., 125., 118.],\n", " [115., 104., 137., 98.],\n", " [117., 127., 117., 129.]],\n", " \n", " [[131., 148., 124., 140.],\n", " [106., 148., 125., 118.],\n", " [116., 104., 135., 99.],\n", " [117., 127., 117., 130.]],\n", " \n", " [[131., 148., 124., 139.],\n", " [107., 148., 126., 117.],\n", " [117., 104., 133., 100.],\n", " [118., 126., 116., 131.]],\n", " \n", " ...,\n", " \n", " [[130., 154., 128., 125.],\n", " [118., 151., 135., 110.],\n", " [133., 99., 114., 103.],\n", " [120., 125., 113., 148.]],\n", " \n", " [[130., 154., 128., 125.],\n", " [118., 152., 136., 109.],\n", " [134., 98., 112., 103.],\n", " [120., 125., 112., 149.]],\n", " \n", " [[129., 155., 128., 124.],\n", " [118., 152., 137., 109.],\n", " [136., 97., 111., 103.],\n", " [120., 125., 112., 151.]]],\n", " \n", " \n", " [[[131., 147., 123., 141.],\n", " [106., 147., 126., 120.],\n", " [115., 105., 137., 99.],\n", " [117., 127., 117., 128.]],\n", " \n", " [[131., 147., 124., 139.],\n", " [107., 147., 126., 119.],\n", " [116., 105., 135., 99.],\n", " [117., 127., 117., 129.]],\n", " \n", " [[131., 148., 124., 138.],\n", " [109., 147., 126., 118.],\n", " [117., 105., 133., 100.],\n", " [118., 127., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[129., 153., 128., 125.],\n", " [119., 150., 135., 111.],\n", " [134., 100., 114., 103.],\n", " [119., 126., 113., 147.]],\n", " \n", " [[129., 154., 128., 124.],\n", " [119., 151., 136., 110.],\n", " [135., 99., 113., 103.],\n", " [119., 126., 112., 149.]],\n", " \n", " [[129., 154., 128., 124.],\n", " [119., 151., 137., 110.],\n", " [136., 98., 112., 103.],\n", " [119., 126., 112., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 134., 123., 134.],\n", " [115., 140., 133., 135.],\n", " [118., 117., 138., 103.],\n", " [123., 130., 117., 129.]],\n", " \n", " [[130., 134., 124., 133.],\n", " [117., 140., 133., 134.],\n", " [119., 117., 137., 103.],\n", " [122., 130., 117., 129.]],\n", " \n", " [[129., 134., 124., 131.],\n", " [118., 140., 132., 133.],\n", " [121., 117., 136., 104.],\n", " [122., 130., 116., 129.]],\n", " \n", " ...,\n", " \n", " [[122., 140., 125., 122.],\n", " [128., 144., 136., 121.],\n", " [142., 113., 125., 103.],\n", " [117., 131., 115., 140.]],\n", " \n", " [[121., 140., 125., 122.],\n", " [128., 145., 136., 121.],\n", " [143., 111., 124., 103.],\n", " [116., 131., 115., 142.]],\n", " \n", " [[121., 140., 125., 122.],\n", " [128., 145., 137., 120.],\n", " [145., 110., 123., 102.],\n", " [116., 131., 114., 143.]]],\n", " \n", " \n", " [[[130., 132., 123., 134.],\n", " [116., 139., 134., 136.],\n", " [118., 118., 139., 103.],\n", " [123., 130., 117., 129.]],\n", " \n", " [[130., 133., 123., 132.],\n", " [117., 139., 133., 135.],\n", " [119., 118., 138., 104.],\n", " [123., 130., 117., 129.]],\n", " \n", " [[129., 133., 124., 131.],\n", " [119., 139., 133., 134.],\n", " [121., 118., 136., 104.],\n", " [123., 130., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[121., 138., 125., 122.],\n", " [128., 144., 136., 122.],\n", " [142., 113., 126., 103.],\n", " [117., 131., 115., 140.]],\n", " \n", " [[121., 139., 125., 122.],\n", " [128., 144., 136., 122.],\n", " [144., 112., 125., 102.],\n", " [116., 132., 115., 141.]],\n", " \n", " [[120., 139., 125., 122.],\n", " [128., 145., 137., 121.],\n", " [146., 111., 124., 102.],\n", " [115., 132., 115., 142.]]],\n", " \n", " \n", " [[[130., 131., 123., 134.],\n", " [116., 139., 134., 137.],\n", " [118., 118., 139., 103.],\n", " [124., 130., 117., 129.]],\n", " \n", " [[130., 131., 123., 132.],\n", " [117., 139., 134., 136.],\n", " [120., 119., 138., 104.],\n", " [123., 130., 116., 130.]],\n", " \n", " [[129., 132., 124., 131.],\n", " [119., 139., 134., 135.],\n", " [121., 119., 137., 104.],\n", " [123., 130., 116., 130.]],\n", " \n", " ...,\n", " \n", " [[121., 137., 125., 122.],\n", " [128., 144., 136., 123.],\n", " [143., 114., 127., 102.],\n", " [117., 132., 115., 140.]],\n", " \n", " [[120., 137., 125., 122.],\n", " [129., 144., 137., 122.],\n", " [145., 113., 126., 102.],\n", " [116., 132., 115., 141.]],\n", " \n", " [[120., 138., 124., 122.],\n", " [129., 145., 137., 122.],\n", " [147., 112., 125., 102.],\n", " [115., 133., 115., 142.]]]]],\n", " \n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " \n", " [[[[[125., 134., 144., 133.],\n", " [113., 130., 121., 126.],\n", " [117., 118., 130., 136.],\n", " [ 91., 132., 108., 135.]],\n", " \n", " [[125., 133., 144., 132.],\n", " [114., 130., 120., 126.],\n", " [117., 119., 129., 137.],\n", " [ 91., 131., 108., 135.]],\n", " \n", " [[125., 133., 144., 131.],\n", " [116., 130., 119., 127.],\n", " [116., 119., 128., 138.],\n", " [ 91., 130., 107., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 131., 140., 124.],\n", " [129., 132., 118., 136.],\n", " [110., 113., 114., 144.],\n", " [ 93., 124., 98., 145.]],\n", " \n", " [[123., 130., 139., 124.],\n", " [129., 133., 118., 137.],\n", " [110., 112., 113., 144.],\n", " [ 93., 123., 97., 146.]],\n", " \n", " [[123., 130., 138., 124.],\n", " [130., 133., 118., 138.],\n", " [109., 111., 112., 145.],\n", " [ 94., 123., 97., 147.]]],\n", " \n", " \n", " [[[126., 133., 144., 133.],\n", " [113., 130., 121., 127.],\n", " [118., 119., 131., 137.],\n", " [ 92., 132., 109., 135.]],\n", " \n", " [[126., 133., 144., 132.],\n", " [115., 130., 121., 127.],\n", " [117., 119., 129., 138.],\n", " [ 92., 131., 108., 135.]],\n", " \n", " [[126., 133., 143., 130.],\n", " [116., 130., 120., 128.],\n", " [117., 119., 128., 139.],\n", " [ 92., 131., 108., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 130., 139., 124.],\n", " [129., 132., 118., 137.],\n", " [111., 114., 115., 144.],\n", " [ 94., 124., 99., 144.]],\n", " \n", " [[123., 130., 138., 124.],\n", " [130., 133., 119., 137.],\n", " [110., 113., 114., 144.],\n", " [ 94., 124., 98., 146.]],\n", " \n", " [[123., 130., 138., 124.],\n", " [131., 133., 119., 138.],\n", " [110., 111., 113., 144.],\n", " [ 94., 123., 98., 147.]]],\n", " \n", " \n", " [[[127., 133., 143., 133.],\n", " [114., 130., 122., 127.],\n", " [118., 119., 131., 138.],\n", " [ 93., 132., 110., 135.]],\n", " \n", " [[127., 133., 143., 131.],\n", " [116., 130., 122., 128.],\n", " [118., 119., 130., 138.],\n", " [ 93., 132., 109., 135.]],\n", " \n", " [[127., 133., 143., 130.],\n", " [117., 130., 121., 129.],\n", " [117., 120., 129., 139.],\n", " [ 93., 131., 109., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 130., 139., 124.],\n", " [130., 132., 119., 137.],\n", " [112., 114., 116., 144.],\n", " [ 94., 124., 100., 144.]],\n", " \n", " [[124., 130., 138., 124.],\n", " [131., 132., 119., 138.],\n", " [111., 113., 115., 144.],\n", " [ 95., 124., 100., 145.]],\n", " \n", " [[123., 130., 137., 124.],\n", " [131., 133., 120., 139.],\n", " [111., 112., 114., 144.],\n", " [ 95., 124., 99., 146.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[136., 129., 135., 134.],\n", " [120., 129., 136., 135.],\n", " [122., 124., 136., 140.],\n", " [107., 136., 119., 140.]],\n", " \n", " [[136., 129., 135., 133.],\n", " [121., 129., 135., 135.],\n", " [122., 124., 135., 140.],\n", " [107., 135., 119., 139.]],\n", " \n", " [[135., 129., 135., 132.],\n", " [123., 129., 135., 136.],\n", " [122., 124., 134., 141.],\n", " [107., 134., 118., 139.]],\n", " \n", " ...,\n", " \n", " [[127., 126., 132., 129.],\n", " [135., 130., 130., 141.],\n", " [122., 121., 129., 141.],\n", " [103., 128., 113., 142.]],\n", " \n", " [[126., 126., 132., 129.],\n", " [136., 130., 130., 142.],\n", " [122., 120., 129., 140.],\n", " [102., 128., 113., 143.]],\n", " \n", " [[125., 125., 131., 129.],\n", " [136., 131., 131., 143.],\n", " [123., 119., 129., 140.],\n", " [102., 128., 112., 144.]]],\n", " \n", " \n", " [[[137., 129., 134., 134.],\n", " [120., 129., 138., 136.],\n", " [122., 124., 136., 139.],\n", " [108., 136., 120., 140.]],\n", " \n", " [[137., 129., 134., 133.],\n", " [122., 129., 137., 136.],\n", " [122., 124., 135., 140.],\n", " [108., 135., 119., 140.]],\n", " \n", " [[136., 128., 134., 132.],\n", " [123., 129., 136., 136.],\n", " [122., 125., 135., 140.],\n", " [108., 135., 119., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 132., 129.],\n", " [135., 130., 132., 141.],\n", " [123., 121., 130., 140.],\n", " [104., 129., 114., 142.]],\n", " \n", " [[126., 125., 131., 130.],\n", " [136., 130., 132., 142.],\n", " [123., 120., 130., 140.],\n", " [103., 128., 114., 143.]],\n", " \n", " [[125., 125., 130., 130.],\n", " [136., 131., 132., 143.],\n", " [124., 119., 130., 139.],\n", " [103., 128., 113., 144.]]],\n", " \n", " \n", " [[[138., 128., 134., 135.],\n", " [120., 129., 139., 136.],\n", " [122., 124., 136., 139.],\n", " [109., 136., 120., 141.]],\n", " \n", " [[137., 128., 134., 134.],\n", " [122., 129., 138., 136.],\n", " [122., 125., 136., 140.],\n", " [109., 136., 120., 141.]],\n", " \n", " [[137., 128., 134., 133.],\n", " [123., 129., 137., 137.],\n", " [122., 125., 135., 140.],\n", " [109., 135., 119., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 131., 130.],\n", " [135., 130., 133., 142.],\n", " [124., 121., 131., 140.],\n", " [105., 129., 115., 143.]],\n", " \n", " [[126., 125., 130., 130.],\n", " [136., 130., 133., 142.],\n", " [124., 121., 131., 139.],\n", " [104., 129., 115., 143.]],\n", " \n", " [[125., 124., 130., 131.],\n", " [136., 131., 133., 143.],\n", " [124., 120., 132., 139.],\n", " [103., 129., 114., 144.]]]],\n", " \n", " \n", " \n", " [[[[125., 135., 144., 133.],\n", " [112., 131., 121., 126.],\n", " [117., 119., 130., 135.],\n", " [ 92., 132., 109., 134.]],\n", " \n", " [[125., 134., 144., 132.],\n", " [113., 131., 121., 126.],\n", " [117., 119., 129., 136.],\n", " [ 92., 131., 108., 135.]],\n", " \n", " [[125., 134., 144., 130.],\n", " [115., 131., 120., 127.],\n", " [116., 119., 128., 137.],\n", " [ 92., 131., 108., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 132., 140., 123.],\n", " [128., 133., 119., 135.],\n", " [111., 113., 113., 142.],\n", " [ 95., 124., 99., 145.]],\n", " \n", " [[124., 132., 139., 123.],\n", " [129., 133., 119., 136.],\n", " [111., 112., 112., 143.],\n", " [ 95., 123., 98., 146.]],\n", " \n", " [[123., 132., 139., 124.],\n", " [129., 134., 120., 137.],\n", " [111., 111., 112., 143.],\n", " [ 95., 123., 98., 147.]]],\n", " \n", " \n", " [[[126., 134., 144., 133.],\n", " [113., 130., 122., 127.],\n", " [118., 119., 131., 135.],\n", " [ 93., 132., 110., 134.]],\n", " \n", " [[126., 134., 144., 131.],\n", " [114., 130., 122., 127.],\n", " [117., 119., 129., 136.],\n", " [ 93., 132., 109., 135.]],\n", " \n", " [[126., 134., 144., 130.],\n", " [116., 130., 121., 128.],\n", " [117., 120., 128., 137.],\n", " [ 93., 131., 109., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 131., 139., 123.],\n", " [129., 133., 119., 136.],\n", " [112., 114., 114., 142.],\n", " [ 95., 124., 100., 144.]],\n", " \n", " [[124., 131., 139., 124.],\n", " [130., 133., 120., 137.],\n", " [112., 113., 114., 143.],\n", " [ 96., 124., 99., 146.]],\n", " \n", " [[123., 131., 138., 124.],\n", " [130., 133., 120., 138.],\n", " [112., 112., 113., 143.],\n", " [ 96., 123., 99., 147.]]],\n", " \n", " \n", " [[[127., 134., 143., 133.],\n", " [113., 130., 123., 128.],\n", " [118., 119., 131., 136.],\n", " [ 94., 132., 111., 134.]],\n", " \n", " [[127., 134., 143., 131.],\n", " [115., 130., 122., 128.],\n", " [118., 120., 130., 137.],\n", " [ 94., 132., 110., 134.]],\n", " \n", " [[127., 134., 143., 130.],\n", " [117., 130., 122., 129.],\n", " [117., 120., 129., 138.],\n", " [ 94., 131., 109., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 131., 139., 124.],\n", " [130., 132., 120., 137.],\n", " [113., 115., 115., 142.],\n", " [ 96., 124., 101., 144.]],\n", " \n", " [[124., 131., 138., 124.],\n", " [130., 133., 121., 137.],\n", " [113., 114., 115., 142.],\n", " [ 96., 124., 101., 145.]],\n", " \n", " [[123., 131., 138., 124.],\n", " [131., 133., 121., 138.],\n", " [113., 112., 114., 142.],\n", " [ 96., 123., 100., 146.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[136., 130., 136., 134.],\n", " [119., 129., 137., 136.],\n", " [122., 124., 135., 138.],\n", " [108., 136., 120., 139.]],\n", " \n", " [[135., 129., 136., 133.],\n", " [121., 129., 136., 136.],\n", " [122., 124., 135., 138.],\n", " [108., 135., 119., 138.]],\n", " \n", " [[135., 129., 136., 132.],\n", " [122., 129., 135., 136.],\n", " [122., 125., 134., 139.],\n", " [108., 135., 118., 138.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 133., 129.],\n", " [135., 130., 131., 141.],\n", " [123., 121., 129., 139.],\n", " [104., 129., 114., 142.]],\n", " \n", " [[125., 126., 132., 129.],\n", " [135., 131., 131., 142.],\n", " [124., 120., 129., 138.],\n", " [103., 128., 113., 143.]],\n", " \n", " [[125., 126., 131., 129.],\n", " [136., 131., 132., 142.],\n", " [124., 119., 129., 138.],\n", " [103., 128., 113., 144.]]],\n", " \n", " \n", " [[[136., 129., 135., 134.],\n", " [119., 129., 138., 136.],\n", " [122., 124., 136., 138.],\n", " [109., 136., 120., 139.]],\n", " \n", " [[136., 129., 135., 133.],\n", " [121., 129., 137., 137.],\n", " [122., 125., 135., 138.],\n", " [109., 135., 120., 139.]],\n", " \n", " [[136., 129., 135., 132.],\n", " [122., 129., 136., 137.],\n", " [122., 125., 134., 139.],\n", " [109., 135., 119., 139.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 132., 129.],\n", " [135., 130., 132., 141.],\n", " [124., 122., 130., 138.],\n", " [105., 129., 115., 142.]],\n", " \n", " [[126., 125., 131., 129.],\n", " [135., 131., 133., 142.],\n", " [125., 121., 130., 138.],\n", " [104., 129., 114., 143.]],\n", " \n", " [[125., 125., 131., 130.],\n", " [136., 131., 133., 142.],\n", " [125., 120., 130., 137.],\n", " [103., 128., 114., 144.]]],\n", " \n", " \n", " [[[137., 128., 134., 135.],\n", " [119., 129., 139., 137.],\n", " [122., 125., 136., 137.],\n", " [111., 136., 121., 140.]],\n", " \n", " [[137., 128., 134., 134.],\n", " [121., 129., 139., 137.],\n", " [122., 125., 135., 138.],\n", " [110., 136., 120., 140.]],\n", " \n", " [[136., 128., 134., 133.],\n", " [122., 129., 138., 137.],\n", " [122., 126., 135., 138.],\n", " [110., 135., 120., 139.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 131., 130.],\n", " [135., 130., 134., 142.],\n", " [125., 122., 131., 138.],\n", " [105., 129., 116., 142.]],\n", " \n", " [[126., 125., 131., 130.],\n", " [135., 130., 134., 142.],\n", " [125., 121., 131., 137.],\n", " [105., 129., 115., 143.]],\n", " \n", " [[125., 125., 130., 131.],\n", " [136., 131., 134., 143.],\n", " [126., 120., 131., 137.],\n", " [104., 129., 115., 144.]]]],\n", " \n", " \n", " \n", " [[[[125., 136., 144., 133.],\n", " [111., 131., 122., 126.],\n", " [117., 119., 130., 133.],\n", " [ 94., 132., 110., 134.]],\n", " \n", " [[125., 136., 144., 132.],\n", " [113., 131., 122., 127.],\n", " [117., 119., 129., 134.],\n", " [ 94., 132., 109., 134.]],\n", " \n", " [[125., 135., 144., 130.],\n", " [114., 131., 121., 127.],\n", " [116., 119., 128., 135.],\n", " [ 94., 131., 109., 135.]],\n", " \n", " ...,\n", " \n", " [[124., 133., 140., 123.],\n", " [128., 133., 120., 135.],\n", " [112., 114., 113., 141.],\n", " [ 96., 124., 100., 145.]],\n", " \n", " [[124., 133., 139., 123.],\n", " [128., 134., 121., 136.],\n", " [112., 113., 112., 141.],\n", " [ 97., 123., 99., 146.]],\n", " \n", " [[124., 133., 139., 123.],\n", " [129., 134., 121., 136.],\n", " [112., 111., 111., 141.],\n", " [ 97., 123., 99., 148.]]],\n", " \n", " \n", " [[[126., 135., 144., 133.],\n", " [112., 131., 123., 127.],\n", " [118., 119., 131., 134.],\n", " [ 95., 132., 111., 134.]],\n", " \n", " [[126., 135., 144., 131.],\n", " [113., 131., 122., 128.],\n", " [117., 120., 129., 135.],\n", " [ 95., 132., 110., 134.]],\n", " \n", " [[126., 135., 144., 130.],\n", " [115., 131., 122., 128.],\n", " [117., 120., 128., 136.],\n", " [ 95., 131., 109., 135.]],\n", " \n", " ...,\n", " \n", " [[125., 133., 140., 123.],\n", " [129., 133., 121., 135.],\n", " [113., 115., 114., 141.],\n", " [ 97., 124., 101., 144.]],\n", " \n", " [[124., 132., 139., 123.],\n", " [129., 133., 121., 136.],\n", " [113., 113., 113., 141.],\n", " [ 97., 124., 101., 146.]],\n", " \n", " [[124., 132., 138., 123.],\n", " [130., 134., 122., 137.],\n", " [113., 112., 112., 141.],\n", " [ 97., 123., 100., 147.]]],\n", " \n", " \n", " [[[127., 135., 143., 133.],\n", " [113., 130., 124., 128.],\n", " [118., 120., 131., 134.],\n", " [ 96., 133., 112., 134.]],\n", " \n", " [[127., 135., 143., 131.],\n", " [114., 130., 123., 129.],\n", " [118., 120., 130., 135.],\n", " [ 96., 132., 111., 134.]],\n", " \n", " [[127., 135., 143., 130.],\n", " [116., 130., 123., 129.],\n", " [117., 120., 128., 136.],\n", " [ 96., 131., 110., 134.]],\n", " \n", " ...,\n", " \n", " [[125., 132., 139., 123.],\n", " [129., 133., 121., 136.],\n", " [114., 115., 115., 140.],\n", " [ 97., 124., 102., 144.]],\n", " \n", " [[124., 132., 139., 123.],\n", " [130., 133., 122., 137.],\n", " [114., 114., 114., 140.],\n", " [ 97., 124., 102., 145.]],\n", " \n", " [[124., 132., 138., 124.],\n", " [130., 133., 122., 137.],\n", " [114., 113., 114., 140.],\n", " [ 98., 123., 101., 146.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[135., 130., 136., 134.],\n", " [118., 129., 137., 137.],\n", " [122., 125., 135., 136.],\n", " [109., 136., 120., 138.]],\n", " \n", " [[135., 130., 136., 133.],\n", " [120., 129., 136., 137.],\n", " [122., 125., 134., 137.],\n", " [109., 135., 119., 138.]],\n", " \n", " [[134., 130., 136., 132.],\n", " [121., 129., 135., 137.],\n", " [122., 125., 134., 137.],\n", " [109., 135., 119., 137.]],\n", " \n", " ...,\n", " \n", " [[126., 127., 133., 128.],\n", " [134., 130., 132., 141.],\n", " [125., 122., 129., 137.],\n", " [105., 129., 114., 142.]],\n", " \n", " [[125., 126., 132., 129.],\n", " [135., 131., 132., 141.],\n", " [125., 121., 128., 136.],\n", " [104., 128., 114., 143.]],\n", " \n", " [[124., 126., 132., 129.],\n", " [135., 131., 132., 142.],\n", " [126., 120., 128., 136.],\n", " [104., 128., 113., 144.]]],\n", " \n", " \n", " [[[136., 129., 135., 134.],\n", " [118., 129., 138., 137.],\n", " [122., 125., 135., 136.],\n", " [111., 136., 120., 138.]],\n", " \n", " [[135., 129., 135., 133.],\n", " [120., 129., 137., 137.],\n", " [122., 125., 135., 136.],\n", " [110., 135., 120., 138.]],\n", " \n", " [[135., 129., 135., 133.],\n", " [122., 129., 137., 138.],\n", " [122., 126., 134., 137.],\n", " [110., 135., 119., 138.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 132., 129.],\n", " [134., 130., 133., 141.],\n", " [125., 123., 130., 136.],\n", " [105., 129., 115., 142.]],\n", " \n", " [[125., 126., 132., 129.],\n", " [135., 131., 133., 142.],\n", " [126., 122., 130., 136.],\n", " [105., 129., 115., 143.]],\n", " \n", " [[125., 125., 131., 130.],\n", " [135., 131., 134., 142.],\n", " [126., 121., 130., 135.],\n", " [104., 128., 114., 144.]]],\n", " \n", " \n", " [[[136., 129., 134., 135.],\n", " [118., 129., 140., 138.],\n", " [122., 125., 136., 136.],\n", " [112., 136., 121., 139.]],\n", " \n", " [[136., 129., 134., 134.],\n", " [120., 129., 139., 138.],\n", " [122., 126., 135., 136.],\n", " [112., 136., 120., 139.]],\n", " \n", " [[136., 129., 134., 133.],\n", " [122., 129., 138., 138.],\n", " [122., 126., 134., 137.],\n", " [111., 135., 120., 139.]],\n", " \n", " ...,\n", " \n", " [[126., 125., 131., 130.],\n", " [134., 130., 134., 141.],\n", " [126., 123., 131., 136.],\n", " [106., 129., 116., 142.]],\n", " \n", " [[125., 125., 131., 130.],\n", " [135., 131., 135., 142.],\n", " [127., 122., 131., 135.],\n", " [106., 129., 116., 143.]],\n", " \n", " [[125., 125., 130., 130.],\n", " [135., 131., 135., 142.],\n", " [127., 121., 131., 135.],\n", " [105., 129., 115., 144.]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[130., 146., 144., 139.],\n", " [101., 139., 129., 131.],\n", " [112., 117., 129., 112.],\n", " [112., 131., 117., 134.]],\n", " \n", " [[130., 146., 144., 138.],\n", " [103., 139., 129., 131.],\n", " [113., 117., 128., 113.],\n", " [112., 131., 116., 134.]],\n", " \n", " [[130., 146., 144., 136.],\n", " [104., 139., 129., 131.],\n", " [114., 117., 126., 114.],\n", " [113., 130., 115., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 145., 142., 125.],\n", " [120., 140., 135., 130.],\n", " [125., 114., 110., 117.],\n", " [116., 123., 109., 148.]],\n", " \n", " [[131., 145., 141., 125.],\n", " [121., 141., 136., 130.],\n", " [126., 113., 109., 117.],\n", " [116., 122., 108., 149.]],\n", " \n", " [[131., 145., 141., 125.],\n", " [121., 141., 137., 130.],\n", " [127., 112., 108., 117.],\n", " [116., 121., 107., 151.]]],\n", " \n", " \n", " [[[130., 145., 143., 139.],\n", " [102., 138., 129., 133.],\n", " [113., 118., 130., 113.],\n", " [113., 131., 117., 133.]],\n", " \n", " [[130., 145., 143., 138.],\n", " [104., 138., 129., 133.],\n", " [113., 118., 128., 113.],\n", " [113., 131., 116., 134.]],\n", " \n", " [[130., 145., 143., 136.],\n", " [105., 138., 129., 133.],\n", " [114., 118., 127., 114.],\n", " [113., 130., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[130., 144., 141., 125.],\n", " [121., 140., 135., 131.],\n", " [126., 115., 111., 117.],\n", " [116., 123., 109., 147.]],\n", " \n", " [[130., 144., 141., 125.],\n", " [122., 140., 136., 131.],\n", " [127., 114., 110., 117.],\n", " [116., 122., 108., 149.]],\n", " \n", " [[130., 144., 140., 125.],\n", " [122., 140., 137., 130.],\n", " [128., 113., 109., 117.],\n", " [116., 121., 108., 150.]]],\n", " \n", " \n", " [[[130., 144., 143., 139.],\n", " [103., 137., 130., 134.],\n", " [113., 119., 130., 113.],\n", " [114., 131., 117., 133.]],\n", " \n", " [[130., 144., 143., 138.],\n", " [104., 137., 130., 134.],\n", " [113., 119., 129., 114.],\n", " [114., 131., 117., 133.]],\n", " \n", " [[130., 144., 143., 136.],\n", " [106., 137., 130., 134.],\n", " [114., 119., 127., 114.],\n", " [114., 131., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[130., 143., 141., 125.],\n", " [122., 139., 135., 131.],\n", " [126., 116., 112., 117.],\n", " [116., 123., 109., 146.]],\n", " \n", " [[130., 142., 140., 125.],\n", " [123., 139., 136., 131.],\n", " [128., 115., 111., 117.],\n", " [116., 122., 109., 148.]],\n", " \n", " [[130., 142., 140., 125.],\n", " [123., 140., 137., 131.],\n", " [129., 114., 110., 116.],\n", " [117., 122., 108., 149.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 130., 138., 141.],\n", " [108., 131., 139., 149.],\n", " [113., 127., 133., 115.],\n", " [126., 133., 119., 131.]],\n", " \n", " [[130., 130., 138., 140.],\n", " [110., 131., 138., 148.],\n", " [115., 128., 132., 116.],\n", " [125., 132., 118., 132.]],\n", " \n", " [[130., 130., 138., 139.],\n", " [112., 131., 138., 148.],\n", " [116., 129., 132., 116.],\n", " [125., 132., 118., 132.]],\n", " \n", " ...,\n", " \n", " [[125., 127., 135., 131.],\n", " [129., 134., 140., 141.],\n", " [135., 128., 125., 114.],\n", " [119., 128., 113., 142.]],\n", " \n", " [[125., 127., 134., 131.],\n", " [130., 135., 141., 141.],\n", " [137., 127., 124., 113.],\n", " [119., 127., 113., 143.]],\n", " \n", " [[124., 126., 134., 131.],\n", " [131., 135., 141., 141.],\n", " [138., 126., 124., 113.],\n", " [118., 127., 113., 145.]]],\n", " \n", " \n", " [[[131., 129., 137., 142.],\n", " [108., 131., 140., 150.],\n", " [113., 128., 134., 115.],\n", " [127., 133., 119., 132.]],\n", " \n", " [[130., 129., 137., 140.],\n", " [110., 131., 139., 149.],\n", " [115., 129., 133., 115.],\n", " [126., 133., 118., 132.]],\n", " \n", " [[130., 128., 137., 139.],\n", " [112., 131., 139., 149.],\n", " [116., 129., 132., 116.],\n", " [126., 132., 118., 132.]],\n", " \n", " ...,\n", " \n", " [[125., 126., 134., 132.],\n", " [129., 134., 141., 142.],\n", " [136., 129., 126., 113.],\n", " [120., 128., 114., 142.]],\n", " \n", " [[125., 125., 134., 132.],\n", " [130., 135., 141., 142.],\n", " [137., 128., 126., 113.],\n", " [119., 128., 113., 144.]],\n", " \n", " [[124., 125., 133., 132.],\n", " [131., 135., 142., 141.],\n", " [139., 127., 125., 112.],\n", " [118., 127., 113., 145.]]],\n", " \n", " \n", " [[[131., 127., 137., 142.],\n", " [109., 131., 141., 151.],\n", " [113., 128., 134., 115.],\n", " [128., 133., 119., 132.]],\n", " \n", " [[130., 127., 137., 141.],\n", " [111., 131., 140., 150.],\n", " [115., 129., 133., 115.],\n", " [127., 133., 118., 133.]],\n", " \n", " [[130., 127., 137., 139.],\n", " [112., 131., 140., 150.],\n", " [116., 130., 132., 115.],\n", " [127., 132., 118., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 124., 134., 132.],\n", " [129., 134., 141., 143.],\n", " [136., 130., 127., 113.],\n", " [120., 128., 114., 142.]],\n", " \n", " [[124., 124., 133., 132.],\n", " [130., 135., 142., 142.],\n", " [138., 129., 127., 112.],\n", " [119., 128., 114., 144.]],\n", " \n", " [[124., 124., 133., 133.],\n", " [131., 135., 143., 142.],\n", " [140., 128., 127., 112.],\n", " [118., 128., 114., 145.]]]],\n", " \n", " \n", " \n", " [[[[130., 147., 144., 140.],\n", " [100., 140., 129., 132.],\n", " [112., 116., 129., 110.],\n", " [113., 131., 117., 134.]],\n", " \n", " [[131., 147., 144., 139.],\n", " [102., 140., 129., 132.],\n", " [113., 117., 128., 111.],\n", " [114., 131., 116., 135.]],\n", " \n", " [[131., 147., 144., 137.],\n", " [103., 140., 129., 132.],\n", " [113., 117., 126., 112.],\n", " [114., 130., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 146., 142., 126.],\n", " [119., 141., 136., 130.],\n", " [126., 114., 110., 115.],\n", " [118., 122., 109., 148.]],\n", " \n", " [[131., 146., 141., 125.],\n", " [120., 142., 137., 129.],\n", " [127., 113., 108., 115.],\n", " [118., 122., 108., 150.]],\n", " \n", " [[131., 145., 141., 125.],\n", " [120., 142., 138., 129.],\n", " [128., 112., 107., 115.],\n", " [118., 121., 108., 151.]]],\n", " \n", " \n", " [[[130., 146., 143., 140.],\n", " [101., 139., 129., 134.],\n", " [112., 117., 130., 111.],\n", " [114., 131., 117., 134.]],\n", " \n", " [[131., 146., 143., 139.],\n", " [103., 139., 129., 133.],\n", " [113., 118., 128., 112.],\n", " [115., 131., 117., 134.]],\n", " \n", " [[131., 146., 143., 137.],\n", " [104., 139., 130., 133.],\n", " [114., 118., 127., 112.],\n", " [115., 130., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 144., 141., 126.],\n", " [120., 140., 136., 130.],\n", " [126., 115., 111., 115.],\n", " [118., 123., 109., 148.]],\n", " \n", " [[131., 144., 141., 126.],\n", " [121., 141., 137., 130.],\n", " [128., 114., 109., 115.],\n", " [118., 122., 109., 149.]],\n", " \n", " [[131., 144., 141., 126.],\n", " [121., 141., 138., 130.],\n", " [129., 113., 109., 115.],\n", " [118., 121., 108., 150.]]],\n", " \n", " \n", " [[[130., 144., 143., 140.],\n", " [102., 138., 130., 135.],\n", " [112., 118., 130., 111.],\n", " [115., 131., 117., 133.]],\n", " \n", " [[131., 144., 143., 139.],\n", " [103., 138., 130., 135.],\n", " [113., 119., 128., 112.],\n", " [115., 131., 117., 133.]],\n", " \n", " [[131., 144., 143., 137.],\n", " [105., 138., 130., 135.],\n", " [114., 119., 127., 112.],\n", " [116., 130., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 141., 126.],\n", " [121., 140., 136., 131.],\n", " [127., 116., 112., 115.],\n", " [118., 123., 110., 147.]],\n", " \n", " [[130., 143., 140., 126.],\n", " [122., 140., 137., 131.],\n", " [128., 115., 111., 115.],\n", " [118., 122., 109., 148.]],\n", " \n", " [[130., 143., 140., 126.],\n", " [122., 141., 138., 131.],\n", " [130., 114., 110., 114.],\n", " [118., 121., 109., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 130., 138., 142.],\n", " [108., 132., 139., 150.],\n", " [112., 127., 133., 113.],\n", " [127., 132., 118., 131.]],\n", " \n", " [[130., 130., 138., 141.],\n", " [110., 132., 138., 150.],\n", " [114., 128., 132., 114.],\n", " [127., 132., 118., 132.]],\n", " \n", " [[130., 129., 138., 140.],\n", " [111., 132., 138., 149.],\n", " [115., 129., 132., 114.],\n", " [127., 132., 117., 132.]],\n", " \n", " ...,\n", " \n", " [[125., 127., 135., 132.],\n", " [129., 135., 141., 142.],\n", " [136., 128., 125., 112.],\n", " [121., 127., 113., 143.]],\n", " \n", " [[125., 126., 134., 132.],\n", " [129., 135., 141., 141.],\n", " [137., 127., 124., 111.],\n", " [120., 127., 113., 144.]],\n", " \n", " [[125., 126., 134., 132.],\n", " [130., 136., 142., 141.],\n", " [139., 127., 124., 111.],\n", " [119., 127., 112., 145.]]],\n", " \n", " \n", " [[[130., 128., 137., 142.],\n", " [108., 131., 140., 151.],\n", " [112., 128., 134., 113.],\n", " [128., 132., 118., 132.]],\n", " \n", " [[130., 128., 137., 141.],\n", " [110., 131., 139., 151.],\n", " [114., 129., 133., 114.],\n", " [128., 132., 117., 132.]],\n", " \n", " [[130., 128., 137., 140.],\n", " [112., 131., 139., 150.],\n", " [115., 129., 132., 114.],\n", " [127., 132., 117., 132.]],\n", " \n", " ...,\n", " \n", " [[125., 125., 134., 132.],\n", " [129., 135., 141., 142.],\n", " [136., 129., 126., 112.],\n", " [121., 128., 113., 143.]],\n", " \n", " [[125., 125., 134., 132.],\n", " [130., 135., 142., 142.],\n", " [138., 128., 125., 111.],\n", " [120., 127., 113., 144.]],\n", " \n", " [[124., 125., 133., 132.],\n", " [130., 136., 142., 141.],\n", " [140., 128., 125., 110.],\n", " [119., 127., 113., 145.]]],\n", " \n", " \n", " [[[130., 127., 137., 143.],\n", " [108., 131., 141., 152.],\n", " [112., 128., 134., 113.],\n", " [129., 133., 118., 132.]],\n", " \n", " [[130., 127., 137., 142.],\n", " [110., 131., 140., 152.],\n", " [114., 129., 133., 114.],\n", " [129., 132., 117., 132.]],\n", " \n", " [[130., 127., 137., 140.],\n", " [112., 131., 140., 151.],\n", " [115., 130., 132., 114.],\n", " [128., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 124., 134., 133.],\n", " [129., 135., 142., 143.],\n", " [137., 130., 127., 111.],\n", " [121., 128., 113., 143.]],\n", " \n", " [[124., 124., 133., 133.],\n", " [130., 135., 142., 143.],\n", " [138., 129., 126., 111.],\n", " [120., 128., 113., 144.]],\n", " \n", " [[124., 123., 133., 133.],\n", " [131., 136., 143., 142.],\n", " [140., 128., 126., 110.],\n", " [120., 128., 113., 145.]]]],\n", " \n", " \n", " \n", " [[[[131., 147., 144., 142.],\n", " [ 99., 141., 129., 133.],\n", " [111., 115., 129., 109.],\n", " [115., 131., 117., 135.]],\n", " \n", " [[131., 147., 144., 140.],\n", " [101., 141., 129., 132.],\n", " [112., 116., 128., 109.],\n", " [115., 130., 116., 135.]],\n", " \n", " [[132., 147., 144., 138.],\n", " [103., 141., 129., 132.],\n", " [113., 116., 126., 110.],\n", " [116., 130., 116., 136.]],\n", " \n", " ...,\n", " \n", " [[132., 146., 142., 126.],\n", " [118., 142., 136., 129.],\n", " [126., 113., 109., 113.],\n", " [119., 122., 109., 149.]],\n", " \n", " [[132., 146., 141., 126.],\n", " [119., 142., 137., 129.],\n", " [128., 112., 108., 113.],\n", " [119., 121., 109., 150.]],\n", " \n", " [[132., 146., 141., 126.],\n", " [119., 143., 138., 129.],\n", " [129., 111., 107., 113.],\n", " [120., 121., 108., 152.]]],\n", " \n", " \n", " [[[131., 146., 143., 141.],\n", " [100., 140., 130., 134.],\n", " [111., 116., 130., 109.],\n", " [116., 131., 117., 134.]],\n", " \n", " [[131., 146., 143., 140.],\n", " [102., 140., 130., 134.],\n", " [112., 117., 128., 110.],\n", " [116., 130., 117., 134.]],\n", " \n", " [[131., 146., 143., 138.],\n", " [103., 140., 130., 134.],\n", " [113., 117., 126., 110.],\n", " [116., 130., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[132., 145., 141., 127.],\n", " [119., 141., 137., 130.],\n", " [127., 114., 110., 113.],\n", " [119., 122., 109., 148.]],\n", " \n", " [[131., 145., 141., 126.],\n", " [120., 142., 138., 130.],\n", " [128., 113., 109., 113.],\n", " [120., 122., 109., 149.]],\n", " \n", " [[131., 145., 141., 126.],\n", " [121., 142., 139., 130.],\n", " [130., 112., 108., 112.],\n", " [120., 121., 108., 151.]]],\n", " \n", " \n", " [[[131., 145., 143., 141.],\n", " [101., 139., 130., 136.],\n", " [111., 117., 130., 109.],\n", " [117., 131., 117., 133.]],\n", " \n", " [[131., 145., 143., 140.],\n", " [103., 139., 130., 135.],\n", " [112., 118., 128., 110.],\n", " [117., 130., 117., 134.]],\n", " \n", " [[131., 145., 143., 138.],\n", " [104., 139., 130., 135.],\n", " [113., 118., 127., 111.],\n", " [117., 130., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[131., 144., 141., 127.],\n", " [120., 141., 137., 131.],\n", " [128., 116., 111., 113.],\n", " [120., 123., 110., 147.]],\n", " \n", " [[131., 144., 141., 127.],\n", " [121., 141., 138., 131.],\n", " [129., 115., 110., 113.],\n", " [120., 122., 109., 149.]],\n", " \n", " [[131., 143., 140., 126.],\n", " [122., 141., 139., 131.],\n", " [131., 114., 109., 112.],\n", " [120., 121., 109., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 129., 138., 143.],\n", " [107., 132., 139., 151.],\n", " [112., 127., 133., 112.],\n", " [128., 132., 117., 131.]],\n", " \n", " [[130., 129., 138., 142.],\n", " [109., 132., 138., 151.],\n", " [113., 128., 132., 112.],\n", " [128., 132., 117., 132.]],\n", " \n", " [[130., 129., 138., 141.],\n", " [111., 132., 138., 150.],\n", " [114., 128., 132., 112.],\n", " [128., 131., 116., 132.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 135., 132.],\n", " [128., 135., 141., 142.],\n", " [136., 128., 124., 110.],\n", " [122., 127., 112., 143.]],\n", " \n", " [[125., 126., 134., 132.],\n", " [129., 136., 142., 141.],\n", " [138., 128., 124., 110.],\n", " [121., 127., 112., 144.]],\n", " \n", " [[125., 126., 134., 132.],\n", " [130., 137., 142., 141.],\n", " [140., 127., 124., 109.],\n", " [121., 126., 112., 145.]]],\n", " \n", " \n", " [[[130., 128., 137., 144.],\n", " [107., 132., 139., 152.],\n", " [112., 128., 134., 112.],\n", " [129., 132., 117., 132.]],\n", " \n", " [[130., 128., 137., 142.],\n", " [109., 132., 139., 152.],\n", " [113., 128., 133., 112.],\n", " [129., 132., 117., 132.]],\n", " \n", " [[130., 128., 137., 141.],\n", " [111., 132., 139., 151.],\n", " [115., 129., 132., 112.],\n", " [129., 131., 116., 132.]],\n", " \n", " ...,\n", " \n", " [[125., 125., 134., 133.],\n", " [128., 135., 141., 143.],\n", " [136., 129., 125., 110.],\n", " [122., 128., 112., 143.]],\n", " \n", " [[125., 125., 134., 133.],\n", " [129., 136., 142., 142.],\n", " [138., 129., 125., 109.],\n", " [122., 127., 112., 144.]],\n", " \n", " [[124., 124., 133., 133.],\n", " [130., 137., 143., 142.],\n", " [140., 128., 125., 109.],\n", " [121., 127., 112., 145.]]],\n", " \n", " \n", " [[[130., 126., 137., 144.],\n", " [107., 132., 140., 153.],\n", " [111., 128., 134., 112.],\n", " [130., 132., 117., 132.]],\n", " \n", " [[130., 126., 137., 143.],\n", " [109., 132., 140., 153.],\n", " [113., 129., 133., 112.],\n", " [130., 132., 117., 132.]],\n", " \n", " [[130., 126., 137., 141.],\n", " [111., 132., 140., 152.],\n", " [115., 130., 132., 112.],\n", " [130., 132., 116., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 124., 134., 134.],\n", " [129., 135., 142., 144.],\n", " [137., 130., 126., 109.],\n", " [123., 128., 113., 143.]],\n", " \n", " [[124., 123., 133., 134.],\n", " [129., 136., 143., 143.],\n", " [139., 129., 126., 109.],\n", " [122., 128., 112., 144.]],\n", " \n", " [[124., 123., 133., 134.],\n", " [130., 136., 143., 142.],\n", " [141., 129., 126., 108.],\n", " [121., 127., 112., 145.]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[125., 134., 146., 133.],\n", " [112., 131., 120., 127.],\n", " [117., 118., 129., 137.],\n", " [ 90., 132., 108., 136.]],\n", " \n", " [[125., 134., 146., 132.],\n", " [113., 131., 120., 127.],\n", " [116., 119., 128., 138.],\n", " [ 90., 131., 107., 136.]],\n", " \n", " [[126., 133., 145., 131.],\n", " [115., 131., 119., 128.],\n", " [116., 119., 127., 139.],\n", " [ 90., 131., 106., 136.]],\n", " \n", " ...,\n", " \n", " [[124., 130., 141., 124.],\n", " [129., 132., 117., 138.],\n", " [109., 114., 113., 144.],\n", " [ 92., 124., 97., 146.]],\n", " \n", " [[124., 130., 140., 124.],\n", " [129., 133., 118., 138.],\n", " [109., 113., 112., 144.],\n", " [ 93., 123., 96., 147.]],\n", " \n", " [[124., 130., 139., 124.],\n", " [130., 133., 118., 139.],\n", " [109., 111., 112., 145.],\n", " [ 93., 123., 96., 148.]]],\n", " \n", " \n", " [[[126., 134., 145., 133.],\n", " [113., 130., 121., 128.],\n", " [117., 119., 130., 137.],\n", " [ 91., 132., 109., 136.]],\n", " \n", " [[126., 134., 145., 132.],\n", " [114., 130., 120., 128.],\n", " [117., 119., 129., 138.],\n", " [ 91., 132., 108., 136.]],\n", " \n", " [[126., 133., 145., 130.],\n", " [116., 130., 120., 129.],\n", " [116., 119., 127., 139.],\n", " [ 91., 131., 107., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 130., 140., 124.],\n", " [129., 132., 118., 138.],\n", " [110., 114., 114., 144.],\n", " [ 93., 124., 98., 145.]],\n", " \n", " [[124., 130., 140., 124.],\n", " [130., 132., 118., 139.],\n", " [110., 113., 114., 144.],\n", " [ 93., 123., 98., 146.]],\n", " \n", " [[124., 130., 139., 124.],\n", " [131., 133., 119., 140.],\n", " [110., 112., 113., 144.],\n", " [ 94., 123., 97., 148.]]],\n", " \n", " \n", " [[[127., 134., 145., 133.],\n", " [113., 130., 122., 128.],\n", " [118., 119., 130., 138.],\n", " [ 92., 133., 110., 136.]],\n", " \n", " [[127., 133., 145., 131.],\n", " [115., 130., 121., 129.],\n", " [117., 120., 129., 139.],\n", " [ 92., 132., 109., 136.]],\n", " \n", " [[127., 133., 144., 130.],\n", " [117., 130., 121., 130.],\n", " [117., 120., 128., 140.],\n", " [ 92., 131., 108., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 130., 140., 124.],\n", " [130., 132., 118., 139.],\n", " [111., 115., 115., 144.],\n", " [ 94., 124., 99., 145.]],\n", " \n", " [[124., 129., 139., 124.],\n", " [131., 132., 119., 140.],\n", " [111., 114., 115., 144.],\n", " [ 94., 124., 99., 146.]],\n", " \n", " [[124., 129., 138., 124.],\n", " [131., 132., 119., 140.],\n", " [111., 113., 114., 144.],\n", " [ 94., 123., 98., 147.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[136., 129., 137., 135.],\n", " [119., 129., 136., 136.],\n", " [121., 124., 135., 140.],\n", " [106., 136., 118., 141.]],\n", " \n", " [[136., 129., 136., 134.],\n", " [121., 129., 135., 137.],\n", " [121., 124., 134., 140.],\n", " [106., 135., 118., 140.]],\n", " \n", " [[136., 129., 136., 133.],\n", " [122., 129., 134., 137.],\n", " [121., 125., 133., 141.],\n", " [106., 134., 117., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 126., 133., 129.],\n", " [135., 130., 130., 143.],\n", " [121., 121., 129., 141.],\n", " [103., 128., 112., 143.]],\n", " \n", " [[126., 125., 132., 130.],\n", " [135., 130., 130., 143.],\n", " [121., 120., 129., 140.],\n", " [102., 127., 112., 144.]],\n", " \n", " [[125., 125., 132., 130.],\n", " [136., 130., 131., 144.],\n", " [122., 119., 129., 140.],\n", " [102., 127., 111., 145.]]],\n", " \n", " \n", " [[[137., 129., 136., 135.],\n", " [119., 129., 138., 137.],\n", " [121., 124., 135., 140.],\n", " [108., 136., 119., 141.]],\n", " \n", " [[137., 129., 136., 134.],\n", " [121., 129., 137., 137.],\n", " [121., 125., 135., 140.],\n", " [108., 135., 118., 141.]],\n", " \n", " [[136., 129., 136., 133.],\n", " [122., 129., 136., 137.],\n", " [121., 125., 134., 140.],\n", " [108., 135., 118., 141.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 132., 130.],\n", " [135., 130., 131., 143.],\n", " [122., 122., 130., 140.],\n", " [104., 128., 113., 143.]],\n", " \n", " [[126., 125., 132., 130.],\n", " [136., 130., 132., 144.],\n", " [122., 121., 130., 140.],\n", " [103., 128., 113., 144.]],\n", " \n", " [[125., 124., 131., 131.],\n", " [136., 130., 132., 144.],\n", " [123., 120., 130., 139.],\n", " [103., 127., 112., 145.]]],\n", " \n", " \n", " [[[138., 128., 135., 136.],\n", " [119., 129., 139., 137.],\n", " [122., 125., 136., 139.],\n", " [109., 136., 119., 142.]],\n", " \n", " [[137., 128., 135., 135.],\n", " [121., 129., 138., 138.],\n", " [121., 125., 135., 140.],\n", " [109., 136., 119., 142.]],\n", " \n", " [[137., 128., 135., 134.],\n", " [123., 129., 137., 138.],\n", " [121., 126., 134., 140.],\n", " [109., 135., 118., 141.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 131., 131.],\n", " [135., 130., 133., 143.],\n", " [123., 122., 131., 140.],\n", " [105., 129., 114., 143.]],\n", " \n", " [[127., 124., 131., 131.],\n", " [136., 130., 133., 144.],\n", " [123., 121., 131., 139.],\n", " [104., 128., 114., 144.]],\n", " \n", " [[126., 124., 130., 132.],\n", " [136., 130., 133., 144.],\n", " [123., 120., 131., 139.],\n", " [103., 128., 113., 145.]]]],\n", " \n", " \n", " \n", " [[[[125., 135., 146., 133.],\n", " [111., 131., 121., 127.],\n", " [117., 119., 129., 135.],\n", " [ 91., 132., 109., 135.]],\n", " \n", " [[125., 135., 146., 132.],\n", " [113., 131., 121., 128.],\n", " [116., 119., 128., 136.],\n", " [ 91., 132., 108., 136.]],\n", " \n", " [[126., 135., 145., 130.],\n", " [114., 131., 120., 128.],\n", " [116., 119., 127., 137.],\n", " [ 92., 131., 107., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 131., 141., 124.],\n", " [128., 133., 118., 137.],\n", " [111., 114., 113., 143.],\n", " [ 94., 124., 98., 146.]],\n", " \n", " [[124., 131., 140., 124.],\n", " [129., 133., 119., 138.],\n", " [110., 113., 112., 143.],\n", " [ 94., 123., 98., 147.]],\n", " \n", " [[124., 131., 140., 124.],\n", " [129., 133., 119., 139.],\n", " [110., 112., 111., 143.],\n", " [ 95., 122., 97., 148.]]],\n", " \n", " \n", " [[[126., 135., 145., 133.],\n", " [112., 131., 122., 128.],\n", " [117., 119., 130., 136.],\n", " [ 92., 133., 110., 135.]],\n", " \n", " [[126., 135., 145., 132.],\n", " [114., 131., 121., 129.],\n", " [117., 120., 128., 137.],\n", " [ 93., 132., 109., 136.]],\n", " \n", " [[126., 134., 145., 130.],\n", " [115., 131., 121., 129.],\n", " [116., 120., 127., 137.],\n", " [ 93., 131., 108., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 131., 141., 124.],\n", " [129., 133., 119., 138.],\n", " [111., 115., 114., 142.],\n", " [ 95., 124., 99., 145.]],\n", " \n", " [[124., 131., 140., 124.],\n", " [130., 133., 119., 138.],\n", " [111., 114., 113., 143.],\n", " [ 95., 123., 99., 146.]],\n", " \n", " [[124., 131., 139., 124.],\n", " [130., 133., 120., 139.],\n", " [111., 113., 112., 143.],\n", " [ 95., 123., 98., 148.]]],\n", " \n", " \n", " [[[127., 135., 145., 133.],\n", " [113., 130., 123., 129.],\n", " [118., 120., 130., 136.],\n", " [ 93., 133., 111., 135.]],\n", " \n", " [[127., 134., 145., 131.],\n", " [114., 130., 122., 129.],\n", " [117., 120., 129., 137.],\n", " [ 94., 132., 110., 136.]],\n", " \n", " [[127., 134., 145., 130.],\n", " [116., 130., 122., 130.],\n", " [117., 120., 128., 138.],\n", " [ 94., 131., 109., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 131., 140., 124.],\n", " [130., 132., 120., 138.],\n", " [112., 116., 115., 142.],\n", " [ 95., 124., 100., 145.]],\n", " \n", " [[125., 130., 139., 124.],\n", " [130., 133., 120., 139.],\n", " [112., 114., 114., 142.],\n", " [ 95., 124., 100., 146.]],\n", " \n", " [[124., 130., 139., 124.],\n", " [131., 133., 121., 140.],\n", " [112., 113., 114., 142.],\n", " [ 96., 123., 99., 147.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[136., 130., 137., 135.],\n", " [118., 129., 136., 137.],\n", " [121., 124., 135., 138.],\n", " [108., 136., 119., 140.]],\n", " \n", " [[136., 130., 137., 134.],\n", " [120., 129., 136., 137.],\n", " [121., 125., 134., 139.],\n", " [108., 135., 118., 139.]],\n", " \n", " [[135., 129., 137., 133.],\n", " [121., 129., 135., 138.],\n", " [121., 125., 133., 139.],\n", " [108., 134., 118., 139.]],\n", " \n", " ...,\n", " \n", " [[127., 126., 133., 129.],\n", " [135., 130., 131., 143.],\n", " [123., 122., 129., 139.],\n", " [104., 128., 112., 143.]],\n", " \n", " [[126., 125., 133., 130.],\n", " [135., 130., 131., 143.],\n", " [123., 121., 129., 138.],\n", " [103., 128., 112., 144.]],\n", " \n", " [[125., 125., 132., 130.],\n", " [136., 131., 131., 144.],\n", " [123., 120., 129., 138.],\n", " [103., 127., 112., 144.]]],\n", " \n", " \n", " [[[137., 129., 136., 135.],\n", " [118., 129., 138., 138.],\n", " [121., 125., 135., 138.],\n", " [109., 136., 119., 140.]],\n", " \n", " [[136., 129., 136., 134.],\n", " [120., 129., 137., 138.],\n", " [121., 125., 134., 138.],\n", " [109., 135., 119., 140.]],\n", " \n", " [[136., 129., 136., 133.],\n", " [122., 129., 136., 138.],\n", " [121., 126., 134., 139.],\n", " [109., 135., 118., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 133., 130.],\n", " [135., 130., 132., 143.],\n", " [123., 122., 130., 138.],\n", " [105., 128., 113., 143.]],\n", " \n", " [[126., 125., 132., 130.],\n", " [135., 130., 132., 143.],\n", " [124., 122., 130., 138.],\n", " [104., 128., 113., 144.]],\n", " \n", " [[125., 125., 131., 131.],\n", " [136., 130., 133., 144.],\n", " [124., 121., 130., 137.],\n", " [104., 128., 113., 145.]]],\n", " \n", " \n", " [[[137., 129., 135., 136.],\n", " [118., 129., 139., 138.],\n", " [121., 125., 135., 138.],\n", " [110., 136., 120., 141.]],\n", " \n", " [[137., 128., 135., 135.],\n", " [120., 129., 139., 138.],\n", " [121., 126., 135., 138.],\n", " [110., 136., 119., 141.]],\n", " \n", " [[136., 128., 135., 134.],\n", " [122., 129., 138., 139.],\n", " [121., 126., 134., 138.],\n", " [110., 135., 119., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 132., 131.],\n", " [135., 130., 134., 143.],\n", " [124., 123., 131., 138.],\n", " [106., 129., 114., 143.]],\n", " \n", " [[126., 124., 131., 131.],\n", " [135., 130., 134., 144.],\n", " [124., 122., 131., 137.],\n", " [105., 128., 114., 144.]],\n", " \n", " [[125., 124., 131., 131.],\n", " [136., 130., 134., 144.],\n", " [125., 121., 131., 137.],\n", " [104., 128., 114., 145.]]]],\n", " \n", " \n", " \n", " [[[[125., 136., 146., 133.],\n", " [110., 131., 122., 127.],\n", " [117., 119., 129., 134.],\n", " [ 93., 133., 110., 135.]],\n", " \n", " [[125., 136., 146., 132.],\n", " [112., 131., 121., 128.],\n", " [116., 119., 128., 135.],\n", " [ 93., 132., 109., 135.]],\n", " \n", " [[126., 136., 145., 130.],\n", " [114., 131., 121., 128.],\n", " [116., 120., 127., 135.],\n", " [ 93., 131., 108., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 133., 141., 123.],\n", " [128., 133., 120., 136.],\n", " [112., 115., 113., 141.],\n", " [ 96., 124., 99., 146.]],\n", " \n", " [[125., 132., 141., 123.],\n", " [128., 134., 120., 137.],\n", " [112., 113., 112., 141.],\n", " [ 96., 123., 99., 147.]],\n", " \n", " [[124., 132., 140., 123.],\n", " [129., 134., 121., 138.],\n", " [111., 112., 111., 141.],\n", " [ 96., 122., 98., 148.]]],\n", " \n", " \n", " [[[126., 136., 145., 133.],\n", " [111., 131., 123., 128.],\n", " [117., 120., 130., 134.],\n", " [ 94., 133., 111., 135.]],\n", " \n", " [[126., 136., 145., 132.],\n", " [113., 131., 122., 129.],\n", " [117., 120., 128., 135.],\n", " [ 94., 132., 110., 135.]],\n", " \n", " [[126., 135., 145., 130.],\n", " [114., 131., 122., 129.],\n", " [116., 120., 127., 136.],\n", " [ 94., 131., 109., 136.]],\n", " \n", " ...,\n", " \n", " [[125., 132., 141., 123.],\n", " [129., 133., 120., 137.],\n", " [113., 115., 114., 141.],\n", " [ 96., 124., 100., 145.]],\n", " \n", " [[125., 132., 140., 123.],\n", " [129., 133., 121., 138.],\n", " [113., 114., 113., 141.],\n", " [ 96., 123., 100., 146.]],\n", " \n", " [[124., 132., 139., 124.],\n", " [130., 134., 121., 138.],\n", " [112., 113., 112., 141.],\n", " [ 97., 123., 99., 148.]]],\n", " \n", " \n", " [[[127., 136., 145., 133.],\n", " [112., 130., 124., 129.],\n", " [118., 120., 130., 135.],\n", " [ 95., 133., 111., 135.]],\n", " \n", " [[127., 135., 145., 131.],\n", " [114., 131., 123., 130.],\n", " [117., 120., 129., 136.],\n", " [ 95., 132., 111., 135.]],\n", " \n", " [[127., 135., 145., 130.],\n", " [115., 131., 122., 130.],\n", " [117., 121., 128., 136.],\n", " [ 95., 132., 110., 135.]],\n", " \n", " ...,\n", " \n", " [[125., 132., 140., 124.],\n", " [129., 133., 121., 138.],\n", " [114., 116., 115., 141.],\n", " [ 97., 124., 101., 145.]],\n", " \n", " [[125., 132., 140., 124.],\n", " [130., 133., 121., 138.],\n", " [113., 115., 114., 141.],\n", " [ 97., 124., 101., 146.]],\n", " \n", " [[124., 131., 139., 124.],\n", " [131., 133., 122., 139.],\n", " [113., 114., 113., 140.],\n", " [ 97., 123., 100., 147.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[135., 130., 137., 135.],\n", " [117., 129., 137., 138.],\n", " [121., 125., 134., 136.],\n", " [109., 136., 119., 139.]],\n", " \n", " [[135., 130., 137., 134.],\n", " [119., 129., 136., 138.],\n", " [121., 125., 134., 137.],\n", " [109., 135., 119., 139.]],\n", " \n", " [[135., 130., 137., 133.],\n", " [121., 129., 135., 138.],\n", " [121., 126., 133., 137.],\n", " [109., 134., 118., 138.]],\n", " \n", " ...,\n", " \n", " [[127., 126., 134., 129.],\n", " [134., 130., 132., 143.],\n", " [124., 123., 128., 137.],\n", " [105., 128., 113., 143.]],\n", " \n", " [[126., 126., 133., 130.],\n", " [135., 130., 132., 143.],\n", " [124., 122., 128., 136.],\n", " [104., 128., 113., 143.]],\n", " \n", " [[125., 125., 132., 130.],\n", " [135., 131., 132., 144.],\n", " [125., 121., 128., 136.],\n", " [104., 127., 112., 144.]]],\n", " \n", " \n", " [[[136., 130., 136., 135.],\n", " [117., 129., 138., 138.],\n", " [121., 125., 135., 136.],\n", " [110., 136., 120., 140.]],\n", " \n", " [[136., 129., 136., 134.],\n", " [119., 129., 137., 139.],\n", " [121., 126., 134., 137.],\n", " [110., 135., 119., 139.]],\n", " \n", " [[135., 129., 136., 133.],\n", " [121., 129., 137., 139.],\n", " [121., 126., 133., 137.],\n", " [110., 135., 119., 139.]],\n", " \n", " ...,\n", " \n", " [[127., 126., 133., 130.],\n", " [134., 130., 133., 143.],\n", " [125., 123., 129., 136.],\n", " [106., 128., 114., 143.]],\n", " \n", " [[126., 125., 132., 130.],\n", " [135., 130., 133., 143.],\n", " [125., 122., 129., 136.],\n", " [105., 128., 114., 144.]],\n", " \n", " [[125., 125., 132., 131.],\n", " [135., 131., 134., 144.],\n", " [126., 121., 129., 135.],\n", " [104., 128., 113., 144.]]],\n", " \n", " \n", " [[[137., 129., 135., 136.],\n", " [117., 129., 140., 139.],\n", " [121., 126., 135., 136.],\n", " [112., 136., 120., 140.]],\n", " \n", " [[136., 129., 135., 135.],\n", " [119., 129., 139., 139.],\n", " [121., 126., 134., 136.],\n", " [112., 136., 120., 140.]],\n", " \n", " [[136., 129., 135., 134.],\n", " [121., 129., 138., 139.],\n", " [121., 127., 134., 137.],\n", " [111., 135., 119., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 125., 132., 131.],\n", " [134., 130., 134., 143.],\n", " [125., 124., 130., 136.],\n", " [106., 129., 115., 143.]],\n", " \n", " [[126., 125., 132., 131.],\n", " [135., 130., 135., 143.],\n", " [126., 123., 130., 136.],\n", " [106., 128., 115., 144.]],\n", " \n", " [[125., 124., 131., 131.],\n", " [135., 131., 135., 144.],\n", " [126., 122., 131., 135.],\n", " [105., 128., 114., 145.]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[130., 146., 145., 140.],\n", " [100., 138., 129., 133.],\n", " [112., 118., 129., 113.],\n", " [111., 132., 116., 135.]],\n", " \n", " [[130., 146., 145., 138.],\n", " [102., 138., 129., 133.],\n", " [113., 118., 127., 113.],\n", " [112., 131., 116., 135.]],\n", " \n", " [[130., 146., 145., 136.],\n", " [104., 138., 129., 132.],\n", " [114., 118., 125., 114.],\n", " [112., 131., 115., 136.]],\n", " \n", " ...,\n", " \n", " [[131., 144., 143., 125.],\n", " [120., 140., 135., 131.],\n", " [124., 115., 109., 117.],\n", " [116., 122., 108., 148.]],\n", " \n", " [[131., 144., 142., 125.],\n", " [120., 140., 136., 131.],\n", " [125., 114., 108., 117.],\n", " [116., 122., 107., 150.]],\n", " \n", " [[131., 144., 142., 125.],\n", " [121., 141., 137., 131.],\n", " [126., 113., 107., 117.],\n", " [116., 121., 107., 151.]]],\n", " \n", " \n", " [[[130., 145., 145., 140.],\n", " [101., 138., 129., 134.],\n", " [112., 119., 129., 113.],\n", " [112., 132., 117., 134.]],\n", " \n", " [[130., 145., 145., 138.],\n", " [103., 138., 129., 134.],\n", " [113., 119., 127., 114.],\n", " [113., 131., 116., 135.]],\n", " \n", " [[130., 145., 145., 136.],\n", " [105., 138., 129., 134.],\n", " [114., 119., 126., 114.],\n", " [113., 131., 115., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 142., 126.],\n", " [121., 139., 135., 132.],\n", " [125., 116., 110., 117.],\n", " [116., 123., 108., 147.]],\n", " \n", " [[130., 143., 142., 125.],\n", " [121., 140., 136., 132.],\n", " [126., 115., 109., 117.],\n", " [116., 122., 108., 149.]],\n", " \n", " [[130., 143., 141., 125.],\n", " [122., 140., 137., 132.],\n", " [127., 114., 108., 117.],\n", " [116., 121., 107., 150.]]],\n", " \n", " \n", " [[[130., 144., 144., 140.],\n", " [102., 137., 130., 135.],\n", " [113., 119., 129., 113.],\n", " [113., 132., 117., 133.]],\n", " \n", " [[130., 144., 145., 138.],\n", " [104., 137., 130., 135.],\n", " [113., 120., 128., 114.],\n", " [113., 131., 116., 134.]],\n", " \n", " [[130., 144., 144., 136.],\n", " [105., 137., 130., 135.],\n", " [114., 120., 126., 115.],\n", " [114., 131., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[130., 142., 142., 126.],\n", " [122., 139., 135., 133.],\n", " [126., 118., 111., 117.],\n", " [116., 123., 109., 147.]],\n", " \n", " [[130., 142., 141., 126.],\n", " [122., 139., 136., 133.],\n", " [127., 117., 110., 117.],\n", " [116., 122., 108., 148.]],\n", " \n", " [[130., 142., 141., 126.],\n", " [123., 139., 137., 133.],\n", " [128., 116., 109., 117.],\n", " [116., 121., 108., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[131., 130., 139., 142.],\n", " [107., 131., 139., 150.],\n", " [113., 128., 133., 115.],\n", " [126., 133., 118., 132.]],\n", " \n", " [[130., 130., 139., 141.],\n", " [109., 131., 139., 150.],\n", " [114., 129., 132., 116.],\n", " [125., 132., 118., 132.]],\n", " \n", " [[130., 130., 139., 140.],\n", " [111., 131., 139., 149.],\n", " [116., 129., 131., 116.],\n", " [125., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 135., 132.],\n", " [129., 134., 141., 143.],\n", " [134., 129., 124., 114.],\n", " [119., 127., 113., 143.]],\n", " \n", " [[125., 126., 135., 132.],\n", " [129., 134., 141., 143.],\n", " [136., 129., 124., 113.],\n", " [119., 127., 112., 144.]],\n", " \n", " [[125., 126., 134., 132.],\n", " [130., 135., 142., 142.],\n", " [138., 128., 124., 113.],\n", " [118., 126., 112., 145.]]],\n", " \n", " \n", " [[[131., 129., 138., 143.],\n", " [108., 131., 140., 151.],\n", " [113., 129., 133., 115.],\n", " [127., 133., 118., 133.]],\n", " \n", " [[130., 128., 138., 141.],\n", " [110., 130., 140., 151.],\n", " [114., 129., 132., 116.],\n", " [127., 133., 118., 133.]],\n", " \n", " [[130., 128., 138., 140.],\n", " [111., 130., 139., 150.],\n", " [116., 130., 131., 116.],\n", " [126., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 125., 135., 133.],\n", " [129., 134., 141., 144.],\n", " [135., 130., 126., 113.],\n", " [120., 128., 113., 143.]],\n", " \n", " [[125., 125., 134., 133.],\n", " [130., 134., 142., 143.],\n", " [137., 129., 125., 113.],\n", " [119., 127., 113., 144.]],\n", " \n", " [[124., 124., 134., 133.],\n", " [130., 135., 143., 143.],\n", " [138., 129., 125., 112.],\n", " [118., 127., 113., 145.]]],\n", " \n", " \n", " [[[131., 127., 138., 143.],\n", " [108., 130., 141., 152.],\n", " [113., 129., 133., 115.],\n", " [128., 133., 118., 133.]],\n", " \n", " [[130., 127., 138., 142.],\n", " [110., 130., 141., 152.],\n", " [114., 130., 132., 115.],\n", " [128., 133., 118., 133.]],\n", " \n", " [[130., 127., 138., 141.],\n", " [112., 130., 140., 151.],\n", " [116., 131., 132., 116.],\n", " [127., 132., 117., 134.]],\n", " \n", " ...,\n", " \n", " [[125., 124., 134., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 131., 127., 113.],\n", " [120., 128., 113., 143.]],\n", " \n", " [[124., 123., 134., 134.],\n", " [130., 134., 142., 144.],\n", " [137., 130., 126., 112.],\n", " [119., 128., 113., 144.]],\n", " \n", " [[124., 123., 133., 134.],\n", " [131., 135., 143., 144.],\n", " [139., 129., 126., 112.],\n", " [119., 127., 113., 145.]]]],\n", " \n", " \n", " \n", " [[[[130., 147., 145., 141.],\n", " [ 99., 140., 129., 133.],\n", " [112., 117., 128., 111.],\n", " [113., 131., 117., 135.]],\n", " \n", " [[131., 147., 145., 139.],\n", " [101., 139., 129., 133.],\n", " [113., 118., 127., 111.],\n", " [113., 131., 116., 136.]],\n", " \n", " [[131., 147., 145., 137.],\n", " [103., 139., 129., 133.],\n", " [113., 118., 125., 112.],\n", " [114., 130., 115., 136.]],\n", " \n", " ...,\n", " \n", " [[132., 145., 143., 126.],\n", " [119., 141., 136., 131.],\n", " [125., 115., 109., 115.],\n", " [117., 122., 108., 149.]],\n", " \n", " [[131., 145., 142., 126.],\n", " [119., 141., 137., 131.],\n", " [126., 114., 108., 115.],\n", " [118., 121., 108., 150.]],\n", " \n", " [[131., 145., 142., 126.],\n", " [120., 141., 138., 131.],\n", " [127., 113., 107., 115.],\n", " [118., 121., 107., 151.]]],\n", " \n", " \n", " [[[130., 145., 145., 141.],\n", " [100., 139., 130., 135.],\n", " [112., 118., 129., 111.],\n", " [114., 131., 117., 134.]],\n", " \n", " [[131., 145., 145., 139.],\n", " [102., 139., 130., 134.],\n", " [113., 119., 127., 112.],\n", " [114., 131., 116., 135.]],\n", " \n", " [[131., 145., 145., 137.],\n", " [104., 138., 130., 134.],\n", " [114., 119., 126., 112.],\n", " [115., 130., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 144., 142., 126.],\n", " [120., 140., 136., 132.],\n", " [126., 116., 110., 115.],\n", " [118., 122., 109., 148.]],\n", " \n", " [[131., 144., 142., 126.],\n", " [120., 140., 137., 132.],\n", " [127., 115., 109., 115.],\n", " [118., 122., 108., 149.]],\n", " \n", " [[131., 144., 141., 126.],\n", " [121., 141., 138., 132.],\n", " [128., 114., 108., 115.],\n", " [118., 121., 107., 151.]]],\n", " \n", " \n", " [[[130., 144., 144., 141.],\n", " [101., 138., 130., 136.],\n", " [112., 119., 129., 111.],\n", " [115., 131., 117., 134.]],\n", " \n", " [[131., 144., 144., 139.],\n", " [103., 138., 130., 136.],\n", " [113., 120., 128., 112.],\n", " [115., 131., 116., 134.]],\n", " \n", " [[131., 144., 144., 137.],\n", " [105., 138., 130., 136.],\n", " [114., 120., 126., 113.],\n", " [115., 130., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 142., 127.],\n", " [121., 139., 136., 133.],\n", " [127., 117., 111., 115.],\n", " [118., 123., 109., 147.]],\n", " \n", " [[131., 142., 141., 126.],\n", " [121., 140., 137., 133.],\n", " [128., 116., 110., 115.],\n", " [118., 122., 108., 148.]],\n", " \n", " [[130., 142., 141., 126.],\n", " [122., 140., 138., 133.],\n", " [129., 115., 109., 115.],\n", " [118., 121., 108., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 130., 139., 143.],\n", " [107., 131., 139., 151.],\n", " [112., 128., 132., 114.],\n", " [127., 132., 118., 132.]],\n", " \n", " [[130., 129., 139., 142.],\n", " [109., 131., 139., 151.],\n", " [114., 129., 132., 114.],\n", " [127., 132., 117., 132.]],\n", " \n", " [[130., 129., 139., 141.],\n", " [111., 131., 139., 150.],\n", " [115., 129., 131., 114.],\n", " [127., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 135., 133.],\n", " [128., 134., 141., 143.],\n", " [135., 129., 124., 112.],\n", " [121., 127., 112., 143.]],\n", " \n", " [[125., 126., 135., 133.],\n", " [129., 135., 142., 143.],\n", " [137., 129., 124., 111.],\n", " [120., 127., 112., 144.]],\n", " \n", " [[125., 125., 134., 133.],\n", " [130., 135., 142., 142.],\n", " [138., 128., 124., 111.],\n", " [119., 126., 112., 146.]]],\n", " \n", " \n", " [[[130., 128., 138., 144.],\n", " [107., 131., 140., 152.],\n", " [112., 129., 133., 114.],\n", " [128., 133., 118., 132.]],\n", " \n", " [[130., 128., 138., 142.],\n", " [109., 131., 140., 152.],\n", " [114., 129., 132., 114.],\n", " [128., 132., 117., 133.]],\n", " \n", " [[130., 128., 138., 141.],\n", " [111., 131., 139., 151.],\n", " [115., 130., 131., 114.],\n", " [128., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 125., 135., 133.],\n", " [128., 134., 142., 144.],\n", " [135., 130., 125., 112.],\n", " [121., 127., 112., 143.]],\n", " \n", " [[125., 124., 134., 134.],\n", " [129., 135., 142., 144.],\n", " [137., 130., 125., 111.],\n", " [120., 127., 112., 144.]],\n", " \n", " [[124., 124., 134., 134.],\n", " [130., 135., 143., 143.],\n", " [139., 129., 125., 110.],\n", " [120., 127., 112., 146.]]],\n", " \n", " \n", " [[[130., 127., 138., 144.],\n", " [107., 131., 141., 153.],\n", " [112., 129., 133., 113.],\n", " [129., 133., 118., 133.]],\n", " \n", " [[130., 127., 138., 143.],\n", " [109., 131., 141., 153.],\n", " [113., 130., 132., 114.],\n", " [129., 132., 117., 133.]],\n", " \n", " [[130., 126., 138., 142.],\n", " [111., 131., 140., 152.],\n", " [115., 131., 132., 114.],\n", " [129., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 123., 134., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 131., 126., 111.],\n", " [121., 128., 113., 143.]],\n", " \n", " [[124., 123., 134., 134.],\n", " [129., 135., 143., 144.],\n", " [138., 131., 126., 111.],\n", " [121., 127., 113., 144.]],\n", " \n", " [[124., 123., 133., 134.],\n", " [130., 135., 144., 144.],\n", " [140., 130., 126., 110.],\n", " [120., 127., 112., 146.]]]],\n", " \n", " \n", " \n", " [[[[131., 147., 145., 142.],\n", " [ 98., 141., 129., 134.],\n", " [111., 116., 128., 109.],\n", " [114., 131., 117., 135.]],\n", " \n", " [[131., 147., 145., 140.],\n", " [100., 140., 130., 134.],\n", " [112., 117., 127., 109.],\n", " [115., 130., 116., 136.]],\n", " \n", " [[131., 147., 145., 139.],\n", " [102., 140., 130., 133.],\n", " [113., 117., 125., 110.],\n", " [115., 130., 115., 136.]],\n", " \n", " ...,\n", " \n", " [[132., 146., 143., 127.],\n", " [118., 141., 136., 131.],\n", " [126., 115., 109., 113.],\n", " [119., 122., 108., 149.]],\n", " \n", " [[132., 146., 142., 127.],\n", " [119., 142., 137., 131.],\n", " [127., 114., 108., 113.],\n", " [119., 121., 108., 150.]],\n", " \n", " [[132., 146., 142., 126.],\n", " [119., 142., 139., 131.],\n", " [128., 113., 107., 113.],\n", " [119., 120., 107., 152.]]],\n", " \n", " \n", " [[[131., 146., 145., 142.],\n", " [ 99., 140., 130., 135.],\n", " [111., 117., 129., 109.],\n", " [115., 131., 117., 135.]],\n", " \n", " [[131., 146., 145., 140.],\n", " [101., 140., 130., 135.],\n", " [112., 118., 127., 110.],\n", " [116., 130., 116., 135.]],\n", " \n", " [[131., 146., 145., 139.],\n", " [103., 139., 130., 135.],\n", " [113., 118., 126., 110.],\n", " [116., 130., 116., 136.]],\n", " \n", " ...,\n", " \n", " [[132., 145., 142., 127.],\n", " [119., 141., 137., 132.],\n", " [127., 116., 110., 113.],\n", " [119., 122., 109., 148.]],\n", " \n", " [[131., 144., 142., 127.],\n", " [120., 141., 138., 132.],\n", " [128., 115., 109., 113.],\n", " [119., 121., 108., 150.]],\n", " \n", " [[131., 144., 141., 127.],\n", " [120., 141., 139., 132.],\n", " [129., 114., 108., 113.],\n", " [119., 121., 108., 151.]]],\n", " \n", " \n", " [[[131., 145., 144., 142.],\n", " [100., 139., 131., 137.],\n", " [111., 118., 129., 110.],\n", " [116., 131., 117., 134.]],\n", " \n", " [[131., 145., 144., 140.],\n", " [102., 139., 131., 137.],\n", " [112., 119., 127., 110.],\n", " [117., 131., 116., 134.]],\n", " \n", " [[131., 145., 144., 139.],\n", " [104., 139., 131., 136.],\n", " [113., 119., 126., 111.],\n", " [117., 130., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 142., 127.],\n", " [120., 140., 137., 133.],\n", " [128., 117., 111., 113.],\n", " [119., 122., 109., 147.]],\n", " \n", " [[131., 143., 141., 127.],\n", " [121., 140., 138., 133.],\n", " [129., 116., 110., 113.],\n", " [119., 122., 108., 149.]],\n", " \n", " [[131., 143., 141., 127.],\n", " [121., 141., 139., 132.],\n", " [130., 115., 109., 113.],\n", " [120., 121., 108., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 129., 139., 144.],\n", " [106., 132., 139., 152.],\n", " [111., 128., 132., 112.],\n", " [128., 132., 117., 132.]],\n", " \n", " [[130., 129., 139., 143.],\n", " [108., 132., 139., 152.],\n", " [113., 129., 132., 112.],\n", " [128., 132., 117., 132.]],\n", " \n", " [[130., 129., 139., 142.],\n", " [110., 132., 139., 151.],\n", " [114., 129., 131., 112.],\n", " [128., 131., 116., 133.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 135., 133.],\n", " [128., 135., 142., 144.],\n", " [135., 130., 124., 110.],\n", " [122., 127., 112., 143.]],\n", " \n", " [[125., 126., 135., 133.],\n", " [128., 135., 142., 143.],\n", " [137., 129., 124., 110.],\n", " [122., 126., 111., 145.]],\n", " \n", " [[125., 125., 134., 134.],\n", " [129., 136., 143., 142.],\n", " [139., 128., 123., 109.],\n", " [121., 126., 111., 146.]]],\n", " \n", " \n", " [[[130., 128., 138., 145.],\n", " [106., 132., 140., 153.],\n", " [111., 129., 133., 112.],\n", " [129., 132., 117., 132.]],\n", " \n", " [[130., 128., 138., 143.],\n", " [108., 132., 140., 153.],\n", " [113., 129., 132., 112.],\n", " [129., 132., 117., 133.]],\n", " \n", " [[130., 127., 138., 142.],\n", " [110., 131., 139., 152.],\n", " [114., 130., 131., 112.],\n", " [129., 132., 116., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 124., 135., 134.],\n", " [128., 135., 142., 144.],\n", " [136., 130., 125., 110.],\n", " [122., 127., 112., 143.]],\n", " \n", " [[125., 124., 134., 134.],\n", " [129., 135., 143., 144.],\n", " [138., 130., 125., 109.],\n", " [122., 127., 112., 145.]],\n", " \n", " [[124., 124., 134., 134.],\n", " [130., 136., 143., 143.],\n", " [140., 129., 125., 109.],\n", " [121., 126., 111., 146.]]],\n", " \n", " \n", " [[[130., 126., 138., 145.],\n", " [106., 131., 141., 154.],\n", " [111., 129., 133., 112.],\n", " [130., 132., 117., 133.]],\n", " \n", " [[130., 126., 138., 144.],\n", " [108., 131., 141., 154.],\n", " [113., 130., 132., 112.],\n", " [130., 132., 117., 133.]],\n", " \n", " [[130., 126., 138., 143.],\n", " [110., 131., 140., 153.],\n", " [114., 131., 132., 112.],\n", " [130., 132., 116., 133.]],\n", " \n", " ...,\n", " \n", " [[125., 123., 134., 135.],\n", " [128., 135., 143., 145.],\n", " [136., 131., 126., 109.],\n", " [123., 128., 112., 143.]],\n", " \n", " [[124., 123., 134., 135.],\n", " [129., 135., 143., 145.],\n", " [138., 131., 126., 109.],\n", " [122., 127., 112., 145.]],\n", " \n", " [[124., 122., 133., 135.],\n", " [130., 136., 144., 144.],\n", " [140., 130., 126., 108.],\n", " [121., 127., 112., 146.]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[125., 135., 147., 133.],\n", " [111., 131., 120., 128.],\n", " [117., 119., 128., 137.],\n", " [ 89., 132., 108., 137.]],\n", " \n", " [[126., 134., 147., 132.],\n", " [113., 131., 119., 129.],\n", " [116., 119., 127., 138.],\n", " [ 89., 132., 107., 137.]],\n", " \n", " [[126., 134., 147., 131.],\n", " [114., 131., 119., 129.],\n", " [115., 119., 126., 139.],\n", " [ 89., 131., 106., 138.]],\n", " \n", " ...,\n", " \n", " [[125., 130., 142., 124.],\n", " [129., 132., 117., 139.],\n", " [109., 114., 113., 144.],\n", " [ 92., 123., 96., 147.]],\n", " \n", " [[125., 130., 141., 124.],\n", " [129., 133., 117., 140.],\n", " [109., 113., 112., 144.],\n", " [ 92., 123., 95., 148.]],\n", " \n", " [[124., 130., 140., 124.],\n", " [130., 133., 118., 141.],\n", " [108., 112., 111., 144.],\n", " [ 92., 122., 95., 149.]]],\n", " \n", " \n", " [[[126., 134., 147., 133.],\n", " [112., 131., 121., 129.],\n", " [117., 119., 129., 138.],\n", " [ 90., 133., 108., 137.]],\n", " \n", " [[126., 134., 147., 132.],\n", " [114., 131., 120., 129.],\n", " [116., 119., 128., 139.],\n", " [ 90., 132., 107., 137.]],\n", " \n", " [[127., 134., 146., 131.],\n", " [115., 131., 120., 130.],\n", " [116., 120., 126., 139.],\n", " [ 90., 131., 107., 137.]],\n", " \n", " ...,\n", " \n", " [[125., 130., 141., 124.],\n", " [129., 132., 117., 140.],\n", " [110., 115., 114., 144.],\n", " [ 92., 124., 97., 146.]],\n", " \n", " [[125., 129., 141., 124.],\n", " [130., 132., 118., 140.],\n", " [109., 114., 113., 144.],\n", " [ 93., 123., 97., 147.]],\n", " \n", " [[124., 129., 140., 124.],\n", " [131., 133., 118., 141.],\n", " [109., 113., 112., 144.],\n", " [ 93., 123., 96., 148.]]],\n", " \n", " \n", " [[[127., 134., 146., 133.],\n", " [113., 130., 122., 130.],\n", " [117., 119., 129., 138.],\n", " [ 91., 133., 109., 137.]],\n", " \n", " [[127., 134., 146., 132.],\n", " [114., 130., 121., 130.],\n", " [117., 120., 128., 139.],\n", " [ 91., 132., 108., 137.]],\n", " \n", " [[127., 133., 146., 130.],\n", " [116., 130., 120., 131.],\n", " [116., 120., 127., 140.],\n", " [ 91., 131., 107., 137.]],\n", " \n", " ...,\n", " \n", " [[125., 129., 141., 124.],\n", " [130., 132., 118., 140.],\n", " [111., 116., 115., 144.],\n", " [ 93., 124., 98., 146.]],\n", " \n", " [[125., 129., 140., 125.],\n", " [131., 132., 118., 141.],\n", " [110., 115., 114., 144.],\n", " [ 93., 123., 98., 147.]],\n", " \n", " [[125., 129., 140., 125.],\n", " [131., 132., 119., 142.],\n", " [110., 114., 114., 144.],\n", " [ 93., 123., 97., 148.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[137., 130., 138., 135.],\n", " [118., 129., 136., 137.],\n", " [120., 124., 134., 140.],\n", " [106., 136., 117., 142.]],\n", " \n", " [[136., 129., 138., 134.],\n", " [120., 129., 135., 138.],\n", " [120., 125., 133., 140.],\n", " [106., 135., 117., 141.]],\n", " \n", " [[136., 129., 138., 134.],\n", " [122., 129., 134., 138.],\n", " [120., 125., 133., 141.],\n", " [106., 134., 116., 141.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 134., 130.],\n", " [135., 129., 130., 144.],\n", " [120., 122., 129., 141.],\n", " [103., 127., 111., 144.]],\n", " \n", " [[127., 125., 133., 131.],\n", " [135., 130., 130., 145.],\n", " [121., 121., 129., 140.],\n", " [102., 127., 110., 145.]],\n", " \n", " [[126., 124., 132., 131.],\n", " [136., 130., 130., 146.],\n", " [121., 120., 129., 140.],\n", " [102., 126., 110., 146.]]],\n", " \n", " \n", " [[[137., 129., 137., 136.],\n", " [118., 129., 137., 138.],\n", " [121., 125., 135., 140.],\n", " [108., 136., 118., 142.]],\n", " \n", " [[137., 129., 137., 135.],\n", " [120., 129., 137., 138.],\n", " [120., 125., 134., 140.],\n", " [108., 135., 117., 142.]],\n", " \n", " [[137., 129., 137., 134.],\n", " [122., 129., 136., 139.],\n", " [120., 125., 133., 141.],\n", " [107., 135., 117., 142.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 133., 131.],\n", " [135., 129., 131., 144.],\n", " [121., 122., 130., 140.],\n", " [104., 128., 112., 144.]],\n", " \n", " [[127., 124., 132., 131.],\n", " [135., 130., 132., 145.],\n", " [121., 121., 130., 140.],\n", " [103., 127., 111., 145.]],\n", " \n", " [[126., 124., 132., 132.],\n", " [136., 130., 132., 146.],\n", " [122., 120., 130., 139.],\n", " [103., 127., 111., 146.]]],\n", " \n", " \n", " [[[138., 128., 136., 136.],\n", " [118., 129., 139., 138.],\n", " [121., 125., 135., 139.],\n", " [109., 136., 119., 143.]],\n", " \n", " [[138., 128., 136., 135.],\n", " [120., 129., 138., 139.],\n", " [121., 126., 134., 140.],\n", " [109., 135., 118., 143.]],\n", " \n", " [[137., 128., 136., 135.],\n", " [122., 129., 137., 139.],\n", " [120., 126., 134., 140.],\n", " [109., 135., 117., 142.]],\n", " \n", " ...,\n", " \n", " [[128., 124., 132., 132.],\n", " [135., 129., 133., 145.],\n", " [122., 123., 131., 140.],\n", " [105., 128., 113., 144.]],\n", " \n", " [[127., 124., 132., 132.],\n", " [135., 129., 133., 145.],\n", " [122., 122., 131., 139.],\n", " [104., 127., 112., 145.]],\n", " \n", " [[126., 123., 131., 132.],\n", " [136., 130., 133., 146.],\n", " [123., 121., 131., 139.],\n", " [104., 127., 112., 146.]]]],\n", " \n", " \n", " \n", " [[[[125., 136., 147., 133.],\n", " [110., 131., 121., 128.],\n", " [117., 119., 128., 136.],\n", " [ 91., 133., 108., 137.]],\n", " \n", " [[126., 135., 147., 132.],\n", " [112., 131., 120., 129.],\n", " [116., 119., 127., 136.],\n", " [ 91., 132., 108., 137.]],\n", " \n", " [[126., 135., 147., 131.],\n", " [114., 131., 120., 129.],\n", " [115., 120., 126., 137.],\n", " [ 91., 131., 107., 137.]],\n", " \n", " ...,\n", " \n", " [[125., 131., 142., 124.],\n", " [128., 133., 118., 138.],\n", " [110., 115., 112., 142.],\n", " [ 93., 123., 97., 147.]],\n", " \n", " [[125., 131., 141., 124.],\n", " [129., 133., 119., 139.],\n", " [110., 114., 112., 143.],\n", " [ 94., 123., 97., 148.]],\n", " \n", " [[125., 131., 141., 124.],\n", " [130., 133., 119., 140.],\n", " [110., 113., 111., 143.],\n", " [ 94., 122., 96., 149.]]],\n", " \n", " \n", " [[[126., 135., 147., 133.],\n", " [111., 131., 122., 129.],\n", " [117., 119., 129., 136.],\n", " [ 92., 133., 109., 137.]],\n", " \n", " [[126., 135., 147., 132.],\n", " [113., 131., 121., 130.],\n", " [116., 120., 128., 137.],\n", " [ 92., 132., 108., 137.]],\n", " \n", " [[127., 135., 146., 130.],\n", " [114., 131., 121., 130.],\n", " [116., 120., 126., 138.],\n", " [ 92., 131., 108., 137.]],\n", " \n", " ...,\n", " \n", " [[125., 131., 142., 124.],\n", " [129., 132., 119., 139.],\n", " [111., 116., 114., 142.],\n", " [ 94., 124., 98., 146.]],\n", " \n", " [[125., 131., 141., 124.],\n", " [130., 133., 119., 140.],\n", " [111., 115., 113., 142.],\n", " [ 94., 123., 98., 147.]],\n", " \n", " [[125., 130., 140., 124.],\n", " [130., 133., 120., 141.],\n", " [110., 113., 112., 142.],\n", " [ 94., 122., 97., 149.]]],\n", " \n", " \n", " [[[127., 135., 146., 133.],\n", " [112., 131., 123., 130.],\n", " [117., 120., 129., 137.],\n", " [ 93., 133., 110., 136.]],\n", " \n", " [[127., 135., 146., 132.],\n", " [114., 131., 122., 130.],\n", " [117., 120., 128., 137.],\n", " [ 93., 132., 109., 137.]],\n", " \n", " [[127., 134., 146., 130.],\n", " [115., 131., 121., 131.],\n", " [116., 121., 127., 138.],\n", " [ 93., 132., 108., 137.]],\n", " \n", " ...,\n", " \n", " [[126., 130., 141., 124.],\n", " [130., 132., 119., 140.],\n", " [112., 116., 115., 142.],\n", " [ 95., 124., 99., 146.]],\n", " \n", " [[125., 130., 140., 124.],\n", " [130., 132., 120., 140.],\n", " [112., 115., 114., 142.],\n", " [ 95., 123., 99., 147.]],\n", " \n", " [[125., 130., 140., 124.],\n", " [131., 133., 120., 141.],\n", " [111., 114., 113., 142.],\n", " [ 95., 123., 98., 148.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[136., 130., 138., 136.],\n", " [117., 129., 136., 138.],\n", " [120., 125., 134., 138.],\n", " [108., 136., 118., 141.]],\n", " \n", " [[136., 130., 138., 135.],\n", " [119., 129., 136., 138.],\n", " [120., 125., 133., 139.],\n", " [107., 135., 117., 141.]],\n", " \n", " [[135., 130., 138., 134.],\n", " [121., 129., 135., 139.],\n", " [120., 126., 133., 139.],\n", " [107., 134., 117., 140.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 134., 130.],\n", " [134., 130., 131., 144.],\n", " [122., 123., 128., 139.],\n", " [104., 127., 111., 144.]],\n", " \n", " [[127., 125., 133., 130.],\n", " [135., 130., 131., 145.],\n", " [122., 122., 128., 138.],\n", " [103., 127., 111., 144.]],\n", " \n", " [[126., 125., 133., 131.],\n", " [135., 130., 131., 145.],\n", " [122., 121., 128., 138.],\n", " [103., 127., 111., 145.]]],\n", " \n", " \n", " [[[137., 129., 137., 136.],\n", " [117., 129., 138., 139.],\n", " [120., 125., 134., 138.],\n", " [109., 136., 118., 141.]],\n", " \n", " [[136., 129., 137., 135.],\n", " [119., 129., 137., 139.],\n", " [120., 126., 134., 138.],\n", " [109., 135., 118., 141.]],\n", " \n", " [[136., 129., 137., 134.],\n", " [121., 129., 136., 139.],\n", " [120., 126., 133., 139.],\n", " [109., 135., 117., 141.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 133., 131.],\n", " [134., 129., 132., 144.],\n", " [122., 123., 129., 138.],\n", " [105., 128., 112., 144.]],\n", " \n", " [[127., 125., 133., 131.],\n", " [135., 130., 132., 145.],\n", " [123., 122., 129., 138.],\n", " [104., 127., 112., 145.]],\n", " \n", " [[126., 124., 132., 132.],\n", " [135., 130., 133., 146.],\n", " [123., 121., 129., 137.],\n", " [104., 127., 112., 145.]]],\n", " \n", " \n", " [[[137., 129., 136., 137.],\n", " [118., 129., 139., 139.],\n", " [120., 126., 135., 138.],\n", " [110., 136., 119., 142.]],\n", " \n", " [[137., 129., 136., 136.],\n", " [119., 129., 139., 139.],\n", " [120., 126., 134., 138.],\n", " [110., 135., 118., 142.]],\n", " \n", " [[137., 128., 136., 135.],\n", " [121., 129., 138., 140.],\n", " [120., 127., 134., 138.],\n", " [110., 135., 118., 142.]],\n", " \n", " ...,\n", " \n", " [[128., 124., 132., 132.],\n", " [134., 129., 134., 145.],\n", " [123., 124., 130., 138.],\n", " [106., 128., 113., 144.]],\n", " \n", " [[127., 124., 132., 132.],\n", " [135., 130., 134., 145.],\n", " [124., 123., 131., 137.],\n", " [105., 128., 113., 145.]],\n", " \n", " [[126., 124., 131., 132.],\n", " [135., 130., 134., 146.],\n", " [124., 122., 131., 137.],\n", " [104., 127., 113., 146.]]]],\n", " \n", " \n", " \n", " [[[[125., 137., 147., 133.],\n", " [110., 131., 122., 128.],\n", " [116., 119., 128., 134.],\n", " [ 92., 133., 109., 136.]],\n", " \n", " [[126., 136., 147., 132.],\n", " [111., 131., 121., 129.],\n", " [116., 120., 127., 135.],\n", " [ 92., 132., 108., 137.]],\n", " \n", " [[126., 136., 147., 131.],\n", " [113., 131., 121., 130.],\n", " [115., 120., 126., 136.],\n", " [ 92., 132., 108., 137.]],\n", " \n", " ...,\n", " \n", " [[126., 132., 142., 123.],\n", " [128., 133., 119., 138.],\n", " [111., 115., 112., 141.],\n", " [ 95., 123., 98., 147.]],\n", " \n", " [[125., 132., 142., 123.],\n", " [128., 133., 120., 139.],\n", " [111., 114., 111., 141.],\n", " [ 95., 123., 98., 148.]],\n", " \n", " [[125., 132., 141., 124.],\n", " [129., 134., 120., 139.],\n", " [111., 113., 110., 141.],\n", " [ 95., 122., 97., 149.]]],\n", " \n", " \n", " [[[126., 136., 147., 133.],\n", " [110., 131., 123., 129.],\n", " [117., 120., 129., 135.],\n", " [ 93., 133., 110., 136.]],\n", " \n", " [[126., 136., 147., 132.],\n", " [112., 131., 122., 130.],\n", " [116., 120., 127., 135.],\n", " [ 93., 132., 109., 136.]],\n", " \n", " [[127., 136., 146., 130.],\n", " [114., 131., 121., 131.],\n", " [116., 120., 126., 136.],\n", " [ 93., 132., 108., 137.]],\n", " \n", " ...,\n", " \n", " [[126., 132., 142., 124.],\n", " [128., 133., 120., 139.],\n", " [112., 116., 113., 141.],\n", " [ 95., 124., 99., 146.]],\n", " \n", " [[125., 132., 141., 124.],\n", " [129., 133., 120., 139.],\n", " [112., 115., 112., 141.],\n", " [ 96., 123., 99., 147.]],\n", " \n", " [[125., 131., 140., 124.],\n", " [130., 133., 121., 140.],\n", " [112., 114., 112., 141.],\n", " [ 96., 122., 98., 149.]]],\n", " \n", " \n", " [[[127., 136., 146., 133.],\n", " [111., 131., 123., 130.],\n", " [117., 120., 129., 135.],\n", " [ 94., 133., 111., 136.]],\n", " \n", " [[127., 136., 146., 132.],\n", " [113., 131., 123., 131.],\n", " [117., 121., 128., 136.],\n", " [ 94., 133., 110., 136.]],\n", " \n", " [[127., 135., 146., 130.],\n", " [115., 131., 122., 131.],\n", " [116., 121., 127., 137.],\n", " [ 94., 132., 109., 137.]],\n", " \n", " ...,\n", " \n", " [[126., 131., 141., 124.],\n", " [129., 133., 121., 139.],\n", " [113., 117., 114., 140.],\n", " [ 96., 124., 100., 146.]],\n", " \n", " [[126., 131., 141., 124.],\n", " [130., 133., 121., 140.],\n", " [113., 116., 114., 140.],\n", " [ 96., 123., 100., 147.]],\n", " \n", " [[125., 131., 140., 124.],\n", " [131., 133., 122., 141.],\n", " [113., 115., 113., 140.],\n", " [ 96., 123., 99., 148.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[135., 130., 138., 136.],\n", " [116., 129., 137., 139.],\n", " [120., 125., 134., 137.],\n", " [109., 136., 118., 140.]],\n", " \n", " [[135., 130., 138., 135.],\n", " [118., 129., 136., 139.],\n", " [120., 126., 133., 137.],\n", " [109., 135., 118., 140.]],\n", " \n", " [[135., 130., 138., 134.],\n", " [120., 129., 135., 139.],\n", " [120., 126., 132., 137.],\n", " [109., 134., 117., 140.]],\n", " \n", " ...,\n", " \n", " [[127., 126., 134., 130.],\n", " [134., 130., 132., 144.],\n", " [123., 124., 128., 137.],\n", " [105., 128., 112., 143.]],\n", " \n", " [[127., 125., 134., 130.],\n", " [135., 130., 132., 145.],\n", " [123., 123., 128., 136.],\n", " [104., 127., 111., 144.]],\n", " \n", " [[126., 125., 133., 131.],\n", " [135., 130., 132., 145.],\n", " [124., 122., 128., 136.],\n", " [104., 127., 111., 145.]]],\n", " \n", " \n", " [[[136., 130., 137., 136.],\n", " [117., 129., 138., 139.],\n", " [120., 126., 134., 136.],\n", " [110., 136., 119., 141.]],\n", " \n", " [[136., 129., 137., 135.],\n", " [118., 129., 137., 140.],\n", " [120., 126., 133., 137.],\n", " [110., 135., 118., 140.]],\n", " \n", " [[135., 129., 137., 134.],\n", " [120., 129., 137., 140.],\n", " [120., 127., 133., 137.],\n", " [110., 135., 118., 140.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 133., 131.],\n", " [134., 130., 133., 144.],\n", " [124., 124., 129., 136.],\n", " [106., 128., 113., 144.]],\n", " \n", " [[127., 125., 133., 131.],\n", " [135., 130., 133., 145.],\n", " [124., 123., 129., 136.],\n", " [105., 127., 112., 144.]],\n", " \n", " [[126., 124., 132., 132.],\n", " [135., 130., 134., 145.],\n", " [125., 122., 129., 135.],\n", " [105., 127., 112., 145.]]],\n", " \n", " \n", " [[[137., 129., 137., 137.],\n", " [117., 129., 140., 140.],\n", " [120., 126., 134., 136.],\n", " [112., 136., 119., 141.]],\n", " \n", " [[136., 129., 136., 136.],\n", " [118., 129., 139., 140.],\n", " [120., 127., 134., 136.],\n", " [111., 135., 119., 141.]],\n", " \n", " [[136., 129., 136., 135.],\n", " [120., 129., 138., 141.],\n", " [120., 127., 133., 137.],\n", " [111., 135., 118., 141.]],\n", " \n", " ...,\n", " \n", " [[128., 125., 133., 132.],\n", " [134., 130., 134., 145.],\n", " [124., 124., 130., 136.],\n", " [107., 128., 114., 144.]],\n", " \n", " [[127., 124., 132., 132.],\n", " [135., 130., 135., 145.],\n", " [125., 124., 130., 135.],\n", " [106., 128., 113., 145.]],\n", " \n", " [[126., 124., 132., 132.],\n", " [135., 130., 135., 146.],\n", " [125., 123., 130., 135.],\n", " [105., 127., 113., 145.]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[129., 146., 147., 140.],\n", " [100., 138., 129., 134.],\n", " [112., 119., 128., 113.],\n", " [111., 132., 116., 136.]],\n", " \n", " [[130., 146., 147., 138.],\n", " [102., 138., 129., 134.],\n", " [113., 119., 126., 113.],\n", " [111., 132., 115., 136.]],\n", " \n", " [[130., 146., 147., 137.],\n", " [103., 138., 129., 134.],\n", " [114., 119., 124., 114.],\n", " [112., 131., 115., 137.]],\n", " \n", " ...,\n", " \n", " [[131., 144., 144., 126.],\n", " [119., 139., 135., 133.],\n", " [124., 117., 109., 117.],\n", " [115., 122., 107., 149.]],\n", " \n", " [[131., 144., 143., 126.],\n", " [120., 140., 136., 133.],\n", " [125., 116., 108., 117.],\n", " [115., 121., 107., 150.]],\n", " \n", " [[131., 144., 143., 125.],\n", " [121., 140., 137., 133.],\n", " [126., 115., 107., 117.],\n", " [116., 120., 106., 151.]]],\n", " \n", " \n", " [[[130., 145., 146., 140.],\n", " [101., 137., 130., 135.],\n", " [112., 120., 128., 113.],\n", " [112., 132., 116., 135.]],\n", " \n", " [[130., 145., 146., 138.],\n", " [102., 137., 130., 135.],\n", " [113., 120., 126., 114.],\n", " [112., 132., 116., 135.]],\n", " \n", " [[130., 145., 146., 137.],\n", " [104., 137., 130., 135.],\n", " [114., 120., 125., 114.],\n", " [112., 131., 115., 136.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 143., 126.],\n", " [120., 139., 135., 134.],\n", " [125., 118., 110., 117.],\n", " [115., 122., 108., 148.]],\n", " \n", " [[131., 143., 143., 126.],\n", " [121., 139., 136., 134.],\n", " [126., 117., 109., 117.],\n", " [116., 121., 107., 149.]],\n", " \n", " [[130., 142., 142., 126.],\n", " [122., 139., 137., 134.],\n", " [127., 116., 108., 117.],\n", " [116., 121., 106., 151.]]],\n", " \n", " \n", " [[[130., 144., 146., 140.],\n", " [101., 137., 130., 136.],\n", " [113., 120., 128., 113.],\n", " [113., 132., 117., 134.]],\n", " \n", " [[130., 144., 146., 138.],\n", " [103., 136., 130., 136.],\n", " [113., 121., 127., 114.],\n", " [113., 132., 116., 135.]],\n", " \n", " [[130., 144., 146., 137.],\n", " [105., 136., 130., 136.],\n", " [114., 121., 125., 115.],\n", " [113., 131., 115., 135.]],\n", " \n", " ...,\n", " \n", " [[130., 142., 143., 126.],\n", " [121., 138., 135., 135.],\n", " [126., 119., 111., 117.],\n", " [116., 123., 108., 147.]],\n", " \n", " [[130., 141., 142., 126.],\n", " [122., 138., 136., 135.],\n", " [127., 118., 110., 117.],\n", " [116., 122., 107., 148.]],\n", " \n", " [[130., 141., 142., 126.],\n", " [123., 139., 137., 135.],\n", " [128., 117., 109., 117.],\n", " [116., 121., 107., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 130., 140., 143.],\n", " [106., 130., 140., 151.],\n", " [113., 129., 132., 115.],\n", " [126., 133., 118., 133.]],\n", " \n", " [[130., 130., 140., 142.],\n", " [108., 130., 139., 151.],\n", " [114., 130., 131., 116.],\n", " [125., 133., 118., 133.]],\n", " \n", " [[130., 129., 140., 141.],\n", " [110., 130., 139., 150.],\n", " [115., 130., 130., 116.],\n", " [125., 132., 117., 134.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 136., 133.],\n", " [128., 133., 141., 145.],\n", " [134., 130., 124., 114.],\n", " [120., 127., 112., 143.]],\n", " \n", " [[126., 125., 135., 133.],\n", " [129., 134., 142., 144.],\n", " [135., 130., 124., 113.],\n", " [119., 126., 112., 145.]],\n", " \n", " [[125., 125., 135., 134.],\n", " [130., 134., 142., 144.],\n", " [137., 129., 124., 113.],\n", " [118., 126., 112., 146.]]],\n", " \n", " \n", " [[[130., 128., 139., 144.],\n", " [107., 130., 140., 152.],\n", " [113., 130., 132., 115.],\n", " [127., 133., 118., 133.]],\n", " \n", " [[130., 128., 139., 143.],\n", " [109., 130., 140., 152.],\n", " [114., 130., 131., 116.],\n", " [127., 133., 118., 134.]],\n", " \n", " [[130., 128., 139., 141.],\n", " [111., 130., 140., 151.],\n", " [115., 131., 131., 116.],\n", " [126., 132., 117., 134.]],\n", " \n", " ...,\n", " \n", " [[126., 124., 135., 134.],\n", " [128., 133., 142., 145.],\n", " [134., 131., 125., 113.],\n", " [120., 127., 112., 144.]],\n", " \n", " [[125., 124., 135., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 131., 125., 113.],\n", " [119., 127., 112., 145.]],\n", " \n", " [[125., 124., 134., 134.],\n", " [130., 134., 143., 145.],\n", " [138., 130., 125., 112.],\n", " [119., 126., 112., 146.]]],\n", " \n", " \n", " [[[131., 127., 139., 144.],\n", " [107., 130., 141., 153.],\n", " [113., 130., 132., 115.],\n", " [128., 133., 118., 134.]],\n", " \n", " [[130., 127., 139., 143.],\n", " [109., 130., 141., 153.],\n", " [114., 131., 132., 115.],\n", " [128., 133., 118., 134.]],\n", " \n", " [[130., 127., 138., 142.],\n", " [111., 130., 141., 152.],\n", " [115., 131., 131., 116.],\n", " [127., 132., 117., 134.]],\n", " \n", " ...,\n", " \n", " [[125., 123., 134., 135.],\n", " [129., 133., 143., 146.],\n", " [135., 132., 126., 113.],\n", " [120., 128., 113., 144.]],\n", " \n", " [[125., 123., 134., 135.],\n", " [129., 134., 143., 146.],\n", " [137., 131., 126., 112.],\n", " [120., 127., 113., 145.]],\n", " \n", " [[124., 122., 133., 135.],\n", " [130., 134., 144., 145.],\n", " [138., 131., 126., 112.],\n", " [119., 127., 112., 146.]]]],\n", " \n", " \n", " \n", " [[[[130., 147., 147., 141.],\n", " [ 99., 139., 129., 134.],\n", " [112., 118., 127., 111.],\n", " [112., 132., 116., 136.]],\n", " \n", " [[130., 146., 147., 139.],\n", " [101., 139., 130., 134.],\n", " [113., 119., 126., 112.],\n", " [113., 131., 116., 136.]],\n", " \n", " [[131., 146., 147., 138.],\n", " [102., 139., 130., 134.],\n", " [113., 119., 124., 112.],\n", " [113., 131., 115., 137.]],\n", " \n", " ...,\n", " \n", " [[132., 145., 144., 127.],\n", " [118., 140., 136., 133.],\n", " [125., 116., 108., 115.],\n", " [117., 122., 107., 149.]],\n", " \n", " [[131., 145., 143., 126.],\n", " [119., 140., 137., 133.],\n", " [126., 115., 107., 115.],\n", " [117., 121., 107., 150.]],\n", " \n", " [[131., 144., 143., 126.],\n", " [120., 141., 138., 133.],\n", " [127., 114., 106., 115.],\n", " [117., 120., 106., 152.]]],\n", " \n", " \n", " [[[130., 145., 146., 141.],\n", " [100., 138., 130., 136.],\n", " [112., 119., 128., 111.],\n", " [113., 132., 117., 135.]],\n", " \n", " [[130., 145., 146., 139.],\n", " [101., 138., 130., 136.],\n", " [113., 120., 126., 112.],\n", " [114., 131., 116., 136.]],\n", " \n", " [[131., 145., 146., 138.],\n", " [103., 138., 130., 136.],\n", " [113., 120., 125., 112.],\n", " [114., 131., 115., 136.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 143., 127.],\n", " [119., 139., 136., 134.],\n", " [126., 117., 109., 115.],\n", " [117., 122., 108., 148.]],\n", " \n", " [[131., 143., 143., 127.],\n", " [120., 140., 137., 134.],\n", " [127., 116., 109., 115.],\n", " [117., 121., 107., 149.]],\n", " \n", " [[131., 143., 142., 126.],\n", " [121., 140., 138., 134.],\n", " [128., 115., 108., 115.],\n", " [118., 120., 107., 151.]]],\n", " \n", " \n", " [[[130., 144., 146., 141.],\n", " [100., 137., 131., 137.],\n", " [112., 120., 128., 112.],\n", " [114., 132., 117., 134.]],\n", " \n", " [[130., 144., 146., 139.],\n", " [102., 137., 131., 137.],\n", " [113., 121., 127., 112.],\n", " [115., 131., 116., 135.]],\n", " \n", " [[131., 144., 146., 138.],\n", " [104., 137., 131., 137.],\n", " [114., 121., 125., 113.],\n", " [115., 131., 116., 135.]],\n", " \n", " ...,\n", " \n", " [[131., 142., 143., 127.],\n", " [120., 139., 136., 135.],\n", " [126., 119., 111., 115.],\n", " [117., 122., 108., 147.]],\n", " \n", " [[131., 142., 142., 127.],\n", " [121., 139., 137., 135.],\n", " [127., 118., 110., 115.],\n", " [118., 122., 108., 149.]],\n", " \n", " [[130., 142., 142., 127.],\n", " [122., 139., 138., 134.],\n", " [129., 117., 109., 115.],\n", " [118., 121., 107., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 129., 140., 144.],\n", " [106., 131., 140., 152.],\n", " [112., 129., 132., 114.],\n", " [127., 133., 118., 133.]],\n", " \n", " [[130., 129., 140., 143.],\n", " [108., 131., 139., 152.],\n", " [113., 130., 131., 114.],\n", " [127., 132., 117., 133.]],\n", " \n", " [[130., 129., 140., 142.],\n", " [110., 131., 139., 151.],\n", " [115., 130., 130., 114.],\n", " [127., 132., 117., 133.]],\n", " \n", " ...,\n", " \n", " [[126., 126., 136., 134.],\n", " [128., 134., 142., 145.],\n", " [134., 131., 124., 112.],\n", " [121., 127., 112., 144.]],\n", " \n", " [[126., 125., 135., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 130., 124., 111.],\n", " [120., 126., 111., 145.]],\n", " \n", " [[125., 125., 135., 134.],\n", " [129., 135., 143., 144.],\n", " [138., 129., 123., 111.],\n", " [120., 126., 111., 146.]]],\n", " \n", " \n", " [[[130., 128., 139., 145.],\n", " [106., 131., 141., 153.],\n", " [112., 130., 132., 114.],\n", " [128., 133., 118., 133.]],\n", " \n", " [[130., 128., 139., 144.],\n", " [108., 131., 140., 153.],\n", " [113., 130., 131., 114.],\n", " [128., 132., 117., 133.]],\n", " \n", " [[130., 128., 139., 142.],\n", " [110., 131., 140., 152.],\n", " [115., 131., 131., 114.],\n", " [128., 132., 117., 134.]],\n", " \n", " ...,\n", " \n", " [[126., 124., 135., 135.],\n", " [128., 134., 142., 146.],\n", " [135., 132., 125., 111.],\n", " [121., 127., 112., 144.]],\n", " \n", " [[125., 124., 135., 135.],\n", " [129., 134., 143., 145.],\n", " [137., 131., 125., 111.],\n", " [121., 127., 112., 145.]],\n", " \n", " [[125., 123., 134., 135.],\n", " [130., 135., 144., 145.],\n", " [138., 130., 125., 110.],\n", " [120., 126., 111., 146.]]],\n", " \n", " \n", " [[[130., 127., 139., 145.],\n", " [106., 130., 141., 154.],\n", " [112., 130., 132., 113.],\n", " [129., 133., 118., 134.]],\n", " \n", " [[130., 126., 139., 144.],\n", " [108., 130., 141., 154.],\n", " [113., 131., 132., 114.],\n", " [129., 132., 117., 134.]],\n", " \n", " [[130., 126., 139., 143.],\n", " [110., 130., 141., 153.],\n", " [115., 132., 131., 114.],\n", " [129., 132., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[125., 123., 135., 135.],\n", " [128., 134., 143., 147.],\n", " [135., 132., 126., 111.],\n", " [122., 127., 112., 144.]],\n", " \n", " [[125., 122., 134., 135.],\n", " [129., 134., 143., 146.],\n", " [137., 132., 126., 110.],\n", " [121., 127., 112., 145.]],\n", " \n", " [[124., 122., 134., 136.],\n", " [130., 135., 144., 146.],\n", " [139., 131., 126., 110.],\n", " [120., 127., 112., 146.]]]],\n", " \n", " \n", " \n", " [[[[131., 147., 147., 142.],\n", " [ 98., 140., 130., 135.],\n", " [111., 118., 127., 109.],\n", " [114., 131., 116., 136.]],\n", " \n", " [[131., 147., 147., 141.],\n", " [100., 140., 130., 135.],\n", " [112., 118., 126., 110.],\n", " [114., 131., 116., 137.]],\n", " \n", " [[131., 147., 147., 139.],\n", " [101., 140., 130., 135.],\n", " [113., 118., 124., 110.],\n", " [115., 130., 115., 137.]],\n", " \n", " ...,\n", " \n", " [[132., 145., 144., 127.],\n", " [117., 141., 137., 133.],\n", " [126., 116., 108., 113.],\n", " [119., 122., 108., 149.]],\n", " \n", " [[132., 145., 143., 127.],\n", " [118., 141., 138., 133.],\n", " [127., 115., 107., 113.],\n", " [119., 121., 107., 151.]],\n", " \n", " [[132., 145., 143., 127.],\n", " [119., 141., 139., 132.],\n", " [128., 114., 106., 113.],\n", " [119., 120., 107., 152.]]],\n", " \n", " \n", " [[[131., 146., 146., 142.],\n", " [ 99., 139., 130., 136.],\n", " [111., 119., 128., 109.],\n", " [115., 131., 117., 135.]],\n", " \n", " [[131., 146., 146., 141.],\n", " [101., 139., 130., 136.],\n", " [112., 119., 126., 110.],\n", " [115., 131., 116., 136.]],\n", " \n", " [[131., 146., 146., 139.],\n", " [102., 139., 130., 136.],\n", " [113., 119., 125., 111.],\n", " [116., 130., 115., 136.]],\n", " \n", " ...,\n", " \n", " [[132., 144., 143., 128.],\n", " [118., 140., 137., 134.],\n", " [126., 117., 109., 113.],\n", " [119., 122., 108., 148.]],\n", " \n", " [[132., 144., 143., 127.],\n", " [119., 140., 138., 133.],\n", " [127., 116., 108., 113.],\n", " [119., 121., 107., 150.]],\n", " \n", " [[131., 144., 142., 127.],\n", " [120., 141., 139., 133.],\n", " [129., 115., 107., 113.],\n", " [119., 120., 107., 151.]]],\n", " \n", " \n", " [[[131., 145., 146., 142.],\n", " [ 99., 138., 131., 138.],\n", " [111., 120., 128., 110.],\n", " [116., 131., 117., 135.]],\n", " \n", " [[131., 145., 146., 141.],\n", " [101., 138., 131., 138.],\n", " [112., 120., 126., 110.],\n", " [116., 131., 116., 135.]],\n", " \n", " [[131., 145., 146., 139.],\n", " [103., 138., 131., 137.],\n", " [113., 121., 125., 111.],\n", " [117., 130., 116., 136.]],\n", " \n", " ...,\n", " \n", " [[131., 143., 143., 128.],\n", " [119., 139., 137., 135.],\n", " [127., 118., 110., 113.],\n", " [119., 122., 108., 148.]],\n", " \n", " [[131., 143., 142., 128.],\n", " [120., 140., 138., 134.],\n", " [128., 117., 109., 113.],\n", " [119., 121., 108., 149.]],\n", " \n", " [[131., 142., 142., 128.],\n", " [121., 140., 139., 134.],\n", " [130., 116., 109., 113.],\n", " [119., 120., 107., 150.]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[130., 129., 140., 146.],\n", " [105., 131., 140., 153.],\n", " [111., 129., 132., 112.],\n", " [128., 132., 117., 133.]],\n", " \n", " [[130., 129., 140., 144.],\n", " [107., 131., 139., 153.],\n", " [112., 130., 131., 112.],\n", " [128., 132., 117., 133.]],\n", " \n", " [[130., 129., 140., 143.],\n", " [109., 131., 139., 152.],\n", " [114., 130., 130., 112.],\n", " [128., 131., 116., 133.]],\n", " \n", " ...,\n", " \n", " [[126., 125., 136., 135.],\n", " [127., 134., 142., 145.],\n", " [135., 131., 124., 110.],\n", " [122., 126., 111., 144.]],\n", " \n", " [[126., 125., 135., 135.],\n", " [128., 135., 143., 145.],\n", " [137., 130., 123., 110.],\n", " [122., 126., 111., 145.]],\n", " \n", " [[125., 125., 135., 135.],\n", " [129., 136., 143., 144.],\n", " [138., 130., 123., 109.],\n", " [121., 125., 111., 146.]]],\n", " \n", " \n", " [[[130., 128., 139., 146.],\n", " [105., 131., 140., 154.],\n", " [111., 130., 132., 112.],\n", " [129., 132., 117., 133.]],\n", " \n", " [[130., 127., 139., 145.],\n", " [107., 131., 140., 154.],\n", " [112., 130., 131., 112.],\n", " [129., 132., 117., 133.]],\n", " \n", " [[130., 127., 139., 143.],\n", " [109., 131., 140., 153.],\n", " [114., 131., 131., 112.],\n", " [129., 132., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[126., 124., 135., 135.],\n", " [127., 134., 143., 146.],\n", " [135., 132., 125., 110.],\n", " [123., 127., 111., 144.]],\n", " \n", " [[125., 123., 135., 135.],\n", " [128., 135., 143., 145.],\n", " [137., 131., 125., 109.],\n", " [122., 126., 111., 145.]],\n", " \n", " [[125., 123., 134., 135.],\n", " [129., 135., 144., 145.],\n", " [139., 130., 124., 109.],\n", " [121., 126., 111., 146.]]],\n", " \n", " \n", " [[[130., 126., 139., 146.],\n", " [105., 131., 141., 155.],\n", " [111., 130., 132., 112.],\n", " [130., 132., 117., 133.]],\n", " \n", " [[130., 126., 139., 145.],\n", " [107., 131., 141., 155.],\n", " [112., 131., 132., 112.],\n", " [130., 132., 116., 134.]],\n", " \n", " [[130., 126., 139., 144.],\n", " [109., 131., 141., 154.],\n", " [114., 132., 131., 112.],\n", " [130., 132., 116., 134.]],\n", " \n", " ...,\n", " \n", " [[125., 122., 135., 136.],\n", " [128., 134., 143., 147.],\n", " [136., 133., 126., 109.],\n", " [123., 127., 111., 144.]],\n", " \n", " [[125., 122., 134., 136.],\n", " [128., 135., 144., 146.],\n", " [138., 132., 126., 109.],\n", " [122., 127., 111., 145.]],\n", " \n", " [[124., 122., 134., 136.],\n", " [129., 135., 145., 146.],\n", " [139., 131., 125., 108.],\n", " [122., 126., 111., 146.]]]]]]))])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m.state_dict()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'model': 'SRNet', 'state_dict': OrderedDict([('stage1_S.stage.stage', tensor([[[[[[121., 133., 118., 138.],\n", " [118., 128., 125., 109.],\n", " [124., 114., 140., 120.],\n", " [101., 129., 112., 127.]],\n", "\n", " [[120., 133., 119., 137.],\n", " [119., 129., 125., 109.],\n", " [123., 114., 138., 121.],\n", " [101., 129., 112., 127.]],\n", "\n", " [[120., 134., 119., 135.],\n", " [120., 129., 125., 109.],\n", " [123., 114., 136., 122.],\n", " [101., 129., 112., 127.]],\n", "\n", " ...,\n", "\n", " [[114., 142., 119., 126.],\n", " [123., 136., 126., 111.],\n", " [120., 103., 117., 132.],\n", " [103., 127., 109., 137.]],\n", "\n", " [[113., 142., 119., 125.],\n", " [123., 137., 126., 112.],\n", " [120., 102., 115., 132.],\n", " [103., 127., 108., 139.]],\n", "\n", " [[113., 143., 118., 125.],\n", " [122., 138., 127., 112.],\n", " [120., 100., 114., 133.],\n", " [103., 126., 108., 140.]]],\n", "\n", "\n", " [[[122., 133., 118., 137.],\n", " [119., 128., 126., 110.],\n", " [125., 115., 140., 120.],\n", " [101., 130., 114., 126.]],\n", "\n", " [[121., 133., 118., 136.],\n", " [120., 128., 126., 110.],\n", " [124., 115., 138., 122.],\n", " [101., 129., 113., 127.]],\n", "\n", " [[121., 134., 119., 135.],\n", " [121., 129., 125., 110.],\n", " [124., 115., 136., 123.],\n", " [101., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[114., 141., 119., 125.],\n", " [124., 136., 126., 112.],\n", " [121., 104., 117., 132.],\n", " [103., 127., 110., 137.]],\n", "\n", " [[113., 142., 119., 125.],\n", " [123., 137., 127., 113.],\n", " [121., 103., 116., 132.],\n", " [103., 127., 110., 138.]],\n", "\n", " [[113., 142., 118., 125.],\n", " [123., 138., 127., 113.],\n", " [121., 101., 115., 133.],\n", " [103., 127., 109., 139.]]],\n", "\n", "\n", " [[[122., 133., 118., 137.],\n", " [120., 128., 127., 111.],\n", " [126., 116., 140., 121.],\n", " [102., 130., 115., 126.]],\n", "\n", " [[122., 133., 118., 135.],\n", " [121., 128., 127., 110.],\n", " [125., 116., 138., 122.],\n", " [102., 130., 114., 127.]],\n", "\n", " [[121., 134., 118., 134.],\n", " [122., 129., 126., 110.],\n", " [125., 115., 136., 123.],\n", " [102., 129., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[114., 141., 119., 125.],\n", " [125., 136., 127., 113.],\n", " [122., 105., 118., 132.],\n", " [102., 128., 111., 136.]],\n", "\n", " [[113., 141., 119., 125.],\n", " [124., 137., 127., 113.],\n", " [122., 103., 117., 132.],\n", " [102., 128., 111., 137.]],\n", "\n", " [[113., 142., 118., 124.],\n", " [124., 138., 128., 114.],\n", " [122., 102., 116., 132.],\n", " [102., 128., 110., 139.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 130., 114., 130.],\n", " [127., 129., 139., 119.],\n", " [135., 120., 141., 125.],\n", " [107., 135., 126., 130.]],\n", "\n", " [[131., 131., 114., 129.],\n", " [128., 130., 138., 118.],\n", " [135., 120., 139., 125.],\n", " [106., 135., 126., 130.]],\n", "\n", " [[130., 131., 115., 128.],\n", " [128., 130., 138., 118.],\n", " [135., 120., 138., 126.],\n", " [106., 135., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[117., 136., 116., 123.],\n", " [131., 136., 134., 118.],\n", " [136., 113., 129., 128.],\n", " [100., 137., 125., 135.]],\n", "\n", " [[116., 137., 116., 123.],\n", " [130., 137., 134., 118.],\n", " [136., 111., 128., 128.],\n", " [100., 137., 124., 136.]],\n", "\n", " [[115., 137., 116., 123.],\n", " [130., 137., 134., 119.],\n", " [137., 110., 128., 128.],\n", " [ 99., 138., 124., 137.]]],\n", "\n", "\n", " [[[132., 130., 114., 129.],\n", " [127., 130., 140., 119.],\n", " [135., 121., 141., 125.],\n", " [107., 136., 127., 131.]],\n", "\n", " [[131., 131., 114., 128.],\n", " [128., 130., 140., 119.],\n", " [135., 121., 140., 125.],\n", " [107., 136., 127., 131.]],\n", "\n", " [[130., 131., 114., 127.],\n", " [128., 130., 139., 118.],\n", " [136., 121., 139., 126.],\n", " [106., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 116., 123.],\n", " [131., 136., 135., 118.],\n", " [137., 113., 130., 128.],\n", " [100., 138., 126., 135.]],\n", "\n", " [[117., 136., 116., 123.],\n", " [130., 137., 135., 119.],\n", " [137., 112., 129., 128.],\n", " [100., 138., 125., 136.]],\n", "\n", " [[116., 136., 116., 123.],\n", " [130., 137., 135., 119.],\n", " [138., 110., 129., 128.],\n", " [ 99., 138., 125., 137.]]],\n", "\n", "\n", " [[[133., 130., 113., 129.],\n", " [127., 130., 141., 120.],\n", " [136., 121., 141., 125.],\n", " [108., 137., 128., 131.]],\n", "\n", " [[132., 130., 114., 128.],\n", " [128., 130., 141., 119.],\n", " [136., 121., 140., 125.],\n", " [107., 137., 128., 131.]],\n", "\n", " [[131., 131., 114., 127.],\n", " [129., 131., 140., 119.],\n", " [136., 121., 139., 126.],\n", " [107., 137., 128., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 116., 123.],\n", " [131., 136., 135., 118.],\n", " [138., 113., 130., 128.],\n", " [101., 139., 127., 136.]],\n", "\n", " [[117., 136., 115., 123.],\n", " [130., 137., 135., 119.],\n", " [139., 112., 130., 127.],\n", " [100., 139., 126., 136.]],\n", "\n", " [[116., 136., 115., 123.],\n", " [130., 137., 136., 119.],\n", " [139., 111., 130., 127.],\n", " [ 99., 139., 126., 137.]]]],\n", "\n", "\n", "\n", " [[[[121., 134., 118., 138.],\n", " [117., 129., 126., 109.],\n", " [124., 114., 139., 118.],\n", " [102., 129., 113., 126.]],\n", "\n", " [[121., 135., 119., 137.],\n", " [118., 130., 125., 109.],\n", " [123., 114., 138., 119.],\n", " [102., 129., 113., 127.]],\n", "\n", " [[120., 135., 119., 135.],\n", " [119., 130., 125., 109.],\n", " [123., 114., 136., 121.],\n", " [102., 129., 112., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 143., 119., 125.],\n", " [122., 137., 126., 111.],\n", " [121., 103., 116., 130.],\n", " [104., 127., 109., 138.]],\n", "\n", " [[114., 143., 119., 125.],\n", " [122., 138., 127., 111.],\n", " [121., 102., 115., 131.],\n", " [104., 127., 109., 139.]],\n", "\n", " [[114., 144., 119., 124.],\n", " [122., 139., 128., 112.],\n", " [121., 100., 114., 131.],\n", " [104., 127., 109., 140.]]],\n", "\n", "\n", " [[[122., 134., 118., 137.],\n", " [118., 129., 126., 110.],\n", " [125., 115., 139., 119.],\n", " [102., 130., 114., 126.]],\n", "\n", " [[121., 134., 118., 136.],\n", " [119., 129., 126., 110.],\n", " [124., 115., 138., 120.],\n", " [102., 129., 114., 127.]],\n", "\n", " [[121., 135., 119., 135.],\n", " [120., 130., 126., 110.],\n", " [124., 115., 136., 121.],\n", " [102., 129., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 142., 119., 125.],\n", " [123., 137., 127., 111.],\n", " [122., 104., 117., 130.],\n", " [104., 127., 110., 137.]],\n", "\n", " [[114., 143., 119., 124.],\n", " [123., 138., 127., 112.],\n", " [122., 103., 116., 130.],\n", " [104., 127., 110., 138.]],\n", "\n", " [[114., 144., 119., 124.],\n", " [123., 139., 128., 112.],\n", " [122., 101., 114., 131.],\n", " [104., 127., 110., 140.]]],\n", "\n", "\n", " [[[122., 134., 118., 137.],\n", " [119., 129., 127., 111.],\n", " [125., 115., 140., 119.],\n", " [103., 130., 115., 126.]],\n", "\n", " [[122., 134., 118., 135.],\n", " [120., 129., 127., 111.],\n", " [125., 115., 138., 121.],\n", " [103., 130., 115., 126.]],\n", "\n", " [[121., 135., 119., 134.],\n", " [121., 130., 127., 111.],\n", " [125., 115., 136., 122.],\n", " [103., 129., 115., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 142., 119., 124.],\n", " [124., 137., 127., 112.],\n", " [123., 105., 118., 130.],\n", " [103., 128., 112., 137.]],\n", "\n", " [[114., 143., 119., 124.],\n", " [124., 138., 128., 112.],\n", " [123., 103., 117., 130.],\n", " [103., 128., 111., 138.]],\n", "\n", " [[114., 143., 119., 124.],\n", " [124., 139., 129., 113.],\n", " [123., 102., 115., 131.],\n", " [104., 128., 111., 139.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 131., 114., 129.],\n", " [126., 130., 139., 119.],\n", " [134., 120., 140., 123.],\n", " [108., 135., 126., 130.]],\n", "\n", " [[130., 132., 115., 128.],\n", " [127., 130., 138., 119.],\n", " [134., 120., 139., 124.],\n", " [107., 135., 126., 130.]],\n", "\n", " [[129., 132., 115., 127.],\n", " [128., 130., 138., 118.],\n", " [135., 121., 138., 124.],\n", " [107., 135., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[117., 137., 117., 122.],\n", " [130., 136., 134., 118.],\n", " [137., 113., 128., 127.],\n", " [101., 137., 124., 135.]],\n", "\n", " [[116., 137., 117., 123.],\n", " [130., 137., 134., 118.],\n", " [137., 111., 128., 127.],\n", " [101., 137., 124., 136.]],\n", "\n", " [[115., 138., 117., 123.],\n", " [129., 138., 134., 118.],\n", " [137., 110., 127., 126.],\n", " [100., 138., 124., 137.]]],\n", "\n", "\n", " [[[132., 131., 114., 129.],\n", " [126., 130., 140., 120.],\n", " [135., 121., 140., 123.],\n", " [108., 136., 127., 130.]],\n", "\n", " [[131., 131., 114., 128.],\n", " [127., 130., 139., 119.],\n", " [135., 121., 139., 124.],\n", " [108., 136., 127., 130.]],\n", "\n", " [[130., 132., 115., 127.],\n", " [128., 131., 139., 119.],\n", " [135., 121., 138., 124.],\n", " [107., 136., 127., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 117., 122.],\n", " [131., 136., 135., 118.],\n", " [138., 113., 129., 126.],\n", " [101., 138., 125., 135.]],\n", "\n", " [[117., 137., 116., 122.],\n", " [130., 137., 135., 118.],\n", " [138., 112., 129., 126.],\n", " [101., 138., 125., 136.]],\n", "\n", " [[116., 137., 116., 123.],\n", " [130., 138., 135., 119.],\n", " [139., 111., 128., 126.],\n", " [100., 138., 125., 137.]]],\n", "\n", "\n", " [[[133., 130., 114., 128.],\n", " [126., 130., 141., 120.],\n", " [135., 121., 141., 123.],\n", " [109., 136., 127., 131.]],\n", "\n", " [[132., 131., 114., 127.],\n", " [127., 131., 140., 120.],\n", " [136., 121., 139., 124.],\n", " [108., 136., 127., 131.]],\n", "\n", " [[131., 131., 114., 127.],\n", " [128., 131., 140., 119.],\n", " [136., 121., 138., 124.],\n", " [108., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 116., 122.],\n", " [131., 136., 135., 118.],\n", " [139., 114., 130., 126.],\n", " [101., 139., 126., 136.]],\n", "\n", " [[117., 136., 116., 122.],\n", " [130., 137., 136., 118.],\n", " [139., 112., 130., 126.],\n", " [101., 139., 126., 136.]],\n", "\n", " [[116., 136., 116., 123.],\n", " [130., 138., 136., 119.],\n", " [140., 111., 129., 125.],\n", " [100., 139., 126., 137.]]]],\n", "\n", "\n", "\n", " [[[[122., 135., 118., 138.],\n", " [116., 130., 126., 109.],\n", " [124., 114., 139., 117.],\n", " [103., 129., 114., 126.]],\n", "\n", " [[121., 136., 119., 137.],\n", " [117., 131., 126., 109.],\n", " [123., 114., 137., 118.],\n", " [103., 129., 113., 127.]],\n", "\n", " [[121., 136., 119., 135.],\n", " [118., 131., 125., 109.],\n", " [123., 114., 136., 119.],\n", " [103., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 144., 120., 125.],\n", " [122., 138., 127., 110.],\n", " [122., 103., 116., 128.],\n", " [105., 127., 110., 138.]],\n", "\n", " [[115., 145., 120., 124.],\n", " [122., 139., 128., 111.],\n", " [122., 102., 115., 129.],\n", " [105., 127., 110., 139.]],\n", "\n", " [[115., 145., 119., 124.],\n", " [121., 140., 129., 111.],\n", " [122., 100., 113., 129.],\n", " [105., 127., 109., 141.]]],\n", "\n", "\n", " [[[122., 135., 118., 137.],\n", " [118., 130., 127., 110.],\n", " [124., 114., 139., 117.],\n", " [103., 130., 115., 126.]],\n", "\n", " [[122., 136., 119., 136.],\n", " [118., 130., 126., 110.],\n", " [124., 114., 138., 118.],\n", " [103., 129., 115., 126.]],\n", "\n", " [[121., 136., 119., 135.],\n", " [119., 131., 126., 110.],\n", " [124., 114., 136., 119.],\n", " [104., 129., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 144., 120., 124.],\n", " [123., 138., 128., 111.],\n", " [123., 104., 117., 128.],\n", " [105., 127., 111., 137.]],\n", "\n", " [[115., 144., 120., 124.],\n", " [123., 139., 128., 111.],\n", " [123., 103., 115., 129.],\n", " [105., 127., 111., 139.]],\n", "\n", " [[114., 145., 119., 124.],\n", " [122., 140., 129., 112.],\n", " [123., 101., 114., 129.],\n", " [105., 127., 111., 140.]]],\n", "\n", "\n", " [[[123., 135., 118., 137.],\n", " [119., 130., 128., 111.],\n", " [125., 115., 139., 118.],\n", " [104., 130., 116., 126.]],\n", "\n", " [[122., 135., 118., 135.],\n", " [119., 130., 127., 111.],\n", " [125., 115., 138., 119.],\n", " [104., 130., 116., 126.]],\n", "\n", " [[122., 136., 119., 134.],\n", " [120., 130., 127., 111.],\n", " [125., 115., 136., 120.],\n", " [104., 130., 115., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 143., 120., 124.],\n", " [124., 138., 128., 111.],\n", " [124., 105., 117., 128.],\n", " [104., 128., 112., 137.]],\n", "\n", " [[115., 144., 120., 124.],\n", " [124., 138., 129., 112.],\n", " [124., 103., 116., 128.],\n", " [105., 128., 112., 138.]],\n", "\n", " [[114., 144., 119., 123.],\n", " [123., 139., 129., 112.],\n", " [124., 102., 115., 129.],\n", " [105., 128., 112., 139.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 132., 115., 129.],\n", " [126., 130., 139., 120.],\n", " [134., 120., 140., 122.],\n", " [109., 135., 126., 129.]],\n", "\n", " [[130., 132., 115., 128.],\n", " [127., 130., 138., 120.],\n", " [134., 121., 139., 122.],\n", " [108., 135., 126., 129.]],\n", "\n", " [[129., 133., 116., 127.],\n", " [127., 131., 138., 119.],\n", " [134., 121., 138., 123.],\n", " [108., 135., 126., 129.]],\n", "\n", " ...,\n", "\n", " [[117., 138., 118., 122.],\n", " [130., 137., 134., 117.],\n", " [138., 113., 128., 125.],\n", " [102., 137., 124., 135.]],\n", "\n", " [[116., 138., 117., 122.],\n", " [130., 137., 134., 118.],\n", " [138., 112., 127., 125.],\n", " [101., 137., 124., 136.]],\n", "\n", " [[115., 138., 117., 122.],\n", " [129., 138., 135., 118.],\n", " [138., 110., 127., 125.],\n", " [101., 137., 124., 137.]]],\n", "\n", "\n", " [[[132., 131., 114., 129.],\n", " [126., 130., 140., 121.],\n", " [134., 121., 140., 122.],\n", " [109., 136., 127., 130.]],\n", "\n", " [[131., 132., 115., 128.],\n", " [127., 130., 139., 120.],\n", " [134., 121., 139., 122.],\n", " [109., 136., 127., 130.]],\n", "\n", " [[130., 132., 115., 127.],\n", " [128., 131., 139., 120.],\n", " [135., 121., 138., 123.],\n", " [108., 136., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 137., 117., 122.],\n", " [130., 137., 135., 118.],\n", " [139., 113., 129., 125.],\n", " [102., 138., 125., 135.]],\n", "\n", " [[117., 137., 117., 122.],\n", " [130., 137., 135., 118.],\n", " [139., 112., 128., 124.],\n", " [101., 138., 125., 136.]],\n", "\n", " [[116., 138., 117., 122.],\n", " [129., 138., 135., 118.],\n", " [139., 111., 128., 124.],\n", " [101., 138., 125., 137.]]],\n", "\n", "\n", " [[[133., 131., 114., 128.],\n", " [126., 130., 141., 121.],\n", " [135., 121., 140., 122.],\n", " [110., 136., 127., 131.]],\n", "\n", " [[132., 131., 114., 127.],\n", " [127., 131., 140., 121.],\n", " [135., 121., 139., 122.],\n", " [109., 136., 127., 131.]],\n", "\n", " [[131., 132., 115., 126.],\n", " [128., 131., 140., 120.],\n", " [135., 121., 138., 123.],\n", " [109., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 117., 122.],\n", " [130., 137., 136., 118.],\n", " [140., 114., 130., 124.],\n", " [102., 138., 126., 136.]],\n", "\n", " [[117., 137., 117., 122.],\n", " [130., 137., 136., 118.],\n", " [140., 113., 129., 124.],\n", " [101., 139., 126., 136.]],\n", "\n", " [[116., 137., 116., 122.],\n", " [130., 138., 136., 119.],\n", " [140., 111., 129., 124.],\n", " [101., 139., 125., 137.]]]],\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", " [[[[130., 147., 119., 142.],\n", " [105., 147., 125., 113.],\n", " [118., 103., 137., 98.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[130., 148., 120., 140.],\n", " [107., 147., 125., 112.],\n", " [119., 103., 135., 98.],\n", " [115., 127., 117., 129.]],\n", "\n", " [[129., 149., 120., 139.],\n", " [108., 147., 125., 112.],\n", " [119., 103., 133., 99.],\n", " [115., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 156., 124., 125.],\n", " [116., 151., 134., 106.],\n", " [132., 97., 113., 104.],\n", " [117., 126., 113., 147.]],\n", "\n", " [[127., 156., 124., 125.],\n", " [116., 152., 135., 105.],\n", " [134., 96., 112., 104.],\n", " [117., 126., 113., 148.]],\n", "\n", " [[127., 157., 124., 124.],\n", " [116., 152., 136., 105.],\n", " [135., 95., 110., 104.],\n", " [118., 126., 112., 150.]]],\n", "\n", "\n", " [[[130., 147., 119., 141.],\n", " [107., 146., 125., 114.],\n", " [118., 104., 137., 98.],\n", " [115., 127., 117., 127.]],\n", "\n", " [[129., 147., 120., 140.],\n", " [108., 146., 125., 114.],\n", " [119., 104., 135., 99.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[129., 148., 120., 138.],\n", " [109., 146., 126., 113.],\n", " [120., 104., 134., 100.],\n", " [115., 127., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[127., 155., 124., 125.],\n", " [117., 150., 134., 107.],\n", " [133., 99., 114., 104.],\n", " [117., 126., 113., 146.]],\n", "\n", " [[127., 155., 124., 124.],\n", " [117., 151., 135., 106.],\n", " [134., 97., 112., 104.],\n", " [117., 126., 113., 147.]],\n", "\n", " [[127., 156., 124., 124.],\n", " [117., 152., 136., 106.],\n", " [135., 96., 111., 104.],\n", " [117., 126., 112., 149.]]],\n", "\n", "\n", " [[[130., 146., 119., 140.],\n", " [108., 145., 126., 116.],\n", " [118., 105., 137., 99.],\n", " [115., 127., 117., 127.]],\n", "\n", " [[129., 146., 120., 139.],\n", " [109., 145., 126., 115.],\n", " [119., 105., 135., 100.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[129., 147., 120., 137.],\n", " [110., 146., 126., 114.],\n", " [120., 105., 134., 100.],\n", " [115., 127., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[126., 154., 124., 124.],\n", " [118., 150., 134., 107.],\n", " [134., 100., 115., 104.],\n", " [117., 127., 113., 145.]],\n", "\n", " [[126., 154., 124., 124.],\n", " [118., 150., 135., 107.],\n", " [135., 98., 113., 104.],\n", " [117., 127., 113., 147.]],\n", "\n", " [[126., 155., 124., 123.],\n", " [118., 151., 136., 107.],\n", " [136., 97., 112., 104.],\n", " [116., 127., 113., 148.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 135., 119., 132.],\n", " [117., 139., 134., 130.],\n", " [122., 116., 139., 103.],\n", " [119., 130., 119., 128.]],\n", "\n", " [[129., 135., 120., 131.],\n", " [119., 139., 133., 129.],\n", " [123., 117., 137., 104.],\n", " [119., 130., 118., 129.]],\n", "\n", " [[129., 136., 120., 129.],\n", " [120., 139., 133., 128.],\n", " [124., 117., 136., 104.],\n", " [119., 130., 118., 129.]],\n", "\n", " ...,\n", "\n", " [[120., 142., 122., 120.],\n", " [127., 144., 135., 117.],\n", " [142., 111., 125., 104.],\n", " [113., 133., 117., 139.]],\n", "\n", " [[120., 142., 122., 120.],\n", " [127., 144., 136., 117.],\n", " [144., 110., 124., 104.],\n", " [113., 133., 116., 140.]],\n", "\n", " [[119., 143., 122., 120.],\n", " [127., 145., 137., 116.],\n", " [145., 109., 123., 103.],\n", " [112., 133., 116., 141.]]],\n", "\n", "\n", " [[[130., 134., 119., 132.],\n", " [118., 138., 134., 131.],\n", " [122., 117., 139., 104.],\n", " [120., 131., 119., 129.]],\n", "\n", " [[129., 134., 120., 130.],\n", " [119., 138., 134., 130.],\n", " [123., 117., 137., 104.],\n", " [119., 131., 118., 129.]],\n", "\n", " [[129., 135., 120., 129.],\n", " [120., 138., 134., 129.],\n", " [125., 118., 136., 104.],\n", " [119., 131., 118., 129.]],\n", "\n", " ...,\n", "\n", " [[120., 141., 122., 120.],\n", " [128., 143., 135., 118.],\n", " [143., 112., 125., 104.],\n", " [113., 133., 117., 139.]],\n", "\n", " [[119., 141., 122., 120.],\n", " [128., 144., 136., 118.],\n", " [145., 111., 125., 103.],\n", " [113., 134., 117., 140.]],\n", "\n", " [[119., 142., 122., 120.],\n", " [127., 145., 137., 117.],\n", " [146., 109., 124., 103.],\n", " [112., 134., 117., 141.]]],\n", "\n", "\n", " [[[130., 133., 119., 131.],\n", " [118., 138., 135., 132.],\n", " [122., 118., 139., 104.],\n", " [120., 131., 119., 129.]],\n", "\n", " [[129., 133., 120., 130.],\n", " [119., 138., 135., 131.],\n", " [124., 118., 138., 104.],\n", " [120., 131., 118., 129.]],\n", "\n", " [[129., 134., 120., 129.],\n", " [121., 138., 134., 130.],\n", " [125., 118., 137., 104.],\n", " [120., 131., 118., 130.]],\n", "\n", " ...,\n", "\n", " [[119., 140., 122., 120.],\n", " [128., 143., 136., 119.],\n", " [144., 113., 126., 104.],\n", " [113., 134., 117., 138.]],\n", "\n", " [[119., 140., 122., 120.],\n", " [128., 144., 136., 118.],\n", " [145., 111., 126., 103.],\n", " [112., 134., 117., 140.]],\n", "\n", " [[118., 141., 122., 120.],\n", " [128., 144., 137., 118.],\n", " [147., 110., 125., 103.],\n", " [112., 135., 117., 141.]]]],\n", "\n", "\n", "\n", " [[[[130., 148., 120., 143.],\n", " [104., 149., 124., 113.],\n", " [117., 102., 137., 96.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[130., 149., 120., 141.],\n", " [106., 149., 125., 113.],\n", " [118., 102., 135., 97.],\n", " [116., 126., 116., 129.]],\n", "\n", " [[130., 149., 120., 139.],\n", " [107., 149., 125., 112.],\n", " [119., 102., 133., 98.],\n", " [116., 126., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 156., 124., 126.],\n", " [116., 152., 134., 106.],\n", " [133., 97., 113., 102.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[129., 157., 125., 125.],\n", " [116., 153., 135., 105.],\n", " [134., 96., 112., 102.],\n", " [118., 126., 112., 149.]],\n", "\n", " [[128., 157., 125., 125.],\n", " [116., 154., 136., 105.],\n", " [136., 94., 110., 102.],\n", " [118., 126., 112., 151.]]],\n", "\n", "\n", " [[[130., 147., 120., 142.],\n", " [106., 148., 125., 115.],\n", " [117., 103., 137., 97.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[130., 148., 120., 140.],\n", " [107., 148., 125., 114.],\n", " [118., 103., 135., 97.],\n", " [116., 127., 116., 129.]],\n", "\n", " [[130., 149., 121., 139.],\n", " [108., 148., 125., 113.],\n", " [119., 103., 133., 98.],\n", " [116., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 155., 124., 125.],\n", " [117., 152., 134., 106.],\n", " [134., 98., 114., 102.],\n", " [118., 126., 113., 147.]],\n", "\n", " [[128., 156., 125., 125.],\n", " [117., 152., 135., 106.],\n", " [135., 97., 112., 102.],\n", " [118., 126., 112., 149.]],\n", "\n", " [[128., 156., 125., 124.],\n", " [117., 153., 136., 106.],\n", " [136., 95., 111., 102.],\n", " [118., 126., 112., 150.]]],\n", "\n", "\n", " [[[130., 146., 120., 141.],\n", " [107., 147., 125., 116.],\n", " [117., 104., 137., 97.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[130., 147., 120., 139.],\n", " [108., 147., 125., 115.],\n", " [118., 104., 135., 98.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[130., 148., 121., 138.],\n", " [110., 147., 126., 115.],\n", " [119., 104., 134., 99.],\n", " [116., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 155., 124., 125.],\n", " [118., 151., 134., 107.],\n", " [134., 99., 114., 102.],\n", " [118., 126., 113., 146.]],\n", "\n", " [[127., 155., 124., 124.],\n", " [118., 151., 135., 107.],\n", " [135., 98., 113., 102.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[127., 156., 125., 124.],\n", " [118., 152., 136., 107.],\n", " [137., 96., 112., 102.],\n", " [117., 126., 112., 149.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 135., 120., 133.],\n", " [117., 140., 133., 131.],\n", " [120., 116., 139., 102.],\n", " [120., 130., 118., 128.]],\n", "\n", " [[129., 135., 120., 131.],\n", " [118., 140., 133., 130.],\n", " [122., 116., 137., 102.],\n", " [120., 130., 117., 129.]],\n", "\n", " [[129., 136., 121., 130.],\n", " [119., 140., 132., 129.],\n", " [123., 116., 136., 103.],\n", " [120., 130., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[121., 142., 123., 120.],\n", " [127., 145., 135., 118.],\n", " [142., 110., 124., 102.],\n", " [114., 132., 116., 140.]],\n", "\n", " [[120., 143., 123., 120.],\n", " [127., 145., 136., 117.],\n", " [144., 109., 124., 102.],\n", " [114., 132., 115., 141.]],\n", "\n", " [[120., 143., 123., 120.],\n", " [127., 146., 137., 117.],\n", " [145., 108., 123., 102.],\n", " [113., 133., 115., 142.]]],\n", "\n", "\n", " [[[130., 134., 120., 132.],\n", " [117., 139., 134., 132.],\n", " [121., 117., 139., 102.],\n", " [121., 130., 118., 129.]],\n", "\n", " [[129., 134., 120., 131.],\n", " [118., 140., 133., 131.],\n", " [122., 117., 137., 102.],\n", " [120., 130., 117., 129.]],\n", "\n", " [[129., 135., 120., 130.],\n", " [120., 140., 133., 130.],\n", " [124., 117., 136., 103.],\n", " [120., 130., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 141., 122., 120.],\n", " [127., 144., 135., 119.],\n", " [143., 111., 125., 102.],\n", " [114., 133., 116., 139.]],\n", "\n", " [[120., 142., 122., 120.],\n", " [127., 145., 136., 118.],\n", " [145., 110., 125., 102.],\n", " [114., 133., 116., 140.]],\n", "\n", " [[119., 142., 122., 120.],\n", " [127., 146., 137., 117.],\n", " [146., 109., 124., 101.],\n", " [113., 133., 116., 142.]]],\n", "\n", "\n", " [[[130., 132., 120., 132.],\n", " [117., 139., 134., 133.],\n", " [121., 117., 139., 102.],\n", " [121., 131., 118., 129.]],\n", "\n", " [[129., 133., 120., 131.],\n", " [119., 139., 134., 132.],\n", " [123., 118., 138., 103.],\n", " [121., 131., 117., 130.]],\n", "\n", " [[129., 134., 120., 129.],\n", " [120., 139., 134., 131.],\n", " [124., 118., 137., 103.],\n", " [120., 131., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 140., 122., 120.],\n", " [128., 144., 136., 119.],\n", " [144., 112., 126., 102.],\n", " [114., 133., 116., 139.]],\n", "\n", " [[119., 140., 122., 120.],\n", " [128., 145., 136., 119.],\n", " [146., 111., 126., 101.],\n", " [113., 134., 116., 140.]],\n", "\n", " [[118., 141., 122., 120.],\n", " [127., 145., 137., 118.],\n", " [147., 110., 125., 101.],\n", " [113., 134., 116., 141.]]]],\n", "\n", "\n", "\n", " [[[[131., 149., 120., 143.],\n", " [104., 150., 124., 114.],\n", " [116., 100., 137., 94.],\n", " [116., 126., 116., 129.]],\n", "\n", " [[131., 149., 120., 142.],\n", " [105., 150., 124., 113.],\n", " [117., 101., 135., 95.],\n", " [117., 126., 116., 130.]],\n", "\n", " [[131., 150., 121., 140.],\n", " [106., 151., 125., 112.],\n", " [118., 101., 133., 96.],\n", " [117., 126., 116., 131.]],\n", "\n", " ...,\n", "\n", " [[130., 157., 125., 126.],\n", " [115., 154., 134., 106.],\n", " [134., 96., 113., 100.],\n", " [119., 126., 112., 149.]],\n", "\n", " [[130., 157., 125., 126.],\n", " [115., 154., 135., 105.],\n", " [135., 95., 112., 100.],\n", " [119., 126., 112., 150.]],\n", "\n", " [[130., 158., 125., 125.],\n", " [115., 155., 137., 105.],\n", " [136., 94., 110., 100.],\n", " [119., 126., 111., 152.]]],\n", "\n", "\n", " [[[131., 148., 120., 143.],\n", " [105., 150., 124., 115.],\n", " [117., 101., 137., 95.],\n", " [116., 126., 116., 128.]],\n", "\n", " [[131., 149., 120., 141.],\n", " [106., 150., 125., 114.],\n", " [118., 102., 135., 96.],\n", " [117., 126., 116., 129.]],\n", "\n", " [[131., 149., 121., 139.],\n", " [107., 150., 125., 114.],\n", " [119., 102., 133., 96.],\n", " [117., 126., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 156., 125., 126.],\n", " [116., 153., 134., 106.],\n", " [134., 97., 114., 100.],\n", " [119., 126., 112., 148.]],\n", "\n", " [[129., 157., 125., 125.],\n", " [116., 154., 135., 106.],\n", " [135., 96., 112., 100.],\n", " [119., 126., 112., 150.]],\n", "\n", " [[129., 157., 125., 125.],\n", " [116., 154., 137., 106.],\n", " [137., 95., 111., 100.],\n", " [119., 126., 112., 151.]]],\n", "\n", "\n", " [[[131., 147., 120., 142.],\n", " [106., 149., 125., 117.],\n", " [117., 103., 137., 96.],\n", " [117., 126., 117., 128.]],\n", "\n", " [[131., 148., 120., 140.],\n", " [107., 149., 125., 116.],\n", " [118., 103., 135., 96.],\n", " [117., 126., 116., 129.]],\n", "\n", " [[131., 148., 121., 138.],\n", " [109., 149., 125., 115.],\n", " [119., 103., 134., 97.],\n", " [117., 126., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 155., 125., 125.],\n", " [117., 152., 134., 107.],\n", " [135., 98., 114., 101.],\n", " [119., 126., 113., 147.]],\n", "\n", " [[128., 156., 125., 125.],\n", " [117., 153., 135., 107.],\n", " [136., 97., 113., 100.],\n", " [118., 126., 112., 149.]],\n", "\n", " [[128., 156., 125., 124.],\n", " [117., 153., 137., 106.],\n", " [137., 96., 112., 100.],\n", " [118., 126., 112., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 135., 120., 134.],\n", " [116., 141., 132., 132.],\n", " [119., 115., 139., 100.],\n", " [121., 129., 117., 129.]],\n", "\n", " [[130., 135., 120., 132.],\n", " [117., 141., 132., 131.],\n", " [121., 115., 137., 101.],\n", " [121., 129., 116., 129.]],\n", "\n", " [[129., 136., 121., 131.],\n", " [119., 141., 132., 129.],\n", " [122., 115., 136., 101.],\n", " [120., 129., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[121., 142., 123., 121.],\n", " [127., 146., 135., 118.],\n", " [142., 110., 124., 101.],\n", " [115., 132., 115., 140.]],\n", "\n", " [[121., 143., 123., 120.],\n", " [127., 146., 136., 117.],\n", " [144., 109., 123., 100.],\n", " [115., 132., 114., 141.]],\n", "\n", " [[120., 143., 123., 120.],\n", " [127., 147., 137., 117.],\n", " [146., 108., 123., 100.],\n", " [114., 132., 114., 143.]]],\n", "\n", "\n", " [[[130., 133., 120., 133.],\n", " [116., 141., 133., 133.],\n", " [120., 116., 139., 101.],\n", " [121., 130., 117., 129.]],\n", "\n", " [[129., 134., 120., 132.],\n", " [118., 141., 133., 132.],\n", " [121., 116., 138., 101.],\n", " [121., 130., 116., 129.]],\n", "\n", " [[129., 135., 121., 130.],\n", " [119., 141., 132., 130.],\n", " [123., 116., 136., 101.],\n", " [121., 130., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[121., 141., 123., 121.],\n", " [127., 145., 135., 119.],\n", " [143., 111., 125., 100.],\n", " [115., 132., 115., 140.]],\n", "\n", " [[120., 142., 123., 120.],\n", " [127., 146., 136., 118.],\n", " [145., 110., 124., 100.],\n", " [115., 132., 115., 141.]],\n", "\n", " [[119., 142., 122., 120.],\n", " [127., 147., 137., 118.],\n", " [147., 109., 124., 100.],\n", " [114., 133., 115., 142.]]],\n", "\n", "\n", " [[[130., 132., 120., 133.],\n", " [117., 140., 134., 134.],\n", " [120., 117., 139., 101.],\n", " [122., 130., 116., 129.]],\n", "\n", " [[129., 133., 120., 131.],\n", " [118., 141., 133., 133.],\n", " [122., 117., 138., 101.],\n", " [122., 130., 116., 130.]],\n", "\n", " [[129., 133., 121., 130.],\n", " [119., 141., 133., 132.],\n", " [123., 117., 137., 101.],\n", " [121., 130., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 140., 122., 121.],\n", " [127., 145., 135., 120.],\n", " [144., 112., 126., 100.],\n", " [115., 133., 115., 140.]],\n", "\n", " [[119., 140., 122., 120.],\n", " [127., 146., 136., 119.],\n", " [146., 111., 125., 100.],\n", " [115., 133., 115., 141.]],\n", "\n", " [[119., 141., 122., 120.],\n", " [127., 146., 137., 118.],\n", " [147., 109., 125., 99.],\n", " [114., 133., 115., 142.]]]]],\n", "\n", "\n", "\n", "\n", " [[[[[121., 132., 120., 138.],\n", " [118., 128., 125., 110.],\n", " [123., 115., 139., 121.],\n", " [100., 129., 112., 127.]],\n", "\n", " [[121., 133., 121., 136.],\n", " [119., 129., 125., 110.],\n", " [123., 115., 138., 123.],\n", " [100., 129., 112., 127.]],\n", "\n", " [[120., 134., 121., 135.],\n", " [120., 129., 124., 110.],\n", " [122., 115., 136., 124.],\n", " [101., 129., 111., 128.]],\n", "\n", " ...,\n", "\n", " [[115., 140., 121., 125.],\n", " [124., 136., 125., 113.],\n", " [119., 104., 117., 134.],\n", " [102., 126., 108., 138.]],\n", "\n", " [[114., 141., 120., 125.],\n", " [123., 137., 125., 114.],\n", " [119., 103., 115., 134.],\n", " [102., 126., 108., 139.]],\n", "\n", " [[114., 141., 120., 125.],\n", " [123., 138., 126., 114.],\n", " [119., 101., 114., 134.],\n", " [103., 126., 107., 140.]]],\n", "\n", "\n", " [[[122., 132., 120., 137.],\n", " [119., 128., 126., 111.],\n", " [124., 116., 139., 122.],\n", " [101., 130., 113., 127.]],\n", "\n", " [[121., 133., 120., 136.],\n", " [120., 128., 125., 111.],\n", " [124., 115., 138., 123.],\n", " [101., 129., 113., 127.]],\n", "\n", " [[121., 133., 121., 134.],\n", " [121., 129., 125., 111.],\n", " [123., 115., 136., 124.],\n", " [101., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 140., 121., 125.],\n", " [124., 136., 125., 114.],\n", " [120., 105., 117., 134.],\n", " [102., 127., 109., 137.]],\n", "\n", " [[114., 141., 120., 125.],\n", " [124., 137., 126., 114.],\n", " [120., 103., 116., 134.],\n", " [102., 127., 109., 138.]],\n", "\n", " [[114., 141., 120., 124.],\n", " [124., 137., 127., 115.],\n", " [120., 102., 115., 134.],\n", " [102., 127., 109., 139.]]],\n", "\n", "\n", " [[[123., 132., 120., 136.],\n", " [120., 128., 127., 112.],\n", " [125., 116., 139., 123.],\n", " [101., 130., 114., 127.]],\n", "\n", " [[122., 133., 120., 135.],\n", " [121., 128., 126., 112.],\n", " [125., 116., 138., 124.],\n", " [101., 130., 114., 127.]],\n", "\n", " [[121., 133., 120., 134.],\n", " [122., 129., 126., 112.],\n", " [124., 116., 136., 125.],\n", " [101., 129., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 140., 120., 125.],\n", " [125., 136., 126., 115.],\n", " [121., 106., 118., 133.],\n", " [102., 128., 110., 137.]],\n", "\n", " [[114., 140., 120., 124.],\n", " [125., 136., 126., 115.],\n", " [121., 104., 117., 134.],\n", " [102., 128., 110., 138.]],\n", "\n", " [[113., 141., 120., 124.],\n", " [125., 137., 127., 116.],\n", " [121., 103., 116., 134.],\n", " [102., 128., 110., 139.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[132., 130., 116., 130.],\n", " [126., 129., 139., 120.],\n", " [134., 120., 141., 126.],\n", " [107., 135., 126., 130.]],\n", "\n", " [[131., 130., 116., 129.],\n", " [127., 130., 138., 120.],\n", " [134., 121., 139., 127.],\n", " [107., 135., 126., 130.]],\n", "\n", " [[130., 131., 117., 128.],\n", " [128., 130., 137., 119.],\n", " [134., 121., 138., 128.],\n", " [106., 135., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 118., 123.],\n", " [131., 136., 133., 120.],\n", " [135., 113., 129., 130.],\n", " [101., 137., 124., 135.]],\n", "\n", " [[117., 136., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [135., 112., 128., 130.],\n", " [100., 137., 124., 136.]],\n", "\n", " [[116., 136., 117., 123.],\n", " [130., 137., 134., 121.],\n", " [136., 110., 128., 130.],\n", " [100., 137., 124., 137.]]],\n", "\n", "\n", " [[[133., 130., 115., 129.],\n", " [127., 130., 140., 120.],\n", " [134., 121., 141., 126.],\n", " [108., 136., 127., 131.]],\n", "\n", " [[132., 130., 116., 128.],\n", " [128., 130., 139., 120.],\n", " [135., 121., 140., 127.],\n", " [107., 136., 127., 131.]],\n", "\n", " [[131., 131., 116., 127.],\n", " [129., 130., 139., 120.],\n", " [135., 121., 139., 128.],\n", " [107., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [136., 114., 130., 130.],\n", " [101., 137., 125., 136.]],\n", "\n", " [[117., 135., 117., 123.],\n", " [131., 136., 134., 120.],\n", " [136., 112., 129., 129.],\n", " [100., 138., 125., 136.]],\n", "\n", " [[116., 135., 117., 123.],\n", " [131., 137., 134., 121.],\n", " [137., 111., 129., 129.],\n", " [100., 138., 125., 137.]]],\n", "\n", "\n", " [[[133., 129., 115., 129.],\n", " [127., 130., 141., 121.],\n", " [135., 121., 141., 126.],\n", " [108., 137., 127., 132.]],\n", "\n", " [[133., 130., 115., 128.],\n", " [128., 130., 140., 120.],\n", " [135., 121., 140., 127.],\n", " [108., 137., 127., 132.]],\n", "\n", " [[132., 130., 116., 127.],\n", " [129., 131., 140., 120.],\n", " [135., 121., 139., 128.],\n", " [107., 137., 127., 132.]],\n", "\n", " ...,\n", "\n", " [[119., 134., 117., 123.],\n", " [131., 136., 135., 120.],\n", " [137., 114., 131., 129.],\n", " [101., 138., 126., 136.]],\n", "\n", " [[118., 135., 117., 123.],\n", " [131., 136., 135., 120.],\n", " [137., 113., 130., 129.],\n", " [100., 138., 126., 137.]],\n", "\n", " [[117., 135., 117., 124.],\n", " [131., 137., 135., 121.],\n", " [138., 111., 130., 129.],\n", " [100., 138., 126., 137.]]]],\n", "\n", "\n", "\n", " [[[[122., 134., 120., 138.],\n", " [117., 129., 125., 110.],\n", " [123., 115., 139., 120.],\n", " [101., 129., 113., 127.]],\n", "\n", " [[121., 134., 121., 136.],\n", " [118., 129., 125., 110.],\n", " [123., 115., 137., 121.],\n", " [101., 129., 113., 127.]],\n", "\n", " [[121., 135., 121., 135.],\n", " [119., 130., 125., 110.],\n", " [122., 114., 136., 122.],\n", " [102., 129., 112., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 142., 121., 125.],\n", " [123., 137., 126., 113.],\n", " [120., 104., 116., 132.],\n", " [103., 126., 109., 138.]],\n", "\n", " [[115., 142., 121., 124.],\n", " [123., 138., 126., 113.],\n", " [120., 103., 115., 132.],\n", " [104., 126., 108., 139.]],\n", "\n", " [[114., 143., 121., 124.],\n", " [123., 138., 127., 114.],\n", " [120., 101., 114., 132.],\n", " [104., 126., 108., 140.]]],\n", "\n", "\n", " [[[122., 134., 120., 137.],\n", " [118., 129., 126., 111.],\n", " [124., 115., 139., 121.],\n", " [102., 130., 114., 126.]],\n", "\n", " [[122., 134., 120., 135.],\n", " [119., 129., 126., 111.],\n", " [124., 115., 138., 122.],\n", " [102., 129., 114., 127.]],\n", "\n", " [[121., 135., 121., 134.],\n", " [120., 130., 125., 111.],\n", " [123., 115., 136., 123.],\n", " [102., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 141., 121., 124.],\n", " [124., 137., 126., 113.],\n", " [121., 105., 117., 132.],\n", " [103., 127., 110., 137.]],\n", "\n", " [[115., 142., 121., 124.],\n", " [124., 137., 127., 114.],\n", " [121., 103., 116., 132.],\n", " [103., 127., 110., 139.]],\n", "\n", " [[114., 142., 120., 124.],\n", " [124., 138., 128., 114.],\n", " [121., 102., 114., 132.],\n", " [103., 127., 109., 140.]]],\n", "\n", "\n", " [[[123., 133., 120., 136.],\n", " [119., 129., 127., 112.],\n", " [125., 116., 139., 121.],\n", " [102., 130., 115., 126.]],\n", "\n", " [[122., 134., 120., 135.],\n", " [120., 129., 127., 112.],\n", " [124., 116., 138., 122.],\n", " [102., 130., 115., 127.]],\n", "\n", " [[122., 134., 121., 133.],\n", " [121., 129., 126., 112.],\n", " [124., 116., 136., 123.],\n", " [102., 130., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 141., 121., 124.],\n", " [125., 136., 127., 114.],\n", " [122., 106., 118., 132.],\n", " [103., 128., 111., 137.]],\n", "\n", " [[115., 141., 121., 124.],\n", " [125., 137., 127., 114.],\n", " [122., 104., 117., 132.],\n", " [103., 128., 111., 138.]],\n", "\n", " [[114., 142., 120., 124.],\n", " [124., 138., 128., 115.],\n", " [122., 103., 115., 132.],\n", " [103., 128., 110., 139.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[132., 131., 116., 129.],\n", " [126., 130., 139., 121.],\n", " [133., 121., 140., 125.],\n", " [108., 135., 126., 130.]],\n", "\n", " [[131., 131., 117., 128.],\n", " [127., 130., 138., 120.],\n", " [133., 121., 139., 126.],\n", " [108., 135., 126., 130.]],\n", "\n", " [[130., 132., 117., 127.],\n", " [128., 130., 137., 120.],\n", " [134., 121., 138., 126.],\n", " [107., 135., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 118., 123.],\n", " [131., 136., 134., 119.],\n", " [136., 113., 129., 128.],\n", " [102., 137., 124., 135.]],\n", "\n", " [[117., 136., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [136., 112., 128., 128.],\n", " [101., 137., 124., 136.]],\n", "\n", " [[116., 136., 118., 123.],\n", " [130., 137., 134., 120.],\n", " [136., 111., 128., 128.],\n", " [100., 137., 123., 137.]]],\n", "\n", "\n", " [[[132., 130., 116., 129.],\n", " [126., 130., 140., 121.],\n", " [134., 121., 140., 125.],\n", " [108., 136., 127., 131.]],\n", "\n", " [[132., 131., 116., 128.],\n", " [127., 130., 139., 121.],\n", " [134., 121., 139., 126.],\n", " [108., 136., 127., 131.]],\n", "\n", " [[131., 131., 117., 127.],\n", " [128., 130., 138., 120.],\n", " [134., 121., 138., 126.],\n", " [108., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 118., 123.],\n", " [131., 136., 134., 120.],\n", " [137., 114., 130., 128.],\n", " [102., 137., 125., 135.]],\n", "\n", " [[117., 136., 118., 123.],\n", " [131., 136., 135., 120.],\n", " [137., 113., 129., 128.],\n", " [101., 137., 125., 136.]],\n", "\n", " [[116., 136., 118., 123.],\n", " [130., 137., 135., 120.],\n", " [138., 111., 129., 127.],\n", " [100., 138., 124., 137.]]],\n", "\n", "\n", " [[[133., 130., 115., 129.],\n", " [126., 130., 141., 122.],\n", " [134., 121., 141., 125.],\n", " [109., 136., 127., 131.]],\n", "\n", " [[132., 130., 116., 128.],\n", " [127., 130., 140., 121.],\n", " [135., 121., 140., 125.],\n", " [109., 136., 127., 131.]],\n", "\n", " [[131., 131., 116., 127.],\n", " [128., 131., 140., 121.],\n", " [135., 121., 139., 126.],\n", " [108., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 118., 123.],\n", " [131., 136., 135., 120.],\n", " [138., 114., 131., 128.],\n", " [102., 138., 126., 136.]],\n", "\n", " [[117., 135., 117., 123.],\n", " [131., 137., 135., 120.],\n", " [138., 113., 130., 127.],\n", " [101., 138., 126., 137.]],\n", "\n", " [[116., 135., 117., 123.],\n", " [130., 137., 135., 121.],\n", " [139., 112., 130., 127.],\n", " [100., 138., 125., 137.]]]],\n", "\n", "\n", "\n", " [[[[122., 135., 120., 137.],\n", " [116., 130., 126., 111.],\n", " [123., 114., 139., 118.],\n", " [102., 129., 114., 126.]],\n", "\n", " [[122., 135., 121., 136.],\n", " [117., 130., 125., 110.],\n", " [123., 114., 137., 120.],\n", " [103., 129., 113., 127.]],\n", "\n", " [[121., 136., 121., 135.],\n", " [118., 131., 125., 110.],\n", " [122., 114., 135., 121.],\n", " [103., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[116., 143., 121., 124.],\n", " [123., 138., 127., 112.],\n", " [121., 104., 116., 130.],\n", " [105., 127., 110., 138.]],\n", "\n", " [[116., 143., 121., 124.],\n", " [123., 138., 127., 112.],\n", " [121., 102., 115., 130.],\n", " [105., 126., 109., 140.]],\n", "\n", " [[115., 144., 121., 124.],\n", " [122., 139., 128., 113.],\n", " [121., 101., 113., 130.],\n", " [105., 126., 109., 141.]]],\n", "\n", "\n", " [[[123., 135., 120., 137.],\n", " [117., 130., 126., 112.],\n", " [124., 115., 139., 119.],\n", " [103., 130., 115., 126.]],\n", "\n", " [[122., 135., 121., 135.],\n", " [118., 130., 126., 111.],\n", " [123., 115., 137., 120.],\n", " [103., 129., 114., 127.]],\n", "\n", " [[122., 136., 121., 134.],\n", " [119., 130., 126., 111.],\n", " [123., 115., 136., 121.],\n", " [103., 129., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[116., 142., 121., 124.],\n", " [124., 137., 127., 113.],\n", " [122., 105., 117., 130.],\n", " [104., 127., 111., 138.]],\n", "\n", " [[115., 143., 121., 124.],\n", " [124., 138., 128., 113.],\n", " [122., 103., 115., 130.],\n", " [104., 127., 110., 139.]],\n", "\n", " [[115., 143., 121., 124.],\n", " [123., 139., 128., 114.],\n", " [122., 102., 114., 130.],\n", " [105., 127., 110., 140.]]],\n", "\n", "\n", " [[[123., 134., 120., 136.],\n", " [118., 129., 127., 113.],\n", " [124., 115., 139., 120.],\n", " [103., 130., 116., 126.]],\n", "\n", " [[123., 135., 120., 135.],\n", " [119., 130., 127., 112.],\n", " [124., 116., 137., 121.],\n", " [103., 130., 115., 126.]],\n", "\n", " [[122., 136., 121., 133.],\n", " [120., 130., 127., 112.],\n", " [124., 115., 136., 122.],\n", " [103., 130., 115., 127.]],\n", "\n", " ...,\n", "\n", " [[116., 142., 121., 124.],\n", " [125., 137., 128., 113.],\n", " [123., 106., 118., 130.],\n", " [104., 128., 112., 137.]],\n", "\n", " [[115., 143., 121., 124.],\n", " [124., 138., 128., 114.],\n", " [123., 104., 116., 130.],\n", " [104., 128., 111., 138.]],\n", "\n", " [[115., 143., 121., 123.],\n", " [124., 139., 129., 114.],\n", " [124., 103., 115., 130.],\n", " [104., 128., 111., 140.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 131., 117., 129.],\n", " [125., 130., 139., 121.],\n", " [133., 121., 140., 123.],\n", " [109., 135., 126., 129.]],\n", "\n", " [[131., 132., 117., 128.],\n", " [126., 130., 138., 121.],\n", " [133., 121., 139., 124.],\n", " [109., 135., 126., 129.]],\n", "\n", " [[130., 132., 117., 127.],\n", " [127., 130., 137., 120.],\n", " [133., 121., 138., 125.],\n", " [108., 135., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 119., 122.],\n", " [131., 136., 134., 119.],\n", " [137., 113., 128., 127.],\n", " [102., 136., 124., 135.]],\n", "\n", " [[117., 137., 119., 122.],\n", " [131., 137., 134., 119.],\n", " [137., 112., 128., 126.],\n", " [102., 137., 124., 136.]],\n", "\n", " [[116., 137., 119., 122.],\n", " [130., 137., 134., 120.],\n", " [137., 111., 127., 126.],\n", " [101., 137., 123., 137.]]],\n", "\n", "\n", " [[[132., 131., 116., 129.],\n", " [125., 130., 140., 122.],\n", " [133., 121., 140., 123.],\n", " [109., 136., 126., 130.]],\n", "\n", " [[131., 131., 117., 128.],\n", " [127., 130., 139., 121.],\n", " [134., 121., 139., 124.],\n", " [109., 136., 126., 130.]],\n", "\n", " [[130., 132., 117., 127.],\n", " [128., 131., 138., 121.],\n", " [134., 121., 138., 125.],\n", " [109., 136., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 136., 119., 122.],\n", " [131., 136., 135., 119.],\n", " [138., 114., 129., 126.],\n", " [102., 137., 125., 135.]],\n", "\n", " [[117., 136., 118., 122.],\n", " [131., 137., 135., 120.],\n", " [138., 113., 129., 126.],\n", " [102., 137., 124., 136.]],\n", "\n", " [[116., 136., 118., 122.],\n", " [130., 137., 135., 120.],\n", " [138., 111., 128., 126.],\n", " [101., 138., 124., 137.]]],\n", "\n", "\n", " [[[133., 130., 116., 128.],\n", " [126., 130., 141., 123.],\n", " [134., 121., 140., 123.],\n", " [110., 136., 127., 131.]],\n", "\n", " [[132., 131., 116., 127.],\n", " [127., 131., 140., 122.],\n", " [134., 121., 139., 124.],\n", " [110., 136., 127., 131.]],\n", "\n", " [[131., 131., 117., 126.],\n", " [128., 131., 139., 121.],\n", " [134., 122., 138., 124.],\n", " [109., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 118., 122.],\n", " [131., 136., 135., 120.],\n", " [139., 114., 130., 126.],\n", " [102., 138., 126., 136.]],\n", "\n", " [[117., 136., 118., 122.],\n", " [131., 137., 135., 120.],\n", " [139., 113., 130., 126.],\n", " [102., 138., 125., 137.]],\n", "\n", " [[116., 136., 118., 122.],\n", " [130., 137., 136., 120.],\n", " [139., 112., 129., 125.],\n", " [101., 138., 125., 137.]]]],\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", " [[[[130., 147., 121., 142.],\n", " [105., 146., 125., 115.],\n", " [117., 104., 137., 99.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[130., 148., 122., 140.],\n", " [107., 146., 125., 114.],\n", " [118., 104., 135., 100.],\n", " [115., 127., 117., 129.]],\n", "\n", " [[130., 148., 122., 138.],\n", " [108., 146., 125., 113.],\n", " [119., 104., 133., 101.],\n", " [115., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 155., 126., 125.],\n", " [117., 150., 134., 107.],\n", " [132., 99., 113., 106.],\n", " [118., 126., 113., 147.]],\n", "\n", " [[128., 155., 126., 125.],\n", " [117., 151., 135., 107.],\n", " [133., 98., 112., 106.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[128., 155., 126., 124.],\n", " [117., 151., 136., 107.],\n", " [134., 96., 110., 105.],\n", " [118., 126., 112., 150.]]],\n", "\n", "\n", " [[[130., 146., 121., 141.],\n", " [107., 145., 126., 116.],\n", " [117., 105., 137., 100.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[130., 147., 122., 139.],\n", " [108., 145., 126., 115.],\n", " [118., 105., 135., 101.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[130., 147., 122., 138.],\n", " [109., 146., 126., 115.],\n", " [119., 105., 134., 101.],\n", " [115., 127., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[127., 154., 126., 125.],\n", " [118., 149., 134., 108.],\n", " [132., 100., 114., 106.],\n", " [117., 126., 113., 146.]],\n", "\n", " [[127., 154., 126., 124.],\n", " [118., 150., 135., 108.],\n", " [134., 99., 113., 106.],\n", " [117., 126., 113., 147.]],\n", "\n", " [[127., 155., 126., 124.],\n", " [118., 151., 136., 108.],\n", " [135., 97., 111., 106.],\n", " [117., 126., 112., 149.]]],\n", "\n", "\n", " [[[130., 145., 121., 140.],\n", " [108., 145., 126., 117.],\n", " [117., 106., 137., 100.],\n", " [115., 128., 118., 127.]],\n", "\n", " [[130., 146., 122., 138.],\n", " [109., 145., 126., 117.],\n", " [118., 106., 135., 101.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[129., 147., 122., 137.],\n", " [110., 145., 126., 116.],\n", " [119., 107., 134., 102.],\n", " [116., 127., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[127., 153., 126., 124.],\n", " [119., 149., 134., 109.],\n", " [133., 101., 115., 106.],\n", " [117., 126., 113., 145.]],\n", "\n", " [[127., 153., 126., 124.],\n", " [119., 149., 135., 109.],\n", " [134., 100., 113., 106.],\n", " [117., 126., 113., 147.]],\n", "\n", " [[126., 154., 126., 123.],\n", " [119., 150., 136., 108.],\n", " [136., 98., 112., 106.],\n", " [117., 126., 113., 148.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 134., 121., 132.],\n", " [117., 138., 134., 132.],\n", " [121., 117., 139., 105.],\n", " [120., 131., 119., 128.]],\n", "\n", " [[130., 135., 121., 131.],\n", " [119., 138., 133., 131.],\n", " [122., 117., 137., 105.],\n", " [120., 131., 118., 128.]],\n", "\n", " [[129., 135., 122., 130.],\n", " [120., 138., 133., 129.],\n", " [123., 118., 136., 106.],\n", " [119., 131., 118., 129.]],\n", "\n", " ...,\n", "\n", " [[120., 141., 124., 121.],\n", " [128., 143., 135., 119.],\n", " [142., 112., 125., 105.],\n", " [114., 132., 117., 139.]],\n", "\n", " [[120., 141., 124., 120.],\n", " [128., 143., 136., 119.],\n", " [143., 111., 124., 105.],\n", " [113., 133., 116., 140.]],\n", "\n", " [[119., 141., 123., 120.],\n", " [128., 144., 137., 118.],\n", " [145., 110., 124., 105.],\n", " [113., 133., 116., 141.]]],\n", "\n", "\n", " [[[130., 133., 121., 132.],\n", " [117., 137., 135., 133.],\n", " [121., 118., 139., 105.],\n", " [121., 131., 119., 129.]],\n", "\n", " [[130., 134., 121., 131.],\n", " [119., 138., 134., 132.],\n", " [122., 118., 138., 105.],\n", " [120., 131., 119., 129.]],\n", "\n", " [[129., 134., 122., 129.],\n", " [120., 138., 134., 130.],\n", " [124., 118., 136., 106.],\n", " [120., 131., 118., 129.]],\n", "\n", " ...,\n", "\n", " [[120., 139., 123., 121.],\n", " [128., 143., 136., 120.],\n", " [143., 113., 126., 105.],\n", " [114., 133., 117., 139.]],\n", "\n", " [[119., 140., 123., 120.],\n", " [128., 143., 136., 119.],\n", " [144., 112., 125., 105.],\n", " [113., 133., 117., 140.]],\n", "\n", " [[119., 140., 123., 120.],\n", " [128., 144., 137., 119.],\n", " [146., 111., 125., 104.],\n", " [113., 133., 117., 141.]]],\n", "\n", "\n", " [[[130., 132., 121., 132.],\n", " [118., 137., 135., 134.],\n", " [121., 119., 139., 105.],\n", " [121., 131., 119., 129.]],\n", "\n", " [[130., 132., 121., 130.],\n", " [119., 137., 135., 133.],\n", " [123., 119., 138., 106.],\n", " [121., 131., 119., 129.]],\n", "\n", " [[129., 133., 122., 129.],\n", " [121., 137., 135., 131.],\n", " [124., 119., 137., 106.],\n", " [120., 131., 118., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 138., 123., 121.],\n", " [129., 142., 136., 121.],\n", " [143., 114., 127., 105.],\n", " [114., 133., 117., 139.]],\n", "\n", " [[119., 139., 123., 120.],\n", " [129., 143., 136., 120.],\n", " [145., 113., 126., 104.],\n", " [113., 134., 117., 140.]],\n", "\n", " [[118., 139., 123., 120.],\n", " [128., 144., 137., 120.],\n", " [146., 111., 126., 104.],\n", " [112., 134., 117., 141.]]]],\n", "\n", "\n", "\n", " [[[[131., 148., 121., 142.],\n", " [104., 148., 125., 115.],\n", " [116., 103., 137., 98.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[131., 148., 122., 141.],\n", " [106., 148., 125., 114.],\n", " [117., 103., 135., 98.],\n", " [116., 127., 116., 129.]],\n", "\n", " [[130., 149., 122., 139.],\n", " [107., 148., 125., 114.],\n", " [118., 103., 133., 99.],\n", " [116., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 155., 126., 126.],\n", " [116., 152., 134., 107.],\n", " [132., 98., 113., 104.],\n", " [119., 126., 113., 148.]],\n", "\n", " [[129., 156., 126., 125.],\n", " [116., 152., 135., 107.],\n", " [134., 97., 112., 103.],\n", " [119., 125., 112., 149.]],\n", "\n", " [[129., 156., 126., 125.],\n", " [117., 153., 137., 107.],\n", " [135., 96., 110., 103.],\n", " [119., 125., 112., 151.]]],\n", "\n", "\n", " [[[131., 147., 121., 142.],\n", " [106., 147., 125., 116.],\n", " [117., 104., 137., 98.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[130., 148., 122., 140.],\n", " [107., 147., 125., 116.],\n", " [117., 104., 135., 99.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[130., 148., 122., 138.],\n", " [108., 147., 126., 115.],\n", " [118., 104., 133., 100.],\n", " [116., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 154., 126., 125.],\n", " [117., 151., 134., 108.],\n", " [133., 99., 114., 104.],\n", " [118., 126., 113., 147.]],\n", "\n", " [[128., 155., 126., 124.],\n", " [118., 151., 135., 108.],\n", " [134., 98., 112., 104.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[128., 155., 126., 124.],\n", " [118., 152., 137., 108.],\n", " [136., 97., 111., 104.],\n", " [118., 126., 112., 150.]]],\n", "\n", "\n", " [[[130., 146., 122., 141.],\n", " [107., 146., 126., 118.],\n", " [117., 105., 137., 99.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[130., 147., 122., 139.],\n", " [108., 146., 126., 117.],\n", " [118., 105., 135., 100.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[130., 147., 122., 137.],\n", " [110., 146., 126., 116.],\n", " [119., 105., 134., 100.],\n", " [117., 127., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 153., 126., 125.],\n", " [119., 150., 134., 109.],\n", " [134., 100., 114., 104.],\n", " [118., 126., 113., 146.]],\n", "\n", " [[128., 154., 126., 124.],\n", " [119., 151., 135., 109.],\n", " [135., 99., 113., 104.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[127., 154., 126., 124.],\n", " [119., 151., 137., 108.],\n", " [136., 98., 112., 104.],\n", " [118., 126., 112., 149.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 134., 121., 133.],\n", " [116., 139., 133., 133.],\n", " [120., 117., 139., 103.],\n", " [121., 130., 118., 128.]],\n", "\n", " [[130., 135., 122., 132.],\n", " [118., 139., 133., 131.],\n", " [121., 117., 137., 104.],\n", " [121., 130., 117., 129.]],\n", "\n", " [[129., 135., 122., 130.],\n", " [119., 139., 133., 130.],\n", " [122., 117., 136., 104.],\n", " [120., 130., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[121., 141., 124., 121.],\n", " [128., 144., 135., 119.],\n", " [142., 112., 125., 104.],\n", " [115., 132., 116., 140.]],\n", "\n", " [[120., 141., 124., 121.],\n", " [128., 144., 136., 119.],\n", " [144., 111., 124., 103.],\n", " [114., 132., 116., 141.]],\n", "\n", " [[120., 142., 124., 121.],\n", " [128., 145., 137., 118.],\n", " [145., 109., 123., 103.],\n", " [114., 132., 115., 142.]]],\n", "\n", "\n", " [[[130., 133., 121., 133.],\n", " [117., 139., 134., 134.],\n", " [120., 117., 139., 104.],\n", " [122., 130., 118., 129.]],\n", "\n", " [[130., 134., 122., 131.],\n", " [118., 139., 134., 132.],\n", " [121., 118., 138., 104.],\n", " [121., 130., 117., 129.]],\n", "\n", " [[129., 134., 122., 130.],\n", " [120., 139., 133., 131.],\n", " [123., 118., 136., 104.],\n", " [121., 130., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[120., 140., 124., 121.],\n", " [128., 144., 136., 120.],\n", " [143., 113., 126., 103.],\n", " [115., 132., 116., 139.]],\n", "\n", " [[120., 140., 124., 121.],\n", " [128., 144., 136., 120.],\n", " [144., 111., 125., 103.],\n", " [114., 133., 116., 140.]],\n", "\n", " [[119., 140., 123., 121.],\n", " [128., 145., 137., 119.],\n", " [146., 110., 124., 102.],\n", " [114., 133., 116., 142.]]],\n", "\n", "\n", " [[[130., 132., 121., 132.],\n", " [117., 138., 135., 135.],\n", " [120., 118., 139., 104.],\n", " [122., 131., 118., 129.]],\n", "\n", " [[130., 132., 122., 131.],\n", " [118., 138., 134., 134.],\n", " [122., 118., 138., 104.],\n", " [122., 131., 117., 129.]],\n", "\n", " [[129., 133., 122., 130.],\n", " [120., 139., 134., 132.],\n", " [123., 119., 137., 104.],\n", " [121., 131., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 138., 123., 121.],\n", " [128., 143., 136., 121.],\n", " [143., 113., 127., 103.],\n", " [115., 133., 116., 139.]],\n", "\n", " [[119., 139., 123., 121.],\n", " [128., 144., 136., 120.],\n", " [145., 112., 126., 103.],\n", " [114., 133., 116., 140.]],\n", "\n", " [[119., 139., 123., 121.],\n", " [128., 145., 137., 120.],\n", " [147., 111., 125., 102.],\n", " [114., 134., 116., 141.]]]],\n", "\n", "\n", "\n", " [[[[131., 149., 122., 143.],\n", " [104., 150., 124., 115.],\n", " [116., 101., 137., 96.],\n", " [116., 126., 116., 129.]],\n", "\n", " [[131., 149., 122., 141.],\n", " [105., 150., 124., 115.],\n", " [117., 102., 135., 97.],\n", " [117., 126., 116., 130.]],\n", "\n", " [[131., 150., 123., 140.],\n", " [106., 150., 125., 114.],\n", " [118., 102., 133., 98.],\n", " [117., 126., 116., 131.]],\n", "\n", " ...,\n", "\n", " [[130., 156., 126., 126.],\n", " [116., 153., 134., 107.],\n", " [133., 97., 113., 102.],\n", " [120., 125., 112., 149.]],\n", "\n", " [[130., 156., 126., 126.],\n", " [116., 153., 136., 107.],\n", " [134., 96., 112., 101.],\n", " [120., 125., 112., 150.]],\n", "\n", " [[130., 157., 126., 125.],\n", " [116., 154., 137., 107.],\n", " [136., 95., 110., 101.],\n", " [120., 125., 112., 152.]]],\n", "\n", "\n", " [[[131., 148., 122., 142.],\n", " [105., 149., 125., 117.],\n", " [116., 103., 137., 97.],\n", " [117., 126., 117., 129.]],\n", "\n", " [[131., 148., 122., 141.],\n", " [106., 149., 125., 116.],\n", " [117., 103., 135., 97.],\n", " [117., 126., 116., 129.]],\n", "\n", " [[131., 149., 123., 139.],\n", " [108., 149., 125., 115.],\n", " [118., 103., 133., 98.],\n", " [117., 126., 116., 131.]],\n", "\n", " ...,\n", "\n", " [[130., 155., 126., 126.],\n", " [117., 152., 134., 108.],\n", " [134., 98., 114., 102.],\n", " [119., 126., 113., 148.]],\n", "\n", " [[129., 156., 126., 125.],\n", " [117., 153., 136., 108.],\n", " [135., 97., 112., 102.],\n", " [119., 126., 112., 150.]],\n", "\n", " [[129., 156., 126., 125.],\n", " [117., 153., 137., 107.],\n", " [136., 96., 111., 102.],\n", " [119., 126., 112., 151.]]],\n", "\n", "\n", " [[[131., 147., 122., 141.],\n", " [106., 148., 125., 118.],\n", " [116., 104., 137., 97.],\n", " [117., 127., 117., 128.]],\n", "\n", " [[131., 147., 122., 140.],\n", " [107., 148., 125., 117.],\n", " [117., 104., 135., 98.],\n", " [117., 126., 116., 129.]],\n", "\n", " [[131., 148., 123., 138.],\n", " [109., 148., 126., 117.],\n", " [118., 104., 133., 99.],\n", " [118., 126., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 154., 126., 125.],\n", " [118., 151., 134., 109.],\n", " [134., 99., 114., 102.],\n", " [119., 126., 113., 147.]],\n", "\n", " [[129., 155., 126., 125.],\n", " [118., 152., 136., 109.],\n", " [136., 98., 113., 102.],\n", " [119., 126., 112., 149.]],\n", "\n", " [[128., 155., 126., 124.],\n", " [118., 152., 137., 108.],\n", " [137., 97., 112., 102.],\n", " [119., 126., 112., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 134., 122., 134.],\n", " [116., 140., 133., 133.],\n", " [118., 116., 139., 102.],\n", " [122., 129., 117., 129.]],\n", "\n", " [[130., 135., 122., 132.],\n", " [117., 140., 132., 132.],\n", " [120., 116., 137., 102.],\n", " [122., 129., 116., 129.]],\n", "\n", " [[129., 135., 122., 131.],\n", " [118., 141., 132., 131.],\n", " [121., 116., 136., 102.],\n", " [121., 129., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[121., 141., 124., 121.],\n", " [127., 145., 135., 120.],\n", " [142., 111., 124., 102.],\n", " [116., 131., 115., 140.]],\n", "\n", " [[121., 141., 124., 121.],\n", " [127., 145., 136., 119.],\n", " [144., 110., 124., 101.],\n", " [115., 131., 115., 141.]],\n", "\n", " [[120., 142., 124., 121.],\n", " [127., 146., 137., 118.],\n", " [145., 109., 123., 101.],\n", " [115., 132., 114., 143.]]],\n", "\n", "\n", " [[[130., 133., 122., 133.],\n", " [116., 140., 133., 134.],\n", " [119., 117., 139., 102.],\n", " [122., 130., 117., 129.]],\n", "\n", " [[130., 133., 122., 132.],\n", " [117., 140., 133., 133.],\n", " [120., 117., 138., 102.],\n", " [122., 130., 116., 129.]],\n", "\n", " [[129., 134., 122., 131.],\n", " [119., 140., 133., 132.],\n", " [122., 117., 136., 103.],\n", " [122., 130., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[121., 140., 124., 121.],\n", " [128., 145., 135., 121.],\n", " [143., 112., 125., 102.],\n", " [116., 132., 115., 140.]],\n", "\n", " [[120., 140., 124., 121.],\n", " [128., 145., 136., 120.],\n", " [145., 111., 125., 101.],\n", " [115., 132., 115., 141.]],\n", "\n", " [[120., 140., 124., 121.],\n", " [128., 146., 137., 119.],\n", " [146., 110., 124., 101.],\n", " [115., 132., 115., 142.]]],\n", "\n", "\n", " [[[130., 132., 121., 133.],\n", " [116., 140., 134., 136.],\n", " [119., 117., 139., 102.],\n", " [123., 130., 117., 129.]],\n", "\n", " [[129., 132., 122., 132.],\n", " [118., 140., 134., 134.],\n", " [121., 118., 138., 102.],\n", " [123., 130., 116., 130.]],\n", "\n", " [[129., 133., 122., 130.],\n", " [119., 140., 133., 133.],\n", " [122., 118., 137., 103.],\n", " [122., 130., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 138., 124., 121.],\n", " [128., 144., 136., 121.],\n", " [144., 113., 126., 101.],\n", " [116., 132., 115., 140.]],\n", "\n", " [[120., 139., 123., 121.],\n", " [128., 145., 136., 121.],\n", " [145., 112., 126., 101.],\n", " [115., 133., 115., 141.]],\n", "\n", " [[119., 139., 123., 121.],\n", " [128., 146., 137., 120.],\n", " [147., 111., 125., 100.],\n", " [115., 133., 115., 142.]]]]],\n", "\n", "\n", "\n", "\n", " [[[[[122., 132., 122., 137.],\n", " [118., 128., 125., 111.],\n", " [123., 115., 139., 123.],\n", " [100., 129., 112., 127.]],\n", "\n", " [[121., 133., 123., 136.],\n", " [119., 129., 124., 111.],\n", " [122., 115., 137., 124.],\n", " [100., 129., 112., 127.]],\n", "\n", " [[121., 133., 123., 134.],\n", " [120., 129., 124., 111.],\n", " [122., 115., 135., 126.],\n", " [100., 129., 111., 128.]],\n", "\n", " ...,\n", "\n", " [[115., 139., 122., 125.],\n", " [124., 136., 124., 115.],\n", " [118., 105., 117., 135.],\n", " [102., 126., 107., 138.]],\n", "\n", " [[115., 140., 122., 125.],\n", " [124., 136., 125., 116.],\n", " [118., 103., 115., 135.],\n", " [102., 126., 107., 139.]],\n", "\n", " [[114., 140., 122., 124.],\n", " [124., 137., 125., 116.],\n", " [118., 102., 114., 136.],\n", " [102., 126., 107., 140.]]],\n", "\n", "\n", " [[[122., 132., 122., 136.],\n", " [119., 128., 125., 112.],\n", " [124., 116., 139., 124.],\n", " [100., 130., 113., 127.]],\n", "\n", " [[122., 132., 122., 135.],\n", " [120., 128., 125., 112.],\n", " [123., 116., 137., 125.],\n", " [100., 129., 113., 127.]],\n", "\n", " [[121., 133., 122., 134.],\n", " [121., 129., 125., 112.],\n", " [123., 116., 136., 126.],\n", " [100., 129., 112., 128.]],\n", "\n", " ...,\n", "\n", " [[115., 139., 122., 125.],\n", " [125., 135., 125., 116.],\n", " [119., 106., 117., 135.],\n", " [102., 127., 109., 137.]],\n", "\n", " [[115., 139., 122., 124.],\n", " [125., 136., 125., 116.],\n", " [119., 104., 116., 135.],\n", " [102., 127., 108., 139.]],\n", "\n", " [[114., 140., 122., 124.],\n", " [125., 137., 126., 117.],\n", " [119., 103., 115., 136.],\n", " [102., 127., 108., 140.]]],\n", "\n", "\n", " [[[123., 132., 122., 136.],\n", " [120., 128., 126., 113.],\n", " [125., 116., 139., 124.],\n", " [101., 130., 114., 127.]],\n", "\n", " [[122., 132., 122., 134.],\n", " [121., 128., 126., 113.],\n", " [124., 116., 137., 126.],\n", " [101., 130., 114., 127.]],\n", "\n", " [[122., 133., 122., 133.],\n", " [122., 129., 125., 113.],\n", " [124., 116., 136., 127.],\n", " [101., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[115., 139., 122., 124.],\n", " [126., 135., 125., 116.],\n", " [120., 106., 118., 135.],\n", " [102., 128., 110., 137.]],\n", "\n", " [[115., 139., 122., 124.],\n", " [126., 136., 126., 117.],\n", " [120., 105., 117., 135.],\n", " [102., 127., 109., 138.]],\n", "\n", " [[114., 140., 121., 124.],\n", " [126., 137., 126., 118.],\n", " [120., 103., 116., 135.],\n", " [102., 127., 109., 139.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[132., 130., 117., 130.],\n", " [126., 129., 139., 121.],\n", " [133., 121., 140., 128.],\n", " [107., 136., 126., 131.]],\n", "\n", " [[131., 130., 118., 129.],\n", " [127., 130., 138., 121.],\n", " [133., 121., 139., 129.],\n", " [107., 136., 126., 131.]],\n", "\n", " [[130., 130., 118., 128.],\n", " [128., 130., 137., 120.],\n", " [133., 121., 138., 129.],\n", " [106., 135., 126., 131.]],\n", "\n", " ...,\n", "\n", " [[118., 134., 119., 123.],\n", " [132., 135., 133., 121.],\n", " [134., 114., 129., 131.],\n", " [101., 136., 124., 136.]],\n", "\n", " [[117., 135., 119., 123.],\n", " [132., 136., 133., 122.],\n", " [134., 112., 129., 131.],\n", " [100., 136., 123., 136.]],\n", "\n", " [[116., 135., 119., 124.],\n", " [131., 136., 133., 122.],\n", " [135., 111., 128., 131.],\n", " [100., 136., 123., 137.]]],\n", "\n", "\n", " [[[133., 129., 117., 129.],\n", " [126., 130., 140., 122.],\n", " [134., 121., 141., 128.],\n", " [108., 136., 126., 131.]],\n", "\n", " [[132., 130., 117., 128.],\n", " [127., 130., 139., 121.],\n", " [134., 121., 140., 129.],\n", " [107., 136., 126., 131.]],\n", "\n", " [[131., 130., 118., 127.],\n", " [128., 130., 138., 121.],\n", " [134., 121., 139., 129.],\n", " [107., 136., 126., 131.]],\n", "\n", " ...,\n", "\n", " [[119., 134., 119., 123.],\n", " [132., 135., 134., 122.],\n", " [135., 114., 130., 131.],\n", " [101., 137., 125., 136.]],\n", "\n", " [[118., 134., 119., 124.],\n", " [132., 136., 134., 122.],\n", " [135., 113., 130., 131.],\n", " [101., 137., 124., 137.]],\n", "\n", " [[117., 134., 118., 124.],\n", " [131., 136., 134., 123.],\n", " [136., 112., 129., 131.],\n", " [100., 137., 124., 137.]]],\n", "\n", "\n", " [[[134., 129., 116., 129.],\n", " [126., 130., 141., 122.],\n", " [134., 121., 141., 128.],\n", " [108., 137., 127., 132.]],\n", "\n", " [[133., 129., 117., 128.],\n", " [128., 130., 140., 122.],\n", " [134., 121., 140., 129.],\n", " [108., 137., 127., 132.]],\n", "\n", " [[132., 130., 117., 127.],\n", " [129., 130., 139., 121.],\n", " [134., 122., 139., 129.],\n", " [108., 137., 127., 132.]],\n", "\n", " ...,\n", "\n", " [[119., 133., 119., 123.],\n", " [132., 135., 135., 122.],\n", " [136., 115., 131., 131.],\n", " [101., 137., 126., 136.]],\n", "\n", " [[118., 134., 118., 124.],\n", " [132., 136., 135., 122.],\n", " [136., 113., 131., 130.],\n", " [101., 138., 125., 137.]],\n", "\n", " [[117., 134., 118., 124.],\n", " [131., 136., 135., 123.],\n", " [137., 112., 131., 130.],\n", " [100., 138., 125., 138.]]]],\n", "\n", "\n", "\n", " [[[[122., 133., 122., 137.],\n", " [117., 129., 125., 112.],\n", " [123., 115., 139., 122.],\n", " [101., 129., 113., 127.]],\n", "\n", " [[121., 134., 123., 136.],\n", " [118., 129., 125., 112.],\n", " [122., 115., 137., 123.],\n", " [101., 129., 112., 127.]],\n", "\n", " [[121., 134., 123., 134.],\n", " [119., 130., 124., 112.],\n", " [122., 115., 135., 124.],\n", " [101., 129., 112., 128.]],\n", "\n", " ...,\n", "\n", " [[116., 140., 123., 125.],\n", " [124., 136., 125., 115.],\n", " [119., 105., 116., 133.],\n", " [103., 126., 108., 138.]],\n", "\n", " [[115., 141., 122., 124.],\n", " [124., 137., 126., 115.],\n", " [119., 103., 115., 134.],\n", " [103., 126., 108., 140.]],\n", "\n", " [[115., 141., 122., 124.],\n", " [124., 138., 126., 116.],\n", " [119., 102., 114., 134.],\n", " [103., 126., 108., 141.]]],\n", "\n", "\n", " [[[122., 133., 122., 136.],\n", " [118., 129., 126., 113.],\n", " [123., 116., 139., 122.],\n", " [101., 130., 114., 127.]],\n", "\n", " [[122., 134., 122., 135.],\n", " [119., 129., 125., 113.],\n", " [123., 116., 137., 124.],\n", " [101., 129., 113., 127.]],\n", "\n", " [[122., 134., 123., 134.],\n", " [120., 129., 125., 112.],\n", " [123., 116., 136., 125.],\n", " [101., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[116., 140., 123., 124.],\n", " [125., 136., 126., 115.],\n", " [120., 106., 117., 133.],\n", " [103., 127., 109., 138.]],\n", "\n", " [[115., 141., 122., 124.],\n", " [125., 137., 126., 116.],\n", " [120., 104., 116., 133.],\n", " [103., 127., 109., 139.]],\n", "\n", " [[115., 141., 122., 124.],\n", " [125., 138., 127., 116.],\n", " [120., 103., 115., 134.],\n", " [103., 127., 109., 140.]]],\n", "\n", "\n", " [[[123., 133., 122., 136.],\n", " [119., 129., 127., 114.],\n", " [124., 116., 139., 123.],\n", " [102., 130., 115., 126.]],\n", "\n", " [[123., 134., 122., 134.],\n", " [120., 129., 126., 113.],\n", " [124., 116., 137., 124.],\n", " [102., 130., 115., 127.]],\n", "\n", " [[122., 134., 122., 133.],\n", " [121., 129., 126., 113.],\n", " [123., 116., 136., 125.],\n", " [102., 130., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[116., 140., 122., 124.],\n", " [126., 136., 126., 116.],\n", " [121., 106., 118., 133.],\n", " [103., 128., 111., 137.]],\n", "\n", " [[115., 140., 122., 124.],\n", " [126., 137., 127., 116.],\n", " [121., 105., 117., 133.],\n", " [103., 128., 110., 138.]],\n", "\n", " [[115., 141., 122., 124.],\n", " [125., 137., 127., 117.],\n", " [121., 103., 115., 134.],\n", " [103., 127., 110., 140.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[132., 130., 118., 129.],\n", " [126., 129., 139., 122.],\n", " [132., 121., 140., 127.],\n", " [108., 135., 126., 130.]],\n", "\n", " [[131., 131., 118., 128.],\n", " [127., 130., 138., 121.],\n", " [133., 121., 139., 127.],\n", " [108., 135., 126., 130.]],\n", "\n", " [[130., 131., 119., 127.],\n", " [128., 130., 137., 121.],\n", " [133., 121., 138., 128.],\n", " [107., 135., 125., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 120., 123.],\n", " [132., 135., 133., 121.],\n", " [135., 114., 129., 130.],\n", " [102., 136., 124., 135.]],\n", "\n", " [[117., 135., 120., 123.],\n", " [131., 136., 134., 121.],\n", " [135., 113., 128., 130.],\n", " [101., 136., 123., 136.]],\n", "\n", " [[116., 135., 119., 123.],\n", " [131., 137., 134., 122.],\n", " [136., 111., 128., 129.],\n", " [101., 136., 123., 137.]]],\n", "\n", "\n", " [[[133., 130., 117., 129.],\n", " [126., 130., 140., 122.],\n", " [133., 121., 140., 127.],\n", " [109., 136., 126., 131.]],\n", "\n", " [[132., 130., 118., 128.],\n", " [127., 130., 139., 122.],\n", " [133., 121., 139., 127.],\n", " [108., 136., 126., 131.]],\n", "\n", " [[131., 131., 118., 127.],\n", " [128., 130., 138., 122.],\n", " [133., 121., 138., 128.],\n", " [108., 136., 126., 131.]],\n", "\n", " ...,\n", "\n", " [[119., 134., 119., 123.],\n", " [132., 135., 134., 121.],\n", " [136., 114., 130., 129.],\n", " [102., 137., 125., 136.]],\n", "\n", " [[118., 135., 119., 123.],\n", " [132., 136., 134., 122.],\n", " [136., 113., 129., 129.],\n", " [101., 137., 124., 137.]],\n", "\n", " [[117., 135., 119., 123.],\n", " [131., 137., 135., 122.],\n", " [137., 112., 129., 129.],\n", " [101., 137., 124., 137.]]],\n", "\n", "\n", " [[[134., 130., 117., 129.],\n", " [126., 130., 141., 123.],\n", " [133., 121., 140., 126.],\n", " [109., 137., 127., 132.]],\n", "\n", " [[133., 130., 117., 128.],\n", " [127., 130., 140., 122.],\n", " [134., 122., 139., 127.],\n", " [109., 136., 127., 132.]],\n", "\n", " [[132., 130., 118., 127.],\n", " [128., 130., 139., 122.],\n", " [134., 122., 139., 128.],\n", " [109., 136., 127., 132.]],\n", "\n", " ...,\n", "\n", " [[119., 134., 119., 123.],\n", " [132., 136., 135., 122.],\n", " [137., 115., 131., 129.],\n", " [102., 137., 126., 136.]],\n", "\n", " [[118., 134., 119., 123.],\n", " [132., 136., 135., 122.],\n", " [137., 114., 130., 129.],\n", " [101., 138., 125., 137.]],\n", "\n", " [[117., 134., 119., 123.],\n", " [131., 137., 135., 122.],\n", " [138., 112., 130., 128.],\n", " [101., 138., 125., 138.]]]],\n", "\n", "\n", "\n", " [[[[122., 135., 122., 137.],\n", " [116., 130., 125., 112.],\n", " [122., 115., 139., 120.],\n", " [102., 130., 113., 127.]],\n", "\n", " [[122., 135., 123., 135.],\n", " [117., 130., 125., 112.],\n", " [122., 115., 137., 121.],\n", " [102., 129., 113., 127.]],\n", "\n", " [[122., 136., 123., 134.],\n", " [118., 131., 125., 112.],\n", " [122., 115., 135., 122.],\n", " [102., 129., 113., 127.]],\n", "\n", " ...,\n", "\n", " [[117., 142., 123., 124.],\n", " [124., 137., 126., 114.],\n", " [120., 105., 116., 131.],\n", " [104., 126., 109., 139.]],\n", "\n", " [[116., 142., 123., 124.],\n", " [123., 138., 127., 114.],\n", " [120., 103., 115., 132.],\n", " [104., 126., 109., 140.]],\n", "\n", " [[116., 143., 123., 124.],\n", " [123., 139., 128., 115.],\n", " [120., 102., 113., 132.],\n", " [104., 126., 108., 141.]]],\n", "\n", "\n", " [[[123., 134., 122., 136.],\n", " [117., 130., 126., 113.],\n", " [123., 115., 139., 121.],\n", " [102., 130., 115., 126.]],\n", "\n", " [[122., 135., 123., 135.],\n", " [118., 130., 126., 113.],\n", " [123., 115., 137., 122.],\n", " [102., 130., 114., 127.]],\n", "\n", " [[122., 135., 123., 133.],\n", " [119., 130., 125., 113.],\n", " [123., 115., 135., 123.],\n", " [103., 129., 114., 127.]],\n", "\n", " ...,\n", "\n", " [[117., 141., 123., 124.],\n", " [124., 137., 127., 114.],\n", " [121., 106., 117., 131.],\n", " [104., 127., 110., 138.]],\n", "\n", " [[116., 142., 123., 124.],\n", " [124., 138., 127., 115.],\n", " [121., 104., 115., 132.],\n", " [104., 127., 110., 139.]],\n", "\n", " [[116., 142., 123., 123.],\n", " [124., 138., 128., 115.],\n", " [122., 103., 114., 132.],\n", " [104., 127., 109., 141.]]],\n", "\n", "\n", " [[[123., 134., 122., 136.],\n", " [118., 129., 127., 114.],\n", " [124., 116., 139., 121.],\n", " [103., 130., 116., 126.]],\n", "\n", " [[123., 135., 122., 134.],\n", " [119., 130., 127., 114.],\n", " [124., 116., 137., 122.],\n", " [103., 130., 115., 127.]],\n", "\n", " [[122., 135., 123., 133.],\n", " [120., 130., 126., 114.],\n", " [123., 116., 136., 124.],\n", " [103., 130., 115., 127.]],\n", "\n", " ...,\n", "\n", " [[116., 141., 123., 124.],\n", " [125., 137., 127., 115.],\n", " [122., 106., 118., 131.],\n", " [104., 128., 111., 137.]],\n", "\n", " [[116., 141., 123., 123.],\n", " [125., 137., 128., 116.],\n", " [123., 105., 116., 131.],\n", " [104., 128., 111., 139.]],\n", "\n", " [[115., 142., 122., 123.],\n", " [125., 138., 128., 116.],\n", " [123., 103., 115., 132.],\n", " [104., 127., 111., 140.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[132., 131., 118., 129.],\n", " [125., 130., 139., 123.],\n", " [132., 121., 140., 125.],\n", " [109., 135., 126., 130.]],\n", "\n", " [[131., 131., 119., 128.],\n", " [126., 130., 138., 122.],\n", " [132., 121., 139., 126.],\n", " [109., 135., 125., 130.]],\n", "\n", " [[130., 132., 119., 127.],\n", " [127., 130., 137., 122.],\n", " [132., 121., 138., 126.],\n", " [108., 135., 125., 130.]],\n", "\n", " ...,\n", "\n", " [[118., 135., 120., 122.],\n", " [132., 136., 134., 121.],\n", " [136., 114., 128., 128.],\n", " [103., 136., 123., 135.]],\n", "\n", " [[117., 136., 120., 122.],\n", " [131., 136., 134., 121.],\n", " [136., 113., 128., 128.],\n", " [102., 136., 123., 136.]],\n", "\n", " [[116., 136., 120., 123.],\n", " [131., 137., 134., 121.],\n", " [136., 111., 128., 127.],\n", " [101., 136., 123., 137.]]],\n", "\n", "\n", " [[[133., 131., 118., 129.],\n", " [125., 130., 140., 123.],\n", " [132., 121., 140., 125.],\n", " [110., 136., 126., 130.]],\n", "\n", " [[132., 131., 118., 128.],\n", " [126., 130., 139., 123.],\n", " [133., 121., 139., 126.],\n", " [109., 136., 126., 130.]],\n", "\n", " [[131., 131., 119., 127.],\n", " [127., 130., 138., 122.],\n", " [133., 122., 138., 126.],\n", " [109., 136., 126., 130.]],\n", "\n", " ...,\n", "\n", " [[119., 135., 120., 122.],\n", " [132., 136., 134., 121.],\n", " [137., 115., 129., 128.],\n", " [103., 137., 124., 136.]],\n", "\n", " [[118., 135., 120., 123.],\n", " [131., 136., 135., 121.],\n", " [137., 113., 129., 127.],\n", " [102., 137., 124., 136.]],\n", "\n", " [[117., 135., 120., 123.],\n", " [131., 137., 135., 122.],\n", " [138., 112., 129., 127.],\n", " [101., 137., 124., 137.]]],\n", "\n", "\n", " [[[133., 130., 117., 129.],\n", " [125., 130., 141., 124.],\n", " [133., 122., 140., 125.],\n", " [110., 136., 127., 131.]],\n", "\n", " [[132., 130., 118., 128.],\n", " [126., 130., 140., 123.],\n", " [133., 122., 139., 126.],\n", " [110., 136., 127., 131.]],\n", "\n", " [[131., 131., 118., 127.],\n", " [128., 131., 139., 123.],\n", " [133., 122., 138., 126.],\n", " [110., 136., 127., 131.]],\n", "\n", " ...,\n", "\n", " [[119., 134., 120., 122.],\n", " [132., 136., 135., 121.],\n", " [138., 115., 131., 127.],\n", " [103., 137., 125., 136.]],\n", "\n", " [[118., 134., 119., 123.],\n", " [131., 136., 135., 122.],\n", " [138., 114., 130., 127.],\n", " [102., 137., 125., 137.]],\n", "\n", " [[117., 135., 119., 123.],\n", " [131., 137., 136., 122.],\n", " [139., 113., 130., 127.],\n", " [101., 138., 125., 138.]]]],\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", " [[[[130., 147., 123., 141.],\n", " [105., 145., 125., 116.],\n", " [116., 105., 137., 101.],\n", " [115., 127., 117., 128.]],\n", "\n", " [[130., 147., 124., 140.],\n", " [107., 145., 125., 115.],\n", " [117., 105., 135., 102.],\n", " [115., 127., 117., 129.]],\n", "\n", " [[130., 148., 124., 138.],\n", " [108., 146., 126., 115.],\n", " [118., 105., 133., 102.],\n", " [115., 127., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 154., 127., 125.],\n", " [118., 149., 134., 109.],\n", " [131., 100., 113., 107.],\n", " [118., 126., 113., 147.]],\n", "\n", " [[128., 154., 127., 124.],\n", " [118., 150., 135., 109.],\n", " [132., 99., 112., 107.],\n", " [118., 125., 113., 148.]],\n", "\n", " [[128., 154., 127., 124.],\n", " [118., 150., 136., 109.],\n", " [134., 97., 110., 107.],\n", " [118., 125., 112., 150.]]],\n", "\n", "\n", " [[[130., 146., 123., 140.],\n", " [107., 145., 126., 117.],\n", " [117., 106., 137., 101.],\n", " [115., 128., 117., 128.]],\n", "\n", " [[130., 147., 124., 139.],\n", " [108., 145., 126., 117.],\n", " [117., 106., 135., 102.],\n", " [115., 127., 117., 129.]],\n", "\n", " [[130., 147., 124., 137.],\n", " [109., 145., 126., 116.],\n", " [118., 106., 133., 103.],\n", " [116., 127., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[128., 153., 127., 124.],\n", " [119., 149., 134., 110.],\n", " [132., 101., 114., 107.],\n", " [117., 126., 113., 146.]],\n", "\n", " [[127., 153., 127., 124.],\n", " [119., 149., 135., 110.],\n", " [133., 100., 113., 107.],\n", " [117., 126., 113., 147.]],\n", "\n", " [[127., 154., 127., 123.],\n", " [119., 150., 136., 109.],\n", " [134., 98., 111., 107.],\n", " [117., 126., 112., 149.]]],\n", "\n", "\n", " [[[130., 145., 123., 140.],\n", " [108., 144., 126., 119.],\n", " [117., 107., 137., 102.],\n", " [115., 128., 118., 127.]],\n", "\n", " [[130., 146., 124., 138.],\n", " [109., 144., 126., 118.],\n", " [118., 107., 135., 103.],\n", " [115., 128., 117., 128.]],\n", "\n", " [[130., 146., 124., 136.],\n", " [110., 144., 127., 117.],\n", " [119., 108., 134., 103.],\n", " [116., 128., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[127., 152., 127., 124.],\n", " [120., 148., 134., 111.],\n", " [132., 102., 115., 107.],\n", " [117., 126., 113., 145.]],\n", "\n", " [[127., 152., 127., 123.],\n", " [120., 148., 135., 110.],\n", " [134., 101., 113., 107.],\n", " [117., 126., 113., 147.]],\n", "\n", " [[127., 153., 127., 123.],\n", " [120., 149., 136., 110.],\n", " [135., 100., 112., 107.],\n", " [117., 126., 113., 148.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 134., 123., 133.],\n", " [117., 137., 134., 133.],\n", " [120., 118., 138., 106.],\n", " [121., 131., 119., 128.]],\n", "\n", " [[130., 134., 123., 131.],\n", " [118., 137., 134., 132.],\n", " [121., 118., 137., 107.],\n", " [121., 131., 119., 128.]],\n", "\n", " [[129., 135., 123., 130.],\n", " [120., 137., 133., 131.],\n", " [123., 119., 136., 107.],\n", " [120., 131., 118., 129.]],\n", "\n", " ...,\n", "\n", " [[121., 139., 125., 121.],\n", " [129., 142., 136., 121.],\n", " [141., 113., 125., 107.],\n", " [114., 132., 117., 139.]],\n", "\n", " [[120., 140., 125., 121.],\n", " [129., 143., 136., 120.],\n", " [143., 112., 124., 106.],\n", " [114., 132., 116., 140.]],\n", "\n", " [[120., 140., 125., 121.],\n", " [129., 143., 137., 120.],\n", " [144., 111., 124., 106.],\n", " [113., 132., 116., 141.]]],\n", "\n", "\n", " [[[130., 133., 122., 132.],\n", " [117., 137., 135., 134.],\n", " [120., 119., 139., 106.],\n", " [121., 131., 119., 128.]],\n", "\n", " [[130., 133., 123., 131.],\n", " [119., 137., 135., 133.],\n", " [122., 119., 137., 107.],\n", " [121., 131., 119., 129.]],\n", "\n", " [[129., 133., 123., 130.],\n", " [120., 137., 134., 132.],\n", " [123., 119., 136., 107.],\n", " [121., 131., 118., 129.]],\n", "\n", " ...,\n", "\n", " [[120., 138., 125., 121.],\n", " [129., 142., 136., 122.],\n", " [142., 114., 126., 106.],\n", " [114., 133., 117., 139.]],\n", "\n", " [[120., 138., 124., 121.],\n", " [129., 142., 136., 121.],\n", " [144., 113., 125., 106.],\n", " [114., 133., 117., 140.]],\n", "\n", " [[119., 139., 124., 121.],\n", " [129., 143., 137., 121.],\n", " [145., 112., 125., 105.],\n", " [113., 133., 117., 141.]]],\n", "\n", "\n", " [[[131., 131., 122., 132.],\n", " [117., 136., 136., 135.],\n", " [121., 119., 139., 107.],\n", " [122., 131., 119., 129.]],\n", "\n", " [[130., 132., 123., 131.],\n", " [119., 137., 135., 134.],\n", " [122., 120., 138., 107.],\n", " [122., 131., 119., 129.]],\n", "\n", " [[129., 132., 123., 129.],\n", " [120., 137., 135., 133.],\n", " [124., 120., 137., 107.],\n", " [121., 131., 118., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 137., 124., 121.],\n", " [129., 142., 136., 122.],\n", " [143., 115., 127., 106.],\n", " [114., 133., 117., 139.]],\n", "\n", " [[119., 137., 124., 121.],\n", " [129., 142., 137., 122.],\n", " [144., 114., 126., 106.],\n", " [114., 133., 117., 140.]],\n", "\n", " [[119., 137., 124., 121.],\n", " [129., 143., 137., 121.],\n", " [146., 113., 126., 105.],\n", " [113., 134., 117., 141.]]]],\n", "\n", "\n", "\n", " [[[[131., 148., 123., 142.],\n", " [104., 147., 125., 116.],\n", " [116., 104., 137., 99.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[131., 148., 124., 140.],\n", " [106., 147., 125., 116.],\n", " [117., 104., 135., 100.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[131., 149., 124., 139.],\n", " [107., 147., 125., 115.],\n", " [118., 104., 133., 101.],\n", " [116., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 154., 127., 125.],\n", " [117., 151., 134., 109.],\n", " [132., 99., 113., 105.],\n", " [119., 125., 113., 148.]],\n", "\n", " [[129., 155., 128., 125.],\n", " [117., 151., 135., 109.],\n", " [133., 98., 112., 105.],\n", " [119., 125., 112., 149.]],\n", "\n", " [[129., 155., 128., 124.],\n", " [117., 152., 137., 108.],\n", " [134., 97., 110., 105.],\n", " [119., 125., 112., 151.]]],\n", "\n", "\n", " [[[131., 147., 123., 141.],\n", " [106., 146., 125., 118.],\n", " [116., 105., 137., 100.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[131., 147., 124., 139.],\n", " [107., 146., 126., 117.],\n", " [117., 105., 135., 101.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[131., 148., 124., 138.],\n", " [108., 146., 126., 117.],\n", " [118., 105., 133., 101.],\n", " [117., 127., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 153., 127., 125.],\n", " [118., 150., 134., 110.],\n", " [132., 100., 114., 105.],\n", " [118., 126., 113., 147.]],\n", "\n", " [[129., 154., 127., 124.],\n", " [118., 150., 136., 110.],\n", " [134., 99., 112., 105.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[128., 154., 127., 124.],\n", " [118., 151., 137., 109.],\n", " [135., 98., 111., 105.],\n", " [118., 125., 112., 150.]]],\n", "\n", "\n", " [[[131., 146., 123., 140.],\n", " [107., 146., 126., 119.],\n", " [116., 106., 137., 100.],\n", " [116., 127., 117., 128.]],\n", "\n", " [[131., 146., 124., 139.],\n", " [108., 146., 126., 119.],\n", " [117., 106., 135., 101.],\n", " [116., 127., 117., 129.]],\n", "\n", " [[130., 147., 124., 137.],\n", " [110., 146., 126., 118.],\n", " [118., 106., 133., 102.],\n", " [117., 127., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[128., 152., 127., 124.],\n", " [119., 149., 135., 111.],\n", " [133., 101., 114., 105.],\n", " [118., 126., 113., 146.]],\n", "\n", " [[128., 153., 127., 124.],\n", " [119., 150., 136., 110.],\n", " [134., 100., 113., 105.],\n", " [118., 126., 113., 148.]],\n", "\n", " [[128., 153., 127., 124.],\n", " [120., 150., 137., 110.],\n", " [136., 99., 112., 105.],\n", " [118., 126., 112., 149.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 134., 123., 133.],\n", " [116., 138., 134., 134.],\n", " [119., 117., 138., 105.],\n", " [122., 130., 118., 128.]],\n", "\n", " [[130., 134., 123., 132.],\n", " [118., 138., 133., 133.],\n", " [120., 118., 137., 105.],\n", " [122., 130., 118., 129.]],\n", "\n", " [[129., 135., 124., 131.],\n", " [119., 138., 133., 132.],\n", " [122., 118., 136., 105.],\n", " [121., 130., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[121., 139., 125., 121.],\n", " [128., 143., 136., 121.],\n", " [141., 113., 125., 105.],\n", " [116., 131., 116., 140.]],\n", "\n", " [[121., 140., 125., 121.],\n", " [128., 144., 136., 120.],\n", " [143., 112., 124., 104.],\n", " [115., 132., 116., 141.]],\n", "\n", " [[120., 140., 125., 121.],\n", " [128., 144., 137., 120.],\n", " [145., 111., 124., 104.],\n", " [114., 132., 115., 142.]]],\n", "\n", "\n", " [[[130., 132., 123., 133.],\n", " [116., 138., 134., 135.],\n", " [119., 118., 139., 105.],\n", " [122., 131., 118., 129.]],\n", "\n", " [[130., 133., 123., 132.],\n", " [118., 138., 134., 134.],\n", " [121., 118., 137., 105.],\n", " [122., 130., 118., 129.]],\n", "\n", " [[129., 133., 124., 130.],\n", " [119., 138., 134., 133.],\n", " [122., 119., 136., 105.],\n", " [122., 130., 117., 129.]],\n", "\n", " ...,\n", "\n", " [[121., 138., 125., 121.],\n", " [129., 143., 136., 122.],\n", " [142., 114., 126., 105.],\n", " [115., 132., 116., 139.]],\n", "\n", " [[120., 138., 125., 121.],\n", " [129., 143., 136., 121.],\n", " [144., 113., 125., 104.],\n", " [115., 132., 116., 141.]],\n", "\n", " [[120., 139., 124., 121.],\n", " [129., 144., 137., 121.],\n", " [146., 112., 125., 104.],\n", " [114., 132., 116., 142.]]],\n", "\n", "\n", " [[[130., 131., 123., 133.],\n", " [117., 138., 135., 136.],\n", " [119., 119., 139., 105.],\n", " [123., 131., 118., 129.]],\n", "\n", " [[130., 132., 123., 131.],\n", " [118., 138., 135., 135.],\n", " [121., 119., 138., 105.],\n", " [123., 131., 118., 129.]],\n", "\n", " [[129., 132., 123., 130.],\n", " [120., 138., 134., 134.],\n", " [123., 119., 137., 106.],\n", " [122., 131., 117., 130.]],\n", "\n", " ...,\n", "\n", " [[120., 137., 125., 121.],\n", " [129., 143., 136., 123.],\n", " [143., 115., 127., 104.],\n", " [115., 133., 116., 139.]],\n", "\n", " [[120., 137., 124., 121.],\n", " [129., 143., 137., 122.],\n", " [145., 114., 126., 104.],\n", " [115., 133., 116., 140.]],\n", "\n", " [[119., 137., 124., 121.],\n", " [129., 144., 137., 122.],\n", " [146., 112., 126., 103.],\n", " [114., 133., 116., 141.]]]],\n", "\n", "\n", "\n", " [[[[131., 148., 123., 143.],\n", " [103., 149., 125., 117.],\n", " [115., 102., 136., 97.],\n", " [117., 127., 117., 129.]],\n", "\n", " [[131., 149., 124., 141.],\n", " [105., 149., 125., 116.],\n", " [116., 103., 135., 98.],\n", " [117., 126., 116., 130.]],\n", "\n", " [[132., 149., 124., 139.],\n", " [106., 149., 125., 116.],\n", " [117., 103., 133., 99.],\n", " [117., 126., 116., 131.]],\n", "\n", " ...,\n", "\n", " [[130., 155., 128., 126.],\n", " [116., 152., 135., 109.],\n", " [132., 98., 113., 103.],\n", " [120., 125., 113., 149.]],\n", "\n", " [[130., 155., 128., 125.],\n", " [117., 152., 136., 109.],\n", " [134., 97., 112., 103.],\n", " [120., 125., 112., 150.]],\n", "\n", " [[130., 156., 128., 125.],\n", " [117., 153., 137., 108.],\n", " [135., 96., 110., 103.],\n", " [120., 125., 112., 152.]]],\n", "\n", "\n", " [[[131., 147., 123., 142.],\n", " [105., 148., 125., 118.],\n", " [115., 104., 137., 98.],\n", " [117., 127., 117., 129.]],\n", "\n", " [[131., 148., 124., 140.],\n", " [106., 148., 125., 118.],\n", " [116., 104., 135., 99.],\n", " [117., 127., 117., 130.]],\n", "\n", " [[131., 148., 124., 139.],\n", " [107., 148., 126., 117.],\n", " [117., 104., 133., 100.],\n", " [118., 126., 116., 131.]],\n", "\n", " ...,\n", "\n", " [[130., 154., 128., 125.],\n", " [118., 151., 135., 110.],\n", " [133., 99., 114., 103.],\n", " [120., 125., 113., 148.]],\n", "\n", " [[130., 154., 128., 125.],\n", " [118., 152., 136., 109.],\n", " [134., 98., 112., 103.],\n", " [120., 125., 112., 149.]],\n", "\n", " [[129., 155., 128., 124.],\n", " [118., 152., 137., 109.],\n", " [136., 97., 111., 103.],\n", " [120., 125., 112., 151.]]],\n", "\n", "\n", " [[[131., 147., 123., 141.],\n", " [106., 147., 126., 120.],\n", " [115., 105., 137., 99.],\n", " [117., 127., 117., 128.]],\n", "\n", " [[131., 147., 124., 139.],\n", " [107., 147., 126., 119.],\n", " [116., 105., 135., 99.],\n", " [117., 127., 117., 129.]],\n", "\n", " [[131., 148., 124., 138.],\n", " [109., 147., 126., 118.],\n", " [117., 105., 133., 100.],\n", " [118., 127., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[129., 153., 128., 125.],\n", " [119., 150., 135., 111.],\n", " [134., 100., 114., 103.],\n", " [119., 126., 113., 147.]],\n", "\n", " [[129., 154., 128., 124.],\n", " [119., 151., 136., 110.],\n", " [135., 99., 113., 103.],\n", " [119., 126., 112., 149.]],\n", "\n", " [[129., 154., 128., 124.],\n", " [119., 151., 137., 110.],\n", " [136., 98., 112., 103.],\n", " [119., 126., 112., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 134., 123., 134.],\n", " [115., 140., 133., 135.],\n", " [118., 117., 138., 103.],\n", " [123., 130., 117., 129.]],\n", "\n", " [[130., 134., 124., 133.],\n", " [117., 140., 133., 134.],\n", " [119., 117., 137., 103.],\n", " [122., 130., 117., 129.]],\n", "\n", " [[129., 134., 124., 131.],\n", " [118., 140., 132., 133.],\n", " [121., 117., 136., 104.],\n", " [122., 130., 116., 129.]],\n", "\n", " ...,\n", "\n", " [[122., 140., 125., 122.],\n", " [128., 144., 136., 121.],\n", " [142., 113., 125., 103.],\n", " [117., 131., 115., 140.]],\n", "\n", " [[121., 140., 125., 122.],\n", " [128., 145., 136., 121.],\n", " [143., 111., 124., 103.],\n", " [116., 131., 115., 142.]],\n", "\n", " [[121., 140., 125., 122.],\n", " [128., 145., 137., 120.],\n", " [145., 110., 123., 102.],\n", " [116., 131., 114., 143.]]],\n", "\n", "\n", " [[[130., 132., 123., 134.],\n", " [116., 139., 134., 136.],\n", " [118., 118., 139., 103.],\n", " [123., 130., 117., 129.]],\n", "\n", " [[130., 133., 123., 132.],\n", " [117., 139., 133., 135.],\n", " [119., 118., 138., 104.],\n", " [123., 130., 117., 129.]],\n", "\n", " [[129., 133., 124., 131.],\n", " [119., 139., 133., 134.],\n", " [121., 118., 136., 104.],\n", " [123., 130., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[121., 138., 125., 122.],\n", " [128., 144., 136., 122.],\n", " [142., 113., 126., 103.],\n", " [117., 131., 115., 140.]],\n", "\n", " [[121., 139., 125., 122.],\n", " [128., 144., 136., 122.],\n", " [144., 112., 125., 102.],\n", " [116., 132., 115., 141.]],\n", "\n", " [[120., 139., 125., 122.],\n", " [128., 145., 137., 121.],\n", " [146., 111., 124., 102.],\n", " [115., 132., 115., 142.]]],\n", "\n", "\n", " [[[130., 131., 123., 134.],\n", " [116., 139., 134., 137.],\n", " [118., 118., 139., 103.],\n", " [124., 130., 117., 129.]],\n", "\n", " [[130., 131., 123., 132.],\n", " [117., 139., 134., 136.],\n", " [120., 119., 138., 104.],\n", " [123., 130., 116., 130.]],\n", "\n", " [[129., 132., 124., 131.],\n", " [119., 139., 134., 135.],\n", " [121., 119., 137., 104.],\n", " [123., 130., 116., 130.]],\n", "\n", " ...,\n", "\n", " [[121., 137., 125., 122.],\n", " [128., 144., 136., 123.],\n", " [143., 114., 127., 102.],\n", " [117., 132., 115., 140.]],\n", "\n", " [[120., 137., 125., 122.],\n", " [129., 144., 137., 122.],\n", " [145., 113., 126., 102.],\n", " [116., 132., 115., 141.]],\n", "\n", " [[120., 138., 124., 122.],\n", " [129., 145., 137., 122.],\n", " [147., 112., 125., 102.],\n", " [115., 133., 115., 142.]]]]],\n", "\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", "\n", " [[[[[125., 134., 144., 133.],\n", " [113., 130., 121., 126.],\n", " [117., 118., 130., 136.],\n", " [ 91., 132., 108., 135.]],\n", "\n", " [[125., 133., 144., 132.],\n", " [114., 130., 120., 126.],\n", " [117., 119., 129., 137.],\n", " [ 91., 131., 108., 135.]],\n", "\n", " [[125., 133., 144., 131.],\n", " [116., 130., 119., 127.],\n", " [116., 119., 128., 138.],\n", " [ 91., 130., 107., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 131., 140., 124.],\n", " [129., 132., 118., 136.],\n", " [110., 113., 114., 144.],\n", " [ 93., 124., 98., 145.]],\n", "\n", " [[123., 130., 139., 124.],\n", " [129., 133., 118., 137.],\n", " [110., 112., 113., 144.],\n", " [ 93., 123., 97., 146.]],\n", "\n", " [[123., 130., 138., 124.],\n", " [130., 133., 118., 138.],\n", " [109., 111., 112., 145.],\n", " [ 94., 123., 97., 147.]]],\n", "\n", "\n", " [[[126., 133., 144., 133.],\n", " [113., 130., 121., 127.],\n", " [118., 119., 131., 137.],\n", " [ 92., 132., 109., 135.]],\n", "\n", " [[126., 133., 144., 132.],\n", " [115., 130., 121., 127.],\n", " [117., 119., 129., 138.],\n", " [ 92., 131., 108., 135.]],\n", "\n", " [[126., 133., 143., 130.],\n", " [116., 130., 120., 128.],\n", " [117., 119., 128., 139.],\n", " [ 92., 131., 108., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 130., 139., 124.],\n", " [129., 132., 118., 137.],\n", " [111., 114., 115., 144.],\n", " [ 94., 124., 99., 144.]],\n", "\n", " [[123., 130., 138., 124.],\n", " [130., 133., 119., 137.],\n", " [110., 113., 114., 144.],\n", " [ 94., 124., 98., 146.]],\n", "\n", " [[123., 130., 138., 124.],\n", " [131., 133., 119., 138.],\n", " [110., 111., 113., 144.],\n", " [ 94., 123., 98., 147.]]],\n", "\n", "\n", " [[[127., 133., 143., 133.],\n", " [114., 130., 122., 127.],\n", " [118., 119., 131., 138.],\n", " [ 93., 132., 110., 135.]],\n", "\n", " [[127., 133., 143., 131.],\n", " [116., 130., 122., 128.],\n", " [118., 119., 130., 138.],\n", " [ 93., 132., 109., 135.]],\n", "\n", " [[127., 133., 143., 130.],\n", " [117., 130., 121., 129.],\n", " [117., 120., 129., 139.],\n", " [ 93., 131., 109., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 130., 139., 124.],\n", " [130., 132., 119., 137.],\n", " [112., 114., 116., 144.],\n", " [ 94., 124., 100., 144.]],\n", "\n", " [[124., 130., 138., 124.],\n", " [131., 132., 119., 138.],\n", " [111., 113., 115., 144.],\n", " [ 95., 124., 100., 145.]],\n", "\n", " [[123., 130., 137., 124.],\n", " [131., 133., 120., 139.],\n", " [111., 112., 114., 144.],\n", " [ 95., 124., 99., 146.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[136., 129., 135., 134.],\n", " [120., 129., 136., 135.],\n", " [122., 124., 136., 140.],\n", " [107., 136., 119., 140.]],\n", "\n", " [[136., 129., 135., 133.],\n", " [121., 129., 135., 135.],\n", " [122., 124., 135., 140.],\n", " [107., 135., 119., 139.]],\n", "\n", " [[135., 129., 135., 132.],\n", " [123., 129., 135., 136.],\n", " [122., 124., 134., 141.],\n", " [107., 134., 118., 139.]],\n", "\n", " ...,\n", "\n", " [[127., 126., 132., 129.],\n", " [135., 130., 130., 141.],\n", " [122., 121., 129., 141.],\n", " [103., 128., 113., 142.]],\n", "\n", " [[126., 126., 132., 129.],\n", " [136., 130., 130., 142.],\n", " [122., 120., 129., 140.],\n", " [102., 128., 113., 143.]],\n", "\n", " [[125., 125., 131., 129.],\n", " [136., 131., 131., 143.],\n", " [123., 119., 129., 140.],\n", " [102., 128., 112., 144.]]],\n", "\n", "\n", " [[[137., 129., 134., 134.],\n", " [120., 129., 138., 136.],\n", " [122., 124., 136., 139.],\n", " [108., 136., 120., 140.]],\n", "\n", " [[137., 129., 134., 133.],\n", " [122., 129., 137., 136.],\n", " [122., 124., 135., 140.],\n", " [108., 135., 119., 140.]],\n", "\n", " [[136., 128., 134., 132.],\n", " [123., 129., 136., 136.],\n", " [122., 125., 135., 140.],\n", " [108., 135., 119., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 132., 129.],\n", " [135., 130., 132., 141.],\n", " [123., 121., 130., 140.],\n", " [104., 129., 114., 142.]],\n", "\n", " [[126., 125., 131., 130.],\n", " [136., 130., 132., 142.],\n", " [123., 120., 130., 140.],\n", " [103., 128., 114., 143.]],\n", "\n", " [[125., 125., 130., 130.],\n", " [136., 131., 132., 143.],\n", " [124., 119., 130., 139.],\n", " [103., 128., 113., 144.]]],\n", "\n", "\n", " [[[138., 128., 134., 135.],\n", " [120., 129., 139., 136.],\n", " [122., 124., 136., 139.],\n", " [109., 136., 120., 141.]],\n", "\n", " [[137., 128., 134., 134.],\n", " [122., 129., 138., 136.],\n", " [122., 125., 136., 140.],\n", " [109., 136., 120., 141.]],\n", "\n", " [[137., 128., 134., 133.],\n", " [123., 129., 137., 137.],\n", " [122., 125., 135., 140.],\n", " [109., 135., 119., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 131., 130.],\n", " [135., 130., 133., 142.],\n", " [124., 121., 131., 140.],\n", " [105., 129., 115., 143.]],\n", "\n", " [[126., 125., 130., 130.],\n", " [136., 130., 133., 142.],\n", " [124., 121., 131., 139.],\n", " [104., 129., 115., 143.]],\n", "\n", " [[125., 124., 130., 131.],\n", " [136., 131., 133., 143.],\n", " [124., 120., 132., 139.],\n", " [103., 129., 114., 144.]]]],\n", "\n", "\n", "\n", " [[[[125., 135., 144., 133.],\n", " [112., 131., 121., 126.],\n", " [117., 119., 130., 135.],\n", " [ 92., 132., 109., 134.]],\n", "\n", " [[125., 134., 144., 132.],\n", " [113., 131., 121., 126.],\n", " [117., 119., 129., 136.],\n", " [ 92., 131., 108., 135.]],\n", "\n", " [[125., 134., 144., 130.],\n", " [115., 131., 120., 127.],\n", " [116., 119., 128., 137.],\n", " [ 92., 131., 108., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 132., 140., 123.],\n", " [128., 133., 119., 135.],\n", " [111., 113., 113., 142.],\n", " [ 95., 124., 99., 145.]],\n", "\n", " [[124., 132., 139., 123.],\n", " [129., 133., 119., 136.],\n", " [111., 112., 112., 143.],\n", " [ 95., 123., 98., 146.]],\n", "\n", " [[123., 132., 139., 124.],\n", " [129., 134., 120., 137.],\n", " [111., 111., 112., 143.],\n", " [ 95., 123., 98., 147.]]],\n", "\n", "\n", " [[[126., 134., 144., 133.],\n", " [113., 130., 122., 127.],\n", " [118., 119., 131., 135.],\n", " [ 93., 132., 110., 134.]],\n", "\n", " [[126., 134., 144., 131.],\n", " [114., 130., 122., 127.],\n", " [117., 119., 129., 136.],\n", " [ 93., 132., 109., 135.]],\n", "\n", " [[126., 134., 144., 130.],\n", " [116., 130., 121., 128.],\n", " [117., 120., 128., 137.],\n", " [ 93., 131., 109., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 131., 139., 123.],\n", " [129., 133., 119., 136.],\n", " [112., 114., 114., 142.],\n", " [ 95., 124., 100., 144.]],\n", "\n", " [[124., 131., 139., 124.],\n", " [130., 133., 120., 137.],\n", " [112., 113., 114., 143.],\n", " [ 96., 124., 99., 146.]],\n", "\n", " [[123., 131., 138., 124.],\n", " [130., 133., 120., 138.],\n", " [112., 112., 113., 143.],\n", " [ 96., 123., 99., 147.]]],\n", "\n", "\n", " [[[127., 134., 143., 133.],\n", " [113., 130., 123., 128.],\n", " [118., 119., 131., 136.],\n", " [ 94., 132., 111., 134.]],\n", "\n", " [[127., 134., 143., 131.],\n", " [115., 130., 122., 128.],\n", " [118., 120., 130., 137.],\n", " [ 94., 132., 110., 134.]],\n", "\n", " [[127., 134., 143., 130.],\n", " [117., 130., 122., 129.],\n", " [117., 120., 129., 138.],\n", " [ 94., 131., 109., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 131., 139., 124.],\n", " [130., 132., 120., 137.],\n", " [113., 115., 115., 142.],\n", " [ 96., 124., 101., 144.]],\n", "\n", " [[124., 131., 138., 124.],\n", " [130., 133., 121., 137.],\n", " [113., 114., 115., 142.],\n", " [ 96., 124., 101., 145.]],\n", "\n", " [[123., 131., 138., 124.],\n", " [131., 133., 121., 138.],\n", " [113., 112., 114., 142.],\n", " [ 96., 123., 100., 146.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[136., 130., 136., 134.],\n", " [119., 129., 137., 136.],\n", " [122., 124., 135., 138.],\n", " [108., 136., 120., 139.]],\n", "\n", " [[135., 129., 136., 133.],\n", " [121., 129., 136., 136.],\n", " [122., 124., 135., 138.],\n", " [108., 135., 119., 138.]],\n", "\n", " [[135., 129., 136., 132.],\n", " [122., 129., 135., 136.],\n", " [122., 125., 134., 139.],\n", " [108., 135., 118., 138.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 133., 129.],\n", " [135., 130., 131., 141.],\n", " [123., 121., 129., 139.],\n", " [104., 129., 114., 142.]],\n", "\n", " [[125., 126., 132., 129.],\n", " [135., 131., 131., 142.],\n", " [124., 120., 129., 138.],\n", " [103., 128., 113., 143.]],\n", "\n", " [[125., 126., 131., 129.],\n", " [136., 131., 132., 142.],\n", " [124., 119., 129., 138.],\n", " [103., 128., 113., 144.]]],\n", "\n", "\n", " [[[136., 129., 135., 134.],\n", " [119., 129., 138., 136.],\n", " [122., 124., 136., 138.],\n", " [109., 136., 120., 139.]],\n", "\n", " [[136., 129., 135., 133.],\n", " [121., 129., 137., 137.],\n", " [122., 125., 135., 138.],\n", " [109., 135., 120., 139.]],\n", "\n", " [[136., 129., 135., 132.],\n", " [122., 129., 136., 137.],\n", " [122., 125., 134., 139.],\n", " [109., 135., 119., 139.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 132., 129.],\n", " [135., 130., 132., 141.],\n", " [124., 122., 130., 138.],\n", " [105., 129., 115., 142.]],\n", "\n", " [[126., 125., 131., 129.],\n", " [135., 131., 133., 142.],\n", " [125., 121., 130., 138.],\n", " [104., 129., 114., 143.]],\n", "\n", " [[125., 125., 131., 130.],\n", " [136., 131., 133., 142.],\n", " [125., 120., 130., 137.],\n", " [103., 128., 114., 144.]]],\n", "\n", "\n", " [[[137., 128., 134., 135.],\n", " [119., 129., 139., 137.],\n", " [122., 125., 136., 137.],\n", " [111., 136., 121., 140.]],\n", "\n", " [[137., 128., 134., 134.],\n", " [121., 129., 139., 137.],\n", " [122., 125., 135., 138.],\n", " [110., 136., 120., 140.]],\n", "\n", " [[136., 128., 134., 133.],\n", " [122., 129., 138., 137.],\n", " [122., 126., 135., 138.],\n", " [110., 135., 120., 139.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 131., 130.],\n", " [135., 130., 134., 142.],\n", " [125., 122., 131., 138.],\n", " [105., 129., 116., 142.]],\n", "\n", " [[126., 125., 131., 130.],\n", " [135., 130., 134., 142.],\n", " [125., 121., 131., 137.],\n", " [105., 129., 115., 143.]],\n", "\n", " [[125., 125., 130., 131.],\n", " [136., 131., 134., 143.],\n", " [126., 120., 131., 137.],\n", " [104., 129., 115., 144.]]]],\n", "\n", "\n", "\n", " [[[[125., 136., 144., 133.],\n", " [111., 131., 122., 126.],\n", " [117., 119., 130., 133.],\n", " [ 94., 132., 110., 134.]],\n", "\n", " [[125., 136., 144., 132.],\n", " [113., 131., 122., 127.],\n", " [117., 119., 129., 134.],\n", " [ 94., 132., 109., 134.]],\n", "\n", " [[125., 135., 144., 130.],\n", " [114., 131., 121., 127.],\n", " [116., 119., 128., 135.],\n", " [ 94., 131., 109., 135.]],\n", "\n", " ...,\n", "\n", " [[124., 133., 140., 123.],\n", " [128., 133., 120., 135.],\n", " [112., 114., 113., 141.],\n", " [ 96., 124., 100., 145.]],\n", "\n", " [[124., 133., 139., 123.],\n", " [128., 134., 121., 136.],\n", " [112., 113., 112., 141.],\n", " [ 97., 123., 99., 146.]],\n", "\n", " [[124., 133., 139., 123.],\n", " [129., 134., 121., 136.],\n", " [112., 111., 111., 141.],\n", " [ 97., 123., 99., 148.]]],\n", "\n", "\n", " [[[126., 135., 144., 133.],\n", " [112., 131., 123., 127.],\n", " [118., 119., 131., 134.],\n", " [ 95., 132., 111., 134.]],\n", "\n", " [[126., 135., 144., 131.],\n", " [113., 131., 122., 128.],\n", " [117., 120., 129., 135.],\n", " [ 95., 132., 110., 134.]],\n", "\n", " [[126., 135., 144., 130.],\n", " [115., 131., 122., 128.],\n", " [117., 120., 128., 136.],\n", " [ 95., 131., 109., 135.]],\n", "\n", " ...,\n", "\n", " [[125., 133., 140., 123.],\n", " [129., 133., 121., 135.],\n", " [113., 115., 114., 141.],\n", " [ 97., 124., 101., 144.]],\n", "\n", " [[124., 132., 139., 123.],\n", " [129., 133., 121., 136.],\n", " [113., 113., 113., 141.],\n", " [ 97., 124., 101., 146.]],\n", "\n", " [[124., 132., 138., 123.],\n", " [130., 134., 122., 137.],\n", " [113., 112., 112., 141.],\n", " [ 97., 123., 100., 147.]]],\n", "\n", "\n", " [[[127., 135., 143., 133.],\n", " [113., 130., 124., 128.],\n", " [118., 120., 131., 134.],\n", " [ 96., 133., 112., 134.]],\n", "\n", " [[127., 135., 143., 131.],\n", " [114., 130., 123., 129.],\n", " [118., 120., 130., 135.],\n", " [ 96., 132., 111., 134.]],\n", "\n", " [[127., 135., 143., 130.],\n", " [116., 130., 123., 129.],\n", " [117., 120., 128., 136.],\n", " [ 96., 131., 110., 134.]],\n", "\n", " ...,\n", "\n", " [[125., 132., 139., 123.],\n", " [129., 133., 121., 136.],\n", " [114., 115., 115., 140.],\n", " [ 97., 124., 102., 144.]],\n", "\n", " [[124., 132., 139., 123.],\n", " [130., 133., 122., 137.],\n", " [114., 114., 114., 140.],\n", " [ 97., 124., 102., 145.]],\n", "\n", " [[124., 132., 138., 124.],\n", " [130., 133., 122., 137.],\n", " [114., 113., 114., 140.],\n", " [ 98., 123., 101., 146.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[135., 130., 136., 134.],\n", " [118., 129., 137., 137.],\n", " [122., 125., 135., 136.],\n", " [109., 136., 120., 138.]],\n", "\n", " [[135., 130., 136., 133.],\n", " [120., 129., 136., 137.],\n", " [122., 125., 134., 137.],\n", " [109., 135., 119., 138.]],\n", "\n", " [[134., 130., 136., 132.],\n", " [121., 129., 135., 137.],\n", " [122., 125., 134., 137.],\n", " [109., 135., 119., 137.]],\n", "\n", " ...,\n", "\n", " [[126., 127., 133., 128.],\n", " [134., 130., 132., 141.],\n", " [125., 122., 129., 137.],\n", " [105., 129., 114., 142.]],\n", "\n", " [[125., 126., 132., 129.],\n", " [135., 131., 132., 141.],\n", " [125., 121., 128., 136.],\n", " [104., 128., 114., 143.]],\n", "\n", " [[124., 126., 132., 129.],\n", " [135., 131., 132., 142.],\n", " [126., 120., 128., 136.],\n", " [104., 128., 113., 144.]]],\n", "\n", "\n", " [[[136., 129., 135., 134.],\n", " [118., 129., 138., 137.],\n", " [122., 125., 135., 136.],\n", " [111., 136., 120., 138.]],\n", "\n", " [[135., 129., 135., 133.],\n", " [120., 129., 137., 137.],\n", " [122., 125., 135., 136.],\n", " [110., 135., 120., 138.]],\n", "\n", " [[135., 129., 135., 133.],\n", " [122., 129., 137., 138.],\n", " [122., 126., 134., 137.],\n", " [110., 135., 119., 138.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 132., 129.],\n", " [134., 130., 133., 141.],\n", " [125., 123., 130., 136.],\n", " [105., 129., 115., 142.]],\n", "\n", " [[125., 126., 132., 129.],\n", " [135., 131., 133., 142.],\n", " [126., 122., 130., 136.],\n", " [105., 129., 115., 143.]],\n", "\n", " [[125., 125., 131., 130.],\n", " [135., 131., 134., 142.],\n", " [126., 121., 130., 135.],\n", " [104., 128., 114., 144.]]],\n", "\n", "\n", " [[[136., 129., 134., 135.],\n", " [118., 129., 140., 138.],\n", " [122., 125., 136., 136.],\n", " [112., 136., 121., 139.]],\n", "\n", " [[136., 129., 134., 134.],\n", " [120., 129., 139., 138.],\n", " [122., 126., 135., 136.],\n", " [112., 136., 120., 139.]],\n", "\n", " [[136., 129., 134., 133.],\n", " [122., 129., 138., 138.],\n", " [122., 126., 134., 137.],\n", " [111., 135., 120., 139.]],\n", "\n", " ...,\n", "\n", " [[126., 125., 131., 130.],\n", " [134., 130., 134., 141.],\n", " [126., 123., 131., 136.],\n", " [106., 129., 116., 142.]],\n", "\n", " [[125., 125., 131., 130.],\n", " [135., 131., 135., 142.],\n", " [127., 122., 131., 135.],\n", " [106., 129., 116., 143.]],\n", "\n", " [[125., 125., 130., 130.],\n", " [135., 131., 135., 142.],\n", " [127., 121., 131., 135.],\n", " [105., 129., 115., 144.]]]],\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", " [[[[130., 146., 144., 139.],\n", " [101., 139., 129., 131.],\n", " [112., 117., 129., 112.],\n", " [112., 131., 117., 134.]],\n", "\n", " [[130., 146., 144., 138.],\n", " [103., 139., 129., 131.],\n", " [113., 117., 128., 113.],\n", " [112., 131., 116., 134.]],\n", "\n", " [[130., 146., 144., 136.],\n", " [104., 139., 129., 131.],\n", " [114., 117., 126., 114.],\n", " [113., 130., 115., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 145., 142., 125.],\n", " [120., 140., 135., 130.],\n", " [125., 114., 110., 117.],\n", " [116., 123., 109., 148.]],\n", "\n", " [[131., 145., 141., 125.],\n", " [121., 141., 136., 130.],\n", " [126., 113., 109., 117.],\n", " [116., 122., 108., 149.]],\n", "\n", " [[131., 145., 141., 125.],\n", " [121., 141., 137., 130.],\n", " [127., 112., 108., 117.],\n", " [116., 121., 107., 151.]]],\n", "\n", "\n", " [[[130., 145., 143., 139.],\n", " [102., 138., 129., 133.],\n", " [113., 118., 130., 113.],\n", " [113., 131., 117., 133.]],\n", "\n", " [[130., 145., 143., 138.],\n", " [104., 138., 129., 133.],\n", " [113., 118., 128., 113.],\n", " [113., 131., 116., 134.]],\n", "\n", " [[130., 145., 143., 136.],\n", " [105., 138., 129., 133.],\n", " [114., 118., 127., 114.],\n", " [113., 130., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[130., 144., 141., 125.],\n", " [121., 140., 135., 131.],\n", " [126., 115., 111., 117.],\n", " [116., 123., 109., 147.]],\n", "\n", " [[130., 144., 141., 125.],\n", " [122., 140., 136., 131.],\n", " [127., 114., 110., 117.],\n", " [116., 122., 108., 149.]],\n", "\n", " [[130., 144., 140., 125.],\n", " [122., 140., 137., 130.],\n", " [128., 113., 109., 117.],\n", " [116., 121., 108., 150.]]],\n", "\n", "\n", " [[[130., 144., 143., 139.],\n", " [103., 137., 130., 134.],\n", " [113., 119., 130., 113.],\n", " [114., 131., 117., 133.]],\n", "\n", " [[130., 144., 143., 138.],\n", " [104., 137., 130., 134.],\n", " [113., 119., 129., 114.],\n", " [114., 131., 117., 133.]],\n", "\n", " [[130., 144., 143., 136.],\n", " [106., 137., 130., 134.],\n", " [114., 119., 127., 114.],\n", " [114., 131., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[130., 143., 141., 125.],\n", " [122., 139., 135., 131.],\n", " [126., 116., 112., 117.],\n", " [116., 123., 109., 146.]],\n", "\n", " [[130., 142., 140., 125.],\n", " [123., 139., 136., 131.],\n", " [128., 115., 111., 117.],\n", " [116., 122., 109., 148.]],\n", "\n", " [[130., 142., 140., 125.],\n", " [123., 140., 137., 131.],\n", " [129., 114., 110., 116.],\n", " [117., 122., 108., 149.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 130., 138., 141.],\n", " [108., 131., 139., 149.],\n", " [113., 127., 133., 115.],\n", " [126., 133., 119., 131.]],\n", "\n", " [[130., 130., 138., 140.],\n", " [110., 131., 138., 148.],\n", " [115., 128., 132., 116.],\n", " [125., 132., 118., 132.]],\n", "\n", " [[130., 130., 138., 139.],\n", " [112., 131., 138., 148.],\n", " [116., 129., 132., 116.],\n", " [125., 132., 118., 132.]],\n", "\n", " ...,\n", "\n", " [[125., 127., 135., 131.],\n", " [129., 134., 140., 141.],\n", " [135., 128., 125., 114.],\n", " [119., 128., 113., 142.]],\n", "\n", " [[125., 127., 134., 131.],\n", " [130., 135., 141., 141.],\n", " [137., 127., 124., 113.],\n", " [119., 127., 113., 143.]],\n", "\n", " [[124., 126., 134., 131.],\n", " [131., 135., 141., 141.],\n", " [138., 126., 124., 113.],\n", " [118., 127., 113., 145.]]],\n", "\n", "\n", " [[[131., 129., 137., 142.],\n", " [108., 131., 140., 150.],\n", " [113., 128., 134., 115.],\n", " [127., 133., 119., 132.]],\n", "\n", " [[130., 129., 137., 140.],\n", " [110., 131., 139., 149.],\n", " [115., 129., 133., 115.],\n", " [126., 133., 118., 132.]],\n", "\n", " [[130., 128., 137., 139.],\n", " [112., 131., 139., 149.],\n", " [116., 129., 132., 116.],\n", " [126., 132., 118., 132.]],\n", "\n", " ...,\n", "\n", " [[125., 126., 134., 132.],\n", " [129., 134., 141., 142.],\n", " [136., 129., 126., 113.],\n", " [120., 128., 114., 142.]],\n", "\n", " [[125., 125., 134., 132.],\n", " [130., 135., 141., 142.],\n", " [137., 128., 126., 113.],\n", " [119., 128., 113., 144.]],\n", "\n", " [[124., 125., 133., 132.],\n", " [131., 135., 142., 141.],\n", " [139., 127., 125., 112.],\n", " [118., 127., 113., 145.]]],\n", "\n", "\n", " [[[131., 127., 137., 142.],\n", " [109., 131., 141., 151.],\n", " [113., 128., 134., 115.],\n", " [128., 133., 119., 132.]],\n", "\n", " [[130., 127., 137., 141.],\n", " [111., 131., 140., 150.],\n", " [115., 129., 133., 115.],\n", " [127., 133., 118., 133.]],\n", "\n", " [[130., 127., 137., 139.],\n", " [112., 131., 140., 150.],\n", " [116., 130., 132., 115.],\n", " [127., 132., 118., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 124., 134., 132.],\n", " [129., 134., 141., 143.],\n", " [136., 130., 127., 113.],\n", " [120., 128., 114., 142.]],\n", "\n", " [[124., 124., 133., 132.],\n", " [130., 135., 142., 142.],\n", " [138., 129., 127., 112.],\n", " [119., 128., 114., 144.]],\n", "\n", " [[124., 124., 133., 133.],\n", " [131., 135., 143., 142.],\n", " [140., 128., 127., 112.],\n", " [118., 128., 114., 145.]]]],\n", "\n", "\n", "\n", " [[[[130., 147., 144., 140.],\n", " [100., 140., 129., 132.],\n", " [112., 116., 129., 110.],\n", " [113., 131., 117., 134.]],\n", "\n", " [[131., 147., 144., 139.],\n", " [102., 140., 129., 132.],\n", " [113., 117., 128., 111.],\n", " [114., 131., 116., 135.]],\n", "\n", " [[131., 147., 144., 137.],\n", " [103., 140., 129., 132.],\n", " [113., 117., 126., 112.],\n", " [114., 130., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 146., 142., 126.],\n", " [119., 141., 136., 130.],\n", " [126., 114., 110., 115.],\n", " [118., 122., 109., 148.]],\n", "\n", " [[131., 146., 141., 125.],\n", " [120., 142., 137., 129.],\n", " [127., 113., 108., 115.],\n", " [118., 122., 108., 150.]],\n", "\n", " [[131., 145., 141., 125.],\n", " [120., 142., 138., 129.],\n", " [128., 112., 107., 115.],\n", " [118., 121., 108., 151.]]],\n", "\n", "\n", " [[[130., 146., 143., 140.],\n", " [101., 139., 129., 134.],\n", " [112., 117., 130., 111.],\n", " [114., 131., 117., 134.]],\n", "\n", " [[131., 146., 143., 139.],\n", " [103., 139., 129., 133.],\n", " [113., 118., 128., 112.],\n", " [115., 131., 117., 134.]],\n", "\n", " [[131., 146., 143., 137.],\n", " [104., 139., 130., 133.],\n", " [114., 118., 127., 112.],\n", " [115., 130., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 144., 141., 126.],\n", " [120., 140., 136., 130.],\n", " [126., 115., 111., 115.],\n", " [118., 123., 109., 148.]],\n", "\n", " [[131., 144., 141., 126.],\n", " [121., 141., 137., 130.],\n", " [128., 114., 109., 115.],\n", " [118., 122., 109., 149.]],\n", "\n", " [[131., 144., 141., 126.],\n", " [121., 141., 138., 130.],\n", " [129., 113., 109., 115.],\n", " [118., 121., 108., 150.]]],\n", "\n", "\n", " [[[130., 144., 143., 140.],\n", " [102., 138., 130., 135.],\n", " [112., 118., 130., 111.],\n", " [115., 131., 117., 133.]],\n", "\n", " [[131., 144., 143., 139.],\n", " [103., 138., 130., 135.],\n", " [113., 119., 128., 112.],\n", " [115., 131., 117., 133.]],\n", "\n", " [[131., 144., 143., 137.],\n", " [105., 138., 130., 135.],\n", " [114., 119., 127., 112.],\n", " [116., 130., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 141., 126.],\n", " [121., 140., 136., 131.],\n", " [127., 116., 112., 115.],\n", " [118., 123., 110., 147.]],\n", "\n", " [[130., 143., 140., 126.],\n", " [122., 140., 137., 131.],\n", " [128., 115., 111., 115.],\n", " [118., 122., 109., 148.]],\n", "\n", " [[130., 143., 140., 126.],\n", " [122., 141., 138., 131.],\n", " [130., 114., 110., 114.],\n", " [118., 121., 109., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 130., 138., 142.],\n", " [108., 132., 139., 150.],\n", " [112., 127., 133., 113.],\n", " [127., 132., 118., 131.]],\n", "\n", " [[130., 130., 138., 141.],\n", " [110., 132., 138., 150.],\n", " [114., 128., 132., 114.],\n", " [127., 132., 118., 132.]],\n", "\n", " [[130., 129., 138., 140.],\n", " [111., 132., 138., 149.],\n", " [115., 129., 132., 114.],\n", " [127., 132., 117., 132.]],\n", "\n", " ...,\n", "\n", " [[125., 127., 135., 132.],\n", " [129., 135., 141., 142.],\n", " [136., 128., 125., 112.],\n", " [121., 127., 113., 143.]],\n", "\n", " [[125., 126., 134., 132.],\n", " [129., 135., 141., 141.],\n", " [137., 127., 124., 111.],\n", " [120., 127., 113., 144.]],\n", "\n", " [[125., 126., 134., 132.],\n", " [130., 136., 142., 141.],\n", " [139., 127., 124., 111.],\n", " [119., 127., 112., 145.]]],\n", "\n", "\n", " [[[130., 128., 137., 142.],\n", " [108., 131., 140., 151.],\n", " [112., 128., 134., 113.],\n", " [128., 132., 118., 132.]],\n", "\n", " [[130., 128., 137., 141.],\n", " [110., 131., 139., 151.],\n", " [114., 129., 133., 114.],\n", " [128., 132., 117., 132.]],\n", "\n", " [[130., 128., 137., 140.],\n", " [112., 131., 139., 150.],\n", " [115., 129., 132., 114.],\n", " [127., 132., 117., 132.]],\n", "\n", " ...,\n", "\n", " [[125., 125., 134., 132.],\n", " [129., 135., 141., 142.],\n", " [136., 129., 126., 112.],\n", " [121., 128., 113., 143.]],\n", "\n", " [[125., 125., 134., 132.],\n", " [130., 135., 142., 142.],\n", " [138., 128., 125., 111.],\n", " [120., 127., 113., 144.]],\n", "\n", " [[124., 125., 133., 132.],\n", " [130., 136., 142., 141.],\n", " [140., 128., 125., 110.],\n", " [119., 127., 113., 145.]]],\n", "\n", "\n", " [[[130., 127., 137., 143.],\n", " [108., 131., 141., 152.],\n", " [112., 128., 134., 113.],\n", " [129., 133., 118., 132.]],\n", "\n", " [[130., 127., 137., 142.],\n", " [110., 131., 140., 152.],\n", " [114., 129., 133., 114.],\n", " [129., 132., 117., 132.]],\n", "\n", " [[130., 127., 137., 140.],\n", " [112., 131., 140., 151.],\n", " [115., 130., 132., 114.],\n", " [128., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 124., 134., 133.],\n", " [129., 135., 142., 143.],\n", " [137., 130., 127., 111.],\n", " [121., 128., 113., 143.]],\n", "\n", " [[124., 124., 133., 133.],\n", " [130., 135., 142., 143.],\n", " [138., 129., 126., 111.],\n", " [120., 128., 113., 144.]],\n", "\n", " [[124., 123., 133., 133.],\n", " [131., 136., 143., 142.],\n", " [140., 128., 126., 110.],\n", " [120., 128., 113., 145.]]]],\n", "\n", "\n", "\n", " [[[[131., 147., 144., 142.],\n", " [ 99., 141., 129., 133.],\n", " [111., 115., 129., 109.],\n", " [115., 131., 117., 135.]],\n", "\n", " [[131., 147., 144., 140.],\n", " [101., 141., 129., 132.],\n", " [112., 116., 128., 109.],\n", " [115., 130., 116., 135.]],\n", "\n", " [[132., 147., 144., 138.],\n", " [103., 141., 129., 132.],\n", " [113., 116., 126., 110.],\n", " [116., 130., 116., 136.]],\n", "\n", " ...,\n", "\n", " [[132., 146., 142., 126.],\n", " [118., 142., 136., 129.],\n", " [126., 113., 109., 113.],\n", " [119., 122., 109., 149.]],\n", "\n", " [[132., 146., 141., 126.],\n", " [119., 142., 137., 129.],\n", " [128., 112., 108., 113.],\n", " [119., 121., 109., 150.]],\n", "\n", " [[132., 146., 141., 126.],\n", " [119., 143., 138., 129.],\n", " [129., 111., 107., 113.],\n", " [120., 121., 108., 152.]]],\n", "\n", "\n", " [[[131., 146., 143., 141.],\n", " [100., 140., 130., 134.],\n", " [111., 116., 130., 109.],\n", " [116., 131., 117., 134.]],\n", "\n", " [[131., 146., 143., 140.],\n", " [102., 140., 130., 134.],\n", " [112., 117., 128., 110.],\n", " [116., 130., 117., 134.]],\n", "\n", " [[131., 146., 143., 138.],\n", " [103., 140., 130., 134.],\n", " [113., 117., 126., 110.],\n", " [116., 130., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[132., 145., 141., 127.],\n", " [119., 141., 137., 130.],\n", " [127., 114., 110., 113.],\n", " [119., 122., 109., 148.]],\n", "\n", " [[131., 145., 141., 126.],\n", " [120., 142., 138., 130.],\n", " [128., 113., 109., 113.],\n", " [120., 122., 109., 149.]],\n", "\n", " [[131., 145., 141., 126.],\n", " [121., 142., 139., 130.],\n", " [130., 112., 108., 112.],\n", " [120., 121., 108., 151.]]],\n", "\n", "\n", " [[[131., 145., 143., 141.],\n", " [101., 139., 130., 136.],\n", " [111., 117., 130., 109.],\n", " [117., 131., 117., 133.]],\n", "\n", " [[131., 145., 143., 140.],\n", " [103., 139., 130., 135.],\n", " [112., 118., 128., 110.],\n", " [117., 130., 117., 134.]],\n", "\n", " [[131., 145., 143., 138.],\n", " [104., 139., 130., 135.],\n", " [113., 118., 127., 111.],\n", " [117., 130., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[131., 144., 141., 127.],\n", " [120., 141., 137., 131.],\n", " [128., 116., 111., 113.],\n", " [120., 123., 110., 147.]],\n", "\n", " [[131., 144., 141., 127.],\n", " [121., 141., 138., 131.],\n", " [129., 115., 110., 113.],\n", " [120., 122., 109., 149.]],\n", "\n", " [[131., 143., 140., 126.],\n", " [122., 141., 139., 131.],\n", " [131., 114., 109., 112.],\n", " [120., 121., 109., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 129., 138., 143.],\n", " [107., 132., 139., 151.],\n", " [112., 127., 133., 112.],\n", " [128., 132., 117., 131.]],\n", "\n", " [[130., 129., 138., 142.],\n", " [109., 132., 138., 151.],\n", " [113., 128., 132., 112.],\n", " [128., 132., 117., 132.]],\n", "\n", " [[130., 129., 138., 141.],\n", " [111., 132., 138., 150.],\n", " [114., 128., 132., 112.],\n", " [128., 131., 116., 132.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 135., 132.],\n", " [128., 135., 141., 142.],\n", " [136., 128., 124., 110.],\n", " [122., 127., 112., 143.]],\n", "\n", " [[125., 126., 134., 132.],\n", " [129., 136., 142., 141.],\n", " [138., 128., 124., 110.],\n", " [121., 127., 112., 144.]],\n", "\n", " [[125., 126., 134., 132.],\n", " [130., 137., 142., 141.],\n", " [140., 127., 124., 109.],\n", " [121., 126., 112., 145.]]],\n", "\n", "\n", " [[[130., 128., 137., 144.],\n", " [107., 132., 139., 152.],\n", " [112., 128., 134., 112.],\n", " [129., 132., 117., 132.]],\n", "\n", " [[130., 128., 137., 142.],\n", " [109., 132., 139., 152.],\n", " [113., 128., 133., 112.],\n", " [129., 132., 117., 132.]],\n", "\n", " [[130., 128., 137., 141.],\n", " [111., 132., 139., 151.],\n", " [115., 129., 132., 112.],\n", " [129., 131., 116., 132.]],\n", "\n", " ...,\n", "\n", " [[125., 125., 134., 133.],\n", " [128., 135., 141., 143.],\n", " [136., 129., 125., 110.],\n", " [122., 128., 112., 143.]],\n", "\n", " [[125., 125., 134., 133.],\n", " [129., 136., 142., 142.],\n", " [138., 129., 125., 109.],\n", " [122., 127., 112., 144.]],\n", "\n", " [[124., 124., 133., 133.],\n", " [130., 137., 143., 142.],\n", " [140., 128., 125., 109.],\n", " [121., 127., 112., 145.]]],\n", "\n", "\n", " [[[130., 126., 137., 144.],\n", " [107., 132., 140., 153.],\n", " [111., 128., 134., 112.],\n", " [130., 132., 117., 132.]],\n", "\n", " [[130., 126., 137., 143.],\n", " [109., 132., 140., 153.],\n", " [113., 129., 133., 112.],\n", " [130., 132., 117., 132.]],\n", "\n", " [[130., 126., 137., 141.],\n", " [111., 132., 140., 152.],\n", " [115., 130., 132., 112.],\n", " [130., 132., 116., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 124., 134., 134.],\n", " [129., 135., 142., 144.],\n", " [137., 130., 126., 109.],\n", " [123., 128., 113., 143.]],\n", "\n", " [[124., 123., 133., 134.],\n", " [129., 136., 143., 143.],\n", " [139., 129., 126., 109.],\n", " [122., 128., 112., 144.]],\n", "\n", " [[124., 123., 133., 134.],\n", " [130., 136., 143., 142.],\n", " [141., 129., 126., 108.],\n", " [121., 127., 112., 145.]]]]],\n", "\n", "\n", "\n", "\n", " [[[[[125., 134., 146., 133.],\n", " [112., 131., 120., 127.],\n", " [117., 118., 129., 137.],\n", " [ 90., 132., 108., 136.]],\n", "\n", " [[125., 134., 146., 132.],\n", " [113., 131., 120., 127.],\n", " [116., 119., 128., 138.],\n", " [ 90., 131., 107., 136.]],\n", "\n", " [[126., 133., 145., 131.],\n", " [115., 131., 119., 128.],\n", " [116., 119., 127., 139.],\n", " [ 90., 131., 106., 136.]],\n", "\n", " ...,\n", "\n", " [[124., 130., 141., 124.],\n", " [129., 132., 117., 138.],\n", " [109., 114., 113., 144.],\n", " [ 92., 124., 97., 146.]],\n", "\n", " [[124., 130., 140., 124.],\n", " [129., 133., 118., 138.],\n", " [109., 113., 112., 144.],\n", " [ 93., 123., 96., 147.]],\n", "\n", " [[124., 130., 139., 124.],\n", " [130., 133., 118., 139.],\n", " [109., 111., 112., 145.],\n", " [ 93., 123., 96., 148.]]],\n", "\n", "\n", " [[[126., 134., 145., 133.],\n", " [113., 130., 121., 128.],\n", " [117., 119., 130., 137.],\n", " [ 91., 132., 109., 136.]],\n", "\n", " [[126., 134., 145., 132.],\n", " [114., 130., 120., 128.],\n", " [117., 119., 129., 138.],\n", " [ 91., 132., 108., 136.]],\n", "\n", " [[126., 133., 145., 130.],\n", " [116., 130., 120., 129.],\n", " [116., 119., 127., 139.],\n", " [ 91., 131., 107., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 130., 140., 124.],\n", " [129., 132., 118., 138.],\n", " [110., 114., 114., 144.],\n", " [ 93., 124., 98., 145.]],\n", "\n", " [[124., 130., 140., 124.],\n", " [130., 132., 118., 139.],\n", " [110., 113., 114., 144.],\n", " [ 93., 123., 98., 146.]],\n", "\n", " [[124., 130., 139., 124.],\n", " [131., 133., 119., 140.],\n", " [110., 112., 113., 144.],\n", " [ 94., 123., 97., 148.]]],\n", "\n", "\n", " [[[127., 134., 145., 133.],\n", " [113., 130., 122., 128.],\n", " [118., 119., 130., 138.],\n", " [ 92., 133., 110., 136.]],\n", "\n", " [[127., 133., 145., 131.],\n", " [115., 130., 121., 129.],\n", " [117., 120., 129., 139.],\n", " [ 92., 132., 109., 136.]],\n", "\n", " [[127., 133., 144., 130.],\n", " [117., 130., 121., 130.],\n", " [117., 120., 128., 140.],\n", " [ 92., 131., 108., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 130., 140., 124.],\n", " [130., 132., 118., 139.],\n", " [111., 115., 115., 144.],\n", " [ 94., 124., 99., 145.]],\n", "\n", " [[124., 129., 139., 124.],\n", " [131., 132., 119., 140.],\n", " [111., 114., 115., 144.],\n", " [ 94., 124., 99., 146.]],\n", "\n", " [[124., 129., 138., 124.],\n", " [131., 132., 119., 140.],\n", " [111., 113., 114., 144.],\n", " [ 94., 123., 98., 147.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[136., 129., 137., 135.],\n", " [119., 129., 136., 136.],\n", " [121., 124., 135., 140.],\n", " [106., 136., 118., 141.]],\n", "\n", " [[136., 129., 136., 134.],\n", " [121., 129., 135., 137.],\n", " [121., 124., 134., 140.],\n", " [106., 135., 118., 140.]],\n", "\n", " [[136., 129., 136., 133.],\n", " [122., 129., 134., 137.],\n", " [121., 125., 133., 141.],\n", " [106., 134., 117., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 126., 133., 129.],\n", " [135., 130., 130., 143.],\n", " [121., 121., 129., 141.],\n", " [103., 128., 112., 143.]],\n", "\n", " [[126., 125., 132., 130.],\n", " [135., 130., 130., 143.],\n", " [121., 120., 129., 140.],\n", " [102., 127., 112., 144.]],\n", "\n", " [[125., 125., 132., 130.],\n", " [136., 130., 131., 144.],\n", " [122., 119., 129., 140.],\n", " [102., 127., 111., 145.]]],\n", "\n", "\n", " [[[137., 129., 136., 135.],\n", " [119., 129., 138., 137.],\n", " [121., 124., 135., 140.],\n", " [108., 136., 119., 141.]],\n", "\n", " [[137., 129., 136., 134.],\n", " [121., 129., 137., 137.],\n", " [121., 125., 135., 140.],\n", " [108., 135., 118., 141.]],\n", "\n", " [[136., 129., 136., 133.],\n", " [122., 129., 136., 137.],\n", " [121., 125., 134., 140.],\n", " [108., 135., 118., 141.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 132., 130.],\n", " [135., 130., 131., 143.],\n", " [122., 122., 130., 140.],\n", " [104., 128., 113., 143.]],\n", "\n", " [[126., 125., 132., 130.],\n", " [136., 130., 132., 144.],\n", " [122., 121., 130., 140.],\n", " [103., 128., 113., 144.]],\n", "\n", " [[125., 124., 131., 131.],\n", " [136., 130., 132., 144.],\n", " [123., 120., 130., 139.],\n", " [103., 127., 112., 145.]]],\n", "\n", "\n", " [[[138., 128., 135., 136.],\n", " [119., 129., 139., 137.],\n", " [122., 125., 136., 139.],\n", " [109., 136., 119., 142.]],\n", "\n", " [[137., 128., 135., 135.],\n", " [121., 129., 138., 138.],\n", " [121., 125., 135., 140.],\n", " [109., 136., 119., 142.]],\n", "\n", " [[137., 128., 135., 134.],\n", " [123., 129., 137., 138.],\n", " [121., 126., 134., 140.],\n", " [109., 135., 118., 141.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 131., 131.],\n", " [135., 130., 133., 143.],\n", " [123., 122., 131., 140.],\n", " [105., 129., 114., 143.]],\n", "\n", " [[127., 124., 131., 131.],\n", " [136., 130., 133., 144.],\n", " [123., 121., 131., 139.],\n", " [104., 128., 114., 144.]],\n", "\n", " [[126., 124., 130., 132.],\n", " [136., 130., 133., 144.],\n", " [123., 120., 131., 139.],\n", " [103., 128., 113., 145.]]]],\n", "\n", "\n", "\n", " [[[[125., 135., 146., 133.],\n", " [111., 131., 121., 127.],\n", " [117., 119., 129., 135.],\n", " [ 91., 132., 109., 135.]],\n", "\n", " [[125., 135., 146., 132.],\n", " [113., 131., 121., 128.],\n", " [116., 119., 128., 136.],\n", " [ 91., 132., 108., 136.]],\n", "\n", " [[126., 135., 145., 130.],\n", " [114., 131., 120., 128.],\n", " [116., 119., 127., 137.],\n", " [ 92., 131., 107., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 131., 141., 124.],\n", " [128., 133., 118., 137.],\n", " [111., 114., 113., 143.],\n", " [ 94., 124., 98., 146.]],\n", "\n", " [[124., 131., 140., 124.],\n", " [129., 133., 119., 138.],\n", " [110., 113., 112., 143.],\n", " [ 94., 123., 98., 147.]],\n", "\n", " [[124., 131., 140., 124.],\n", " [129., 133., 119., 139.],\n", " [110., 112., 111., 143.],\n", " [ 95., 122., 97., 148.]]],\n", "\n", "\n", " [[[126., 135., 145., 133.],\n", " [112., 131., 122., 128.],\n", " [117., 119., 130., 136.],\n", " [ 92., 133., 110., 135.]],\n", "\n", " [[126., 135., 145., 132.],\n", " [114., 131., 121., 129.],\n", " [117., 120., 128., 137.],\n", " [ 93., 132., 109., 136.]],\n", "\n", " [[126., 134., 145., 130.],\n", " [115., 131., 121., 129.],\n", " [116., 120., 127., 137.],\n", " [ 93., 131., 108., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 131., 141., 124.],\n", " [129., 133., 119., 138.],\n", " [111., 115., 114., 142.],\n", " [ 95., 124., 99., 145.]],\n", "\n", " [[124., 131., 140., 124.],\n", " [130., 133., 119., 138.],\n", " [111., 114., 113., 143.],\n", " [ 95., 123., 99., 146.]],\n", "\n", " [[124., 131., 139., 124.],\n", " [130., 133., 120., 139.],\n", " [111., 113., 112., 143.],\n", " [ 95., 123., 98., 148.]]],\n", "\n", "\n", " [[[127., 135., 145., 133.],\n", " [113., 130., 123., 129.],\n", " [118., 120., 130., 136.],\n", " [ 93., 133., 111., 135.]],\n", "\n", " [[127., 134., 145., 131.],\n", " [114., 130., 122., 129.],\n", " [117., 120., 129., 137.],\n", " [ 94., 132., 110., 136.]],\n", "\n", " [[127., 134., 145., 130.],\n", " [116., 130., 122., 130.],\n", " [117., 120., 128., 138.],\n", " [ 94., 131., 109., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 131., 140., 124.],\n", " [130., 132., 120., 138.],\n", " [112., 116., 115., 142.],\n", " [ 95., 124., 100., 145.]],\n", "\n", " [[125., 130., 139., 124.],\n", " [130., 133., 120., 139.],\n", " [112., 114., 114., 142.],\n", " [ 95., 124., 100., 146.]],\n", "\n", " [[124., 130., 139., 124.],\n", " [131., 133., 121., 140.],\n", " [112., 113., 114., 142.],\n", " [ 96., 123., 99., 147.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[136., 130., 137., 135.],\n", " [118., 129., 136., 137.],\n", " [121., 124., 135., 138.],\n", " [108., 136., 119., 140.]],\n", "\n", " [[136., 130., 137., 134.],\n", " [120., 129., 136., 137.],\n", " [121., 125., 134., 139.],\n", " [108., 135., 118., 139.]],\n", "\n", " [[135., 129., 137., 133.],\n", " [121., 129., 135., 138.],\n", " [121., 125., 133., 139.],\n", " [108., 134., 118., 139.]],\n", "\n", " ...,\n", "\n", " [[127., 126., 133., 129.],\n", " [135., 130., 131., 143.],\n", " [123., 122., 129., 139.],\n", " [104., 128., 112., 143.]],\n", "\n", " [[126., 125., 133., 130.],\n", " [135., 130., 131., 143.],\n", " [123., 121., 129., 138.],\n", " [103., 128., 112., 144.]],\n", "\n", " [[125., 125., 132., 130.],\n", " [136., 131., 131., 144.],\n", " [123., 120., 129., 138.],\n", " [103., 127., 112., 144.]]],\n", "\n", "\n", " [[[137., 129., 136., 135.],\n", " [118., 129., 138., 138.],\n", " [121., 125., 135., 138.],\n", " [109., 136., 119., 140.]],\n", "\n", " [[136., 129., 136., 134.],\n", " [120., 129., 137., 138.],\n", " [121., 125., 134., 138.],\n", " [109., 135., 119., 140.]],\n", "\n", " [[136., 129., 136., 133.],\n", " [122., 129., 136., 138.],\n", " [121., 126., 134., 139.],\n", " [109., 135., 118., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 133., 130.],\n", " [135., 130., 132., 143.],\n", " [123., 122., 130., 138.],\n", " [105., 128., 113., 143.]],\n", "\n", " [[126., 125., 132., 130.],\n", " [135., 130., 132., 143.],\n", " [124., 122., 130., 138.],\n", " [104., 128., 113., 144.]],\n", "\n", " [[125., 125., 131., 131.],\n", " [136., 130., 133., 144.],\n", " [124., 121., 130., 137.],\n", " [104., 128., 113., 145.]]],\n", "\n", "\n", " [[[137., 129., 135., 136.],\n", " [118., 129., 139., 138.],\n", " [121., 125., 135., 138.],\n", " [110., 136., 120., 141.]],\n", "\n", " [[137., 128., 135., 135.],\n", " [120., 129., 139., 138.],\n", " [121., 126., 135., 138.],\n", " [110., 136., 119., 141.]],\n", "\n", " [[136., 128., 135., 134.],\n", " [122., 129., 138., 139.],\n", " [121., 126., 134., 138.],\n", " [110., 135., 119., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 132., 131.],\n", " [135., 130., 134., 143.],\n", " [124., 123., 131., 138.],\n", " [106., 129., 114., 143.]],\n", "\n", " [[126., 124., 131., 131.],\n", " [135., 130., 134., 144.],\n", " [124., 122., 131., 137.],\n", " [105., 128., 114., 144.]],\n", "\n", " [[125., 124., 131., 131.],\n", " [136., 130., 134., 144.],\n", " [125., 121., 131., 137.],\n", " [104., 128., 114., 145.]]]],\n", "\n", "\n", "\n", " [[[[125., 136., 146., 133.],\n", " [110., 131., 122., 127.],\n", " [117., 119., 129., 134.],\n", " [ 93., 133., 110., 135.]],\n", "\n", " [[125., 136., 146., 132.],\n", " [112., 131., 121., 128.],\n", " [116., 119., 128., 135.],\n", " [ 93., 132., 109., 135.]],\n", "\n", " [[126., 136., 145., 130.],\n", " [114., 131., 121., 128.],\n", " [116., 120., 127., 135.],\n", " [ 93., 131., 108., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 133., 141., 123.],\n", " [128., 133., 120., 136.],\n", " [112., 115., 113., 141.],\n", " [ 96., 124., 99., 146.]],\n", "\n", " [[125., 132., 141., 123.],\n", " [128., 134., 120., 137.],\n", " [112., 113., 112., 141.],\n", " [ 96., 123., 99., 147.]],\n", "\n", " [[124., 132., 140., 123.],\n", " [129., 134., 121., 138.],\n", " [111., 112., 111., 141.],\n", " [ 96., 122., 98., 148.]]],\n", "\n", "\n", " [[[126., 136., 145., 133.],\n", " [111., 131., 123., 128.],\n", " [117., 120., 130., 134.],\n", " [ 94., 133., 111., 135.]],\n", "\n", " [[126., 136., 145., 132.],\n", " [113., 131., 122., 129.],\n", " [117., 120., 128., 135.],\n", " [ 94., 132., 110., 135.]],\n", "\n", " [[126., 135., 145., 130.],\n", " [114., 131., 122., 129.],\n", " [116., 120., 127., 136.],\n", " [ 94., 131., 109., 136.]],\n", "\n", " ...,\n", "\n", " [[125., 132., 141., 123.],\n", " [129., 133., 120., 137.],\n", " [113., 115., 114., 141.],\n", " [ 96., 124., 100., 145.]],\n", "\n", " [[125., 132., 140., 123.],\n", " [129., 133., 121., 138.],\n", " [113., 114., 113., 141.],\n", " [ 96., 123., 100., 146.]],\n", "\n", " [[124., 132., 139., 124.],\n", " [130., 134., 121., 138.],\n", " [112., 113., 112., 141.],\n", " [ 97., 123., 99., 148.]]],\n", "\n", "\n", " [[[127., 136., 145., 133.],\n", " [112., 130., 124., 129.],\n", " [118., 120., 130., 135.],\n", " [ 95., 133., 111., 135.]],\n", "\n", " [[127., 135., 145., 131.],\n", " [114., 131., 123., 130.],\n", " [117., 120., 129., 136.],\n", " [ 95., 132., 111., 135.]],\n", "\n", " [[127., 135., 145., 130.],\n", " [115., 131., 122., 130.],\n", " [117., 121., 128., 136.],\n", " [ 95., 132., 110., 135.]],\n", "\n", " ...,\n", "\n", " [[125., 132., 140., 124.],\n", " [129., 133., 121., 138.],\n", " [114., 116., 115., 141.],\n", " [ 97., 124., 101., 145.]],\n", "\n", " [[125., 132., 140., 124.],\n", " [130., 133., 121., 138.],\n", " [113., 115., 114., 141.],\n", " [ 97., 124., 101., 146.]],\n", "\n", " [[124., 131., 139., 124.],\n", " [131., 133., 122., 139.],\n", " [113., 114., 113., 140.],\n", " [ 97., 123., 100., 147.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[135., 130., 137., 135.],\n", " [117., 129., 137., 138.],\n", " [121., 125., 134., 136.],\n", " [109., 136., 119., 139.]],\n", "\n", " [[135., 130., 137., 134.],\n", " [119., 129., 136., 138.],\n", " [121., 125., 134., 137.],\n", " [109., 135., 119., 139.]],\n", "\n", " [[135., 130., 137., 133.],\n", " [121., 129., 135., 138.],\n", " [121., 126., 133., 137.],\n", " [109., 134., 118., 138.]],\n", "\n", " ...,\n", "\n", " [[127., 126., 134., 129.],\n", " [134., 130., 132., 143.],\n", " [124., 123., 128., 137.],\n", " [105., 128., 113., 143.]],\n", "\n", " [[126., 126., 133., 130.],\n", " [135., 130., 132., 143.],\n", " [124., 122., 128., 136.],\n", " [104., 128., 113., 143.]],\n", "\n", " [[125., 125., 132., 130.],\n", " [135., 131., 132., 144.],\n", " [125., 121., 128., 136.],\n", " [104., 127., 112., 144.]]],\n", "\n", "\n", " [[[136., 130., 136., 135.],\n", " [117., 129., 138., 138.],\n", " [121., 125., 135., 136.],\n", " [110., 136., 120., 140.]],\n", "\n", " [[136., 129., 136., 134.],\n", " [119., 129., 137., 139.],\n", " [121., 126., 134., 137.],\n", " [110., 135., 119., 139.]],\n", "\n", " [[135., 129., 136., 133.],\n", " [121., 129., 137., 139.],\n", " [121., 126., 133., 137.],\n", " [110., 135., 119., 139.]],\n", "\n", " ...,\n", "\n", " [[127., 126., 133., 130.],\n", " [134., 130., 133., 143.],\n", " [125., 123., 129., 136.],\n", " [106., 128., 114., 143.]],\n", "\n", " [[126., 125., 132., 130.],\n", " [135., 130., 133., 143.],\n", " [125., 122., 129., 136.],\n", " [105., 128., 114., 144.]],\n", "\n", " [[125., 125., 132., 131.],\n", " [135., 131., 134., 144.],\n", " [126., 121., 129., 135.],\n", " [104., 128., 113., 144.]]],\n", "\n", "\n", " [[[137., 129., 135., 136.],\n", " [117., 129., 140., 139.],\n", " [121., 126., 135., 136.],\n", " [112., 136., 120., 140.]],\n", "\n", " [[136., 129., 135., 135.],\n", " [119., 129., 139., 139.],\n", " [121., 126., 134., 136.],\n", " [112., 136., 120., 140.]],\n", "\n", " [[136., 129., 135., 134.],\n", " [121., 129., 138., 139.],\n", " [121., 127., 134., 137.],\n", " [111., 135., 119., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 125., 132., 131.],\n", " [134., 130., 134., 143.],\n", " [125., 124., 130., 136.],\n", " [106., 129., 115., 143.]],\n", "\n", " [[126., 125., 132., 131.],\n", " [135., 130., 135., 143.],\n", " [126., 123., 130., 136.],\n", " [106., 128., 115., 144.]],\n", "\n", " [[125., 124., 131., 131.],\n", " [135., 131., 135., 144.],\n", " [126., 122., 131., 135.],\n", " [105., 128., 114., 145.]]]],\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", " [[[[130., 146., 145., 140.],\n", " [100., 138., 129., 133.],\n", " [112., 118., 129., 113.],\n", " [111., 132., 116., 135.]],\n", "\n", " [[130., 146., 145., 138.],\n", " [102., 138., 129., 133.],\n", " [113., 118., 127., 113.],\n", " [112., 131., 116., 135.]],\n", "\n", " [[130., 146., 145., 136.],\n", " [104., 138., 129., 132.],\n", " [114., 118., 125., 114.],\n", " [112., 131., 115., 136.]],\n", "\n", " ...,\n", "\n", " [[131., 144., 143., 125.],\n", " [120., 140., 135., 131.],\n", " [124., 115., 109., 117.],\n", " [116., 122., 108., 148.]],\n", "\n", " [[131., 144., 142., 125.],\n", " [120., 140., 136., 131.],\n", " [125., 114., 108., 117.],\n", " [116., 122., 107., 150.]],\n", "\n", " [[131., 144., 142., 125.],\n", " [121., 141., 137., 131.],\n", " [126., 113., 107., 117.],\n", " [116., 121., 107., 151.]]],\n", "\n", "\n", " [[[130., 145., 145., 140.],\n", " [101., 138., 129., 134.],\n", " [112., 119., 129., 113.],\n", " [112., 132., 117., 134.]],\n", "\n", " [[130., 145., 145., 138.],\n", " [103., 138., 129., 134.],\n", " [113., 119., 127., 114.],\n", " [113., 131., 116., 135.]],\n", "\n", " [[130., 145., 145., 136.],\n", " [105., 138., 129., 134.],\n", " [114., 119., 126., 114.],\n", " [113., 131., 115., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 142., 126.],\n", " [121., 139., 135., 132.],\n", " [125., 116., 110., 117.],\n", " [116., 123., 108., 147.]],\n", "\n", " [[130., 143., 142., 125.],\n", " [121., 140., 136., 132.],\n", " [126., 115., 109., 117.],\n", " [116., 122., 108., 149.]],\n", "\n", " [[130., 143., 141., 125.],\n", " [122., 140., 137., 132.],\n", " [127., 114., 108., 117.],\n", " [116., 121., 107., 150.]]],\n", "\n", "\n", " [[[130., 144., 144., 140.],\n", " [102., 137., 130., 135.],\n", " [113., 119., 129., 113.],\n", " [113., 132., 117., 133.]],\n", "\n", " [[130., 144., 145., 138.],\n", " [104., 137., 130., 135.],\n", " [113., 120., 128., 114.],\n", " [113., 131., 116., 134.]],\n", "\n", " [[130., 144., 144., 136.],\n", " [105., 137., 130., 135.],\n", " [114., 120., 126., 115.],\n", " [114., 131., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[130., 142., 142., 126.],\n", " [122., 139., 135., 133.],\n", " [126., 118., 111., 117.],\n", " [116., 123., 109., 147.]],\n", "\n", " [[130., 142., 141., 126.],\n", " [122., 139., 136., 133.],\n", " [127., 117., 110., 117.],\n", " [116., 122., 108., 148.]],\n", "\n", " [[130., 142., 141., 126.],\n", " [123., 139., 137., 133.],\n", " [128., 116., 109., 117.],\n", " [116., 121., 108., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[131., 130., 139., 142.],\n", " [107., 131., 139., 150.],\n", " [113., 128., 133., 115.],\n", " [126., 133., 118., 132.]],\n", "\n", " [[130., 130., 139., 141.],\n", " [109., 131., 139., 150.],\n", " [114., 129., 132., 116.],\n", " [125., 132., 118., 132.]],\n", "\n", " [[130., 130., 139., 140.],\n", " [111., 131., 139., 149.],\n", " [116., 129., 131., 116.],\n", " [125., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 135., 132.],\n", " [129., 134., 141., 143.],\n", " [134., 129., 124., 114.],\n", " [119., 127., 113., 143.]],\n", "\n", " [[125., 126., 135., 132.],\n", " [129., 134., 141., 143.],\n", " [136., 129., 124., 113.],\n", " [119., 127., 112., 144.]],\n", "\n", " [[125., 126., 134., 132.],\n", " [130., 135., 142., 142.],\n", " [138., 128., 124., 113.],\n", " [118., 126., 112., 145.]]],\n", "\n", "\n", " [[[131., 129., 138., 143.],\n", " [108., 131., 140., 151.],\n", " [113., 129., 133., 115.],\n", " [127., 133., 118., 133.]],\n", "\n", " [[130., 128., 138., 141.],\n", " [110., 130., 140., 151.],\n", " [114., 129., 132., 116.],\n", " [127., 133., 118., 133.]],\n", "\n", " [[130., 128., 138., 140.],\n", " [111., 130., 139., 150.],\n", " [116., 130., 131., 116.],\n", " [126., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 125., 135., 133.],\n", " [129., 134., 141., 144.],\n", " [135., 130., 126., 113.],\n", " [120., 128., 113., 143.]],\n", "\n", " [[125., 125., 134., 133.],\n", " [130., 134., 142., 143.],\n", " [137., 129., 125., 113.],\n", " [119., 127., 113., 144.]],\n", "\n", " [[124., 124., 134., 133.],\n", " [130., 135., 143., 143.],\n", " [138., 129., 125., 112.],\n", " [118., 127., 113., 145.]]],\n", "\n", "\n", " [[[131., 127., 138., 143.],\n", " [108., 130., 141., 152.],\n", " [113., 129., 133., 115.],\n", " [128., 133., 118., 133.]],\n", "\n", " [[130., 127., 138., 142.],\n", " [110., 130., 141., 152.],\n", " [114., 130., 132., 115.],\n", " [128., 133., 118., 133.]],\n", "\n", " [[130., 127., 138., 141.],\n", " [112., 130., 140., 151.],\n", " [116., 131., 132., 116.],\n", " [127., 132., 117., 134.]],\n", "\n", " ...,\n", "\n", " [[125., 124., 134., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 131., 127., 113.],\n", " [120., 128., 113., 143.]],\n", "\n", " [[124., 123., 134., 134.],\n", " [130., 134., 142., 144.],\n", " [137., 130., 126., 112.],\n", " [119., 128., 113., 144.]],\n", "\n", " [[124., 123., 133., 134.],\n", " [131., 135., 143., 144.],\n", " [139., 129., 126., 112.],\n", " [119., 127., 113., 145.]]]],\n", "\n", "\n", "\n", " [[[[130., 147., 145., 141.],\n", " [ 99., 140., 129., 133.],\n", " [112., 117., 128., 111.],\n", " [113., 131., 117., 135.]],\n", "\n", " [[131., 147., 145., 139.],\n", " [101., 139., 129., 133.],\n", " [113., 118., 127., 111.],\n", " [113., 131., 116., 136.]],\n", "\n", " [[131., 147., 145., 137.],\n", " [103., 139., 129., 133.],\n", " [113., 118., 125., 112.],\n", " [114., 130., 115., 136.]],\n", "\n", " ...,\n", "\n", " [[132., 145., 143., 126.],\n", " [119., 141., 136., 131.],\n", " [125., 115., 109., 115.],\n", " [117., 122., 108., 149.]],\n", "\n", " [[131., 145., 142., 126.],\n", " [119., 141., 137., 131.],\n", " [126., 114., 108., 115.],\n", " [118., 121., 108., 150.]],\n", "\n", " [[131., 145., 142., 126.],\n", " [120., 141., 138., 131.],\n", " [127., 113., 107., 115.],\n", " [118., 121., 107., 151.]]],\n", "\n", "\n", " [[[130., 145., 145., 141.],\n", " [100., 139., 130., 135.],\n", " [112., 118., 129., 111.],\n", " [114., 131., 117., 134.]],\n", "\n", " [[131., 145., 145., 139.],\n", " [102., 139., 130., 134.],\n", " [113., 119., 127., 112.],\n", " [114., 131., 116., 135.]],\n", "\n", " [[131., 145., 145., 137.],\n", " [104., 138., 130., 134.],\n", " [114., 119., 126., 112.],\n", " [115., 130., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 144., 142., 126.],\n", " [120., 140., 136., 132.],\n", " [126., 116., 110., 115.],\n", " [118., 122., 109., 148.]],\n", "\n", " [[131., 144., 142., 126.],\n", " [120., 140., 137., 132.],\n", " [127., 115., 109., 115.],\n", " [118., 122., 108., 149.]],\n", "\n", " [[131., 144., 141., 126.],\n", " [121., 141., 138., 132.],\n", " [128., 114., 108., 115.],\n", " [118., 121., 107., 151.]]],\n", "\n", "\n", " [[[130., 144., 144., 141.],\n", " [101., 138., 130., 136.],\n", " [112., 119., 129., 111.],\n", " [115., 131., 117., 134.]],\n", "\n", " [[131., 144., 144., 139.],\n", " [103., 138., 130., 136.],\n", " [113., 120., 128., 112.],\n", " [115., 131., 116., 134.]],\n", "\n", " [[131., 144., 144., 137.],\n", " [105., 138., 130., 136.],\n", " [114., 120., 126., 113.],\n", " [115., 130., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 142., 127.],\n", " [121., 139., 136., 133.],\n", " [127., 117., 111., 115.],\n", " [118., 123., 109., 147.]],\n", "\n", " [[131., 142., 141., 126.],\n", " [121., 140., 137., 133.],\n", " [128., 116., 110., 115.],\n", " [118., 122., 108., 148.]],\n", "\n", " [[130., 142., 141., 126.],\n", " [122., 140., 138., 133.],\n", " [129., 115., 109., 115.],\n", " [118., 121., 108., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 130., 139., 143.],\n", " [107., 131., 139., 151.],\n", " [112., 128., 132., 114.],\n", " [127., 132., 118., 132.]],\n", "\n", " [[130., 129., 139., 142.],\n", " [109., 131., 139., 151.],\n", " [114., 129., 132., 114.],\n", " [127., 132., 117., 132.]],\n", "\n", " [[130., 129., 139., 141.],\n", " [111., 131., 139., 150.],\n", " [115., 129., 131., 114.],\n", " [127., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 135., 133.],\n", " [128., 134., 141., 143.],\n", " [135., 129., 124., 112.],\n", " [121., 127., 112., 143.]],\n", "\n", " [[125., 126., 135., 133.],\n", " [129., 135., 142., 143.],\n", " [137., 129., 124., 111.],\n", " [120., 127., 112., 144.]],\n", "\n", " [[125., 125., 134., 133.],\n", " [130., 135., 142., 142.],\n", " [138., 128., 124., 111.],\n", " [119., 126., 112., 146.]]],\n", "\n", "\n", " [[[130., 128., 138., 144.],\n", " [107., 131., 140., 152.],\n", " [112., 129., 133., 114.],\n", " [128., 133., 118., 132.]],\n", "\n", " [[130., 128., 138., 142.],\n", " [109., 131., 140., 152.],\n", " [114., 129., 132., 114.],\n", " [128., 132., 117., 133.]],\n", "\n", " [[130., 128., 138., 141.],\n", " [111., 131., 139., 151.],\n", " [115., 130., 131., 114.],\n", " [128., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 125., 135., 133.],\n", " [128., 134., 142., 144.],\n", " [135., 130., 125., 112.],\n", " [121., 127., 112., 143.]],\n", "\n", " [[125., 124., 134., 134.],\n", " [129., 135., 142., 144.],\n", " [137., 130., 125., 111.],\n", " [120., 127., 112., 144.]],\n", "\n", " [[124., 124., 134., 134.],\n", " [130., 135., 143., 143.],\n", " [139., 129., 125., 110.],\n", " [120., 127., 112., 146.]]],\n", "\n", "\n", " [[[130., 127., 138., 144.],\n", " [107., 131., 141., 153.],\n", " [112., 129., 133., 113.],\n", " [129., 133., 118., 133.]],\n", "\n", " [[130., 127., 138., 143.],\n", " [109., 131., 141., 153.],\n", " [113., 130., 132., 114.],\n", " [129., 132., 117., 133.]],\n", "\n", " [[130., 126., 138., 142.],\n", " [111., 131., 140., 152.],\n", " [115., 131., 132., 114.],\n", " [129., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 123., 134., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 131., 126., 111.],\n", " [121., 128., 113., 143.]],\n", "\n", " [[124., 123., 134., 134.],\n", " [129., 135., 143., 144.],\n", " [138., 131., 126., 111.],\n", " [121., 127., 113., 144.]],\n", "\n", " [[124., 123., 133., 134.],\n", " [130., 135., 144., 144.],\n", " [140., 130., 126., 110.],\n", " [120., 127., 112., 146.]]]],\n", "\n", "\n", "\n", " [[[[131., 147., 145., 142.],\n", " [ 98., 141., 129., 134.],\n", " [111., 116., 128., 109.],\n", " [114., 131., 117., 135.]],\n", "\n", " [[131., 147., 145., 140.],\n", " [100., 140., 130., 134.],\n", " [112., 117., 127., 109.],\n", " [115., 130., 116., 136.]],\n", "\n", " [[131., 147., 145., 139.],\n", " [102., 140., 130., 133.],\n", " [113., 117., 125., 110.],\n", " [115., 130., 115., 136.]],\n", "\n", " ...,\n", "\n", " [[132., 146., 143., 127.],\n", " [118., 141., 136., 131.],\n", " [126., 115., 109., 113.],\n", " [119., 122., 108., 149.]],\n", "\n", " [[132., 146., 142., 127.],\n", " [119., 142., 137., 131.],\n", " [127., 114., 108., 113.],\n", " [119., 121., 108., 150.]],\n", "\n", " [[132., 146., 142., 126.],\n", " [119., 142., 139., 131.],\n", " [128., 113., 107., 113.],\n", " [119., 120., 107., 152.]]],\n", "\n", "\n", " [[[131., 146., 145., 142.],\n", " [ 99., 140., 130., 135.],\n", " [111., 117., 129., 109.],\n", " [115., 131., 117., 135.]],\n", "\n", " [[131., 146., 145., 140.],\n", " [101., 140., 130., 135.],\n", " [112., 118., 127., 110.],\n", " [116., 130., 116., 135.]],\n", "\n", " [[131., 146., 145., 139.],\n", " [103., 139., 130., 135.],\n", " [113., 118., 126., 110.],\n", " [116., 130., 116., 136.]],\n", "\n", " ...,\n", "\n", " [[132., 145., 142., 127.],\n", " [119., 141., 137., 132.],\n", " [127., 116., 110., 113.],\n", " [119., 122., 109., 148.]],\n", "\n", " [[131., 144., 142., 127.],\n", " [120., 141., 138., 132.],\n", " [128., 115., 109., 113.],\n", " [119., 121., 108., 150.]],\n", "\n", " [[131., 144., 141., 127.],\n", " [120., 141., 139., 132.],\n", " [129., 114., 108., 113.],\n", " [119., 121., 108., 151.]]],\n", "\n", "\n", " [[[131., 145., 144., 142.],\n", " [100., 139., 131., 137.],\n", " [111., 118., 129., 110.],\n", " [116., 131., 117., 134.]],\n", "\n", " [[131., 145., 144., 140.],\n", " [102., 139., 131., 137.],\n", " [112., 119., 127., 110.],\n", " [117., 131., 116., 134.]],\n", "\n", " [[131., 145., 144., 139.],\n", " [104., 139., 131., 136.],\n", " [113., 119., 126., 111.],\n", " [117., 130., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 142., 127.],\n", " [120., 140., 137., 133.],\n", " [128., 117., 111., 113.],\n", " [119., 122., 109., 147.]],\n", "\n", " [[131., 143., 141., 127.],\n", " [121., 140., 138., 133.],\n", " [129., 116., 110., 113.],\n", " [119., 122., 108., 149.]],\n", "\n", " [[131., 143., 141., 127.],\n", " [121., 141., 139., 132.],\n", " [130., 115., 109., 113.],\n", " [120., 121., 108., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 129., 139., 144.],\n", " [106., 132., 139., 152.],\n", " [111., 128., 132., 112.],\n", " [128., 132., 117., 132.]],\n", "\n", " [[130., 129., 139., 143.],\n", " [108., 132., 139., 152.],\n", " [113., 129., 132., 112.],\n", " [128., 132., 117., 132.]],\n", "\n", " [[130., 129., 139., 142.],\n", " [110., 132., 139., 151.],\n", " [114., 129., 131., 112.],\n", " [128., 131., 116., 133.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 135., 133.],\n", " [128., 135., 142., 144.],\n", " [135., 130., 124., 110.],\n", " [122., 127., 112., 143.]],\n", "\n", " [[125., 126., 135., 133.],\n", " [128., 135., 142., 143.],\n", " [137., 129., 124., 110.],\n", " [122., 126., 111., 145.]],\n", "\n", " [[125., 125., 134., 134.],\n", " [129., 136., 143., 142.],\n", " [139., 128., 123., 109.],\n", " [121., 126., 111., 146.]]],\n", "\n", "\n", " [[[130., 128., 138., 145.],\n", " [106., 132., 140., 153.],\n", " [111., 129., 133., 112.],\n", " [129., 132., 117., 132.]],\n", "\n", " [[130., 128., 138., 143.],\n", " [108., 132., 140., 153.],\n", " [113., 129., 132., 112.],\n", " [129., 132., 117., 133.]],\n", "\n", " [[130., 127., 138., 142.],\n", " [110., 131., 139., 152.],\n", " [114., 130., 131., 112.],\n", " [129., 132., 116., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 124., 135., 134.],\n", " [128., 135., 142., 144.],\n", " [136., 130., 125., 110.],\n", " [122., 127., 112., 143.]],\n", "\n", " [[125., 124., 134., 134.],\n", " [129., 135., 143., 144.],\n", " [138., 130., 125., 109.],\n", " [122., 127., 112., 145.]],\n", "\n", " [[124., 124., 134., 134.],\n", " [130., 136., 143., 143.],\n", " [140., 129., 125., 109.],\n", " [121., 126., 111., 146.]]],\n", "\n", "\n", " [[[130., 126., 138., 145.],\n", " [106., 131., 141., 154.],\n", " [111., 129., 133., 112.],\n", " [130., 132., 117., 133.]],\n", "\n", " [[130., 126., 138., 144.],\n", " [108., 131., 141., 154.],\n", " [113., 130., 132., 112.],\n", " [130., 132., 117., 133.]],\n", "\n", " [[130., 126., 138., 143.],\n", " [110., 131., 140., 153.],\n", " [114., 131., 132., 112.],\n", " [130., 132., 116., 133.]],\n", "\n", " ...,\n", "\n", " [[125., 123., 134., 135.],\n", " [128., 135., 143., 145.],\n", " [136., 131., 126., 109.],\n", " [123., 128., 112., 143.]],\n", "\n", " [[124., 123., 134., 135.],\n", " [129., 135., 143., 145.],\n", " [138., 131., 126., 109.],\n", " [122., 127., 112., 145.]],\n", "\n", " [[124., 122., 133., 135.],\n", " [130., 136., 144., 144.],\n", " [140., 130., 126., 108.],\n", " [121., 127., 112., 146.]]]]],\n", "\n", "\n", "\n", "\n", " [[[[[125., 135., 147., 133.],\n", " [111., 131., 120., 128.],\n", " [117., 119., 128., 137.],\n", " [ 89., 132., 108., 137.]],\n", "\n", " [[126., 134., 147., 132.],\n", " [113., 131., 119., 129.],\n", " [116., 119., 127., 138.],\n", " [ 89., 132., 107., 137.]],\n", "\n", " [[126., 134., 147., 131.],\n", " [114., 131., 119., 129.],\n", " [115., 119., 126., 139.],\n", " [ 89., 131., 106., 138.]],\n", "\n", " ...,\n", "\n", " [[125., 130., 142., 124.],\n", " [129., 132., 117., 139.],\n", " [109., 114., 113., 144.],\n", " [ 92., 123., 96., 147.]],\n", "\n", " [[125., 130., 141., 124.],\n", " [129., 133., 117., 140.],\n", " [109., 113., 112., 144.],\n", " [ 92., 123., 95., 148.]],\n", "\n", " [[124., 130., 140., 124.],\n", " [130., 133., 118., 141.],\n", " [108., 112., 111., 144.],\n", " [ 92., 122., 95., 149.]]],\n", "\n", "\n", " [[[126., 134., 147., 133.],\n", " [112., 131., 121., 129.],\n", " [117., 119., 129., 138.],\n", " [ 90., 133., 108., 137.]],\n", "\n", " [[126., 134., 147., 132.],\n", " [114., 131., 120., 129.],\n", " [116., 119., 128., 139.],\n", " [ 90., 132., 107., 137.]],\n", "\n", " [[127., 134., 146., 131.],\n", " [115., 131., 120., 130.],\n", " [116., 120., 126., 139.],\n", " [ 90., 131., 107., 137.]],\n", "\n", " ...,\n", "\n", " [[125., 130., 141., 124.],\n", " [129., 132., 117., 140.],\n", " [110., 115., 114., 144.],\n", " [ 92., 124., 97., 146.]],\n", "\n", " [[125., 129., 141., 124.],\n", " [130., 132., 118., 140.],\n", " [109., 114., 113., 144.],\n", " [ 93., 123., 97., 147.]],\n", "\n", " [[124., 129., 140., 124.],\n", " [131., 133., 118., 141.],\n", " [109., 113., 112., 144.],\n", " [ 93., 123., 96., 148.]]],\n", "\n", "\n", " [[[127., 134., 146., 133.],\n", " [113., 130., 122., 130.],\n", " [117., 119., 129., 138.],\n", " [ 91., 133., 109., 137.]],\n", "\n", " [[127., 134., 146., 132.],\n", " [114., 130., 121., 130.],\n", " [117., 120., 128., 139.],\n", " [ 91., 132., 108., 137.]],\n", "\n", " [[127., 133., 146., 130.],\n", " [116., 130., 120., 131.],\n", " [116., 120., 127., 140.],\n", " [ 91., 131., 107., 137.]],\n", "\n", " ...,\n", "\n", " [[125., 129., 141., 124.],\n", " [130., 132., 118., 140.],\n", " [111., 116., 115., 144.],\n", " [ 93., 124., 98., 146.]],\n", "\n", " [[125., 129., 140., 125.],\n", " [131., 132., 118., 141.],\n", " [110., 115., 114., 144.],\n", " [ 93., 123., 98., 147.]],\n", "\n", " [[125., 129., 140., 125.],\n", " [131., 132., 119., 142.],\n", " [110., 114., 114., 144.],\n", " [ 93., 123., 97., 148.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[137., 130., 138., 135.],\n", " [118., 129., 136., 137.],\n", " [120., 124., 134., 140.],\n", " [106., 136., 117., 142.]],\n", "\n", " [[136., 129., 138., 134.],\n", " [120., 129., 135., 138.],\n", " [120., 125., 133., 140.],\n", " [106., 135., 117., 141.]],\n", "\n", " [[136., 129., 138., 134.],\n", " [122., 129., 134., 138.],\n", " [120., 125., 133., 141.],\n", " [106., 134., 116., 141.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 134., 130.],\n", " [135., 129., 130., 144.],\n", " [120., 122., 129., 141.],\n", " [103., 127., 111., 144.]],\n", "\n", " [[127., 125., 133., 131.],\n", " [135., 130., 130., 145.],\n", " [121., 121., 129., 140.],\n", " [102., 127., 110., 145.]],\n", "\n", " [[126., 124., 132., 131.],\n", " [136., 130., 130., 146.],\n", " [121., 120., 129., 140.],\n", " [102., 126., 110., 146.]]],\n", "\n", "\n", " [[[137., 129., 137., 136.],\n", " [118., 129., 137., 138.],\n", " [121., 125., 135., 140.],\n", " [108., 136., 118., 142.]],\n", "\n", " [[137., 129., 137., 135.],\n", " [120., 129., 137., 138.],\n", " [120., 125., 134., 140.],\n", " [108., 135., 117., 142.]],\n", "\n", " [[137., 129., 137., 134.],\n", " [122., 129., 136., 139.],\n", " [120., 125., 133., 141.],\n", " [107., 135., 117., 142.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 133., 131.],\n", " [135., 129., 131., 144.],\n", " [121., 122., 130., 140.],\n", " [104., 128., 112., 144.]],\n", "\n", " [[127., 124., 132., 131.],\n", " [135., 130., 132., 145.],\n", " [121., 121., 130., 140.],\n", " [103., 127., 111., 145.]],\n", "\n", " [[126., 124., 132., 132.],\n", " [136., 130., 132., 146.],\n", " [122., 120., 130., 139.],\n", " [103., 127., 111., 146.]]],\n", "\n", "\n", " [[[138., 128., 136., 136.],\n", " [118., 129., 139., 138.],\n", " [121., 125., 135., 139.],\n", " [109., 136., 119., 143.]],\n", "\n", " [[138., 128., 136., 135.],\n", " [120., 129., 138., 139.],\n", " [121., 126., 134., 140.],\n", " [109., 135., 118., 143.]],\n", "\n", " [[137., 128., 136., 135.],\n", " [122., 129., 137., 139.],\n", " [120., 126., 134., 140.],\n", " [109., 135., 117., 142.]],\n", "\n", " ...,\n", "\n", " [[128., 124., 132., 132.],\n", " [135., 129., 133., 145.],\n", " [122., 123., 131., 140.],\n", " [105., 128., 113., 144.]],\n", "\n", " [[127., 124., 132., 132.],\n", " [135., 129., 133., 145.],\n", " [122., 122., 131., 139.],\n", " [104., 127., 112., 145.]],\n", "\n", " [[126., 123., 131., 132.],\n", " [136., 130., 133., 146.],\n", " [123., 121., 131., 139.],\n", " [104., 127., 112., 146.]]]],\n", "\n", "\n", "\n", " [[[[125., 136., 147., 133.],\n", " [110., 131., 121., 128.],\n", " [117., 119., 128., 136.],\n", " [ 91., 133., 108., 137.]],\n", "\n", " [[126., 135., 147., 132.],\n", " [112., 131., 120., 129.],\n", " [116., 119., 127., 136.],\n", " [ 91., 132., 108., 137.]],\n", "\n", " [[126., 135., 147., 131.],\n", " [114., 131., 120., 129.],\n", " [115., 120., 126., 137.],\n", " [ 91., 131., 107., 137.]],\n", "\n", " ...,\n", "\n", " [[125., 131., 142., 124.],\n", " [128., 133., 118., 138.],\n", " [110., 115., 112., 142.],\n", " [ 93., 123., 97., 147.]],\n", "\n", " [[125., 131., 141., 124.],\n", " [129., 133., 119., 139.],\n", " [110., 114., 112., 143.],\n", " [ 94., 123., 97., 148.]],\n", "\n", " [[125., 131., 141., 124.],\n", " [130., 133., 119., 140.],\n", " [110., 113., 111., 143.],\n", " [ 94., 122., 96., 149.]]],\n", "\n", "\n", " [[[126., 135., 147., 133.],\n", " [111., 131., 122., 129.],\n", " [117., 119., 129., 136.],\n", " [ 92., 133., 109., 137.]],\n", "\n", " [[126., 135., 147., 132.],\n", " [113., 131., 121., 130.],\n", " [116., 120., 128., 137.],\n", " [ 92., 132., 108., 137.]],\n", "\n", " [[127., 135., 146., 130.],\n", " [114., 131., 121., 130.],\n", " [116., 120., 126., 138.],\n", " [ 92., 131., 108., 137.]],\n", "\n", " ...,\n", "\n", " [[125., 131., 142., 124.],\n", " [129., 132., 119., 139.],\n", " [111., 116., 114., 142.],\n", " [ 94., 124., 98., 146.]],\n", "\n", " [[125., 131., 141., 124.],\n", " [130., 133., 119., 140.],\n", " [111., 115., 113., 142.],\n", " [ 94., 123., 98., 147.]],\n", "\n", " [[125., 130., 140., 124.],\n", " [130., 133., 120., 141.],\n", " [110., 113., 112., 142.],\n", " [ 94., 122., 97., 149.]]],\n", "\n", "\n", " [[[127., 135., 146., 133.],\n", " [112., 131., 123., 130.],\n", " [117., 120., 129., 137.],\n", " [ 93., 133., 110., 136.]],\n", "\n", " [[127., 135., 146., 132.],\n", " [114., 131., 122., 130.],\n", " [117., 120., 128., 137.],\n", " [ 93., 132., 109., 137.]],\n", "\n", " [[127., 134., 146., 130.],\n", " [115., 131., 121., 131.],\n", " [116., 121., 127., 138.],\n", " [ 93., 132., 108., 137.]],\n", "\n", " ...,\n", "\n", " [[126., 130., 141., 124.],\n", " [130., 132., 119., 140.],\n", " [112., 116., 115., 142.],\n", " [ 95., 124., 99., 146.]],\n", "\n", " [[125., 130., 140., 124.],\n", " [130., 132., 120., 140.],\n", " [112., 115., 114., 142.],\n", " [ 95., 123., 99., 147.]],\n", "\n", " [[125., 130., 140., 124.],\n", " [131., 133., 120., 141.],\n", " [111., 114., 113., 142.],\n", " [ 95., 123., 98., 148.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[136., 130., 138., 136.],\n", " [117., 129., 136., 138.],\n", " [120., 125., 134., 138.],\n", " [108., 136., 118., 141.]],\n", "\n", " [[136., 130., 138., 135.],\n", " [119., 129., 136., 138.],\n", " [120., 125., 133., 139.],\n", " [107., 135., 117., 141.]],\n", "\n", " [[135., 130., 138., 134.],\n", " [121., 129., 135., 139.],\n", " [120., 126., 133., 139.],\n", " [107., 134., 117., 140.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 134., 130.],\n", " [134., 130., 131., 144.],\n", " [122., 123., 128., 139.],\n", " [104., 127., 111., 144.]],\n", "\n", " [[127., 125., 133., 130.],\n", " [135., 130., 131., 145.],\n", " [122., 122., 128., 138.],\n", " [103., 127., 111., 144.]],\n", "\n", " [[126., 125., 133., 131.],\n", " [135., 130., 131., 145.],\n", " [122., 121., 128., 138.],\n", " [103., 127., 111., 145.]]],\n", "\n", "\n", " [[[137., 129., 137., 136.],\n", " [117., 129., 138., 139.],\n", " [120., 125., 134., 138.],\n", " [109., 136., 118., 141.]],\n", "\n", " [[136., 129., 137., 135.],\n", " [119., 129., 137., 139.],\n", " [120., 126., 134., 138.],\n", " [109., 135., 118., 141.]],\n", "\n", " [[136., 129., 137., 134.],\n", " [121., 129., 136., 139.],\n", " [120., 126., 133., 139.],\n", " [109., 135., 117., 141.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 133., 131.],\n", " [134., 129., 132., 144.],\n", " [122., 123., 129., 138.],\n", " [105., 128., 112., 144.]],\n", "\n", " [[127., 125., 133., 131.],\n", " [135., 130., 132., 145.],\n", " [123., 122., 129., 138.],\n", " [104., 127., 112., 145.]],\n", "\n", " [[126., 124., 132., 132.],\n", " [135., 130., 133., 146.],\n", " [123., 121., 129., 137.],\n", " [104., 127., 112., 145.]]],\n", "\n", "\n", " [[[137., 129., 136., 137.],\n", " [118., 129., 139., 139.],\n", " [120., 126., 135., 138.],\n", " [110., 136., 119., 142.]],\n", "\n", " [[137., 129., 136., 136.],\n", " [119., 129., 139., 139.],\n", " [120., 126., 134., 138.],\n", " [110., 135., 118., 142.]],\n", "\n", " [[137., 128., 136., 135.],\n", " [121., 129., 138., 140.],\n", " [120., 127., 134., 138.],\n", " [110., 135., 118., 142.]],\n", "\n", " ...,\n", "\n", " [[128., 124., 132., 132.],\n", " [134., 129., 134., 145.],\n", " [123., 124., 130., 138.],\n", " [106., 128., 113., 144.]],\n", "\n", " [[127., 124., 132., 132.],\n", " [135., 130., 134., 145.],\n", " [124., 123., 131., 137.],\n", " [105., 128., 113., 145.]],\n", "\n", " [[126., 124., 131., 132.],\n", " [135., 130., 134., 146.],\n", " [124., 122., 131., 137.],\n", " [104., 127., 113., 146.]]]],\n", "\n", "\n", "\n", " [[[[125., 137., 147., 133.],\n", " [110., 131., 122., 128.],\n", " [116., 119., 128., 134.],\n", " [ 92., 133., 109., 136.]],\n", "\n", " [[126., 136., 147., 132.],\n", " [111., 131., 121., 129.],\n", " [116., 120., 127., 135.],\n", " [ 92., 132., 108., 137.]],\n", "\n", " [[126., 136., 147., 131.],\n", " [113., 131., 121., 130.],\n", " [115., 120., 126., 136.],\n", " [ 92., 132., 108., 137.]],\n", "\n", " ...,\n", "\n", " [[126., 132., 142., 123.],\n", " [128., 133., 119., 138.],\n", " [111., 115., 112., 141.],\n", " [ 95., 123., 98., 147.]],\n", "\n", " [[125., 132., 142., 123.],\n", " [128., 133., 120., 139.],\n", " [111., 114., 111., 141.],\n", " [ 95., 123., 98., 148.]],\n", "\n", " [[125., 132., 141., 124.],\n", " [129., 134., 120., 139.],\n", " [111., 113., 110., 141.],\n", " [ 95., 122., 97., 149.]]],\n", "\n", "\n", " [[[126., 136., 147., 133.],\n", " [110., 131., 123., 129.],\n", " [117., 120., 129., 135.],\n", " [ 93., 133., 110., 136.]],\n", "\n", " [[126., 136., 147., 132.],\n", " [112., 131., 122., 130.],\n", " [116., 120., 127., 135.],\n", " [ 93., 132., 109., 136.]],\n", "\n", " [[127., 136., 146., 130.],\n", " [114., 131., 121., 131.],\n", " [116., 120., 126., 136.],\n", " [ 93., 132., 108., 137.]],\n", "\n", " ...,\n", "\n", " [[126., 132., 142., 124.],\n", " [128., 133., 120., 139.],\n", " [112., 116., 113., 141.],\n", " [ 95., 124., 99., 146.]],\n", "\n", " [[125., 132., 141., 124.],\n", " [129., 133., 120., 139.],\n", " [112., 115., 112., 141.],\n", " [ 96., 123., 99., 147.]],\n", "\n", " [[125., 131., 140., 124.],\n", " [130., 133., 121., 140.],\n", " [112., 114., 112., 141.],\n", " [ 96., 122., 98., 149.]]],\n", "\n", "\n", " [[[127., 136., 146., 133.],\n", " [111., 131., 123., 130.],\n", " [117., 120., 129., 135.],\n", " [ 94., 133., 111., 136.]],\n", "\n", " [[127., 136., 146., 132.],\n", " [113., 131., 123., 131.],\n", " [117., 121., 128., 136.],\n", " [ 94., 133., 110., 136.]],\n", "\n", " [[127., 135., 146., 130.],\n", " [115., 131., 122., 131.],\n", " [116., 121., 127., 137.],\n", " [ 94., 132., 109., 137.]],\n", "\n", " ...,\n", "\n", " [[126., 131., 141., 124.],\n", " [129., 133., 121., 139.],\n", " [113., 117., 114., 140.],\n", " [ 96., 124., 100., 146.]],\n", "\n", " [[126., 131., 141., 124.],\n", " [130., 133., 121., 140.],\n", " [113., 116., 114., 140.],\n", " [ 96., 123., 100., 147.]],\n", "\n", " [[125., 131., 140., 124.],\n", " [131., 133., 122., 141.],\n", " [113., 115., 113., 140.],\n", " [ 96., 123., 99., 148.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[135., 130., 138., 136.],\n", " [116., 129., 137., 139.],\n", " [120., 125., 134., 137.],\n", " [109., 136., 118., 140.]],\n", "\n", " [[135., 130., 138., 135.],\n", " [118., 129., 136., 139.],\n", " [120., 126., 133., 137.],\n", " [109., 135., 118., 140.]],\n", "\n", " [[135., 130., 138., 134.],\n", " [120., 129., 135., 139.],\n", " [120., 126., 132., 137.],\n", " [109., 134., 117., 140.]],\n", "\n", " ...,\n", "\n", " [[127., 126., 134., 130.],\n", " [134., 130., 132., 144.],\n", " [123., 124., 128., 137.],\n", " [105., 128., 112., 143.]],\n", "\n", " [[127., 125., 134., 130.],\n", " [135., 130., 132., 145.],\n", " [123., 123., 128., 136.],\n", " [104., 127., 111., 144.]],\n", "\n", " [[126., 125., 133., 131.],\n", " [135., 130., 132., 145.],\n", " [124., 122., 128., 136.],\n", " [104., 127., 111., 145.]]],\n", "\n", "\n", " [[[136., 130., 137., 136.],\n", " [117., 129., 138., 139.],\n", " [120., 126., 134., 136.],\n", " [110., 136., 119., 141.]],\n", "\n", " [[136., 129., 137., 135.],\n", " [118., 129., 137., 140.],\n", " [120., 126., 133., 137.],\n", " [110., 135., 118., 140.]],\n", "\n", " [[135., 129., 137., 134.],\n", " [120., 129., 137., 140.],\n", " [120., 127., 133., 137.],\n", " [110., 135., 118., 140.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 133., 131.],\n", " [134., 130., 133., 144.],\n", " [124., 124., 129., 136.],\n", " [106., 128., 113., 144.]],\n", "\n", " [[127., 125., 133., 131.],\n", " [135., 130., 133., 145.],\n", " [124., 123., 129., 136.],\n", " [105., 127., 112., 144.]],\n", "\n", " [[126., 124., 132., 132.],\n", " [135., 130., 134., 145.],\n", " [125., 122., 129., 135.],\n", " [105., 127., 112., 145.]]],\n", "\n", "\n", " [[[137., 129., 137., 137.],\n", " [117., 129., 140., 140.],\n", " [120., 126., 134., 136.],\n", " [112., 136., 119., 141.]],\n", "\n", " [[136., 129., 136., 136.],\n", " [118., 129., 139., 140.],\n", " [120., 127., 134., 136.],\n", " [111., 135., 119., 141.]],\n", "\n", " [[136., 129., 136., 135.],\n", " [120., 129., 138., 141.],\n", " [120., 127., 133., 137.],\n", " [111., 135., 118., 141.]],\n", "\n", " ...,\n", "\n", " [[128., 125., 133., 132.],\n", " [134., 130., 134., 145.],\n", " [124., 124., 130., 136.],\n", " [107., 128., 114., 144.]],\n", "\n", " [[127., 124., 132., 132.],\n", " [135., 130., 135., 145.],\n", " [125., 124., 130., 135.],\n", " [106., 128., 113., 145.]],\n", "\n", " [[126., 124., 132., 132.],\n", " [135., 130., 135., 146.],\n", " [125., 123., 130., 135.],\n", " [105., 127., 113., 145.]]]],\n", "\n", "\n", "\n", " ...,\n", "\n", "\n", "\n", " [[[[129., 146., 147., 140.],\n", " [100., 138., 129., 134.],\n", " [112., 119., 128., 113.],\n", " [111., 132., 116., 136.]],\n", "\n", " [[130., 146., 147., 138.],\n", " [102., 138., 129., 134.],\n", " [113., 119., 126., 113.],\n", " [111., 132., 115., 136.]],\n", "\n", " [[130., 146., 147., 137.],\n", " [103., 138., 129., 134.],\n", " [114., 119., 124., 114.],\n", " [112., 131., 115., 137.]],\n", "\n", " ...,\n", "\n", " [[131., 144., 144., 126.],\n", " [119., 139., 135., 133.],\n", " [124., 117., 109., 117.],\n", " [115., 122., 107., 149.]],\n", "\n", " [[131., 144., 143., 126.],\n", " [120., 140., 136., 133.],\n", " [125., 116., 108., 117.],\n", " [115., 121., 107., 150.]],\n", "\n", " [[131., 144., 143., 125.],\n", " [121., 140., 137., 133.],\n", " [126., 115., 107., 117.],\n", " [116., 120., 106., 151.]]],\n", "\n", "\n", " [[[130., 145., 146., 140.],\n", " [101., 137., 130., 135.],\n", " [112., 120., 128., 113.],\n", " [112., 132., 116., 135.]],\n", "\n", " [[130., 145., 146., 138.],\n", " [102., 137., 130., 135.],\n", " [113., 120., 126., 114.],\n", " [112., 132., 116., 135.]],\n", "\n", " [[130., 145., 146., 137.],\n", " [104., 137., 130., 135.],\n", " [114., 120., 125., 114.],\n", " [112., 131., 115., 136.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 143., 126.],\n", " [120., 139., 135., 134.],\n", " [125., 118., 110., 117.],\n", " [115., 122., 108., 148.]],\n", "\n", " [[131., 143., 143., 126.],\n", " [121., 139., 136., 134.],\n", " [126., 117., 109., 117.],\n", " [116., 121., 107., 149.]],\n", "\n", " [[130., 142., 142., 126.],\n", " [122., 139., 137., 134.],\n", " [127., 116., 108., 117.],\n", " [116., 121., 106., 151.]]],\n", "\n", "\n", " [[[130., 144., 146., 140.],\n", " [101., 137., 130., 136.],\n", " [113., 120., 128., 113.],\n", " [113., 132., 117., 134.]],\n", "\n", " [[130., 144., 146., 138.],\n", " [103., 136., 130., 136.],\n", " [113., 121., 127., 114.],\n", " [113., 132., 116., 135.]],\n", "\n", " [[130., 144., 146., 137.],\n", " [105., 136., 130., 136.],\n", " [114., 121., 125., 115.],\n", " [113., 131., 115., 135.]],\n", "\n", " ...,\n", "\n", " [[130., 142., 143., 126.],\n", " [121., 138., 135., 135.],\n", " [126., 119., 111., 117.],\n", " [116., 123., 108., 147.]],\n", "\n", " [[130., 141., 142., 126.],\n", " [122., 138., 136., 135.],\n", " [127., 118., 110., 117.],\n", " [116., 122., 107., 148.]],\n", "\n", " [[130., 141., 142., 126.],\n", " [123., 139., 137., 135.],\n", " [128., 117., 109., 117.],\n", " [116., 121., 107., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 130., 140., 143.],\n", " [106., 130., 140., 151.],\n", " [113., 129., 132., 115.],\n", " [126., 133., 118., 133.]],\n", "\n", " [[130., 130., 140., 142.],\n", " [108., 130., 139., 151.],\n", " [114., 130., 131., 116.],\n", " [125., 133., 118., 133.]],\n", "\n", " [[130., 129., 140., 141.],\n", " [110., 130., 139., 150.],\n", " [115., 130., 130., 116.],\n", " [125., 132., 117., 134.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 136., 133.],\n", " [128., 133., 141., 145.],\n", " [134., 130., 124., 114.],\n", " [120., 127., 112., 143.]],\n", "\n", " [[126., 125., 135., 133.],\n", " [129., 134., 142., 144.],\n", " [135., 130., 124., 113.],\n", " [119., 126., 112., 145.]],\n", "\n", " [[125., 125., 135., 134.],\n", " [130., 134., 142., 144.],\n", " [137., 129., 124., 113.],\n", " [118., 126., 112., 146.]]],\n", "\n", "\n", " [[[130., 128., 139., 144.],\n", " [107., 130., 140., 152.],\n", " [113., 130., 132., 115.],\n", " [127., 133., 118., 133.]],\n", "\n", " [[130., 128., 139., 143.],\n", " [109., 130., 140., 152.],\n", " [114., 130., 131., 116.],\n", " [127., 133., 118., 134.]],\n", "\n", " [[130., 128., 139., 141.],\n", " [111., 130., 140., 151.],\n", " [115., 131., 131., 116.],\n", " [126., 132., 117., 134.]],\n", "\n", " ...,\n", "\n", " [[126., 124., 135., 134.],\n", " [128., 133., 142., 145.],\n", " [134., 131., 125., 113.],\n", " [120., 127., 112., 144.]],\n", "\n", " [[125., 124., 135., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 131., 125., 113.],\n", " [119., 127., 112., 145.]],\n", "\n", " [[125., 124., 134., 134.],\n", " [130., 134., 143., 145.],\n", " [138., 130., 125., 112.],\n", " [119., 126., 112., 146.]]],\n", "\n", "\n", " [[[131., 127., 139., 144.],\n", " [107., 130., 141., 153.],\n", " [113., 130., 132., 115.],\n", " [128., 133., 118., 134.]],\n", "\n", " [[130., 127., 139., 143.],\n", " [109., 130., 141., 153.],\n", " [114., 131., 132., 115.],\n", " [128., 133., 118., 134.]],\n", "\n", " [[130., 127., 138., 142.],\n", " [111., 130., 141., 152.],\n", " [115., 131., 131., 116.],\n", " [127., 132., 117., 134.]],\n", "\n", " ...,\n", "\n", " [[125., 123., 134., 135.],\n", " [129., 133., 143., 146.],\n", " [135., 132., 126., 113.],\n", " [120., 128., 113., 144.]],\n", "\n", " [[125., 123., 134., 135.],\n", " [129., 134., 143., 146.],\n", " [137., 131., 126., 112.],\n", " [120., 127., 113., 145.]],\n", "\n", " [[124., 122., 133., 135.],\n", " [130., 134., 144., 145.],\n", " [138., 131., 126., 112.],\n", " [119., 127., 112., 146.]]]],\n", "\n", "\n", "\n", " [[[[130., 147., 147., 141.],\n", " [ 99., 139., 129., 134.],\n", " [112., 118., 127., 111.],\n", " [112., 132., 116., 136.]],\n", "\n", " [[130., 146., 147., 139.],\n", " [101., 139., 130., 134.],\n", " [113., 119., 126., 112.],\n", " [113., 131., 116., 136.]],\n", "\n", " [[131., 146., 147., 138.],\n", " [102., 139., 130., 134.],\n", " [113., 119., 124., 112.],\n", " [113., 131., 115., 137.]],\n", "\n", " ...,\n", "\n", " [[132., 145., 144., 127.],\n", " [118., 140., 136., 133.],\n", " [125., 116., 108., 115.],\n", " [117., 122., 107., 149.]],\n", "\n", " [[131., 145., 143., 126.],\n", " [119., 140., 137., 133.],\n", " [126., 115., 107., 115.],\n", " [117., 121., 107., 150.]],\n", "\n", " [[131., 144., 143., 126.],\n", " [120., 141., 138., 133.],\n", " [127., 114., 106., 115.],\n", " [117., 120., 106., 152.]]],\n", "\n", "\n", " [[[130., 145., 146., 141.],\n", " [100., 138., 130., 136.],\n", " [112., 119., 128., 111.],\n", " [113., 132., 117., 135.]],\n", "\n", " [[130., 145., 146., 139.],\n", " [101., 138., 130., 136.],\n", " [113., 120., 126., 112.],\n", " [114., 131., 116., 136.]],\n", "\n", " [[131., 145., 146., 138.],\n", " [103., 138., 130., 136.],\n", " [113., 120., 125., 112.],\n", " [114., 131., 115., 136.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 143., 127.],\n", " [119., 139., 136., 134.],\n", " [126., 117., 109., 115.],\n", " [117., 122., 108., 148.]],\n", "\n", " [[131., 143., 143., 127.],\n", " [120., 140., 137., 134.],\n", " [127., 116., 109., 115.],\n", " [117., 121., 107., 149.]],\n", "\n", " [[131., 143., 142., 126.],\n", " [121., 140., 138., 134.],\n", " [128., 115., 108., 115.],\n", " [118., 120., 107., 151.]]],\n", "\n", "\n", " [[[130., 144., 146., 141.],\n", " [100., 137., 131., 137.],\n", " [112., 120., 128., 112.],\n", " [114., 132., 117., 134.]],\n", "\n", " [[130., 144., 146., 139.],\n", " [102., 137., 131., 137.],\n", " [113., 121., 127., 112.],\n", " [115., 131., 116., 135.]],\n", "\n", " [[131., 144., 146., 138.],\n", " [104., 137., 131., 137.],\n", " [114., 121., 125., 113.],\n", " [115., 131., 116., 135.]],\n", "\n", " ...,\n", "\n", " [[131., 142., 143., 127.],\n", " [120., 139., 136., 135.],\n", " [126., 119., 111., 115.],\n", " [117., 122., 108., 147.]],\n", "\n", " [[131., 142., 142., 127.],\n", " [121., 139., 137., 135.],\n", " [127., 118., 110., 115.],\n", " [118., 122., 108., 149.]],\n", "\n", " [[130., 142., 142., 127.],\n", " [122., 139., 138., 134.],\n", " [129., 117., 109., 115.],\n", " [118., 121., 107., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 129., 140., 144.],\n", " [106., 131., 140., 152.],\n", " [112., 129., 132., 114.],\n", " [127., 133., 118., 133.]],\n", "\n", " [[130., 129., 140., 143.],\n", " [108., 131., 139., 152.],\n", " [113., 130., 131., 114.],\n", " [127., 132., 117., 133.]],\n", "\n", " [[130., 129., 140., 142.],\n", " [110., 131., 139., 151.],\n", " [115., 130., 130., 114.],\n", " [127., 132., 117., 133.]],\n", "\n", " ...,\n", "\n", " [[126., 126., 136., 134.],\n", " [128., 134., 142., 145.],\n", " [134., 131., 124., 112.],\n", " [121., 127., 112., 144.]],\n", "\n", " [[126., 125., 135., 134.],\n", " [129., 134., 142., 145.],\n", " [136., 130., 124., 111.],\n", " [120., 126., 111., 145.]],\n", "\n", " [[125., 125., 135., 134.],\n", " [129., 135., 143., 144.],\n", " [138., 129., 123., 111.],\n", " [120., 126., 111., 146.]]],\n", "\n", "\n", " [[[130., 128., 139., 145.],\n", " [106., 131., 141., 153.],\n", " [112., 130., 132., 114.],\n", " [128., 133., 118., 133.]],\n", "\n", " [[130., 128., 139., 144.],\n", " [108., 131., 140., 153.],\n", " [113., 130., 131., 114.],\n", " [128., 132., 117., 133.]],\n", "\n", " [[130., 128., 139., 142.],\n", " [110., 131., 140., 152.],\n", " [115., 131., 131., 114.],\n", " [128., 132., 117., 134.]],\n", "\n", " ...,\n", "\n", " [[126., 124., 135., 135.],\n", " [128., 134., 142., 146.],\n", " [135., 132., 125., 111.],\n", " [121., 127., 112., 144.]],\n", "\n", " [[125., 124., 135., 135.],\n", " [129., 134., 143., 145.],\n", " [137., 131., 125., 111.],\n", " [121., 127., 112., 145.]],\n", "\n", " [[125., 123., 134., 135.],\n", " [130., 135., 144., 145.],\n", " [138., 130., 125., 110.],\n", " [120., 126., 111., 146.]]],\n", "\n", "\n", " [[[130., 127., 139., 145.],\n", " [106., 130., 141., 154.],\n", " [112., 130., 132., 113.],\n", " [129., 133., 118., 134.]],\n", "\n", " [[130., 126., 139., 144.],\n", " [108., 130., 141., 154.],\n", " [113., 131., 132., 114.],\n", " [129., 132., 117., 134.]],\n", "\n", " [[130., 126., 139., 143.],\n", " [110., 130., 141., 153.],\n", " [115., 132., 131., 114.],\n", " [129., 132., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[125., 123., 135., 135.],\n", " [128., 134., 143., 147.],\n", " [135., 132., 126., 111.],\n", " [122., 127., 112., 144.]],\n", "\n", " [[125., 122., 134., 135.],\n", " [129., 134., 143., 146.],\n", " [137., 132., 126., 110.],\n", " [121., 127., 112., 145.]],\n", "\n", " [[124., 122., 134., 136.],\n", " [130., 135., 144., 146.],\n", " [139., 131., 126., 110.],\n", " [120., 127., 112., 146.]]]],\n", "\n", "\n", "\n", " [[[[131., 147., 147., 142.],\n", " [ 98., 140., 130., 135.],\n", " [111., 118., 127., 109.],\n", " [114., 131., 116., 136.]],\n", "\n", " [[131., 147., 147., 141.],\n", " [100., 140., 130., 135.],\n", " [112., 118., 126., 110.],\n", " [114., 131., 116., 137.]],\n", "\n", " [[131., 147., 147., 139.],\n", " [101., 140., 130., 135.],\n", " [113., 118., 124., 110.],\n", " [115., 130., 115., 137.]],\n", "\n", " ...,\n", "\n", " [[132., 145., 144., 127.],\n", " [117., 141., 137., 133.],\n", " [126., 116., 108., 113.],\n", " [119., 122., 108., 149.]],\n", "\n", " [[132., 145., 143., 127.],\n", " [118., 141., 138., 133.],\n", " [127., 115., 107., 113.],\n", " [119., 121., 107., 151.]],\n", "\n", " [[132., 145., 143., 127.],\n", " [119., 141., 139., 132.],\n", " [128., 114., 106., 113.],\n", " [119., 120., 107., 152.]]],\n", "\n", "\n", " [[[131., 146., 146., 142.],\n", " [ 99., 139., 130., 136.],\n", " [111., 119., 128., 109.],\n", " [115., 131., 117., 135.]],\n", "\n", " [[131., 146., 146., 141.],\n", " [101., 139., 130., 136.],\n", " [112., 119., 126., 110.],\n", " [115., 131., 116., 136.]],\n", "\n", " [[131., 146., 146., 139.],\n", " [102., 139., 130., 136.],\n", " [113., 119., 125., 111.],\n", " [116., 130., 115., 136.]],\n", "\n", " ...,\n", "\n", " [[132., 144., 143., 128.],\n", " [118., 140., 137., 134.],\n", " [126., 117., 109., 113.],\n", " [119., 122., 108., 148.]],\n", "\n", " [[132., 144., 143., 127.],\n", " [119., 140., 138., 133.],\n", " [127., 116., 108., 113.],\n", " [119., 121., 107., 150.]],\n", "\n", " [[131., 144., 142., 127.],\n", " [120., 141., 139., 133.],\n", " [129., 115., 107., 113.],\n", " [119., 120., 107., 151.]]],\n", "\n", "\n", " [[[131., 145., 146., 142.],\n", " [ 99., 138., 131., 138.],\n", " [111., 120., 128., 110.],\n", " [116., 131., 117., 135.]],\n", "\n", " [[131., 145., 146., 141.],\n", " [101., 138., 131., 138.],\n", " [112., 120., 126., 110.],\n", " [116., 131., 116., 135.]],\n", "\n", " [[131., 145., 146., 139.],\n", " [103., 138., 131., 137.],\n", " [113., 121., 125., 111.],\n", " [117., 130., 116., 136.]],\n", "\n", " ...,\n", "\n", " [[131., 143., 143., 128.],\n", " [119., 139., 137., 135.],\n", " [127., 118., 110., 113.],\n", " [119., 122., 108., 148.]],\n", "\n", " [[131., 143., 142., 128.],\n", " [120., 140., 138., 134.],\n", " [128., 117., 109., 113.],\n", " [119., 121., 108., 149.]],\n", "\n", " [[131., 142., 142., 128.],\n", " [121., 140., 139., 134.],\n", " [130., 116., 109., 113.],\n", " [119., 120., 107., 150.]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[130., 129., 140., 146.],\n", " [105., 131., 140., 153.],\n", " [111., 129., 132., 112.],\n", " [128., 132., 117., 133.]],\n", "\n", " [[130., 129., 140., 144.],\n", " [107., 131., 139., 153.],\n", " [112., 130., 131., 112.],\n", " [128., 132., 117., 133.]],\n", "\n", " [[130., 129., 140., 143.],\n", " [109., 131., 139., 152.],\n", " [114., 130., 130., 112.],\n", " [128., 131., 116., 133.]],\n", "\n", " ...,\n", "\n", " [[126., 125., 136., 135.],\n", " [127., 134., 142., 145.],\n", " [135., 131., 124., 110.],\n", " [122., 126., 111., 144.]],\n", "\n", " [[126., 125., 135., 135.],\n", " [128., 135., 143., 145.],\n", " [137., 130., 123., 110.],\n", " [122., 126., 111., 145.]],\n", "\n", " [[125., 125., 135., 135.],\n", " [129., 136., 143., 144.],\n", " [138., 130., 123., 109.],\n", " [121., 125., 111., 146.]]],\n", "\n", "\n", " [[[130., 128., 139., 146.],\n", " [105., 131., 140., 154.],\n", " [111., 130., 132., 112.],\n", " [129., 132., 117., 133.]],\n", "\n", " [[130., 127., 139., 145.],\n", " [107., 131., 140., 154.],\n", " [112., 130., 131., 112.],\n", " [129., 132., 117., 133.]],\n", "\n", " [[130., 127., 139., 143.],\n", " [109., 131., 140., 153.],\n", " [114., 131., 131., 112.],\n", " [129., 132., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[126., 124., 135., 135.],\n", " [127., 134., 143., 146.],\n", " [135., 132., 125., 110.],\n", " [123., 127., 111., 144.]],\n", "\n", " [[125., 123., 135., 135.],\n", " [128., 135., 143., 145.],\n", " [137., 131., 125., 109.],\n", " [122., 126., 111., 145.]],\n", "\n", " [[125., 123., 134., 135.],\n", " [129., 135., 144., 145.],\n", " [139., 130., 124., 109.],\n", " [121., 126., 111., 146.]]],\n", "\n", "\n", " [[[130., 126., 139., 146.],\n", " [105., 131., 141., 155.],\n", " [111., 130., 132., 112.],\n", " [130., 132., 117., 133.]],\n", "\n", " [[130., 126., 139., 145.],\n", " [107., 131., 141., 155.],\n", " [112., 131., 132., 112.],\n", " [130., 132., 116., 134.]],\n", "\n", " [[130., 126., 139., 144.],\n", " [109., 131., 141., 154.],\n", " [114., 132., 131., 112.],\n", " [130., 132., 116., 134.]],\n", "\n", " ...,\n", "\n", " [[125., 122., 135., 136.],\n", " [128., 134., 143., 147.],\n", " [136., 133., 126., 109.],\n", " [123., 127., 111., 144.]],\n", "\n", " [[125., 122., 134., 136.],\n", " [128., 135., 144., 146.],\n", " [138., 132., 126., 109.],\n", " [122., 127., 111., 145.]],\n", "\n", " [[124., 122., 134., 136.],\n", " [129., 135., 145., 146.],\n", " [139., 131., 125., 108.],\n", " [122., 126., 111., 146.]]]]]]))]), 'scale': 4, 'hidden_dim': 64, 'layers_count': 4, 'is_lut': True, 'quantization_interval': 16}\n", "['hidden_dim', 'layers_count', 'scale', 'is_lut', 'quantization_interval']\n" ] } ], "source": [ "SaveCheckpoint(m, \"test_lut.pth\")\n", "m = LoadCheckpoint(\"test_lut.pth\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAGHCAYAAACqD3pHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5GUlEQVR4nO3dfXRU1b3/8c8EyATTTDCxZDI1QHyEKsSgkqK2N5QsIFqEW5RiKQJasC2oQK3I75YHRRufFrUqF2oXBVTQtvciIrcXLvKUUsNjyPWhlgI3QiwEtEhCghnCzPn9ETN1IAmZmZPMnsn7tdZecs7Zs8939kr06+Z79nFYlmUJAAAAiAMJ0Q4AAAAAsAvJLQAAAOIGyS0AAADiBsktAAAA4gbJLQAAAOIGyS0AAADiBsktAAAA4gbJLQAAAOIGyS0AAADiBsktAAAA4gbJLWAIr9ermTNnyuPxqGvXrsrLy9OGDRuiHRYAADGF5BYwxIQJE7RgwQKNHTtWv/rVr9SpUyfdeuut2rZtW7RDAwAgZjgsy7KiHQTQ0e3cuVN5eXl65pln9NBDD0mS6urqdO2116p79+565513ohwhAACxgZVbwAD/8R//oU6dOmny5MmBc0lJSbr33ntVUlKiioqKKEYHAEDsILkFDLB3715dddVVcrlcQecHDBggSSorK4tCVAAAxB6SW8AAR48eVWZm5nnnG88dOXKkvUMCACAmkdwCBvj888/ldDrPO5+UlBS4DgAALozkFjBA165d5fV6zztfV1cXuA4AAC6M5BYwQGZmpo4ePXre+cZzHo+nvUMCACAmkdwCBrjuuuv0t7/9TdXV1UHnd+zYEbgOAAAujOQWMMAdd9whn8+nl156KXDO6/Vq6dKlysvLU1ZWVhSjAwAgdnSOdgAApLy8PN15552aNWuWjh8/riuuuELLly/XRx99pCVLlkQ7PAAAYgZvKAMMUVdXp9mzZ+vVV1/VZ599pn79+mn+/PkaOnRotEMDACBmkNwCAAAgblBzCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC4QXILAACAuEFyCwAAgLhBcgsAAIC40TnaAZzL7/fryJEjSklJkcPhiHY4ABA2y7J06tQpeTweJSSwlgCgZXV1dTpz5ky0wwhITExUUlJStMMImXHJ7ZEjR5SVlRXtMADANhUVFbr00kujHQYAg9XV1Sm751dUedwX7VAC3G63ysvLYy7BNS65TUlJkSRdu3yqOl3kjHi8a9KORjxGoyODa20bS5I+v+1628aqm1Bl21jMWeiYs9B1hDk7W1+nPf/zi8C/1wCgOWfOnFHlcZ/K9/SUKyX6f9NTfcqv7OsP6cyZMyS3kWosReh0kdOW5DbxK4kRj9Gos8Pevyro3MW+H5ZOF9XZNhZzFjrmLHQdZc4kUWIFoNVcKQlGJLexzLjkFgAAoKPyWX75rGhH0RBHrCK5BQAAMIRflvyKfnZrQgzhIrkFAAAwhF9+mbBmakYU4Wmzoo6FCxeqV69eSkpKUl5ennbu3NlWtwIAAIgLPssypsWqNkluf/e732nGjBmaO3euSktLlZOTo6FDh+r48eNtcTsAAIC40FiWYEKLVW2S3C5YsECTJk3SxIkT9fWvf12LFy/WRRddpN/+9rdtcTsAAABAUhvU3J45c0Z79uzRrFmzAucSEhJUUFCgkpKS8/p7vV55vd7AcXV1td0hAQAAxAS/LPkMWDVl5fZLPv30U/l8PmVkZASdz8jIUGVl5Xn9i4qKlJqaGmi8nQwAAHRU0S5FoCzBBrNmzVJVVVWgVVRURDskAACAqIj2Q2Tx8ECZ7WUJl1xyiTp16qRjx44FnT927Jjcbvd5/Z1Op5zOyN9EBgAAEOv8X7RoMyGGcNm+cpuYmKjrr79eGzduDJzz+/3auHGjBg4caPftAAAAgIA2eYnDjBkzNH78eN1www0aMGCAnnvuOdXW1mrixIltcTsAAIC44DPkgTITYghXmyS33/ve9/TJJ59ozpw5qqys1HXXXad169ad95AZAAAA/slnNbRoMyGGcLXZ63enTp2qqVOnttXwAAAAcYea28i1WXILAACA0PjlkE+OaIchvwExhIvkFgAAwBB+q6FFmwkxhMvY5PahK/5HF6V0inicQV0/sSGaBv1f+YltY0lS2ubIv1+jf7v6j7aNxZyFjjkLXUeYM98Z++YeAExXXFysZ555Rnv27NHRo0f1xhtvaOTIkYHr8+bN0+uvv66KiorA7lpPPPGE8vLyAn1OnDih+++/X2+99ZYSEhI0atQo/epXv9JXvvKVVscR9Zc4AAAAoIHvi7IEE1qoamtrlZOTo4ULFzZ5/aqrrtKLL76o9957T9u2bVOvXr00ZMgQffLJPxc7xo4dqw8++EAbNmzQ2rVrVVxcrMmTJ4cUh7ErtwAAAB1NuIllW8QRqsLCQhUWFjZ7/fvf/37Q8YIFC7RkyRK9++67Gjx4sD788EOtW7dOu3bt0g033CBJeuGFF3Trrbfq2WeflcfjaVUcrNwCAAAYwm85jGmSVF1dHdS8Xq8t3/PMmTN66aWXlJqaqpycHElSSUmJunXrFkhsJamgoEAJCQnasWNHq8cmuQUAADBEtEsRzi1LyMrKUmpqaqAVFRVF9P3Wrl2rr3zlK0pKStIvf/lLbdiwQZdccokkqbKyUt27dw/q37lzZ6WlpamysrLV96AsAQAAwBA+JchnwNqj74t/VlRUyOVyBc47nc6Ixh00aJDKysr06aef6je/+Y1Gjx6tHTt2nJfURiL6swcAAAAjuVyuoBZpcpucnKwrrrhC3/jGN7RkyRJ17txZS5YskSS53W4dP348qP/Zs2d14sQJud3uVt+D5BYAAMAQlgG1tn7LIctqn4fa/H5/oI534MCBOnnypPbs2RO4vmnTJvn9/qDtwi6EsgQAAABDxPJuCTU1NTpw4EDguLy8XGVlZUpLS1N6erqeeOIJ3X777crMzNSnn36qhQsX6u9//7vuvPNOSVKfPn00bNgwTZo0SYsXL1Z9fb2mTp2qMWPGtHqnBInkFgAAwBg+K0E+K/p/se4L4w1lu3fv1qBBgwLHM2bMkCSNHz9eixcv1l//+lctX75cn376qdLT03XjjTfqT3/6k6655prAZ1asWKGpU6dq8ODBgZc4PP/88yHFQXILAABgCL8c8htQNepX6Nltfn6+LKv5z61ateqCY6SlpWnlypUh3/vLSG4BAAAMEctlCaaI/v8aAAAAADZh5RYAAMAQ5tTchlF0awiSWwAAAEM01NxGvyTAhBjCRXILAABgCL8hbygL54EyU5DcAgAAGIKyhMiR3AIAABjCr4SY3QrMFNGfPQAAAMAmxq7cfie5Vq7kyHPvRz+53oZoGjgqk2wbS5LqhlfZNtbI5BrbxmLOQsecha4jzJnvtFd6xZahAHQQPsshnxX9h7lMiCFcxia3AAAAHY3PkAfKfDFclkByCwAAYAi/lSC/AQ+U+XmgDAAAAJFi5TZyJLcAAACG8MuMeld/tAOIQPT/1wAAAACwCSu3AAAAhjBnn9voxxAu2yMvKirSjTfeqJSUFHXv3l0jR47Uvn377L4NAABA3Gl8Q5kJLVbZHvnWrVs1ZcoUbd++XRs2bFB9fb2GDBmi2tpau28FAAAQV/xyGNNile1lCevWrQs6XrZsmbp37649e/boW9/61nn9vV6vvF5v4Li6utrukAAAAGKCKaumJsQQrjavua2qanjTT1paWpPXi4qK9Oijj7Z1GAAAAMYzZyuw6McQrjaN3O/3a9q0abr55pt17bXXNtln1qxZqqqqCrSKioq2DAkAAABxrE1XbqdMmaL3339f27Zta7aP0+mU0+lsyzAAAABigt9yyG/CPrcGxBCuNktup06dqrVr16q4uFiXXnppW90GAAAgbvgNKUuI5a3AbE9uLcvS/fffrzfeeENbtmxRdna23bcAAACIS34rQX4DHuYyIYZw2Z7cTpkyRStXrtSbb76plJQUVVZWSpJSU1PVtWtXu28HAAAQN3xyyGfANlwmxBAu25PbRYsWSZLy8/ODzi9dulQTJkyw+3YAAABxg5XbyLVJWQIAAAAQDW2+zy0AAABaxyczSgJ80Q4gArG75gwAABBnGssSTGihKi4u1vDhw+XxeORwOLR69erAtfr6es2cOVN9+/ZVcnKyPB6P7r77bh05ciRojF69esnhcAS1J598MqQ4jF25faQyV4k1XSIeJ9/1VxuiafCyu862sSRp241LbBtr2tFv2jYWcxY65ix0HWHOqk/51cuWkQB0FLH8+t3a2lrl5OTonnvu0Xe/+92ga6dPn1Zpaalmz56tnJwcffbZZ3rwwQd1++23a/fu3UF9H3vsMU2aNClwnJKSElIcxia3AAAAHY0lh/wGlCVYX8RQXV0ddL6ll28VFhaqsLCwyWupqanasGFD0LkXX3xRAwYM0OHDh9WjR4/A+ZSUFLnd7rBjj/7/GgAAAEDSP1duTWiSlJWVpdTU1EArKiqy7btWVVXJ4XCoW7duQeeffPJJpaenKzc3V88884zOnj0b0ris3AIAAKBJFRUVcrlcgePmVm1DVVdXp5kzZ+quu+4KGv+BBx5Q//79lZaWpnfeeUezZs3S0aNHtWDBglaPTXILAABgCL/lkN+KfllCYwwulyso+bRDfX29Ro8eLcuyAu9HaDRjxozAn/v166fExETdd999KioqanViTXILAABgCJ8S5DOgarStYmhMbA8dOqRNmzZdMHHOy8vT2bNn9dFHH+nqq69u1T1IbgEAAAxh2sqtnRoT2/3792vz5s1KT0+/4GfKysqUkJCg7t27t/o+JLcAAACG8CtBfgNWbsOJoaamRgcOHAgcl5eXq6ysTGlpacrMzNQdd9yh0tJSrV27Vj6fT5WVlZKktLQ0JSYmqqSkRDt27NCgQYOUkpKikpISTZ8+XT/4wQ908cUXtzoOklsAAABD+CyHfAas3IYTw+7duzVo0KDAcWP97Pjx4zVv3jytWbNGknTdddcFfW7z5s3Kz8+X0+nU66+/rnnz5snr9So7O1vTp08PqsNtDZJbAAAARCw/P1+WZTV7vaVrktS/f39t37494jhIbgEAAAwRzzW37YXkFgAAwBCWlSC/Aa/ftQyIIVwktwAAAIbwySGfAa/fNSGGcJHcAgAAGMJvmVES4G+5PNZoJLcAAACG8BtSlmBCDOGK3cgBAACAc7ByCwAAYAi/HPIbUO9qQgzhIrkFAAAwRCy/xMEUJLcAAACGoOY2csYmt9uP9VKnU86IxzlVn2RDNA2uGLfXtrEkafiIB20b6/NJJ20bizkLHXMWuo4wZ2fr6yTNsWUsAB2DX4a8xIGyBAAAAETKMqTm1jIghnDF7pozAAAAcA5WbgEAAAzhtwwpSzAghnCR3AIAABiCB8oiR3ILAABgCFZuI9fmafmTTz4ph8OhadOmtfWtAAAAYlrjSxxMaLGqTVdud+3apV//+tfq169fW94GAAAgLrByG7k2W7mtqanR2LFj9Zvf/EYXX3xxW90GAAAACGiz5HbKlCm67bbbVFBQ0GI/r9er6urqoAYAANARNa7cmtBiVZuUJbz++usqLS3Vrl27Lti3qKhIjz76aFuEAQAAEFNMSSxNiCFctq/cVlRU6MEHH9SKFSuUlHTh12vOmjVLVVVVgVZRUWF3SAAAADEh2qu1rNw2Yc+ePTp+/Lj69+8fOOfz+VRcXKwXX3xRXq9XnTp1ClxzOp1yOp12hwEAABBzLMmInQqsaAcQAduT28GDB+u9994LOjdx4kT17t1bM2fODEpsAQAAADvZntympKTo2muvDTqXnJys9PT0884DAADgn0wpCTAhhnDxhjIAAABDkNxGrl2S2y1btrTHbQAAAGIayW3k2vz1uwAAAGidaO+QEMluCcXFxRo+fLg8Ho8cDodWr14duFZfX6+ZM2eqb9++Sk5Olsfj0d13360jR44EjXHixAmNHTtWLpdL3bp107333quampqQ4iC5BQAAMIRlOYxpoaqtrVVOTo4WLlx43rXTp0+rtLRUs2fPVmlpqVatWqV9+/bp9ttvD+o3duxYffDBB9qwYYPWrl2r4uJiTZ48OaQ4jK25feiK/9FFKZHvrDCo6yc2RNOg/ys/sW0sSUrbbN/OEf929R9tG4s5Cx1zFrqOMGe+M+wOA6DjKCwsVGFhYZPXUlNTtWHDhqBzL774ogYMGKDDhw+rR48e+vDDD7Vu3Trt2rVLN9xwgyTphRde0K233qpnn31WHo+nVXGwcgsAAGAIvxzGNEmqrq4Oal6v17bvWlVVJYfDoW7dukmSSkpK1K1bt0BiK0kFBQVKSEjQjh07Wj0uyS0AAIAhol1ne27NbVZWllJTUwOtqKjIlu9ZV1enmTNn6q677pLL5ZIkVVZWqnv37kH9OnfurLS0NFVWVrZ6bGPLEgAAADqacOtd2yIOSaqoqAgkn5JseatsfX29Ro8eLcuytGjRoojHOxfJLQAAgCFM2wrM5XIFJbeRakxsDx06pE2bNgWN7Xa7dfz48aD+Z8+e1YkTJ+R2u1t9D8oSAAAADBHtHRIi2S3hQhoT2/379+vtt99Wenp60PWBAwfq5MmT2rNnT+Dcpk2b5Pf7lZeX1+r7sHILAACAiNXU1OjAgQOB4/LycpWVlSktLU2ZmZm64447VFpaqrVr18rn8wXqaNPS0pSYmKg+ffpo2LBhmjRpkhYvXqz6+npNnTpVY8aMafVOCRLJLQAAgDEsQ8oSwlm53b17twYNGhQ4njFjhiRp/PjxmjdvntasWSNJuu6664I+t3nzZuXn50uSVqxYoalTp2rw4MFKSEjQqFGj9Pzzz4cUB8ktAACAISxJlhXtKBriCFV+fr6sFoJv6VqjtLQ0rVy5Moy7/xPJLQAAgCH8csih6K/c+g2IIVwktwAAAIYwbSuwWERyCwAAYAi/5ZDDgMTShLrfcLEVGAAAAOIGK7cAAACGsCxDHigzIIZwkdwCAAAYgprbyJHcAgAAGILkNnIktwAAAIbggbLIkdwCAAAYgprbyLFbAgAAAOKGsSu330mulSs58tz70U+utyGaBo7KJNvGkqS64VW2jTUyuca2sZiz0DFnoesIc+Y77ZVesWUoAB1Ew8pt9EsCYnnl1tjkFgAAoKPhgbLIkdwCAAAYwvqiRZsJMYSL5BYAAMAQrNxGjuQWAADAFCzdRozdEgAAABA3WLkFAAAwhSFlCTIhhjC1ycrt3//+d/3gBz9Qenq6unbtqr59+2r37t1tcSsAAIC40fgSBxNarLJ95fazzz7TzTffrEGDBum///u/9dWvflX79+/XxRdfbPetAAAA4goPlEXO9uT2qaeeUlZWlpYuXRo4l52d3Wx/r9crr9cbOK6urrY7JAAAgNhgOcwoCTAhhjDZXpawZs0a3XDDDbrzzjvVvXt35ebm6je/+U2z/YuKipSamhpoWVlZdocEAAAQE6JdihAPZQm2J7f/93//p0WLFunKK6/U+vXr9eMf/1gPPPCAli9f3mT/WbNmqaqqKtAqKirsDgkAAAAdhO1lCX6/XzfccIN+8YtfSJJyc3P1/vvva/HixRo/fvx5/Z1Op5xOp91hAAAAxB72uY2Y7Su3mZmZ+vrXvx50rk+fPjp8+LDdtwIAAIgrjQ+UmdBile0rtzfffLP27dsXdO5vf/ubevbsafetAAAA4k8Mr5qawPbkdvr06brpppv0i1/8QqNHj9bOnTv10ksv6aWXXrL7VgAAAHHFlFVTE2IIl+1lCTfeeKPeeOMNvfbaa7r22ms1f/58Pffccxo7dqzdtwIAAIgvlkEtRrXJG8q+853v6L333lNdXZ0+/PBDTZo0qS1uAwAAAEMUFxdr+PDh8ng8cjgcWr16ddD1VatWaciQIUpPT5fD4VBZWdl5Y+Tn58vhcAS1H/3oRyHF0SbJLQAAAMLhMKiFpra2Vjk5OVq4cGGz12+55RY99dRTLY4zadIkHT16NNCefvrpkOKwveYWAAAAYTKlJOCLGM59c2xLW7gWFhaqsLCw2SHHjRsnSfroo49avPVFF10kt9vd+ljPYWxy+0hlrhJrukQ8Tr7rrzZE0+Bld51tY0nSthuX2DbWtKPftG0s5ix0zFnoOsKcVZ/yq5ctIwHoMAxLbs99c+zcuXM1b968Nr31ihUr9Oqrr8rtdmv48OGaPXu2LrroolZ/3tjkFgAAoMOxHA0t2r6IoaKiQi6XK3C6rV+89f3vf189e/aUx+PRu+++q5kzZ2rfvn1atWpVq8cguQUAADCEZTW0aGuMweVyBSW3bW3y5MmBP/ft21eZmZkaPHiwDh48qMsvv7xVY/BAGQAAAIyUl5cnSTpw4ECrP8PKLQAAgCkMq7mNtsbtwjIzM1v9GZJbAAAAUxhWcxuKmpqaoBXW8vJylZWVKS0tTT169NCJEyd0+PBhHTlyRJK0b98+SZLb7Zbb7dbBgwe1cuVK3XrrrUpPT9e7776r6dOn61vf+pb69evX6jgoSwAAADCEwzKnhWr37t3Kzc1Vbm6uJGnGjBnKzc3VnDlzJElr1qxRbm6ubrvtNknSmDFjlJubq8WLF0uSEhMT9fbbb2vIkCHq3bu3fvrTn2rUqFF66623QoqDlVsAAABTxHBZQn5+vqwWnoabMGGCJkyY0Oz1rKwsbd26NfQbn4PkFgAAwBQxXJZgCsoSAAAAEDdYuQUAADBFDJclmILkFgAAwBQktxEjuQUAADAFyW3ESG4BAABMwQNlESO5BQAAMES4e8y2RRyxit0SAAAAEDdYuQUAADAFNbcRY+UWAAAAcYOVWwAAAEM4ZEa9a+w+TmZwcrv9WC91OuWMeJxT9Uk2RNPginF7bRtLkoaPeNC2sT6fdNK2sZiz0DFnoesIc3a2vk7SHFvGAtBBsFtCxIxNbgEAADocam4jRs0tAAAA4gYrtwAAAKZg5TZiJLcAAACG4CUOkSO5BQAAMAUrtxGzvebW5/Np9uzZys7OVteuXXX55Zdr/vz5sqwYniUAAID2YBnUYpTtK7dPPfWUFi1apOXLl+uaa67R7t27NXHiRKWmpuqBBx6w+3YAAABxg7KEyNme3L7zzjsaMWKEbrvtNklSr1699Nprr2nnzp123woAAAAIYntZwk033aSNGzfqb3/7myTpf//3f7Vt2zYVFhY22d/r9aq6ujqoAQAAdEiNL3EwocUo21duH3nkEVVXV6t3797q1KmTfD6fnnjiCY0dO7bJ/kVFRXr00UftDgMAACD2mFLvakIMYbJ95fb3v/+9VqxYoZUrV6q0tFTLly/Xs88+q+XLlzfZf9asWaqqqgq0iooKu0MCAACICY01tya0WGX7yu3PfvYzPfLIIxozZowkqW/fvjp06JCKioo0fvz48/o7nU45nU67wwAAAIg9rNxGzPaV29OnTyshIXjYTp06ye/3230rAAAAIIjtK7fDhw/XE088oR49euiaa67R3r17tWDBAt1zzz123woAACC+mFISYEIMYbJ95faFF17QHXfcoZ/85Cfq06ePHnroId13332aP3++3bcCAACIL9F+cUMEL3EoLi7W8OHD5fF45HA4tHr16qDrq1at0pAhQ5Seni6Hw6GysrLzxqirq9OUKVOUnp6ur3zlKxo1apSOHTsWUhy2J7cpKSl67rnndOjQIX3++ec6ePCgHn/8cSUmJtp9KwAAgPgS7YQ2guS2trZWOTk5WrhwYbPXb7nlFj311FPNjjF9+nS99dZb+sMf/qCtW7fqyJEj+u53vxtSHLaXJQAAACA8puxUEE4MhYWFzb7XQJLGjRsnSfroo4+avF5VVaUlS5Zo5cqV+va3vy1JWrp0qfr06aPt27frG9/4RqvisH3lFgAAAPHh3Bdteb3eNrvXnj17VF9fr4KCgsC53r17q0ePHiopKWn1OMau3D50xf/oopROEY8zqOsnNkTToP8rP7FtLElK2xz592v0b1f/0baxmLPQMWeh6whz5jtj39wDQDRkZWUFHc+dO1fz5s1rk3tVVlYqMTFR3bp1CzqfkZGhysrKVo9jbHILAADQ4Ri2z21FRYVcLlfgdCy8m4DkFgAAwBCm1dy6XK6g5LYtud1unTlzRidPngxavT127Jjcbnerx6HmFgAAwCTR3iUhSsn19ddfry5dumjjxo2Bc/v27dPhw4c1cODAVo/Dyi0AAIApDCtLCEVNTY0OHDgQOC4vL1dZWZnS0tLUo0cPnThxQocPH9aRI0ckNSSuUsOKrdvtVmpqqu69917NmDFDaWlpcrlcuv/++zVw4MBW75QgkdwCAAAYw7SyhFDs3r1bgwYNChzPmDFDkjR+/HgtW7ZMa9as0cSJEwPXx4wZIyn4IbVf/vKXSkhI0KhRo+T1ejV06FD9+7//e0hxkNwCAAAgYvn5+bKs5rPiCRMmaMKECS2OkZSUpIULFzb7IojWILkFAAAwRQyXJZiC5BYAAMAQsVyWYAqSWwAAAFOwchsxklsAAABTkNxGjOQWAADAEJQlRI6XOAAAACBusHILAABgCsoSIkZyCwAAYAqS24iR3AIAABiCmtvIkdwCAACYgpXbiJHcAgAAGIKV28ixWwIAAADihrErt99JrpUrOfLc+9FPrrchmgaOyiTbxpKkuuFVto01MrnGtrGYs9AxZ6HrCHPmO+2VXrFlKAAdBWUJETM2uQUAAOhwSG4jRnILAABgCMcXLdpMiCFcJLcAAACmYOU2YiS3AAAAhmC3hMixWwIAAADiBiu3AAAApqAsIWIhr9wWFxdr+PDh8ng8cjgcWr16ddB1y7I0Z84cZWZmqmvXriooKND+/fvtihcAACC+WQa0GBZycltbW6ucnBwtXLiwyetPP/20nn/+eS1evFg7duxQcnKyhg4dqrq6uoiDBQAAiGeNNbcmtFgVcllCYWGhCgsLm7xmWZaee+45/fznP9eIESMkSS+//LIyMjK0evVqjRkz5rzPeL1eeb3ewHF1dXWoIQEAAMQHU1ZOTYghTLY+UFZeXq7KykoVFBQEzqWmpiovL08lJSVNfqaoqEipqamBlpWVZWdIAAAAMSPaq7XxsHJra3JbWVkpScrIyAg6n5GREbh2rlmzZqmqqirQKioq7AwJAAAAHUjUd0twOp1yOp3RDgMAACD6KEuImK0rt263W5J07NixoPPHjh0LXAMAAEDTol2KQFnCObKzs+V2u7Vx48bAuerqau3YsUMDBw6081YAAADxJ9ItvOxsMSrk5LampkZlZWUqKyuT1PAQWVlZmQ4fPiyHw6Fp06bp8ccf15o1a/Tee+/p7rvvlsfj0ciRI20OHQAAIM5EO6GNILm1410IvXr1ksPhCGpPPvlkSHGEnNzu3r1bubm5ys3NlSTNmDFDubm5mjNnjiTp4Ycf1v3336/JkyfrxhtvVE1NjdatW6ekpKRQbwUAANChRLsUIZKyBLvehfDYY4/p6NGjgXb//feHFEfID5Tl5+fLspr/xg6HQ4899pgee+yxUIcGAABAjLLrXQgpKSkRPatla80tAAAAIhDtUoRzyhKqq6uD2pdfvBWKUN6F8OSTTyo9PV25ubl65plndPbs2ZDuFfWtwAAAANDAYVlytPA35O0Zh6TzXq41d+5czZs3L+TxWvsuhAceeED9+/dXWlqa3nnnHc2aNUtHjx7VggULWn0vY5PbRypzlVjTJeJx8l1/tSGaBi+76y7cKQTbblxi21jTjn7TtrGYs9AxZ6HrCHNWfcqvXraMBKDDMGWngi9iqKiokMvlCpxu63cTzJgxI/Dnfv36KTExUffdd5+KiopafW/KEgAAAAwR7YfIzn2gzOVyBbVwk9tw34WQl5ens2fP6qOPPmr1vUhuAQAATBHtOttzam7tEu67EMrKypSQkKDu3bu3+l7GliUAAAAgdtTU1OjAgQOB48Z3IaSlpalHjx6BdyFceeWVys7O1uzZs4PehVBSUqIdO3Zo0KBBSklJUUlJiaZPn64f/OAHuvjii1sdB8ktAACAIUx59W04MezevVuDBg0KHDfWz44fP17Lli3Tww8/rNraWk2ePFknT57ULbfcEvQuBKfTqddff13z5s2T1+tVdna2pk+fHlSH2xoktwAAAKYw7IGyUET6LoT+/ftr+/btod/4HCS3AAAAhojllVtTkNwCAACYIoZXbk1BcgsAAGCQWF41NQFbgQEAACBusHILAABgCstqaNFmQgxhIrkFAAAwBA+URY7kFgAAwBQ8UBYxklsAAABDOPwNLdpMiCFcJLcAAACmYOU2YuyWAAAAgLjByi0AAIAheKAsciS3AAAApmArsIiR3AIAABiCldvIGZvcbj/WS51OOSMe51R9kg3RNLhi3F7bxpKk4SMetG2szyedtG0s5ix0zFnoOsKcna2vkzTHlrEAdBA8UBYxY5NbAACAjoaV28ixWwIAAADiBiu3AAAApuCBsoiR3AIAABiCsoTIkdwCAACYggfKIhZyzW1xcbGGDx8uj8cjh8Oh1atXB67V19dr5syZ6tu3r5KTk+XxeHT33XfryJEjdsYMAAAQlxpXbk1osSrk5La2tlY5OTlauHDheddOnz6t0tJSzZ49W6WlpVq1apX27dun22+/3ZZgAQAA4prfMqfFqJDLEgoLC1VYWNjktdTUVG3YsCHo3IsvvqgBAwbo8OHD6tGjR3hRAgAAAK3Q5jW3VVVVcjgc6tatW5PXvV6vvF5v4Li6urqtQwIAADATNbcRa9N9buvq6jRz5kzdddddcrlcTfYpKipSampqoGVlZbVlSAAAAMZyKPq1tg6rIY5Y1WbJbX19vUaPHi3LsrRo0aJm+82aNUtVVVWBVlFR0VYhAQAAmK1xn1sTWoxqk7KExsT20KFD2rRpU7OrtpLkdDrldDrbIgwAAICYYspOBSbEEC7bV24bE9v9+/fr7bffVnp6ut23AAAAgGFa2i5WkizL0pw5c5SZmamuXbuqoKBA+/fvD+pz4sQJjR07Vi6XS926ddO9996rmpqakOIIObmtqalRWVmZysrKJEnl5eUqKyvT4cOHVV9frzvuuEO7d+/WihUr5PP5VFlZqcrKSp05cybUWwEAAHQslkEtRC1tFytJTz/9tJ5//nktXrxYO3bsUHJysoYOHaq6urpAn7Fjx+qDDz7Qhg0btHbtWhUXF2vy5MkhxRFyWcLu3bs1aNCgwPGMGTMkSePHj9e8efO0Zs0aSdJ1110X9LnNmzcrPz8/1NsBAAB0GA7LksOAetdwYmhpu1jLsvTcc8/p5z//uUaMGCFJevnll5WRkaHVq1drzJgx+vDDD7Vu3Trt2rVLN9xwgyTphRde0K233qpnn31WHo+nVXGEnNzm5+fLauELt3QNAAAALfB/0aLtixjO3aI13GelysvLVVlZqYKCgsC51NRU5eXlqaSkRGPGjFFJSYm6desWSGwlqaCgQAkJCdqxY4f+9V//tVX3atOtwAAAANB6jSu3JjRJysrKCtqytaioKKzvVVlZKUnKyMgIOp+RkRG4VllZqe7duwdd79y5s9LS0gJ9WqPNX+IAAACAVjLsJQ4VFRVBu17Fwg5Xxia3D13xP7oopVPE4wzq+okN0TTo/8pPbBtLktI2R/79Gv3b1X+0bSzmLHTMWeg6wpz5ztg39wAQDS6Xq8UtXVvL7XZLko4dO6bMzMzA+WPHjgWe03K73Tp+/HjQ586ePasTJ04EPt8alCUAAACYItovbmijlzhkZ2fL7XZr48aNgXPV1dXasWOHBg4cKEkaOHCgTp48qT179gT6bNq0SX6/X3l5ea2+l7ErtwAAAB1NLL/EoaamRgcOHAgcN24Xm5aWph49emjatGl6/PHHdeWVVyo7O1uzZ8+Wx+PRyJEjJUl9+vTRsGHDNGnSJC1evFj19fWaOnWqxowZ0+qdEiSSWwAAAHOY8urbMGJoabvYZcuW6eGHH1Ztba0mT56skydP6pZbbtG6deuUlJQU+MyKFSs0depUDR48WAkJCRo1apSef/75kOIguQUAADCEw9/Qoi2cGC60XazD4dBjjz2mxx57rNk+aWlpWrlyZeg3/xKSWwAAAFPE8MqtKXigDAAAAHGDlVsAAABTGLbPbSwiuQUAADDEl98OFu04YhXJLQAAgCmouY0YyS0AAIApLEkG7JZAWQIAAAAiRllC5NgtAQAAAHGDlVsAAABTWDKj3tWAEMJFcgsAAGAKHiiLGMktAACAKfySHNEOQmY81BYmklsAAABD8EBZ5EhuAQAATEFZQsTYLQEAAABxw9iV2+8k18qVHHnu/egn19sQTQNHZZJtY0lS3fAq28YamVxj21jMWeiYs9B1hDnznfZKr9gyFICOgpXbiBmb3AIAAHQ4JLcRI7kFAAAwBbslRIzkFgAAwBDslhA5klsAAABTUJYQMXZLAAAAQNxg5RYAAMAUfktyGLBq6jcghjCFvHJbXFys4cOHy+PxyOFwaPXq1c32/dGPfiSHw6HnnnsughABAAA6iMayBBNajAo5ua2trVVOTo4WLlzYYr833nhD27dvl8fjCTs4AACAjsWApNayGuKIUSGXJRQWFqqwsLDFPn//+991//33a/369brtttta7Ov1euX1egPH1dXVoYYEAAAQH0xZNTUhhjDZ/kCZ3+/XuHHj9LOf/UzXXHPNBfsXFRUpNTU10LKysuwOCQAAIDb4LXNajLI9uX3qqafUuXNnPfDAA63qP2vWLFVVVQVaRUWF3SEBAACgg7B1t4Q9e/boV7/6lUpLS+VwtO71Gk6nU06n084wAAAAYpPlb2jRZkIMYbJ15fZPf/qTjh8/rh49eqhz587q3LmzDh06pJ/+9Kfq1auXnbcCAACIP9F+kCyC3RJOnTqladOmqWfPnuratatuuukm7dq1K3B9woQJcjgcQW3YsGF2zp4km1dux40bp4KCgqBzQ4cO1bhx4zRx4kQ7bwUAABB//IbsVBBGze0Pf/hDvf/++3rllVfk8Xj06quvqqCgQH/5y1/0ta99TZI0bNgwLV26NPCZtvjb+5CT25qaGh04cCBwXF5errKyMqWlpalHjx5KT08P6t+lSxe53W5dffXVkUcLAAAQz2J0t4TPP/9c//mf/6k333xT3/rWtyRJ8+bN01tvvaVFixbp8ccfl9SQzLrdbtvD/bKQk9vdu3dr0KBBgeMZM2ZIksaPH69ly5bZFhgAAECHY8mQ5LbhH+du0drcs1Jnz56Vz+dTUlJS0PmuXbtq27ZtgeMtW7aoe/fuuvjii/Xtb39bjz/++HkLo5EKObnNz8+XFcKkf/TRR6HeAgAAAAY4d4vWuXPnat68eef1S0lJ0cCBAzV//nz16dNHGRkZeu2111RSUqIrrrhCUkNJwne/+11lZ2fr4MGD+n//7/+psLBQJSUl6tSpk20x21pzCwAAgAgYVpZQUVEhl8sVON1Sjewrr7yie+65R1/72tfUqVMn9e/fX3fddZf27NkjSRozZkygb9++fdWvXz9dfvnl2rJliwYPHmxb6LbvcwsAAIAw+f3mNEkulyuotZTcXn755dq6datqampUUVGhnTt3qr6+XpdddlmT/S+77DJdcsklQc9y2cHYldtHKnOVWNMl4nHyXX+1IZoGL7vrbBtLkrbduMS2saYd/aZtYzFnoWPOQtcR5qz6lF+9bBkJQIdh2MptOJKTk5WcnKzPPvtM69ev19NPP91kv48//lj/+Mc/lJmZGfa9mmJscgsAANDhxHByu379elmWpauvvloHDhzQz372M/Xu3VsTJ05UTU2NHn30UY0aNUput1sHDx7Uww8/rCuuuEJDhw61NXSSWwAAAFPE8D63VVVVmjVrlj7++GOlpaVp1KhReuKJJ9SlSxedPXtW7777rpYvX66TJ0/K4/FoyJAhmj9/vu173ZLcAgAAIGKjR4/W6NGjm7zWtWtXrV+/vl3iILkFAAAwhGX5ZVn+aIdhRAzhIrkFAAAwhWWFVRLQJnHEKJJbAAAAU1iG1NyS3AIAACBifr/kMKAkgLIEAAAARIyV24jxhjIAAADEDVZuAQAADGH5/bIMKEtgtwQAAABEjrKEiJHcAgAAmMJvSQ4DEkuSWwAAAETMsiQZUBJAcgsAAIBIWX5LlgErt1YMJ7fslgAAAIC4wcotAACAKSy/zChLMCCGMJHcAgAAGIKyhMgZl9w2TuaZ2npbxjvt8NkyjiT5T9fZNpYkVZ+y7/+KztTYM18ScxYO5ix0HWHOTtU0jBPL/5EA0L7OWl4jVk3Pyr5/37c3h2XYv3U//vhjZWVlRTsMALBNRUWFLr300miHAcBgdXV1ys7OVmVlZbRDCXC73SovL1dSUlK0QwmJccmt3+/XkSNHlJKSIofD0Wy/6upqZWVlqaKiQi6Xqx0jtAfxRxfxR1+sf4fWxG9Zlk6dOiWPx6OEBJ7fBdCyuro6nTlzJtphBCQmJsZcYisZWJaQkJAQ0gqHy+WKyf8wNiL+6CL+6Iv173Ch+FNTU9sxGgCxLCkpKSaTSdOwlAAAAIC4QXILAACAuBGzya3T6dTcuXPldDqjHUpYiD+6iD/6Yv07xHr8ABCvjHugDAAAAAhXzK7cAgAAAOciuQUAAEDcILkFAABA3CC5BQAAQNwguQUAAEDcMDq5XbhwoXr16qWkpCTl5eVp586dLfb/wx/+oN69eyspKUl9+/bVH//4x3aKNFhRUZFuvPFGpaSkqHv37ho5cqT27dvX4meWLVsmh8MR1KL1lpJ58+adF0vv3r1b/Iwpc9+oV69e530Hh8OhKVOmNNk/2vNfXFys4cOHy+PxyOFwaPXq1UHXLcvSnDlzlJmZqa5du6qgoED79++/4Lih/g61Rfz19fWaOXOm+vbtq+TkZHk8Ht199906cuRIi2OG83PYFvFL0oQJE86LZdiwYRcct73mHwDwT8Ymt7/73e80Y8YMzZ07V6WlpcrJydHQoUN1/PjxJvu/8847uuuuu3Tvvfdq7969GjlypEaOHKn333+/nSOXtm7dqilTpmj79u3asGGD6uvrNWTIENXW1rb4OZfLpaNHjwbaoUOH2ini811zzTVBsWzbtq3ZvibNfaNdu3YFxb9hwwZJ0p133tnsZ6I5/7W1tcrJydHChQubvP7000/r+eef1+LFi7Vjxw4lJydr6NChqqura3bMUH+H2ir+06dPq7S0VLNnz1ZpaalWrVqlffv26fbbb7/guKH8HEbiQvMvScOGDQuK5bXXXmtxzPacfwDAl1iGGjBggDVlypTAsc/nszwej1VUVNRk/9GjR1u33XZb0Lm8vDzrvvvua9M4W+P48eOWJGvr1q3N9lm6dKmVmprafkG1YO7cuVZOTk6r+5s8940efPBB6/LLL7f8fn+T102af0nWG2+8ETj2+/2W2+22nnnmmcC5kydPWk6n03rttdeaHSfU3yG7nBt/U3bu3GlJsg4dOtRsn1B/Du3SVPzjx4+3RowYEdI40Zp/AOjojFy5PXPmjPbs2aOCgoLAuYSEBBUUFKikpKTJz5SUlAT1l6ShQ4c22789VVVVSZLS0tJa7FdTU6OePXsqKytLI0aM0AcffNAe4TVp//798ng8uuyyyzR27FgdPny42b4mz73U8PP06quv6p577pHD4Wi2n0nz/2Xl5eWqrKwMmuPU1FTl5eU1O8fh/A61p6qqKjkcDnXr1q3FfqH8HLa1LVu2qHv37rr66qv14x//WP/4xz+a7Wv6/ANAPDMyuf3000/l8/mUkZERdD4jI0OVlZVNfqaysjKk/u3F7/dr2rRpuvnmm3Xttdc22+/qq6/Wb3/7W7355pt69dVX5ff7ddNNN+njjz9ux2gb5OXladmyZVq3bp0WLVqk8vJyffOb39SpU6ea7G/q3DdavXq1Tp48qQkTJjTbx6T5P1fjPIYyx+H8DrWXuro6zZw5U3fddZdcLlez/UL9OWxLw4YN08svv6yNGzfqqaee0tatW1VYWCifz9dkf5PnHwDiXedoBxDvpkyZovfff/+CtYIDBw7UwIEDA8c33XST+vTpo1//+teaP39+W4cZpLCwMPDnfv36KS8vTz179tTvf/973Xvvve0aix2WLFmiwsJCeTyeZvuYNP/xrL6+XqNHj5ZlWVq0aFGLfU36ORwzZkzgz3379lW/fv10+eWXa8uWLRo8eHC7xgIAaJmRK7eXXHKJOnXqpGPHjgWdP3bsmNxud5OfcbvdIfVvD1OnTtXatWu1efNmXXrppSF9tkuXLsrNzdWBAwfaKLrW69atm6666qpmYzFx7hsdOnRIb7/9tn74wx+G9DmT5r9xHkOZ43B+h9paY2J76NAhbdiwocVV26Zc6OewPV122WW65JJLmo3FxPkHgI7CyOQ2MTFR119/vTZu3Bg45/f7tXHjxqDVtS8bOHBgUH9J2rBhQ7P925JlWZo6dareeOMNbdq0SdnZ2SGP4fP59N577ykzM7MNIgxNTU2NDh482GwsJs39uZYuXaru3bvrtttuC+lzJs1/dna23G530BxXV1drx44dzc5xOL9Dbakxsd2/f7/efvttpaenhzzGhX4O29PHH3+sf/zjH83GYtr8A0CHEu0n2prz+uuvW06n01q2bJn1l7/8xZo8ebLVrVs3q7Ky0rIsyxo3bpz1yCOPBPr/+c9/tjp37mw9++yz1ocffmjNnTvX6tKli/Xee++1e+w//vGPrdTUVGvLli3W0aNHA+306dOBPufG/+ijj1rr16+3Dh48aO3Zs8caM2aMlZSUZH3wwQftHv9Pf/pTa8uWLVZ5ebn15z//2SooKLAuueQS6/jx403GbtLcf5nP57N69OhhzZw587xrps3/qVOnrL1791p79+61JFkLFiyw9u7dG9hN4Mknn7S6detmvfnmm9a7775rjRgxwsrOzrY+//zzwBjf/va3rRdeeCFwfKHfofaK/8yZM9btt99uXXrppVZZWVnQ74TX6202/gv9HLZX/KdOnbIeeughq6SkxCovL7fefvttq3///taVV15p1dXVNRt/e84/AOCfjE1uLcuyXnjhBatHjx5WYmKiNWDAAGv79u2Ba//yL/9ijR8/Pqj/73//e+uqq66yEhMTrWuuucb6r//6r3aOuIGkJtvSpUsDfc6Nf9q0aYHvmpGRYd16661WaWlp+wdvWdb3vvc9KzMz00pMTLS+9rWvWd/73vesAwcOBK6bPPdftn79ekuStW/fvvOumTb/mzdvbvJnpjFGv99vzZ4928rIyLCcTqc1ePDg875Xz549rblz5wada+l3qL3iLy8vb/Z3YvPmzc3Gf6Gfw/aK//Tp09aQIUOsr371q1aXLl2snj17WpMmTTovSY3m/AMA/slhWZbVDgvEAAAAQJszsuYWAAAACAfJLQAAAOIGyS0AAADiBsktAAAA4gbJLQAAAOIGyS0AAADiBsktAAAA4gbJLQAAAOIGyS0AAADiBsktAAAA4gbJLQAAAOLG/weV8YKm10rQMwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "imshow(m(torch.zeros((1,1,4,4))))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from common.layers import UpscaleBlock" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "UpscaleBlock(\n", " (embed): Linear(in_features=4, out_features=32, bias=True)\n", " (linear_projections): ModuleList(\n", " (0): Linear(in_features=32, out_features=32, bias=True)\n", " (1): Linear(in_features=64, out_features=32, bias=True)\n", " (2): Linear(in_features=96, out_features=32, bias=True)\n", " (3): Linear(in_features=128, out_features=32, bias=True)\n", " )\n", " (project_channels): Linear(in_features=160, out_features=1, bias=True)\n", ")" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bb = UpscaleBlock()\n", "bb" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " UpscaleBlock 83521/83521 \n" ] }, { "data": { "text/plain": [ "UpscaleBlockLUT (\n", " lut: torch.Size([17, 17, 17, 17, 1, 1])\n", ")" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bb.quantize()\n", "bb" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "UpscaleBlockLUT (\n", " lut: torch.Size([17, 17, 17, 17, 1, 1])\n", ")" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bb.quantize()\n", "bb" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'bb' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m/wd/lut_reproduce/explore.ipynb Cell 8\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> 1\u001b[0m bb(torch\u001b[39m.\u001b[39mzeros((\u001b[39m1\u001b[39m,\u001b[39m1\u001b[39m,\u001b[39m4\u001b[39m)))\n", "\u001b[0;31mNameError\u001b[0m: name 'bb' is not defined" ] } ], "source": [ "bb(torch.zeros((1,1,4)))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "83521" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "np.prod(bb.lut.shape[:4])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[' lut torch.Size([17, 17, 17, 17, 1, 1])']" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "isinstance(bb.lut, torch.nn.Parameter)\n", "[f\" {name} {param.shape}\" for name, param in bb.state_dict().items() if 'lut' in name]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(43.49568901720914, 38.837762584624734, 38.445220463904704)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from PIL import Image\n", "import numpy as np\n", "\n", "def PSNR(y_true, y_pred, shave_border=4):\n", " target_data = np.array(y_true, dtype=np.float32)\n", " ref_data = np.array(y_pred, dtype=np.float32)\n", "\n", " diff = ref_data - target_data\n", " if shave_border > 0:\n", " diff = diff[shave_border:-shave_border, shave_border:-shave_border]\n", " rmse = np.sqrt(np.mean(np.power(diff, 2)))\n", "\n", " return 20 * np.log10(255. / rmse)\n", "\n", "def _rgb2ycbcr(img, maxVal=255):\n", " O = np.array([[16],\n", " [128],\n", " [128]])\n", " T = np.array([[0.256788235294118, 0.504129411764706, 0.097905882352941],\n", " [-0.148223529411765, -0.290992156862745, 0.439215686274510],\n", " [0.439215686274510, -0.367788235294118, -0.071427450980392]])\n", "\n", " if maxVal == 1:\n", " O = O / 255.0\n", "\n", " t = np.reshape(img, (img.shape[0] * img.shape[1], img.shape[2]))\n", " t = np.dot(t, np.transpose(T))\n", " t[:, 0] += O[0]\n", " t[:, 1] += O[1]\n", " t[:, 2] += O[2]\n", " ycbcr = np.reshape(t, [img.shape[0], img.shape[1], img.shape[2]])\n", "\n", " return ycbcr\n", "\n", "image = np.array(Image.open(\"./data/Set14/HR/monarch.png\"))\n", "np.random.seed(2)\n", "noise = np.random.randint(-5,5,size=image.shape)\n", "\n", "def with_noise(image, noise):\n", " return (image + noise).clip(0,255).astype(np.uint8)\n", "\n", "a = _rgb2ycbcr(image)[:,:,0]\n", "b = _rgb2ycbcr(with_noise(image, noise))[:,:,0]\n", "\n", "image = np.array(Image.open(\"./data/Set14/HR/monarch.png\").convert(\"YCbCr\").getchannel(0))\n", "c = image\n", "d = with_noise(image, noise[:,:,0])\n", "\n", "image = np.array(Image.open(\"./data/Set14/HR/monarch.png\"))\n", "y = _rgb2ycbcr(image)[:,:,0]\n", "e = y\n", "f = with_noise(y, noise[:,:,0])\n", "\n", "noise_before_rgb2y = PSNR(a, b)\n", "noise_after_pil_rgb2y = PSNR(c, d)\n", "noise_after_mutlut_rgb2y = PSNR(e, f)\n", "\n", "# 43.49568901720914, 38.837762584624734, 38.445220463904704\n", "noise_before_rgb2y, noise_after_pil_rgb2y, noise_after_mutlut_rgb2y" ] }, { "cell_type": "code", "execution_count": 219, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(870912, 290304)" ] }, "execution_count": 219, "metadata": {}, "output_type": "execute_result" } ], "source": [ "217728*2*2, 3*1*126*192*2*2" ] }, { "cell_type": "code", "execution_count": 220, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'torch' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m/wd/lut_reproduce/explore.ipynb Cell 4\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> 1\u001b[0m torch\u001b[39m.\u001b[39marange(start\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m, end\u001b[39m=\u001b[39m\u001b[39m256\u001b[39m, step\u001b[39m=\u001b[39m\u001b[39m16\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'torch' is not defined" ] } ], "source": [ "torch.arange(start=0, end=256, step=16)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((tensor([[[[ 0., 16., 32., 48.],\n", " [ 64., 80., 96., 112.],\n", " [128., 144., 160., 176.],\n", " [192., 208., 224., 240.]]]]),\n", " tensor([[[[ 0., 1., 2., 3.],\n", " [ 4., 5., 6., 7.],\n", " [ 8., 9., 10., 11.],\n", " [12., 13., 14., 15.]]]])),\n", " (tensor([[[[ 0., 16., 32., 48.],\n", " [ 64., 80., 96., 112.],\n", " [128., 144., 160., 176.],\n", " [192., 208., 224., 240.]]]]),\n", " tensor([[[[ 0., 1., 2., 3.],\n", " [ 4., 5., 6., 7.],\n", " [ 8., 9., 10., 11.],\n", " [12., 13., 14., 15.]]]])))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "import torch.nn.functional as F\n", "n = 4\n", "a = (torch.arange(n**2) + torch.arange(start=0, end=16**2, step=16)).view(1,1,n,n).type(torch.float32)\n", "\n", "def bit_plane_slicing(x, bit_mask='11110000'):\n", " m = int(bit_mask, 2)\n", " masks = [m, 255-m]\n", " msb = (x.type(torch.LongTensor) & m).type(torch.FloatTensor).to(x.device)\n", " lsb = (x.type(torch.LongTensor) & (255-m)).type(torch.FloatTensor).to(x.device)\n", " return msb, lsb\n", "\n", "def bit_plane_slicing2(x):\n", " lsb = a % 16\n", " msb = a - lsb\n", " return msb, lsb\n", "\n", "bit_plane_slicing(a), bit_plane_slicing2(a)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n = 4000\n", "a = (torch.arange(n**2) + torch.arange(start=0, end=16**2, step=16)).view(1,1,n,n).type(torch.float32)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "36.3 µs ± 1.53 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" ] } ], "source": [ "%%timeit\n", "bit_plane_slicing(a)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "11 µs ± 242 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n" ] } ], "source": [ "%%timeit\n", "bit_plane_slicing2(a)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[[[ 0., 16., 32., 48.],\n", " [ 64., 80., 96., 112.],\n", " [128., 144., 160., 176.],\n", " [192., 208., 224., 240.]]]]),\n", " tensor([[[[ 0., 1., 2., 3.],\n", " [ 4., 5., 6., 7.],\n", " [ 8., 9., 10., 11.],\n", " [12., 13., 14., 15.]]]]))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lsb = a % 16\n", "msb = a - lsb\n", "msb, lsb" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SDYLutR90x2\n", " stage1_S size: torch.Size([17, 17, 17, 17, 1, 1])\n", " stage1_D size: torch.Size([17, 17, 17, 17, 1, 1])\n", " stage1_Y size: torch.Size([17, 17, 17, 17, 1, 1])\n", " stage2_S size: torch.Size([17, 17, 17, 17, 4, 4])\n", " stage2_D size: torch.Size([17, 17, 17, 17, 4, 4])\n", " stage2_Y size: torch.Size([17, 17, 17, 17, 4, 4])" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# sys.path.insert(0, \"/wd/luts/src/\")\n", "import numpy as np\n", "from models import SaveCheckpoint\n", "from models.sdylut import SDYLutR90x2\n", "from pathlib import Path\n", "path1s = Path(\"/wd/MuLUT/models/sr_x2sdy/LUT_ft_x4_4bit_int8_s1_s.npy\")\n", "path1d = Path(\"/wd/MuLUT/models/sr_x2sdy/LUT_ft_x4_4bit_int8_s1_d.npy\")\n", "path1y = Path(\"/wd/MuLUT/models/sr_x2sdy/LUT_ft_x4_4bit_int8_s1_y.npy\")\n", "path2s = Path(\"/wd/MuLUT/models/sr_x2sdy/LUT_ft_x4_4bit_int8_s2_s.npy\")\n", "path2d = Path(\"/wd/MuLUT/models/sr_x2sdy/LUT_ft_x4_4bit_int8_s2_d.npy\")\n", "path2y = Path(\"/wd/MuLUT/models/sr_x2sdy/LUT_ft_x4_4bit_int8_s2_y.npy\")\n", "lut1s = np.load(path1s).reshape(17,17,17,17,1,1).astype(np.int8) \n", "lut1s = np.flip(lut1s, axis=[0,2]).copy()\n", "lut1d = np.load(path1d).reshape(17,17,17,17,1,1).astype(np.int8) \n", "lut1d = np.flip(lut1d, axis=[0,2]).copy()\n", "lut1y = np.load(path1y).reshape(17,17,17,17,1,1).astype(np.int8) \n", "lut1y = np.flip(lut1y, axis=[0,2]).copy()\n", "lut2s = np.load(path2s).reshape(17,17,17,17,4,4).astype(np.int8) \n", "lut2s = np.flip(lut2s, axis=[0,2]).copy()\n", "lut2d = np.load(path2d).reshape(17,17,17,17,4,4).astype(np.int8) \n", "lut2d = np.flip(lut2d, axis=[0,2]).copy()\n", "lut2y = np.load(path2y).reshape(17,17,17,17,4,4).astype(np.int8) \n", "lut2y = np.flip(lut2y, axis=[0,2]).copy()\n", "m = SDYLutR90x2.init_from_numpy(stage1_S=lut1s, stage1_D=lut1d, stage1_Y=lut1y, stage2_S=lut2s, stage2_D=lut2d, stage2_Y=lut2y)\n", "SaveCheckpoint(model=m, path=f\"./models/MuLUT_ft_x4_4bit_int8.pt\")\n", "m\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADcEAAA20CAYAAACH7mQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WaxteX4f9q1xT2e6Q1Xdquqq7qoeSDYpqpvmZMoWYhs06CQIMhkhDAdmGFtPoYGADwGEwNKDESiAEIWAIkRAECEwggDKgw0oCKVEoh0jjClKIqNwaKrdbHZX1zzc6cx77zXkwW6GlJXq82XVrrNOnc8H6JfG96679tr/339a+3+rHMdxLAAAAAAAAAAAAAAAAABggqrrvgEAAAAAAAAAAAAAAAAA+P/HITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACarue4b+JMYhqF46623ioODg6Isy+u+HQAAAAAAAAAAAAAAAAAC4zgWJycnxYsvvlhU1Yf/t95u5CG4t956q3j55Zev+zYAAAAAAAAAAAAAAAAA+Ahef/314qWXXvrQzI08BHdwcFAURVG89puvFIf7H37K77te706jv+OXT78c5f/xyYc/6H/aO+eHUf6D870of7nJvtq9xTbKf+HOB1H+Rw5fj/L/o6N/EuX3q0WUv21+/H/370T5fm+M8vUXTqL8rv8Djk09RPn9+TrKH84vo/yzi6z/eXWV1dd/6+C3ovwX21mUr4rsC6vLq/XLU/Vf+1/821F+c5g9n+UHWX2dvphdv9vPrl+EX1e3yK4/7nVRfnGU1deLd46j/Cv7D6P8nz36xpWz/+rq7eja++U8yk+ttv4b/+7PRfmLZ3Y77ay3Wds8e5A9z24ZxYuyz/JDm+W3d7KxrriXjXXzVTY3fGb/LMp/4TAb6/6tZ/6zKP99s02U33U9/nf+h/9GlL94PpvbbvfC9hxOncuwuW33w8leeP0qrK8x7D7Xd7L85l54Q4fZ2NiGa7V7h1k9vrifjaU/++w/iPJ/ZpGNvf/Of/N/EOW3Lx5F+Ytnsrnw5op7Dt/VZ91JEU61i36e/YH2LBsf0/FrDO9/fTf7A5s72f1v74YfYJZ1QGk93r+TrQU/e/Akyj/572X9yfil7B+UWt/LBozNQR3lu9Vux6+0vqps+lA0l1n7bC6y/BBOny/vZ89zfRSuNQ/C+5+lnzfci7qfzW9f+bd/O8o3Lz4f5Yf72Xi0vZs16H6Wfb+bw6wBbfey9pDOD2cn2R+o11l+aMP2vAyf50F6/Sy/XUXxeP1Y1Fl9ffbfz+Z7qfq5Z7M/cHQQxYf9bEI2NldvD5ujbC7Zz7O2NtbpXC+b+wxV2DbDsX0TrgWH7HEWfVjraa2k+c/8r349+wM7Vh9mtVIe7Gd/QR92/ovsCx6bbOzq7mXvTbu97PpVn/Wd/Sysl8M0n7X/dO04ZLcT1+8LvzStepmcHb84LevsC67v34vy471sLjzMsnq8fJBtzqd7pZf3svzQZN9Xujf54H+rXvgjqqx+mxcfRPnLLzwX5TdHWf32i6xe1uHa65n//W7XLvBHlenvbD73mSi/eTH7HeH6TraAWf2tfxTlYdLC+XP97DNXzvbvvZ/eDQAAH5Ou2Ba/WvzyH54V+zDXdgjur/21v1b85b/8l4t33nmn+MpXvlL81b/6V4uf+ImfuNKfLf/LiezhflUcHlxt1/Cgy3YXF+GjmY3ZYrdJf2hbhPkmW+zWi+z5tHvZ513sZ8/zqt/rd+1/j//k4W1Xz7Mf1ozhIZc6/KF8WYaHdEJ1eAiuCX9I18yz+58ts1/SLVZZ/e6H9XLYZvnbdgiunmUNog5fJtfhDwHT6w9h/aaH4KpleAhumf0wtw5/+NXsZT98nO1n49dq/+ovlw7DF6v7Ya1MrbaaNqyV8MV2qi7S2gp/iBYeakgPEZThD636RfjDo1XYV4U/Sm/CA69pLe6lY134I+Fd12MTTjbS+hrCzxsuXeIfOQ/h2BUfgsuaWzGGP+Sqw7lhtQwLPhwbq2X4Q4ewHtO13Sr8IexBuNZs6vRHy2l9hT9cDuurCOsrPaRTpHPP8JD4rg/BpXPbKpzbxvUYHoLL6zFbK6f12ITj0Rh2cH1YX0ObPZ9xx+NXfAguvHw9hIfgut0egqvD57nztWa49i3asN7D+W0TTribKhuPhh2PX2VwSKcoimJoswY0zHZ7CK5pw0Nww24PwY3h3lgdPp8xra90vRn2h2N4CC6tl1RdhR8grK+8Hq8+fg1Ndu9l2NbSQ3BNEx6CC68/hmN7n/Yl6dieXj9syml+17WSqsMHWoZjXTGGc+3w+mMdTn7iFzvhIbjwPVYZ1ks6d07rK66X8PGn9Tu1epmcXR+CK8NDcOFYPcZjddbg0r3SfK6X5ct07hkuNtULf0xYv+laNn13ka41i7Be0rWXeuGTVIbtrUrHx7Ae+zbc61IvfJqkh+CC+W1a6wAAfIz+y2358grzvWv5NfXf/Jt/s/jFX/zF4i/+xb9Y/OZv/mbxla98pfiZn/mZ4r333ruO2wEAAAAAAAAAAAAAAABgoq7lENxf+St/pfhzf+7PFT//8z9f/OAP/mDx1//6Xy9Wq1XxN/7G37iO2wEAAAAAAAAAAAAAAABgoj7xQ3Cbzab4jd/4jeKnf/qn/383UVXFT//0Txe/9mu/9s/8M+v1ujg+Pv5j/wMAAAAAAAAAAAAAAADg0+8TPwT3wQcfFH3fFw8ePPhj//+DBw+Kd95555/5Z/7SX/pLxdHR0R/+7+WXX/4kbhUAAAAAAAAAAAAAAACAa/aJH4L7k/jzf/7PF0+fPv3D/73++uvXfUsAAAAAAAAAAAAAAAAAfAKaT/ovfOaZZ4q6rot33333j/3/7777bvH888//M//MfD4v5vP5J3F7AAAAAAAAAAAAAAAAAEzIJ/5fgpvNZsWP/uiPFr/yK7/yh//fMAzFr/zKrxQ/9VM/9UnfDgAAAAAAAAAAAAAAAAAT9on/l+CKoih+8Rd/sfi5n/u54sd+7MeKn/iJnyh+6Zd+qTg7Oyt+/ud//jpuBwAAAAAAAAAAAAAAAICJupZDcD/7sz9bvP/++8Vf+At/oXjnnXeKr371q8Xf+Tt/p3jw4MF13A4AAAAAAAAAAAAAAAAAE3Uth+CKoih+4Rd+ofiFX/iFT+zv+2yzH+V/Zv9rUX5ebaP87zSfifJn25ej/LztovyT01WUf625G+VfWT3Mrt+NUf4H2iHK12UV5W+65fvZ86z/zAdR/seeez3Kf+csaz9n21mUf3K+jPInl/Mof75po/y6z7rae+1ZlP92lz3PH5pdRvnbJuzOi/Y0q6/z58os/8VNlK9mfZRPu8My626LYsw+7zBk+dNN1j8MY/aBN2N95WxdZPd+07XH2VxjFbadfpl9V2cPsvz6Tla7m/tZbRVNdv3yMrv/MqyV4TQbu/p59v2WZfZ5n52dRPmjah3li4nVY/utd6J8c3wnyl++kK11ur2r921FURTnz2T57V4UL7r9rP1U2dBYlH3WHtK5QLXO6rffZvlhluU/s/80yr+6l63V7tTnUb4NJxv9738ru/7je1G++tJLUb65m60VxiZrb8efzdYK22zpXmxX2f2kc732NMun6nU43p1k/VX/TDa+L5dZB3R3cRHln1tk4+PDk2y8Lv7R70Tx1QvPR/nZ556L8tv9bH7S7Wff79lzWX5zJ2tv23B86c52O94V2eWLcOuh6LOtlqLby25oDOfP80U4YIe6N9+K8uW770X5eVhf/XNHUb4oswGjCucn272s/V/cza5fh/fTXGQDWBvmxzq7n26x2/G3Crv/YWLroz6sl+okm3DU97P54Ti/+ng0Dydj3UE2l+xW2dg11Glby/raxcOsr23Os/u/uJ/l08Eu3TtJ14JT0x8fR/nyIntPUC0X2fXH9PvK9nmbh1nf0DzN2tvYZvkmzNeX2ecdyyyfrh3DbfOpbb3deGWTrY3i64dzmeEs2/spL8P+pMn2QpbbZ6N882xYAGF9ddnwHveH8McM2d5V9/obUX7RhPOxzz8TxeuLcC0Y7rXDJ2nchpt1Dx9H8VkZrl/W4cs4uM26cDMNAIDJs4MAAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDXXfQNT9WqziPIni29H+fXQZvl72Vf17ZP7Ub7Yz+KpX/vg1Sj/yuKDKP9S880ov1/Mo3xd3uzzoiefz/Lz/8ezUf7v/XOrKP/ys4+j/Kavo/xito3yqU2X3U/qW2dZ/b6+zPJvzL4e5V9qdtxBTExzOUb5w+9sovz5c7Mof/FC1v/3d6J4Uc367A+UYbzMnmdVZflxzG7o6TYb34fg3ws4Gbro2ss6awtTU19kfW1zst7RnfwXNvtHUb65yNrOcJL1/f0ibMvzIctXWb6cZ7We1lY/ZHOlKuwbZmX2eRfltOZ6w9l5lK/abK0wm2VjRXuateeL+3tRvrmI4sVYhe1tFdZXkeWLbGpbjG14/T78vF3WPs+7bHy515xF+Zfr0yg/L5dRvlpkY3Wxzcbf5r3jKF922Vx4e5j1P/On2ffbLbP8GO76hN1/scmG37h/iOee6dT2OOtvhzvZDe232fznKH5A2f2nxsvs/uun2f2XXTa+V33Wv/Wz3Y7v/SLsz9ssP4ZroyG8frg1WdSX2fWbs7B/28/aQxeOj1OT1ld1nNXXvArn5wdZfdWb7PqXd7P551CH7blJ6yscYMLpXnMRzlfDzxtvTYbrr6IK/4IhHIBDYzjfGzfZXl2xCNp/1lUV9WV279U2+ws2h1ln3odzyfSrLbusrdWbsFbC2h2zpUg894xrZQwbUGoMn2eX7e0N4VS1arPFSLkKv7Dw8xZd1qCH/Wxtl6o22f0s38++r+pu9vw3++Fac7evyW6dtB6redg+w73Gskk3E8K96r1s8608yzqg2RD2t2O297O+G46/83SACZXp3DbsP2+bXT/PHV8/rd/h7Xej/LzOxovNy3ejvH/GnU+T/lH2u6hmGb5LOcjepej9+VQxnwEAuPVsIQAAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZzXXfwFS1ZR3lP9+so/w783ej/KNuL8o/3qyi/EXXRvlhLKN86r3tYZR/rcvu58vtGOWz1jA9Y3jcdX0/ez7Ft7P29q1N9kQPji6ifF0NUX7W9FE+te2zz9uNWf6D7iDKv9Eto/xLt2ykmJ1m7WGos/6nHLL6mn+QtYd1OLT3e1kHUS67KD9fbaN8G9ZjWWbP83Q7j/Jvbe5eOfv1Nhu77tXZ3KGe2L9dUF1k320xZt/VsMzmJrPTrO+v11ltlelQEbbNss/6krHNPm9ZZ/dTVVn+Ypt9X9twrPvm9uq1WBRF8Ux9HOWbcLZXl2E99mED2mb1VT/KPm//7FGUnx9n7W27F9bXIooX6VJkDNt/+hcMs7AeF1l7mC+z9rBqNlG+DTu4cOpTVMVu145jl81NisdPo3idjl/zbC5Whf1nOH0o+rC7GtO5f1hem2y6VAzh2n2M81n9bjbZAzrvZlH+meY0ypftgyg/brP+oX+ajS/p3kl9NxuPhjbLV13YQMP+qtqE7S3sQPtZOD8M67fPmmdc72VWXkW1yT5vt80+cDnP1oLjOutw0/FoePw4yldV2D6jdFE0afsMn2cVDtfx1nOYT+urT+erYYeYrjfTfFpfUzN22Xx4ePgoytfl1Z9PFWSLoiiKcO+hO8r2bVPxPmb4cYflbveu6m04Nw/Huj5d7KTCtUWsCjufIetMxnRvI81fXEbxchGO7XW4Dx5+Xd1+trZL9fPs/utwrtqss3y3COsl7VBSu66vXUv3HsK5aj0LO8QmXFykezNhexib3b6pr7bZ4qU9S18W7PiXBje9/U9N+jzT/i19t1CEe89h/abjaXmW/W6jfRzOb8dw8QWfIuPZeZSvnmTj+25/FQXTNobrTQAApm9av6YGAAAAAAAAAAAAAAAAgD/CITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJqu57hv4tLhbr6L8Z+qnUf7N2ZMo/9bsKMo/Xmf3v+3rKL/XbqJ86nxoo3xVlDu6k2nq52OUHxd9lG8fZl1J+XgW5c/bIcrv711G+WW7jfJ1lbX/usruf1Z1Uf5pt4zyfdj++zG7/7q82eerhyZ7PmMZtodNVo+zkyhebA/S/i37vvo6+7zjMq2vrL21YX7V7G482ozZs+nHrC1MbujaZn1V0YZjRZ89n/oiawvNWdb2m0X2BZRjdv1uLxyr27Cv6rL7qZbZ80zH0tT5OM/yQzaX2c/Kd+fGbfY8yzJsD1WWb0/DucAmbG99eD8nWX57EMWLsQn75zRfZvmmydrzMGbPpyqz7/cb22yt+aDO5uZFm63txk04tq/XWf7JcRRvFtlaZ3Yn+7zdMvt+z1fhBCJszsMiHL/CpUK41C+GNvwAy3Dt22b5bsg+8DcunovyY7fb8bcIx9Oxy+aH5Tqr3zKcP9frcPxaZ99X2j77dBc2LN/4fhZZPh0f+7B/6FfZ91VchmvTtP/fsbEP6+v0LMpXe9leb7nO7mfn0vZfZ39gCOsxHb/6cP3YZ9OHuN7TfwqxDNcLYzj/LNL9kFA6Hg0np1fOVotsbTrW2cMv+6wvrLbhXkg4NU/Xjv08y3dhrYRbb3HfkNZ6Ee6bF+HaPa6V9H5S6dzwMht7y0U4OenCsasJ5w7xXCyt93AtFb636JbZ/eTtP83vtu/nw6V7J+Usm2yU82wyM4b5IhxPxzas97C++tnNfg/KzVLNs/lnurdaNNniaBzC+Uaan9q7UPijwt8JpfPzdC1bpe/q4RYb1QsAwKeOHToAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmq7nuG7itvjqfR/nj8a0o//Xz56P8stlG+boconw3ZOct31kfRfnNfh3l6zKK33jjPPu+lvcvovxl2J6bd2ZRfnuc5ZvD8yj/welelD9cXkb5g9k6yi/qLso/055G+boYs3yZ1ddN1y2z/irsDovmPPwDoXqddXDDPGsPRZddv9tmU41t20f5VDdk7fl8yPqfW6UJ+4ZNNtcomqwW63VWW+1ZFC+2h1l+CJtyfZnW7m4nM+OYXb8qs75kPWR9w9mQzTVSQzo2pn9BHf6JMvx+Z212+W04Fo3Z82myqVjRrbL8GP5TLs159jzX98KxMVTW2fWXs6z/TOsxdTlm7e1yzOaq42aT5dfZXHussnps7t+L8ts7WYOuwvGrjMeXLN8vs3w5ZPU1hu0/bc5jk/2BqgnnD3X2BRzOsi9gWYfzpXStNu52rp3Wb9Hv9n7C4b1oLrM/sJmF43V4P304/Qmnb/Fatg93kYc2/QLC/iHsT+L5VRlOONIFQDi/Sse7eP0Vftx0/dWE652+TefPWXzIpjNFH9Z7uPUQ30863sX9SZftTe5cWC+p4ezqGwTV4UF28dUiiqdzn6rL/kC6zTW0u2376edNx6K0b4u3AXfcNmMTu58hHLvKsO8p072W8PlUl9lY2pxmDa5bZQ16TD9uOjY2Yb37hcGNko7tZTiXHMN6LLfZ/YxpAYTvFsZwrVAO4fjb+nepP9XStWNo7MO9w3q3e/9lFX7edbi2mNZ0Bv64MayvtH/Yhns53Y73VmHK0r3etH4BAJg8O24AAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMVnPdN8DVfGV2EeW/sXoryr92fi/KH68XUf5wfhnl10PWNLdjHeX7cRvl6/KGnxedDVF8u8me/2y1ifKbVXb99lH2/X5Q3Inyn/v8e1F+O2TtoSn7KL8Zss/7qNuL8qnTIavf/SrrH6amucjqpZ+VUX5os3xzNkb5WXj9scrac7/Mns/QZffT99n9bPqsXpoqq8fE5dhG+aHInuXUjE04Ns6yvmEss7ZThPGqz2qrOQ//gvCGtvvZ/dSn4dxnkbX9psnydZW15y4c69K5Xh22nyptQKHxIpvLl002Vxov19n1t7vrC/8k6sus/adjb7rqrbKlQtEvw+tX2edNDWP2fE77rH/ux92ujcZ11p5T1TKcq9bZ563S+qqy+UO9zdpPexbFi7EO55JhOQ7Zxy2GNqyXeTYe1U2WX8yyDmJZZ/lVla2ti2GW5XesTOdvq6wDLbvw+70M84us3uvLcC1Yh+05fJ7hVlos7f7HWfZ5y3nWf7bzLsoXY/j8x2nNl8Zht+0nXZ5WffYHqnW4l9aG64tl2EB3O/0vyrS5Zcudop+H12923H7S+rrJ0s8a12LW9svwfsqJbUWFWwPFWGXPswun/v20plY3X1ovXTi2762ieBmOXWnPls5V43pMu5907hAOjunazthyvdK55LjJ1qZlGy5GNuHmW7g3U4Z7/9U6nPvvZQNYOt5xwwxh+4n7w3CvLhxPy23YQGfhhCmc31bbiU1Y+XSL30VP63dju36XAp8m8d4qAACTN60VGgAAAAAAAAAAAAAAAAD8EQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZzXXfAFdzVC2j/M/s/X6U/43TV6J8atVsovyzs5Movyi3Ub4ub9n5z032ebsh6xr2n72M8ut2jPJlFi+Wb2b3/1rxXJT/3Offi/KPLvei/Ev7T6L8osraf1UOUf62mT/Knuf2IGtv3TKrx+YyrJfHUbwohjKKj3Ud5cPupxhX2fOf1X2UP2jXWb6+ev9Wh7XVF2HnNjHV8XmUH5us7RSLeRSvz7so355l97NdZbUytFm+2mb5YhX25V04F+iy51OFg3VTZbV7ObRRPp3p7XxuuOvrD+FY0WfPvznL6qtZZ2Pjdj9r/81FFC/C5lPU6+x++i6s31BaX2k+ra+9KhtL6yJ8PmWYH7PPO66z+y+2Wfsvt1l9lX1Yvzueyrdn2f3serwLlzppd1jM5tn3Ow/nnv2Yfd5VHbbPYpbFd1xfsU32BZddVgBVH+Y3YX+7CPM7bv992ByGcG9mWIQd0Dyrl8Uq2zvcX6b1crOV4Vq86MLxawi/33T8CruTepv9gS7bOi/GdK8iffyLLJ/WYx/2P+M8/H533f9PTNlcff0yps8mzYdfVbnN/kA5D/v+sO2PdTjX2HEtxvlw7cjHLN07CSf/4yqbLKX74GV4P1VYv0WZ3U8/C/f9w/Lt5xNbW9w24fMs0735NuwQ08V4Olftsr3Gsc3y1Sa7nyrc+0zrlxsm3WuZmHh+uw33cna8twofSdr+01cdVTgfS8f3cG8VAADg0+SWnQQCAAAAAAAAAAAAAAAA4CZxCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyWqu+wbYjTtV9tX+a3d+K8r/p8c/EOUfbfei/FFzEeXbso/yt+385+KdrD1s98Yo374QPv8mu/5YZpcvuyw/e7+O8q/Vz0b5z7z8MMo/2Syj/Ol8HuXPhyxfFOdh/mZrTtZRvuyHKD/W6fPPNOusvup1VmBjk/WfY5PV13rZRvmn7SLKF0dZvB+v/nkfdvvRtYfxUXYzEzOenkX5Muyr0tpKtatsbJwts7Y/ZE256OdZLZZDODhmXUNR19nzXzbbKN8NWd9QleEHmJhxu4nyw3n2/VbLrC8szy+jfL2YRfnmPMtXR1l76LPLF1XWPIs+HKrrs+z+x6OwfkOLOvvAdZnV+6LMrt+W2fMpxt3W+9hna5fxMquX8iKby9cXYb102fhVb7L21oVTq3QpHjafYqzD9rDb8irKHY9HqyobL4oynQ/suL66bDE+rsPPOzHNRfY8hyb7vvqwXqpwL2Sb7gqn5RjW72KWfeCjRdY/3zr1bsffsg/zQ5jvsnqpN9n10/VXOj8c08cfblWPs2z+Vu2HHcptk9RLOJeMx9463Kdrs8aT1m6Vftx0ahK2/XSvJb1+v7jZew+TE89Vd7sXuHPp500vn74GDW8nri+/MLhZqnDvuQm/4FnYgNLrp+NpWo9V+t4rzO94r4JrlrbPKlwsTE0ZTrDCvZ9yG753j9LwT9n5fDWs9/TdRbo+BQAA+BS5XSeBAAAAAAAAAAAAAAAAALhRHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLKa676Bj+KXz5bFqqqvlP3p5ZPo2qtq9ie4o+mYl22U/+r8vewvOMzif7B5LvsDoTvVJsr349XazXfV5c0+L7p4P8vXl2WUPz5bRPmyHaJ8qhyz/OJR9nmLMus635rfifLPv3oc5T8zfxLlH/b7UX5ebqP8TVeeXkT5eswaXDvP+p9yleXHKmvPs012/+O7UbwYw/5zqOdR/rTO7v+ts6Mo/8ry4ZWz2zHrG7ZF2FlNzHByGuWrrovyZXWQ5TdZX9U+uYzyQ5u15fGKc9Tv6udZ7TZnWb5fZvd/eZHNhRd19vyXdTZ3q4ts7rDbmcbujet1lE8/b9Vk/VVdZe1nvsrWIpuDbC45hKvYIayvdC45NuFYus2e57LN6msYs+vv11l/mKqm9m/vhHO38ew8yleLrD3Xy6y/rTbZXKkcwgZdZvVS9dnl09up1uF4l12+qKqsBz2YZf3znTZbWzzbZGvBYryf5XdsDOd742XW/5Tn2fMvw/Go6rIG2i3DvYRUWr7hhKAKl/pdm91QVWX5WZNV8EGbtZ+zKD09Y589n3GdzbdTZTieln2YT6+/6wVAWO5DWC/hdkJRhHurTZuOkLdMMEEpw7XUmE5+wlpJF4Pp3LAK9w3TWhzarLjC1zrFEL7mS2uXD1fNs7VLkb6HC/fBi3BvYwz3AvP7yeLp3uHQpPkoXow7ngrzPYRr93gxHs49y2aZXT+9/9DYpnvzWT6tLz7ldtyep6ZswvfW+6ssn46/8FGEew9F+O43XQ9Ws2wvs6zDBRIAAMCniB0EAAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJqu57hv4KP43r/0rRbM3v1L28At/K7r2n110UX49ZvlVNYvy/ThE+baso/yTIWsKP718EuXfnr0X5d/pV1F+UY5R/rZZvZ+1n81FGeUfvpt9X9W9TZQfs+ZcFGFzqNZZfv44ez7dXlbv3zx6Jsr/d5/7f0f5bfhAt2Mf5dP+Z3IeP43i1Xob5Wfb7HmWz+5F+X6ePf+yzwpmDGcOXVgvY5Plzw6zG3rvdD/Kt89e/fs6qC+ia9/0f4lg3GR9+TBkbS19PlnLKYqqzP5EO8va2liGc702u59+keXr8+yJdos2yv/e+w+i/BdfeT/Kp2PXTa+v1LjN1iLjxWWUL9usPTSPzqL8ci+rr36e3U+3jOJFtc3qq8qmAkW3zVroo7Nsrv1Dd96J8qkX6/MoXxXZ/U/N2IX1dZa1/6rN2v88XFts97MCKLOPG4vXdqHyMvsLxjGs93CxuV9ni80fmL0b5Yvi1TA/MdusAy2PT6N8vbranuF3bQ+y8SXdigqbW2wI66scwhsK43v72XxjVmdr5aNZdv2sd56gcG94PM/G6/LiIMoXq2w8KsP1YLq3l0rrMa6v8P77vez7TRc8bZvV160T1Fc6Nyyq3Xb+aW0NZdZ4hnCvohx3Ozima7uhCZ/PzHumj9MYtocyrZdwb69I22doDO9nqLN6HMPn02dDdbwvn74n4ONVNuHaJW1vffgeK8wX4V7IOMs+71iH9Ri+V0v35vvZjheD3Czh2q4owve+6fiYCsfTcZ4NSN1Bljcc8YlK6zdcfxV1uPkQjo9wmyXrzXioBgDgWty234cCAAAAAAAAAAAAAAAAcIM4BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDXXfQMfxVsf3Cmq88WVsn9971+Krr144e9G+S+22yhfj2WUf79fR/nz8PqLLF5sizHKf6Hdj/JH1VmUH4rsA9Tl7Tr/uff6RZRv7s+j/Nk7WVey7rLrV1lzK8o+y7dn2V/QnmfX75ZZe3tyZy/K/9b5y1H+373/q1G+LrPv66YbTrP+pxqy9lMOQ5Rvy7B/W7ZRfpiHU4GwHudtdv/9oo7y7aPs/k/2l1H+a6cvXDn7k3u/H117O4YPc2rS+x+ztj9usrlVcZGNdWktNlXWlsc6yy+b3dbKEF6/O8ry63VWi7/+8JUo/30vvRPlz296faV2XF9jWl911j5nD2dRfjnP5lZDm91Pt8zafzr3LPrs+pfrbGz/YJPNJX9k/7Uo/6DOvq+bvvYa++wLHi+ztXtxcRnFm8fZYmR2J/u+usVu54ZF1l3Fxjq7ob7P2ucPHr4d5ffrrD0clF2Uv+mGcDwqz7PxqHqare2ag2zt2+1l40u4dZXnQ2O62RJqqqzgl03WHvbqTZS/8cL5bTrfq07CvZC9q+3Jf1efji9h+x/S4SudnoT3E27NF2Ob1ctsL2v/s+Z2jS+pZL43hmNRuQ2f/SKbu8VtLdwbiGsx3AtJa3eYZ31htwr7ztmOJ6u3TbhvHquyznxsdrs2TfcCdz3XG2bZX7A5CK+fbVXwMSvrrD2Xs2x8KWbhF9xkHfq4yuaSY1jvwyy7n26Zre3WB9n9dKsdFzwfr/C9bLHrvc/w+mO4dkzfle1aWo83+gdvfOqV4bvl+PqtCRm3WDr+3vB3lQAA/FeZ4QEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZzXXfwEcxfjAvxsX8StnfXrwQXfv/OPszUf7ff/4/ifLbsY/yQ5Quit9eZ5/3C+372V9Qp3eUeabe2+n1b5v23adRvrrMnv/+/cPs+l12/nYIe6rZyRjlF0+yehzrMsoPb2eft1/MovzfvvvlKP8/uf+rUX5etlH+phu3XZQfzs+jfDVm/WdZZe2nWmffVzUL88uwPZSLKD60WX11e9nzOb2T3f+3ju9dOVs/yPqeg+pGT8NiY5fVVlGG/1bDepPlx+z7ylpmUTRtHeXHNvu88yfh2DIPa+tJdv/DYXY/2z67fltmY/VRlV1/csqwxYXteezDuc9mG+WLs3BsPL7amu67ZuFY1M+z63eLsP3P0u8riw99Vl/PzU+i/I8vvx3l52U2V52cXddXOt6dnkXxqsnmD4v3s7lYt1xF+e1e2N+Gj78M6yU1DNkN/enV61H+Tp31hw/qG15fqXBtNFxcRvnqNHv+7aOsXraHWT1WXbiXEO49xBPWHf/TaPM26w+/dJjtTR42F1H+tv1bcGOXzd+GeP62jPLlfti/DeF6Kh3em+wPjOnyIq3HNusP95brKH+4yPK3TjDfGzfZ3kP59DTLr7K1Sznudt92CGtlSG8nrd2wFof9bO1bLcK5PB8qHYvGy6yvKg/C95ThPntRhWNFk+7V7XZuko6N3X62+Opv2dJlasZ0b7vOOtByka2NxvC9Zlov4zwbYNL3uGP4qibN99nj5LqF76bS+kqVbdbgyvC9byrtf9KleL9IF1PcKDvem5+acQjH63S+uuP+ByYt/d1VffXxcQxfi8Onyi0bqwG42W7X238AAAAAAAAAAAAAAAAAbhSH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYrOa6b+CjOPhmVdSzq53je9rsR9f+e/33Rfl/4/6vRfk/NVtH+e0YxYvfOHslyp8tZ1H+c813ovzj/jzK71fzKN+WdZS/bcanx1G+7vsof/ha9n3Vm6y9bVdllG/Ps4JpzrLPW4b1WPZZ++znWdf85N5BlP/GDx9F+c/U2yhflzf8fPU4ZPFtl+XD51lcXETxchtev22jeLXN6je7elEsmqzet8vsb+iWWX29e3j1eqm+L2s7lX+L4EONXdiWN1nb2bXqOGtrbZW1h/kV58DftV1ltdI+zZ7n+XHWNxy+eBnl79enUX5R3uhlTlGM4WQjvv5ux7qizNpPdXIW5Ztw7TKfZ3Ox7Sqrr34Rjl1H2fXT1jCvsu+rLbL2cOPtuL7GcC1VdOFc8iyrl/phVi+L/XBuFbb/bhnW1zKKx/ou6x8WVTY/+anFkyg/L7O19Y0X1mNaX2m9VE/D8eX9LN8tV1G+CruTMZwOj+lWWrgZsmqzevnX7/3DKH88LKL8bxTZXu+Nl9ZXuPcwHp9E+WaVfV/9ImugVdifp/UyhMuLIdwMKavs+5o1WQfx6uHDKP9WlL5d4rHoPHsvUh1nk59hlY1FZR/OhcO+ZAj39bpwrje02f2U8+z7unc3mzvwPaRj0SabO4yn2fdVhmNRscg6/zL8vP083NtbZvU1ZN1DPNb1B+FklY9V/F5qs4ny5SrsoOtwcRHuHQ5tulcXvpdts/tJ8+l4x/Uqq+z7LdtwvFiG41ETXn+WDQDjIsyvsr2rfj/Mz6b1ro9rFo4Xu1Y24WI/fBdXhp93TOe3cJslv4u6zH7HAADA9fDrawAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACarue4b+CiOvrUpmuZq5/iG+Sy69vnFfpT/D175F6L8v/f8343y8zKKF314vvE/ffIDUf6fX74W5Z+twg/Ax2o8O9/p9WfvLqJ8OWb1tTloo3zVjVG+Xg9RvuzTfHY/e01WL91+1pX/8pOvRPmfevD3o/yqzPrbyRmz76sosvYwbrvs8heXWb4Nh/a0PYfPpyqz9jwP88MsG++GWR3ltwfzK2df396Prv2T83ei/K0TtrW0tsqwraU9Q3F2EcXLJmub8zbL94usVrpV1pdsnoS11Wf5RbmN8nwPaX31fXb9Lqyvy2ysq56eRfm2ztrbMq2XRVYv24Ps+WzuZfczr7L+cCiy+6lL/5bOh9rx+DXWYX94EtbLw2xtt5xn9dUtw7XOard7CU2b9W/vdYfh3/B+lFZf38MYrr02myg/PD2O8vUiW/suVtnexvogaw+bcHyJzbLn/+hsFeUPqmw+8C8ssv7wr0Xp2yed742n2fhSPV1G+Tasl+1BNh8rw+ltmTX/ol+EeydNln/l6FGU/9ln/kGU/18XX47yt0o611uvs/zJaZSv97LaGsK9hLTtj3W6r5ddv19lN9SGc729WTZ34OM1dtnYPob75tVJ9p6sXGZjURGujVJdVu7F9iDL98vwPcEiHEz5eKVroy7cewj36srwvdQ4D99jhZvz3V5Wj5v9cC8we80dzw25XuOQfV/lEE6YQuUsmzCN83D8moVrr3vZgHT+ILv/IfydBJ9uZfhupwjz6bvi+Prp7zbmV/9dQlEUxXCU7b3BbVY2N/on0gAA/DP4dQ0AAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT1Vz3DXwUy9eeFk19eaXsndm96Npllz2a33r4YpR/9Fx2/b2yi/L/8sHvRfn/0+VPRvknwyzKP6iz+z8fN1H+qFxG+dtm2GyjfFWcR/nyUdae2yhdFOVmleXHMfsLhixfbocoX4X5eVVG+cX72Xnm33z0cpQ/f+7/GeVXRdY/3Hhhexv7Prt+1h3GyrD9h9UV12N6On8+q6N8t1hE+e3B1a//tx/+cHTtf3X1nSj/XJ32nrfMmPW1Y5/lyyIbS4sy68vL06z1p7WyaLM/0c+z/PYgy//+289G+cvPZe1/O2ZzmXmpvj5UWF9FONaN4Vy1OL/aGvC76jobK2bLbG47D8aKoiiKzXFWL5vjrH2uh+z+T8K1XR+2h7r0b+98qHT82mZr6+Iyq5fq6VmUn8+z9rk5yNZ2yVysKIpic5G1t6bJ+qvtmN3P+ZBd/0i5fLidr72yxVf55DjKt4t5lF8eZf15t5flN3eieFG1WX/VhvX1epft3f7p2dMoz/cQ1le611ienET5epHNT2YHWb65G87Himx9V9TZ82zabHx/9/wgyh9UF1Gej086Fo1n2Vq2Os7mbvUiGyvqzW7XykMT7jSGY9FsntVWW4dzB65Vupcwnmb1UoVj0TALX7mHQ8vQZn+gn4dz51XW/puZerlW6doo3EsYL9dRvmiy9l+2YX6V1eMYvmfd7mf5zUH2/LdhnmsW7uWMY9ie03oM9yqKcK8u1a2yvbH10W7r8U6U5tqlv+MJ3y2U6Xi0zH43UITvmso2q8f+hWxv7PgLe1H+4B9GcT7twt8yTE0Z1mNRe/kCAPBpY4YHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDXXfQMfRXl2XpRVf8X0vejaT39kE+X/3Of+QZRP3auy84r/4uJplP+xl/52lB+idFEcVXvhn+BjNWbf2LDZRvnq6XGUL6N0UTTdVev8vzDOZ9lfUGd3VG66KD/Osq622mb58l//IMr/+Vd/OcrX8TfGhxrC9pxePxu+iqLN/oa0NYxdVi9F2P+0Yf5gcxjlN/sHV86+snoYXbtVWx+vMWvLY5e1nWKss3h4P2Wf9Q3lOiv29jLLH1zcifLVdj/Kbw8WUf7hj4fXHx9Heb6HtL6GcPTahIPXEK5GtmG9hPV1uL4b5asua89FkfU//9G9r0T5f/On/n6UX4/Z+LUqw7n5bZPWVzheFJfr7PqPs72EOlyr7afTnzLbSxjLbO/kZD+7/jc++yDKn+/9XpTnmoX1NZ5fRPnqcbZ3snojnH/W2fjSz7Prn9zN9irGO1nB/8H6uSi/XmZ7IXzM0r3Gi8soXz16EuXnszbKr1ZHUf7yXvgaJZwOD8Nu9wce9un8k49NvFeR7aMNT7K5W7XI5uaz/SxfX2ZjS9WHbT+slbrK+qq78/Monz19vqcdr43GcO+hPD6N8k2bjRX13ay+ynBvMn6xEJbjncOsXrhm4dwtXRul73XK06z9VMusXsZ6meXDqV6fbW0XxVH4LoKbJR2P0ndB4fywvMj2AofVPMr3s2zvbXOQDTCbO/GbcT7F0ne5ZTgfK/psfCznWb2Me9l4tD3MxrvLu1l9Xf1XD/BfVdbheiT+C7LxpazD/+7Hc/evnv0g+90PAADXw38JDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlqrvsGPoq/8vf+o+Lg4Grn+L62uR9d+53uKMr/7vlnovzffu9PRfm3Tw6ifFVG8WIYs/yy7aL8D917O8r/e8//3Sj/Qr2K8nV5u85/vv4//6koX//okyi//npWL9UmihfFmDXozf0+u/wyyzfLrP23syz/wp2HUf4XXvrPovy/uDiL8vNyEeVvurf+Z38myp/90GWUX30te57zJ2EHHcb7RVZfZy9mf0G/N0T58m7WQSxXWf6Ve1l9/dJn/4MrZ78yC+/9htfW45/LxpYn359dv8q6zmLvzSyf6mdZrQxtdv3Nnay2NkdZvno266vm822Uf+7wnSj/P37+a1H+xxffifLzMvsC+jHrq9K55Nl//yej/NPP11F+CFd1Y5ifPw6vH0610/sfZll+e5DVy3Y/y48HWYdVteF4sZflP3d4EuX/z09+PMr/m3d/Pcq/2mT33//L/1yUf/jlbDxN208/322+ucjyZdZdxeNRHz6foQ3nhqswvww/cBXOPdss/x+//qUo/3tPno/yP3ovG+/KH//hKP/k+/ei/Poo69Djegmnw/0iaz/1Zbg5NjF5/5M9n2ER1stFNj959Pv3ovxffe9fifL/h3vZ/Orll46j/NkPvxjlT1/MJjT9PGufab102VZpXF9VF9ZXuFdRZlt18fxz1+Np2Yff79vZF/b661l//j/92r8V5b9U/P0oX3/x1Sh//v3PRPnLu1n/04X1lXy/67vhd7vMGn+Z1lYobftp7Y7ZV1UMddj3nGV/wfHb2Xu1f/TmYZT/UpHtMxZVdv/VD39flN/eW0b5zWE2dg1N1j7Xh1nnvN3Prl+G7bOL555Zftf1kq6lulVY8Nvs+/rg7ey9YDYz/BMos/ZTf+GVKD8cZWN1v8oW1/0yaxCbg3BsDN8DFWE8vf7mKByrw73Dzd2wXvbD98pNWPBhfd101UH4u5bDLF/Mssn5sJeNj+MynPyP4V5Xm9XvxQvZgHTyUtifZNOfeO+hO8jGoyH83QYfr7LJOtxyHm5ehfWSju9lHU6wXnwuip++ms1/nnwpe57pfLUL54fPZpfn0y6sx7ELf7wRqhZZAYx/6otR/tGXrz7fuJP9jAEAgGtyu3bcAAAAAAAAAAAAAAAAALhRHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLKa676Bj+LlZr84bK52ju+zzTq69np8M8r/zvyNKP+Pl5+N8r+x90qU/87Z3Sh/2F5G+Xuz8yj/5b23ovwb3TLKP6jHKF9H6U+Brx5H8f/lD/+HUX7xp7dR/v/y5Eei/B+cPhPl3z/fi/JPz7L2No5llH/u8DTK/+T9b0f5WdlH+W2R5duwYm56fS3fy/qTs8+1Yb6L8tVPnUT5phqifF1mn/eZJms/iyb7vEezbDx6afUkyn9u+UGUf317/8rZPzXLxrqbbv/NTZTf7s+j/MWDrG0OTdY3n76cXb8/yNp+kZViMS7DvnkvG3tfvP80yr+0/yTKPzPPxrqjOptLtkU41yuz9rBrh197lP2B8l4UP3s+G32HbOgqqk32/C+fyZ5/n3UPRRnWVz/P7r+4k/Vv9+5l7X9vltXv/ixbyz5YZnOH/Tq7/iqce9Zltu0w+1q2tn5m+2KUP3tpEeUv72TteWizfNqe0/odZ1l+ljWfYrvKPu/2TjhXPcrqpWmzuWfbZu35/l42fr24l42/d9uzKD/+w9+O8veefiHKX7ya7S2dP5c10G4VxYtukbW3Kms+RTlm48VY73a+sc22NoohrPdyG/Zvd7MHGm6dFLO9bPy9s8zWjt0b2V7v8vGTKL/4gVei/OVzWQFs97N/y267l+XDrdiiHLJ6abLusxjDf7qvz4b3YrsXtv+0vsIPsDnKxsexCee3VZgP9b//rSi/d5HNP5f3D6P89l5aX1efry4fhnOfsBbHcJ9udhbubYRtOZ3r9fMs34XXry+z/NiGz3/HtVIM2dxz+P/8XpSfv/B8lJ/dOYjyw37W2a7C57+5mzXQbpl+v1n7ac+y72tzkO3NpGvNPpwL9/PsftKxt5jW1ltRhHP5dOyq9rLJebvKxqJZk31fi71w8jYP6+soq/chbG/9LGtwZy9ka832JByvw/qdXPufmOEk21xK80WVfV9lHX6/4XhRHeyHl8/a/8HDbC68eiPrf46/mPVvm/1wvpeO11f8/Re7MXbZ3mqaL8J3d2n9Dun9/G72O6r905ejfDlm8/PNfvZ50/UaTNlwme311idZ/vDb4cs1+LRIfzcTrq3hUyVca6Z7vcDHzw4CAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk9Vc9w1M1bxso/y96jTK36nPo/yry/ej/Gk3i/KXffZ531vvR/mqfD7KvzLLPu92PI7ybVlH+Ztu+X8/iPJv/tC9KP8vrb4R5b+0fDfKP90uo/yTyyxfVWOY76P8yTqrx68dvxDlX5g9jfKP+tej/FF7u+rl4PVNlB/asL/9r2f91RfvfRDlz7bzKH+6ze6/jNJFcXyZ3c9ll01NNkPWPp+dnUT5e4urj++rMnuWdXmz/y2CxdvZ3Odoln3e9jRrC0+/lPXlw0uXUb5ts74/tV1nn3ccs2p8dJ6NjW2dfd6vHGZjy4vt4yi/V6W9z7SUl9nYsv+trL6a81WUH9rseZ4/m/W124OsHruDIcoX2eVj40VWj6fniyi/bLso/8Iymzt89SCrx2eb7PqLsByr9N/euQj756+/GeWPntyP8rPPZWuptL4u7mX1dXYnu36/DMfHeXb9cDgqqnV4/+vs+cwXWX97uMza2wurrF6em2dzz1WV3X+q/8+/GeWXj7J6ab/0UpTf3Mnmz90q60/WR2H+btj+0+l8OH6V4fSzvsjuv7sfjr+hZpmNd3vLdZS/s7iI8tnVi2I4O8v+wG/8bhTfezmrl/75u1l+Fa6tD7O94bS+unB8STcfyrA5NxdZQW7C8T2u9y67/rDMPvBY73gCHerefCvKV8fZeDq7fC7Kt4urt/9hlY1d28Ms38+z2upnWdtps9dSRR1OTdbZ1LkY07V+trVR9OEb0LJPJ7fhvvmw272l7u13onx9kY2l1bPZ3LCqsvZcrbO5wzDPvuBhln1fY521h8U665vrcC/w8m72PLd74diSTQWKclpDy86lc8OqD+t9GXZwQ9beyi67n2azjfLFLGxA4f23p3tR/vyF7L3U+jIcf7PL73wvsyjTueoNL+AxnAtvs/Zf7WXtrQjrZUyf/xtZ/9McZxOyozGbO59+LnsX0YWbyUM4/nK9yiZ8t9ll8700v2v9O+9F+eWd7Hd15fNZ/9Oe3ezfGsBHUZ5mGxxtc/X14G5X7vAJS+eet21tAX9UuNYErp8VEQAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPVXPcNfFq82u5H+bf6J1H+cmyj/OKwi/K/c/ZilH//Mvu8H6yz/B+sH0T5V5rHUf6HZlH8xrt4UEb5w+oiyv/B9l6U/0ybfV9vL+5E+Ys+q5dhzJ7P04tFdv0hO2/8wcVelP/OOnv+76/mUf7FcRvl52X2/Kemn2ff1/nzWfup//5RlP/dH62j/At3j6N8H7bPshyj/KLNxqM6vH56/988fybKf3n55pWz7/ZZ3/ZSk42Nk7PeRPH2LGsLB5dDlN8cZn3b0wfZNDi7+6Ioq6wtzxZZXzubZXc0b/ooXxXZ/b+5vhvlv7L4TpRPNUXWd9blbv9tkPH4JMpXdXY/q5PLKD8cLqP8yUuHUb4csvZT9NlYOs6z/iE2y64/hh/3Ypv1P+nc9tkmmwt8afZulD+qssVUVWTfb3+c3X+1yObm1Ty7/1X4BfcH2Xh0cTeb+4ePswi786KfZX9gDLvPMd2F2mR/wcVZ9vz3Ftl8Zq/J8veasyj/zy+/GeX/VpnNbeMOa5PNT9o3Hkb5apOtjYoyK4Dtlw+y64fi9p9NT+L6TfuHKvt6i77LPnB8++FaMJ2vxqrsCyurcD5zmvUP9cOsAy23qyzfZc+zW2T97XYvHcAyZTg9TPN11v0XffZ44usP4fXD5VHc38bjS6rP1rPlWba3XQTrr7LLGk9zGna2Q1br271srRBug8e10qzDviTsG8pwc6ZM2/6O/9nQssm+37FLd6MyYzjXK49Ps/xeOBaFa+W6D/ueML49DN8zzbIGVG/C/uQinGuE7bkfsuuH3VVuamNRODdM67cMx7qij7/gKF5W4d7YNvu8Y/iesgzvf/Ew7N+GrN43+9nz77Ktq9yu2//U7Pjz7nr8TZXzcPIf7n3WD7N3F8tVNgCs72T1td3z77jfJLuul3T+XM6y9j9cZGvHdLyr3sjevbR7L0f57cHN/l0OfBRD+O693M/WpwDcQrdtbQ2fAnYQAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmKzmum/gtnq+Po/yi/LtKP/b40tR/vPLD6L8MO72/OSjbi/KnwyzKL8d+yjflnWUn5rLZ7PP+/nZe1H+ZFhE+bbsovxLs0dRfjtm39e75wdR/nB5GeWHsYzy3ZDV16NNVi/f2Dwf5V9pvhPln6vbKD81Y519X0M6ko5ZvPx69v0++tPbKH9/LxuPzjZZf7uYbaJ8qq2z/m2/ye7n/e7wytnz8a3o2jd9LCqHrDF3y6xYmtOsLS8eDVH+8q2sr1o/yPqG+jBra02T3X92N7mLLns+Z908yr++vR/l79dnUf7uLGufu66u4TS7/7rNnv94Gc5Nnnklyq/ez9rn+k42l+nn2fc1NFkFjLOwvqrsfubzbG47hHO9Iaz4h/1+lH95fBjlt8U6ys93vO0wduHzf/wkypfrrD8f7n4mu344N2wusny4VC7CpUsxNtkHGMP6KsLxsZll7SG1rLP2MK/C+UyZzQ+LMXue5Twbr/vj4yhft1m91+9k3+/miw+ifNWH84F1OL6k9RJupYVbGzu/fpHWbygdH6syaz+xIavHMbyd/vHjKF/PsvlhFfYP/XK3ezlVuDWQts8hvP10PjnseMGQ3n/aAaXDy86VYX+7zcb37u13o3y9uXflbDUcRdcuDpdRPO3a6nVY67Pw2cdjUdg206lbOLdNn2c80oWd/xiOdbEq+8KGi2xxUW6yzrzqs86nDNvPuMjmttUma3BVF65lw8VdP9/t7l7a96f9SVrvsXAus3NpvXdhe0j3Do+u/t6iKIr8eYZjbzlkz2cIx8dhnvVv6buLdK6X1svud/NvmXC8i4Xtpwz3QoomzKf1G97/2Ibvvs6yva46fDdYFDte6/PxCtd2Rbnb+fAYzj9TZR32P+H9NO+fZNcvst85wR9VhuNRXF87ns8Pp6dRvnm62tGdwD8lHRsnt/ad2P3AJ+mm1y/cQv5LcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAExWc903cFu93y+j/PGwiPI/MHs7yl8ObZR/cfEkyqeOmvMofzlm918U2zB/s5X3NlH++Xod5RdlH+W/sXkuyj/bnET5Nzb3ovxX7r0Z5f/z4+z+n66z+l20Wfuc112Ur4shyp8NY5Qv6iw+NUNTRvn6Mrt+vwyfZ2jzW3ei/NmPZu3nmdVZlE/b/6zO+pNUP2bf72mf3X9iCGvxphdXGfcl2XfVrLPrt1lTLvrj7Pl3xSzKh11JsVplY3VZZs9n2UxrrtSWWb1sw+bWlrutr3KWtYexy/rmcpH1Vc3TrMW1R9n9t2fZv7XS7WX1nuqr7Ppj2P9sNtmy+vDoNMqntmPWnrdjdv+P+myttmp2O/dJ6yXNV2N2/82TrL6WD7P62q6y76uehfUVfl1DuqsUjkfFbruHYtFk7WEYs/6tDh/oN7f3o3xqXGfzh1T/8FGUbz7zYpSvLrLvq7nI6qsO55NjOL6kunCra2iz+w+nV3E9VmG9p2u1k202/6nKtD/c7fiVGp48jfL5v3x3J0rX4YQ7Xa9tl9n3tev2HG6dF2M4/xnrMD8LP3AVtuddt//w+uM229tODcfHV87Ws6wxlMtsLErbZr3J2kI/y9YKYddcdOk2WthZpVPJtHaH2Y5rZdztvmcx7Pb66VpqOMnWvnUTLi7CehzqLF9fZs8zfa9QZY8zHuvS9t/P072T7Po33q7HxrB+x4uL7Prp+NVm+TG9/jb7vOU2a3BDON6l4vpKf8bAh9vxeFfU4Xxpk71Lid+VhfVV1OEEK/y8af1W4Xy1C/c+Yzd8b2By0ueTbqWl7TOt3zKrlzKsr3Ebvos4zd69VIfZ7w615k+5sH8b+x2Pp6EyXA+O4Xg6rne7twR/6KbPHcyVuM20Z7hx/JfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmKzmum/gtvp8exnl/8m2jvKbIsu/Mvsgyp8P8yjfln2Un1fbKL8os3xVlFH+pmtnXZR/q1tG+VX4fd2pz6L8O92dKL8I7+e4W0T5z6yeRvlFnd1PUw1Rfjtk9f6kX0X58zG7/k03hsfDx3AkDcurqNdZvtpk/dvj334myi9+JOtP0t522WT1smo2Ub4ts/pKnAxtlG/CsXpqhv2s76zX2Vyg3GbfVXua5euL7PnXF2lrzq7flVn76cKxvV1kncnBLJurVmFtXY7Z5x3G7PmvqlmU37XxMnv+1V42Vhdl2D6H7Puq+jHKz46zfLfM7n97EMWLsc4G92EW9id1lk/bcxPW19Muaz+bcK5X3/SlVJV93vJgP8oPy6x/K4esXprLLL89yL6wcClV1NlUrBjb7H7GYbcNLq3HIZzd9rds7yHWhPXYh/PDs2z+uV2F3+88/H7TeHb7Rbp0T9e+xTb9AFl/tTfPOpR5nc2Ht2N2P1MzrsPNgXB8qbZZg2vOs3ocq7C/bbJ8t+O3HGFzLopwfCmK8C9os+dfNje7/e9aUl9pLY7hWq0+z/q29BVftQzXRuHcLa+VLB5uveVj483eqpuePhtbxm22GCkvs7lDuQr3isKxsd5k9bWdZfWbzt3StV24laBertkQjkd1Wo9hvmzDyVi4V1fsZfVbhnP/epPl47Wgf5b645XuhYftIW3/RbjWKepwL2STdejjRfZuJ92bKcqsHqvwXV86P4zd8L2B2I7rJTaG7SGtx/Tzhsbw+cQ7A+F8uLrM1o/h0+S67bp+d1wv6bu4MdzLTI1dut8CEzW1sR1uM/UI186WGwAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPVXPcN3FZH1SzK18UQ5X/17Puj/FeW34nyP7h4M8pfjm2UP6guovy9+jLK1+VelL/phqGM8v/48rNR/seX34rye+Umyl8OWfvpx+x873rYbVe4qLudXv/e7Gyn1z+o+p1ef2rKMcu3p1l+rLJ63B5k/X+9zq4/e5rl3/gnD6L8c1/6IMo/XS+i/IPlSZTfhv3Dqrp6f1UXYeO54cpt1jeUm6wtD/M6ytfr7H4Wj7PrD7NwbAn/qYky/AMXx1mtLOfZ2NsN2fM5bLK5WOpyzMbq7Zi1h7bMPm9szNp/sZhn+S4cq7fZ3KQK67cKpz5NNvWPx9L0n34Zttkf6PssP6/D9hnOxeoy+77StdqiDJ//TTdk43t5sY3y1TrbG2gus/tpzrPvq1tF8WKsw/awCp/nLGv/e8tsvKvCyf+63+3acVberrXXOMv6nyLsf8ou+37rrHyLep1dfwjrpc+6h3j8HcLpRrnK2ucsrN9Vm30Bh202/3yYjl/jxNZ3VTZfLQ/Cvc8+rJeL7Pvtw/VUOt51i+z7HcPpf7p1ODZh/9CG42Obzfea+W73Jm+6sr16h1vOs86z3HFfkq/VwvsZw7E3nMqktZga6+zz9ouJ9f033Njttu9J9wbSvcxxGc5VQ9V2x+0tnPqk9dtnW5N8zMo67ED7bLwo5+FiJB3vwr3J+jxbK/SrrH7T9h9uvRXha6nbZ2JrtTIdX9L778MGl+6dbLJ6KcN6LM7X2fX3sv4knq/y4Xa9t5HuVaTvdsqsA03nn3G9z7L2nPcP4QAT1jufcjf93d2QTsjCvcDLbPyCP7Tr2krH6qm9t4BP0sTWjuoRrp8tNwAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACarue4buK22Yx/l71XbKL9fX0b5Xzv7YpR/oX0S5X9w8WaUPyzXUf7VZhHlb5vtRRvlf/3481H+5dnDKN+P2fnbfsfndetyjPJDFo/dm51n+eYsyt+pw+tXt2uoaE+z/nnxQdY+h7aM8uv7WYMb6yhezJ6G+W9kn/e98n6Uf+YLj6L8d07vRvmv3n0jyj8Ixru+yL7burzZ/xZBeXoR5ZttF+WHo1WU7w7mUX7xOKv1MosXZZd9v1WXFe9lm/UNJ2fZXGk4PI7yVTiW1sUQ5VfhXLgqZlF+18YubP8PH0f5ch5+3r1lFG9ON1F+8SibO2wOsnyTLXWKsc76536e1W+3H9Zvl33eiz6by6dz7VR69bYMJycTM55lc+3ycj/K1+usHqusOynas3AuWWX1ks4968vs+tttONces+svm3B8Cce7NpxAtGX4BU9M2YRrx0dPsuuvsvleOD0vijH7fssunP+v07VdOH6FW2NjFd5PuBdShvWS1uNek81PHqYf4KZbZ8+nKPayeDghKPuwvuJ8Vi9pd5uuB3etmYV7V4usvm6bsb/68xw34bMcsrVv2Wf5scmKsb7Irl/P0n3PKB7XVjjVi+eqwzJ7Pny4eG4Y7h2W6YuabbgX2GYNqL7I7r9bhA10x+0/3UoYbtdro8lJxq6iKIoizddhAwrHr6LJrl+uw/F3mQ1I1TYcr4esYNLx69aZ2Fotrq/wXV/cHOIfJoT3n85vw3cR1TobH6uNAeZGGbL2NhZh/z+xVwvjRfZuvJhl9ZL2D2U4f4ZJK8O9vSbcgBit9wFuvImtHYHrd7N/fQ0AAAAAAAAAAAAAAADAp5pDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMVnPdN/BRPOzPik1/tXN8z9R7O76bzH61iPIvN5dR/ocXr0f5X+u/FOW/eflclP/87L0o/5n2NMq35TzK3zb1wzbK/9b7L0T5L6xeifL7ddaeT/usXr5++iDKn3ezKL8Z6ij/YHkS5bfjbs8n36nPo3zaX910zck2y9/JhtLZ0yhenL9QRvmyz67fnI3Z9Yfs+gffyurlg+pelN/7/nei/LfO7kf5H9//1pWzq7KLrl0UWd8zNePT4yhfHh1G+epp1lfVddh3ZqUVK7PSKooqu/9+kdVWt8zmAm88PYryDxbZWPfZ+cMon6rLm/1vfQyn2Vy4KvajfPkkq9+qygpm9jRrb6v3s+9rfZTdTz8Lx9JwrOsvsrnA+SZ7Pk14Q6t6HeXTuWF7w+urGMLJ0pA9//JyE+Wbk+z7au5k7aebZ+NFvc4GsGGe1VdznuW7dTjeXXGP6LvKcMA+bC6i/KLM1hZ3quz6UzN22Xx4vMj2BsrzrF7qi2y+3Z6H87F0fBmz/JCVe9FcZNff3gmvP8/6z7151h/em59F+Wdn2fzzOzf934ILx6+0HstwvCv6cMGTrr/CfJOOX2F9lUNYv9nwVYyz7P7HsD85WGT9521T1lf/wspZ2HjSWgmNdVgsZZavurC2muz6Y1or4RvNIX0DOgv7Qj5cUFt/onw6doXtP1V22f1U2/D+04IJxZff8d4qHy4Zu4qiKMYxHI/SueQye49YduHcNq3feO6547leOl5zvdJ6GbP+fAy3JuP76Xe791nE7+LC+WH4LoIbJq2Xbdiedz3fm4Xv9tP7SefD4XjKDZP2/ztu//n4GLbParfrnai+wrkwn3Jp2wcAPjE3/O0/AAAAAAAAAAAAAAAAAJ9mDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFkOwQEAAAAAAAAAAAAAAAAwWQ7BAQAAAAAAAAAAAAAAADBZDsEBAAAAAAAAAAAAAAAAMFnNdd/AR/F/PXu1WJZX+wj/7f1vRtd+pt77k9zSzuxXiyj/w+15lP92+zjKH9XZ9f/B+Rei/OH+70b5l5ptlJ+XbZS/6eaPsvOuj94/jPL/+M5LUf6ovYzyJ908yqdOttn1H52tovx2qKP8lw7fj/L9mH2/bdlF+dumeXga5RfLdCjN+p+0ftOvt1+WUX72dNxpfvV6Vi+v7T8T5e9/4bUo/zsXV+/fvjR7N7r2+bCJ8qtqFuV3bTjP5gJVm9VKOS6jfH2WPc9UuR2i/FhltbV4mOWLIsufLrK+52Iva29vnh9F+e8Lr38yTKv9T814uY7yZR2OLU9OonxbZdefL7O+f6yy/mS7l9VLf5rd/zDPxrr1OqvHTTiXHMK5YV1k/VtbZPdz0w2X2dqlePwkildhPS4WWfvvFtl4OrTZ/YTDYzGGzafcZvW73YT9Q1hfVZnV+16V9c+fC/c2brp0Plk/epLl59n8oTwM81lzKIZwK2pMl5rh/VSbcHzswvFxzK6fjl/PzY6jfFHcCfM32/g0ez7VKhsvyv1sL63qsgZahuNL2v7T9Vp6P2n/kGraPsofzLLxaMe3Pz3j1b/gcR0+yzrbZy/Ctpm25bBrjvOpIRzrwqGiKKqw76nTzoePUxnO3Ypw7yE1tOFeRZPdz1in9R7F83oPr98vbt1oMSllE+61p3uBZdqAsvYwzsLFUXg/6fg4tGG+SeeS6uVGqXa89xnMPYuiKIphx/k+W1sUYXvuw73MYb7jCSifbuF4FNd7WC9p718us98FFul4yqdb2v6nZthtfVX11evlhj9JAIBbw38JDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlqrvsGPor/2wc/VLQXsytlP9M+jq79r63Wf5Jbmoy79SrK/9nlt6P8r1++HOUP6ssofzZe7Xv9rnnZR/nbZvn+GOW3h22U/yd3HkT5z97N6vF0M8/y66z9XIT57SbrOk/OFlH+7vw8yjdh+/92+2yUL5bvZPkbrjw+jfKzD7J6qfpllD9/Nsv3WXOLtRdDlB+2ZZTvj6N4sX43q9+vHz0X5X/g4N0rZ1/v7kXX/uos/LATMw7Z2DKEtVWF1y/r7N92qIesLVez3U6bxypry2NVR/lukT2f83nW97y72I/yr+0/E+V/cPFmlC+KbO55043bTZYP5zJFm7XP8jSby8weZ9fvZ1l7XjzMxqKxyvLDPLuf7UH2/L/+QTZ2vbr3MMqfDdlce549npsv7G/HzTbLh+NjvQi/r8O0vrIvuOqyfLp0ry6z63fb7Ps6WWfPcxiz+1lUWXs4COcDt814me3VVU+z+moPsvZweTebL5VdFI+N4fBe9uH4uAnH3yb7wFWZzc8Pqts130sN4XhUHp9E+foga//dXrZeGMN/ui8dv8oxW28WZTgBSudL82yAbJowX2X1lbWem2/srt5fjadn0bWr04MoPyyyfca4rYX5tBZ3bZiFe1GLLF+1Wa3wPfRZX5XUYlEURRHuBY5ttlYowr2BsQnz9W7z3Srcl8+mwsUQPk6uWR1+YWF+bLPFyLiXvcgaw7nYMMvuP51LjuHj7G/dZtrEhO2nTOslHC92PT5Wy/BFcTr+7nh87MK9dq5ZulaemiGsx3BvuCzD9hzmx3m4foTbLB3fuTnSsSjdF75t0rFr9JttAK6PHQQAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmq7nuG/goXntyr6g38ytlf/Xw+6Jr/+Ds16L8Z5v9KJ/ajv1Orz+E+VfaD3ZyH991UG2i/PlQR/lVNYvyN93+G12Uv7zXRvmz9/ai/BtV2uIylxfZ99v32Xng4TR7PuUqe/7fOb4b5featF6u1m9+Vz9m31dd3uzz1cPJaZSv6qz/abvsee6/nbXnzV7YnsOZQHsSjkdlmeWL7Hn2s+zznuwdRPn/1/7nr5z97PxhdO2ueBzl66n92wVD1hbG8PLjxUX4JzJlH45Fi6wW01pPa2Wss3y3yNrP9jCrxSeH2VzgD/bvZ/nVgyhfrF7L8lMzphUTXn6TzR3KWTb3Gc/CucPDrL3N26w9j3U29+lW4Vh0nNXj9igbfNfLLP/a+b0of76fPZ+63Eb5Gy8c74oq7M/X6+zyp+dRfvZ+9v0O7SrKd4twPFpm+SpbShXdOqvf04vs+VwM2XxgEdbLvMz629tm3GTPczw9i/LNo0WUn9/J2sPwTLj4CqcDZbp1mE5Xm+yGLrZZe27L7IYO6t2uF268dL12cRnlq8fZ3kl9mNVXPc/me9UyihfbJhuPwq3nYgy3Qso6q6+qzPL7bTbfyHYrbpchHIvKp8dRvtrPaqVc7XbuMKS1Eg51Q3j7aX6cZ31h0+z2PdxtM3bZZH48z8b2aj/bixrSvbewLx/DteDQZvlySPeKsuv3y+z6Yzg35OM1hnvbZfqepgknP+F7snRve2yz61fh8xnDVy/peNRnWw983NK99rA/L2e7/d1JWYcNdB42uHR86bL50pC+ywr3DrlmYX2VTbZgGPtwfp7Wezo+pr+DCfuTWDWx3w7w8Urb547fLU9O+Du2sr3RP5GGT0yZvufe7U+A+bjFv+EM3baxCLh2VkQAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAA/H/Z+7NYS/L8PvCL7ax3zaUys6q6qrp6KfZCtkhxWs2eoSyBIwxNA5qxRWAEmmOMB/I8GIJsiBBgCIYhvRgC7AfZDyRfLEiAYUGWHgyPgJFgWBpohpBaI+5skr1X19K1ZOVyb97tbBHhB7mbbBuqvl9WHmbcys8HaGA0/GZknDj/33+L888CABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABis5knfwAdx8mhaVJvppbLfWRxG1/7Wej/KP1uvo/yorKN8V3RR/qRbRflJGcWL55qLKN/22fUPq+x85rwaZ3/BU2b29lmU37uWtf/NTtaeT9vs+v2sjfJFGzborLyK0VH2eddh+384mUf52TNZ/3Nvsxvlf2eVXf9HJ5MoPzT9chnlu0cnUb7qsga383rWv42uX25c/K52kvW3o5OsPaTKTTY16epRlG9nWf2+cf3apbN3b2d9W/W0/VsEXdaX95uwL19lc5+izp5/2YedeZvVej3O2v54lN3/ZpLVyvp+dv2zvayvundtJ8qnzsO58NM2l+zbsB4X2dhYZkNRUVwsonhznM01xpOs70/HxjZcTI2Ow7XgYXY/b50eRPnFzXAs7cP+rXy6xru0voq0Hs+ytV19HM4ld7L2MJ2G49E8rMdZFI/XdmWZje8PVtlaba/K9k78W1XvLx6/LrLnXx1na7vp3Ww86sbZ/Ge1n80P+3D6HDb/ol+H8+fwL9gbZfOBw+o8yvP++nA91Z9k9TK6n3Xom91sPCq7rL31VVYwfdg9p/mqyQawa/Osf9trsvn8wyj9lAnnwv1Z1ldVD0+z/G42FpXTbC4WjxVNWFvZ7RTtJLuhOnyvcGM/m2vzeMVjUTh3q+bZZkU3z8aiVBfWyybce2jD1zSbnay+unm49uWx6jfZe5o+3Hsr0/d84V57Pwr3xppw7yEc7/o6rMdZWI/pXilXSllm7aGch5tdk2xvrx+FewnTrN7bg6xBb3bDeg/nh3y4lU02H4v35kNlWF+xcL3Z7jxd7zb5AcLxqEh/+zA06bvH2gDzoZW25aetVkJ9uM8O30d9AX/M/LoGAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwWqe9A18EPVb06KaTi+Vff3Za9G1/+X8k1H+h8e/HuX3qnGUX/dtlD/u+ih/1mdN4bk6u5+6LKM8j1d17zjK776etc/V7izKN+d1lF/vZed1++zyRR8eB25OsvZcLbP6Wo6y5/+v33kxyv+vP/nPo/ykzOr9quvb8PMultn166zB1fceRflxn/X/3Thrn9U6ez5lmg/Hr1mTPc9ulNXveu/y/ds/e+aHomv/3MGvRvmPj3aj/FUX1+JqneWrsPNvuyhehvdfhX3DKLz96Tj7A5tpViubnWzwfXAta8/rcHCflFd6mTM4/WaT/YFV2EDLLF+enkf5UZ215y4ssPVslOV3s/s5P8uu317Lrv/eZj/K1+XDKM8PEI4XfTjelecXUb45utwey3dNw7nYeh6OR/OsPa824dqxD+txk63VpmXYfxbZ9Z86fTYfS8evPqyX+sFplJ9Ow/FiJ62XMB9u1ZWj7Pmndutsbf3JkfHocUrXX93FIsrXRydRfrIzifKb+U6UX6bdc6hvsr2N9F8qLMvs+p+Y343yrxfZ83yqpPtu6dztONsHbPbmUb4bZ2vrsgs32kNdNjQW/SQbi0bjrNif3cmef9az8YOkY1F/kc3dquNs7lbNs7l5Ow3rJZyLtbNwX3s366/6cZYf7a+iPI9ZOB6lewnp2qgcZx16GdZXMcnqazPP8qtwr26TvRYvNjvZ98UTlo5H6bus9F1T+i5rFL4bCffONzvZ9dO9wHR+yIdbGb47rWbZ3nZRpz8sCvfGwt/9lLvZ+m51Lds7sfN8xYTzvcLvMt9f47cDAMYWGJBt11da71eU/xIcAAAAAAAAAAAAAAAAAIPlEBwAAAAAAAAAAAAAAAAAg+UQHAAAAAAAAAAAAAAAAACD5RAcAAAAAAAAAAAAAAAAAIPlEBwAAAAAAAAAAAAAAAAAg+UQHAAAAAAAAAAAAAAAAACD5RAcAAAAAAAAAAAAAAAAAIPlEBwAAAAAAAAAAAAAAAAAg+UQHAAAAAAAAAAAAAAAAACD5RAcAAAAAAAAAAAAAAAAAIPlEBwAAAAAAAAAAAAAAAAAg9U86Rv4IPZeLYp6fLnsq8/djK79zuHbUf6876P8XpQuiio8r3izrqP89b6L8vPqkg/+/6spsvvh8epPT6P8+M3s+9rfvR3lL86y6693yyi/2svyqTIr96LMHn/RTUZR/ng+z64f9icvNVd6qMiF/XnftlG+u1hE+Srsz+sq+36rsL314f2U602Ur9rs+Y+7LN81syi/3r18+//2q7eia9//xCTKfzxKfwhsuRaL1SrLd9lcKVWW2dhVhflxnfUN87BWNvNsrFjvZe3/v/3IJ6P8X7721ShfP23/Nsi262vb9XgejqXh2DgeZWPddJ5df3WQ1Uv9MBurH92YRvlFn91PG64d61J9vW98y/XVL8J6Oc4WL6Pw652E7X+9m9Xj6lF4Q9lStmjK8Pvi8dpyffXpeHSS1UtzlPXPs52wXnay8WIdb05mz7+usvHivdVulL992U1hLietr3Ct352eRfn6QVYv01nW/pd72fVX+9n6q6+z59mMsv5qUod7LeV217O8j3DunO4b1uHcrZlnfWd9GO4Ld9lcLK2VIsyPR1mt8ISlY9Em+377cO5W7WR7Y/U4fA8a1lcXlmOfDY1FPwvHouk6+wt4ouK10XIZ5cv0vddJ1kDb6XbrZb2TzfXWe1l/tdm3l3CVxHt14XhUhvVVNOH4Mg7f+4Z75+udcK8u/J3HOlx7cbXE9ZX+LiG7elFOwr2lNB++y13fOYzyy2vZgGcnjT+sHNjvwPrwdz9l2j+E9Qjfk7adcG9jcMK9TD7krnp7hiFTX4/FU/ZrNAAAAAAAAAAAAAAAAACuEofgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABis5knfwAex2iuLelJeKnvz5kl07f/lzX8R5W9W4yhfhecPm/Jyn/O7JulXm12+qEvnJ6+S7vQsypdtF+XnXwvb8/PXovzZc5Mof/5s1qAXz6+jfDXbRPn+QdY/HLx0HOX/nz/2f4nyaX81D/NPna6N4v0qq6/uNIoXVThelLNZ9hdMs/aQ9iflKqvHcp3V46zro3w32rl09vhTWV84LbO2UxSjMP+USWsxa2pFEbadog/zbdgeVqso3pyeR/mds4Ps+he7Ub7aZH3Ju5/Nrv9uu4zyLzbq632F7bkP++a8vrK5bbHO6qW+WET53YusQ6kXWX3Vy2xt93CyF+Wvfyp7nss++37npbnk+9pyfXVF1p6rsB6rddb+d7KpYVEU+1G6L7N6OZ6H48tuNp626WYLT1S/CcevcLyo7h9F+UmdtZ/dUdb/t6Ns/rPey/rzzfU6yp+sp1F+XaTrKR6rPuvQ+3D90h8/ivKjUdb/706y9ft6J9ubvLiT1W+7ye6n7bN8XYTzbR6fdK4X7g10j7L3XnVYK5Nplr+4lvX95SacK4VzyarMnv/eKNtLyJ4+j1taL+lcrzzOvuGmydr/aD/dZ8+un9ZLOlTc2MnWRjxh8d55+B50mc31ynCvupmEv3t4LltbpEv3PizHajd9GcETteW9un4c7pWGa6nyPNurKHaztU4XluN6Lyuw5XVrlw+1bddXkzbQ8HcJk6x+u/15lF8fZNc/ezbbG8h2Drly0vpK3wWNs73kcidr/324117U2YRs8+Kty4ffeTe7F66W9Hc8qfA3e1u/HwD4EHOSCQAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFqnvQNfBD/xX/+T4rZ7uU+wk61jK79f3jnp6P82+f7Uf7++U6Uv1iNonxddVG+j9JFsTNZRfnPXHs3yv+N5/5plH++nkf5uny6zn9+9Zd/LMpPv5O1t8WdTZQfPayjfLUqo3w7zVp0eZG1h67O7n/0zCLKT0bZ8/yvT38oyv9n+9+M8m2f9SdXvb6Of/4novzFrezzTh5m7fPiZtb+q3UULzZZ91m00zA/yT7v5rCN8tVu9oFfvP0gyv/vXv6/Xzr7k9Oz6NqTchzlh+bBf/HFKH/ycnb92d2s7RdZVxW35VR6/fVuOBsLH89mL3tA5UE21/vos+9F+f/yuV+L8j+989Uof7PK6mvbY93R/yyrl7Pnsi+4D4feMqyX9Ppp++yzqVWxmWf1kl6/G2fX76Zhfc2yud7Ofja+vLSb5e9t9qL8q5tsrH65yfqTs5/9QpR/9FL2BbeTKL51XXg/6Vqna8L8LKyvJu1Qwg4iNcn2fso6+7yni+wL+99+6y9E+S/c+HaUX/0PPx/ljz6RrfXTemnD6W0f7kpudsL2mV2+aHfDvbRR2P7D9hbXSxvmy3DxGM4H7n3nIMofn8yi/J97+J9H+Zt/Ihsv7v/YYZTfZLdfbObZ99WF9RKvR8L1QjsP2386X6rCek8LPqyvMny3UIbj42aZfcHfeO12lP/ld29E+U/eeD3Kn/+pj0f5xfWsHte72fe1mYX5YG8sXYusD8KxZZbNtdO+uay3W4tFke2D12GtTML7P7vIJif/3beytvzx4jejfP3ZbB//5JXDKL+ZZm1/cS1rQOncbZ29Bo3neunaqN3L6quchPUStue6ycaWg93jKL+Xlm/o/ln2YuG59C8ow7H6T34myi9uZ/e/uBZuLoXSsa4dh2NdWI/Lw2G915lMs/yt/Xei/PUy+7wHXfheedt7IaFqmi0W+s9m4+PqWnb9brLd98qr3XDuGa7V1nthfjeKF+cvhL/DuJbNx2ZhfR3M7kb5j4yz8S6tly0Pd1tX37ge5cuD7HdpfZO1/24/29zoJtkEcX3J3/d9VzvL+ofjl7Prn3w8G7+aG9td7+zOsvnetXH27qX421n8qRPOP/PrZ+25mmab8+U8q99ylL0r6G5di/IPP5vtDR+9kj2fxXPZ+DXau3y9vPxz0aXh+6Ub1Vvue+pw7nD+xVei/OSf/JsoDwCP09U+qQAAAAAAAAAAAAAAAADAh5pDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMVvOkb+CD+Kn514rdncud43upGW/1Xt7b3YvyXzl9Nsqv++y84qPVLMrvjpZRflJtovyLswdR/ndWN6P8s7OzKF9H6avvR155I8r/L/7sfxvlv3zxQpR/9SL7fo/X0yj/aJXl75/vRPkb86y9pdJ6XPSjMN9G+VkZxa+8s2ez/vbsxex59n/mUXb9o3mUL06zob2v+uz6ky6Kl02W39nL2v/1nfMo/9G9bDz6jYuPXjr7+clvRdeelFd6GlbsvJPNBU5fyvqq4z+1iPLV3WyuNz7Oaj2cisX5zX5WK/0863smu1ltXdvLauv5naMov1dn3+9OlQ1Go3JYs73dt1ZRfr2bteeTj0bxoq+zvn/2btagN9nUqijCoajMyqXowu62v5Z9X9P5OsrPJtn17+ydRPlnZ9lc42aTXf96lfU/dTjezd/O+odulK19H72Utecu3EroRlmDrhdZ/9aXWb7Mvq6i2mTXbydZvtvP5g+jsL6KMuzfptn103r8SDg+vjx5L8r/+jfvR/mivx7FT17M5m/Lg7A9hGvNKus+i2qd/QXNRTZ/6JpwwpfOD3ey9tyFa7X0fspROF8Nx/fxJOsf9qfZeFF89W4Uvz76RJR/+Jlsb7hP91qyra54/pOOR3VYL2V4Q90kbP/h9L8Px+s036V7Lanw8ps+e/7t/WzvZOc3swlT/Znno/z57Ww86uqw/0+eZ1i8ZRvWSp/l23HYNrNHGc+tirBv24S13s/Cye06HOzCoTTV/u5Xo/ze8uUov/jYjSifviLumrD9h2uL5iLLb9IXF/ez9rA+CNtnuneYxYv7k+w9QVwvUWdY5P1DKpxM9r/2u1F+/srHo/zo9n6UX+9n9TU6D/fepuHa/SSsx7Nwr+Kd7POuDrP8epZNhl87yOqlnGVrkXS8K8N6yVYiuW4RrqXC+pq9/FKUb29m9ZWuxUfH2Re23gvnng/CvZBwPB0fZ/WyPNyN8ie3sgnQo0m29i0m2XhUhu8uPll8J8oPTbr2qhbZu77q+rUoX1+E159n/XMdtud+Gr5b+E5WX7tvZuPFw1eyl1+b3aw9P5hm17+3l41frxTfjvJPnXQzM5TWS9Fm/Wd3nL27KMfZeNffy/qr6yfPRfnxya0o/+A8u//1TrohAn9Mttz3dKfZb1xnb2f5LW+lwR+v8HcY265f4AfzX4IDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsJonfQMfxEvNtNhvLneOb1TW0bX/5/t3o/w/PF1G+WI3i99d7Uf5TZd93lHVRvlUXXZRvu2z85mnXfb8r9XzKH/VffnLL0X5F198GOX/45vnUf7/dnIvyh+12ff19uowy88PonwT1suqy7rag9FFlN+rFlH+zU14P+M+yme9z/DsvhX2Vz9xFuX/7Ee+EeU/+on7Uf53Tp+P8u9e7EX5tsv654eLWZTfm2T9+bPzR1H+R3a/E+U/MXnn0tl1kdXKVTd9J+v7D76RtbW7z4yifHuQ9c3r57K+sxll15+MNlF+p86uvzNeR/ndcVZbz8+Po/xnw9o6rLO+c9vqcrv/NsjkjaMof9Bci/LteBzllzeieBFO5YvNNOsPN2H9FlU4N9nN6nE2XUX55w6zsejZsL5enmdzgZvNaZT/ZDDWFUVRzKtstteEs8PR20dR/vA468/rcK1w+mx2/924jPJV1p0Xy6x7KDbZcFp0TVZf3SzrIKb72Xg0m2T1eDDL2sPOKLv+8/OjKP+xWbb2/dTkrShfHJ1E8flvZ/O38fGtKH/8iWztvp5n9dJOs3wZDi/rcK+uHGX3U4TxzTxcX4TXb3azDmg8yfJleD/PHmTj6Ys72d5VWF1F/6tfjvI3zl+J8ucvZXtRq/1sPNrMsi9gM43iRV9tu/1nf6ALx7tNuDW83g/rMdwcK6dZh9WHtzOaZvPh1ObtbD45Ps3Wg6NPvBjlp7eyvajNzuW/sM0kHLvCuWG4jVzU6VzyMLz/9POGfUk3CteOO+HznITFMrCtvfYbr0b52TJrEJMb4XvHvUmUbyfZXks7yzrP1W52/WqTzq2y9nZ2J/y8ab3U4dgejqV9OJYOrFxi3bdei/Ljk5tRfrSTjUX9NKuvfpoNGJu9bO9wMw33QsLxIp1Lnjyf3c/6OHs+bfh5+/RFaLi3etVtXs3qq7qXvTsa7Wf5Ypx1cKMmbP/7Wb1346x9Th5m+dVBlj99GI6/h9l4142u9E/SBqc7y9ZS3Xm2F1gfHkb5Irx+uDVQVOG7r6LO2vPOJX9v+F3T+1l7PvpEdv/tNJxPTsLnwxOV1mOqDOul32R7Rf06e5fSvv5mlN89z34nV3bZXtHy4Kr/kg3+aPou/F3F/ew9zVO21OFDrgznkulYCjx+/ktwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADFbzpG/ggxiVdTEqh3GO76dmb0X5L9cnUf4r1bNR/qC5iPKvXdyI8pt+u8/9pJtF+fe6PsrvV12UrwfSzv6odl6to/xXVneifFW+HeV/YvpalP+vTz8b5bft/nInyq+67Xa19zZ7Uf6sH0X5rmijfFFk7W1omousP6m/tB/l37mT5T8zz8aXg1HW/791dhDl753Po/xynbW3s8U4yldl9n19a/RMlP/M9DuXv5foyld/bCnXWd+w98Yyyi8Ps7nAyRdXUf7awVmUb7syyvd9lq+rrC2/92g3yi/m2Vg0b7Lneb0+jfLP18dRflRkz3NwjrO5//xrmyjf17ei/MXDrD0cfyJrn+2drP3U43SusV3llpvbqMzWIp+bvRHln28eRvlpmbW3esv12N/P7r84n0bxvdU6ytfpWnmeje+nz2Vz5/VuVo/dJMv3dZZPLc+zueF0nH1fkzprzz96+GaUP2jOo/wzTdb/p/XY3rsX5evDwyz/1az/uXaR7SUsns3mM5tZVl9nt7N8X2+5fwuXyuWwhsdi3GQ3dH0nq5drkyx/OMryby6y8TfV/t7XovzO8XNRfnrnWpRfXcvGx3aaNdCz21l+sxOujxZRvKiy7rMowvlMOwvz03DvOZwPl+He9mQSP6Ct6k6y8bH62rej/OwkWx911y4/Hq33sn2rdpKNRYvrWW2146xtTo6yud4m25opNpvsfhbXs+uXbThWp2NpuM84NJs3L7+PWRRFUR2FezN3sn3VejdrQN0s26tozrP8aj/LV+usr917M2s/63laL1l/UoZ7me0kiqdD6eD0m2xs3LzzbpRvbmdjUarssvaZvqUsu/A94jJrn1Wb3X+1yu7n/Jlwr2Uva9Cb7DVZEb4qeOqkc8My3Lwt97K9h6IO2/Oj7L1sOc863Poke7c2OsnqpQonfGercC0YrqV4zPpwL/k0e3dajrP2VlThfGYUXr/J2ufozfvZ5cP57d70MMovD8P14Eh98Ye04d7SJBuPyjprn915tnfbh/3V6DTc69ru1jBPUvpiP2xrV14Xbo6Fa034MEn3ioAn72r/+hoAAAAAAAAAAAAAAACADzWH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYrOZJ38CHxc16J8p/ZnwS5c/6cZTfqxdR/maT3c/XL25H+XVfR/mTdprlu1GU74o+ymd3Pzz9liv9rc1BlL9en0b5j03ejfIPNlk97jTLKF+VWft5uJpF+ZP1JMp/6+JmlP9E+DyPR29H+Vt1Vo9DUy+67A+UWQ9xa5K1/28ubkX5a815lH9x92GU3/TZ+fm7m6wDqqqsvu6dZvV+MN6L8nc3l8+/1RxH196r1lF+Ug6rtqrTrK2Ve1nftsm6zmL6O9kfuP/D2fUPD86ifNtltbJus76kadoov1xntbhos/b2W2cvRvkbTdYXvjzK+qpR2Ddv3WYTxfuHR1F+9nrW/utl1nee38rqd7nInn8X9v1VHearbGzvs8sXp6tsrXYyyZ7n/XY3yn9++laUT83KeZSvy6w/bB89ivLlRbb2rQ73o/z86/ei/Pr5wyh//LGsfsOlSK7c7uX7drvj4/k6q8fUJ8O11DN11p5farL5YdphtQ+z8bTay+bO1aNsfjgN739zLauXi5vZ3lK4VVSEW11Fn453m6wguzDfrrIPsJpk+UmdzX/StfKNUTY/L4pwgbFl3VG2fqyb7PmnveEmXK/V17P7yVpDUYRbvfH4VYZbP9UqrK+0HtfZ+NiMs/5kVGfrx1gZfgFh/9+F8736OOtPqvry7Xm0yRpPeZDVVrUJ11Lhvn8bdg51tm1e9OFkdfwoazvLG+lYGsWLbrtTybhWynF4Q21Y613YGR5l7xGr9PP2Wb2UXdiXjMK1yG6WT8eWepXlm/Nw7j8Jn386VGx57Rjb8lhUhXs5fbgXWC6yBtEHY1dRFEW5yu4n3lmdZgNSOw33ws+zBjp7EMWLPpxrl224VhvWq50rL62v4ixcO6bXD/cay7NsbtsdZHuxaf82uZ9N+LpRtteyCsfTNutuedz68F1KWC/VLGs/fRuuvzbZeNFP0/l2dj+zt7L+pxtn74LKqf/uwZWSvnyswvlJuH4sw/lkkc4/w/Vp++7dKD86yN5dtC8eRnmukLS2UulaM3wvXnRb3rcNxXNt+DDZ8t4S8PhZEQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYzZO+gafVbjmK8j85fRjlf3W5jvJH7XNR/s7kOMrPq1WUf2F8P8rvVdnn7YoyyhdFHeaHZXGjj/LPNI+i/Ek3i/Ln3STKr/usq5qG7aEqs+ez0yyjfOpsM47yk2oT5d9aX4vy743fjfK3rna5FFWbtYdN1vyLj83ei/Jvrw6i/HmXtZ/95iLKPzvP+ofzdTbeLddZvc/GWb2vuuz6v3P+wqWzHx3fi65dFW2Ub/suytfldv+tg36UPcu+Ce8nHKrL7HEWo29No/zJK9lfsLeziPJ9n85NMnWV9W3LNvt+j9bzKJ96Mxvqiuko6xuacK6X1lc5yvrCvsrup93P5lbVJutPJg+z9rO6n93/KpyLddOsHkfz7POm9bhYZd/vos3yX7+4HeU/NXkryt+pz6L8ss8Kcl5mc5NUv87Wmu1XvxHl62vZ3Lm4k83dZnez9t9OsvbZh8NvVi1F0dfZ/Zd19jeUYf+w7rIP3IX1XoVPqC7C/i1Kb193chLlyzocH0/Ps/xutneVzg/DpXXRh2vfvkrrN2s/YXOLleF09WKTjXfpXstBk7WfoggX71vWnWXjbznN5nt1+IVt9rLrp+2tWqXtOayXdC8qa555f7LK+sN+nn3eugnHo7Q/SfVbvn6XfQHdo2zvKvm26vOsVvrJ9ShfdlnjrMK2GY9FYd/fN+lmThZP+55uHP6B7W7NxLXSr8PJSVgrfZfdTxXefzXP9t6KLl0rZHtRZfh562U4lw/bf7pWS+eq4Wuyog2X7un9b1tZZ5OBfpM90G6R7fUWYb6+EY4X4f0Xu9vduy0n2V5yvc7qvZ1k32+1Dus9/HrDrb2tr9WeNvH4GPYP6XSgXGZ7k304Plan2Vq52wvH37B9Nmfhu81ROv/c9oSM95OOj9V4u3v/5TjscMP7L0/D/iR811eEe6WTh+HvnHb95POJSvurcD2Vzm9jW54/V7NsPOrD/qR8dBrlJ3cvX79De0/Dk7X1WqzC312la8FQf5LVFnwgWx5LgQGJ6r289F7FwLaoAQAAAAAAAAAAAAAAAOAPOAQHAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDkEBwAAAAAAAAAAAAAAAMBgOQQHAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDkEBwAAAAAAAAAAAAAAAMBgOQQHAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDkEBwAAAAAAAAAAAAAAAMBgOQQHAAAAAAAAAAAAAAAAwGA1T/oGnlaTMnv031h3Uf4Lk7MoXxffifLfXN2K8ndGR1H+mfokyt+us/Ock3IU5a+69vo6yk/LLF9XfZQ/68dRvu23e15309VRflJlz+dwdB7lZ/Uqyu83iyjfFuV2833WX9XlsM5jt5PsflbXss+77rP2tlsvo/yjzTTKX3RZPXZ91h5uz0+j/IPFPMqnxtUmyp+1k0tnF106trRRemi1UoyyuUzZZrVSZl9VUWZDUVF2WVsuv7GT/QV/IuubZ+NsbEllnzav9bM260veWR9G+R8Z34vyVZHdz7b1m7RBZ/VebrL66ibZWBR2ncX4YdZ++nBttL6eXX/dZB3EaJx94GlYv6s2e/6pB+1ulD+ssv5qHY5fV14Vjhdt1t7Gp1n9NhdZ+2mzqWGRjhhdeP1+nfVv63X2eae7Wf3eX2fj+1GbzVX3w/o66rL80LRHx1G+mmfPsz7N1kbjk6yBbuZZewuXdkW/7V3YcH7bt1l+s8nqtwon6MvONvX7ae8/iPLNNGv/6XxycpLNB7pRVjDp8jqux3B5XW3SFVXW/tPxcTTKxrvF+umqr36ZjRftvcuvN5s7t7N7CeeSzUXYdsLrp21/M8vy4VZCWirxXlF6/X6S9YVb12137VWG7ae7uIjy/VvvRvnq8CDKFwfZXLLcZA2irLN8NwsLLGyfqXLLS/duvOUPEIr33gYmneula6mqCecC4d7/tqXjSzo+1uu0PYfj77Ae55XXb8J3KRfhu6lxuBhZZu/1iyZcvNRZvlxk/WHZZONXvQqf53bLi8etCttnF86fw3df/Sqr9zKsr34dXn8Wboavw3oMfxfIE9YPaz5clNvtQMt0PpleP93bC8ff8iIcr7k6ttz2+y7cS9jyWireemvDzYEtP0/4QNL2mY7VaX7b9wMfJkn7D7ID+zU1AAAAAAAAAAAAAAAAAPwBh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGKzmSd/A0+qiX0X5vXIT5d9ro3jxH0zXUf56/e0of9KNo/xhlT2feTmN8k+bapI1iDY8H7tXLbLrd2WUP+lnUf6gPo/yD5qdKH+0zu5nVmf19bHZe1H+tM3a//X6NMqPii7K1+XVPl/djrP2OXqUfd7fPX02yr88vx/ld5tllH/3bD/Kr7o6yqd2x9n9r8P7mdbZeHrYXL4/Oerm0bVPu+Mof63Orr91fR/F21k27Zzez65/8UxWu1XW1Ip6kV3/0e/eyK7/I/ei/LTJ2vKsycaiG9OzKL/TZHO3824S5c+6cGwJu6qtj12b7PsqZ9lcozrPvt++yT7v9DibS653s3pvL7L66o+yL3jTZHOZyTRrz32f3X86FnXh9ds+/H7L7Put0wK76srs+Zfh+NjX2fXHj7Lrd6Ps+pt5ev9Ze2v3s+tXVZZPXbSjKP/u5iDK32my+d603O7nHZrq1s0ovzrIxsfmInueo9Pt1le6lKqy4b1op9ttP3Wdjafp+DUKxyN+gCZrcM1JtkBq59l8r97Jxosu656Lvgnnk1m86Jot989h/9+F66PdabgAftqE87dEfZatLZpw76QPx5Z2nP2BtFaKbedT6fXrp2su1od7FVvXZ3ON6jTr2+pJVl/dKBuMqk24lgq3orpw7RhPrYZWv7y/LquX/jR7L1iOw/a/yBYv3XTL9RX252X2OOO1ZjtVMI9VuvfWheP7Ohsf+yYbX8rT7HcMxTzbCynCvbpyExZA+Dibi+z6q92nbO95aML5WFFt991aGbbn/C8Irx/2D8Uo+x1P/Shcux9mv8PjMUvfHdVb7t/SekzrPb3/NluQ9GF9ldPstwblxt4zfzRp7ZZh3xAL557pXHhwe0U8Wdtuz+FcrKzC90DhWBS/J0jnkr2xCB63q31SAQAAAAAAAAAAAAAAAIAPNYfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABis5knfwNOqCs8fnvd1lP/OZj/KH3enUf5HJ9Mo/7A9j/Lzahzlq6KM8m3fRfm6vNrnRaezVZR/L2w/dXOU5Ys+yp91kyi/6EdR/uboJMrfW+5G+VWZfd6Hm50o//z4YZTfrxdRfqfK6uWq65qsP2kusut/5cHtKD+r11F+VG73+7q/yNpnE7afnSbrr3ZHyyifPs9Jtbl0dqfK7mVSZtOwoY1d5SL7ruqLyz/LoiiK0UXWl68vstpdZlOZoso+bjF/J7ufh9XNKH/4mftRvg5rcW+UjRVpba3Due06nDuPyuz629Y+yubadZ3df7nKnn91kV1/dJL1V9MH2ffVV2k+q6/iQdafLGdtlL+xG6510rGuycaXdC68COtxVmZrtStvk41f9YOzKD/ZDce7Wfb866z5xPXVZbdftE02HpXhWmpSh/ONcO48DycEh3XWP4SP88rrT7N6aU6ytfh6Pxu/mkXW3tbLrF7C4b0It0KKog/Hxyr7vGV4+b1x1gE92mQT9FGZjdf8AOkX3GXtZ3SR5dtJdj9l1v0XwVK/KIqiWIcddF9nnzc1brIPcDjNNq+2e/dXXLPdV2r1Iuvb4n3McfgeZZKt1dpw7OrCsTFcuhRFl33eamxseaK2vJdZrbLvt15mDa4bZfe/mYVjXbrtHw7tqf5qvza98vo2XFunf0Gb1Uu5zPJx8+mz2UnXpJO3cPYTzp17v8h5srpwfrXM1rLVKPuC+3A+WYbts7zI7r9ssopsjrP7WR0ogCslbG/9OlublpNswZCOd7F1ttfbh+/qy3SvJcw3F9YvT1RaL+n8apxuJof1UofvZhfh+JJuhqfC51mE79K5QsK9hLhtpr9LCK/fh++h47EllI7t8H3SekzrKxXvNYZzvfD+w6kkcAm2qAEAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABis5knfwNNqVNZhfh3lx2Ub5X97+XyUXxVvR/kfGpVRvgrPZ9al85zv5/xoFuV/++KFKL+zs4zyi34U5euyi/LTsF5O22mU/9Ru1v7vrvaj/OlmEuWnk1WUf655GOVv19n9XHWj86y9jY+y/u29u1l7eGN+LcrvjrJ6fLicR/mz1TjK933Y/8/6KJ9+3sPReZSfVpfvT3bKrBbrMns2gxvrVllfWz/KvqvpvWyautzP2ma9CJ9/dvtFtcna8vw72f08GF+P8vUr96L8w1XWN/zQ4atR/mbzKMqPiqxvXvfZXDidm8e67H76RdbgyofZ86z6rH2Owu5nMgn/QNb8i77Krt+HX+/yJJurPphl9fLxg6weR+Ha7kZ9GuV3yk2Ur8ts7nzV9evs+VQnZ1F+/DB7nuODbHzsxmG9hPOTbpzlN4+y+ur3wrXmJrv+3mgR5ddhh9L12fOfDm2+t2Xd0XGUr/f3ovx4lrWH9U62d1Ivs/G0zOJF34T1Nc/+gn6Uza/qKstXRXY/h6OLKF+H88OnTffgKMr317O9inqdPf9uEba3Vdb+w+622Oxk1w+3JuN/erAcb7c9z5tsvyKbzVx91TSYj22yuWF5kT37Mhy76lXWdsoum8vU2e0Xm2wojaW12Ie11TTGlsepb7O1bKwL2/8my4+OsrVC12QF0E6G9Yo+ra92Gk5ueaz6TbY3XzTZWqrYZPWb7oX04XvZItwLLNthtc/wNRlXTbh3WHTh2j27eqwcZeNR+0xWv+neSRU+Tp6sfp0tGLrs1UVRjrP1USycr5bjsCKbrL7KdZavwvUgT1j4bjZtn/F4seX1WroeLMfh75DS8Tfcz4HvSeduaVtLa73O9vbKKlyMhO8p+/B3MPCH9WF9/RH+gu1eftt7n/CHhb/jiaVz1VR0/+WlJ7dP169rAAAAAAAAAAAAAAAAALhSHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLCaJ30DH8S316fF3vpy5/heHu1u+W4yXdFF+dt1dl7xjU0Z5cdlG+Xf2lyL8s/V70T5g6aO8ry/0XujKP8bRy9E+d16EeWfGx1F+TdX16P8KGzPJ+00yh9vZlH+1vhRlF93Wde87rP8TrmJ8lUxjvJX3fS9rD0vru1E+fp+Vo/vPZONX+90e1F+tcnaT9dl48tmnfXnF6vs+dRVNp4+PzuK8gf1+aWze1XWdpqrPQ0ruodHUb4ah9/tMuubd97J+v52mj3/ctNH+fFJlu/DqU8fzg3vVjei/M5nVlH+vMvGijvNcZSvy+x5jsqrPZfszs6ifPovm1Rh+ykn2fc7fpi1n6LMrt9nQ1FRXXLN+F3tJGs/57NJlH/z7DDKf3R2P8qn9qrwgV51ZfZ5+9U6y59dfu5QFEVRPZpH+dndrF7acdY+w62Kop1kz7PKliLFxXE2Hyj2T6P4psvqfVpm7WFeZflR+XT9W1X9JmsQ/XG2tm4m2fxzvJ/l17Ms32Xxor7I8qNHWftZ7GXz4fFhNt9uqixfhx3QnXBvqSjuhPmrrV8so3z93lGU76Y3o3y/H44XWfdZhNPbosmm20U7ze5/Ha5fmiZr/7uTbL59bZx1KOHjufK6xeX3c8pwrldcP4jiZZu1nW6UNf5mkbW19U52/XqV3f86nJunY2nRhHs5k3Cyyvsqw7VmmXbmbdaeu7C9FU12P1W4d5jmy3CtFm7VFX34+Ps6u38er2qWvacswrVX0YTvLkZhPqzHcp2tLcKpWNE14V5RWC/p/fCEdeEXFrb/dK2W7tz2q2ytUIX1Xh1ke5nlJtt7S/f+ecKq9OVmOH87D9df4d5qWYf3n46n59lavByFC560v+LJSt9Npd9vm/X/aeuJ6yWsx/4i+61NvH5UL1dHunYP9W22tkiVRTj3Ce+nTGsrbPtl+Bs8rpgt11c61xucPhwr4rnwdvsfPuTS9rnteh+Ip+vXNQAAAAAAAAAAAAAAAABcKQ7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYzZO+gQ/i/3HyuWLajy6V/SvXfje69rwa/1Fu6dKaoo7yo6KP8s/VJ1F+r1pE+W+vb0b5t9pJlH+mXkf5SXm5dvC0mt4to/w3792I8i/OH0b5ebWK8us+q5e7q70ov+yyrnAV5rs+e/77TVaPo3IT5edlG14/e/5XXf3wPMpPH06j/Pgoaz/3H+xG+arOxotunZ2H77PLF0V4/fVxNl585VH2/PfHWX19dvbmpbN7VTZ2XfFpWNEtllG+PM1qq3mYtYXUbCdrm6v9rC8PpzJFv8mKa3ycXX/njawv/9boTpR/fucoyn9i8m6U//wk/MBPme7sLMqXo6z/qY6ytUUqXnl1212rdW9n/cNZk93P69NrUf6b82zt9cWdr0f5sy4c3K/61DCczPTrbO3SRemiqB5m/duoyb6A2SzLl+FaZ72bjY+biyzfjbP7P77I5obdtex+qjJrP3W4lzMrtzv/ueq6R6dRvh5le0Xjvaz9LA+zeunrrL21syhehM2zKJfheLfIxrvp9XCvos7628MqW188bdLxq19m+fokWw8WN7L+rQ//6b4unJ+U4YDdhM2t3GT1Pp6Ee+FNVl/Xx9l64fI7IU+f7iLbV6rPs3x7Lev8uyYcW8ZZcZXpWqHI7ifcpo6V4+wv2J2GfRvvqw/bTzoWFTcOs3wT7lPvZXOfbrTd9p/O9brwtWma75u0f+Cx6sLJzCjcS5tla6N+ml2/D+sx3RtIx690btiOs3pP57Y8ZmXYP4/DDrHNOvRyvN297aIK3/susvlqqp2mi7Xt3AfbUdZh/1xvt0Psw3oswt/xdOfZ5kC1sxPl03d3fbq+i9I8aWUVzjfC3xqk+k22F7Vtfbj3Vu9m9cjVEddKOlaE+nW62A/vP9z3T69/9X8IwPsqw7lYn/7y4YqL6wUGLP6R99Vkyw0AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwWqe9A18EL93+lwx6seXyv7+7u9G1/7xyR/lji6vLrPzh6OijvLPNW2Uf2uzjvK36pMov+hHUf6kO4vykzq7/tNm9l4f5e8+nEX5e3d2ony900X51EV7uX7hu47X0yjf9WWUf7icR/kbk6z9vzS5F+UXvfPP7+voURSf3Mva/+RhNvSu38oGpG6a1Xu1ztpzN86uX1Th/Syz+ylOsvHxt3aej/IHo4tLZw/r8+jar4yy/OB02VyjP8v6tqrO+qqmzcaW6SxrO0WRzTVGp9nzaS6yfLVJ5z7Z81zvZn3Vr731QpT/0b03o/xrm3ei/LX0633KdGeX79uKoiiqUTa3qo5Ps/z5IsoXxUGU7utsLG3H2Vi0mWX1db6f3c/v3rsT5f/7nY9H+Y8f/GqU5/HqL7L2X773IMpPxll/3le7UT6tl77J8u00yz96lK1lv71/Pcp/ev52lL9eZeN7ulf0tOnDvavuJBuP6gfZ2n1yLd08zOpxtR+ujcKtlmqZtbfNJssv2uzzzqtVlJ+WmyjP++seZXshdbhem+yF87FJtleXbnWl9dWFb1HSvZZUVWR7LdeadP8hG0+fJulY1If7jM1e9uy7Sbb4TdcuXTh3S6W11TdZ2y/Dfcmm2u57i6dOuHfYnWd9VR3ubRTzbG8j1VfbXevEwua8mYf7/qMwz2PVrbLxqO6zBtGHc72+zsajdiebG/Z1WF/jcHKYlmN4+c5e9dXSh/1bk01oykm4l9Bm42l5sJddv0zXRmn/EMWLzs9+PtyqrP2U42z+1i+WUX7r0v4kvXxYvzxhW977L8PxqN88XXur5cgA86EV1laZzmXW2XuL2JbHivj63lN+qJXh3lVRZn1nH65d0r3D4bGXzB+Szs233f8PTfJ5g6xRCwAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFqnvQNfBDffnStaNrJ5bI3b0bX/uHx/Sg/KUdRPjUq6yzfZ/m6XEf5o24e5Q+r8yjfRemiaPvsT9Tl03X+c/ZgE+WbB1l7fuPkMMp/ZfpslE9dtNn93z3fi/Jnq3GUHzfZ8191Wf3+/uS5KP/CKOvfPl20Uf6q688vonzz3qMov/PONMpvZll7aCdllA+Hi6IPZw59md1Pc57l1wd9lF+cZvX7L7/z8qWzz4xPo2v/xzu/E+Wvum6xzP5A2HbSkX0yy9pCtcnaWtln+fosm4tNwudTlFnxrh9kncPJm9lY+v++/qko/ydmr0X54ikbu1J9mz2f/jyby6fKTTpXDQejKquXbny5NeYf5LMeaLOT3f/D8W6U//L1bG74xs5+lP/4KF2tPV36Tdafp+2zbLPnX51kc9vRPBsfp012/+00G182s6y+Lvaz+rp3vhPl311n9RK2Bn6QcH7Vh+NLdZHNVyd3s/rq62wvbbWb1ddmlvYnUbzYrMLxa5l93qrM+rfr1SrK8/76VfY8+8Uiyjf3TqL8eC/b21vPw735cAHZh/myDeefXfYXzJpshKnD+uJ9hO8V+otsrKjuZ/uMTTh328yzuVjadDbzcCzKhvaim2Z/YDbP+rZRbS/hSerX2dytPzqO8tUsW+uXu+HYEm7VteNwHzybWhVdePv9KNz7tDfwZHXh3t5FNnerZrPs+vOsvvo6fI/VhONvuFeRarPht+gm4YDH45XuJYR75+leXfruq98NB4BRtnbvplmD7sK9vbjen66f8fADlE3WnuvdLB/X+zirl/T6aX+V7rWHPwvhcQt/11ikv0NN3zVlV4/32rcu/d1nrQI+tOLaCttOFbadcK02OOnzhD+kDNci/Spsb+FcaeuGdj9cLen4kvbPT0n7tIUAAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDkEBwAAAAAAAAAAAAAAAMBgOQQHAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDkEBwAAAAAAAAAAAAAAAMBgOQQHAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDkEBwAAAAAAAAAAAAAAAMBgOQQHAAAAAAAAAAAAAAAAwGA5BAcAAAAAAAAAAAAAAADAYDVP+gY+iPtHu0W1ml4q+95mL7r2ur8b5SflKMpvW12WUf56eBzyTn0c5Rd99nyOuihe3Kqd53w/03cvsvzd/Sh/73g3yn9tcivK746WUX7RZu3t0WIS5c8X4yhfltn1p80myt9bZs//9xYfifJ/dvpqlK/Lq12P/SJrb+XxaZTf+U42HrWTeZRfz7P+v51m+U2YT4/bV9njL6o2u59yk9XvYtJeOvvl4+eia//24b+J8p8bX27OM1h9Nrj3q3WWXyyifHV8FuXTmV5fp20zez6jk1WU78NanIW13o2yv+ArB89G+f/m2mei/H84+50o/9RJ63GTzU3Kddg+i3ButcyuXx9n/cNknLXndpzd/2ovu/7qZrZsf+8imxseddlcoyiyuQ8/QNdH8X6Vtf/yPFsLNsdZe07Hu80sWxut53WUXx1n9bK4leUfrHei/FGXXf/FKP0UCve6ivbyc/miKIr+LJsf1mG9jGdZe5hNs/FiE9bL+iCKF/06u591m93PqMy+r2fqK72tfeV1Z9n4Uk2y+cPkbrb+7UZZ/7zaD1d44XSpj7ur7A9UZTaff3b0MMoXRfY8nypd1ld12dStKI6y9y71zizKN/Os7Vfh2qXcZG053avoq2zuXIX5Vw6y94LfjtL8QOFeRXcR7gU+yOqr2c3GojbcSwi78qIbh/v+s6z9d+Pshq5dtzdwlcR77ScnUb5qsrl/uZPtDaTvsdpJVo+Lw/S9WhQv1ntZPfJk9etsLzzeOw/zRZU1uH4crpXTvb1pVu+bSfquKVxM8UT1m2x8KUdh+6zC9jDJxpeqye4nrfcqfHfUz8P5Z1hfPGF9OB8I10dlGbbn9Hdd6d78lpVp/+B3pVdHWCt9+J61zKYycVvr043htG/YsvR5crXE9VKlm1fh3liT7VX34e+Q4MOkrLMBrA9/JzG08eiyzPAAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYrOZJ38AH0X9nXvTT6aWye39ysdV7aftuq9dPNUUd5feqcZT/3LiN8nWZPZ+quNz3yuXU9x5F+f3XdqL82y/Povyr1Y0ovztbRvnUxTJr/+0mq69mlNXLYpN1zVXZR/m3VwdR/jvteZR/sdmN8kPTb9ZZ/jx7Ps3bD6P8zjRrD5udrH1uptl5+NVulm/D7rzcZPniLLx+W0b587cu/wHe2Mtq65+c/EiU/9yNr0f5wemzvqpvs76zu8jmetUoq930X47oR+E0u8zaZrnOns8ou3wxHWWfuGuyv2D9ejb2/usXPhrl7974UpS/VWdznysvrcd11jn3ZTZ3K7vwfqqsvVVV1p5HD7P8ZJKNvet5WC/vZv3Ja/vXo/zX79yO8sXOaZZ/2mx5vCvbrH32y1V2/ZNsfByF49dkmtXLai+cq55m93N6NI/y925m48WoGNZe0ZWX1lc6vqyytWBxFq4FH46ifDofW+1ki6/1Xjge3Yzisbvr/e3+Bby/LY9f/flFlK+Os8X+eBbW1364dzIPx99R9jzrOstv+uz+9+vtvhvhfXRhrYRjUXl8EuVH4VgxCmtlcS3cS8hKtyiqrFbGTbaW3a23+x6CH2DbexXpWPQwW/uOxuFa5yBb63fhVmObbb0VxTRbu4ybrH/jyYrnbul4FO7NN8dZPXaT7L1jO87WOpt0r24366+6vfTFF09U+LuffpXtvfVN1qGX5+FcPnw31YVrqc1OuFeR7j1c7Z8ZPH22PH+L353W2XysGIcTpr1sb7gP302tnsmu3078dw8+zNL5WxG2/3I6ifJVE75LD8fT7iybHxbhu+IirEeukHDvLa2VogzbTvgbziJ9jxiOvfB90r3q8AxCUYT1OLAzF/DHKt176NLxKMz3V3Ov1wwPAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwXIIDgAAAAAAAAAAAAAAAIDBcggOAAAAAAAAAAAAAAAAgMFyCA4AAAAAAAAAAAAAAACAwWqe9A18EH/xP/yVYrI7ulT2P9n5TnTtWTmO8nV5tc8T1ul5yHI798F29A+OovzB782i/Gr3epQ/+qHd7Pqf2kT5f+/OG1F+3Wftf9PVUf5//MyvR/l/f5r1V8/Ukyg/KS/Xb/6B7Pu68vo+incXi+z6792P4pO2i/KjG/tRfnVjHuXLLps6tItswOjC5tlX2fWb8+z7LfrLX//kNOs7f+7gN7J7edpqsWujeL/KaqU/OYnyRZ9dv5xkfXMxDhv/Jns+zWIV5avzdZQfhe2/XmXP57XRR6L8Wx/L+qpb2dD+9Anbf7/J5m6xNmv/xSprz9X5RZSfnS+jfHORjdXNIquXoz4b2/+v8z8V5f9Xn/9KlM/nnk+ZbdfXRdae4/FundXXNK3H9jDK92VWL9042/v5yuGtKP/V21n+0+PTKM8PkNZXOr6E40W6lTYK53s7k2xC006z/nkzz/L3r2Xj0XurvSi/6MPvi8crrK8iHC/6k6w/bJqs/e+Os73AdjKN8qv9rOLbTXY/qzb7vGdduD7liYnHonBfsj7KamsWji2badb3L6+F76WCfbqiKIquy66/7tPNgbAv5PGK9w7DvbGzbK5XH2d97Xgvm1vVq6w9l1tunjfnZ1E+mwnw2G25Xvplli/D+hodZXu91c0t70WFw9doRwVcKeF74rhemvAnWmE+ra9iJ9sba0fZfGy9m+UXN8L3uFwp/TocL+qsw+3DveeiCe9nlNVjt5vND1cH2fVPn8uez1P2S4OrLx2Pltm7ylRZZv15Oc9+O1Clv7sNfye0vnN46Wz56mvZvXClxGNROnfbtrAW074Evk+4lxC3T/gwSfvbuD8PN3ufkv7/ap/cAgAAAAAAAAAAAAAAAOBDzSE4AAAAAAAAAAAAAAAAAAbrsR+C+5t/828WZVl+3/8+9alPfe//vlgsir/8l/9ycePGjWJ3d7f42Z/92eLdd9993LcBAAAAAAAAAAAAAAAAwIfAVv5LcJ/97GeLt99++3v/+5Vf+ZXv/d/+6l/9q8U//sf/uPhH/+gfFf/iX/yL4q233ir+wl/4C9u4DQAAAAAAAAAAAAAAAACuuGYrF22a4s6dO/9///+Pj4+Lv/N3/k7x9//+3y9+6qd+qiiKovi7f/fvFp/+9KeLL33pS8VP/MRPbON2AAAAAAAAAAAAAAAAALiitvJfgvv6179ePPfcc8XHPvax4ud//ueL119/vSiKovi1X/u1Yr1eF3/uz/2572U/9alPFS+++GLxr/7Vv/p3Xm+5XBaPHj36vv8BAAAAAAAAAAAAAAAA8OH32A/BfeELXyj+3t/7e8U//af/tPjlX/7l4tVXXy3+9J/+08XJyUnxzjvvFOPxuDg8PPy+P3P79u3inXfe+Xde82/9rb9VHBwcfO9/L7zwwuO+bQAAAAAAAAAAAAAAAAAGqHncF/yZn/mZ7/1/f+5znyu+8IUvFC+99FLxD//hPyxms9kf6Zp//a//9eIXfuEXvvf/fvTokYNwAAAAAAAAAAAAAAAAAE+Bx/5fgvv/dXh4WLzyyivFN77xjeLOnTvFarUqjo6Ovi/z7rvvFnfu3Pl3XmMymRT7+/vf9z8AAAAAAAAAAAAAAAAAPvy2fgju9PS0+OY3v1k8++yzxY//+I8Xo9Go+Gf/7J997//+1a9+tXj99deLL37xi9u+FQAAAAAAAAAAAAAAAACumOZxX/Cv/bW/Vvz5P//ni5deeql46623ir/xN/5GUdd18XM/93PFwcFB8Zf+0l8qfuEXfqG4fv16sb+/X/yVv/JXii9+8YvFT/zETzzuWwEAAAAAAAAAAAAAAADginvsh+DefPPN4ud+7ueK+/fvF88880zxkz/5k8WXvvSl4plnnimKoij+9t/+20VVVcXP/uzPFsvlsvjpn/7p4pd+6Zf+SH/XvdVeMV6NLpX9P97/8ejav3H0QpQ/Wsyi/P3TeZRfLS/3Ob+ra8sov7O3iPL702WU/9yNt6L8//7OP4/y+9U0ytfl1v8jiIPy1V/6eJQffTNrz+20j/LVOooXy98+jPK/8uUs342jeLHZb6P8l2YvR/ndg4so/7/59P8ryv9Pdt6O8pMyGyquen29/Qv/fpSf3cva//Iw65+7cKTuw3ybtv959nm78Xbz/V7Wodx85iTK/58/9V9dOvtnpkfRtWdlNhcYmtP/NPsHDFa7Wdvv6yhedGF+Hd5PPFbshG05vP907O0mXZSvwtr62LP3ovx/9uxvRvn/0c7vR/nbdfaFtX32fNKx7v5/mf1Xry9uZu0znVtV2VSm6LKlSNFOsvzqMHv+3SisrzBfVGF+nN3/dHcV5efTsyj/kXk2l/z89dei/DfWmyj/cpM9z/t/KauX5bWwP0/bc7bULMq0vibZ80nHl26W3VAZ5usma/+59PpZ+y+r7Przcdbh/r23/oMo/6sH2d7JyV/M5mMnL2TjV1ovafsswng7y/5AOw/H94Ps+53Osv583GT9Z9tl31fbZe2/77N8F+5NpnuZ//qdF6P8zz/6i1F+81O3o/z9H84mNOn8J12Lp+uRdG292Qn727Be0r2uvXDvueuz+UDbnUb5osjy8022wFtc8h3Hd715dBjlf2n1Z6L84cey9vDe/+DZKL+eZ9/XZjeKx/sDyfiy3g/nYvtZ3z/eycaW3fl23+v0/aMoPy6y/O0ye54X66xW1m02lv73d1+K8tf370b59Y9l72lOPpINLqv9sLZmYd8ZjnXp3HB9LRyLwr2rySwcu2ZZvVyfZWPFXnMU5W9UWX+yCl8sXGyy+nq0zBbL2VvHomg+ms0Nzz6dzfUubmbPZxNu5XdNWo/Z9dd7WT6d67U3snrZOcjGo91wPHpu970o/+L01Sgf10ub1csmXNtlb7Fy1Q9/Ksqff3Q/ym/m4d5DOncbh/UV1m87za6/3smuf/GRrD/fuZXtDT97kM3Hnpm+GeVfbLL56ih8GbFss3rM7v6PoMzaQ/2J7Hchm5tZh97OH/tP/L7PZp4V5Honq/fNZLv1e5JN54vJK2G97GXzvXGVXf/WOFtffHKUjb9v/p+i+PBUWftsbj+TXX+cje/9KKzHMN9Pwt+JjsO9qBvZfP7uvxeuxz99HuXn82x+OG6y8WVnfHzp7OQ/ii7NVROO7UWd1VYV1mL5wnNR/sHnb0b5u38q25upb2a1+LH/6W9GeT7k+vDF78CUk2zzs3rx+Sjffv1bUZ4PuSteL0Px2FfI/+Af/IP3/b9Pp9PiF3/xF4tf/MVffNx/NQAAAAAAAAAAAAAAAAAfMlf7P9cDAAAAAAAAAAAAAAAAwIeaQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAxW86Rv4IP4sb1vF7Pdy32EH528EV17Um6i/Hk3jvLvXduN8veXO1H+eDWL8tcm51F+XLVR/rDJrv/fLW5G+Z+Zn0T5OkpffbduPIryX/j072zpTv6t3z+6E+XfOdmL8pNRVr/TJsu3fRnls3RR3Arb86vLZ6L88ey1KH+rvtJDRezkM6sov9jN8uvTbLyopll/2z0aRfkybM991Uf5Irz/atRF+WsHZ1H+hf2HUf63zl+6dPYnp9m1r7rVTtZ2urArefSxLJ//0w5ZWy6zpln04f208+wv6NPaCvP7exdR/sY0q8XTdhrld6qsvY3KYc329l/Nxop2Monypy9stz2nk5kufPzVMpxbtVm+rbdbX/UkzIf3c3v3NMvPsrnki5P7Uf4gXAvWZTYAHHw7q5fjMptbnd8O5z5NVl9tthQvulF2/W43W7sUm2xA6s+z76vbXUf5cPgtyjr7A5NJdj/p2nFnnLXPdK/lI+MHUX73zUWUbydZA724Gc73Jun8MPt++3B8Sdc67UX2F5ydz6P8+TjrP5sw34b1nkrrse+y57/ahP1POEGZvnovyh/ObkX545eytXjanvstz9/SfL/KPsDpcdb/nJ1m64V0fpXquqy+6iar3806e57dOruf1TKcj917Ncrf+PXs+3r4I4dRvgrn/8tr4fpic/l8lQ29RTfJvqt1lfUlR2HbObvI1pp9OJamtl2761XW9tPPe/DoG1F+9HtvRvn55PL7kkVRFF2TtZ98cp7uI4dzw1FWL22ffd5lODdJ++bzZfr8M1W4L99UWX116dw5HBufj9JFsfn261F+3mTfV9ln76EvbmTXX2c/AyiaRdjfhlP/Mtys7sP+5Cyd+8+z/nm1yZ7/3XH2Xjmtl03Y/tP3yvtFtnZJdV/+SpTf6V6J8ss72fNf72Xfb9WG7Tkcj8ouXPuG4+P4Xjh/K7O9hzfD53Oxl9X7zijbG0ula/2qyPbOY324N/z1b0X5pn85ylfh78zaSdbe0l+FpPVShWvZMuxv5+9k7efRQfY7vNRsnO1VL9vsGzhdZ+u7Ytv1sm1duNfyzrtRvrlzO8qXdVZffZv+2CB99xu+S7mfbXBc//2sHt++nu0VPTrI2n8zzd7tXEwvP96laxd+gGrLv9sI+4a0dst0L2QVzpXefDuK7z2TzQUunsnmkidVOrbAh0dcvw+Pt3MjwKX5L8EBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWA7BAQAAAAAAAAAAAAAAADBYDsEBAAAAAAAAAAAAAAAAMFgOwQEAAAAAAAAAAAAAAAAwWM2TvoEP4k9M3ix2p5c7x3dYbaJr//DsjSj/3mY/yt8ePYryb46uRflll321qzA/q1ZRfl5n+S48n/mwW0T5W/VOlL/qzpbjKP/x6XtR/qVxlk99ZOcoyr+33I3yF5tRlN8bZe1t3qyj/LPT4yh/rTmL8q9tZlH+Vh3Fr7zmXtYeXnr53Sj/Zz7z9Sj/6vnNKP/uYi/KV2Uf5c/WWX+y2Gx3qvH8blYvd6bZ+Pvc+OGls8ddG117XmfPfmilODrP7v/hp7OxfXOQzd32nz2J8idH8yjfb8ooX3RZvppln7cK28+1/fMof3s3e543x9lYdLPJrr/os8+bqsvt/tsgk/ey53/YZPezvJaNXRcfzebm5XnWA1WL7P77cKjow3Lsw3qpmi7K7+1kc8O96TLKf2z3fpafZXPzPzn7dpTfq7L20IQj2PjdrD/ZG4Xtrc4a3OmLUbzoq6y9jU6yBr1ps/svw/GonWT331XZ/dQ74fi+exHlJ6Ps+tem2fVvz7Lx68XZgyj/mel3ovx/9SCrl4NwPC3bbO14Hu7lrPez9llnX1dRnobt/5J7jH/wF4T1El5/PcvydTqfrLLxrgnHx1GTrY+u72TzpWemp1H+eDGJ8vOv3ovyRZGt3R+9kPWfm52sPZfh+qVaZuN1F46/7Sy7fpk1t2I9C//AKOwPJ1l77sLxOl3flen8ts6eT7fM5qvVd+5G+cNx9nyOX8n2eotw+dhOL18v9TKrrWaRfdZ2ktXKZif7bldltq+X/jOa/SyrlTJsm1WTfbntKvwAbbjYDLXvZWu12VenUb7c3Iryixvhe8Td7Hk22dBbjMK52+og3C29l+WX17L2eVFmH7ifhGNX2P7raVaPqS7dKy3TzZyw3r/1epTPVjpFMX4Qvnd8NvsbNuFaIXytX2yCsa4oimL0KNxrqbLx5eJO9gEe7mXXfzgO1zrhXC+V7mxnvzrZvvb3vhblpw9uR/nmo1l+s5PthY+Ps/bfjcN6HGXXX97Prr96N/u8jz6RjXdvHWT11UyyvYcu3cwPfbzIftc1NO03Xo3y1V72O4Dm5eejfKrdyeY/003WP7fz8HdsD7L8+Dhcm/5Q1kOfXc/q5V74bqEK53ufKLK95ysvnU/ey/byq/1sfljuZ/Wbzp/LRfa7tKLJxov93wv3ijaHUf7+p7PxaHWQjY/nYX/FYxT+jipVTrb83dbhvnYVrqVWWe02v/XNKH9z/EqULzdqBS6rO85+NwA8fv5LcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAxW86Rv4IP4WFMV+83lzvHNq93o2rfr4yj/2ua9KP+t9fUoP6+WUf6km0b5NxbZ/czqdZS/1pxF+VG5ifInXR/lb1RdlK/Lq31e9OStvSj/wmfvR/nPT+5G+f3DRZT/l2efjPLLLuvapmF7XrSjKF8U2fUv2nGUX3bp/WSWfVaP8zK7/6GZPCyj/De/80yU/5nbvxvl/5Mbvx7l//mjz0T5k3U2Xsyb7PvddFn/mdZXWr/p+JWMv2fhZ63qrK0Nzfi0jfKzd7LPu/xY1vfc2juN8p9+5t0o/95FNpdMLTfZ2JXNfIri2Z1HUf6V3Wxs/+j0XpR/YZTNNdbpBx6Y8jyby0/Dejn4xn6UX97I2ls3zebO3X72easm+4LHk6wvb5qsvzqcZXPVw+lFlN8fZdd/aZbV12em34nyO+Haa1TUUT5VvpOtrWeLrL0V/Y0sXmVzk4tb4Xwga87Fei+rl3aetf9iluXH8+wDPHOQjde74+z7nTerKP/x3ay+bo6y+789yvaWnq+z6xd3s/F0dJE9z2tn2fOcHGd7DycfyfqTzTwbH8tw/rA6yPKbeZZPZ3BlneV35tn3Oxll/f/eJLx+nV3/9uwkyj8/PYryv/og+8KqTdYf7vxm9nyasztR/vxOthZf7WX10o6zfF+F159l+fVuWMBd1p+0e9n3W4X1OAvrMdW22Xzj2u55lO+X4f3v7kTx6muvR/lrF89G+cXz2Xi0PLz8+ijcti0206ztp9u8fZ21/VW2dIznnmHXWfTjrC23k+wvSMfSIt2qq8K1UZ+trTevvRHlJ2dZrY8+mtXWen8S5TfzsG+eZF/A6ih8bxd+v7uvZX/g/E52P5t5lk/ntuu9cO8nXTum+i1v7nXZ/bffeDXKNx95PsrP14dRvptm31c7D/Nhf7s+2e7ez+5bWf7RR7MBsp2GeyfZa7KinWX9edFd7XdBqfbhUZRPf7BU72Zru34n+4L7S/7+6LvaeTZBrBfh7xiOsvYzOcrq9+y5bHxfHWSft0y/4LC8njbdSbZ3Ur+d7R2WTdZ+ymX27rQfZQ2iWWV7S+Uqa59V+PJxfJbd/9HHs/Gry8qx6MJ3a7y/fp3thbcPHkb5eh225/1sb6Oos/Grn4YNrs3m25P72bujm1+O4sXZ7XA/5GC781ueoLBtFuFeWr/K2nIZ1mKcb7KxaPK72d7S9ebFKA8fKuHeVRnObdO5BnyYVNPL781UfVUUl/xZ3dU+2QMAAAAAAAAAAAAAAADAh5pDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMlkNwAAAAAAAAAAAAAAAAAAyWQ3AAAAAAAAAAAAAAAAAADJZDcAAAAAAAAAAAAAAAAAAMVvOkb+CDmFfjYl5t5xzfpBxF+Y/UfZQ/rB5E+aroovw7m4MoP5q1UX7d11F+p1pG+brInmeqC6+ffdrhmb2dlfqo3ET5B132hG7Xp1H+I+P7Uf7+ZCfKH63nUb4ps3rs+jLKr/usXzvvxlH+qMs+74Mue/7zKrufoZk8zPqH/ivTKP+NT9+K8ml/+9HpvSj/te5OlD9eZ593E/YPZ+us/eyPFlH+aD2L8uv+8v3nMvyurvpYVF9kfeHsQfZ517+dtbX7h1nfdmN6FuVnzTrKv3u6F+U3bdb3r9usRSzW2Vwgrd1b40dRPp0bzrOhdHjK7AP0YX7n7VWU3/9GVl9HP5KtFZpJNpcMP27RhvWS5o+idFHUVdYf/tDeu1H+87NXo/xzzUmUT9XldrcR+tOsfy4usrnAfJ21z77O5kpV2N+evhjFi26WtbdiFObDtUsX1tf5KttruTXP2vOfPHwjyv/M3m9H+XSv4qzPPu9eFT7/sF7KRTb+VuGe286rYXsrsr2r5UF2P2fPh+PFNFwLpvOTtBzX4ec9y8b3yWG2N5POn1+YPYzyu03WPm+Nsvlnv8zmt+1770X5+sb1KD/55t0o35xdi/IXd8K17zxrbxc3s3y41VVUy6zARtl0tSjC/q0dZ+2n3Mn6k/1p2D+X4fUn2XwpW/0WRXec1WM5DvcOv/laFJ9dZPO30c3Lr9+Xz2R9bTvO2triWpbfZLdTjMKlQrXKarEKx67VtXBwnG33vVE1TjuTUJk9n7LOnn97P3vvWLfZ8588+0x2/cNwLNrL5s71MmsP6Vwy7GqLnbey/Hov+36Xh9n1yzb7AOUqfD6bLW/WpZtF/Xb7h/bdbG5YrbPRtLqerY2qVTaWVrtZvuyy57nZyeZKo9Os/zn8enY/57ez+1ntR/GivQjf1qQdyhXXL7O5bXeSrU3L3exdUHme3U85zsajvs76z1G4Nuqa7A+Mj7O9z2aRfd6zO1n732Q/28j3Wnhf/Vm4d3gQdohH4VrwIHt32s+2+7uT8cNwLb4KfydUZ/e/PAz3hhsF8ySVddYf9qvsXW6xyPZyyiZ7N1WGe2P9NGvPo3vZ+F6Fv+PZTLP86Fy98G+ltVjt7kb5tBaLNtuLSufa5c3svUJzls0l4Y/VwPaK+vB3JzBoA6uvy/JfggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwmid9Ax8W82oc5Sd99ug/PzmO8u80Wf7fLF6M8qn9ehHlD6vzKD8vo3hRFeEfuOLCx18ctTtRflE/ivJt+PxvNKdR/qPT+1H+XrOM8u8s96P8qOyi/LLL+ofzNut/7m72suuPHkT5dd9G+VFZR/ltK7PbL/otHyd/e3UQ5W+NTqL8rFpF+arso/wmfEDXJln//2A5j/JNlX3Bv3v+/KWzN+qsr3q5P4ryB+Usym9bfbGJ8s15Vuvllovr4SJrO5Mm+7y7k2xseXCW3U+Z1mKbPf+LzSjK//7Zs1H+udHDLF9nfUNXZGNvUWx3LCrPs8lYvcn6qm6efV9F1nyK2RvZ9S/q7C8Y72VjUdr+qyrLLxbZ531UT6L8a+fXo/y/Hn08yv+n+78R5a/XWfuflGF7C5XT7Hl2F1l9de9la4Wd38/Go258O8ovbmZz//UivJ+w/Rdh/ab1eLEM1y7n2drltcmNKF9kly+eC+cDRRHOH8L66pfZfCPNF++E/e2dW1F+9p2zKN832V7FxSqrl3BpVPTTLF+22V5Iv8ny3Tr7vIv1dreFPzN/K8q/MMr65y7+t93C/iHUPsjmt+nss76X/YlZF86Hnwv3AtP2XIZ7sWG8D8evahnW10m4VzfJOojpKBsvDqbZ/OfZWbZ3+3qULoq+zdYv/Xm2vqt2svbZn2TjS11fvj8ZB9miKIrVYTb3Kbvt7oWE29RFuI1W1BdZbTWj7POuR1ktVrvrLF+FD6gLH1Co77PnWR8eZtffZH1P9SisrSr7fstN9vy7WdYe2mlWj5tp9vzT+mrOsrGrq8OxN+yvNm12P+00XGum+vD64VyjvnkzyvdnWfsvwvoqL7K1Whnu5VR1dj+jTfb8+7B9tpOsfdar7H5m76V7w+H4nr0mjp/P0JSTbK8u3XtI9/bqcK6X7jWma5cyXFvXXTY/6fey8auvwvnYRVZfO+9m9XX+TLq3GsX5AfpVttnVL8LxaBJ+Yetwb7XJxrv6JNwrnWb125xmz3P+btif9Nne8Dp7tcxjlq6ninD+Vpbh/sAofHeX7tWlwnqvzsP6ejt7PsubBhj+rbLJaqUcb/e9eFGH9xPOzcvTbB+23sn2tdOVF1fMtseKULoX0nfh3lK415u+F4FBS/di08u3lx8x+uBe/JfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGCyH4AAAAAAAAAAAAAAAAAAYLIfgAAAAAAAAAAAAAAAAABgsh+AAAAAAAAAAAAAAAAAAGKzmSd/A06ous/OHbdFH+ReaOsqvp29G+bc2B1F+Xi2j/F61ivI361mUT5//VdeOs/xO+H2ddNMoPy3XW823RRnlD+qLKF9Nsnp8uJlH+Z0me/7zOquXbavC5z800+Muyp+9kPW3O3X2/a777PpvLQ+jfFO1UT41rbP63XTZ563KrB67Puv/l93lp0pn3SS69nGXPfuDgQ1d1WIT5Uen4Xe7yqap83HY1sK20G1GUX5SZ89nbxqOvYusvXV91jefrbPJw/E6m4sdtTtR/qTf7rKl7bO+P55LbrL2UIyyz9s32fdbtlnfWS+z64/uZvWyHmXPfzwL54Zt9n3VdfZ8RnV2/8fLrF5O2myu/Ua7G+WL4jRKp3PzSZm1hyKsr2qS9YdFnY1H3UHWX1XrrP2Mj7P8Zp7V46rKnmc/zu5nvcj6q2onW7tsuuz+H66y+vrSxcej/Gj+9Si/V2b9/0HYn29bd36e/YG33oni1YOsfseH4fd1ktX7ZpY9/67J6iXeisouXxTh2mgVzrfT8evN1fUof2d0FOUPq7B9blsffmFtth7sT7LxOmv9RVHfyL7fZpH9DW229VZsstspyjacD4fzvaLK8u0y3JvfhP1VOD7Otr13mLb/UHd2FuXLcP2VPM0mnFt1k+y7rVfhXDUs9nQuGW4lFFW49A2nSvHYWIb3n+a3Lqyt9uHDLd3Id/+CbOyq4gearWW7SbgWCddq/Sxcm4Z7LeHUrSjDgqyypXsRbpUWfbiXs3VhvfQnJ1G+WyyifJnWS5fdf7VJ3+vsRel2L2sQZdoc0u5hy/nmfLt7M+GrhcHpl9m7i1SZ7tUdHUf5+vq1KF+G871qlU1o+lH6riwrsG4U3v863JsP36OvZ+G7gr2hTciutj5cG6X1Xk7DvfktT7jLdD4Q5rtxNv9sTrO1eLMf9ofNwH48wPvqV+HeTPhbkng+XIV7aRdZ/9CPs/6/3GTjS1pfq8Pwh5NcHeFcMp17pspx2NbS97jp707CvqE8DTfy+XBL9/2r7dZjWaebV2H7D3/X0rfZ2NWnYzt8EOnaa8vv+fpgr7TvL5+1IgIAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwHIIDAAAAAAAAAAAAAAAAYLAcggMAAAAAAAAAAAAAAABgsByCAwAAAAAAAAAAAAAAAGCwmid9A1zOzXonyh93F1H+ubqL8nVxFOVTz4T3MyrrLd3Jh8Nmt4/y1+vTKF8X2fd11o+j/Ek3i/KH9XmU/9rFnSg/qTZRfrdeRvlptY7yN5uTKH+nOY7y8zJrP1ddtc4+bzvO8ssuG3q7Pjuv3hVllH+wmkf51MNldv1ZE7b/adZfzers+jdGZ5fOLvpRdO1U24djdbndf+ug7LL76ausbfbhLPV8td3nX4V9Yddnn3fSZGNLP43ixbod1lzp9eWNKP+5yRtRvgn7wm3XSzEK2+cq66uqZRvly6x8i3qR5sN6f3sS5TcvZh9gPM7qa9Rkz3NcZ/lRmH+0yQr+vMue56jJxtJqy/+WTn+RrWXLcba2KOrt3n99kbXPJvu4xeg0rK+wf1tfD8f3cLzruizfdtn9L9qsvz3eZHPV99psb2ZdZV/w7X7La68ye/5FeD/lNOt/ymuHWX6T3c/kJMuvd9P5apbfhI8/nU/2bVYvVZU9n024Nn1zcS3KPzu+HuWn42y+NDTtUbY3UzbZAqmeZvOH5iR7nuOTbH3RjcK9jbC++nC5EzbnolqG41c2XBTLdfb9TupsfrtJH1BxteurX2Z7sf3J5fdWq3lWW9UqXFs8yuZi7Sj7butl1venY10b7uWU4dywWmTF2+9F8aJ8yvbBU9159t6lnGfvdapN1rdV82zuX62yBtoswnoch2ujOmz/q6x9VuHks8y6qyLcehucbhFudoXSsajrwu+3zb6wapS1/36SjS9VOJdJJ2P/H/b+LFa7fL8Tu9b4THt8p3qr6tQ5p85oH/u47bSbTttK7CaKQ6Mw5RIFWghIR3DHBSC1BOIiCAkJCRCNEM0VghvEIBHRgIJQutXdpInd7cTj8ZmHmt5p73dPz7jW4iKy46B0nf111eN37Xo/n+tvrVp7Pf/ff1rrX1Vm3UNRduF4F66V43oxvHysYbvZ7/Wvs/Gr2IV77eHeSX8vm6Ck88ndQVjv4bu7dLrUhPPPdG+GT1md9f/DJqvfchru5W/Dd6fh9atltvbtZ9n8s9xk88npWXY/23m2F8unrArX44fhZlF4/XQvP6737OpFeZG9exzun2TXv8nm29UufP7cHeFaqgj3uuJaDPfx49oNDdu7vc/LK5aulcOxpQy/20i/C0lXFkP6XrzK1mr7XvvCJ7Ln70j2xf8JDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFqXvUNsB/9MET5RdlG+Z9ts6ZzNayj/GE5j/J8vN1BH+XPu0WUP61vovxlv9/f9/3Nvb1e/yer7PrfOPggyp+Ez/NBc5Xl6+sof1pl9V6Xr9f56qHO8us+e55tmdVvatdnf0BVZuPLvWnWnq+20yi/CZ/nYbOJ8ov69uPXUbWMrp2NvOOrrXKzC/+BMB5efrmeRPmmzmqrrbsov9pmbbMbsgfUVtn9TyZZ20/N622UP2myvmE1ZBWzHlZRflFm7Sc1LLP+oZxmfWG5ztrn5DLry1eTsH1mU42i2mbX3/wom0tWX7+I8nVYX6lZWC+p591hlF8Pz6N8W4aTn1C/ztaORZgvm6w/qY+PonzbZs9n+jIbL3azbD7Q11l9DXV2/e0kHY+y/qoJx990rroNJ/PdkD2fWZndf13ueZsu3CtK9VfZAFAfZfVVr7IJYtln43t7kz2fvs3qq2/CCXE4HJVVeP99dj9NuDbdhfXSh/Ph182wCxdIab2Hj79ZZe2hWWb/gu0irK9wOp+uN4dZli/Sxx+OX004X1126Q5Etp6664YueJ5JtiiKap01tmqb/VbtMuxr9zwW1eHWQ5fWVmjYZc+nWex3Lfi66Z5la8364YMoX62ytXV7mc39+0k2uKRzw3TsHdK1XXj9Kt3qDfdy+HjDNutAh/A9fbnMxvZqme1N1tPsfpo2HL/C+kpfq6X5OtvqLbrscfIp6y4vo3xdhf3bOnzPGr5bG8K9qzp8V1CGe4FDOJ+sdtlap+z2u3fFx+uvs3d3dXMc5YdwPCqagyhebsO9wzBfX4XzyXm6Fs/UW/XySvVZfzuEe3XxbLsL+/9N+K6yDO9oni34y5usfxgmWX01V/t9N8srFM7dynCtXzbhe/F0LhnODcsqnLtF6aIoV/v9rohXLO3Lw+8Uy1n4nVN6P+FeSDw2xi/Kwvu5yeba8B+x5/rNZZtpZVC/5TAUxS0/AxvX19QAAAAAAAAAAAAAAAAA8Kc4BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDWv+ga4nfWwjfLvd2WUn5WbKP+47sPrZ02tLrPzmd2Q3U96/btumGfP53ubN6L8z03fi/JVkd3Pi+4wyi/qdZTfDnWUT930kyj/xcmzKH+/voryp1VW7/NyEeXvuqHK+s8q656LP3qZ1dfXT55k/4LQbsj6w5td1p5ndfiAQlfbaZR/c3YR5Wfl/u7/fp3d+9iUV8soX99kfUnZZ89n9XSeXf+NIcrPp1nfudq0Uf7qZhblDxerKD9vd1H+naPzKP/G9DLK92Hfs6iysb0us7583/rzl9k/UGdzk2qRtZ/ZWVaPu1n2PIfw+Tc3WT3W6+z66+44ym++fBPlT+ZZPS6arD85DOe2qcs+66/2bsjaQ3z5bfb8h7Osfqtp9jynZ1m+m2ZzsXRu27dh/jxb6y/n2f2fLrL5xuNZNh61ZRflt0XYPxdZe27C649OuNfSP83WvtVRNn5NLrL55G6atf8urJd066GfZs9zG+b7cHxv66xemjLb+0nne2n9vm6Gm3S9lq19+0dZfYXNoWiWWf851GH9hvVelPudn1RVOF6ED/SgzuY/r5uhC/qTOutry132W5Vd1hbaq6wv7CbZYNSFY8Um3UYOayvtS4awtiZNtnfCTxHuDZSzbG+jCOurXmf1MrnI2kPf7ndt3YVbyeUQzlVfr9emd19YX8M2m+uVq2zuUF+Hi53w/jenaX2F/U86voRf2ITlyKct3GscurBBpPV1na3VioPs3Vd9kdVvOcsadDfP8tr/HdNn86X+JnuXUoUTmjJ91zcLJ0xh/1BeZ++CyiabYNXherBej+zdDh+rv87qpZ6Ev2+4X1H04XiXjo/pu75kb6YoinKbrdfKPvvukFco3UvY83chwy5sm3u6jz/RhIuRcK6arh35bCvbrL3F9Rh+FxVLzwiEY+mw9t6FP0dhey7D74TS6w/ha/pqcfuXR9WwKYpbfjZgSxsAAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRal71DXwSN/2maPrbneNbVJM9381+Tcs2yp9U6yj/j9dvRPlu8jTKf72dRflUXTrP+bF2ZRT/g+u3ovzb7VmUn5XbKN8N+/1967KP8m/PzqP8dqij/A83D6P8m815lH9YZ/eT1lc3ZM9zbPVbr7P7X3yYPc/3X5xE+bcWF1E+1Q9Z/7DcZePRusumGg9m11H+oN5E+U2f3c9lf/vxqw//2wKrYRfl07nAvg2rbK5RX2f5o/emUf7m7awWNyfZ8+z7rFY2y+z6wy5rPy8usudz+sZllL+YZnO3fp49n8ftyyh/FM4dqiJ7Pvs27LJ6L8J8eXUT5duLoyg/n2W/7xDONcouihf1aojy1Ta7/6vJIsq/PFhF+c8fRvHijUk2F0jn2lWZPc+7PteLNeG2yS5r0O151n5mTViP6fyhCn+vKruf9Xm2N3NxmPXnu3DtOKv2uzY9qrJ6ueuGbTY3L4qsPZRPnmdXP8jaz/YwG79287D/DMejepXlt+HeT5nFi90t92D/WFuFAzyfqv4mmx9WV8soP3uW1e9Qhf35NKyXsPups+G32B1k+SLrHuL1ZhXuZT6YXEX5bxfj2n/Yu/72/dVwEzaeo6zx1Nvst+1m2diVqrZZY26WWVveZUuvoghrJc039es1d9u3sgn7kiHsPNPJTKjcZfcTds1FX6dru/T6WT58jVUMk/D34lM1bLK1bDkJv5PoswZdbrO5f3OezT23R+Fe+563otJ6HO70FzmvobD9p3v5Rfhureyy+6kO51G+n2cNtG/DtUu4NWAr4Y7ps/lA/K5sm413xTrcHAj3/stpuJd5kL5r3e/6jlerDN+dpt9ipPmySxfkofRdQdiflEfZy9Zqffv+x0rnp0jX4ulaPzSk199kbbMMx4ohnUumwvvvX2bfCVUH2VySn2Jk9VKk32102eQ8nevlO3vhWBrfTzg33PPeJJ9x+24/6Xd76f2E3wkVddD/BN8k3PGv0QAAAAAAAAAAAAAAAAD4LHMIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRal71DXwS/3B1WCza+lbZv7ZY7/luxmU7ZPl32xfh9bPzk9/dXkX5r7SHUZ6PN/soK/VvnT+O8j+z+CjK/+L8h1H+stpm+X4W5Vd9G+WvummU/9z0LMpvh9v1a3/ssp9H+bbYRflUXd7t89XTZ6soPzvJfq/zs6x9/uT0NMo/nGf97eU2u5+uz37f7VBG+fevTqJ8+vd+5fBZlE98vsnG0sMy60vGZri8jPLVQdZXTc+yfHOVjXXbs0mU35RZPlV2Wb7aZLX1cpXVVvnFbDL51aOnUX5R7Xdu3hd9+E9kffnYDNc3Ub6+yJ7/ZLLf59NNsrGly6ZuRR82t8MfZfV1dpDV15PDbOxanG6i/JvNeZSfhR3QXZ/rpdLxrtxlc+1yOI3y6exhaLLfq2+z9j+UWb5vs/u5nGZ7Ay/vZ3PbNmz/B+H4FY9Gr1t9bbP+bbhZRvn6/edRfh6Od12btbdwqR/XY3ue/Qt2x1l+0WS/16Ta797DaZWt3V83wzqcAL3M5ifNJJuQNUdZvl6k40sUL+p1WF+XWf88PM7Gl8U02/tsqmyEOazTegkf6Gukv7iI8nW4F1Lcy/Jll63d63WW75usVsJt86LqsutvF1ltNbOsto6mr9d7xH0bdtnzH66vs/zDbC3eLbK9w6HK2mcVvpitw/wmXNulwte+RdGkqx0+VWH7LKfZ3vbQhp+QpHsDs+z6zVXWn+zm2YBUht9VpIZ6z/8CPl1V2CE24fgyZO2hTOv9Jpv717f83uqPdfN0PI3iRX+3X9XwaQvrq1hm7X8I9/KLcK+lCsfHdH6brgd5xYY9z5/D8St991W04V7RNpu/xddfZfVebm+/n6CyXq2yziYDZTpWpLUS7lWka6P0703XgnHf06uAT1U499+3vbe3PmtvQxd+KJfmU2G9xHNJ+CTS/jysl2Hf36kk/WGQfb2+rgEAAAAAAAAAAAAAAADgTnEIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRal71DXwSf+/qZ4pp0d4q+2uz/2907UU1+bPc0t50Qx/l32nmUf4PttsovxrqKN8VZZYP/966dJ7z48yeZPkPz4+i/OrN29XhH6uLIcp3Q9Z+0uv34fUP63WUX/fZ82nLLsqfd4sovx7OovyiGFd/uG/12XWUnz/Nns/kWZY/f3MW5asya/9lmL9YTaP8eptNNeo66/+X26y+Hkxvovy7s2e3zv7W6t3o2t+c/DDK1yP7bxf0m2zuUJ6/jPL1vWwsmj/LamWos7nMEM6a+zqrrWqbjUXhVKyosq6/OJscR/k/OHgzyv/68bei/GmV9Q3TMusb7rp+uYry9dlFlM+fZjY32S2yBj3dZO2hm2XXv3kjy8/fyzqIb03fivK/ffQ8yv/SLBtf7o9reBmdfpXVV9mFa9lpNjcst7son42ORTGUB+E/kLX/vg33BsL6/f0Ps/Ho544/jPK/ulhG+ZMqHLD5WP1NNpdPNYusYuZh+yyHbERN62W3CPNnWf/zk3unUT6tr69Mss2rt+ts74SP1z1/EeWbOptATA7DvYTTbDyqsuGxKLPhugi3tot+Fz6fJvsDDppNlH/UXEb5osjW46+TYZ3tCw+XV1G+fZL1zdvDe1G+KMO9h3CtEG4zFmW2tVQM4V7LbJb9C+6F+4ZpZb12huz3GlZZfVXnWX0N97L3pt0kK4C0XuL62qUFFtZ7G+5lTs3FPlXp7xXuDQzhXkXRZGudfh6udabhXsIku5/mJmufm8OsILt0s4W7pc/qpWzCl0dtuNuevstqs/spd9nfW4V78+FnD/HaizsmbM9lOj5G6aIouqyB9mG+WmZ7ydU6e7emXj7jwvVUWi99OD8c1tn6q0i/4wzfxdXH2bcM5db65VMTts2923OtDGE+Hlt24cZ2H+61pNcPx2pesbR9Vlm+mmbvdYaw/af1UlThXl24dxL3b+nz57MtbQ97PvMyhONFUex3rjQE3xkPw+2zPncDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtJpXfQOfxO+/fLNodtNbZV8+2ETXXlSTP8st7U1dZucV+6GL8kflLspfhk2nLfoo/0F3E+XfaQ6j/Otm/iJ7/ucv5lH++8uHUf6rsw+j/Ofasyi/HbL2edIso/yTzVGUf7rJ2ufnZ9nfm3raD1H+Xr2nGxmr88soPjk9iPLTs9uNW3/s6iKrx7rMft9+KKP8cpmNj7t1ONUI73/ZZv3bbxefi/LXu9v/vX/twe9E114N2dg7Ldsov3d9NtcYVusoX7+4iPIHH2S12DdZ5zbUWa0MVZbv0qln+J+yGML8/MdZe/tO91aU/7/M/2KUf/Rm1h7eutOrnNyw20b5/vmLKJ/+l1PasF7Kbhblq3XWfzY34Vqqze6nm2TX3x1k9fVvfftno/wvH/4gyv/lk2xuzk8xZHOT/jpb+1Z1Nn5V51dRfjoJx8cmm6v2bXb9Pqyv63vZXPsfPX83yv+lg+9H+V+eZs+fn6IM52PbbLyoLq+j/ORZ1t76NtsbSOeH6Xi0eZBd//xikeXfyPLXffY8j6psPcJPEa7v+susf6vPsvXa/ElYAG9k86vtQThfzabbRXkR3s8b2fh4v836q9M6m2/w6emvst+qnmRtf/Y0XLvMs1os+6xW+nQtnl2+KLJtw3ifdNFk7xGzXWR+mn61ivJluJaaPMnGrtXb2XugtD334d5Jagjf6/TTbC17eJjt9fJThN8BxHvz19l4VC2y8aU4yOby3TRsoGl9hWujeDwK9eP67OT1E+4lFF1YX0M4QZmG7/omWX5owr3wRdZAu2m4Fz4L35WFeV6xcC88vnxYX+VBthdVbLPFfpnWe5c9nyHdO2/Vy50SvtvZt2qezff6mz3Xe3j57jJbkTc3J9m/gM+sYZe9NyqbbLOrX2dr5fR+4rltqL+xj/xZVu65/ZSzbG9g2GRzsfS7wyFd24V5+I8I9/bKds8fNqbtPzxTkE7ekvodhtv3Df5PcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW86pv4JP44Yt7Rb2a3Sp7+eUyuvZbf5YbGpG2rKP82800yn9r20X5SdlH+aMqu38+3vRsF+XbszbKP18vovxH29Mo/4XmRZT/fPs8yv9kcz/KL/tJlP9oeRzl63KI8tNqG+Xv11dR/uttdv27bri5ifL1s4soP31xGOWvLrN6vKznUb7fZePjsAn75212/bLL8rtFNh4932bP/2CyuXX2o5OT6NpF8eMwf7f1m6wvKa+uo/z8o2WUL8qsVnbz7L8dsT4O236f5attNlYUYXx7mN3P5EXWN/yDb30lyr+7yMb2X5v9TpR/3QxdNjcfbrL6qi6ysStelHZhg26y+p29yPJDnc0Nu1lWL5cHt1vz/rF/68XPRfn/1MF3ovw7TTaWvm6GPmuf5TYbH9N6LGfZWr8+y8bfaZ3VSzfJ2nM3za6/+Sjrfz44zdZqv7/8XJT/9dk/ifL36mxtzU8xhOPdahXlq4ts7TiZZiNeN83mq9uDbP7WnmX1tT3Kxq9vXzyK8jenWX81LV+vvYqx6ZdZvTSX2fjSvszafzcLx4twvbM9Ctd34XR1vc36h+2Q1eOjOtu74tMzbLN9+f7iMsrX82xu1YZ97eYwW+ukew+xrBSLaZs9/0eTbN/8oyjNp62/zH6vus3WCu1hVi99uNYph6xg0rGub8OCrLL8wfT2++bcQp+954gvv1pH+XRvvmqzuUw1C+c+J1n9pnv5m3CuF07Fim627wGSjxX2t/06q5c6XBuVTdb+h0nW/vtZlh/Cvb2+DffOw/8s+xDO93i14r3wPturK7pwfJxk65cyXE+l/UlaX8Mk6x/K/U4f+JQNm2z+XM6zvbFYnU1oqpPsXUp/ka3XivA70TKcfw7huzJenWGX7eWkc6u07cf3M83aWjqWxoZssEj7Kl6xdG4S5ouw/adzt/Q7hvT6w1Z75rOjCseXdG+j6MJ6SfufoH6HYOzyf4IDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtJpXfQOfRLeti2Fb3yr7qCqzaw/9n+WWbq0ux3X+cFq2Uf7n29s99z921ndRflFOonz6e43t+e/b9Mkyys+fZM//g+vjKH9zL7v+psja23m/iPInzU2U//b1G1F+1WVd7fs3J1H+fnsd5Z924e/VfxDlF1X2+47NsF5n+YvLKH/8w02Uv35nGuXX2yxfZMNj0SyzfyC8fFEMYfw66893p9l49OTi8NbZfzD9anTtXz/4wyj/l8OfdnTCsXpYrqJ8/eFZlJ82WduZTLJ8tc36wu0iq5bdLMtXuyhe1JusGOt1eP8H2dzz3/7wa1H+t09+M8r/0vSOF9iQ/V5Dl/WFwzKbS5bTrP2nM/NhkrWfos/+Dc3L7PKTNrv+YpLVSx/2P7/56AtR/u8+/GKU/1ePnkf510463u3CDjrNb8K52yarr+ZluNYM23PfZv3z5ji7/vWzbO34u4/fzq5/+ltR/l6Ufg2l410f5rdZfZWbbZSvw3qZhfPV3Wwe5beH2fW3J1n/sHwzy1/3Wb1vh3DA5pUabrL2X7+4ivKTSbb3Np+G7f8g25sst9n4u9lm9/9icxDl63SzhU9P+F4k3ZcswtqanGV7LelaZHOc9f1DVlp79yDcZy+KbOzl05XO3fpwH78+z/radpr15euTsADCjfY+/AKgnGX91f159l4tuzqfunQ8CvfmqzbcSzjP5v79JKuX1WmW34Xd+fY4XGvez94LcrcMm/D3XWX1VTZZe67C73h24fi1Oc6uv74Xrr2yzxh41dLv6sJ3U+leeFqPZZu1//4gHDDqbAK3PQ6/k5vGX2Jwh6Tvcos63LsKv6Mtmqxe6nfeivL9R0+jfFGG91+/Xt+Jvk7S96xxz5nWVji2lLssH889Q2UT7u1trXXukvg9aNrXVllfO1xne0tD+J44HivS68Oflq6N0u8Y0rVOOH4N6ZmaIZyrJnuTwbXN8AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit5lXfwCfxb/6Vv10cHd3uHN+9+nDPd/N6qcvs/OTD+mBPd8Jt1M9eRvmjH4X1Ug5R/KvTj6L8QbmJ8l9vn0T5r7RPo/wvzH4c5VdDG+W/1j6P8m2RPf8vNIsoX5eTKH/XDV2X5a9vovzs+8+i/MOjx1H+8nPZ0L6+H8WLPmvORdln+W6atefdafZ7FdMsX1W3v58Pr4+ia//j5btR/i9P34vyozNkv22/WmfXf5rVVttnjXM4zuYy5S7LtwdZ7W4P6ig/ZPGib8rsHwgd/iCbS37YvRHl/9cPfj3K/y8/9+9E+Tuvz/rCPpuKFcXFZRQvw/6h3O6ifFFm7bmss/Y5W2+jfHMTzsU2syhfDNn1//v9fy7K/8av/y+i/Buv21owbM/p3LNIx8f0+n1Yj+usg2g3Wb0cbo6j/FDOs3yVTW7/0eLdKP//evDlKP9fOc7WsvwUQ7oYSdeC11G+DK/fhuNduvO5m2XjxW6eTSjff3gS5b/zZrb23R58EOX5lIX1lY535XIV5Ztn2fwzGy2KYjfL/ondIptPLh9n49GmDxd43BlDOBcbVlmtVC/Dfcwqa8vdNMvvFulmRRbfdtn91OlGJq9WuLcxhGuR6noZ5ZvLaZSfnof7+Kfh3kbWnRRDn13/eJL1P2dRmlct3Zsv59neVbyXcJHVS3N/XJ/AzA/CvRxerfRd1jr7fas6m/+Uk+w9fXkT3s88W4uk74m78DOD7ZH52J2S1ks6HwvXI2X4HVtRZfOZss3Gl134bnl9ml3/8nNZf/KavakZn/Td0SabL5Xhu9BwuVCU4X5FkY5fn387y7/M9gKH8Plwdwy77D1KuvdWzcKxJX3P2oRrl3TvcJeNvfF7a+6W9DuhdTY3T9cuqXRsTMde+HMVv2cNr9+9Hmtr/yc4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt51TfwSfx3fvSfLdqDya2yD6Y30bV/fH0a5Z9cHUb59TZ79Jt1G+XbyS7LN12Uv3+QPc9//Qt/L8r/Zw4+iPKH1SzKv26+/T9+kP0D3w/Px/6Tx1H8b/7mvxrld4dDlE8NZZg/yuqrnmX5h6dXUf5/9Y3/fZTvi+x51lH67vvh/+BXovzJd7PnuZtH8WJ9mjXQ7XF2P90syw9hg+gnffYPTLN8u9hG+c89PI/y/6Ov/J9vnf3GZBNde1Hebg7zHxpXNT75b/5qlJ9cZm2tz6Y+xfYwq5XNSXr98P6nYW21Yb7JaqUMa2t2uI7yb51eRPlfvfd+lP8v3/+HUf4bYfvphmxuXpfZXOn8r2djSx+We9r+0758c5zld4twbDzJ1iJFlV0/bf/NNJzrhfV4tMjWUiezF1H+fpONjd84/jDKf9hlDWhRrqL8s7+R1cvmJGv/ZdjcunCp2YfD+/Yoaz/dQThXOsn68+ksaz/zSZZv6+wHqMtsfDlssnoZ1tMo/840a8//77OfjfLfXz+K8i/+q1m93DwOF7+htP3vDsL51STMH2Tt7fDhdZR/eJjlD9psvTCpsuu3wzLKN+GEo11nHWLXZ/Ol3zr/QpT/b62zCf3yP/8LUf7sa9n8MJxOxvOlLuuuiiHc2uuOsnpJx5e3H7yM8m8eZP3/SZvtJffDR1F+Fz7Q5+uDKP9iuYjyF5usHv/nH/yLUb785bej/Ef/bFaPfdiet9njidfjyXyvW4T7XEfZXOngOJtrvH2c1co7B0+j/P3JD6L8Nlxs7sKx6Nkmq63zdbYR+1svs7GofhjFi4u/+tUof/V29nzStUs8toRTye1JuNYJx6JJOBY9Osneu6Rj0Zuz70b5B5Psfqrwvc5V+AOfh53t2SZ80VFmDaj6xW9E+fOfyzav1uFeQjdN81E8nrul74G24d5bez8cj+6H49FhtnZ/d/HtKH9UZ/efjl83Xbb4vQhfDGZ/bVFUi6x+N7+S1dfqQbbZvgn3qtN3QX0TXj/cq0jfHW3C8a54mI1fX3gzq5dvnGbvXh5PsvqdVdn8tgs7uLQe/2GRvmvN1A+z72x2X3snym9Os/vfLbLnmY4vQxV+l7AIx8dwvrp6kF1/+U72bufdr2R7A+8eZfl5ndXLUZONX2k9/jv/s7DD3bNymk2YquPwZeX9cK9iEU7gmqzA+jC/O8p+r7R+rx9nm5kv/kI2/7z3M9n49fjwMspPqmz8PQz2Dj/KXrvceWWbjUXVYbY3U9TpRnU4txrC72YOs2+8i0lWi9397PrP/pmjKP/8l7O13fxh9l3CF+6fRfnhX3gvynPHDOF3bOtsrVNU2dy/rLN8dZLNHS7+k1+L8h/9J7L+7cv/3f9PlOeOSetll61d+I/n/wQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDWv+gY+ia8fPimmh+2tsj+/eC+69j+qvxzlf/bkoyjfD2WUf7I+ivJnq0WUb+suyj+eXUb576wfR/nz+Y+j/Lzso3xdvl7nP48Ol1H+i//c+1H+wfQmyv/O87ei/LzdRvltV0f585t5lJ80uyh/ON1E+TcPLqL837n8C1H+S/d/O8ofFtMof9fra/vlrF6ufyH7fW/eO4zyQztE+aIK8102HhVhvJhk/XM7z+q9nWT1eNBmv9cfbW4/fn21/WF07fhZjszqjTSf/cF1VorF5l7W9nfzsFaaLF9uwx84K5WiCPuGsgnnSnWWP5lkP9imz5YhizKr9bq83Rrhz0u1y36voczazxAOvasH4f1kU6uiW2Ttp+zDvzesx2GdPaBdFf7BoS78e1PH7SrKvzU5j/JHYT22ZTaXPP1uNlaff3US5VcPsue/PQ7Hi1A/3e/1d9v9tuflMnv+TZPtPUzCuV48VQ3vJzWtsus/bK6i/OF72dy5b7PxcXV/v+NRF7b/YRpOmMLyWq+z+clHXbZXN5tkv1eqDteCuy77wdbb7Pn04XiX7pU2ZVZfi/ez+epudhDlr97Jnme5C3usSfb79mG+CNcL3S77e6832XjxYXEc5d8fTqJ8XYV/b5/9vatdVi836+z5PH2Z7S29OMzeFTx6lu1NPvj9bL73/OdnUb7M4kXYnRRV0D2nM4ch7Gs3m6ztvFhmv23qg2VWi9s+m3vW4Xudl+usMaw22dznoyIb2x+//F6UP/73nkb5vsk235YPsvaW1kqXvUYpqk04F9hk99/t9vseKF2pvdxk158396J8OvdZdVn7v9lmY9E2HBsPh2dRvv/3vxXlj+bfjPLFl7Lfa5N1D0UR7u3twrEuGbuKoiiqsL768D3rWVhfqVWXjY9H7TrKr8Prp/eT7oUXxQdRur/J3tPP/jC7fvn1N6P8bprNDdMON5xuxKqs+RT1KtxrvMnaw7OrbG36vfpBlF8usvHioM72btdh+1+G41dRnIf5TPfseZRvj7MBo5/ej/JDE7a3RTg/DPf20ndH4XSmqLNXHUV9md3Q08tsbT2tw++EwvFoGe7dTqrsfooifPm+Z8M6ez5DON6V97L1bFGHe+Fhvp9m7bPssgGym2YFPLnO1uPzj8L54ZvZ+JXuVR+E3+Fdt8n8JNsXu+uGXbi46LLOvJxma83iIMyHa684H6pusrY5fx5+VxF+h7RZZ2PL0+usdh9Gafj/02f9yVBkY9GwzCaTk/NsblWFe2ncMel4Mez3ux/+493tkwoAAAAAAAAAAAAAAAAAfKY5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDWv+gY+ia/OPyrm89v9CW8259G1vzx/GuXrYojyN/0kyh83qyj/YnIQ5efVJsp34fnJabWN8t/ZHkf5+1X2fBZl9vzvumEoo/zJJHuev3Hvd6N86qBZR/mf3JxG+bcPX0b5TZd1nYsmq6/Pzc+j/P3mKsr/k3XWP/zzs12Uv+v6Zfb73n/jPMr/xb/04yh/tZ1G+Y9ujqL8Zpf9vXXVR/k+7H+qMhtPT2fLKP/W/CLK3/S3f/6rIbv3kyg9PmHXU1z9XNYXllX2PIdd1taKOrt+sc3mPsM0vH5YK2WT1eJ0ls3F3jjKfuA355dR/i8cZH3hXVdvsvbQ12HfGQ7V3SK8n1lYj2l9tVl7Ltbhf8tlhlDljQABAABJREFUml0/7X+qOrv+vM1+sHcPX0T5R5OsHr82/TDKn1bZ86/CtWO9zJ7PyfezehmqNspvs6lV2p0XZTh+DWm9XIZ/b1tn10/vJzSZZO3haJatHR/Or6P8velNlH88zeaePzf7SZT/O+9l43U5HGb5XdZ+bt7K2nN7keW7WdY+u8Muyu822dpot8ruf1Vka7t2ns3fwuVIMQ/nh22TPc907bhos/uZ1Vn/sH6W1eNROB8b6kWUv34rHE/D8SJ7mkXR9Vn773fZ/b8osr2os/B51uF8rAnbc9+H85nwfrouXG+G9b7cZP358PJJlJ+8l13/ZP4gyl9+Pmuf6z6rlz66/ey32nZh7YZt5+Uwi/IX11k+bctluK+XXj99z7FJx/ZtNtd4Yxf2tk+fR/Hjb82jfPm1bPGyDGtlG+bLbZgP+8Jtkb3nW4ZLl80maw9tm40tZbqVGc6t0nwXjnWbbVZf2UqkKIo+e57N9z6I8sfDm1H++p2sHlfhXKkMx4sqrK80vyqztctluHe+Wmdzh5fLbPza99pls8v6h3Qu+UaRtefU7r33o/xklX03cO/irSh/9W7WQ9SbcC9hkuXrrLnFa7ViyPrPqypbS70fzseuNuFeRZ3VVzq+pO+VD4rzKL9vu+/9IMpPrrO9xuYLj6N89SBr0N0se/7NOsvvwuun776KIrv+1UFWXz8K58P3D7Pf96zJ/uC0vqbFD6L82PTX2V5+9aP3svw72fg1LLL+s1yHe1G3/B72T67fhe82w/Xv4Y+z9r98nD2fl4+y668X2fO5mdx+/vkouvJnQLjR2F1k++zVLuvbqpPsm+Fimu0NDItwsrcNB6Mwf/DD7D3f/P3sS7NluHdyFq5NH0Zp7px08yp9cRFfP/xmdZl9Uzr74VmUX7yf7S1xx6Tted/SekntvX738zz9n+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYreZV38An8W77rDiY3O4c36Toomv/6uLbUf68W0T53119PsqfNDdRftm1Uf5em11/UW2i/GG9ivKpq2Eb5RfFZE93Mk7Xy2mUf3f+PMrf9Nn1v3HwQZT/zvKNKP/m7DLK90UZ5dP6aso+ym+HOsp34XnmttxF+eUQ1ns5i/JjU12Hz3/I2s9pu4zy78zOo3xTZe2tKoco/3x1EOWnddbeJlWWXzRZ/39/ch3lk+fzos+mVY+zpjY6VfboizKsrcPPX0T5r95/FuXP1tncbbnN+v6DSdZ3dn3Wl5dh7c7DWnk4u4ryp+Fc9bTO8utwbEzV5X7/2yDtZbYWWR9l97O+H8WLfpa1n/ZhNnZt11l/OHTZWFrMwrGuzZ7/dJbVy8lBOLYfnUf5R5Nsbvuz8/ej/IMqGxunZfb7VuFcu77O+s/6ah3lj5ujKL8+zfr/m89nc5kynEuWu6x/GMLxokjrMXs8RRXOVReTrB4PJ1l7eDzP5hufn51F+XtNVl9v11m9V5fZ9Wc/yZ5/URxn8Sqslzez9tZPsvbcXIRru23Y/sP40GT3v62y/CQcv9K14GKa9c9HYT3en2bzwzfCvZ+Xy2wvsPkgq5eTbTbfqHbZeHT9Ztj/V+n4EsWLfr3f+urrrH128+z5b6tsPtNMswfUhPXettn1hyG7/3k4nvZX2fhSH2XtefGdbO+56rIFz2W4ft8e3b597nZhbWVNsxiusn327XH2tw5tODdss76wDPPp2JUa+nSwTv8F4T/QZ/nqxx9G+aM6+3ubm2xvbHU/6/s3QW0VRVF0y3DtmI5FL7P3Ftuj8L1OOFctpuHcoQn3QsKxNN1r7MK16b71z19E+abJxtLD9b3s+m9m9bU5DtvzNKuX3TyKF/Uy+327p9n4tXqUjV/n8+z61TybW9VhfRVhvfRd9vtmb8X3r3+Z7Z1U386e//FV9hev3zmJ8t00a8/9JKyvWXb9yUV4/adZvVy+mz2f6/vZ2n22yPYGttvw3U64V/ql7Oqj0330JPsHnjyN4vOvZk9omGd7J91B1j/3s6w97ML8/EXWfiaX2fXPv3EY5T98I5tvhKuX2Jf3fP2x6Vfhd4rf+X4Urx9n41d5Gu61h6plOP9ZZe2/DcevqssmoM+/mfUny7ey+18G37E9iq7MT9PfZPv+qeo425csu3DuX4dr3/D69SbbG3v772dj9bNfyGpxGb6H4DMu3fssw73zJtzb3mZrkbIN57bf/WGUf/C50yjPHRO257heUvu+/p4l9VgOZVHccng0agEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBazau+gU/i7fqqOKxvd44vPe13VJVR/kW1ifKn9U2Uv+xnUf7D9jTKp7ZDHeVn5XZPd/If2AxDlO+GPsrX5d0+L7pdZaX+xemzKP9L0x9H+T+q3ojy0yprP++t70X51Lo7jvIHzTrKv9FeRvm0vrqwR7zsd1F+Xt7t+mqusv7/+cVBlH/w1nWUfxi2h7bqovyH66w9r3ZtlL/eTaL8osnG09Suz9pbMt71Q9Z2+iKrlaLIxt59m1xkY+/sw+z+Lw+y2qoePI3yf/F+Nnb98OZ+lL/cZHO3tslqN5W2z12/3/b2qLmI8lWZtbdqZP+tj/YyG6vnL8K+6jCb6y3fzp7nZJLNBR6eXEX5m3U2VuzbYpqNRYs2+32PwrnhYZ3lJ2XWn1Th3G3fqpfZXGk4mEf56YvseR58kNXX9iTrP3eH2fMf5uF4UYX9Z5vdz2ye1UtTh9dvsv7njXk2d/6ZxUdR/u32LMqn492b4fA7nL3M/oFV1v5n2+z59/WDKJ9uSy4fhvPtcHgZ6vD686y+irC+mnD8PVpkv29TZ/3Jg3m2l/l4ltXjO7Osvk6a7H6+dZE1iHKezefrXfY8j8qsvdWbRZS/fiMcjxZh+w/fKmzX6f1k9ZWud6rTbPw6OVxF+bra7/zq0WE2XzqZLKP89S7rf7oPPozy9ZuPo/z829l6v77J9oZv3preOrs5ytZq3e0vXRRFUfRN1pabq6y2tkdZbe0Os/sZwuv3fXb9ySTra8s2y+92+90L6W+ysauqj7L8d9+L8gfXD6N8e5Xdz/peto+8PQj3rmb7Hbv6SdYe1tnWYbE5yfqTfhauHRdZX16Ga8chHHuLcO5TpO+N6uz36p49j/JVODbOikdRvr3J5qrbg6xBd7PseTbLLD+EP9fig6w9XH0h60/6afZ8dgdhfU3GtZcW11f4XcUQtv9UeZPNtScfZb/vMAvbw2FWj80kK4CyC+cbZ9nvOw3z129le6vb42ytvDsK66UL2/MdV82y5zmE9Vtuwu+0mqx91tfZXlS1zeqx2oR78+G7soNsKVtU2+z5XH0+28vpwr3GcGeST9lwmb0LrSbZ+FL1Yf85yeZLaX8yNNl4115n6/GTb2f1e30dzg/H9SqajzGE76XSuWrZZm0nltZu+F1Lvcr+3vt/mI3VV1eKhT8/w3a/34im10/n5s33s/cW+11Z86kL50qxPe/l7F14P9Xx4e2z/aYoXtwyG90FAAAAAAAAAAAAAAAAAPw5cggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFqXvUNfBJfag+L4/Z25/h+sruKrv2wPgjzUbz4vc0yyr/dvozyq6GN8rNyG+W3Q9Z0jqrs7z2t1uH1sx+gLl+v85/li0mUP61vovwmPE/7ZpO157S91dM+yl/2syhflUOUT9Xlfu//pp9G+dWQ9Z93XXNTRvn+946i/PMvZ+PLos76w3vNdZT/cH0c5Y8nWX++6rL6PVsvovyDWfb3rvtsfEzy1+HYuxqy37YpxjXWtTdZX9heZbVVfD8bu55/Pqutpsr62pN2FeVXXdYeLtb7HYsW7SbKvwhr8f4kmzt8uDuN8p9vLqJ8VWTtZ9+q5S7Kt1dZ3zk7y+p994Ps+jdH2dzhYJq1t7bpovz1Kvt9t9us/1xtsvrdLrL+4Xmb1dcX51n/mc61D8qsfRZ7Ho+GJrt+eZM9/3KWtf/Fk+z5bI6z9nP55ez3HcLhtAzzQ5/9A6tlVo/zRdY/zJpsr+Lx9DLK32+ytc7b7VmUP62y9tmm9dJl/We5zuafxUfZ/S8mWfvvpydRfgj3fm7eDOtr37ukXXY/u012Q+td9nweH2b18s3j96P8Xz78XpRP9w7TvaL/+81plC+3Wf9f9dn8vH6ajdezSbj5XIR7P6fZ9ZePwgEmVGXdf1Gssvvpwvn2WZnN3x6eZuPLO0fnUT5dnz6eZuup39rzfzuxe/osylfH2d5V+zQbjw6C8m3uZ3OfzWH2LNenUbyotlnbn1xk+XqT9Q2bcC7ZtdnezGSRzWWGcPI8X6SdT2YIx4r+Ktv3rA6zvbHi6Ysonu60VJus76xPs3/DbpHV1+oky1e77Pcqw7letc7uZ/lmFC+GOqvfoQ7/3rB+iyF8rzZka51hk91PNZ9H+f48m7vVk6w9l91hlt9le8nb8D1NEf5c20XW/pts6l8c/ijLrx9k91Pusnrswr26vUvrKxVuLnUX2dyzrsLfa56tddKpbR2+Jy6KbO6Zvisb6izfXmftoQr3EpaPsge6WWbX79s9t+dUvLkazvdW2douNazCvcA2Gy/KKt3LDOcb23Dvs8va2+Qi2/upV9l8YyjDd02HYX+bTWf4tKX9Q73n7xTDvcxyl9VX9yBbb84+yiZ89Sob38vwu59uOrL5G5+aYZ29dyyb9EVQ1taGw2wvpEjnwsts76o8zO5//iz9boA7JXzPGuuzsaVaZPUS12+4N9adn0f59L0gd0xaL2H73/teTmrff2/yXUuwL/x6nQQCAAAAAAAAAAAAAAAA4E5xCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wpe9Q38eTmtxvWn/vxkvtfr98WzKP+97XH2Lyh3Ufy0Wkf5o6qL8oflIsq/bg5+kp13vehmUf5+3Ub51KzcRvkXw2GUX/fZ/T9uL6L8yy6r927Ifq+jahXlU3W518uPzuRlll+9keX78Pd9ssn654ftVZQ/bZdRftfXUf5zi+yBXu6mUb4qhii/DZ//ZdAfroasL7npb6L8Yfbo925ymY3V69OsM9ktsvy2yx7QxSYb6/o2u5+qzNpmW2fPc7XL5rY320mUP5xkc7cXm2wu9mKXjdWX4Vi9HrK56qLMnk+qHLL2UK2z9lB22fOpN1G86LfhXPImq6/ZJJvr1XUf5bsuu//w5yrW26weX6wOovzZNquvzZD1h22ZPc923/Wyzep3mIVzh2XW3qpd1iDCpXIxfZq1z1Wb/b7DPOxPwvFr6LPxcbPJ7v9yk/2+7y1Po/zX5h9F+dNw7XUUNohpma0dy0lWj+VB1p/0L86ifPGj96P4YpHd/3ae9Z+bo6x9dvNwvpqulcPF9bAL+4dVNh+4WGfj9VWX1eP9OlubPqiytem+DdtswtSdZfm6ytpDc571D9M6az9duN7ZHGX9ebjVWAzpVn44fyvX4fOZZH9vOj9M/fxh2N+Ge/O/VTyK8sMunACF+f4i24utwusnv9ZQHUXX7ptsrNt0WS2GU7cinLoVZTaVLOpVOJa+yJ7PdZvd0ME8a/uLNlsrxPrwgYZjRXd+HuXro6w9l8vseTZVuBZvw/9ua5n1tfUiu/4uHLvKPivI5ib7fecfZfe/fDtc202yvYHRvTgKN3P6m2xvvpplDWK4vMyuH6X/LLL7L7uw/dRZPaZzz/Ymnexl8b7Zb3sOt7bHJ90sTS/fZf1PdRO+F++z65d1Nvcvd+He6mWW39zL5ktDmbXnSXg/6dprKMO11+xujy9jM9xkey3x0w/rpQr3/vujbPyqV9l8uw/X+s11dv/HP8zaz/KNbMBYnfr/HrxK/TIbj8qr6yyf7uWfZHvn6XyvWoZ7P2HzbM+z5zkP14/rk5F9bMM/VbovXx1mbb8I50pFE76Xbfe7L1x22VjXPs3WvsPj8Hlyt8R7k+HaqMnafznJ5j5luJeZzuXTkWKY3vXFPh8rrZd0fEnXmmE9FkO4FxK+iyjCM1nl/Pbvucvg+3QrIgAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEaredU38OflsJq96lv4c7Uoyyj/zclllL/shyh/WmXnLQ+reZSvS+c5P07Z7/f6q76N8tuijvJtuYvyR/Uyyr/ssvb2k829KP+wzerrqFpF+UfNRZT/fHMe5e9X2VBx1+txcpX1b5uTrL+d15son7rpJ1F+12e/V1N1Uf7lNquvkzZr/5e7aZS/DvNFEL/us2tvszsZneYmawuzs6zv3x5ktZW25S7Mn60XUb4qsr5ktcv62kmdPf9UP2TPP+4bwrF3O4Ttp9hvX5sqN9lcpl5mz3/2Ims/q3vZWFHWWXvebbPfa11m1580WXubTLLnv15nc9tdl/UnaX/1dHMY5c/7rL+qi7MoXxVZ+4ztst+3vMnmDt3Dkyhfr8P2Fs4lu1n2PNsXWfvZPMzup5hn+arJFpvhVkWx2mb926bP+p8PNqdR/nKa9Z9Hddb/9EX2PIdNNt6Vi2z8re6dRvnUrg7b/zJ7PpPL7PppPQ7h0rerwuunu7bh/G3TZfXyZH0U5X9/9bko/wuzH0f5g3JkK6oqe57d8xfZ5ZfZeNcW70T56Txdr4Xrr3nY/sP+Iez+i2ISjo+77O9dbbL5ZLreTNdTJ/VNlB+bYb3O8pNsvK6ubv98mjbrnJtFuA9+E7b9dr9jV/paoQqX4mU49m7X2fPfTbOx4nKdtZ1wlzE27LK5ZKq7yN4rpF1tOWR9bdOEY0ub9Z1NOJccwveaXdggqvDnLcOtwPY8XDvez36vIRvq7rx+lc3FqrD9FMvsvWY5zX6AOryfocoadL0O90LC8SuV1lcTTpXSuerQhHPP10x/dRXly3BzqRyyvdX8LXc2Hg1t+F72OhsAdgfhiB2WY7iVXzQ34fjS7Hnv+TUzrLK1VBnufZbX2fg1HGX1km4mV5usXtL89jh7PvU2m3+211l+u1Avr1IZ7vUW4fooVV1m9bh7dBzly7A9xxsK4fyqWYbvfk/SFS2vTPoisQsXy+naqM7y5Z7vp1yFm2+L7Jv5arfnj4y5W4bwO4Am/SYzzDfpWif9MCFcDabX57Ntz3O9ok/Hl/3Ofcom/JBhHoxH/e1r626fVAAAAAAAAAAAAAAAAADgM80hOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGq3nVNzBW3dBH+boc13nCuiijfBve/6yO4rG23PO/4DXTTbP8apiE+Tb7F4S2Q9ZVXXbzKH+vuY7y3ZDVS10MUf6oXkX50/omyrdl1r8dVgdR/q6bnXVR/vILWfu82M2i/LTaRfntkPWfyy6r302f/b1N2N4+WB5H+bfmF1F+Xm+i/Kza3jo7KbO2MyuzsXpsc41qk/297XWW76bZ37vtsvy6y9ryrs+un/X8RdFWWa1crLLB/XSejS1Vmf4FmcNwrLvos76zLm5fu38uNtn9lFXW3trL8O+tsrnesM3up6+z9rNeZffTtdnYuJhlfX8xzZ5nHdbLfqurKD7ankb58/ZplN8VWX9ep//tnS67/rDL2kP99DzKl8NJlG+WWXtulmF9TbL5Q1Flc8PNo7A9N9n4NYQFMAzZ33u1zcbH59tsrXPeL6L8/Socf8N6Sdt///xFlC9n4WbCNMtXN1n/3F5ma5fJInueu3nW3oZ6v/luluX7cL56vc76q3Q+/Gx3FOV/vH0Q5b88eRLlY+F6reiz8StVhvUVzz93WQfd3mT57U3Y/sOtxjJrzkXZhfWbDXfFbpuNv+tdtj59f3Ua5U/qZZS/6/rLy71du1xka9P2KhyrJ+HYNQ3HijYdu6J4UW2z61fr7Pq7TTh3DseuOlxrvm66i2wftq6zBlSF+XaeDRZ9uNeY1kvfZPky3EuoN9n1d+HYVfbpWnPfuxt3W3+TvberwrlnmdbXLpurVrNsblJtw/dG66z99OF4FI9fYX3Fm3vK5eOFm0XdVfZev26z9ln2WQea1u/uUbZWrlfZ/KSbZeNd+GqzaML+f3MY9m+mY5+qYZvtvQ1hfaX1W6b1GI53xXRc35l14f3U4fhYh+spXq1hlf1g5Tz77m2YZOuj6ibbOxzC9Ve5zq7fT8N3ay+z59nc2+93jbxCVTiX37N+lrXlahWO1eH1i3V2/Sp8z81nWzkJ2/O90+xf0Izs+Mpp9s1q2YWbb/BJ7HnvsAznkvF3Xc3t72fobp8d19fUAAAAAAAAAAAAAAAAAPCnOAQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg1r/oGxqoux3U+8Ky7ifLH1Sy7fr+M8g/rgyjPq9VlzaF42c2j/JvNeZS/6adRvgvP63ZFGeUvd4sovx3qKF+VfZQ/qrJ6nBRdlP9iM4nyr5tqk/1eqZfbsL5mF1F+Wu2i/LP1YZTf9Fn7v9ll7a0fsvrdDVn/8KC9jvKH9SrKv06a59mzHNrst2qv2yh/vczGlkmT9Z2pzS6rlU3W9ItZm9X65Tp7PgftJsq34Vh302X386DO2ls1tv/Wx9nLKF7NwslbfZLFl9ncp7zO2nMXtueqzepxc5ONLV1Yj4vFOspPw3o8mmTXX3VZf5jOVe9XWb0XRVa/qf7yKvsHqqze+01Yj0dZvbTXWX+4XWT3H059iiKcW1XbrL2t3hmi/Px+1t7mk22Un9VZPe7CerkM18qTdr9ri2GTPc/s1yqKYpXNhcs265/rg6y+mkV2/el5VjCbw6xeummWH8L+qjvI2k9ZZr9wU2XXT8ejl7usXtpZNh+o8xadGfZ8/VD3MtsbaBbZ829usv62Xmf9Z73M6qWZhPXVZPl+Ev6+4Xia1mPa2tK9kHR++LoZVrefn1erbOyt1tncpNxlfW2zylpPNwvHunBpWoRTn6EJW38fzm3Dsa6t97tX9LoZltl7jvI426euVll9NTfZK/FuGva183AzJJSuBetVOHbtwrE3HBv5eP11tvdZ1+HY3mbjS3UV7g3X4d5Gnd1PH+6dpKouG4/qcDM/Hk/5eH02Xg/X2Xc2RZXVV7nL7qdaZuNX+m6tXmfzn7g7D/PtdfYPbI6NL69Sv87eXdTzbO9hCPf+y1m2F1iG66OhzNrb5GU2PvaT8N3aLPwOKRy/+HQNXdj/h/O3YZvt1cW9Z5utj8qb8F1iH+5t77k9Nzf7fVfDp6echN80pmujsHZTZdj20/fcxTabSxbT7HkO4drOzO2OCec+1XS/34WkY1HaPtP3fGUXrqUa7134BMJ6LJtwb28ebkaF9Vj04dprfvvxaAjmhSP7OhQAAAAAAAAAAAAAAAAA/kMOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWs2rvoGx2g5dlG/Lek938h+4Vy+i/LPuOso/7coovxquovw7zWGU74Y+ytel85wfZ/0wa8/fuXkjyj9qLqP8rNxG+e2Q1Vd6/ZdDVl/p/Vx1syj/osvq5d32RZSfltn9vG6q3RDly6y7Kr53/iDKHz1cR/npZBflq/AP6Ids6lCV2fPcdll9na2z+n04ycavL02f3Dq7qLLf6rBso/zYlBfZsywfZn1be5m1nYtV9jzbk6ztX66mUX7XZ3OTYcjmYl2f5Q+nmyi/3GXPs5lnc43U9TCJ8nU4F9i3/iqbmxcvL6J4Pc2ez+L5UZRffpj1/cvPRfGi32XtuQjb/26d1eNVeP3Jadb+J3WWP2qy8SUdj1ZD9nyqPf+3dPrrsF72rFxn/cnso5sovznK6jH8ueK5arfK2v9QZePFTZvd0NF8FeUP26z9T6ps7vw8XKulqiLsD4dsvrRvwzabbxRd1h9Wy6weJ+fZ85we7Xdvb6iy+2nPs/vZzbJ8dZTVY1ov6Vow1aYd3F3XZ/UyrLL+s7rJ6ndykc0PV/ey9tkss/Yz1OH8cB72t2l7DvN1mD+os9+rLfe7XrvrovFrm41F5S7rq8o+awtV+NPWq+z6fRvuVRxH8aLahtcPSzeV1iIfr99k9VKF+aHcb4Mou6w9tOHYtQnHriJsnt0sHEurMK9cXqlhl83NyzS/Def+6yw/OY/iRd9ke5/p+BVLlyJ7vh0+Xp+ujdrw3V24F1LV4eZem629+km29krz+9YsX/UdvObCAb6/zL4TKidZf16+eBnli+Ns77YM/96hzeplmIb1Fc6v0ncFfMrS9rPJxouyDttPWF9FuP4qJtn4WC6zdzVlWF+pavua7SXfZeHe2BC25XgsCu+nuM7mnulcr9yFm4GX2Xv3uskGF5V1t5RN1pcP6eZPH+6Fp9dP83veOyzOs7kwfBJlOF4U0+w71zLdq2iy+9ktbj/+dsF7NUsiAAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt51TcwVm1Zv+pb+ESOqkmUf9pto/xln52fXA/Z9adlG+X5eNW6jPJPV4dR/vxgEeV/dvpBlP9wdxLlX3bZ/SzqdZSvyz7K33RZPV730yg/K7soz8cb6qxepi+GKP/i5UGUX97L+sPL3SzKt2F7XnXZ/VRl9nzaOmvPi2YT5dP7STyqbqL8tMx+q27Ifqu63O9/66C/uo7y9ctVlJ+dZ31h+Tzra18eZ88/bTl9n/UlXZf9XsubbKzbHmRz28+dvIzyL7fzKD9bZHPDVZ/1Pdsha29NkT2ftL6GdTbXKKrsfobrrP9pL7K+dvIyWzZ2s+z5dNMsX+2ieNGnq97z7B84q7Ie4nS+jPL3j7L+9rTO2sOjOrv/qsj6t7uuf//DKF8u3o3yk8usHvs27K+yqVJcL9U2bQ/Z+H55lI3X03tZB3HSZPX4oL6K8psh69/6eMZxt3UfPony6U5dGc5P5vOsAIYq3LsKy6Vvw/nkWThfOs2e6GGbzWdmVTbf68IH1BbZ+uh10z1/EeXrcP452WXPfzHPrr+6l+W7WdZ+mpssvzsO22cb7m204YAdmob1yD/d7smzKN/MsrlPuwj78qOsVppsqVwM4dxwNw9rK926Cvf1mirrq+7PsrVUNpN8DfXhe4sqbBDhPn7ZZ+2nXmf5bhKurXd3e21dteZir1QfPv863Gucpmuj/bbnapvVV/jaK978H8LFabg1wKuW1tckm7+V23RzO3zPepbNUDZvZO+t06V4Wo/hqyBesaHL5ntlOB4V6fUvs3cpqSq9/3C+OjT7fVfGqzXssh+sDNt/sc32fsrwfopVtnc1LLPxKJ0u9cfZtxJDebfXX/zTleFcLN57COduZZOOdeG+8JDNDYdNdv1yY3C5U8L3Omm9lE24ORyPXWF9hWcWhnbPx2PSvU8+2/Y81xjSekn/BWm9h39vGYxfSdaWGwAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPVvOob+CT+nzfTYlHXt8r+y4vVnu9mXKZlG+VPq3WU76J0Ufxwt4nyX2qy85ltebt28LpavJ89z28/fxTl/7n7343y1/00yr/dnEX5VZ+1/4+2J1F+O2TtbVrtonxd9FH+e9v7Uf4rzTLK1+XrdV568jR7PoujrD28fDKL8t+/n/2+37z/QZRfdlm9rLts6rDtwnqps3rp2zLK7/qsPa+Gya2zdTlE177rtTVssrG9vryO8rMX8yz/JMt3XwzbwvL2beHPorvZ77R8WWXt8/3yOMrff3QT5d9bn0b5n5u9F+XnZfZ7ja4eh2wuUCyztc7kWVaPZZ89z9nTsG9eRPGiyC5fVNss34fluN1l/c9P2tMo/4WDbC7cHmarte3weo1fqX6TNaDmWfZ7zdpsrlRtsrnk7jC7/lBmBVZvsvwQrvUvf3QU5d87zdZ2v3Hv96L8UZ2tFQ6qrD9/3fY2hnW4F/Xhkyhfv/U4yk+zpVRR9odRvt5ma6++ydpDuja6fJLd/+5Rdj+HdTY/OQj3Jo/C+uLjdc9fRPmmzvrz6XE2fnWzbH61vc7mM32d1UtzkbX/3YMs3w3Z85zX2Xr8UXMR5YviQZh/jfTZXLsPx66mzRYjzUm2VtvNsrZZhl1tuO1cbO5l+XqePf9pm+0zNlX65otP0+6996N8U2V9Z/+Fh1F+CPceUuFro6Lcc/Mcmmwsnc+zsYhPV7pXUYb5ItwbGMK5YReOR9Uua59lF+bDgk/3DtM8r1g4vhRN9gMPs+w7iSLcGxjitU62Ft/Nss38dK8i/AyDV6xssr2ucpGt9ctJ+G42HI+Gq/Bd2cvLLB+u74bjrH8ItxJ41W75feufqPa7IBm24fww/DakD+srbc5VOF+twr1JXqH0O4kuXCyn+dQqXOync8mb7Lucos/WRkXnvQt/Sji3KsP2XOzCeqmzuWG5C+s9zaf1xWdb+B1Vue+54Tabuw3h9ctw76S6uv39VN3t56mWRAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW86pv4JP4B1dfL6ZFe6vsv7z47f3ezB33VnMY5Z9011F+Owxhvovyqbas93r9sZm+yJ7/sxeLLL/N2s/PzN6P8nXZR/lHzWWU3w5ZV7gdsvbzYncQ5W/6aZTfhPfzQXcT5d8J+4e7rj7L2s/82STKT5/No/zLmyz/wfwkyjdl1t+m9bjsbzdO/8n1q+x8/tNl1j4n1S7KHzent86+PzmKrv31NnuWYzNss2c5XGd9T3O2jPKz57Mo/+JFVluxXdaWy12513y/yu7n8iLr2/79Prv+6eez3/cP129F+b+2+EGUH51w7twvV1G+fn4R5efPT6P8LivHosm6h6LPmmcx1Fm9NNfZ82+W2fVv6mzs+p1F1v5/6ejHUf6Ng/Mo/9oZsvF6WG+ifP3sZZSfhv1DOWTjXbXL/t71aTbX68+zetl9mI0vf3TvcZT/rdN3o/y/9uDvR/lFmf29fLx0/tk/eRblq/v3onw7yfYS+nA82s6z9t832fW7ebaX8HtP34zyv3L6vSj/Zp3NT46q12tvb+/6bG+gv7yK8vVZtl6eTbPft2+yvbS0XtL53uo8u5/qYTa+T8O9jdMqnHDzqenX6yjfrLK55PR5thbsZtm+f1orqTqsrU233/t5Y5b1bdkuMp+24Sbda8zy3TQbu3YH2dxtCJtzvcnGivT6xTRbCzb13d7bvvPCuduwysaL6jzrD3fHD6N82j77Npy7rbJ6yUbroghfKxdDm90Pr9awzN5dlNNwszo0tNnaaGjC8ajK6qvahnulYb3H4xd3yy5byxbhdwNFuDdQHmbf8RTh3n91mX1XV59kL9fKLtub51N21/f+63BvtQ/fTYXX786yd2V1+K6g+ML9LM8rUzbhZDtsm8N2G+XTSh/C97jFy+y9yNCFa8FN9vfWe57b8hmX1m8drl1W6eo9FNZXf5XN9bhjwrleOvcpZ+HaJayXWPjd4RD+vdX17fdaqv72te7/BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoNa/6Bj6Jb1++UbT95FbZm0eb6NqL6nbX/axYD9sovxqGKP+4fr2e59jMz7ooX59lXcPFbp5dv8jaz0GZ1e9Bk+W7oozyT3fHUf6oXkX5tsx+rz48z/zD3SLKv3OnR4rccHUd5Zvzgyg/ezaL8hfLrP+cVLsovwjr5Xo7jfIXqyy/3WbPs6777PpdHeUPg+fzR5s3o2v/1fn7UX50+qyvGm6WUb56cRnlZ2cnUb550Ub5MmtqRRHmy2xojK8/tNlY17fZDV2fZXOB35x+PsofvZ2Npd/dXkX5r7SHUX5shi6sx+tsrDv6XvY8tydZ3785ySYbm4Ns7tNNs/YcDqVFv82uP32W1ePZ7z2M8n/3+GtR/q+f/GGUPymzer/zwrVvf5mNX1WdtefyOpsbtmXW3lKzXfZ8ylvu4fyxvsnmbn2bzbX/H8ffiPK/cfy7Uf7ri2yvhZ9iyCZA8fi4zX6v6uImyk/arD0PTTjeTbLxdHKWXf/iLNtL+Hcvvhjlf3Xx7Sh/Ur1m49HIDOt1lK+usnppXmbjxSysl90su343z8bT9Sa7n5+cZ+vZf/Fx9jxP6yzPp6jM2kL/4izKN23W97en4T7dIp1LZvl0r2W4yf7e40nWV70zzZ7/dwtj0avUX2R7FfUsWys0h/vd20jbfx/u7RXhe7hqms2dT+bZXh0/Rbp2T/cqrrO5QDkN9x6eZHshw1vZe9Z4LnYSzg3D6w/hf2a6n6UvF3iVhj6rr2GdvWetrrN3ZcM8Xbtk776GJnx3NMkKIK6X7PZ5xeK9t02291a2YXsO99qHWTbfK8O96iIcT8suGy/KsL/iUxbOx4Zt9vJxaMKXlWk+3K9I54dFlY0vVR/u/e+yv7e+uX1eZb1aQ9oXpv+CdK63yta+5UH2zdswzcai4eIiy2/Db2ifZ3tjvGLhd3uxsB7TtVGZzsUm4XcGT59F+XRsSdeOfMaF3zEU4dynCPe207VLH34zX2yyei8ub7+XP/S3v7b/ExwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1bzqG/gk/tOPfqeYH97uT5iWd/pP3btp2Ub5LzRZ/mW/jPIn1TzKd0Mf5V83s6ebLP9sEeWfrA+j/FGVtYdFtY3ybZG1h6+3T6L8rMzu54fDoyh/00+i/JPdcZQ/rW6ifDfsonxd3u3z1cNN1j6r86soP3+e/V5nL7P+9vnqIMrfNFl7e7meRfnNJht/11fTKJ/abusoX1e3708mVVYr31/8UZT/Upv1tWPTr9ZRvrzKauvgvVWUn30xq5UhnEqW4dSkz5pmMYT5Muv6iy6bihVll/VVT6usL/zu8cMof/SwjPJ3XjgXHjbZXKZ++jLKF0P2+1a7bCyqtll72y6yuclunrWfyfUQ5evs8RflkN3Pb33ni1H+b538UpT/mw+/FeVfN0OftYd47tlkA1I1ZPdT1NkAU267KD8Ju+duks0Nd4vs/i9+kPVX/7s3fyXK/0tf/HtRnk9ZWI9FOD4WTbbXUl1k9Z7Wy2KWTeC2t9xT/ZP802y8/oNHb0b5Hz+8H+V/eZqtF/h0DV3W/w/X11G+nGf9fzPJ+v/pRZbfHmT59jybf24fZdc/22br2aNwL5NPUR/WyjrbOynW2Vg0eZHtnQzhe5rdLBu8tkfhYFdnY/v1Nhu7vjzN3hP83SJbe/HpGnZZ39afZ3sb9XHW17aXWXvrptnexlBm9ZLuZTZt1l997eRplP9JlH4NpWv3VDoeXWVzt6rN2nN9En4HMAv3KtK9+ez2i26e/V7VgbnYnRLWS5GujbZZeyivs/lb3WRrkfWD7L3v+jSrx81JNn6l9cUrltZL2P6HXfbuvVyG66kqq5f+KPuOamjDeryf7YWUyuVuSb9rTOeHaT59lR6uR4qjbD1Vpnv522w/pNjcvj9RWq/WEP626RfD1UH6IUzWl8dj1yRbjJThe+JhE9aKb7A/09LvhMo23FwK2/9wk80ly3DvIZW+99r7Xg78aWF9FXU2fqXjUX+Rvafvl7ff2+iG2/dVd/ukAgAAAAAAAAAAAAAAAACfaQ7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBazau+gU/iX1p8rzg6uN05vro83PPd8HFOqvler1+XznN+nOaP3ovyq3/lK1H+X3/r347y35yso/yszLqqm76P8l2xi/KP6ydR/pemWf66z9rz034R5f/SZBPl63IS5e+6frmM8uXFVZQ/+v51lK//SjZ+fXB2HOUP5lk97ro6yvdd1p7LasjydVjv4f1crKa3zn7v6mF07X989HaU/1J7EeVHp++y+HVWi+33P4ryb8w+F+Vv3myj/PqkjPJF1vSLocqu34ddebXNrl9lQ0tRhjf0W9svRfn/zclfjPJ/8+G3ovzoDFkD6ldZ3188exHF6z7sy9fZWFfusus3N9nYtTnO5p5l+Pc2qyhelOHcsOxuP3YVRVH87d2vRfl/5Tf+SZT/xiSbq9554Xg3bLIOdLgJ56plOB5NsvGuDPuTdrON8tUme55FkbW3vsn6h79ffyPK/2/v/X6U/+vHz6L8aycc74Zuv/VYhPOxMryfJqyXRZetjfo6G3/7SVYvzz7M1qb/3ue/EOX/CwdZfXG3lMtsfKnPsnpcbMN6abJ62S2yerk8n0X5Hy3vR/nTB9nfy6szhGuL4TrbZ6yuD6L8JBzrDuusLe8Osrnnap2tjbohu/9ZlY29vGLp3DBdi1zeRPnJebYW79usPW+Osva8yl57FbttNnZVZbiZyZ3Sr7O5WHmd1Ut9Fe4ltOneXpaPhVOrB/ez94jcLel75boJ954n2buUcprl26tswLh6O5u/DeFnPOuH6V4gd8mwCycoy/RlSvguJdwbLsO9891pNj/cHGX3c/1W9vdmq0E+dXve2y7C9U45Dd8dbcPrh/XVP36QXT98N7U7vv1+hS9Q75b4PVD4HqUM34sUae2Gc8PqKNunTvdC0vdeRTq280oN2+w9aL8M34Oma5c663GHbdbe4rlnfAYh3BwI5wK8Yvv+vdLxK23PQ9g+0+/80vrdBeNRcO/mbQAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW86pv4JP463/4Xyyag+mtsk3VR9ded3WUv1rd7j7+2G6XXT81n26y/GQb5T9/dB7l/3uf+79F+a+2WdOclm2Uf9385G8/jPLdh1m9/Gt/578e5etldv52d9hF+WKe5as2+3vbyS7KL2ZZPb55dBnl/ydf+j9G+bbM+qvXzQ/+jb8S5ecfllG+m0XxYnKW5TfFQZR/cZTdUDXP2v8wZM+nmWXj0SzMf/PRh1H+f/jOv3nr7NtNVltNkc4FxvXfLnj/v/2rUX72fIjyQ/jnbo+ytrZ8lN3P9kHW9quDLF9W2f00TTbWTcKx62S2jvJvLLKx69cefDvK/9XFt6L8V9vseXbDJMrXZdZAn/2NX8munz3+YnOctf8+nDqvwnrZHWVzq+I468sXh9kDmjTLKD9ts3qZNWF9TVZR/niS3X9dZr/X/fY6yl8OWQN62Wf3//y/ltVLNw/nYlm5x3O37XE4vtwPx4tZ1v/fu3cV5R8ubqL8UdieF83LKH/cZPXeVNnz6cO5ah9OUP5o9VaU/1v9PMo//W9k9bK6n/296fSzm2XtPx2Punk2vpT3srX4o/vZfOYLx9li7e358yh/GE4IFlX297ZV1v882x5F+ctd1oE+32Zr2X/j2c9G+Zf/pWytf/GlsACy5p+3/2m4nkrnw/fCva6TbHz/4v2sXr52/CTKf2H6Isqf1Nl4d1Bl9fjh7iTKp/W17LIG9LdeZOPF7l/45Sj/7BfDdyPZcFd04VZmN0/Ho9vn++OsVupwH+3N+xdR/ssnz6L8lxa/H+Xfas+j/NttVuuX4dznxe4wyr/ssuv/5vWXonzz1ptR/sVffTfKX7+VjUVxrYRrnaEJ1zrh3kA6d5sfZPl372djxZcPs7Ho3dkfRPl0LDqqs7H3ps8axGVYLzd9trj+Ufjeov/n/5kof/Fu1qDX97K10W4RxWPx3sNhVl9duPdweC9rn18K6+ubx38Y5d+aZHsJab3MymxvchXujV2H9fh/LR5E+eZzb0f561/6XJRfn2Tvsjbhu5r0XdAu3AvM9x6y/PphthfVPMza58++lY1Hv3b/t6L8vSbbG56UWX/SltnzWYU/2P+hyOZjqeaLn4/y6y8/ivKrB9nf203C9t9k+bIL3wXN0u8ksvzNm+H884vZ2v3r73wU5f/S/d+L8ule3UmTjb9pff2f/qdvRPl9qx9n91MeZBOy7kG219K32YDUT7LxcbfI8n0bjqd1lr/8XHY/L7+ZzZe+/tUPovzbB+9F+ZM2G0/vNbf/1uAf/mL4InFkyja7/3KSjUXVcVZbxRBunDfh5+zh/Q/TLN/Psue5eivrq579QnY/q1/Mxor7J8dR/hcfvh/lf/TPhh+28LHS+i2GbG9g6MJvsNN8H34nVGdjbxn2P/0vfDnKv/drWf3efCkcG//GvxvluVuGXfhNdZgvVtl3OXdaMHcY19fUAAAAAAAAAAAAAAAAAPCnOAQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg1r/oGPomT2apoZ/2tsn/l/veja/94dS/KL7s2yvdDdv6wH8ooX5VDlE+dtsso/w+WX4nyb9ffifJNVUf5uny9zn8OYfv54pefRPkvHL2I8s9Wh1H+ajON8mm9vFzOovx8so3yizbLvzW/iPLf3j6M8l9szqN8VWTP887X11evo/jkl7L+8OmPsvElfPxFEXb/5eR24+gfq+rsX1CW2fVns6xeDqabKL8Lx99vb2//ez2us7bTpL/tyFy/k/22y8fZ9afPs99qe5S1zd1Jdv/7rsV+l/29m+1++9pNu9vr9c92B3u9/tisHmQNqMmGlqLPliLF5jhroH24ahzacGypsvu5uczmhptJ9gesJ1n7XzVdlN922dpl1WX3f9iuo/wb08so/6DKrt8Wkyy/3O9atm+zetwehvXShvcftv8yXOvfrLJ6eX+XtbdJs4jy83B8mTZZPq2v9PpH7SrKV+Fc+GGb3f/xD7P7H6pswFiHS5dwql10t9zT+5PrT8P5Wzi/Wm+z9v98lc1nNmF/Pqmz37cJ21s6vrwI/951WI/3ZtkE6Hqe9W+LD7O1ZjfJxq+bx9n4Msyy/nxowvEovH7RZfe/Xmf9ydlqHuV/VGcd0Mttdv37bbZ+X/ZZe3i2zurlyc1RlE/3Ph/Or6L89INsb/L0IPu9zr6e9T/peqfMpufFkHQn4Vp8mGS/1WU4d7uYZ23/u8OjKP9yGl5/9UaU3w7ZWPFkldXK0/A9xDQce4dVNjc8+aNs7dVNj6N8uvcQdm1FH871qk12P906aw+bcO58sc7eAz1ps/a2DjdPHk2yvrkNO7erLutPnm2yenkejnVF8WGUbn/3B1F+fvzVKL+bZ7/XUKd7CVE8Vu3C+tpkBbxaZh3EcpcN1h+sT6J8Ol48bLP66sLF7MsuGx8vd1n/UxTZ+LJ77/0oP3+QjS9DmeV3s7A/P8rac/oZTLpXUYRbD9U6rMdd9nw+vMrGo+/MsvnYO7OzKD+rsrV16rJL62W/uvc/ivLNw6xe2mnWHrZvZONX2aV722F7nu53/tksw/H3ZTYePb+fzWc+WGTj12l7E+XXQ/b7VunL6JHpPsq+S6u/9uXsXzCE7T+sx26y33f1aT324ccnzU32fCbPsvb54eNs/GrrbL2zDve2s3fF2VxsbIZt9g1VdZDNbWOzbG06TMKNwDr8BnuRDUZDuPfQXmRzpfYy+3tvwr3JXZfln6+z975Fke2z33ll+OFYOBYNu6z9lE3Wfsom3Nvusr55359B/v/Y+9OY3dL9LtC71/CM77in2jWewcfneACMm7ix3E26ITgNRiEQESnu9gcUEfwljoRQhEQERLJQaCGkICMkK8oHhERHihTJLRHJCQJF7kjGwaQ9cmx87DNWnRr28O53esa1Vj4052B3cJ3356qXvXbVdUn+4FO/vfZ61nP/72k9d9WwC9ci/S3PlcLfRfGc3XL98i1Ez7+68e9uX/CTCgAAAAAAAAAAAAAAAAB8lDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBotc/7Bj6Izx6+W2aHkxtlPz17L7r2bmii/LLeRvlUN2TnFTfD7X616f1Mq32U/619dv/fO43iHztt3Uf5Jsz/h8dfjvL/onwyyt+fX0b5Pmyf54t5lD+erKP83elVlF80uyh/1i2j/LP+3Sj/UvNCDxWx/Tbr/ydNF+X/wHd/Jcrfm2Xt5yuXd6L8K8vzKH++y+rlveuDKD9vs/HiZJrV40lYv2/vT26c3QzPomsv6xd78JpcVFG+/7ZVlN+9no1Fu/NZlC/Z7ZdSDVG8abP777ps7GrarO+ZTbPaOpptovzLi4sof9Jk7eF8CL/fktX6bZs9zdrP6uW0gYbCy/fLrD2XNvu8Qxfe0JDld1c3WzN+Q7fP6rE6uN214Oksq5eXZlk93m2zucZRnT3/SZXNraYXWXurwv4z7M7Lfp593k3W3ErZZvffh/8qo7R1bvrsA2ym2Xi0mWXjUTrXPl1m9VKXrEHcmWbXP26z8ejbptlabfYkG69vPrP971zssrXg6mE6fmUNep91J2Xos/t59ixbW1+vs/l8G87fpmE+NZ9mew912IGm+S7s4Hbh3s/sUVa/zTp7/lW3iPJXr4b1ksbD9r9Pv69V1j9cLbN6eWvIeqx366Mov5icRvl92D7T9nyxztY7uy7rEFe7bHx/sM/G6+UXs72lbpZ9vxevZZ93f5C1/yqYfnbhvmEX1tZqkn1Xb10eR/l0rX+2zfq2VJs8/FLKk3U2Vl9tw7ltWCtvbL4Y5Zun2drr+EvpXkiWH6qsVuptlg+HxjK02diyC9dG79aHUb4P9x7ea7PrvzPJ6nfeZnO38222j3++yfLbcCy6U96O8sM2W80e/KtsLVXKS1H68uWsfVb7rP1ss+ZQ6rB+27NwLJ1mn/edi9utr8eT7D3Tm+1plO/DyXZaX5sue55tyd4jxn7zq1F8Mf10lB/abLyuwv5kd5h9X004XqR7h8NVuHd4lbWH/XH2AT7/9GGUXx1n859Zna0VVl12/XVYL6VkvwNLDbtsPKp+5QtRfvYHPhvlhyqbYK3vhptpoXaVFcyuvb21WimlNFdZvZydZ/3Vl+Z3o/wry6w9n+2y+tr0ab2chflx6b/yZpSvviMbv6rw3Ug8XmTxUoVbw+m7jiZc380eh/Olp1l9PQr3qnezrH+73id7k+P6ncFt6y+zvYq6yZ59NU1fnGaGSXg/+2xwGeLJZFYrh1/Piv3ZZfY8L6fZ2uWtNtu3PbnludjoDGlvfruqtH2G6sNsLZ4uvqpwL3AIn3/7JOzfduHnDX/nwXOW1m/Yn9+2Khx/hz78vP3t/i7htqhCAAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt93jfwQTyYXpT5dHKj7KTaR9d+ZXIW5U+b6yj/1u5OlE/VwxDlJ1WX5Zvseaa6UkX5vmSft4nSL759n513fe3gLMov602Ufzi7iPKpVTeN8q/Mn0X5fsja527IWlxaj314nvm9Puv67zbZ/TQv+Pnqfn27Q2Pafk4mqyj/yjJrb6fh9c+2iyj/YHkV5efNLsoftNso//r8aZQ/btY3zr6dlUo5rMOxtxrX6FXvsra83WT3f3iafbevfTrry7dddj/TsC9ctFlbvtzOonxT91F+Gra3k1nWNxy1N6+VUkp5ffo4yqdGVy9h/xBOrcr1J8K5eZPNnUub5etp+IHD2ylV9gfaWVYvVZ1df9pmz/+lZTYX/uTySZT/xCyrrwfteZSfhGu1OsxXXdje9ll+qLP7acJ67Kdpgw7tw7VyF85tw/bfT7L62qxvtofzDZODrD+ZhXsVryyz9n9/dpnlJ1m9f2aS1W+9zj7v4mvZ/KrqDqN832Zr8S6b/pTmKltrdsusfQ7rbP6w3WX3kz39UraL7PttJ1m91OF8cjHJ7uf+IlsLLsO13YNpVo+PrrL5ahvurR5/JWsPQ50VwPXLWf+/Pwz3Sq+y9t9lt1Mun2V7CdftPMpPpln7bJqs/U/C9eAsrJe0Hptwb6kN77+6zuqltFn7OfhK9i5lqJZR/uqVcD2YPM+DcK53ns3Fwq2W8jTc93/WZLU4m2V7G23YllND2Pa3+6wt7MP8sA1H902Wn76V7XUdNadRvpRs7rY9Dhtouhbsw/cu4VonXNqVJ+HaqA7z71bZXDsdi5rwfrrw+a82WftJ34oP+3Cva5v1V/O3srGo6sKx6OWsfcbtP2s+pd5m1x/a7P4vhoMov91m15+Fc70uHB9nk6z9pOPRLnwX8WqUzvWrbK7XfPmdKH94cRLl20+eRvmrh9neUhcOAN083PsMJ3BDnbX/p9VxlF/dyb7fdCezCffmV7vs+9p3Wf2+VN6L8qUK5zPh3sCwCRvcz/9KFF9++6ejfP1t96L89jjcG5iEa9NN9jx3y3QvP8ufn2bzmXcX2QB8Hbb/SbieSt91n5SzKD82aX0Nv/RrUX76yTeifPfSaZafZd9XdXC7v1vK362Fe+dfzerr0fQoyq8OsvpK9sbul2zu86JL117d4+y9ddOF+5JHWVsoTbgvP8vaTr0J93nD/KzNxq7lV7N98+uS5R+nv2mM0nxL4dyzX2dz//ogW7uXG57N+Kb+ln8nkV7/Sbi3+rX7UX5754U+fsO3EtZjFe6lpeNvvFcazt2qWfbeOl773pIX+6QCAAAAAAAAAAAAAAAAAB9pDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFrt876BD+Lbpu+V5ay5UfaNyePo2gf1Jso3ZYjyp811lH93fxTlU314HrIbsnz6eVO7oYvyk+pm7ebj6nMH797q9U/aVZSvw/paNtsov+uz9tBVWfs/rtdRfl7vovykytr/Lqzfbsief6my+NjUV1l7mDbZ8//UwZMon36/d6dXUf7J9iDKP5xfRPnHm+z6/ZA1oGm9z64fNtCzbnnj7KbN2k5f+ihfyrjGriabKpWyyu6/upP1PYs26zsfLrO2fL6dR/m6yu5/12d9c3r99PkctNlYetRkY106Nt6rs7nD2JY5dfY44/pqrrL2MzzM/oK7d7KxpQ+nDn3Y/idtNjamDqbZF3Znlq115k02dqX1la5907VaXd3uZG96lj3/bp71z33YPewXWT7snks5zNpDuDQqQ599X/HXG87dlgdZez5dZv1/Wl/3p5dR/jPzbK18r8muf7fO+rfqMns+/Wk2N58+zcaLg3ez+d7+IMuvXk7nz6GwXuL8JLv/vsuu3y6y9rOYZPVyMMn653k4//y2g0dRPh0fP3+e1WO9ytr/JEqXcjDP2v9QZwPYKlz7DkfhAHMZrn/D9tw12f100+x+JgdZe54dZO15u8/up22y/uFolvX/p2F+cx7OD7us/2nCBcPhl6N4qYab7+WUUsr1g5uvR6pw7hNuW5W6y2p9v83WUvtp1ta2k6x3a2fhe5pp+IBCdZ1OzjPDPtyXfJztC9fdSZSfvZ21n3qf1crlq7Mo32yyetkvw7XLLnzPscra8/o6HKvD+irhWNfMs/pqw7neEPZvXXe7/57dYZPNxdJ8/dZ7UX5WHmTX32V7Fet7WfvcXoffV3Y7pV1n3+/uYhrlNw+y+tq0Wb1UYb1c12H/1mb1ntbXbavqcK1wle0N17OsPczeCsevbTZ+7Q7D+dUyHF+yj1uaVXb96VnWP6xezurrrZOsg2jCtVG6N5nufb6UxUtJf/dwy6o2a5/DO9neyTzc7J0eZpvh/SK7//6Gv+/7hn24d7K+m+WbdZZ/9rnjKH91N9t7aKfZ+JW+W8tWFx8/+y9/Nco36V7jS/eyfLhe6ydZe653WX84fZatL9pNNkC+c5zNx87D+q2Cvfn70ZX5VrqzZ1G+Xodru8nLUT41NOHewDwbG6dvZ79buv+L2f28M83mkpt9uHjkhZLunfTX2XuC5vQ0yg91+GYtXMuW8L3FnZ/7epQfqleiPM9Z+kOYcO2YviuoJuFmwhDuRaX3M83mnml9VdObf956aEq5YffjvwQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaLXP+wY+iE9PHpXDyc3O8T3ul9G1/8j8aZTfDH2Uv+iHKL+sN1H+SXcY5VOn9XWUT+//XphvqlmU/7ipqqy91SXLH4Tf1+9ffC3KP95n7fkr23tR/rDJ7n9S76N8Ez7Pusr6k6Zk+a5UUf5Znz2fWZUNLU01rvPYVZflr7bTKH/crqL8stlG+ae7bLx7ODuP8uf7RZRv6+yB1mF/te1vdyqzHW7v+t2QfdawdG9dvcvyk7Mmyq9Os7G9vZP1hXen2VxmGvb9TzYHUf7eIrufTZe1zXRs6YaswV108yh/3mf5VB3+uz5ueyyaXWTPv59m97N/muVXB5Mo359G8fLw8DLKX26zet/12ecdwvacWnfZ8zycZHOr1LzKOuh7dTY3mZSsP0/Vm6y/nT/O5kpDlc3duln2ebd3ongp4dxntsy+3/0+q5e6zu6nabL+bdpmc8NpOJe8N7uK8vcnWX/12uRJlH/QXET5eToeVVn/Vl+H9TLN5huTi+z7mj8Ox7tFlt8dh/Ofw3B+3oT5sL7aafY82zr7vKnXD86i/P1ZVl+fnr0X5e+12fX/X9cvR/kS7hXVYT0uurT9HGX5cNu/3mX3v8+2Hsp+yOq3W2btOV1ep5qwfqdNNp9ZTLLx/cE8HL8WZ1H+l7LLl9Jn31e6+mrC6y8n2fyt2dx8fni9zq69X4a1tQjH9k14PwfZ9bvDLF/Ns7Z/cpCtRbpbXgsezm93rdav19kfuMrWmvU8W1tPws7zaJfV4vpBdj/bo+z7nYT1ktbX5DJcC56Ec9WTbK43zLJ8t8/uvw7Xdula8Lb1Z8+ifH3vbpRvHmXXr8Kxq+rC9y6H2VxvdxCuvbLuuYRL6zJ7mrXPdfbat2xPw/FintXX/oa/T/mGKpxL3rahC1+EbrO9hP7pWZRP54bh4y91uPdc77O9w74N50vh4+8vsuvPnmb561ey+cYu7H/6o3BtN7J6uW3DPps/V2H9VuusfstxNh6FP4OJ8+0q3Eu+ytp/u07nh1kHdPVa9i50e5ruTWZx3l+9zDa7qoMs3x1l7aHahHvD66w/6edZf74P3y1Pn2X3f+eXw/ntcTZeb06jOB+iahb+prfJOrfhPHsPVy3CsW6Z1W59lS2m+qPsfupwb+bu57NavH5gcHmhhO+lhvDMQtVmfX8Jz1CU8H768+w3rvVR9pvzYZ6NLaefz+5nXDtpfEthfaUvKodduFa7Zf1FOJ5Osnqpljcf76q+KeWGP6Md18kDAAAAAAAAAAAAAAAAAPhtHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLTa530DH8QnJ305ntwsu92to2s/67so/0qziPIvNU2Uv9+sovzX9ln+N3YPovyy3kT5l5ssf8Ov9Zvakj3Pj5vLrx1H+bufu4zykyqrl/NuHuVTh01W76l5tb/V68f11T6L8k0ZsnxVhfkX+3z15CK7/7Nfuh/lLx9+KcrP6qy93ZlcR/mLW67Htu6j/EGzjfJHk6ze1302wmyC/FmfzQWe9edRflZl07bbrsXJZdaX7BdZX9L9ZvY8r16aRvmzbXb9WZPV4jSs3avdLMqn97Pusra/bHdR/mKf9SXv7E6j/Kcmj6L89ZD1JSdV1h5SzTrrC2fPwnqZZPlhkvUnl3ez77eps/7hYJp9X9sum/t3fdYfrnZZvaRj3TvX2dz8uM3mhmfzZZR/rYxrPKr22fOs9ll7m15ka5fZWXb/3SLLXx1m7W0/ye4/nMqX/T6srzCfmrbZ+L4Kx7tZnY133ZB9vwfh2jGtr2qXXT+rlvz606dZe5gdZfn947B9zrMC6LtwPI3SJS7I3SZrD9lKsJTTZbZ32NZZ//Pp2XtR/l6b7UW90T6J8lXaIaZ2WX9SP8s+7/RJtl5YzML1YJ3l+2n2PKtseC/VLv2+sv5hV2XjSzg9LyeHWX196jhrz995+HaUf2mSzfd+aXgpyvdXV1F+2Ib10mUNqA3b81AdBums7axPs7aZ1ladLaVKU6e1G9bWkPVV73bZd3VynI12h7PsAd2dZ9dfpWPLkM0ehnW2FuwfP43ydXcS5duwFtNd53qf1dd2F9ZXuHRJ62UWziXrbTbX2w7hXtFR1tdW4d5GHe793LZhH66NLrK5WJlma806rPfpOhwb7x1k+bC+6n3WP+/Cvbeqy57Pog/rK7z/dfaarwx9Vi9h+d6+dDwK66taZHvtwyqbO1frcK86Hq+z+P4g68+zaszfrbXhzyTqcD529Up2P/uwHsPXuB8/YXvuz7LfkdSLbD5fDrJ6rHfZ3lI/zSZw9SbMhwVfh+NX/052P806rK/bfbX5sdNfZ+vBqg3flaXjb1iPwzLMp/sDYftv11m9H74Vxctl+JPnSTj958MzbLK9jVQ9C8euVFq74e8whln4u4TrcO3bZnOx8GdOPG9h+yxD1jcP4RmK0oe7geH1m1ceRvmhzeZi1WW2Nt3fyX6XM7atgY+dtF5u222/tw4/bzVJdytCyf0E2Rf7pAIAAAAAAAAAAAAAAAAAH2kOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWu3zvoEP4qRelOP6Zuf47tWX0bXnVRXlJ1UT5XdDF+WX1TTKP2zW4fXfjvKpSZh/pT28lfv4uFp+LWufXXg+9qheRfmm6qP8eTeP8idNdj+PdkdR/u7kKsqvh6wCHrTnUb4rWX+1rPZR/qTO+p9uyL7fphrXeezp0yy/X2bP/2y3yP6C0HGb9f+TKhuPNn3Wn/RD9nwu9rMofzq5jvKb/vamPud91lftSlbrYzO9GKL8fp61hXqf5a93WV971mS1OG92UX4/hLUS9uV1lT3/tBafbJZR/qDdRPl07Eo14fVve+xqr7O+tptn159cZ+1hu8mez3aXtefVNqvHrk/bfxSPdX32/Df7bGw5nGb1ctVlc7F1Hz7/sF76krW3rPWUUu2yemkusrnP9jib+0+us/6hvco+cb3O2tvuKmsP7SKb+8fjS1ovm6x9XjTZ83+nzb7fry9Po/x3z96M8qkm3Isqu+z7LW04PznJ5gP1JrufNqyvZpu1t9lZ9jyHNrv+/jDrr8o+u/7QZPXYddn1z9fZ2uvx/CDK7w6y8bEuYXsIx6N+lY0X9XG4N9mGa819WC+PLqL8bBbuBU6z8WUX7oV0s7Aew62isPmXsgvH3032/e7m2fNfhOvNw3Dv/6Vwr7FUD8N82L/ttln+KtuLrafZfKOdBN9vOFaneyHNKnuWcW3twnw4FtWb7P77sO+8mmRj151l9p5g2mR982rInk8qrZV0sTxcZGNLFV6/PUvnPmE+vJ992DcP4dAebgWWJtsaKJPwee7CvYH+Xrj2bcO1yMj019l7hbrK5sJllfU/Vdj+22dhg0vXmuGb/X6SzvWyfHWV9bfp9YdwLrN5KbyfcDx90fXp+DLLxvdmnr2LS6V7M+lewtCEe+GTcPwK10bpu4X5k+z663DveXf08aqX1LDJJhBpfVXX4d5JspYqv4d6mWfXb1fZXl3fhuu1dHq+C9tzlf6O4ZZflvG+hi7dG87mz1X4brbsw19mhs2zWWf3P4Tj6XSTPc/0V6Xbk/RtJS+KYZvtq5a7J9n1Z7f78/pqG77HDd/Lzh5na/3+4e3+ppEXTJ1udmX56jDbaxnC99zDMpsLlxueRfnm9SdZ3syN3yH9zXz4u8YqfPdSL7K9lmqZjRfda/dvnO27TSk33HsY18kDAAAAAAAAAAAAAAAAAPhtHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLTa530DY7Uehlu9/qRqovx1v43yy2qS5bPbKU1VRfm2hH8BH6rps6w9X/fTKH/WL6P8us/a527Iuqr0/lNf3DyI8q9Pn0T5ebWL8vfq6yj/oMnawyzsT150y/f6KL++c7vnyTd91v7P9/Movx+y/nlWd1F+G97/vs+e53vbwyj/+vwsyk+q/Y2zp01Wi2llNdW4/t0F7SrrSw7ezmrr6tXs8w5DNjfZdFnb7MK2uR+yfF1lz3O1z1rQnVnWPlNNeP+bcC6wHrJ8XbL7ue36qndZ+58+u3nfU0opVZ/15dujcG61y57PbpfdT9dl12+a7HmmJk021u3C/iHtT1JPumxsbMJ62Q3Z80nXvmWXtf/SZnP/2eN1lK/6WZRP54b1Nhu/+k04HlVZvTez7Putwv6/qrP6jcf3ffZ5f/PyfpT/nuVxlH+jfRblY332PKt99v02T6+ifH+YrUUmF1m9t6twfJll7WfyLMsPYf/WHWbPv3Rh/xCO1306vw3nG4/22Xj0xvRxlE/nz6XOnmepb3cvc7jt+l1n9TW5zPrPyWH2PLt5WF/h4x/Cveq+De8nrcdw/PrK5Z0o/2q4t/FyOh6l70bC+WE9z8aLEn6/3aOsP0maW9tmfef0INwXm4dri2yqWsKmWYYmHYuy65d9eEOhdTg3jMeWkRk2myjfbbP3junIWPXZ82yn2ffVT7N6aZe3XV/pXDK7fh2OXVVYX0Mf1nuYf9H1V9naqO7CuX+6FzIJ1/qX4V57OHfeL8K1SPgLlXTuVm+z/qfehb97uAjXUke3u5f5ohvC8Wi4uMz+gnW2F1ivst89tCXbKyp1OMCE48v2OBux631WL9OLKF666e2uHT9uhnB8qcK13XCZ1VeVjnenR1G8WYXzt0X4LjF8N7hPf1gXdv+Tq+z72i/Uy/M07MN3uelfsA0X2IfZ+FXvsvodwv2Q9AMPTXb9yWX2/Denfrf6ohjStVFai+n1Q0O4VhsW6V5IONdbZ31Jex2O7XykVWF7LmFfnq51yjT8pWW6FA8/b71RL3wAfdh+wnqp2rB+03pPr5/UY5Ad16+pAQAAAAAAAAAAAAAAAOC3cQgOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFqn/cN/PvyejuL8hf9Nspf9usonzqs57d6fT7a+raK8r92+UqU/7a770X51EG9ifK7oYnym2oS5Zd11j+kdiW7/7vNLsrfqZdRvhv6KN9UL/b56uU72fPcHUyj/KP1YZR/4+BplO+H7Pmf77LxpR+y/uRyl42/87A9H7ZZPR42WX9y1Nx8fD+usmuf1FnbGZvp+T7K95OsbV6+nuVX26wvn7fZ/a/7bNrcVEOU33ZZ35/e/9NN1vc/XFxE+VWXPf/Uus+uvxmuo/yy3G49tk+uonx9kPWdZcjy7Tprb2Wf1WO3z67fh/Wy32XXn86yetnus3qftl2UnzRZvq2yudgmrJd1OHeeVGH7CVXX2dq6WmdzgWqZzX1mWfMsk/tZ+6m32dyq3mT1OOyz63dhvjnI6iu7ei78usq0zuqxC+fCu/DfPVWH+WGXzZ1Ln/UnqTq8fjPJ+pNmk43XzSprEe00baFZfhPOh/tp+H2Ft7/vw/n2Phtfnu0XUX4bjkfp2jQW7oUM59n8uUzD+fM6W29W++z+21XWH04vw/nhPPu+hibMt1m999nHjW13t/vaJa2vqz5cX9y2Otw77LIvbNhl85Ph6ubrtXQu2Wyy/GSVPZv9Oh1bstpKayWcWpUunLwNfXb/6UhRx7PJF9wQ9p1Xqyhfz7K+p1pla7vmOhtL47FrlvXlQxM+z0m4Fsy6tnitub/Inmd/55YH0xdcvw73NvbZF1w/zdpn1WRz7XqRtYfJRXb/3Sy7fjr1r8OlcvjaqAxXYX0dZNf/2AnHo+78PMrXR0dRvspepZTqOmtA9TSsxzbcWwr38lNV2P236+z7rcO9yY+ddP52nb0rq7bhu9C0vi6z+WSV7h2Ga82uSvfmw73PXbi3FP6uaxX+LoQP17AJJxDxX3DL69Ow/Q91urcXvusI9wKb62zCV+9f7N/mfJxUk3BfNdw3jPNp2z/K9gLTtU78WiSu9fD6fKRV06zvrA6zxe+wyPYO+3AvoQrfW/dtNvesws3tj9nOMx+yqg3bf1iP1UG6GRKOL8HvJIbg2oYtAAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt93jfw78usmkT567KL8pOqifLp/TzqrqL8Mrz+rMqawr504fWz+0l1Qx/lm+rjdf6zW2T53ZA9n/f2R1F+Xmf1tR2ieNkNWXvuws+bemd3EuXfmD6+pTv576Ttfzdk9Z71huPTrLPPu7lTRfknq2WUvz+/jPJ9nd1/attn33BdZQXc1ll/frmfRvlnbdYhPmjOb5xd1vvo2k2V3fvYTN/J5ibdyTzKN6ts7rDaZn3/VZs9/yZsm2kldn3WN1/vsuczCa9/1mS18qmDJ1E+lc4dJmOb6z06i+LNRdY+q30212hez65fX2V9/77N6qXKhtJSwrGl67L2sFhuo/z1NqvH3ex2Z0vLOrv/pmTPsy/Z95vODvvzi/D6mWq1ivJ1H7bn/iDKT8/TAsh0s/D6m6xeunCtVh3d7txw2oR7FU06f8vuP62vumTfV3+RrRVKH35hoaEL147Lz0T52dPs+xrqrH8ewu656rPvqwrnY6tJdkPtMpwvhfVShe3/aj+L8us++77Steawy9pP9zic3w63W1/NnTtRvj7L1mttnbXn6TRrz/t5dv00316F18+G63i+mjaHfbg3+WSb7S2VMB4LH1Afzsduu76S8bFabaJL1+E+Y73P9jaadRQvTdY1l7BrLl24VEjH0m6f1crVJlv7rpcfm1emvyfDLltrDpfZWFQvsr3Deh+++Ao14YupdOyq0qV1uvZKrx+q61vumz9mhn02V01VV+FeyCzrD9sm658nl+Fe0Um41xvObavbfa1WmvXI9qo/Zvqr6yhfTbMJULqzVy+y+ckk3Mvp23BuPsnaZ3r9tL7CV0F8yNK9veHZzd+jl1JKdZz9rqh+kr0rGI7DxX641uwn6YIqi9fb7A+0K/OxF8mQ7uUfHUbxeL4XvvsaTrL1VxXOb4dwPplSLy+QcCyqluHewD6cnMzC321sw/cQaW2l7/nCsS79zSQvlmqWzWXi+kqF7bkK+4f0vUW9yhYj/eJ2z0Twgol/+BZePt2rmGd77en9D+H42B3c/P67YKy24wYAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBotc/7BsbqTrOM8t3QR/nd0EX5+81BlH/aXUf5R/02yi+rKsrXdXbeclI1Ub6pnOd8P9vjIcp//fokyl8fzaL8st5E+fUwDfNZ17ZssvvZ9JMoP6n3Uf43Ni9H+deaZ1H+E2HPn9bjC6/P6qXKvt7y5DwbX84PFlH+3uwqym/77Pvth6z/T633WX31ze3ez1v7OzfO/kfzi+jasyr7rGNTPz7L/kB7N4pPL7K2f/Ykyx8ssr6/Ctv+epd1tl13u3OZ5WwX5ff97d7PSZPNVVPrcK59eEv38Q3DVdY3l03YPhfZXGz+NPvEs8dZe14dZ/Uy7MO+PBuqy9Bn178O88vD7PtahWPdqgvnnunkJFTf8r9Lp7+8zP7AEDaIbLgu7SR7/vOnWf+zX2TtLZ37hEuRUrKtjdKusv5hE46nm2n2AWZNlj9osr2QsRnC8WJsqifZWna6yOqxm2drnW4a7kVts/4n3HooQ5Pdz2qZ1ePiTjY/rKvs807qrD+cVll+PYR7FX12/bHpnj6N8u1htpdcX2ftIZt9ltLPsvVaP8m+3204vkyeZfOZ7UF4/UnW3tLxa9Fk39dtzw/j+djIdOfnN842k6yvbR9nc9tpOHbtFllbrsOpT73N2n4VziWHOhxLmyxf1+EN8aHqw72Q+jR7L1X67Ptt1mF7OArnhuFcr5tn+VSf/gIg7Mr7W97L5EPWZN/XEM7FUvU+7P/DtVffhuNXNlUt6VJkCMcvPmThWnBYhx16+LuZ6jr73UP6FrSdZwPA7ijba2k22XhaLbKCSeeTfMjCtd3QhXst6d5/uDdWpb9j24Zr6/T5hONpFQ4wzc748iIZdtneTLUP93L2YT2Gv4tqnmbv9odw/2SYpXu9WbzZGmCem7BvHsK2OXTh3KTN2maV1tYm3Ed+nO2dDO3trsXTlaCR6MVSTcO1SFi/sXBvr+rC/iFt0OnnDc9E8BEXnmGp6nAvYR6+mU33AsPfHcb1cktUIQAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPVPu8b+KhoqvA84dDfzo38G3eaZZSf9Osovx66KP9Ot4ryr7eHUZ73Nz2vovy+z9rzup9E+WmVtZ++7KP8UZ215+t+FuUn4f2n+brK+oezfhHlS7nd/udFV6+z9nbw9ex5XjyZR/n+lax+F80uym/6bCrQD9n9lCGLr7vbnZpc7bN6T6Rj44s+0vWXV1G+unsS5RePs1qcvpe1ndX9aZRfzLZRfghrZdpm7We7b6L8apuN1bt5dv2zXTYWPdlnFXBQZc//Tp2Ojberv77O/kCdPf9mkY0ts8dHUX56ltXX5lk4tiyz9l/6rL7qdTa3HfZZvVxtsu9r0mSfd73Mnuc7u6y/PZtl9TIJ56qxIZw83LJ0vJu/neXXd4+jfLq267LuIZ67VeF4V2/D8brJ2uflYdbfpmuv3ZDV+906q/d4b+kFt3/7nShfP7wb5dtV9vynk3DvZB62/2x6G9djP8nWOk+Psr3DP3jvrSg/DT9wWo/zcK/l42b/1a9F+Xb/cpSvNln7mR5k86tumvWHXVi/TVq/4fx2cj/cH5hssuvf9nyM31X3+EmUz2YOpUybrO3v56dRvp9kbTmdS9bbcN8wVDdZ219MsrHozjR7j5XN/PlW9m99Pcq303BsWWZ7ge0qa299m9VvmzW3sjvI6qtKl9Zt9gdm8+w9BB+u7umzKN8us7lbtQvn2vOsHlPNLmufaesMl/qlhMNdPx3XXhfvr5pm40W1yPau+mW2dh+m2fyt3oa/S9hlBdAtwr1/v0j7SBv22Xy7OjzI8m3YgML1VNVl871qk9XXkN7PPhsv0r0QnrP0d6JdOB8L361V62wvqjTZeFFdZQue4SAcTw+z8bRv1MtzE7bNehauLcKxqCyzza60Ly99WOthvurC3z2Ee4Hx5+X5qsK9otv+fsP7ifPpWHfLrxHr6+x3bN5qPme33N5S6V5C6dMfDoT5fdhCw735fnLz/qcPfjNj1AIAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC02ud9Ax/EZtiVzXCzc3yzanLLd5NpqnGdP6zD85B36mmUf9qvovxlv47yh/U8yn/czJ4OUf5r792J8pNX9lm+6qL83eYyyj/pDqN8F7b/6z5r/7Oqj/JHdVYvb+6z7+sr+y9H+U+02fN80dXXmyi/eC/rf+bvzqL8xWez/G6RtedJndXj5S67n23XRPn1Phuv2zqrr1WXXf+iW9w4+yvbo+jaf3SR3fvYDKusr6qfZX357EnW1uaPsu/2ch22tTarlWGoovzVKhtbSnj9Psy/Vx9E+dRnDt6L8ldD9nya7OOOT5+1t7LJxq72LKvf+ZOb94WllHL5iewLaC6zsaLeZdevt1G89JOwvtZZ/qzPxot359n3+3S5jPJ1OFf9uEnHu+btx1F+cT+rr3qXbeNsj8K9h2zpWIZwV6m9zvL1Lhuv35pka6PXj86ifH2Y1UvYm/MtVF98M8rPru9H+eal4yi/PcnaZze73Xrsp9l4dP5mttZ/68FJlP8vXvnnUT5Ze5VSyt0624vi/fVPz6J8tc96uMksm89X+3RACq9/w3cK39DPsvp6+l4236vvZeuj4zabn6zD58OHp392HuWb46ztTJ+Fi51wrdy32WQvXUs1V+Fa8EHWNxxMsudz0GZrLz5kQ/b9Do+fRvnJIttr7BbZ3HAf7sv3WfMvVTo0NtkfqKbZWmfSWO08V+HeYf/4SZSvluF798OsvfVtuPcW5ut4LhkOkLdcjzxf/XW2eVVPw98hheNdP80GjH6ajUfNLuv/9104XofjXTo+8nwN23A9sg/3csL1yDAJN6vDfLXJPm8T1vvuOFu7hz/z4DmrT7L1RXUYvquvwvlMF74b7HZRfDi/iPJVeP/pr26bU78r/cgKx4oS9uVVH87l07GoD2txne1dVfNsL6Q/PI3yPF9Ve8tnIppscp7OxYZ0LdWGvf8+q68qrMdqHc6Feb7CuXmpw3cXYX9bpe9NZ9n14/El3ZtP527B3kMd1O64TmIBAAAAAAAAAAAAAAAAwG/jEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo9U+7xv4IL6635bD/c3O8X2mbaJrN9XH63zgsp5G+d3QRfmj8PrX/S7K8/4O3s6+ryePZ1H+3e1xlP/s7J0of1Bvonwfnu+dVNnzuerTesm62ml4P8vw+bzdZd/vJ17okSJXnV9G+emzRZSfhfV1vs7y+6NsvEst222Uv9hl97/psvvvN/Mo31Z9lP+V+tUbZ0+aq+jaZfEoy4/M0GV91XCZ1VbzNKut5bvLKH/xNOvLt9N9lO/2WVvudtnYNWzCWm+GKH6xyjr/vs/u/59Xn47yd9qsvv6T+Zei/ItuWGdzgfpZVo/zpydRfnIxifJDU0X5OhuKSskuX+p0KTJkf0F/ldXLV9t7Uf5wmrWH//fkO6L8fzz7fJR/0dfWwz7r/4dN1kBn72b9WzUcZPk+7M8nWXveLbL89Dobj9pVFC9Dnc09f/HgtSj/H5/+ZpR/2GTzGd5fv1pH+frR0yjfVll7rrqsHvtZuDe5Deu3ze5/+VbWP//i4RtR/vvufDnK/8+O/9sof/CCjy9j06+z+qqGrD9vjrJ6aRbZfHLxKGv/3SxbD+4XWXvrp9n9f+210yj/P7zzG1H+5fYsypfyUpjndxPvnTw9i/LtIpv79NNsLJpcZ/ntUTg3PM/yq8usdo9ezvq24zbLl3K7+7C8v+4yW0u119n3215le43NYTjX22TtvwmbZ9Vl12/n2WbIySKtF56n/vo6yjfvPs7ys2zt0izDtc70dtdGQ9id95NsLlzSPM/VsMn2Vodn51G+XmZ7Rf0ym//0k9utl3SvPXwtG9cjz1m4N1D6MB/+zi/N9+HeQxWOR2WfFUCzy/K9enmhdE+yvep6m83P68Ns762Ee2NDWF9Vlf2OsH8v++1M/fBBlOfF0Ydtv9mFPxxost+YlV12P8MsG1tKE87dvp795rZqw7VauNeY7Xzy3IXtIVXtst9VpPp5tpaqV1n/UIV7h92770V5PuLC3xmU8HdIZZb1z8MyG+/S+k3rpdrfvH6r/c3XjX4tAAAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGi1z/sGPohFNZRlNdwo21TO+32YJlUT5buhivJ3mkmU5/0tvn4d5WfvHUf5+5PLKP+p9nGUr29Y59/wcpN93q5k7fPt7iDKP+kOo3w3ZP3Vafh5p6WP8t2Q5V/0/ra/vIry9Xn2/c6fZu3n8cUyyl/dnUb5l+fnUb6E3XNav1+5uBPlV7vshi6aWZSft4sbZ7+4eSm69m/uvhTlPzPJ2tqtG7Lvtl+to3z95FmUX75zEuUXX8/awvpONm3uV1m+2mZ9Z7XPxq56H8VLt8j6/qunN6+VUkp5K+wbfvHgjSj/laNfifKfaEdWX6F+u4vy1VU21s2ebKL88u2wXtqsPaf/Kpc+XVpkzb8M2dKoDOEqfPh69gH+9SIbjz53/G6U3wxZh7KssrnJi27YZPVSP7mI8pNJ1uCqPhvvdgfh+NVnBdlsswKrwrXRImvO5eLXsv7//37v90f5/82dL0d5voVwbTpst1G+XmX12zwN52OzsL52Wf2m41cVDkjdPOvP/+uH3xPl/6e//xei/J0mm3/yLVThfCy1CevxLJuvtn3WHhazbDzdL7LnszvM8m9+PdsL+frLp1H+f7T89ShfyufCPB+W/moV5ZvrbK+lfZatLWbzrFb6cK2zPwgXd6vsfi628yj/7fN3ovy/KK9GeT5k6dzwyVmUbw6zffn2KKuvyeR2x5YqnBvWdbZX97mTbPH1pSjN85a+J2sus/GouZPN3bpt1j7rLsuX8D3x/jC7/uQoW2vyYhm6cDy6zuZ79Tp7r1zPswnZfpnld8ts/paOX90irV9eJOleXVln/WdVh+9aZ9n8rTvI9saqsH/YL8K9Q+XyYgl/W1H6cHzZd1G+mob3E+4d9neydy/VYTY/HB6dZdfvFcwLo8/a8rDL3ltX2VZRKW363jRra0OT1VZzN9tH7p9lvwkcvvJWlOf5GvbZ74TStUgVtv+yCseifTYXq8OxsUyz6w+r7PmkvwvhBRPuPcfC39gP+3C8C+eG/XG2F16fZ2cW2vNg77C7eW292CcVAAAAAAAAAAAAAAAAAPhIiw/B/czP/Ez503/6T5dXX321VFVVfuqnfup3/PNhGMrf+Bt/o7zyyitlsViUH/zBHyy/8Ru/8TsyT548KT/yIz9Sjo+Py+npafkLf+EvlMvL7L8kBQAAAAAAAAAAAAAAAMBHX3wI7urqqvzBP/gHy9//+3//3/nP//bf/tvlJ37iJ8pP/uRPlp/7uZ8rBwcH5U/8iT9R1ut/+5+y+5Ef+ZHyq7/6q+Wf/JN/Uv7xP/7H5Wd+5mfKj/7oj/7ePwUAAAAAAAAAAAAAAAAAH0lt+gd+6Id+qPzQD/3Qv/OfDcNQ/u7f/bvlr/21v1b+zJ/5M6WUUv7hP/yH5eHDh+Wnfuqnyg//8A+Xz3/+8+Wnf/qny7/4F/+ifN/3fV8ppZS/9/f+XvlTf+pPlb/zd/5OefXVVz/AxwEAAAAAAAAAAAAAAADgoyT+L8G9ny9+8Yvl7bffLj/4gz/4zf/t5OSkfP/3f3/52Z/92VJKKT/7sz9bTk9Pv3kArpRSfvAHf7DUdV1+7ud+7t953c1mU87Pz3/H/wEAAAAAAAAAAAAAAADw0fehHoJ7++23SymlPHz48Hf87w8fPvzmP3v77bfLSy+99Dv+edu25e7du9/M/Pf9rb/1t8rJyck3/++NN974MG8bAAAAAAAAAAAAAAAAgJH6UA/B3Za/+lf/ann27Nk3/++rX/3q874lAAAAAAAAAAAAAAAAAP49+FAPwb388sullFLeeeed3/G/v/POO9/8Zy+//HJ59913f8c/3+/35cmTJ9/M/PfNZrNyfHz8O/4PAAAAAAAAAAAAAAAAgI++D/UQ3Kc//eny8ssvl3/6T//pN/+38/Pz8nM/93PlB37gB0oppfzAD/xAOTs7K//yX/7Lb2b+2T/7Z6Xv+/L93//9H+btAAAAAAAAAAAAAAAAAPCCa9M/cHl5Wb7whS988///4he/WH7hF36h3L17t3ziE58of+kv/aXyN//m3yyf/exny6c//eny1//6Xy+vvvpq+bN/9s+WUkr5ru/6rvIn/+SfLH/xL/7F8pM/+ZNlt9uVH/uxHys//MM/XF599dUP7YMBAAAAAAAAAAAAAAAA8OKLD8H9/M//fPljf+yPffP//8t/+S+XUkr583/+z5d/8A/+Qfkrf+WvlKurq/KjP/qj5ezsrPyRP/JHyk//9E+X+Xz+zT/zj/7RPyo/9mM/Vv74H//jpa7r8uf+3J8rP/ETP/EhfBwAAAAAAAAAAAAAAAAAPkriQ3B/9I/+0TIMw+/6z6uqKj/+4z9efvzHf/x3zdy9e7f8V//Vf5X+1f9/7tTTclzXH/g63L6m8j09T83bT6P8fnkU5X/g4Dei/OcmVZRP20833G57e73ZRvmmyp7/e90myvdRupRXmkWU/7jVb391HeWbdx9H+cM3j6P8u49mUf76tWmUb8IWtOqz66eOZ+so3w1Zf7LeZ1Of8+38W4f+jcsu+67ObvlZjs2wzfrO4TqrxdlXs7529h0Po/zm6zdvC6WUUi2z2movsr62zh5nbHKe1cr+4HdfH/y7XPYHUf7nyxtR/p/ffS3Kf+LwWZQfnb7L4lerKN9++d0of7d9Ocpv7mX94fYwq5e+zcaKEsa7sDtPp6r1Lruh3WoZ5f/r9fdG+f/ij/1slP/D2fD4wuvX2Vy+uryM8vU8a3CTLuufq104l1w3Ub6bZ/m2y8bTJnv8pd5n9/NbzSei/P/h/ndE+f/d/V+P8h83w34f5as2m88Maf3WWf9cbXdZfp3l61U2X627bG9gP59E+fNfvBfl/8s7PxTl/8+f/H9Eeb6F99nv/3fqsvnnsEnrK1wfVVk9ztLNtJLNr/aLrF62Z1n+F85ej/L/67vZ/I0PUVhbQ1pbq2wfrT7I+v7Js3Avp8rmkruDrHa3J9ncbdtn+T80/0qU/7+UV6M8H7KwvvqwXpqn51F+cpwufrN66aZZvayyrZnS99n135hne7FfKtlcledr2IX9/5OsPbTLrD10k2xuWHXh5ls4Fa6y4bp820vZe8TwdnjO4nq5zvbm6/PwvfU0m/9MmvA962m4FxgOj9uXs70QXizxfKzJ2lsJ9xKqSbZ3WM2z/PY0/J3HS9n1r1/O6vdOlOZ5i/fCw/GobLP6Cl+dlhLu1fXH2X5Fdz/bG+uD+WTY8/C8pXtp4XvHKvyNa0nfA4Vj0XD3JLt++BvIPtzH5zm77b3ndTZ3K7Ns7lPtwnrpwxc763CtFo69pQ5HjPB3XbxY4rnbNPyhWdo+03dHaX8yzd5rVm/ffG+s6m9eux+vkw0AAAAAAAAAAAAAAAAAvFAcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtNrnfQMfxH/2C/95aZazG2XvHlxH177eTaL82eUyyjdNH+UP55sov5jsovzJdB3l//CdL0X5H73z/43yJ/U8yk+qJsp/3Kz/QfZ8qkdXUf7P/z9/NLv+Jjt/O0yzeqmPsvZ/epJ93oNpdv3lZBvl//hLvxbl/xfHvxjleX+/8X/8D6N8va2i/OQqzJ8PUf5X/9tPRflfufNqlL937zLKny5WUX4Vjr8PFln9/umXsnr504e/eePsnXDsql/saVh563/7H0X5yWXWlrt5Viu7oyhetqfZ2DK8lM3FTk+yuedxONe7v8hq8eX5RZR/Y/4kyv/g4a9G+U+22Vg6D+d6syrrS7oha29Nlc1lHv/FH4jyJWueZXsS1stxdv3dUXZD/b3s+z04ydrzvXBt95njR1l++V6Uvz/J6uugzuq9CRtEXWX53zd9O8q/Hg5fuyGrlyf/y7BeQps7Wb1sT7Lr7w+z59/d2Uf5g9NsbvXwOGuf33b0OMr/vsM3o/yrk6dR/rjO9iq6EvaHQ9agu7A9N2E9/kz2ccvj/1VWL+t72fMJP27ZHWXzvbRehqOsXpbH2QN9/fRZlP/McTZevD7L2v93L7L6Oq2z8TEdLy76bL1z1d9sz/Yb1n02f/u/Xr4e5dP52OXrWb3006z99+F42s/DepmF84dFVl8vP8jq5ZNHYfs/+kKU//Qsq8fPTN6N8ss6m9+uh2z9ktbXRb+I8v/N+rUov/6f/OEo/+h7sga9X4bjxUGWH5owH9RvfRCudY6ysejhUbY2+q7Tr0f5zy4+H+W/c/ZWlH+1yeaeqetw7nYW1sqXdnejfPMd3x7l3/mjD6L8+m42FqW10i3CsWsS1lY4drWHWX0dHWZro2+/m+0NfNfRl6P8p2c/H+W/e5bN9Q6qbKxO10bX4VzsaphG+f+m/t4ov/3P/lCUf/aprH/YHWXPp8umtvHcMNyaLLuTcPPwNKuv+/ey/vw7774T5b/36P8T5V+fZnsVL7fZXHVeZc8n1YeL6/99+R9E+XQ8uvpcNt5dPczmtmF3UvaLcK8i/FlIuvbaH2b1u73XRfnF/Wzt/p0vZfX1P773C1H+jUn2LmheZ797uO36+tvlD9zq9dP6Wn/yNMpvj7IGHddLHQ4woXR83C3D+cmr4Xz11Wz99dnXsr2B//T+r0T5V6fZXkhaL5Mq63/+T//lt0X5VDXJ5ofNS/ejfH8ne7m5P832WoY2G6/7aZifhO8uDrL+Id3Lv/hE9gcuvz1rn9/x7dl+wrcffS3Kvzo7i/LJu9z/23e9FF371tVZW2iOD7Prh797qOZh51+HjbMKx65J+J7vbvZ8+ll2/etXs77n8Xdn32/3Xdlv5F69l839v/deVoufz5YufCthvdfTcPEV1uOwDefyXbZXUR1kZy6Gk6x+z7/rTpR//Puy57/+ZLY2+txfyPYOec6GcG9vk/0OrAvzsXQ8vW3B8+yGm/c9/ktwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjFb7vG/ggzicbUo7v1n2E4dPo2tf7adR/ni6ifJVNUT509kqyp9Msvxhk93/bmii/L/aHUT575tuo/ykyu7n4+bp9SLKHyyy53/3/lmUnzX7KP/e1WGU77PyKgfTXZQ/DOt9WndR/t3tcZQ/67Ou/GHTR/luqKJ8U73Y56vbh9dR/tW751H+rccnUX53PYnypc4KYDrP6nG7z/rbx1fLKH88z+orHa9/8eqNKP+ds7dunP0PptmznFUv9DSsXH426zurbdY3zB5lba1bZG0/nMqUfp/df9dn+att1pYvNnej/Jtt1vf81vxelP/qOruf//zez0b5T7ZZ3/ygyb7gutzuXPIy63pKs8rG3lQ4tJd+Ek6uwrFoPsn6z31YX79+9lKU/62LrP2nc71786sof3eatf+6yuZ6Xwvr/X9+/EtRfhmW1/Y0a6CT87B9hnYn2fOMddnn7fssv+uyL+C9dbb2+pnNZ6P8ss3mD8eTdZSf1ml/Eo4XYX3dm2T1fhKOd9OLsP2H8c2drL0N4VKwCtvzEM7HUs82N9xk/DcebbK9rrbKxovrPpsfTsLr9yV7/pf7WZRfhfefejC9iPKHb2b9Q99k67XrV8L23KTzqyxe7bI/0Ifr07OrbK/xzjzbq357k61flnW2l3nWZXsVTcn6/+s+q5dHu2z8veyy66f9w/Ir2V7X8dFplD//VNqgs/g++3pLCbqH/irbp1uFtX7WhvvI86Mof39yGeW/Wmdrhbf3p1E+9d4++7zPwsaQjr3VdTZXvffL2Vzv3e/L5hpDm45FUTyeSw7hWmQf1vpmlq0tLndZ35nOfc7arL392uaVKD+vs8+bjkXp2JjWVzXJ5hrLX34zyu8Oss23y2nWPuO95HQqHA6N9Sbcqw7nhperrP28c52913y2zOaSk91plN8NWXtL53rrIZsPXHTZ5011v/6FKD+7+wej/C78vlb3x/WeOGwOJZw6x+Pjdpvd0MUu3KvYZfOleZWNL8s6e4/bhL+LSn+XcOseZ78zax5ka7vqMByPqnAvORy/0r29bhLeT/izh2adXX8frtceX2fz7Wdhfz7fZ/U1C+d76Vr/tg27bG9muMr2zsudbL6R2h+E9Vhn7bObZvmqy/rP3TIr4DZ8/O1ZNn69d5XV191Ztl4+aNPx6Jbf9d2mPqz19EeT6d7APFsrDG1YW7NsMTVMsuv306wt97PwPeIue/7hT7ZLabO2nP6uYhv+BjXaWOVbqhfZ3L8MWXurpuFkLO1Pwr2fEtZ7+nmbbXj/4VKkno5rLga/XRX+bnLowvacnhEYbqdexrUDBQAAAAAAAAAAAAAAAAC/jUNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW+7xv4IM4mm3KZDbcKPva/Cy69qqbRPnPHb4b5Td99uhP2lWU3w1NlF/W2yg/qboo/6Q7zPL921F+VmXPs6k+Xuc/F9NdlF9ts/b/nzz4QpT/1YtXovzyJGufdXWzfuEbXppdRvmz3SLK351eRfnDZhPlv7o/jfJvNE+i/HGd9Scvur7P+oem7qP897z+ZpRftln7f7TO+tvDSdbetl3W3+6H7Hmm9zOt91H+tdlZlH87qK/N5HbHrrGpV1nf0DzM5jKTN7K2v35yEOVLOFZMFtlYmvYNVXo/dZaft1mtpLVYV9nn/eX1G1H+jcNfj/JjM7msovz6Xvb99jdcE31Dc53dz7AI23N2O7HVLus/07G9G7LnczAL11JNtpZaNFn/k849u5J93nmV5VPNKmtAu6PsfsLuqkzOs+tv74R/QVgwfZ/dz5OrZZQ/W82jfJOOX23W/g+mWX0dTbPxK5XOzdP6/Y7261F+epk9z1Jl87c6vPzQhOPdS1n7qbZZf766nEX5Iez/vzTcjfJvXp5E+bQ9p3sh0/AL3vZZ++nD55nWVzpeT86zejz9rXB+Fe6lXb2Sjl9Z+98vwglZOJ/cbbP52JvPsvafrvXfXh9F+ZfnF1E+ddVNo/xbV9nzWe2z9naYjo/hdOboy9l6vxqyvdWLN7L2H766KN305vW4P84uvl9ltXLeZHOxx4tsL+SLzf0o/2yffVfpe6PrPquVZ+G+/Fcu70T5XZeNdUf7rO23j7L3EHd+Pav1Z9+W5dd3s7GoD2qllFL2y3HN9d6ZZvvmp9Osb77ssvs5btdRPq2v9D30e9vs+by7ysbeYftWlt9kY9fxr51F+b7N+ofrh1n7HOqwvrLyLVU2VSrDJGsPm1nY/2yy8es3rx5E+ceTrH2+Gr4HSsejtL6ebMN3FyUbL6pJdv/Nb3wtyi/nn4zyfRs+z5Nw7zabDsT1UoV7n5Nn2fxhN8/yjy6z9vNb82y+F6/dm3Ttnn2/6Xhayu2+jOgeZ7+rmLyTzR+6Zba3lKxdSillv7jdvfPwZ2nxu6P0fup11t4urrP29u4mm/804eJ6km7GvuC6s2dRvr1zGuWrk2x+Es/f2vBda/gzxfh+0nrsw73kp9n9PDvPxq8nB9m7zYNwLzmbv4WTh5Hpzs+jfHN8nP0F22yfvT/N5vIlfM9Uwrnb0IZru/D67VXWl88fZcX7+DKba6/m2dr67XCtX0q2t8H7q5qwM59ma/dqFs61+3QyFg526efdZ/U1Pcv6q2qfrfXT98p8tFVt2H7CuVhzmM2t+lXWP1fTrB6H3TjmSx+vk0AAAAAAAAAAAAAAAAAAvFAcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtNrnfQMfxP3ZZZnOpzfKvj59El37op9H+bvNVZR/Z3cS5Zuqj/Kzehflj+p1lO/C85N1ye7/SZ81zYfNEOWbKP3i6/rs+zqeb6L8PGxvry6eRflJ1UX5fqii/KafRPlPLLL+ZBO255P2Osrvhuz6T/qsHg9r9fV+0vr6+tVxlP8P7r0Z5c/qZZTfh/f/YH4Z5S/2syg/rfdR/pX5eZSvw/H0qF7dOLsesmtnLWGEsq6h9GFba+vseX7Hp74e5ZftNsr3Q3b/ry6zse5fPX05yh9Os7H6cJLlF002tn928W6Uf3mSPZ8ubG9tOBo11e3+u0HCqVIJu6rSH2Z953AaPtAum1vVk+wDVFV2P9tdNncbwrnh6fLmfX8ppcza7Pmn9Xh/lo29n5g9jvKnTTb37Iaw/YTabGlawql82WZL8RI2n1Jvsj/QTbL+Z7fN5v77sP8pYT3Wab7J+of0+rPmduvxZJL1D0dN1qA/NXkU5etN9jybWdbeuknWnuePs++rW2T3sw3nh/0qq5d1WO+pOlxbr7ZZB5eOp9M222tpwusfTLL5dlqPh02WnzzN6rdZZ8//qE/Hx5vtaX/DVR020PB29lU2f9712f1chgPql+s7UT5tz+9eH0X5dK8xXc+m19+F6+tNl/WH86usXoZFVi+Ld7MJylBn1798LVzfHSYXz2qlC2tl12bf1dcvsrZ8tcv6nrQtp3sV6VzvySrb99zss+eZjr2Hu2xfstplc9XZu+HcM1xbpDv525OsPVdh37YP9972Vfb9PmsPovxXJtn39dLyIsp/fcgWp+m++boL+85tto9/vs7yD6L078EmnHt+NauvalhE+esHYXvOLl+6MN9eZvW4nWbt50mT1dc7s2y8ON9lv9t4a3W7b1+u99l4mtbXQcn2Aodw82cI62X2xWyvopT7WbzKnuduH+5Vz8LxKJtulBKu1fbnWX2tDrL81y5Po/y2z+YD6fxw22XXT+urlOw9+m0b3nonyi+2Yf1+V/YusW/CX26ke2Ppq6ZwfZTq23C8C/d+3roKXy6EdmE9rsO1filpfz4u+y9+OcpPwvVXOmPd3Mn6q/jdb/juK323NmzDd1nZdKZch+Pd2Z1sgpvuJ8yj3z68F137RdedZ3sb7XG2F1Wvs7nnMMvaTj/N+s4q3sfPhE2zzC7C32Q+zp7PxSJbS329zdZSxx+zerltaT02p+Hc5DBbu5cqnLul+fB3J9U+fK95nfU/zS4bi4ad/wYV/1Y1TeeG4eQwXNvVx8mLr1JKOHfuNtne3m1RhQAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW+7xv4IO4M7kus8nuRtllvYmu/fLkWZS/6mdR/pOzR1G+G6oofx3eT/p8plV3q/l5mK/LNMrz/paTbZTfDU2Un9X7KH/UrKN86tHuMMofNlm9LJvseaa24fPfDs4/v59+lz2fTZc9/wfLqyifujfLrj8N6/HeJLv+pM7680Wd1cu+z76vXZ9Nffrg3xdwEY7V98sQ5bOWdvva6+zzdlX2ebvwuz1bL6L88jBra3XVR/k2nMscz7Kx7mqXzX0OJ9nYdTet9SrrS07r6yi/DseufmT1FTaHOF/6rB7rSfYXLE+z9tnWWb3UYf9wMMvqN72fu4usfc6bm61Jv+G1+VmUf2Wa5U+b7P4fNOdRvqmy9pZq11l7CIf2sjsKx695dv1umbW3Mgnz2eMpQ5ivwg5xMs36/2mb9T8H06zeT2erKH9/mo133758J8o/aC+i/Em4N9NssvbT7bIGUe+z/O4wq68m+7pKOQnzaXlts/nGOtx7q9rshrZN1sGl9TifZPlJk9Xv0TSbPzyYXkb5l2fZ3u3nN1l/UjVZe54+y/LL97IOt5tl+euXw/lhG863w/FifzWJ8mfdQZRvwvltXYfrhSar34N5ut7M7udolo0Xd2bZ/PBqlfU/9dOs/Ux32fp9aLP23LdZe7suyfXDuXC4lu2q7N6znrOU9SrbS5jOsrHivA3fS02ztdRql7XNIdyrq8O147DKxrpqkn2/9TZbjMweZ33DEH5fV+E+eLr2qro0H95P+Frk3SZ7b3R2nfVtqXQulrbnXfg89/twMhAuTvuLrIdrjrLvqz3LFiPLSdiAhqy/Xd8Nx4ttVi+7g3QvJ3zvWGX9ydfa0yhfhXOldO6WzsVS6buObCb8e9CHi+XQ9J2sfg+HrH5XD7LxdHeQPf86m56Ubp3WV/geul1G+be78N3aKptvpHsJq232ffXhu47Xy5tRPhaOX8M+ez4l3KtY/uv3ovz0peMov7mX9ee7g3D+EP5sZh/WYwnn/908+7xfqB9E+UcnWf1OwvFrE66PXirZ7xRfdPuvZf1Du8saXPXJh1F+d5zND/tw/tlswr2TSbj+Cutrd5S1z6d3s3q5DseXJpjvvVSyvvbjJq2tepl9t9WrWW3VB9lcpgv3wZtVNrZX4dxhuc36/sMvZ3sPz+5mfc/jsNazmQYftu4se0/WzLK5T+w0bBFdttdV7bJ6bJ6Ea9OvHkX5dG3KR1u/zvbmY+vsXURzGv6wosnWds2DbG3UPUrWItWNfxflJAQAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1T7vG/ggDttNmbX9jbKfm74TXfu8n0f5V6dPo/xFeP2rfhblm2qI8pNqH+WP63WUP6pXUb4bqijfl+zzNlH6xXe9nUT5//SVt6L8YZO1h5Mmaw9p+7wO6+X+5DLKH4WfN73/3ZB1zU3Y/vuS1tfN+tl/68WusGGb3f+D5VWUf2XxLMqnDpptlE/bw3U/jfKbLmvPB80mytfpeFdn9ZjMB9JafNFV+6ztdOdZ22mPrqP86TwbW6ZNF+X3ffbvjni0OYzyx5NsbLltXfjvyojntkPWHlJjG7vqXThX3WT1VV+H93+4i+KTsF6OZtlYlNZXW2ffbxPmr3Zhf1Vlz+fJ7iDKvzF/EuUfNOdR/qUmmwsvq6y91eFco9lm9dJm3X+ZXGb3s8++rtIdZfnJQVYvk0nW3lJ1nT3/aZvNrSZNVo/35tlc+6jN5pKfXDyK8m9Msno8bcL7D/urepe1h2aV9bfNLByPtlk+VYfjY38Qzs/D2x/67A+kT6cO6yWt3zvh/HneZPOHO9Ps+q/NzqL8/TYb76p9Vi9DFba3NqyvVXY/8yfZ9buwfsOtqDK04fXT59lle5nDPJxPzrLxazbN8un8cxLm78yy9fKr4V7Ur59lDaIasv6nXofzn2k2/1w0aY9788+7Cvv+XTpWDFlb3vdZrezCZ9kts/vZTm53bd2Fa8fUfJLVen+VzfVKWiuzbG3ahG1//l7YPrvsflbhPvt2F95PuDdZddn97LaLLD/L+vJqns0FJvOsfS7nWV+73Y7rJwPDLvu8w0W2t1H12ffV1ln/swjnPs0ue/6bo3BvJmsOpQnXdnV6/7tllB+m4dpuGu4dzsK9lvC91O2ulEs8vpQu/LzrbK+lTLL2MHmSzW2rIeuft0fhfOkgXXtF8RK+xi3tZVbvq3X2fC6W2Qe4COsrVTUv9rvWePzaZ/kqrN/maVZfk1nW3ppV1h66RVpfWX53lfW4kzB/3mXvQp+cZ/1POn5Vkyz/UpR+8VVtuLeRzt+eZXuf9Tar336e3f9+Ge6lhXt7zTp91xfFyzun2fzw4iAcj274++JSPn61ctv6VVYrzeOzKF/Vd7P8LOwbuqytDeHeWHse/ub2S1mtb+5meznb03HtDfDh6p+cRfn6OPvdW7UJO//QcJCtdaqn2XvEky9ke73ru+EPQ3i+6vDdRR/unYT5dK46hFOfIdzLqRZhfbXh80z2roKs/xIcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo9U+7xv4IH7f/M2yXDQ3yq6HSXTtPzQ7i/J9lC6lGzZR/r0++6ou+mmUf9wdRvl5tYvyD5pVeP0hyvP+HhxeRfllvY3ymz6rr09OH0X5s24Z5Q+bdZRP7Yab9Tvf0JUqyj9oL6L8aZN9v3XJ6ms3dFF+VmXtYXTC7mffj+s8eVtn31dq32ftfxOOX+f7eZQ/bLLxtB9u7/tah33DZsjG0kmVXf+2hUNFac+y+69fD69fp7Ox273+9T6bi9VVdv17s6zvf7bNaiuv9azv3w0v9DIk1mZT4dJmX28ZmqxvWx9lz78/yK4/acK5Q7OP8qt9ONcIx+oqXIvc5thSSinvbo+j/HfP3ozyyzp7/pMq69+aKns+7VU6lwnn5pfZ97tfZHP5bpZ93v44y0/bbADuhuz+U31YX32dPf+nm2wteGd6HeWP6mzteFRnHfq9Or2fcL60yuaT011WX0OzyPJ11t7CrauyX2bX3++zfDUL+5+wvqqwHNP8tM3683QtezTP1l6fXmR7P+le0cvtWZQv++z7rcJ6qbfZ82/DeplcZf3D7Glaj7c7Xuya7PrDNBsvhj78vGH9pvkmnE8uJ9n4fj9cD35qntXXr3UvRflyHS54wv62fZTtlabro+zi2Vqq3mZtZ3cU1mK4FknH0r4JazGslXWb7YUcL2933//lg6ythS2/9KvsT1Rnz6J8PWTfV9WFG+F9eP1wb6zZZmNdsw7ra5Pl6/B+9uHeyf4kvP8oXco6XHv14Vg6n6d3FOqzsaJ/ltVvWi/pyDLtwrlkuPatN1l9tZusPe/CDq5ZZe2nvc7uZ3scvte8E+7lhN1hNQnfRYzsZw/9OhtPh8fZ520mt/ueeLLP7qfah/W1y+Z73TzrIepdlk9/9jC5DOdjD7LPuzvKGnQ3z76vdC04OuH4NYRrqTRfHx9F+XYWtv+j7N1jlY6/u3A9Er5LT39Wcfqvw/q6mz3P7Wk4f3vBf5Zz24Z9tlfXX1xG+TrdvG2yd31lnu4/hA16F+7VHWT3015n/f/dX87qN62v/UEU58MU9v2lDX9H0odz1atsH3YI97WrTVaL3fEsyjeb7POefCHLb49v9z0Bz1c1zSYPwzp7L5jWb7XM3kNXV+lmRTa2VJtsr+vu58Pnw/tL51bp+BKu1W5bOldNpXs/ZZu1/6Zkc9v2jeCHwP2mlK/dLDquX+4DAAAAAAAAAAAAAAAAwG/jEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo9U+7xv4IL5n9vVyOLvZOb5/vv5kdO3vnl5E+WXVRPm6ys4fNtUuy5dNlD8Ir596tcmez2E9v6U7+Xj6rd94Ocp//70vRfmHk2dR/q3dnShfV32U3/VZe0st622UP6izepyH9figuYryTTVE+fXQRfnDKD0+7dNsaPy1X34jyt/9vuso/3B2HuXr8Pu96mZRftNlz2dSZ+1nH9ZvO8n6h24Ix99y8+d5NWTPZjdktd4N2WdtwrlGqsm6ttKFQ/uzX7kX5Q/+UNY3T+t9lG/r7Pmn1t0kym/XWXt7OM/mtuf7rG9YNIvs+mGD2E2y9twNWV9YqiyeqnfZ/Uwus+v3k+wDzN7M2tv6OMs/W2ff77TJxorw2y27Pms/s/B+Vvvs+SzbrH7Tsf2sX0b56z5rcLddX832dvvbSVgv+3mW79usva2OsvZzFbaH2TybbwxD+HmjdCl1OJ7uumxu+M7qOMr/ZvtSlP/U9FGUn4Rr2XmV9Q/VNpvPlCprb5PL7PpDndZX9nlnZ1G8dPOs/ezbsH9L1yLbrH8YwvVF2j03dfYH7s6ytexRs47yqaNwb2bYZf1htcoWPPU+mz9U+6z9TMP66qdpPpxvp9e/5fl8uFwuXZ/V17YJ/4JseVS+/SgbXx6E7y7emDyJ8sM+27utSrZ+jO3C9ftZ1l8l89Whydr+UGdjUVy74dw2ldZKv8hqZdtktb6bZX3/w8NsrfOJg6xWfj1Kl3iw7lfZWJruBFZ9dj9teP91ONaVKttLqMJ95L4N6zd8g16Fa6n0/tO3uNtwrjdbZH/DJNw7uW3DLusf+vOsf6i7cK6X1lc6l+wOonwdvgeq9+F71vRdRJXVS70P8+FewuZBFC8lHL+qdC45MnF9nWW/G6iPj6J8CeuxDdtbtZtG+f1Rlq/C7rNK32uGA0a4dVWqLnue2+Ps/vsu3f1/sfWrVZSvZ1l/3l9la6P64pZ/p3V4u2vH9jqc74Xru3Q8qsJ3U+l8cpdNB/iQdU+eRvn6MHt3V19n4281DfeSw73GOtw7rMPxaPlO2v9nn3cfbhXx/AxX2W8g62n23msIf8Ncwvd2sbDp17vwvcJllm/Xt/zDGZ6rPq2vg3CyEe5llmm2lipN+J71OLz/Oly7hGMj30L6ontswndBpb/dvdV6Hu61p/WYjr+Lm68Fk+MKqhAAAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRap/3DXwQx3VVjurqRtmm9NG139pnj+Zzk5vdxzc0VZavhyhe5lUX5V9tsr+gK1l+US2y6w/Z99VUznO+n/nXs/bchedj77aX2fX32fUnYXu+7OZRfjc0UX7TT6L8Ub2K8k2Vtf+03k/DcrlTZ/X7ops/CvvnXdZ+rr83az+7aXb9Ouyf27D9POmWUX7R7KL8qsueTzq+P5w8y64f1GM/ZMVVh3OBsY11bda1lWrIPm/qajuN8k2dtZ1JndVKG16/D5/PpsvG9qfbrC+fN/son97/s+4gyl+HY+9m2ET5ZcnaT6pdZ33zcMM1zjfz4Vy+6rLrX2+y9nZVZ89z12b1VYf1lRrC9lxV2fM/C+vxfJbNbc/C+qqn4WKzZM8nXdvV66w9pCbXYf8c7pr002y8Xm+y/O466w/T/rlpsufThvXb99nnfbbK2v9yso3y5/vs+ud9lu/CeontsvG6TMK1xSa7fro2mj3L2s9umV2/yaYDpb/Krt9n3W0p4Xjdb7P72YXd+WqS9SdPNtla8NH+MMp/cvpelE/7t9KHD6i/3flGtQ/Hx124HrkK51dHWf88PY/ipQ/3zuOvN9zLDJfvpeuyP3B2nc33vrK4E+WPwwV5utcY68L5W5P1b2WfjUfVKhsA2vrm3+8wydpCN88a834RXn+arh2jeL42DWu9W4dzk5MoHkv3MW9dWFvds6xzrrtwLArHxiqorVJKmZxn7WFosva2W2T5eOwKx5Z6G67VLsP+ockWs8M862u34Xv0sRnSsSucSw5hPVZtNhdoLrOxbgjXgn1YX80s7P/jrdjs+u11dvXuWbg3U4cD6kG69/Zi6y8uonzVhv3JNFvLVlfZ3Dl+dxfWV7zWicejsF7Cd33T7DVrPF6vl7e8dhmbIRxfwnzdhBOUdTa+VPOsQ69X4V5mKJ2ddLOwPw/3GufhXk4frpX34XqT9zdss/VgfZhtDqd7FSVcT5Vw/OqOZlG+3ob9c7o+2mT1ku1Ul3L98MVev/C7S2u3Ct+rDbNwbR3ODdPXiNUuq8XZ4+y96e4km2vz0RbX12nYO4dz2/4wu35aj1V4P+n98xHX3+7vnG7dIvsdTDXP5pLXn7753ud+vy7lCzfLjuvX1AAAAAAAAAAAAAAAAADw2zgEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBotc/7Bj6IRTUpy+pm5/g+NXkUXftqmET5z+/2Uf73T6N4ud8cRPndcBnl3+uHKP+5SXY/PF+zp1n+0eYwyvfL7DztvNpF+Yt+HuVndXb90mfx1Dv7kyg/rboo/5l2EeWbG/ab39ANt/yARmb5TtYfljD+aJXV18l0HeWndTYebftsKnDQbKP8023WPqdN1v7f2x5F+U/Ns/nAUb26cfZuk31Xk5LNNcZm/jTrG8KurazvVFF+s2/CfNb2+ya8n/Dz1lXYmYSehbV47+hxlJ+FfU9dZe2nK9nz36Wd8y2bXmQNol1lz6ddZ2N7vc/yV2F+t8vqMVVV2fWbOnueddbcyjCEfyC0H7LP+6zL6r2/5ftP557NKpvL1/twPNpn/UO9y8aL/Tx7nk1Yv/tJdv9duO3TT7LnOfTZ563C5na0yOZXmy78vvqsvt7bH0f575y+E+VT1T6ccKyyuXy1ycb3WViPzW4W5TcnYf+/yhpc2N2WXZ39gWGRfV/V9HbrMR2vL7bZ9/WbVw+i/GdmWb281p5F+ZLubYR7paUPx6PrrH9LZ1dtm40vk+vsb+hm4fUvbrcew638UrrsfvptWO+zbD5ztcteFqTrx6s+q98Szt+qafgFpPWV/qscw3c11Wpz81vZZM+yvc76hsl1uG8bfrVDuNgZmuy76nfh9SdZ/vwqe08wbbO2cLUPH2i5edv5vRjCWqkX2VqwCifnwyb7vPXZRZRvw723bp71zbdeX224Fgz7tn4aPp99+P2mr0VueS/h1vXZ3Lw7P4/yVZutTetZ1uDStWBTh3O3cLzoZ2H7nIaTvXDu06yz+0nnql34XrwP144fN/1FNl5U0/CHNqE63bwK+/OhDvduw72BbhbunXRhfYXTn3Rvpg3H64+bdD42pPWyy9ay1flVlK/TvcywXoZwgtWU7H6GJquvKluOlNl5Vu+7Y+PLh6k+CNtbWI8l3DupNuleVDb/TH+aEE//05+ZhePv5Dr8bcItv7vmw9Ovbv4brVJKaRbZXlG8+I3nhuF732W4dgznbu1F9l5wc+9259q8WKpJeLwk3XteZvVbhfWb/mqsn2eft70O57bwQYTjUXWYnfGJ3xWEc9vZk5vPnZsueGcX3QUAAAAAAAAAAAAAAAAA/HvkEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo9U+7xv4IJb1tCzrm53j+57pNrr2L22bKD+p+ih/3Wf5i5Ld/1GdfbUn4XnI3dBF+UmVPc/bvv7HzRAed326XUT59/bHUX5W76J8U4Yov+knUb4rVZRP7+ducxXmL6P8asj6h8NqHuWb6uN1XnrxaB/lV/ez/na1y9rnrr/d/m3VZfdzuZtF+WmdPc9tl33evsnq983tnSj/2uTJjbMP6uxelvU0yo9NWitD9nhKN83a5tmzbOyaNNlcI+v5S1nvsr5h0mRzw6bO8pMwf7HPav24XUX5g3oT5ddDOLYP11H+ts3eze6nW2Sft11lfed+nn2/w3V2/S5sz0OfzTWqKqvIqs7yfdphhZaTbO6WjtXzKhx707Vgya6fqs+yuXC54Z7AN1TLbC5c77Lxenac1Ut7ld1/Pw3zUbqUYZddfz/P6mUI62vaZu3tZLaO8rMmu/6kyuYPaX9Sp/+uqk3Wn1S7cP62z/J1uJfQ7sP5zP2sHptNVo9DuLZIdbtwPD3Jrl8vbrd/jttzvFeazU9iQzYfGLZZfZV1Nr8tbdYe0tbZTLP1SLvO6mt6Gc6vJuF4EdbjEG6d7GbhCBkuCPf77IbW++z7emeT7cW+Mj2L8rE+fEB9uB5Pu7c+HB+7m99PtTmIrt1eZ5+1XYdzyWzqE9dil02dSzhVijeLuu5296nTtVcpYd8fqsK9xhK+d+xXWQOqwrGxmoVje5f1JfU+yze7ML/Jnn8fbvV2YT58rVbqdVYv2+vshtrjsAP6mEnXUt2jR1G+uZu956gWWT1W4d5wsw7raxHOJdusHqtb/gVMvQ37h3Dv5OMmrZd4ryJKl1JVYXubhGuvcC8z/QD9NJxfhXuNTTj9acKldR3meX9DuFcxrLJ3ffVJtjYt6d789e02iH6W1W81C/dywr3PJhxf1MuHK62Xfp3Nh+vmdn/3U4V7jfUk/F3OPF0vZ9JXs0243zJZvdi/zfk4qcJaqSZh20zneutsMT60t/wby3AbNr2f2Vm4+cBHWrXM3vtW6e+QwnqM3xtNwt9VhPVy2++V4berl8son+7ND+FaLR1Pr1+7eX+y39382h+vkw0AAAAAAAAAAAAAAAAAvFAcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtNrnfQMfxG7oym4YbpRd1tPo2g+ayyi/Hpoov6wnUf5Zv43y10MX5Q+r7DzkZb+J8rMqa2rp98X72x1m+Xevj6L8s9NFlF+G9ZKaVFn7z6qxlF14/0+6gyh/1Kyi/EX/NMofOv78vqZnWX97+VrWv11czaP8+uR2h+q63Gwc/YZ9nzWgfsgqbN7sonxdZfd/3WXjy0WX9W8fJ/M3L/5/7P1ZrHZ7fh94rfGZ9vhOZz41V7mqXLYrieMhcaudiKYbWqG7mURaLYQQSC3gAqnvaIkruOEGtbhriYsgIQQIECISIuqIFtCZnbTt2LFd5XKdOnWG97zTHp/9TGstLpIiviDH++tznrxr1/v5XH/fddZez3/4/f9r/auifHeQPfvrN7K2M6yysXnXZflNGcWLYcj+wWaX3c8wZGNDU/dR/moyjfLbaXb/6Vx9VK2i/NhUT86ifDnPnv+wyPL1a1l/bM+z33c7y9pbWe+ifLcO58Zwrthts7+3Osyuf77OaoEvHT6P8ss++33PukWUr9ts/E8N5+H1q2y8LV+cR/n6jYdRvhiy2qG5zi6/Pcz+3moIi/9wvuuz7l7ssu5SrCZZPbDc7ncvIe1fm/B/e6ovsgc6XC+z/C4bb4cum6/L84soX73+KMo34V5Fe5U9/yEdT7osX6/C+jCsJ/s2az/tQfb71uF8Og/Xdosq22vswgFruAnryXSAq8N6PuxfQ5fdTzX7YpSfPg/XX+HebTwdhf0rncC6eXhDR1l7LsP+0of9/Xyb1ZP71i+z+SiVzl+p+t69W2erZTZWtbd8f/UTu3m4tzHN1kZ9uBHet2Hf2nPTTEeGtG89WYcvUorsPWIqrt323FeGbCgsyvB+qrNsLdjMswa9Pcz6S5VN1UW1yfp7NQv7V9iei3Dff9iFtepmv+/5XjnhfJHWtmV4/TKsPdP7b9ZZvpuGtX+4+VCF7b8Olxa7dHrhc5XWquVR9oOVu3DCWGcTan2Vtc8mfFfT1+FeY1hulP1+91r4dMM2++4htg0bRFjvldNs76EM92bqXbgX24Z7vfV+P8ypw/qTT9evxvUuumzCd6Hp3uFVtr9RrbL+3s/C/YpJ+Peme7evUncp4w9b9nMff0rxXkh6/+nYHObLbs/PM/x50/spN2Hf4k6J55awtiqqsH+F72WHdr97UWUf9pet/sKfXtmGa5159vJlWIQva8L6oT8ax3tKRyEAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYreZl38Bn0Rd90d86XUfX/kIzj/JX/TrKX/abKH+vmkX5F/0qyidPsiiK4l69iPLrYRvl+Xz1kyw/hNc/32X9ZTHJ2n9VZu1z39qyi/L365sov+rbKP9hl/3Ab97pkX//6qtsPK822Xi4eZGN51ePplG+KtMenDlss+fTVFn/fXJzGOXTv/egye7/or/9+HYcztV33uOnUby+dxLlZ+fZ3NK8yAa37YOsNkzbWj+UUT7tuUN4/S7MX6yz9twfZP/bGk92R1H+z07fj/JvNtlYsm/9i7PsH1yE7fPBvSi/eJzNXZOzrD1s72ftra+z9jP02fWLMD9kpV5xfZ09n6NZNhc9D2uNbyw+jvLHVbZ2rPb8v6XTX17u9frDbhfls95YFPPXs/FtfZw9z90ia8+7cDissqVa0bfZE+o32d+7brJa8nqaraWudtlaKl0LzsJ8U2T306X9ZdjvWiG9ernMxp/2Kuu/k8u0B2e6aTgfpfFd9g9WTdb+N/Nsr649zNpzu+e9nKMyu/9+udzTnYzUJ8+ieHWQ7T3Uq2z91VZhBwgHlCqs34Yqm4+WB9nfuzjO2tusCce39A9O9dn1h3Ft3ca6Fy9unW1Oj8OLh7XDk7DWrrK9k77N2nI61zXZNnjRnWadvW722/YXTVYMZyu7V0/3JJuL6sODKF8tsrV4c5TV2vVh1h/T/hK+Niq2h+HkmNaeTXj9cK+RP0EZ7l1twvesm6x2rjbZeFvtsvZT9lm+ucny3SR8nulWV9r+dZe7ZZ3N8MNRNn8N6V7aLFvrV5usOG9WWQPdLrJ6suyy/lttdZi7JN2brOtwr26a1W/lOtzcDtVh/y0nWb6bZxNS5TO8OyV991VOsvG/DOvJIrx+qgq/uyqOsvsvd9l8117veS9tTPb8Hmjfyjb8yDV871uGa6OhCeeuPmubkxfZe7Ii3NeO20O6j3/XpWPnXe9fTVjLp+0tfZ7h9ct1+N5isd/vWraH2fMMRzfumLh/zbL3suUs2wsf0r3GcO+hn6R7A/vJ+n+CAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLSal30Dn0VT1EWzp3N8bVlH+Xv1Isp3Qx/ld0UX5Rfh/U/LNsov+02UT58nn6/54yy/XE+i/LTaRflFtY7yVTlE+UmZ3c+s3Eb5j3cnUT51XK+i/GU/i/J/tL2I8l9uD6P8XVcus/a5eJq1t8nTbOpdfjnrjw9n11E+Na+z/vLRzXGUb6tsvlt12fz1fJPN10/bo1tn//46G6t+Jeu6ozNcZW2tms+j/OyTrC8evZf9tldfzGqTtsnaZqrrspp2vc7a/nSa9d3L1TTK//D6fpQ/bZdR/nLI/t6x6W9uonzZZH9v2h+bq2xsXnyctYflF7L2PGTdvSj6MsyH1w8v34XX//h59vxfW1xG+X7Inv+myMbDukwfaGbYZbXV3nXZ+D95kvXH6aOsv29Ost+r2oYNes/6Nruf7S4bfy7qrB57f3Yvyn918TTKn4VrtTr9uYbs7x2b7smTKD85Oojy0+NHUb7ss/61y8rbIrx8UWXlW1Gvs/H/uszq583JVZTvwwm1Dvd+Znuej+667vmLKN8c337tWxRFManSASsbz6td1p7rTXY/Q5Vdv5+G9flr2f28e5j9Xqk6Loj5F+k/yWqBKuxbVZ1NFpNpts/YTcO1Wh32lSas9a7C91iPsrVC+l6hKu52bTU2Zdieu4vsvUU9ycbmyTzbZ+8n2XuRbhL2x+x2iiqc6/pptpZNZ/bZPHtPPDpVWJz3+90bTvtLunfSffBRlK/LrEVUR1mtV4R7Ubt5eD/p1lK6FzjL5osy3cvkperOzqN8c5Lt9fbhd0X9JKvHdousf5Xh8FZvsva/KbP7T/sXL1m6NxmuL4qw3hsOwpfvu2ytXG7C9UgXPp97WYEYvgriJauPs/mi6MP202brkXKbteehCevn8N1adZl9J9cfZvVnH7984aUJv6mO13bh2qvYhcVSG77HvQlfBIV9tz/MXmT1bbgvH6VH6I6/Zy2bcOyfhWv3tBYL54p+lt1/ulcdbg0X5TYbf6bPsw+d7nZrG6Fw7yq/ftjewu9iq8Psu4dhlq0VynD+Goqsv1fb7PrJd0LJNwaWRAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW87Jv4FVVl9n5wzo8r9gUdXb98H76oo/yqat+FeUPq9me7uSnw+kPtlH+h08Oo3z9paw9zKrsft5qXkT5y34e5buijPKLahPlZ2X297blbq/51ZD1927Ift90PBmb8mYd5ScvsvYwfd5G+aocovxBk93/cZONt9fdNMqn97/ts/lrGLL+u+mz0ufH63u3zv7e5M3o2r8y+yTKj02/ztpaeXMT5ZvzrG1Oz7Kx/8XVJMq3k2ysTdvmbpeNndnVi2K3y/rWdpvl3x9Oo/ykyp7nl6fvRvlfmn4c5fduyMbCYZvNLcUmqzWq82WUnz9fRPn6Mms/XVZ6FvFSJOyP9U2WH+rw791k/f23irejfOrbsw+i/DQdgO64dL6rr7L+NT0/ivKr++F8Ebb/uH+Fly+vs/zkMvt7b3ZZPfBx20X5Hx49iPIHx+F4XmT1yatmeHEe5WefZP2rGLK9pSqs37pJ1mHKqyheFOHaq+yy+/9w9jDKP5pnHb49yerD573+8qnS+vNZtvdWN1n9M81up9geZb9vtcn6V9+G9V443118/zTKX917FuX/0oM/iPKXvb3zz0t/nY1t/U22t5G+sKsW2T7d7Fna9rO+2E3DtdF5NhddXWVt+WcfZXsDB01Wu2U999UT722k119me43VeVibHGTtfzIPa8M2fO+7zPpvE+7NDCfZ73Uw3e/vu3d9thYsyrAYSGuxXVYLp+Lrr8K9kGXWHqqjbMZrVtnzXN0L1177ffzFMA3bG3dKuldRTcO1ziJ7rzwcZv1rc5jNR1WX9cdql+5VvGKbz6+YIVwfFfdOsuuH8/UQ9q/uIMu3z7J3Bene/JCVe7xk3cVFlK+Pj7P/wDb8lmGWzUdp/yrDd6fF83A+7bO9//JR9q6bu6MM96mHMJ+u7arLbK+iP8rea5aPz6J8vczm3qHN3oPykqXf6E6zveQiHcvr8DuGbbZW7ifZWmeowu+ErsLvIMP7tzPwOQvH51RZh7VPs9/jWGWXLRb64/3WPmn/Kvvb/15J9m6fVAAAAAAAAAAAAAAAAADgp5pDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvOyb4D9qMv9nm+clu1er9+W9V6v/6qZ/+g8yrdPH0T5N9uzKP9z0x9H+dRX2xdR/qyfZPn6KsqnZuU2yrdlF+X7ogzzQ5S/6713WN5E+ebZdZSfP11E+efLeZTvT7Lx/7BeR/m0vRXZn1t8uDyJ8rsh+3ubso/y82pz6+zz3WF07T/Y/lGU/0Z7EOX3bsjGhrRvVc+zuevg4+z5tE+mUX53nI1uTZP1lbrOnudml43lu3VYu3XhXNFnffGH1f0o/xvzL0X5/+rhD6L8vTocrEamv1lF+ersMspPnx1F+fmTrD8u26y91assX2RDf1H24fVD1TYbT7ZFVqv+4+rNKP/X59+N8v/G4u9G+btu2O6y/EW2Vpg8z2qfxWHWflan2fgcllZFuLTIr59Nj8X84+yGLhfZ+P+P51n/+vvHX47y35n8MMq/coZsQK8/zvYGZsNplF8/zNZqzTKKx//TZX04ny4+Ca8/zbaRf/fkjez6b2R/8FGV7Z3w6YZwfVctw/qzzNpnk5ZjVVhPbrLxZKiyemz+cdaef/O9d6L8L57+KMr/wuK9KP+fFN+M8nx+hlW2T1ddZXstRZ31lWymK4rtwSzK7+bZ/Ww/yq6/+kI2d727yGqHrCfyeetvsvZfnmd7IfVhtlZoD7O9t90sbP9HWb7MlrLF0WH2PN8+zPZus6c/QmGtdNf119nipX56EeWb42xvPl3rtJNw7y17tVN0h1ktOT3O5nf+BFX4JroP32uGustwfpln9Ux5ms1H5S4br9pl1p5Xp+He5IPwXdb81Rpv+XTlVTYfVU3WPnezrH/1bbbW3zzK3pUN4Xqt98XnT7Vhc/vvVIqiKMpduAAI3z2m+sOs3ivnj7L8dbY3We7Cl8W8NEPYlvvzbC1SpWu7WdaWh0n4XU7aNF9/mF3+/Y+ifBPefzry8DkL34sU/Z5r7V229kpfA9U32XvBPtwbKG+yuXf40QdRnpcs3Esom7DYrvf8/0kWzl/lNuuPu3vZ2mgIO3C1vf39R9nsNgAAAAAAAAAAAAAAAADgXx6H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYreZl38BnUZdVUZfO8cGfpLy4jvLzjx5G+b+w+MMo/622jfK5eZR+p+ijfFNso3xfDFE+l42DbZk9n1dNf3kZ5auqjPIn3zuI8k/eO4nyxZtZPPWwvYryb07Oo/xb07Mo/2K7iPJnYX471LfOVmU2lhyV+x4bxqVfraN8Oc3y7fObKD//ZBblr7+UjbXHB6sov9pmZfl6Gc6l69u35aIoinKXjW3dNns+F1G6KH7//LUo/7fu3Y/y/+Yi+73GZthltclwndWG7cfZWH78w6x/9U3YPrPhNs6npdsQrqqHMutf9Sr7D+yuslrj/9l+Lcr/Zw/+dpT/i7M7vmbvuyy+XEb5+vFZlJ+cTKN82kC7SdY+U0FpVRRFUfR12F82WQeufi+7ocuzB1H+bxx/O8r/1ePvR/lXTXeRrUXqdhLly9Uuyk+fZfXD7iCr37ppNn4262zCay+y8a3qsvs/r7L56D86/ctR/m/+3P8uyvPp+qusfxV91t6qSdZ+qmVW36b/U3/VchPlD8L6rSjC/j7J9ur+2uSXo/zf/NXfiPJ8jsJaclhneyFVl/XFchf23XV2/wcfZn1rKLO5ensUxYvf/fiNKP8fvPP/iPL/efFnozyfsyGr/dP+VYZ7mc1VtlabhmuddC21Ockmx6vrbC/nv/C1fxLl/y/FoyjPy5W+JyvDWq99kQ3o3TRbW1TbbHwo+7Q/Ztf/9hsfR/ls5/YVFNZXe5fOR8vsXVb9ImsRzSLrj9vDdO8wihddNr0UxRey58Pd0ofvpspJuLd3mRVM9SRr//0su/72ILv+9ZvZ9Vf397uXz8vVb7K9sXKX7W2X63DvrQ4XJOFeXXcUvlu+F+bbO/6ukn+xcJ96CGu3IvyOIVV24XvoWTY3Vm9ka/H+w8dRnpcr3esq0vws2+sq0+Mo6d72Ktt7LufhdxVtWBuu7vZ3Zq+ceC8h/C4zbM9F+B1AsQ1rvZusv9dVdj+b17K9uvbi9vef1LUqPAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEaredk38Fn82j/8rxX1Ynqr7MF0E127G8oov9nVUX4Ir9/UfZT/2unTKP/m7DzK/8zi4yj/7x79IMrPy0mUr0vnOT9N+7/dRfn6/FmU/7f/X/+DKD+ss/5Stln7b+fbKH//+DrKv32Y9Zd3FmdR/t8+/YdR/pemqyhfFdn486r1r9//j7+b/YMuHM9fZFNvvY7ixd/8B9+J8s39rP289SBr/189zuajnz38MMr/6un3ovy32+z+H9bzW2fzvnUY5cfm/f/wL2T/YM9DSTcZovzmQTY3ztouyp/Ob6L8z7z+SZT/M4fvRfmvT7Pa7ZttNjcelm2Un5b7XYaMbe569t//1SjfTbLxZHsUxYvNcdZfdsdZLdY8zNr/2+Hc8qWj51H+106yuSLtL+/WV1H+fp3Vwm2R5VN1GdYye76fi3/3V6L85ii7/5tHaf9K+0s2Xyxey8bbR0fZWu1rx1k+7S/fnGa12xv1Msovsp8rlv1aRbHNmkMxC++/LbK9kKv/xi9H+es3sv5780bY/g+yfH+Y1WPz02zt8va9bH55c5G15587+iDK/8LsR1H+7eYiyt+vshadjv/dkP2+2c5M3r8+Cjvw+b+XzS+X72b15OY0+wO6g6y+GiZZvj7I+tdJujd2nLXPrxxm/eVXDv8wyn998jjKP6qzdwWLsL9kv1ZRbNL+FfaXyz5rz8t/J5tfnn0nm182p9kT6hbhE52lM/ztTRbZ6PbW/WwuevfwRZT/6uIPovwvHmTvab7UZPeTzkXtnvvWKuxb12FfqX7hW1H+o3/1XpRf34/ixfpB9vzTuaUM+1ZZZc//4Cir9U7nWf5nTrO9t28d/GaU/87s/Sj/1TbrX+naaN+13iqci/6vR1+J8lf/2rej/OXb2Vy0ehjFiz7ce+7Drc9+HtaGTXY/9VE2f70R7tX9/INsLfXdw/80yv/s9MdR/lGd7U3Oyux5pjvPae327xe/FuWrn/9mlL/8xkmUXz7M/uJdOGAN4VZjmu9maT6szU+z+fH4jcso/61H2VrnL57+RpT/uXD+Oq2y/jUt91ebF0VR/I+L8F1lqPpuNh/dvHUQ5beHWYPeTfe7WRr3x/B2NifZP1iGe5P9O2F9+HbWv/7Lj/5ulH89/C7htM72ZmZlNr//L/7nPxflU2Ubfuf3zptRvruffVvRLbL76abherAL22cd1uezrEOuT7L7v347y199Odtr/NLXsv71C/e/H+W/MM3eFb8zuf27sv/1//3L0bX3rsraQnWwiPLlLCuWyiacLKqweg7zwyzr6/1pNld3i2xxd/Mou58XXw/Xst/OarF3X8/mlu8+yD5S/Cd/LorffWF/jPXh3luTtc/uKmsPVbhXFI8ns9ud/fiJ/sFxlL/8avYh1YtvhHPvfzd77/jV/+DvRPk7L9ybLML2tm/9KltbFOvwI++zsyw/Ms3vhP8g+H2r4fbrnHF9HQoAAAAAAAAAAAAAAAAAf4xDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvOyb+Cz2HZ10Xf1rbJfOXkaXftss4jyuz47T9gPZZQ/nqyi/MPpVZR/e3oW5WflJsr/w80syv/ydBvla+c5P9XTm4Mov9llQ8MvfuW9KH++nkf56+0kyg9RuijuzW6i/GuzrH9Nq12U/+3Vu1H+Z9rfifKv1Xd66N+7dpGNb99440mU/8HTB1F+vWqjfJVNL0VZZT3mYjWN8ufzbPz/B+dfjPK/ffV2lP/64pMo/1dPfuPW2bea7Nmkg1VdjmuuW73RRfnhIMsXq+zvLXdZ4y/DWqzbZffzfJnNdc9nWe35t86/FuX/XvXlKP+1sK+82z6P8r82fz/K36+yWmAaLnP23b+u3snaW73Ort9nU0WcH5pswNptsue/CmvPxzdHUT5t/x9tT6P8FybZWvO0Xkb54ypbCy6qrAE9CPOvh7XkvMj67/JR1h+rcHpJ+9fmNJyw2z6Kr9dZh1zNs+f/Yp3NL7+7fCvKr4bs/t9ozqP8gzpbe3VFOL8PWXvbFrfbg/qJOiz4vjN5FuWXr2X3M3uetc++zZ7PbhH2l7C+2obzy9OrbC8kdX+SjefrcAL+zvzHUf5RfRHlU9she/7XQzb+p/0x1V5n7fPgo7A9l9n4s5pk+aEJx7dVNj5c1tna/UmTTcAPptdR/vvr16P8Zsj+3m9MHkf5WZnt7W3CverLPnv+1322/7AM87On2d7Y0XvZ/V9U4buUNuuPQzhfF5Pbz4+7bXbtdC6aN9l7keMmK25/0GR9Kx2bu3BvILUN7+esz/ZmLsN8ucp+r5M/ysaSF00293azsHbrw7ko3Esbwn3n6zIbS9o6m4vOt9n1L7ss//422/efVVn7eVBl77HStdEyrFXTWm/YhHPLb2V7k7tpNr7tFuFaJCxVw9KwqJdh/z3M2n+3zMaTy4Osdni6zua79SJrb2n/KopsbZ3WeqlVuJZKDb/7/Sg/e/DzUX59lLWHLnxVlubjx5lthRRlNjzH17+5ycbPi/A7m3T++qTL9trTvcA27F/pXtq+VR9n40lzmj3/zXG2vgiXvkWXNbci3Zrp23DCC6V7/7t1uF5bZvPXss8eaLp2r8MBZVWGP/CeDdus3iv6cAANpXvb/TTLb8L1VyzsXml/bLJXL0VznvWv+LuibbYeX7XZfHTW7fddwT6Vdfbsyzpsm+FHZsNpVjsUu2ww74+ztjC02fPpm3DtNQsn37CUSee6eGwI93L4E/TZD1a22Vxdht9YptLWUB2GY+c03Ctqwv6179ohLK26k/3uJexdunk1hANcmt+39O8NvyMs84+2o/jQheNPOr+H10/vvxjSCe92xvU1NQAAAAAAAAAAAAAAAAD8MQ7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBazcu+gc/iwcF10RzsbpWtyyG69hcWL6L8dsjOE6b3c1Cvo/zD9irKL6rs+pOyy/JFlj/vN1H+QVVH+bp8tc5/Zq2tKOaTbZT/2sGTKP97/etRft5k9zML85PqduPIT8yrrH3eb66j/Emd5X+wW2TXD//eaThVvGr962w1j/Jvnl5E+QezrD2cr7P72YXzV3o/9ybLKD8N22fq9fY8yi+H288v2yGb65oym7vGZqiz2aWaZM/nwevZb3VxPYvy2002tlV1H+XrKns+713ei/In01WUn1TZ87/p2ii/XEyj/KMmGwt/YZLl27B/ja03rh5l7W2YZO2tvtrvXF2Ga53Nbr+/wOOb4yj/wfI0yv+t4StR/v40mxu/tHiWXT+sPb89+yC7fpWtledlFC/KrPkXXTb8FN0kyzfXWX8Zmmx+6Zusv1zeZH/wwSRbu3ywOo3y799k81cT/sDzOlvb3Z9k7T+tPbdBbVgURXFUZ/P1/Trby5k9z57n5ijrkO111j6nz7L+snozu/7uMqtPLqN0UVRV9jw/nmXzy/NNtnZ/uj2M8otwr6IK5+t+yNrPsg8H3FC69zk9y8aToszaWxGurdP8+n72/PtwAt7V2d970Wbrr8ezoyhfhbuZ6fi8GrL2mbbnZVignHfZXs7ZNsv36buLq2w8Ofwgu37Zh+P5Nvt9t8fh/HJw+/7Sb7O/9SbcG/igPInyp5ObKP+j+n6UT132WdtchW3hvMvm0sfbbK6+3GVjW7kN3yt8mNWqRXEQpc932Vpk9SCcK7LSpOinaa2R3f95lbWHP4zSRXHSZrV8uu/8w83DKP9h+F72IuyPL3Zpe8uuX5ZZeytX2Vx0/IdZ/xqq7O+9fjMb/8PXdsUQ7g2U4V7a9l7Wfq4us/Hw/elplP/96RtRvgifZ2o1ZPNRF9ZWz7usvaWGPly7/8HHUf5w8laUvw6fZ9+Ga50oXRTh1mQRlidFfZO1h+44y398ma2lfnyY7dWle1fLOqs/q/AX24b1wL4Ny+zvbZ9me//tUfb3dm02/oflQ9wfx6a8yZ7P2UU2wXy4Po3y6V5durdRxyPiuPTPz6J8dZj9XtUiez67g/Bd5Z67S9+E/4Hww8Bql/2D5ia7n7OzrP65PM320tK9uqfbbD4dk2GbjSV9uPVQteE+fhW+N51nfaufhLVAFdaS0/R+wn3VTda3JmdZ/ircm0zf61zvwhfvxX6/8bvryna/tW16/XKWrfWLSbY4GtK/N7x+Wvo0N+E/SGuxeVhsj82Qniq448Jv2quwfZazbPwcuqx9VuHeahH2x+E6W8sOu2z8H/a0dHm1TioAAAAAAAAAAAAAAAAAcKc4BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDUv+wY+i7IcirIcbpW9315H155WuyjfVl2Uv9dk95OaldsoX93yOf5pPesPovxJt47y96rs/uso/erZ7LIntB2y/IPpMsqn7k+y/nVUr6L8qm+jfFX2Ub7f8/nkqyEbH6blnZ4qYvNZ9nzaOhv/rzeTKP+tk8dR/qDZRPnL7TTKz+rw+YTtP/UgnN8fNFdRfhWMb12RtYVXzWyetc1J2Le++OBFlD9os1pj1WVjf+rtxXmUv95lY8nb87Mon9bCb06y69dFVrvtdyTZv3QoHOqwNj/Mxub6UZbfXWftrW6z/jsMZZRP3eyy/ltX2Q/WhPl5PJdmz/N+ONctqmw8rMr9/l71Jmv/3TS7n24Wjj9ZqVSEw1sxrLPafzvL1l5nN7Mov9pltf+2y+5n1mTzy7zJ+svlLvvB7k2ytelxk60dU5NwxkvnlzS/m2f9q82Gn6J7Ebb/4/D6TdaebybZfPf+5WmUT+vbj6qTKF+FA9Bt91T/tNK/97DJ5qN0fqxvsvGnOsjaTzp/LT6O4sVQZf1xE87XXZWN56s66y8f1Fl7XnfZ83+2zvae/7B9FOXT+u3FZp7l14so34f1czqfVlc3Ub5ps/F8EZaTQ5m1t6t3s/9Aubv9/e8Owlq1zNYi6Vuj9y7vRfndkP1WZ9usbb4+vYjyV11Wuz3fZPfzyc1Rdv2b7PqPtllfKdfZ3DV9ls2NR03W9ocyG/urbdZ+dod7XtuFeyfXTdbe3r8+jfJF8aUo/c4s28tc9tlYeBPuZV6Ha6kfXD6I8tPuoyhfDOF738tsrXb4QfZ8hip7Pss3wvYctv8hfS++zPpvN83Gh8tw7+GH1/ejfBN+h5GupbrwvWzaX862WW1YFGdZvA/fTYVrhdlH2WJ/qLP5tw/X7ml/2WXTe1Gvw/4YvjraXmb/YD3Pns8nq8MoP6/C8Tx8d5T2r3WffpeQ3U+qu8oq9PqjT6L8QZf13+7b2fhZdeHaKNwq2h6ki7ss3l5m1+/rsF49zua7D5fZ/DKvsnfj6d5D+p3W2PSXl1G+/P4Po3z989/Irh/uRQ1V1t7SV6HpcBgu94s+XD822fK3WC2zP+Aq/G7pySac76L+td+5Zd+GbTb2FOts76FYZ9cfTrN92yKdWsK23E2yzlJ24eQV3v/kKnyvc531rctV1reehfvU+W7mq6VfZu+h6+PsRWh5lK29inbP3wCn1+/DF9eT7PqTs2y8qtfZWi18LcjLFu6dDLtwLVVn42f61VV5EM6n6fXbrP33Z9l3rsNuP/WV/yc4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt52TfwWUyqrmiq7lbZ1yaX0bUP61WUn5XbLF9l+e1QR/nNkP20s3IT5VPb8H4uhzbKr4fsebZl9jzvun4oo/zJPGv/i3rf7Sf7vU7qmyjfF9nzOQrHh7oYonzaf6/7aXj9ZZTn003rXZS/3kz2dCf/1PlmFuXvTbL+ctRm7X/TZ+15XmXPM+2Pz3aHUf5+fXXr7Hq4jq59Ut3t/y2Ccpvdf1VlY+HNNms7XTjX3ZtlY+H1NhtrD9p1lL8/ydrPTRfWSmFffG1yEeVP6+z+79fZ898MWfupwrl935psqC02XXb/Q9j++y7rv/ce3H4sLIqiWEyy2jz17sGLKP/B8jTKH4dz3UGT1cJpf39n8jzKP2qy/puuZdvi1VpLdfM+yg+TLF/U2fjWbbPnv+2y/HqbzS9H4dqxKrO/d9pkteGsztrzgzbrj/n8mM13bZm1n3qTPc8m+7mKbpLNL7tFdv1ql12/2mb5LqxXN+us/T/rD6J802S/b1Vl+bT6ubfICpQy7L9pf0/n03gvqs/uJ1Vvw/E87F+zZ9n1+2lYTzZZf+mX4d5Vle1VdH12P6tFdj8fXJ5E+XmbzS834Xw6See7MH8a7v2cb7L6oVqG9WSVtc/506w9DHXYPt+8/f0M4VbOUGXPMlyqFU+qbJ9rs8uezcEkG2t/VN+L8rvwga7C+09r4XRtPayyvZ9ynu0tVevs/icX2diw+CT7e2/C36vss+uXWWlV7MqsPazDYulHVdae0/bzwTKbi/btxWoe5Te7rH0+GsK19SpcvIT9q7nM+u/8afb39k04Xh2Ga69wbZSuvdJPSJZhrfd4chTl0/E83UvYhbVn+t79cpO1z8PiLMqXYXtL+1d1ldW2s0/ST5Cy8Wf5KLt++Nqx2M3C+Svcyy/C7x5u5ln/+vH8NMqvwndNqbS/XIX9ZV78UZRPleHapdimDe5237v9xNEfZt+93bwVFlinWfsss9svuuznjeevvgnn0+tsPPnR+Wl2/bB+Tve2l7v0u5MPw/yehevlYZ3Vb9Xv/iDKz7715ez6u2x83i2y9tCF66nws7R4fgy3eov2efidaDj+v3+drdey+eiD6Np3XXeRvfeqdlnjqabvRvlylV2/Ow7Xgqts8urrsC+GtUMVvleYfxC+930t64uPl9la7bB4EuX5dMMm24stt1ntMMzC2qEJ5+o2rCVX4XdF4XdjdfjeYvoiu/51+J7slVOmtcx+3+OmhnC+i9eC03BxlGrDvaJFVtuW6d5tmr+lu/31NQAAAAAAAAAAAAAAAAA/1RyCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0mpd9A5/F/dmyaGe7W2VP6mV07Vm1jfJt2UX5o+omyq+GNsp3XXa+8Qvt8yi/Geoof1ytovyk6KM8n64uhyh/PM1+r8M6y6/6rD1/YZK1z2nYf1PbsP2fhuNP6qxfRPnz/iLKv9O8Wuel15tsarzaTKP80XQd5a+7SZRfNPtt/5t+v6XDot5E+a4ow/z+2vNmyMbau67aZM9+E/atg2nWFlKrXTYX3ZtlY/lB2Jafrg+j/Lzeb626Dfv6WXcQ5VfhXNoXt6v5/3k+64/Z3eTCx180y7B/HYZj2yx7Pptd1h6OZ9lc19bZA/ro5iTKL5qsP276rEXMh+z3OqmztWBaSz6qL6P8LGygbZmNn6kqHP7b66w9d/Owdgjnu7B0K+pFNr5Np9n4n64Fp5NwfqmytfvpNGv/x5Ms/+XFsyj/sLmK8vfD/KM6W3stwv5Yr7Pnv5tl41u9DvvXLOsvu4M9189h+++32Xy6K8N6ps+ez3Sa3f8irJ8XbZY/bLP5fRbWq1+cp/03m++qTda/ql32/IdwKV51afvP2k97Gc5f2dZGMYR7Rd0q6y/LXXZD61VWnxwehHuZZVYPT5psfs9+raI4CPvvw2k2f52vs4KmnGb56ib7i5tZ9vxnZ9n1++b27XOowl8rjO/KrG9ti6yvPN9lffFqml1/0mZtfx7Wnl2fPZ8yrAWacG06rLKxpLrOxqqqz2q9tswa3KwNn2c4dd2Ev1cRrq3T14jbcCxf1Vn7/6PtgyjftFl7m4e13hA+z3TvJ90KH7pwc2wbzqVX2d5JeTiP8pOzcLMibP6rbTY+b7bZ77vtwv41ZH/Aps7Gt2dVthf+osneg85m4d5GOP6nVpuwVg2vP+yy/lKk+bQ/brPnmfavtB7bHGXtOf3MoEznr7BA7Jus1n7SHEX55xdZ/2rD+asP64F0fvliFo+l/SvNV2H/SncSJudpg87i20XYv3bh3uEsihftVdi/PsnqnxeTrH/dhGvrpsn6V/pd4LvFh1F+74asoK8W2XhVTsK9jYvsXcTsJutfm9eyd+m7RbiXH9aHfZPl0/67Pcja50ePT6P8s3n2/JPl8heKD6Jrv2r6m6yv1B8/ifLlw/tRvlpnfaXchZsJi6yWL7vs+rPwPcT8OOtbz86zyfRxuHeYrl1GJ9xLi4vVUB/uNfaPs/d2dfcwypezbG9sOMlaRH+Utc9qGe7NbLP87Ow4ylfLfX9pdse9Yt/Rdpfhe+v0+ayz/l7ey76rKybhfHf/Xnb9s/Msf0uv1skGAAAAAAAAAAAAAAAAAO4Uh+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mZd/AZ9EXZdEX5a2yX59+HF27G/Z7PnBWbaP8ZT+L8gfVOspXZR/lT8PrH5XZ3/ugHqL8vJxHeT7d146eRPlZuYvy70xeRPlU2v7PukWUb8suyqfjyYPmKsofVTdR/nrIhv4X3TLK36uz5zk23a6O8m2dtYc3FxdR/qDeRPnjadYefrw6jfJVHz6fKns+2/D650PW3l5vzqP8k93xrbPv1lnf7YZs7q3Lcf1vF1TZ0F9sLidRvjnJnue8zWqNVD/crub8icvdNMpPwr4yDX+A7ZD1rRe7rG8t6mzuTWvbd8PrV7dcI/xLk5W2RbXJ7r9cZ+NDefuhrSiKoqirbLxKpf1r12d/76poo/yszsaT6y4b39L++Kw7jPJfbdNaPht/ivB5pvPX5Cprb6s2u344nMT9sQvbczpaNXX2fKqw/6b9Pe2/qy5bizS7sH+FteRJfR3lT+N8tpY6rcL2vMp+r2na4MrsefbZz1V0s3D8T7d+mmwCribZeFiV2fUn4fXTtWZaDx9PVlH+/iRrz1+cPYvyr7fZWu2NcG1XLrMJYHKWjVe7RTY/DlXW/vsmnI/C/tLc7Pf6xTYb38Lyueir7F+sNtnvlc6/R5OsvQ3hfPrmPGv/r00uo/z3V+He3uF+9wLrVbb+rVfZ/DW9uH376bOmU6zK7LcdwlqgC+f2vs/GtvUuu59+Ho5tYds/mGb7pGlt+2CezXXr6yyfKtfhXkjYftpJ1leKIiz2wsG8DBt02Yf58H424dp3O8ue/26e1XqbTdZ/5/Osvwzp5JsK/wP9TVarll1Yy8+yvdsi3CudhLVeujVTbbP+m+7lV7u0P2btfxPupXXzbDxfLrLnU6drwbA27Lpxvdvpr7P3iPUs28svb8L5usvGh2k4XtVh7b85DvtXuNapssdTVOH8eFNkv9f2MHyPG+61lGH/GkbWX4q0nt9mA+5wnq3VyiYc38L5d9qFe8/bcDyfhHuf4d58vUn7Y7igKsPx5DKr31az8F1cWuCOTdg+h004gPZhe77Ivk0YjrN3d9U63BvehfVz2L/i/hjuTR79OIoXu4Nw/jrOxp8+LSD4F0sXj+FcWoZzaXWR9fVhEa4FQ0MT9q0+e56HH2fP5/KTbC4a6jt9nCC3982QPUvn0lW215Kq6vA9UJf1x6HOauH0tfjB+9laef7xQfhf4E4J56947/Mqqz2radZf+g8+ivL1u29H+aHN5ov63r3bX3vYFMUtj5iMbAcBAAAAAAAAAAAAAAAAAP45h+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mZd/AZ/Hm9LyYztpbZbdD9qf+wuRZlN9G6aJYlGX4L66j9HYYovz73TTKH5S7KP/FJnv+0zLL16XznJ/mcLKO8m3Z7elO/qlFld3PR9vTKH+/uYryi2oT5df97cad/5+wux9VN1H+NMwvwv67Gvoof9d123GNJ2fb+V6vP62y/t4PWYPuwvzFLvt7H0yy/r7ss/nuteby1tnzcGx40Wd992F9EOX3LZ4qwr6Vtp15k1Vjm76O8qk+HPyXu0mUfzTL2n46lrw5u4jy6dzYDVl7WGalbbErsgZa7/l/G6ReZflw6VL052H/upe1/3qe1W7bfr/P82bI2ltT7beWOZ0so/zjzXGUf9jefi4qiqK4GLK57n6ZjZ9VWtyGwtKkaK+zAaJvsvvv67D2mWftvz8I7yecH6vw59p22f2XZfb8t+H8m/69Z7tFlL/ss/nxG9XjKH8arjUXVVYPNMus/5bpBBPq6+z6XfbnFt0szG+y9jxMww5TZ+1/t8vup6qy/PUme6BPysMo/3CS7U0ehgXQ/Tqrb9N8uc76Y3WTPc92F9YbYXMbqqx/9U1YH06yG6pvsuvv2nCC77P7GcJ812X5XTg/VuH8+PoiW3+dttl+wjuT51F+2NyP8tU222ssbsL+2GXPs2mzemMI4n0T1jJh7RkPDuFaNnyURbh0L7pJeD9h30pN6mzseX2Wrb1+FO6bD5us7ZeTbO1bXmdjQ9Pu+RVxuHZPa9UqHHo2u6x/leHcss1Kq3jvs59nf/AwC9eOVTZAzNrwBwgN27C/1GHtf3aeXT8c/5s+Gx+qTbaXU4Z7yfU2fO8erqWqbdi/wrXR9iis3dLaMOy/Q7iWTWvVvUvnr2U2v5ThdzDlPFvsl+F3MNU2qweqbdi/DsP+Fb4rq7PhsKhvsue/vpfd//Y4az/dYmTtf8/S+asYsr3J8iZ7V1Ouw73D4+xd9BBuPpezrL2V6V51uN6pw/lrcpnlVw+z+1/dD+vDrHy484ZdVn+W4XeK3bMXUb6uw/ow3U9YZPNR2Yf9qw/3tufZ/bfX2Xxx7/eieHHzIOtf6wfZ9fn8dE+zb7DTvlUeZO8Fh3BzrNyma7us9twdhn19l93/g9/K8ulcxN0S702Gey3FNtwLDN+DlkNYa6dr0y7r7w9/Kz01wucqPYMT7iXE+VR4/X6VvXcvp9lioX+avUesjo+i/PDw3u3D3booblmaj+tLfwAAAAAAAAAAAAAAAAD4YxyCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0mpd9A5/FXzj6frE4qm+V/d76jejaj+rLKP+VZhflq7KM8oflNMq/6G+i/Lv1OspfDtn9L6p5lOfz9Qfvvx7lf/bkoyi/GrKh5OnmMMrfa66j/I8396N8VfZRft23Uf5RcxHlD8pNlP9is43yJ9Usyrfl7cbZnxbVJ9l4+955Nr/c++4yyn/54FmUr8ohyq/7/ZYCm/D6133W3t6Ynkf5dyfZ87xfX906uwn/twWykWd8mmVWC5Thb/v08rUov/izH0T5eTh29kX291ZF1hd3Q9Z+rneTKH/SrqL8rs/uZ1plz/N5l9UCX2rPonw3ZM8//HljzU12P0OT3VBTZ/nhvawWuPl6ttYpw7moq7MRsamy/LbLxp+0/z4fDqJ8G9aeV132e6X96+1griuKolgPWXtYlNl41Vx3Ub4Yst+3b/bbH4en2fh5s8hqpZs6u/++z+6/DvtjqgvnlzSf1sL329Mofz3N2vPRkK3tqrCeLNdZfynbcDxcZ+2hvcny/WX296b9sZtmf+8urAeGRbgXGO6l7dukztrPx6ujKP/FedZfUo+qbC+z6LPxoVxl9e3QZO25vsnaT9uG4+cka2/hVlfRh9dPn083z8aTIVxvZk+/KK7D/vu8XUT5wzZrz7N51j6TvY2iKIqiD5//Krv/sg73Guuwf11l82+iD+eiOB/33XTyCvtidvWiG7LBZHectbVZ+B7u3jTbh70/yd5D/Cjcehg2YdvcZvvUQ5fdf9lkfbEO32uGS+tiqMK5pcruvwv7Szo3pv+7s2W4VtuFzzNdOy4OwtpqZPp1OBeFe4fVs7Ps+vdOsuuH9zMJ5+pyyPaW0k9I+rDWG8K9zDKsxcpwvtuG77n74+z3aqZp9blfwy67n/4me7dQteF7x11YcYTzRbXJaucmfbeQCtvbUIb/u+bpq5G0f4V7dZuwfOgO0wp0z/bcHtL+VW7DvajjbC+nDOe7ur4X5attOH+FBVkZ7v10s6w9N9nPVRRF+u4i6zCb0z2PV3dcWh/Wp6dRfliF/Tdcf5WTbL6oyv2On+GrtbjeqzZpfZs9n3o7rr35V0l9fJz9g7DvFpPsPUS6FkzbcvyZSjh31WFfmb3IaofJlb7yUy1sb0W6j99lc9EQzo3pe4LuKN0LyXRT/x9UL1U84IbjW7oW7/e8lg3vf0hr4fvZ2q4I936Gxe3fdQzBo9QLAQAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mZd/AZ/GwviwO6tud4/ugvBdd+/3d/Sh/Wn0c5V+v9/vo2zI737gduij/qCqjPC/X5L1plH/yjcMo/2cP34vy7/UPo/y6b6N8W2btOc2vi+x+nuyOo/xb7YsoXxdZf6zC/KtmcpY9n7Kvo/z1z2b9MXWxm0X5y112P5su+3ubqs/yZZb/ZHMU5Z9Msv747fbprbPbsG8tyuxZjk29zvLVNns+0+fZ9T/5ejZ3PThYRvm2zuaKqhii/M0um1u24diz6sK5dJH9vVddNvZ0zWWUvwxrgWW1jfKLYhLlU+1N1h6qXXb9ssv6V7PM8pfvZM+/Csf+vsna2za8frp02fXZWupkuory2yG7/kebkyh/r7mO8pfNsyj/ep09/1S9ya5fZt2r6MOl+FCl/9tBWYNbL7PxvGuyP3gVjg91m/XHrs2ez7TNBrhVud+9kzqsPdO13aM664/p3ky5zfL1chPliyqbH5tl9jy7NmufXbiUqlfZ9ftJ1p77cFu1n4X9K0oXRd9kz/9mm93/5Sar9z5eZ/PX16ePo/zlkA7o2fhZbrPxqroJ288sq6/qVdYiJpdp/8rmozorf4rmOuyPTfY8hyJr/8Mq+3vD8ry4WmUD1rPJQZRfHWTt57KfR/kirX/6sCC7CRvQLd8B/US1yX6xYXv79tBcZ/eym2f5NlsqF304l4ZLkaIIx7YuvP5unY3lTy6zvnIcrtXW6WIhHR3C93bxYrbJ7n9YZZt75SScu6J0UbR1Wrtl+TbcC+mnYf8Kf64qfEB1OBamc3t7HK4twr2ZvUtrvUm21hk24Vrq/CKKl4tFlK/KcK0/ycaHJlzrN2F/6cKt2DocD4fw+Qxh/9q22fPc3fHXssMu22sfNlm+LMP59DyLl4dh/7rJ7j8dn4ewPaf1Xpqvw3cXbXw/6Vo5XFvcccM6rMfS8S2s99K1V3mTzY/lLqsf6rA+LHdpf8zq26EJ33VfZvVV34R7FfM7PsGE7Tmt99J89yL7Tqt5+60oX+zCvf/rcO/kINu7LcLxuUzr7U06nqf7J+G75fmd/kT6bgv3EoouXGtuw9rzJpsb06207cOs9izD9+JV+J6gWmf5zb39fjfDyzVss9qtv8rec1fzbC4qw3x3nH0jmu6tlmF/mb7Ixh9esriWTN/U71dZh5vJ6buI9PmE79E3wfy4C9Z1/p/gAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mZd/AZ7Eot8VBebtzfF+ffBxde1Zto/zvbF6L8tXkkyh/WvVR/l69iPLr4TrKc7e0l2WUf7w8jvIfHp1G+bR/VWXW/lPp9atiiPJtuYvy/ZCdT077O59uepbl603WHj66PIrybx0cRPlm7/0l+3vT++mLbLy63k2j/GbISp/H3fzW2Z+fdNG1F9Ukyo/N9EXWFsKhvxjqLP/0/Pa/VVEUxazNxuZ5G/4BoX7I2n5q12dzy03X7ulO/qmj6ibKb8MGsRo2Ub4bsrGqvuUa5Ceam+z6bViaN+vsfnbTrL1d3GTPf91k7We3y67fNNl4m2rqsD2Ea7UHfTjAhdZ99vwvhmwuXYZrx8MoXRTVOvt9y232/Kd9WMuE7f+6yvLVKuuP/STr731YGg5ddv0hnF9SdZX9XpebWZR/sc3WUheTrN5YpQVNuNYst1k9Uw7p9dP+mI0nZVhvDFVWy69P0/6V5cuw/fdddv1d9nMVdTg/LqbhfyD0fJutZVfh/LUN9072rVxl9WfzJPu9hln2fMpgLVsURdHNsva5PczGt77Jrt+GP+/2OLv+UGftf+iz6282Yf28y8a355usf23n2f2UTfjaqArXs+l8FPavogv3euvb339Th2vBVfbsu0nYt66ieNEHf2tRFMXQhr/VLpx7w+eznWb5ZzdZrff6LKtlijKsldqwb4VrlyLcqyh2YS2Z9sUm+73qVXY/9Sp7ns0qez7dMorHc121DftjuDXZhX/v1TJr/wfzsD2MzLDZ8/1vwv7YXUbxMpx760nWX/pwvG1vsvvpwuunpX8Vbm3X4d7MNtyrGLbjWrvEwtqtvwzbc1h7pk8zXfmmeydVld1RHdaTdbgXWId7/0X4Xra/yZ5PHa41073SV02/WkX5MlwblWE9XF2GL7PS64f9azjKrl9vsufThfeTfrbRLtN3F3e8v4Tj7dgM83AvPN3L34QLgHD9VYb7D6kh3NyrV+H6OlwvV+G7aD4/wzpbew032Xck1ZDtk5bz7D1iH66l6ovwO5WD8D1Zk/WtapP1rXq1328OecnC7xji9wR1uNafZd9NluHeYXea9fd0r2UI99rhX6bqOPxSa5G9Vx7C2jPpL0PwDe0d33EDAAAAAAAAAAAAAAAA4KeZQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjFbzsm/gs/j+9lGx2Na3yv76/MPo2s+68k9zS7f2vJ9E+b7YRPmuuI7yr9UHUX49bKN8N/RRPlWXznN+mnqd5c/Xsyi/7cOhpNpl+SH7fVd9G+VnVdae6zJrz23ZRfnNcLtx7Sc+2l1E+Tebwyj/qjn8MPu9totsvjhbTqP8i/Uiyi+abL7oh+z+d33WPtPrp5oyG38+2R5H+Wp2+/5el/v9W8fm4HE2lodDYbE5ztrasMryuy6bW66HbG6pwubQD1l+02V/b1tnP8CszubGF202Vl1O51H+ZyefRPk36+x+9l1Lzj7JirF+mv2+k7OsAV2/lc1F7YtsrN1OslppaMK56JZrwJ8oq+z5dE3WX+oq+3ufrbK115uz8yjfltn4nNbOmyEcsELN06vsH9RZ/61n4Vp8lrX/bpatpa6XYW01zf7eoc/619Bkv+9uE95PlC6Kus761yasVZ9vsv54Ff6+fbiW7Yts/i3XWe1frLJfoAzr2/Imu59qndUDu4NsLdvcRPGin4QFXNigy112/W7Ixp9NePvrSTZftAfZ/NiEeyfpXkgbXr9I569tuHcVKjdZfy/OL6N4292L8tujrL01y3D8DxdIZbiXUPbZ/WzuR/FiCOvbdHsgXd/ddFn9ltZ7qbIK11OT7H6G62WUL7dZe66C/lh22VjShmu7vs4aT9+EtUa49krnxt08HGvDvt6HfaULx4bLXbZWLoqsbcbizaVsri4n2dpouAmLq1W2F1LWD6J8s8z+3t0iaz/VNnv+6Xu4Lmxu6d5qGb7n7nbZ89mG/XHvqvB+ws3Yss3mljLcqxjS/hLW5kUf1jK7MB/eTr0J9+qy4Sruv+FWWtGcZe1hd2+/a4vRCYvhYZc9n+4iey9eNmFtmK5dplkDrW+y8aGdZPlulq7Vonjev8Kle718td617tuwzfbq0ny5yPb2yl1Yr4Z7J3X2mVxRduG7rDKsn8P1XSr8zInPWXmdrY+6J0+jfHUv29srDsN345erKN8fZAuYIay3+zZcr22y/pvWn6+UdCMz3GfvL7N97VR/k7Xl6lH4nUG4lhom4dox7Svp3BI2/WodLu64W8K9w3StVt5/PcqnezPDQda/hnTvPOxfVbh3wp9g39/d7vk7p1S6V5Hu5Zfhdy1DE+6thnulfXv737cvbp91cggAAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRal72DXwW35o8Lg4ntzvHtxmG8OpllD6tVlH+oNxF+Ta7naIO7/+qz+6/LesoX5fOW75MQ9h+nl8sovx5N4/yJ8VNlG/rdZQ/qrP2nN7/veY6yqfO+uz5P+kvo/ybUfrVM3+ctZ/dl7L2051Povz161k+Namz+eiwzfrjctdG+VWX5Wfh/X+8PonyTxZHt85Oy6zt3HXz97OxZ6iz2qGbHUT56eOsrL08nkX5R/eyv3e9ze6n67NaabXJ8k3dR/nUotlm/+Awi0/TWnhktWf742fZP6iz+x+m2VwxOcraZ3uejc3bB+H9h79v2YTtOfwP7ML+ex1e/3iWzaVn26w2vJxm49u2yMbnWRn+YKnnZ1k+7O/VkLWf+igbsNrjR1F+cpE9/91B9vy7JtsLKdfh+Fln1++usvFkHc5fm1n2PKsyu/5ll/Wviz7sj0M2PgyXV1G+2Ga187DL8kU4PtRXt6+1i6IomofZ2mtykbXnPtx8K3dZfgh3Yatddv/bcJt3OZlG+Yt51p5/9uSjKP+8y8bb7RDWG6tsvTZssvp22GyifKoM11NVk7WH5rVs/dUus/vJhePJOq1PsvaznobtLXwVsWiz9jatwvE5NHRdlr8K90rD66fzS3ed3U+1uH29XYVrteYoG2v7W77v+olwKCzStj/U4VpqEf5Wh/vdq0hdbLK5Lu7sad9ahbVhWLvFtV6oPs32Ycvw720usvY2CfvXbpatXbqsuxfVNuxf4V5a0WfX77fZ89msR/aJQR/2r/Dywzas9ZbhfyB1ke1VVz1mTgYAAQAASURBVG32e5UHWYMuu/CJhvEq3HpOhVsDRRmWMkW35720sYm/y9mveL5L8+Hf2y2y+WWosvbTLLMG2jfhWjPcO9nz0oWXrD87j/LVYbb3EI+eYX+sw/lraNN33WH/Cu+nWY5rvH3V7D76eK/XLyfZfFHchOvHcH6pzsP55Tjby6/68F1WmG+X4fN8lYysdkuV4T542YXF/2a/xUyVfr4/ZPdT7bK/tx/Zdza8XFW6t7cL54qD7Duncptdv15l/aWf7vu9F5/qjs9HqXIa7r2F7+mHw+w7s2Ge9cehyeaLLtib74K5yKwFAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDUv+wY+i4d1XxzVt8ueVNPo2gflNso/6bsovyijeNGW2T/YFkOUPyzbKN+Wt3zw/0w39FG+Lp3P/DxVWXMuul32+z5dH0b5+wfXUX4W9sfzbhHlD+tVlK+LrD3Pwh/guMruZzVkv9dVn13/sJpF+buueXoV5ct351G+Pct+r+fL7PoHx5sonzrbZPczq7P2X5XZ/LVvv7t6+9bZd5vfia7985O73bfKD59E+erwIMpPTrPabf4kK2svvprVVler7H6GISz2QmFpGNvssuf5fJ3NvX+weiPK/yvz96L82PTPnkf5ssmef7nIxubp8+z3Ovgou5/V69lc12e3Uwxd2AHS/hJev6uyv/eTOqudF202t3/z8KMo/5Uma58P62w8T/Xnl9k/qPY7IFa7XZSfPjvK8mfZWnx7mLb/bG09VFktVq6y6/e77P43XVYvnTXZ3szyYBLl07Vdqgon+O7FeZQvw/4y9GFtHu6NFVXWfqaf3ET53UE2Pm9uu8n4z5ThnzuEW13DKvu9qnV2/+siq2+fTbMJ+w8XD6P80Um2V3E9ZP23e/4iyseG/a5l46uH40lzdi/KtwdZfTiE81GVTb9FH77lqLZp/ZD9B7qDbL7Y9dnzOWqz/pLOX/11tnd71/XL5a2z5Sqr5atV1pibq7R2y2rJXFjrtVnfuj7J8u0ke57bLrv/bZ/NpelbrCFcW6T5senOslq1OcrWUuU2ez5tWHvOmrA2n2T9sctKmSJ8TVYMp9l7rHSvcTK92+2zCN9bj011chzlh3CvJf0uYWjuR/ndIuuPu1l2P+larQ+n0/C1bFGme5ljkw4Qe14bpZq334ry/YuzKF8ts9q8Wmd7XZuTbMLoJ+Fewp6H8/KOTxd8umG9zv7BUbaeGg6yd1/9InyXOw3r/3VYz4d7sfUq3Ju/2+UMf4Jhlc0vRdhfyl1WMA3zbD6qLrK9/P44u//ws71i2PfHFbw05SRcXKe1arffwba8yRb7dR2u1cK9EF3lp1t1kH3nUc7C2qrJaqu0Fusn4XdUYf8tt1m+CvPjWim/gva8t1FOs/5SHWd74enaKP2OKq2V+knY34N4sm3rpBEAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1bzsG/gs2qIs2qK8VbYp6ujah1V2PvAwPE64HboofzVso/y03O/5xm7oo3xfDNl/ILx+vee/966bnWXP82ybPc+jdhXlT+pllF9U6yjflln/2g7Z+JDez6zM+u++fdhlz+cbr1j3KtebKD97lv2+zdU0yk+a7PdaNNn9N1V2/Vm93/a867P+eLXLnmdVZvPRtDq5dfbj2VF07Z9ts7FkbHNdf34Z5asum4vaJ4soP386ifJn66ytdbPs+Q/D7WrUn5hNsr61XGV/7zashXdd9vc+KQ6j/G9W70T5/3T6OMr/t4+fRvl9629usn8Q9ve6zn7f+kVWi82fzqJ8uc3upwxrz6HIxpNil/XHog7XLmF/WYW1wAfN7eeioiiK35y+G+X/1YPfi/L7NmyzWmbfhibbNqnOs/518FHWv1b3s/G/y5pbUVRhfwm7Y7XJrj8ss/FkORxE+R+0D6L8N4+y+eg0XPu24Xxd9FktH2617N2wyfp7fXYV5SfnWf+aL7L2uTkM+0toCPtje51dvwrn62Wb1ec/np9G+S8fPIvy6V5OMYTz+x3XX2cNor7O9vbasJ4pw99rN8/qq26S9ZdqF8WLOiznL5p5lF8fZ/PFps/qk81wp18DjUr3+JMo34TvmermYZQv6rC2qtown42dw5MoHt9Pfy8bq+4vss57EO6rhkMDf4L++YsoXz28n+U32eA/fZa1t90i3GucZuNDe5319+1Jlm9Os73Jts7WIqNzx2vD3YcfZ/8gXDs2i6yWqW/C9nMZ1obTrD3v+rA2DF979ZNwfmxHthhP3fX+8sGH+/0PlGF7W2R7Fe08q5c297K9w83Rnvc2wqV7GfZf7pb43fLpcZQf2qy+2h6ne+3Z9afPs/VF2l/Sz/C4W/qrcG/vOPtWpT/J3qV0i2w+qm6yvaj642w9OJxmf2/Z6zB3RRm+ly0m4V7XLBv7h2l2/bR27g+z+6mfZe/JynBvsjvJ1oK8ZFX4Xc4se68zpPl2z+8hwvemQ/jdVbkLz0RMwucfpXnZ0vmoOsxqq3T+SvPdYdp/s/YcfhYb5ZPsuL6mBgAAAAAAAAAAAAAAAIA/xiE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEaredk38Fmc1oviuN7POb56L1f959oy+y8sisme7uRfjvR5dkO/l/t4VZ187zrKP/lzB1H+XrOM8rNqG+XfaM6j/EG1jvLbIRsKN0PWoidlF+VnZfZ8ZuH1u6GM8q+a4SrrL9OnN1F+8Uk2nl8sZ1H+9GF2P69PLqL8Nmz/z7fZeLLp91ua3J9kv+9hc/vx5HubN6Jrf739J1H+y+1hlN+3YbvJ8ps2ylfXWVuenh1F+fIqa2vTh7so39RZLXMTPp+hz8byIRz7s7+2KFbVEOWf3mRjw9+7/GqU/68ffhjlF9Wea+0hez7FkM3tw03WX6qLqyg/fZb9XrMwv5xk7bPchauLsH0WYf8q0qXLLht/Lrrsef6j7u0o/3+c/VKU/6U3/lGUv+uGXTYiVpdZrTF5kf2+k4tsvuimYXtO49lwFavCCakKx4ez/jTK/436m1H+zyzei/J/bnIW5e+6YZ2t3Ytt1iDai6xebY+z8bmv99u/4vohvH6VPZ6iKLLx5/HkJMq/d3w/yh+cxn8An6JcrqJ8c70I/wNZvEibf5e+I8j+A32b/QGLj7P7eXr/NMp/cvI8yp/P51Gez1E4lleXWV8cmqyttWXWlutVuFYL9/W2R1nttvxBtjc2f+1JlH8wzWr5H0dp/iT9dfb8iypr/9UuW7yU9XGUnz0J30stsn3/vsn6Y3uUPZ/ZF7L3UkezsJbn89XvdzE+bLL2UD/P9hqbg2xt0d5k80U3zebfzXHWv/ppthnYHlm7/DRL568m3Nsou6w95/koXnThUrDLpruim4eLQe6U9N1yEe61V7NplC8Pw3eDYXz1KPsHXbj34P/24KdcH46H4fxS9Fk9Uy+z+nB3lPXHoX0Q5evz7N14utfIy5O+l+3Psm9K63AvoTjNvkPqD7PiZwj36vrjbJ+3+kH23Uy5eCvKv3JdK/y98vd82fWredbeykVWzA/hXLFv9VW2F5XORfUqm+uqp5dRPv0Oj89XWWd7S9Vh9h1PGeaHSbY3lo4PZZf1336evdsZqvBd0/b24+EQZC2JAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mZd8A/P9Tl85nfp6qs+so3x3Novz/8P7fj/L3qnmU74shzPdRvgqv35bZ9VPb7HaKtsx+Lz5df34R5asmm0of/oMyyv/+nzmI8s0Xuyi/qNdR/qS+ifJfmD6L8nXYf1dDG+W3Qx3lF9Xm1tk3mrPo2q+aYZ21tWK7i+LTJ8sof/SDkyi/+0JWm5zMV1H+dJ71rfUuG3ueXS2ifN9nf2/XZfmbbXb/P7h6EOX/3jqbG399vt+5fd/6sH+VqyzfnGftc/FR1t5WD6N40WdDf9FcZ+2z3GbXL7KpPXcW9q9VNtf9fxZfifJ/4/gfR/n/4iJ9oOOSzl/95VWUr88Oo/z8Wda/hipcW4fteUjzVfYPyiFbHFXb7Pr1TdZfnu2y+eh/1f7lKP9f+vb/Icq/avoXZ1G+Osj2HibnkyifbqsO6VZX2L/6OvsHTVauFvXtl0b/LD+N8v+g/FKU/zv3vhrl+XTdk6dRvm6y8bMosvVX34b1W5/V82Uf7jU2Wf86fi/cm9xkz/M36i9H+X/v1/9OlP9PiqMoz79Y9zTbF6u6sC0vsrG2nGZtrV5nfWX+NKv9q2wbs+jC+//t33s3yv/Pfv3/HOX/N0V2fT5f/eVllC8n2WbC0N6L8qn5s6wDDGGt1z3P8hdPsrXpX/nz2d7A3y/S2oGXqXua1YZNndVu9VX23qteZGuvZpa1/2oXLr6abH78ztsfRvnsrT53Tf/0eZRP+9fuKNu7qnZZe0739jbH2fVnXz+P8vx0G5bZu6nqOsvXN9l6qpuH/XGS1T/Lh9n1l29n/SsbHXjZhm22GTtcZ99KVOH6aPfacZRP9962p1l/XL6dviu7fTa7E166sK0N2/C99S5bu5fbLJ++NuoW4Xusr70Txev3P4ny2VddPwXC99b7vn76HcMQfidUpu+BmnCzN/yMcJhlewP1KmuhwzScG3/r96I8L9cQzhdF+E14Ue957zOcj6qrsD+GNvey7zJnj2/f4Xe722edNAIAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0mpd9A5/Fv/P7/3rRHEz3cu3dkJ0P7PosX1d9lG+rLsp/8+RxlP/24sMo/93Ze1H+O+0Q5RfVJMrz6e7/tedR/o3zMsr/5d/470X53a6O8mWZtZ9Jk/WXN48vovxXDp9F+V86+sMo/+uLH0b5t+tFlK9L558/zfv/+5+J8mXWXYrlVThv3WTt///2m78Q5RenN1H+rdOsv/zaw6z9/+rB96L8n52eRfmTahbl2zIbrzKHe7z2/n3/f/krUX4Ia4HqJhur+nlWWxWH6yj+cLKN8u8cnkX5v3Tv96L816cfR/mfa5dR/jjsK+aWT/fJ/+gvRPldNrUX24MsvzvM+kv/cBPlHz58GuX/lQdZe/7l4x9E+e/OfhTl32qyufH1OpvbmyKbW161/nX138zml+Vr2fO5eRTFi829bG1R3sv6yxuPzqP8N09/J8r/+eM/ivLfnn0Q5d+ur6L8/Sr7vdL56O7LtunW/+afj/LnX2qj/PU7Wf22DfvL5N4qyj88ydrbV08+ifLfPfqHUf4X5tne2LtNtpY6DYf/Rbh2qcL/bbQ6XPx2Q9Z++iKrT9L7/+t/6d+P8o9/MRt/lm+F9dXxLsq3B9n8MpuF65eTbD768mG29/yrx/9ZlP/ZSbZX/bDO/t6jKusvbVy/hZtFoX33r//o3/irUf7pz2Xzy/LtPfeXedYeJtPbX38e7g188STbl//yQbaW+pXDvxvlvznJ+u6jOvut7vpctC2yWuav/cW/EuWf/vw8yl99MYoX2wdZX6kXWb6qs+czDfpWURTFwTSb6945Oovy3zjMasNfOvx7Uf5n2uz6p+F74sWe5650ruiKrH/91df/rSj//F/7SpRP9wZWj8Lx4TRr/0WTXb9sw1p4kt1PWhu+fnwZ5b91L6vd/vLx/zvKf3PyJMofhe+V23B+qYv91nr/rSLbSy5/8TtR/uyb2bup9UnWv9b3onhRhq92uln2+3bhZyfdIruhYZH1x3uvZf3rO48+ivL/1oO/GeW/Psnmr4MyrM3D7pKtLIriv1P8WpQvp+F7+u98LYpffyHrX5vD8Lu08PbLcPpKh7fdPPsHfdgfl6+Ha993sr3Gr7+Vtf//ymv/JMq/M8m+K3qtzsaHoyr7e/8n/+EvRflU2WY/cP3uW1G+u5/1r+3xfr4n/Ymhydr/kJYPYX1y8yCr/2/C+nn5ZtYfT7+dtf9ffj3ba/+ZRfZu+a32xa2z//H/KVuL7F3YFqpF9qFBdXwU5Ytwr6Vows/Td1mtMRxlH0oM02ys2p1m7wlWj7Kx5/LdrO+efzN7Pm9/Jdv3/9a97D3cj345it994d5MWe137ViE35H0F9l7ynKZfWdWzrP+Uh1lc3s3zfI3b2Xjw9lXw/f0f+VXo/wX/6d/O8rzOeuzxVH3NKtlijSf2vN7x1S6dk/qh3K4/T7mq/U1HQAAAAAAAAAAAAAAAAB3ikNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW87Jv4LO43EyLup3eKvvVk2fRtZe7Nsr3Q3aesC/KKN+UXZRvw3xq2d/uuf/ER91FlP9CWUf5Nsy/ap7cHEb5qhyi/Dsn51F+2+/395rWuyg/q7dR/qBZR/ntkA21H3dZ/zoqV1H+uJpF+bp8tc5Ld13293737Q+i/Pfah1F+dZDNR3XdZ/mwv2+7rP9+7/q1KL+os/71vMvGt69PHkf5b7W3n0+nZdbX73rfGuqs7czeuI7y201Ypm6ytjlkt1+8OD+I8j9qsrnoH7VfjPLPu+x+lrMfR/m3mmxuf6vOas+TcC6qwtp5bP1rdT/Ld/OwgWaPp+gOsrmiWGX963o1ifIfXp9E+d9t3oryqc0sm9uv+2WUf1RvovyizGqBdG2U9q9U2h+v3szy9SbrL2WX/b1ln+X7cD56fpmN50/mWe3zezdvRvl07dLP3o/ym/oqym+Lmyjfhu15W2TtJ51dZmF/nIb9/eqt7PeaXGZ/7+5Z2P4n2RPaHWTP52qVrZWfTrP+8v0mW7tcdlk984sHP4jyX2+zvcyuzOrPtgzH/7A82YYFd7qTGVYzxfL1rD65973seabb7Dddlt+12V+8GrLf92mbzUeHbbZ2/9sXX4vy9XH296Zr/brI6rG2DFtc2F/S9rwJ+1d6/eYma/+HH2Tjed9k88VyGs4vVVjPBP0l3Uv46Po4yt+bZLXP76+yWu+0zvZm2jJ7r1NU2WhepaP/nueiVXj95iz7vQ4/yuai7VHWlrtp1he7JhsdwqVCseqzvluG+9TLXfY8L3bzKP+DdVYbHlVZe6jT/tVn/aUO564u7C/LsL8U66x2OP2dyyjfTbLxdrfIaqWhDvvXPOxfYfvvNtnacRNe/3Kdrb2ebxZR/v3tgyh/UGXt590m61+zdIIJ8116+dRvfy+Kzx/+fJTfhv0l3Xsbws8Gyl12/Sp8lzVssut3syy/Cvvv01W2t/HeJnsP/SDdq6uy7xJm4XdLVdwfM0M4HzWPz7L8w6ze2B6Ee29NmJ+H/Xff41UoXF4Uu5usYD1bZb9Xuhe46rP+fl1l9W282N+zoUvXd+HexiSsx8K9hH4azl/VfvdWU+nWVZVtjcXtbbPLfq+bLusvq3CBuhqy649JGa5Fynk2VhVN9iyHw2zsHKbZsy832b5kd5itXdKxZGjDvY0+7Ozp2LDnz2Dm4XcMr5q4P9bhD9aGY1WfDc7lJKw1JmH/XYTjQ7Pnb/7T9zTh3uduMbLimZer2m97LsPac0jno30b9nOmaVxfhwIAAAAAAAAAAAAAAADAH+MQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1bzsG/gsdn1dDF19u+yQnfdbNNsoP612UT41rbPrL+pNlJ+U2fVXQxvlz/pJlJ92N1H+zXoR5evy1Tr/uelv109+ouuz5/P24jzKn29nUX4X3s8s7C9p/zqqV1H+oFpH+WU/jfJP+qy/T8P+viiz/nvXTSfZ83m2OojyXzx5EeU3fTZVb285L/7EtMn+3uM2bP9N1v7rYojyz7rDKP/u8CzKP++Xt86+XmfPvhj6KD62uWuYZ/ff92WU/8rrT6P8hxfHUX67DftKODb0Q/b3/vD6fpRPfbC+F+W/NMue/5cmWf7nJh9H+TfrsJYMlzn77l9Dk41t3SzLD/ezWqDYZn9vOcn6+811Vss8n2a1/IeTkyg/r7O13eNtdv03J2dR/rjK1jqPmoso//U2q83vV1l/mZbZWjCd78osXmyPsvG2n2T9q9qE119n/Wu9zJ7nB+F8Nwvbfzp/rYas/fzc7MdR/nmf9ZdUWntuiqx+mJXZ8/9Kk9XadVZqF102PMfXn7zI2v+qzeb3y7B9fhCli6KpwgEo9I/KL0X5J5Osv39z8lGUr8IBdztk7X8bjg+b8PqpyWUX5TeH2f0cfpA9z24a9pdJNl/sjrP+cnY5j/If1lm9lM4vv9W8G+XT9rOdPI7yi2q/8+l1uNee7s2n/bG+yNYX82n2/Icyu58hrFdXb2XPvwvWR6suu/azLuvrP2geRPnjJquVfnuV9a3tNJtb3m3OonzqOmzL8XusLlubFrtsbpk9zoqrkyZci4R7k+suez7dYbgXWGe19lW4V/FRmV1/0YRjW/ie9WGT7b2lY/Oj+jLKd0W6tsvaw2WfvedLVdfZ2ujkB+FiZ8jy1+HzLMP3mn269xDuHW5XWXu7arPn8/5V1v6/usj2ki/bsFbdheND+B43XRul/asow/Y2ydbWi9//JMr37etZvsna2y57zVp04fBTZtN1UYb1XhnOX5tN9nxerLL2/3ib7SX8qMneTT1orqJ8W4Q/wL6F/at7ko1X02fZeLg7yDpAH9aHYfMs0q2Z8DO8OF9ts7+3CPvvcpONzz9eZb9v+u7ossv6+zZcK+9dH/b3VfgdyUWYn4Xz0SLLx++yDsL2HOra8PpZuVQ0N2H/Wmb15E24Pl2GLzsuq/2uX/Zp2IXfJHf7fc8xTLPfqp+E+4YHWW3bt/v9zmN7EI4N4VDYrMLOGMarcO+kTyfrV0zZ7nfuLafhN7rhd05lExZ74f0Ms/D+q/D+11kHq1dZfqiz37c7Htla5xVThnsPQ5+Nh2W41x6PD+n1w7VsUYV7jTfZXmwRPs8hXSvcklkLAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wpe9g18FruuKobuduf4qmKIrn3crqL8Qb2O8odhPnVUZ/dfFX2Uv+hnUb4td1F+VnZR/qDM/t579SLK33Wr3X67+k3XRvmjJmv/fVFG+UmVtbe0Px6G/WtRZde/HiZRfjtk55mvhm2Unw5Z+6nLu32+ej7Jnk/q/Yt7Uf7nH34Y5dP2sOvrKN8PWX9M+9fD5iLK12U2v2/D9rwNLt+Hc2lVZM/+rjs+yMbOjy+Povxbx1nbuTdbRvlNl/1ekzqrZdJa9c8cvhfln+6y57moNlH+reZFlE9nim2RPc/pyJY5fVYqFUObtYeyyvIHD7L2v15lf8B0ls2lfXb78VyU5pd9Vov97vKtKJ/2r2/Os1qgDseTts3Gz2kdNuhU9nMVfdjdh3D63R1n40+5zf6A2+5p/MTVMluLP5sfRPmmzOqZabj2+us3343yaW173GT1xmuTsPYM+1e6Fnx08PtRPhU+zrg/hs2naC+zG9qG489Nm/XfJ9Osv6TzyzZce73YZntX760fRvltOCDOqmx+X4UF0L7XmlWyuCuKuP13bfYPFh9l99O32e+1Ce9/u8v+wfMma59d+Ps2VTagdOEK43l3GOX7cADtwgZ01WXz+9VuGuWrcO+k3GbjZ3Od1QOTRTi/Z8vfogzH2/WD2/9eXdhXNn2W//DFSZRvq+y32rcPttm+Z+qj7WmUX3bZ2u6jdfb8y1U2FzXnWdufN+HY02Zjw1W4FlmHk0s/zcae7iC7/nkR1kr1/SifzkXp2uh5m81FH9dZ+7zu0/aQzUUfrE+j/LDNnk+1yWrP5jx8z/dh1v6HcC2yehiuFbKlSFF2YX/chvcf7jU+C2vDH948iPJ1uNh8LdzrSq3Dtc5l2L+KIVy7bLP+MtThfPTj6yhfFFmDvng33NxL9yrC/hJ+1lKkbzt2TdZ+ztqsf/3+xetR/qS+ifKp9L3satjz3nPav0L1s8sofxDez/DlrH4YqnDvLazH6nV2/7s6vH621Vs0F9la8Go+j/JP7mXP/5P5cZTfNtn91124GTsy/Xk2X1dhe66Psnq4XmTPf3sQ1pNl1v6rbr/jVSp8tVnszrP1+MU23Bvrwt+3zL6VuMv6y2wuqmfZs0z3DYd5+J5gst++1U33+01jPwlrz3BrrznPxqr0m+GLcN+5KPb7DXwR/r77rvX6ZfadTXWQrY3KJlwbzcO1ZmiY7Lc2T/tvv8jup95mtVL6nruax4tHPkdD+KFZWYXjc9j+y0lW+xTp9cNaOFXV2fwyhO9Ghm1YTN7S3T6pAAAAAAAAAAAAAAAAAMBPNYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit5mXfwGfR1H1R1/2tsqeTm+ja82oT5d+evojyp/Uyyq/6NsqnVsMkys+KbXj97P6f9fMof1RdRfnj4Xbt5ifq8m6fF63LIcpfrrP20P5/2fvbWM+y/C70W/vp//+f/zmn6lR1VXV19cy4PYM92PgpMtfG3OjGXDswRkJJ5ERY8QtQEEhIfpHrF0QorxBSCBKRIhAC5UUiUIC8ukEKV4KL4Brn3nAJ4Mt1MA9jz0zPQ3dXdz2dOo//p713XqAZcATj852ef3rX9OcjjQTyr3av/97rt9Zvrb1XVd1H8QdN1n9utVn+HjXrKH4oVRS/HZso/nl/FMUvquz+vFOy+3+7zsaroWT9J7s709PU2fgwb3Z7vf56yKbqwzbr/7sqa89Jl81fd8L483D8f9i+jOI3Yf5eBfFXQzi21a94toRzyzhmY23bZGPbi1XWd+4fZLXDUGftP9ssovjXD86j+M+vHkbxx80qij9pLqP4YcxqpSa7naUJ5+qpqbKpooxNll9tm43lm002t5zcysby43k2F6W15L41Jbufb8yyuehem+X7gzD+pM5q531L11JhaRILp6MSdocyHmUJX+15ePvgPFuLpPPjl6/uRvG7IesPn1ieRvHpWm0b1tq3uzR/z6L4kzq7P/U2my+qWdbhwuk9ll6/2oRr94tsb+NFs4zi67Aevtxm7bk9y+q3ds/zaRuuZW932Xw0r7Pxc9lke7f1Nmt/1WfPN739/Tzrz+HWcxmbLMHC4aSsuqw/t212g55cZ/PX1S5rzxfqe1H8bsjml3SvMR0f2rBguj3P8rFah/m1yfb+qzBfmnXWQQ/fDfcrgvl3O2TPNlwKlk24FvzgIsuVWfMgin9vdTuKP2yzvpOuBR9fH0fxH1xl8Zs+y/X7u2zvpGzDfeSL7H4ePAvHqjZ87xgupnaH4WInzK+08jk9y2q9Lzd3ovh0bL6Yz6P4Ib3/4dro6fowik/z62D8IIovY7jW2WY9or3K4pdPstpqDPf+qz58vtlWeOnD+F04PlyG89evn96P4uvwPeXTLpsf0/y63GX5e9lntV4pz6Posc/Gn/o627utm6w/z06z33sYro2ud1k+pmuvNF9K+O5obLP7uTnM9q6er7L57t31SRT/eHMrik/no2249iolrMdC4yarx8bTbC+wXoT58rVsbTd+MuvQVbh3mw5v4Wc88d5h+Cq07Dbhdz9hfn3pKtt7SOevXLpC3a84v66y/t89Po3ih8VrUXypsvG5Duu9vsviw63qUu/Cd9FXYXs2WQJfbLL66ukmy5ezXfLtxrTes6bGXZbru/efRPHtLFsrtENWq/bH2Xc2u6NsMkrfEwx7fs/dXoffZK6z9qy32Vh1tkmL4az2iYV7A1MzXGa1anWQ9f8qvD/jPCzewrVOCd9zpx+O1ZtsL2eYZbVe+Il6qcK9kFfevj9sSfN9SF80Zf2/6vZ8vCqcr8utbC92OMzG8/o8G6/G63DxtSev9skeAAAAAAAAAAAAAAAAAL6jOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGS1H3UDPozj+aq0i/FGsSftVXTt2+111pZ6FcUv63UUf7e5iOKvhnkUv6i3UXxdhuz6VXb9w2oTxfc36wYfW4dddj/T23lvlvXPusr+C3e6yyi+q/ooPu2fq7GL4vsxO2+8Ktn1r8Ys39/vZ1H8osrGt3vNYRQ/NcNY7TW+rbPx86TL5qOnm+z+H7fZfJRaDVl/fm9zEsWn+bsdmyj+pLl5/dCXbKx95fVZ3++HLH7WZmN5Fc4tmyHrC5s+K5tvzbKxc1bvovin66Mo/u5hNpc+32XXn4Vz76Ow1t6O2dh5VE/r7/poVln/r3ZhfJ31/zqMv7jOao3jeTa3pLVhOpc+D+fGeZPlY1dn/f+4yfp/V2XtmYf5mEWXUpesf+5bHU6/4XBbqrDWG8P5rjvKfsBykcXPu+wHX2yzfL/VZfPd7XkWf9Bktd697jyKf9SdRvGHe97Lqatw/M+Gw7z/pwPEnvdmxib8D4Thu21W752vsnxZzrL+nM53Tdgh7s6zvdLDNht/brXh+BDWh/faLN/rVdah2+usP4z1fvM3ldafwyyrn3ez7P5ctYso/v0ha89Bml9N1h/mYXy6VxTXw03WgdK9n8tdOAEM4Xi1zuKHLlu/1+HLgoOnN48dm7A2DNemfZ3l1lm1jOK/HObWnWW4dtlzrpyvs7l312e/N92LGlfZXFfNsn3Sep2Nbd1ZlisHXbq2y/rn9YPw+uFaqgr3eXcley/ytBxH8X2YX+/Nb0XxbVg8XGyz33u1zuL7MH8fbcPFyDqrPetwvG3bLD6tldL8qsL+U4d7h9twLz/9e5S3TTa+PZtne3VfqO9F8akmXHtt+2z8uQjz6371Iorfu3CtU2+z+bQ7D+ffsD3h1nCpwvkoNVZZfq0Psvx6ush+8H83vhnFL9psPE/nx3WYX7fKF6L4ku69tdn9T/OlhPNjtcvGq4OnWT1Zwu9UqrDeHrbZWi3eOwmf7+4w62/PLrL11zA+iOLTvcDUvLy91+unxl1YH4b5NdzOxsPuWbZXWkrWH8ZwvZ/ubaf5UoX1YRXutcyfZePDy+ts7/Dzw/0ovgn23g7Kl6JrT06djW2p4cmzKL5+mI2FdboPOAt/b7i3F27blhJ+IzoL5/buMrv+1VW2l/Zul+1V3CnvR/GvvLDWKGPWgfqnWX7F2d6GfyLszyXcmxnD90zVdVbbNqus1pidhc9r9Uofv8mF/TmWzl9DuJewDc+knGbxzcntKL7qstpnbML8CufT8fAgiq832XwxXKW19g3bsZerAgAAAAAAAAAAAAAAAMC3gUNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAExW+1E34MNY7drS7m72E5bNJrr2nfYyil/U2yg+dVivo/jtmD3ak/oqil+G7VlUfRT/qMni7zVHUfzHzUGb9c8uvP932qz/NNUQxQ9jeF437G+rsYvil3U2njzsTqP4Pvy9iyp7vpfjLIo/H7Lfe6+Jwifnap3dn9eXF1H8rfkqil8P2Xh+d5bl40HYn9s6y980X4ZSRfHnwyKKP26uo/h3d3duHPuweZy1pWRjVTOxv7ugvs6SvR+y9h/Osmd1tc3G8lWfxS+abKy9N8tqyeuwPanVkF3/XhvOpeH1n/TZWLsMa5l+zMaqptpvfoWlT6nX2Vi4XWVzRbfYRfFtm/2ANN+HOvu9u/D657t5FH83zN+6jFH8k92tKP5h+zKKT02tdKs32f1swv5Tb7P4Kowfs+5W+l32BKoquz9p/LrPxpNNk7W/Due7dH5czLLx7aTJ8v1hcxbFL6usPV24TdeE+RJO1yXd6qr7NB+z61fh9cc6uz91uNZJDeN+57vjcK2Zrh0P22wv8FPzZ1H8cZ3V/6+12Vq83mb1bXeZ5e/QZQnWZo+r9Itw/sp+7rcQn7WnX2fzxbrK7mffZ/lydBDubbdZf7g7z/pzW2cPYBbGv7HI6snH14dRfH2dFUBNuPfWz7LnW8/2ly+zrBQoQxfOXW2419Jkc915fxDFrzdZbTILa7HlbL/v1eZd1p47iyx3x+twMK/D1dcsGwurXbgXcp3Fz8/TySJdbWb5Uqq0NszGkl2d3f9nQ/ae8mWX5eN8vt/3fNt+v7sD4zZ7TzBuw/Ghz/pz1YVrr4OsP4RTUSnhe/0qXCuUIZwbw7XLGOb7qs3e63x1nd2ftgvfvTRZ/xnD+9OHtfP9MZvf4/y6yua7KpyP6nCvqAvH81Q1pHtXWX6la6mS5ldYH16H88v6On2++92bTGU77aWUNL/67AFX4d7AGPb/apXVt/Us6z/zl1n/T/cm+3CC3KbvmsIvIGcvsutfHS2j+PUqW/t24XpqG67XPlPejuKnZtxk9WH9ONubHMPn2yyz5zsLh8N+Ee4PzNN6L9xrCee72cusPafvZSP6y2U4Hgbvuj8TXXmChvBhhXsVaW2Yzr3VOnu2zXU2NuxuhS9yw9xtV2lxmFk8zZ7XxWk2Vj05z57vzb+o+w4R9ud9G9fZWrC+yN4LjrfCb/K3Wf6OTZaPdTqeXIbvgV5ktUB1/kofv5medP6amP40/K6rzt5zt90b2eW78Jvto2yvrmpPovjy+P3k6jeef6f1NTUAAAAAAAAAAAAAAAAA/DscggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLIcggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCyHIIDAAAAAAAAAAAAAAAAYLLaj7oBH8as6Uvb9DeK/cTseXTtu81FFD+E5wkX1TaK/3T7Mop/WV9F8Zuw/YfVLop/1IxR/K36IIrnm3t6fRjFf+r4RRR/u83623rooviXfdYfjppVFH9cX0fxqaZk/f+wTtufxS/D/D2sqyj+VdfUQxR/uZtF8cdd9rzmdfa8Xptl89eXrl6L4m+16yg+NYxZf0vzfVbdrG74urN+cePYf7W5E117MT+N4h802di5b+GjKhfnN7+XpZTy8Pg8ij+abaL4NuwLiyar3R6vjqP44y7Lres+6w/rISv739/ejuJf77Ja9Umf3Z+79bMo/s7E/qqPKptaSrPOEqxfN1F8e5T1t8Us6//pWL4dsvavwv4/G7N8f+f6JIp/8+A0iu/C8efJ7lYUfyscT7oqq1X3rc2m9jKGa832Ouufu8MsPkz3UoX3vx+yAW5M87HP8vEqrIVT6fx1NWTt2Y773RabhRNAV2X3v1ll1x+6cL4Il8rp7eznWf8Ml7KlDNn103zp+ywf+ya8fpjvmzBfPlgfRfE/NM/qvdfCvdVlnc1fD5uzKL7aZB2oDuur7jxcIFXZ89rNs/miCfNrCOvPXVbOxIY+zN9w/Bn2XP4s22x9+sYiy6+DcH36xuw0iv+V3YMovmzD/LrO4mdxgZWtF4bm5uNtuK1dusswF8PSamyzsSquDessWap0Gzlca95ZZMXJbszm0luzbDHy4jprTzOfR/HVVdaeqssGw2aexY9X4dgcvldIcvHfCNsT1mIlrM37XZhf4VqzabLBMK1V5102NqfjSWq8zN47liZ7XvU8G3DbeIDL3sume4f1Lvy92yx+na6l0vtTh7XwNrv+Zh6urQ/CxWbY/9O9n1h4/4eLyyi+DsfzeD7KXgWVqs8SpllnBVxzFLZ/k423dbqWCvvb2IT5tczav1uEA1Yb9v+J7VWXIXtg4yqt38IFRp09r3DrpISftZRmHfafg6x/hp9JlDqsx+pwfhnC59WHv3cd7v2M8WJ5z8L5qGrD/j/s9/dW4WZX8zJbD1a7cD24C+ejMB/7sF5K9/KXUXQpQ7g+Xd3N2v+x+uotzcVwLTVcZ3NdXU6j+Opu9t1VfZ31/W6XjSVj+F4tfQ9XjeE3pY+z619/JRtrd8uJ1WJ8U8N5tpga073McHxI1Yusf6Z7e+ley+w026s+fMcZh+9kVRvune/CxUu41uwffxDFNw/uZfHn2V5s/zCcr49u/l1CPW5KueHwNrHPQwEAAAAAAAAAAAAAAADg33IIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJaj/qBnwYbx09L7Oj2Y1iz/uD6Nq/++BLUfxqbKL4R00fxd9rjqL41Iv+KoqfV1nXWdY3e05f14/DXuOb6uN1/vOg22bxTRb/dHscxX/3/IMovq6y57seuij+pMn6f+pymEfxx+11FP96s4ni7zdZe+ZVdj9fdVerbLy6tVhH8bcPV1H8ZZ+15/r6ThTfVGMUn7YnjX/r4FkUv6yz/l+XbDz5zOzm41Uf/t0Cz/oqir9dZ2PzvnO33mXx/XVWO1xss75zZ5GNnZfbbCysw1xZ9dn9n9VZbViXrD1p/+zCB7wI++cHu6x2OKmzufqwzvrDg+Ywik+FU3UZL7LxYWyy/KruReGla7Kxc9Nna6NhzH5vP2T9eWiz/jlrsv7//jrrz9t07Th7EcWfjdn4thqz+7Nv7Soc3+ZZ/wlLh9JeZtffHWf9cwz7/3aX9Z90/orzK2x/Gp866bLx//H2dhT/VpvVqvveeeiusvFqbML5pQ77c9Y9Sz8Lx/+sPCz9UXj9XfZ7d032g9dh90/HhzTfj7psLfvu+iSKv9eeR/EP25dR/LLK+n+1Devt6+z6TRfmy1VWX3XhfDeGu/5Dm12/uQrzZZb1zyHsz2k+rjbZeq0O8/d5s4zi780vovi3umw+erPL6smyyerDapUVWM3LrP9Ut7J3O7OzKLyM9c37wxj2tSHMxXRuTOf2IaxOhjr7vX24dlxvsxs0hGPhQbgWfLjIOs+LMRurxnU291aH2VhSrbLrN2mxGq4109I/fLylhO/5xiotxtL4LLwPX9FnbxVKOb6drY1mbVYrNXWW76lhlf3iah72z+vs/lRhwjTn4V5dn93PasxqmSp7vKUK9waqPowfsvyqwr2QXboWrLMEni3DWimsbWPhfFTC7ypS1fllFt+mnyxl382k+VVvw/hdmo/7za86fPe4uZXl1+ZOWH8uwwFoz3uHsbB+GMN6LK1nqm24l3832/tszsP2t2H7d9l4VYULqnT+qsO9wMVp+F3Fw+z6q/DdXX8wse/e0vXRNttLSOOr5X7XU1X4e+twPir9IgofFuF8mpYPVTZfzHfZ+L94nsVfPgzXU69NbH7ZpzQX++zeVyV8ERQa043YNLe6rP1pe+pd1p4hnEubdXb9h/9ttra+ej18EcdHqj4Mv3NKx4f0PcFx1p6qDyejbfheMF2b3slqhzv/Ovxwkm+vcK1WzdIPDcL5MdzbGHdZ/6kPs/dk/fvhGY2wdq4X2f2s7r9282sP61Ju+JnBxFZEAAAAAAAAAAAAAAAAAPBvOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGS1H3UDPozfffIb5eDoZj/hy+t70bUf94dR/Kfbiyi+q5ooPrUet1F8V2XnIedV1nW2Yx/F16WK4puw/R83X3r/tSj+e77nSRS/bNZR/Pu721H8cb2K4uP2bLP2dFXWnz87fzeKb8oYxZ/UWT62Zb/jz6tu+042/n/5dBHF3/3tl1H8o4OzKP6yn0XxddjfUtsxG5+fbI6j+CGcL06a7P5/ur26cWw2MpRyt86e1dRytzvLnm29yZ7Ve9v7UXz1mWzuOllcR/GbIRtrhzH7vc/Xyyh+2W6i+PdWt6L4tP2f7J5H8YdNVquuxi6Mz55vPw5RfFp7VrsovNThgFKvs+e1/RdZfzj93mytc3iQ1WKp3ZDd/7Q/j2H87CB7YJe7eRY/ZPHvbu9E8W822fMdwtohnb2qPrt+l03tZQgb1DVZf6jezeaL6zr7vdnon+vDtXs/ZPenrrLfO2uy9jxdH0Xxt5tsvjgdDqL44zqb71LVLruf7XU4wWSPt4x1OD5nw08Z66xB/SJL+D78vdtwKTWG+TKE8en81YX59WB+HsVfhfNXWu/Nqqx+K7vs91ZDWB9eZQVf32X50q7C/GrD/hbOj8Ms7J9NmI9RdB6fzqdVOD5cddl6/2tXJ1H8w1m2V1SXMF/C51XGbECsNun8mM2/1Sb7ve31zeOHLs2tMHfD649hrodL0zKMWV9I58bLsDaswvhP3T6N4ud1unhPB8+sb46r7L1IOFSVaggfWFjrpbXbGK690vhw2zzOr/Tvna3CWm8XNueizt5bHN3P9nKaMB/3rUon622W7+NVlo91OJdW6Vy659s/NuFeeDo/hvH5CJfl4y78ZGbbZA9gfrDfvYHUGI7/43XW/1NVmC/1y2wzYVxm42G1C+freO8kW/vG82P62Uw4H1Xh3vwmXKz1x+nqbs/C8XkI1zrxfDHPCprqLNs8r2Zp/8z6QxPWwyXcW6r6bDwPP/uJ56/5adh/wvpzlT2uV17Vhp+47sJ6Lx0Pw/wdn38QxdefeBjFl3C+SMurLnx3l85f6fx78Czdn5nWtzZ7la6Nwu8kSviNYkm/q+jD9oRruxLuVdTp/QxVaa6EudhcZbXJIswtPlpjWnseZGujWNiedC8kXdtt33o9iq/X2XjSfNyKsalJ+8862/tMa88xrD1Tw2X2XUtcO4drwTR+d3Tztd1u15XypZvFOjkEAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZLUfdQM+jE+1z8ph19wo9rw/iK59Piyi+JfDdRR/NQ5RfFc2UfyynkXxV8M2ij+qs/OTw9hH8U3lfOa30/BiHsV/8fy1KP5Hj96O4p/3h1H81ZC1//nuKIq/215E8XU1RvHP+6w9t+pVFN9VNxsHv05+fXPdWXZ/midZ/Fcf3Yniv+f4SRT/wTrrb4dtNr9c7rL5JTWvs/ni5S6c38N64Mlw81Lp+7ouunaau1PTXmbxs5dVFD88y+7Pe7dvR/Hzh7soPjWM2e+dhX1/E/TNUkq5yEq9OBcf77L7/yOLr0TxJ3VWay+qsL+VbG5Ps7e9yq5fh89rdprF94vs/rx8lNVi4e0vbZv1tyqsxTZ19sS2Qza3p+25O7+K4l/sstr5sF5H8Y/7ZRR/HObjgyZrf7MO86XP4qs+e77b7HaWZpUlwPYoG893YSm/6rP2NG22V9GE+TuG82OaXyezLL9ehrXhs3Bt93qTrTVjY3Z/wumu1Jtw7yq7/WXffzfX9jickMK1cj9m+bsNE7if7/f+nF5n/f+DxXEU/2B2HsWvxmw9dTpka9Oqz/pz2WXxYxfWk6ts/BxmWX+Yhd1/bML+eRDW223YoLDizu5mKX0T1pObrD2X4f7AvM3eRTzbhnur86yeL3XagdL5KKz3zrL6c7ydjW/JfNesslxpw7Ghz35qGcJkD7cSSgm7whCuvXZtlivXYe6eb7O+/8E6m+uqcG1UmnA3YRfuXbXZ9dOxv9pmo229Cd8LrsKxP6yVuqswX8Jt8DEs3cawOzRX4VzdZAl/tc5+cNtktVI2MufGtNYL56IqfK9frrP3fFXannDzrWnC+LD27NL+GZYmcW0S3p8qTOBNuNbsw72ZvRvCvZxt+i4l6/9lCGvJNhvfqnC+SzXhdzNjG35n04X9bRbWA3V2/9P6s70If+8i7A9TE+bXEM4XqSqtP8O1Y3WcrU3LdfZdQp22P5wvhi7sn2H/n11k9UPannjv8xU3huuj4Tzbm0w1B1mFW83DBUY4P6Z7J+VW1v4hW76XeO8/rN/ay3Q38NX+NieS7tOlwr7Zv3gRxbeLdB8z7GtpbTvLas9hnsWP4dxVhe/F07lxDNeOfMTS59uH3+Xsee6tHz7Irr/I8qvehPkezkXdefhhF6+UtPbct3GbraVK+B1DHb7XLC/OovDtozdvHLsL3tE7CQEAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBktR91Az6Mr+3ulIPtzX7CZ+fv7rUt58Msiq+rIYo/qTdRfDNWUfydZhnF92PW/tR27KP4rmr21JLvDPP3s/vz3pu3oviXD7L+01XZ832xO9zr9Z/vjqL4u+1FFH85zKP4d3Z3ovjPdo+j+HnTRfEfN/PnWXy9zeKfPc/625dOXoviF03WoO2QjQ+zOsuvq13W3853Wb7sxuw8/3vbkyh+tbj5/fm4zUXzF2MUH5Y+JXy05fJlVos9Ocrmlnmb9f2mzn7wdcly5XCW1YZn/SKKP+rWUfx2zPr/6ZDVDp/uzqL4B0021u7b4mXWH4Ymq+WrIcvHzXGWYPXLbNm4rrP29ItwMg21bXb/d8N+/66YW7NVFH8e5m/qfDiI4i+Hq+w/EE6P7VU23o5tli/1Nuuf3WV2/c2trP+sXsvi+8MsPl2675qwPbMsfhjC8a3Kntdhl83vt9psvnt3m63VHranUfyL4TqKr693UXzJbmdpsuaU+oZ7dN+4/iqtJ7MBZXOS9behy+LTv1ts2Ibt6cPxJ5x/u7C+fbHK6rcXiyz+bBbOdxPb1a624V7mdVb/NJdZ/LAM937GcC1+EPb/ML+qcG87HR/C0bMMTZZfQ1hPzpusRen6azWG/aEOC7g6rE/m2fo91Vxm6+Wqv3nBVPVZXxjDfdh+lt37IRwLxyqdW7Lrly68P+F/YBven9PrbG65fxDmSpXVklWXPbBqkbV/nKXtD2ufbTZW1evs+bZ1WCuFa5F+ll2/DWvhdK4bwvYM6dbJLrv++WXW3+bzrEF3o+gS9884v9o9F5NNOJeO6dooW+xXuyw+3Tupd1l8s0rXalF4qcPHW4drtfo0a9A2rG33Lq71wvaH+TteZwNudXycXf/iMrt+UBuWko8/zSqbT9twvtstwto8fF5tdjtLurXdXHzM/h73dPO2z/YeStg/U+Nl9q6gWmbvIupVtrZLxfVnm43/Y3j7m2x5UbowHz92qvBd6EE2YPWP38+uH85f1UWWX+Mya38Vzkfp6Jx+VTqG8129ycbD2WX4coT/oHG737F53IVz3RDuA6Z7IeFeS9WFtXb4nUdaO6RrwfQ9PR+tcZ0VD2l8tQvfpIT9eTzI3kule/Op3VGW7806/K4liuYjl84X4d5eLGxP88bDKH6ch5tv6Xu+ZO0VxH7MdhAAAAAAAAAAAAAAAAAAeJU4BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZLUfdQM+jN9YPSzztrtR7A/dfie6dl+qKH47NlH8YbWL4p/1WXuOqjGKX5dtFD+vbnbfvy67O3y7LZ5m8S/PDqL4t1evRfFvzk+j+K7q9xo/r7P+vx2zoXNZr6P4dPx5PgxR/B0J+U0dvZv1n9TZ81kU/+LNZRR/3K2i+DqcLzZD1v+HMevPw5idz5/V2Xx63i+i+LQ9HyfLZ1mu1Ousrw3zrO+cvcwGt9XdLBe7o+sofuizvrPeZrXVNrx+12RzxVcv7kTxJ112fz47fy+KP65e7VxcPMtqjaHJ+n+zzZ5vd5mN5avXsv55scjysQ/7Z9odNn3Wnt0u+w/0YT4+6w6j+E8evIjiF1XW3x61L6P4LuuepR+z5zt7ehnFj01Y3Ib5NXRp8TyPomfnWf/ZLcP+eRSFl3HM5utxCPdOtln7L8P+drHI7v/8OMuXusr68+mQ1fKb8SqKr8/T+Cg81s6y+WIM86ufH0fx3VnWgfpwgOuz7lDqXTj+bMP2hPmy6bJ6/nKb1c/Pt9l89/7udhT/vbP3o/hUdZWtratw/Ew7UBNev3rtVhQ/C+u3zVHWH4ZseCglvJ1VmgDhXv6uDvdOwvuZ7s2sw72ZVNWEBXed3f9qk82/40U235Ww/mzmN68f6mW2rzS2J1H8EM5FY/qswn3nNH6dzqVZ6RbnStg1y2qXDVZxrrRh7obxeW5la68Srr3qcO+hup0tXrrwAY9NOHe12e9Nh+bdImx/VlqVKlx7DZuwNm/3+x4l3vxJ9wbS/IrH29Aqe49YVVn/qdPac57dn3objg99OJ5nw1spB2FtEnbnZr3ftd3ehbVSFeZXGj/WWX6NV1ltWIV7ReN19q6jOsq+q0jrt/A1a2k24bu4cK3WbML463QvNrv+5ITjc3XD792+Vf3Lsyi+mmX1UumzAbSp70Xx6V5LOv605+F3PAdhfRjunaf5215NbH7Ztzqs98L1Qn8ebp6H/bN/kb3ra8K99nj8CfO3Os++y6kOsvGkD79DrYbs/s/O9rx+eYVVXfasxm1YDIT6Z8+j+CrM9WaR7e2lqk2WK2Mbzr2hsc1qzzS3+C2EY3M6t+zbuM5qpfa7vyu7froWDO/n2KV7S+naJcyvKPo7wCve/6fWnjp4j/Vv/kC6mRDu5YT5sju4eb7sgn3tV/trUgAAAAAAAAAAAAAAAAC+ozkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBktR91Az6M17qLsuhu9hMetbvo2l/cLqL4Zb2N4lOH9RDFPx02Ufy9ehbFlyoL56O1eJH1n9NVE8V3VR/FXw1Zf+vH7LzuqnRRfNr+Lsz3WXj9B815FH85vtJD+eQs31tH8dvjrL/Nn2TxL1fZfHTQZv2zHscofhj3OwHswnzfDFn/f745jOL/2epTN479dPf56NoPmqwtU3P49kUUPzZZ39meZH1/8TTrC+evZ7l41WZzaVVludW22VxxeT2P4peLrDbshywX3758LYr/1dnNc6uUUn7X4kkUPzXzt59lf6DK8mW84ZroGx4cR+HdRXb95irrP30Ttr/L8rEO43erbHwY+qx2flyy+/+v29ej+O85eD+KX4S16ifaoyg+VX/wYq/XTzVd1h/G5l4UP3+e9Z/tUTo+ZPFDli75eNVk8+Omz+a7p11WXz05zvrzpw+y+WgVrn0X4f0sp2dZfFj7lz4bH8qQXb8O7//8VlYfbpfhfHSQ9ucwPrydVbaVWUq4NlpVWX6tD7K18uUu6/8XffZ8P+iz+XR8GeZLaps9sHGT1eelyeaLapvtDTSH2fPqrrL+Ntbh38UX7j2M4e2sduneRvZ7r2dZf35vfiuKf32R7R0+2WX5khovr7L4dfjAUun81d+8AKrCtVe9ytoyOw1rtyarVauw1quGMBfbLNevl+FabR2uHcOuf9Rlc906HtvCfdh07kqL+TBXhtUqiq+PswdQh7VwG97PfpH1n1m4lhrrbK4esvQt6VDeL9Jaflovfqs6bE/Yn8fzbC4dwv4W13rh9evDbO1b3zmJ4ptF1kFn4fPaLrO1SD5/ZfFjlr6lhEvrqeVXqbL5a0zni+vrKD7eqwhVm/C96e1wwN1l96fappsD4V51OH+FW8MlfI0bq7cTy5d9G7MBa1jtdy01rrN6OL5+mC8l/A5jWIbx86w+bC+zvZ/dYbh+3Ib1wGa/4+errj7I9mbGcD0Sr4+Wyyi+moXfcab5Fcan76Lrl5dRfBV+pzuE67t6J1/+g8K5KH0vGNd6Q1hbhfuwZb7f3KrC9wRpaTXOsr5f7cLvnMJaNRx5Pn7CtVf8InHPmpPbUfzYZovrdC957Pa7GBnDvY32Kltrpp9hvPL2vNbf+3wUqubZXldaq1bhXnv8HWGav1343joY3pJY/xIcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk9V+1A34MP4Xx/+yHB/f7BzfnXoRXfuz3TqKfz4MUfxm3O/5w37M4oeStZ9XS7vKOkS1yvrndmyi+DvtZRS/b0OYj4d1Nj4cN9dR/L69t7uI4t9oj/bUkmnqnl9F8f3yVhTfbKPwst5mU/UwVll8yeLrKhtP6hJOSKFNn40/aeXzpfX9G8f+yuxpdO3PLbOxZGqqd55E8fV8FsUP83tR/OJZdv3zbTb2r6+7KL6b76L4Mczdts1qt9Uma3/TZNd/fHEcxf/z9lEU/yvLL0XxU8uv4YNsfKiacGzrssGtOc7WRgdPw/z6rnCts8v6fwnH/nRuTJdG/ZC1Z11l+fjlF3ei+H+0+HQU/58efj6K37f+2Yu9Xr9qsv5ZzbL+3704jOLn5/Mo/nqd9bd6HdaGs7DWC9eOVZpfh9kfuHxxEMX/8/aNKP53HL0XxX/y4ItRfKp/fhrFV3U4Hu5ZNWb9rXue1Rvz42x+3B5m9yeNr8O14Bg+ryYsf7Z9Nh89bbL7//rReRTfVX0UP4R/t1v/fL/zy96F+dKE9WRzuYniZ+dZ/9nccA//65pNuJcQ9v9mFcaH8+m6z+qHF7NlFP/V5UkUf9hmN2j3/gdR/N6F/T92dfO9wGbMapP2MKtNhkVWS3ZXWXv6WTY2zM7C2jCe67K5evVWNleswn3VOixWh+tw3z+N33ff37PhPKsF6qOs/6fqbfZ8m+ts7J9VWfxYh7XMLKxVb2fxVR32/2G/a4uxz/J9DMby7wTDZfaetT7O3vPV59l41Yb9f/4yG5/7WTieZ1ufsaELx+epDedhPTNusrXC1Oavcbvn9od7M026tltma6/qMJtfdmF8/JlTuvUf7k1OTvh8x132LnFqqjb8juFFtjfTHGVr5Sqs9/qT8F1Tk+4Fhpvh09q6nZ4hqw/705d7asi3Zgjr1TS+/cSbUfx4O6sP1w+z+PYy2yBonmbrxyrMR/7DXvm5KN1LSGu98Jvw8TBbjPSH2T5y+zLc2N5lY+fubnY/P3aZGK594+9+wveCaf7Wi6x/Vrezb2LHNvy94SGHMfzOo95m/b/a7Xd84COW5m+brcXrefbdT5pfJRxPxkXWnv44i08ngCHY2x6CZ+VfggMAAAAAAAAAAAAAAABgshyCAwAAAAAAAAAAAAAAAGCy4kNwv/zLv1z+wB/4A+XRo0elqqryN//m3/xN//c//If/cKmq6jf973Of+9xvinn+/Hn5+Z//+XLr1q1ycnJS/sgf+SPl4uLiQ/0QAAAAAAAAAAAAAAAAAL7zxIfgLi8vyw//8A+Xv/gX/+J/MOZzn/tcee+9977xv7/xN/7Gb/q///zP/3z5tV/7tfJ3/+7fLX/rb/2t8su//Mvlj/2xP5a3HgAAAAAAAAAAAAAAAIDvaG36B37mZ36m/MzP/Mw3jZnP5+Xhw4f/3v/bv/yX/7L87b/9t8s//sf/uPzO3/k7Syml/IW/8BfK7//9v7/8uT/358qjR4/SJgEAAAAAAAAAAAAAAADwHSr+l+Bu4pd+6ZfKgwcPymc/+9nyx//4Hy/Pnj37xv/tH/7Df1hOTk6+cQCulFJ++qd/utR1Xf7RP/pH/97rrdfrcnZ29pv+BwAAAAAAAAAAAAAAAMB3vm/7IbjPfe5z5a/+1b9a/t7f+3vlz/7ZP1v+wT/4B+VnfuZnSt/3pZRSHj9+XB48ePCb/kzbtuXu3bvl8ePH/95r/pk/82fK7du3v/G/T37yk9/uZgMAAAAAAAAAAAAAAAAwQe23+4I/93M/943/9w/+4A+WH/qhHyqf+cxnyi/90i+Vn/qpn/qWrvkn/+SfLL/4i7/4jf//2dmZg3AAAAAAAAAAAAAAAAAAHwPf9n8J7v/Xpz/96XLv3r3yG7/xG6WUUh4+fFg++OCD3xSz2+3K8+fPy8OHD/+915jP5+XWrVu/6X8AAAAAAAAAAAAAAAAAfOfb+yG4r33ta+XZs2fljTfeKKWU8hM/8RPl9PS0/NN/+k+/EfP3//7fL8MwlB//8R/fd3MAAAAAAAAAAAAAAAAAeIW06R+4uLj4xr/qVkopX/rSl8o/+2f/rNy9e7fcvXu3/Kk/9afKz/7sz5aHDx+WL3zhC+VP/Ik/UX7bb/tt5ff9vt9XSinl+77v+8rnPve58kf/6B8tf/kv/+Wy3W7LL/zCL5Sf+7mfK48ePfr2/TIAAAAAAAAAAAAAAAAAXnnxIbh/8k/+Sfk9v+f3fOP//4u/+IullFL+0B/6Q+Uv/aW/VH71V3+1/JW/8lfK6elpefToUfm9v/f3lj/9p/90mc/n3/gzf+2v/bXyC7/wC+WnfuqnSl3X5Wd/9mfLn//zfz5u/N36oNyqb/aP2TVV9o/e3WmWYXwUvnf9OETxQxn31BKmYPF8E/6JWRT9eHUriv+Bw3ei+De751F8ajtmQ2E/ZuNJV/ooflmvw+tn+b4K0307Zu3vqokNiKHqxVkU394+yOIvsvy6XHVR/BsHWfvn9S6K34b9/7rP2j+E1z9ss3w56a6j+ONmdePYd7Z3oms/7b8Qxd9rDqP4fRvOsr5W/zu14E00F8dR/PxsEcXX11lfO3iQ9bXNJhsL+13WnjR+HKsovppv93r996+y5/u3X/5gFP+55T+J4vdtuLrK/kC4dqkXYX49v4jil4usVlo8y9ZSlwfhP1DeZMXMuNrzP4Cedf/S77K58eYz0b/x+dP7Ufz//fBHovj/zWu/HsWnxm26dkmvn8Wnvae+zGqNg/ezWvLijSy/dstw/H8Zzi97Lv3bi6w9wzr7vS9KNh/9F/MfiOJ/+nt/LYqP670hW6uFW0W5KhwQN1m+1xfZfNpeZ/ezXWUden6a/d5dlu4lXKqVcClV6k3W/maTrWX/Zfswin/rMNv7+R8s347iy/jx2vscrrMKojnP5q/mJFt/zV9m+bU5CuejsP+n8U24mVYNWX5dN9kAcXqSxV8fZfVnGcMB6GMkzq3rbC+h2mW1Xmp2mRUDfZf15dlFmCthMg5dNhdVd7La4WqXXf/jNrfsW//kaRTfHGRzUXOdLQZ3h9leSHcejp1Vdv1hluXL9kk29w7fm41v/W7Pi0H59c3V4fM9O88u34W1w5DNL7PTbH7chXuHfZovR9l8N9wP+2c3sf4sv76p/tl+v0toj7K9iuYqm7/ag3B8COu9bbhWS8vbISzHJifdG3vF83Hc7XftOIZ7gdXtLL/qbTZ/bcO19eZWlo/x3sar/VkO32bjdba3N97N3o1UQzZe7Q6zfNkd3o3iu7Ps3cLQhuMzr4y0dmvDtc54/ySKH+bx5/iR/jj8LuRLj6P4ts5yJXtL+R0grN3GXVbLV23WP+vjbCyv72Vj7RDWVmMX1j5NODan3+WEc1G9znp0tQo/POEjVTVZ/6wPs/dw1e3sDMV4tN93QaUN370swsVFuJRNaskkNp51f/Inf7KM32Qw/zt/5+/8lte4e/du+et//a+n/2kAAAAAAAAAAAAAAAAAPmb2/FfiAwAAAAAAAAAAAAAAAMC3ziE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmq/2oG/BhNFVdmso5vn+f9L40e2oH0zBWVRT/u37081H8//FTfyuKX1ZZjzsfdlF8F/7e1LLqsvh6FsWvxyi8zKtl9gf4pvrnL6L4rsn688ntrD+c/sg8iu/qPop/OH8Zxd9urqP4rsrydztmpcl2zO7/sl5H8Yt6e+PYh212L4coenrGdXYvhyEb3Oqr7PrL97K+uXz3KIqvvzt7Yt99P+sPTZ1df91nuXK1zeauusqe16zJxp7DbhPFP11nz+u/vMp+7+9d3jzXvyVjOLmP2f0cVlm+1Jvs97YX2fNaPD2I4i8/ld2fsQ3vZzjgVkNYS6alZ3j9/llWC7x78VoU/39b/2gU/+PLL0TxP3nwas94w2oVxVfnF1F8c57V8ssniyh+mGV7A0Ob9c8hG27LmKZXmO71LvsP7M6z2vyds9ej+P+s/MEo/j///v9rFD854XyX1pPjWZZf3bPDKH6xzNYW6V5LexmFx8KlUTx/DWdZ/GqT1QP/xeqHovgf+I+/FsV/3IzbrH4bL6+i+OYiy6/mMFu/NLP91mPtdVafpPPj7DKL7y6y+Gf1/Sj+xe/O9rpKydbXHyfjZs+5dRXm1kE4d9VZbdiGezklDD98L1v71pvs976YnUTxx/9JNrecR9H8VsZdto88nmVPIC2VmqNsrbAL87FZZXPRIhzK03x/uczWpv/RT2TvEdOZiN/CEO4dXmXzUdVmtVtdh3sJi2wzYX6a7WXuFln+9udZ+9erLP7hZ55F8XxnS+vDepXVh/U26//1LpsvqnCrtz8I3w2+tefNk31L3wXxTfXPnkfx7TLbOx9fy/auxvDzxN0imy9W97L4y09kCZntJPCqGcN3v1X4LUZ5LVsvDF2WMJvjLP7qQVZP7g5unl/ZW1k+alWb9YVxu99cGY+yHrRbZmuvscnmiub7PxHFz97P3sPxW0jfm4bvdcqY1QLjRbgWCd+DDkfhdwzHYe0W7j3s+8PM/vPZdzN8m4X5Vc2ytXK5n313NRxm/TkeH9pwMRL2//Y0m+8297O11PKdm7933PU3/0bLCTIAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmq/2oG/Bh/O+e/vYyX3U3in2yOY6u/XyzjOJXu5u14+uW7SaKvze/iOLfWjyL4n/44MtR/Pd3L6P4u808ip9X2f3km/uB/8OvRvG/cX4/iv9ffeF/HsVfh/kyjFUUf3u2iuI/dfg8iv/s8nEU/7sOvpBdvxuiePny7bX6f7wRxVfVGMVfrLPxc7nOnu8/+MpnovjDRTYf/diDr0TxP3HrN6L43zF7N4r/vll2nn9a+XL4UTfgQ/n8/+VHo/h23kfx/aaJ4lPzw/Mo/vXldRT/P7r/61H8jx9mufJWm40lbzSzKH5ZZ/F8c1/93/7uKL4/yOaWOP4wqzW62+so/rsffDWK/8Nv/PdR/A8usut/ssnWUq+H+TKvsmV1U/m7aL6Zs//l74riLx5l93P9WpYv27u7KL453kbx3/vGB1H8zz34h1F8utZ/M8yX23W4VqsXUXxX7bcemJ6sPtz+dFaPPf/+bG/m8lGWL7v7Wf9fnmT11ffcexrF/9id/y6KT+uxR01WT77WZPdzGfb/g+rVrt/2PT/+5z/x01H8+z+W5eP5p7P6qtzO8uXo5CqKf+M465+fvvUkiv+x41+J4n9o/k4Uf7fJ7s/tOsuXroTxr/h8VJdsvv79P/aHovh3fk/27uX6jTBf7mXrkcOjbG/41uLm1390lK3FP3mQzV2/+/i/jeI/02W5+3qYW8d1ttZJc6V+xf+ezt//P/wjUfzTH8neO778nixXqrtZriyPsvhFl62NjubZ9V9bXEbx332YvQf90cNs7vrts+w9kPz65v4nn/2DUfzLH74XxT/7gWyuWz/I9qrbW9l7lKoO3/PNs/xqw+sfzrP2f+L4NIr/yTtZfv2ugy9G8Wl+LfdcG+7b/6z8WBRf/Uc/GMU//aGjKH5zEubXSbhXnW0VlWGe9f+xzdpTFtn120WWv3duZ/Pd733z16L4n7mV7bU/arK15iLrDqWrsj/QhGuXnyvZu5eqzebf4cd/IIq/fJTtvW2Os/l6d5Ddn2oI83GeXb/Pfm6c75uTsB5+PVsLfub196P4/+nD/08U/+l5dv374V7jcZXNj//r/yzLl1S9yB5w9Ynsu5zd67ej+KHL8msIvzuJpfm4yOqTdDy5epDFXz/M2l9/JnvX9J9+d/ZtxfeG3+19srv5d4H/p//zp6NrT019mO1r18dZbVjCub2Ec28J3zumuTUus7FqOM7iNyfZe5qLR9n9efk9UXi59f3Z3sn3vZa9t36y36llesL+X82y/jBus7VFabK5Yjg7i+Kry2ztUs2z4rA7ysar4U42Xq0fZNd/8dks31c/mSXAm//7/1cUz7fXcJWtfcuvZ3tXe5fOv3uWfoE9jjefr8fx5uucae2AAwAAAAAAAAAAAAAAAMC/wyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACar/agb8GF89fpOmTWzG8Xe7S6ja9+92WW/4axaRPF1NUTx6yF7VC/7gyj+8e4kiv9kexbFL8ddFJ+aV91er/+qO99m/XPZbqL4NuzP+77+QbON4uf1fvvndmyi+NMhuz9dlf3etmTtaaqP13npYayi+M/efhLFf/H8tSj+1mIVxW/77Pl2TR/Ff+XqThQ/lO+J4vvj7P4v6y9H8a83Wb4fVfMbx37ccqVss9/7+hsvovjz1c3vfSml9EPWnnGMwsvzq6y2+q+ffSaKT2u3/+T4X0XxpTyNol8v2dx7VGe1xsdNWMqUzethbdJkHbqqs/h0bny5zvrD333y/VH8+rWs9h8O3s7iS7bWuV1ntdidOsv31Ks+H61vZf0tFT6uOL+GcH58fr2M4n/14hNRfFeF48ninSy+XETRQ8lq29t1tjmTrnX2bd/5eP0gGw9nL7P+vFtm+dgvs/u/XmTP93SdjZ//6vL1KD71AwdfjeKH8iyKvx+u1UpJ9xL2my91+HevDWP2e+uS9c/rN7L65PaXs/Fzd5jt3a6GLH9Xiyz+g+ooik/3BubhhNpU2fjzme6DKL5rr6P44zrrP9tw/dhU+61nUuswv8Y2y9/7/ywbf95vs/F/FdYD2ZugrH8+rm5F196FexXpvvZrx1ktlq5dFmO2mE3H/r5kfTPNrT7c/BnCvZDug/Mo/virWV8e2mxuOZtlc8VVFF1KdZzuJWR7e+m+dvqe6V83b0Txd5ssv5b1aRTfhWNzX7L73+15bZTmS3WZzdWH72Rrx+u72VphmGX3Z9tl+Vi14f0JS4dduLdXhbVYOn99ZZ2993rUZe8KlnX2Hq4J568hzK96YrVe8zi8n4+yfNktw/4/ZPen6sNiO7z9Vbi3PW7DeqPJ8mW7y8aff3We7W380DJ7j3tSr6P4IazfujS/wvjUuMvW+u37L6P47ta9KH67DPdOwi/8hlnWn9O98/QzmzEr30q9ztq/W2U3KN2bf7rL9lrutlk9eVilNygL37dhE+4VhfXVGO7l7A6z8XbowvkirQfC8GHPrzqaTTg+h+PDGM6/2/AHD2O6/zCt+m2fqkW2Fi9h/HCUjZ0l3Gccu7Dzh3s/1S5bK6T7pOlYFQtLpVmb1W7p3uTHTdVme2/1MsuXcZ3V5lW4FxgL9yarMH6ch+3f81o8/MS77Pb72Q+/hbS/pdK1Y9w/0/krHH9KuDc29uF3Cel3MOFe+E1NbEkEAAAAAAAAAAAAAAAAAP+WQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATFb7UTfgw3iyOiptM79R7KzeRde+1a6i+Lbqo/hhzM4fzuttFF+XMYpvyhDFP+kPoviuXEXxd5sovNThec6uCv8Dr7hn68Movq6y/nDv4DKKv+67KL4fqyi+rrL+f93PovirIYu/HLP49XgdxV8N2fhwVGf58vHKllKGsL+d7242D33d6wfnUfxmyJ7AZsim9pNZNj7P62y+O2zWUXxqNWb352rI6oFS37z9RyXrC031iv9dBF02V6x3Wd/87jvPo/iXm0UUv+2zvjNvs76TjiVfvrobxf835Xuj+NNlVgv8yPxrUfzd+iKLv2EN/3VtOBtNLb92R1ltUnZZ/zm6l9Vi61VWi7VdNvY/P1tG8alf6T611+t/MHsWxf/22ftR/GrM5t6TOhs/5yV7vnXJ+tu+86tfZO0Zsp9bdodZPlbX2fgTDv/l9CJbW/96ez+KX4e15HbM+tuT7kUU//2zx1H8asxqyeOwf3Zh/LwKO9yY1Uupvss6XJ9NvyUt5WcvwrVLk62V361vR/FpPdaEewnrMF+uFtkD+P75e1H83XDv8zDc++nDvcZUmi1dOH9VQ9b+3TwbH5bvhfcn3BteVVl9dfEgu/6zWba39OUmW7+kzg+y9V1ZfCUKf73J9t7uNul8GoWXbThfpPmyGbMG1etw7+RWNp7f/9Xs+u//zmy8XbfZfH0eDCfpPnXXZGup91bZXPdfjj8Qxf/Hx5+P4j/dZnszD5uw76TS3Ar/QJorZciycfm1bO1eb7Kxfwj7/sVnovByvgtr58NNFH+1ymqlo1lWrKa13r0u28c/DPaRS8nfmx7W4V5sPFtkVmm+9Nl42J5mc/XJb4Rr9zbrbxd1ll+74+z3bsL8CkvhMgzZH3h2kO0lf609ieJ/o3sYxZ80Wb704d5bml91XOtl8aXKntd4neXL4dvZ+Faq4yh8bLPabXM7XNuF34WES68SfgYT7wVudtl4dR6++/rVq2zv/KTO8uVWnX1Htaiy+rAL9yr27oPsXcHBUdaBdodZfvWLrEPv6nA8CfMl7f+puDv0WYMuV9la9vH6VhT/qfBd09mQ5XufFgT7NmT1T3WejT/NUfgtwHE2Hw1N+G6qDfMr/PAqzsc038N6I/xstayuw72Z8Lur9Lu9VfoycUKqLvutVZf91nEWxnfh2muexfeL/X7OnubKEL6HS3M9tuehvwu/CXzlpWuvcG8jVR0fZfFhvpc2nYyyxey4DN/r9GGxF7YnrSXTWmB3OLG1y9SE+RU/33DvYdxla9P6MNsbS/c+S/gNfwnfU6bvLsbrbK1fdeH9X+9n/JzW16EAAAAAAAAAAAAAAAAA8O9wCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyWo/6gZ8GC+ul6Wp5zeKvTu/iq59f3YRxd9ur6P41HZsovjbbfZ7N+H1n/VHUXwfnrfclsso/vVmE8UflZv1m69rqlf7vOj5Nvu9/ZD93kcHZ1H8cbuK4lO7sD/fCvO3KWMUfzlk9//t3e0ovm+z+19X8uWbqavs+W76rL8NY3Z/3jp6FsW/3B5E8bN6F8UfNNsofhmOz7Oqj+If746j+K59mcVXw41jd2Hbm1f87yKo6ixXDmdZX3i5WUTxnz5OcyW7/qLJcuVWl81192fnUfydNquVTposfhXOpasx6/9XQziWpOmSdc+9z11jFf6BNvsBu132vL77QZYvTy4Po/hmkbX/ZJHVYqs+W8Y+32XtP2qy/P1/Xn1PFP875u9E8a832dr0sM7u5906u58HZRbFp/kVTL2llFLCUruEw1up7mTz17gOa8M+uz/vv8xqnyqsbd9YZGuLqyHrD5dh/MOwdktryZM0X5r95te86qL41NBmE1K4dClDl/W3+jprz/Y0S/hns2UUP29Povg2HLBuh/0n9dtnj6P4p+H1N+H6JV379iXrD+leY5WV8yXcCinNJuv/bdj/24ssfjPPxttnVbbXu29tneXXVVgQfHbxbhT/6fF5FL8OC45N+JpmNWbzRZqP1S67/+l6J63H7vzrrD2nY3Y/18PNf8DFNhwLw332q232bNe3s996u/1kFH8+y/YZh3mWW4uwdrsMn+3VkN3PNLeqdba3Ua2z31tvw1rj7ez6Q5fdz+uHWX9er7Jkrw6y9r/TZu9RxnCw+rXmzSg+tQ33Bu422XvfIfy9aa13PmR7q+MQLvY3WX61V1mxd/RO1v/HKuvPV4/CvYFZWDsfZvdzE+7lPJtna6n0vdqtdh3F3w77/6rL9j4Xddbf0trqcszuf0n3qtO9t6vs/h88DmvPNqsfzocsX7a3wrXjPHxZENZvwy5rz2qZ9YcnXba3/f7RrSj+7fn9KP61eK8662/p3sC+jWPWf6rL7N3CweOsPwxtNv+mdotp3f96m7Wnus7ydzXL7v9XL+9E8Z9dvh/Fp/kyvOLfGgwvw++cDrP5pVuG9V4TznfdfvMlfVe2y25PLN1bHcP14ItVVn+eL7Px8GWfzadTMu6yWnXchQ8rXKtV22zt3h+Gey3h3LtbpC9+s9zdd66Hn9SVcOkSfwN83afvKff7DfDehf2tPsjeQ1SH2dhW2qw/j+F7oOoqe15jONbG+XUYXr/N+nOz2u+LwXRv5lVXtWFtlc5HoSHcO6wPwv5Wh3st4dqiWobFW5/Nv2k+xsLxc4zaU934u89Xe0UEAAAAAAAAAAAAAAAAwHc0h+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmKz2o27Ah7HotqXtbnaO76DZRtdeD9mtudedR/HLehPFN2WI4vvwfON2zH7vauyy+CGLf1IOovhFdRXFd/Uuil9Wsyh+auZN9nufrg+j+Os+e76vz8+i+GWT5UtqOzZR/LJeR/FPdrei+KY7jeIf99nzKuUyiu7C/vOq50vX9FF8W2fj81fPs/7wqcPnUXxbZe1J58d0PppXWf/ZhPl4Oiyj+FmfPd+muvn83oW/tS3Zb22qaf3dBWOftaeqxij+epvNLV84uxfFf+o4y63Udsie78VuHsWntWQ/Zs/rSX8cxR/X2f3sJtafJyfMlzqciz64OIri7x5mtfZBm80t9xcX2fXDuWsYqyh+Ha5dvmv2JIpPa8lFOLdnrZ+eXTa1l6HJ8qWk4UPWf2ZH2ficXn8xy/p/P2Tj7TvXJ1F8uHQvt5tsPPnq9rUoPq3HNu3LKH41rqL4RZfFd1VWP6SqMUuAsc76Z5WV2mWY7Td/ry+z+upxndU/6fySujrI1tZf3d7Nrt+H9WeTzV9N+MD6kt3PtB6uhqw9afzYZONts8qu315m92dssvFkO2b94XmdtX/RZuPzKtxr7E6yAeifX38yiv8X1ZtRfGobvotYh3v5sXC+6C6y57ue7bdiPXwnzN9g/t1kpXm57LNiKd07eTLL1nZf7bK5In6vE+6Dp7Xbyz5bLKTtvxrCfe1tVptXmyy+vc7Gtv4gG/uPv5J16CrcW1rfzeauPlwbXYaLkXej6FIOu6z2uT/L+v9huDfwdtZ9yuWQze0vw8X4s232Xmq8uo7i61mWj81Fdj/n8yxfdotwbZTmy53s+rtNGL/M2nNewucbro3SvcNbbdZ/zodFFN+Fi9l0vkjXXrEhXIy3Wf+vdtl8sXgW7l11Wf+5Dve6dstwPgof15CVM2Ubjm8XbfZ8v3ie7aXdnWXfDVx0WX6l0u829m4I66W03jvN9g6Xbdb/xzrrb+GriDh/089+tuFe4DALv5NbZP3tepetL95Zn0Tx6d5YOn9NzbgJ9/ZOs+/MmmU2oDc3/P706/pZ9ryGMF/CraISbpXGez9NWH8251l+XW6z8ep0m60HX+l8Cb+rGNdZZ6gvs1q7zMO12jq799vj7Prpe6z0n4wZ2nQtmOZWGL8O57pdlovn23Ttkn0zv3dV2B/C5zVcZe+5q3l4P+/dyeLD/j8ehS/20/dkYa1ahbX2EI6Hu2U2mcZLkcUrPLd8C8ZduPjdcz6meyFV+N60hPHVYfihUyqcf8fwPVx1mI0P47vvR/HR8w1ifX0KAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZDkEBwAAAAAAAAAAAAAAAMBkOQQHAAAAAAAAAAAAAAAAwGQ5BAcAAAAAAAAAAAAAAADAZLUfdQM+jLoaS12NN4o96a6ia99ur6P4Zb2J4h+2p1H8dswe1eUwi+KbG97Hb9XVOI/iZ2Mfxa/GKopfj7soflmy+zk1bT1E8bMmu//zJrufV2H/TPOxrrLf2/fZeeDV2EXxXZXdz/P+IIpPLaptFH9craP4rmr2Gr9v/RD2hz7rD/Mwvy532fh50GTPdzNk88vd7jKKb8J8vBqy37sas/Ek7f9df/Px7aQOa4dw7p1WppRSwvbftGb7unQuWu2yvjyMWa4fttlYeB2ODUfh9Y+aVRT/ZHcrij9usv78JJy7jqusNj8O/+qOdmJzy77/6pExrYW3Wb48vTiM4r/rzoso/sV6GcX3s6x/tmEtltaSz/ujKD6vxbL4w3q/a7t9q7OfW+pd1v+rIbs/45Bdf7vK8uvwVjaeL2bZDTpos/i0/zcli3/ZZ/n+RpeNJ+nexoPmIorvwvuTqsMJI97KCePD4bPUfZYv9TaL72fhDwjD472BsP58scnqpa4+ieJTJ21Wj23HrL5ahAP6nTZba95vz6L4epd1iH3nV8m6fzw/VtlWXWmus/6/OcvW7k+6rF66XmTro8+3D6L4IayfU+le7MU2u58nYT180mXx1SqsH5bZ3kwdjp/p9Jv2//nzm8eOTZYrYeqWyyabKz4I+1rq3S7bS1iE7wnSvaLn4drxYpPlVpe+F+mz3Cph/6m24Vp2E9by26w9y8f7new24b78LnxvetVk/eFL9WtRfLrX+GR5HMWv++z3bsP2PF9nez/PrrN8PBkeR/FlyPpztcvi24tshJ6fhnuNaakRPq8q3QsJ58Y0vy6bRRT/fpf1/7e7LB8v+izf0/dwqfdX2e8tY5Yv4yas3VbZdy3VPHvXUYVrr/lpNt+FS9OyDtf66V5IH+4djmdhPRnm1/ODbHz+0iLLr9NZVq/uhuyBpe/WSsn2DmNjWP+Ee8+pdL6L8yt8t1aFn1GFnwmV5jrLr64K9xoX2e99fpnl15cXd6P499fZ+qurwwGrnIfx+1U1YX8Ln299mb17Sb8KHMP1++4wfXe933dfJbyf3UV2/fAzv3K2yuqx96+zfHmxSfL3WXTtvRvDvZ8+GxuGi2xfvl5kzyrN3WaW5Uq9yX7v7jBb6zTh/R/r8Pduwu/Gsm3zcnGZ1ZIvDrO5bnKHD9Labc/609MovmnDffPjbC8nHh9uh9evs7XO2IW1QDjXdeHeT3sVnrmYp7XYKy4cz0sVfigXnhlJ9WfZe+VUO8/6z3iUjbfjUVZ79stsbd2+zGrnah7upV1l3yXclH8JDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlqP+oGfBhd3Ze27m8UO6930bUfdGdR/GG9juKbaojiX2tOo/jLYR7Fp+1ZVNvs+mWM4u8311H8W+0yiuebO+iy53vSXkXxt9vs+c7rrD1p/+yqm40j32r8Imx/ajtmQ/l2bKL487GK4hdDNh7eaaaVv1WVjVdHbfZ717v0eWXn1ecle15p/g5hfzjvF1F8H/7eIfy9afsTJ2Et0JUs/lad3cum2vPfdRDey37I2nPQZmPnps/GtqtdF8Wnfeegydq/GrL2fLC9FcXPq6wWTj0L59601luGteTUxK3fhWPhkPXPpslq/7T96VyX5nsXrl3SfHy5y2qTbZONP3XJ2n/SZHP1yZjNL9uwPUf1fueXsNQu9WY/7fi6cZ393mqe3c/1OsuXWwerKH4X1labIWvP2e4giu9uuIfzdUP4dze92T6L4tPxJI3f9988VQ3ZCF33+6uFS8nzt4TzVzhclarO7k86P+7bdsjml3TvM41P90K+a/40ik/3cl5rLqL4epM93yYc/7fZcFjSraJw+Cn1Nlwrp/kbjier61kU3zVZgx5fZuuju4usvro1S/cys/bPwny8Fe5F3Z+dR/Ff2mQdtNpmv7fehuPzOovfLbL+meRjdxHmVpuNJbsuG/vP2mzw2YV7M4fzrNhetFlfbupscEv3ltK9orQ9ZZ3lYtlm9yet9dpVlov9QXY/+y7cp34ehZexSmvVcK6us72387CY/0r4XuHJ9WEUv99KvpSrTXZ/tmF+3Q7nlvEqm3urLlvLVrMsvjsPi7ew/6S1XgnX+lW49gq7c9k0Wf953mT9/9ej6FLend0O/0TmbJV9h7HeZv3tE+N7UXzZTiy/lll/SOev+WnYn8P82uyy6+/C+PTd2hDOv2fnWX34hfq1KH7WnkTxTTigpO8W7pYXUXwJ642qDT+pa8LxeRV+Z3aZzb9juB6ZN2H/D9deu0U6f4UTUh2+K7vO4q/DvY0vvkjzK6znw/XR3ZLtDaT5MjVVuP4qYf+P68N0/En3zlNhPZmuSNL8urzIvoX5YrkbxSd7jfdK9p4plubWuN/vJOK5Llzb1eHvHcO9sTR30/vfz7NcSefeVHeW9YfLbdaerz07ieLfKl+J4j92wu/2xsvL7Pph7VOlc9Eqq33GRbYWrDZZfx7D71SqMfwm/CprT3+R/d5XXjofhfc/VofzRfwiNLP7IHsv3pZ7Ufx4mNVK9SZcWxxne13tnXDv7UW4dr8h/xIcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk9V+1A34MOZNX7pmd6PYT82fRdd+0J5F8XUZoviu9FH85TCP4m/Vqyj+uN5E8XUZo/iTOrs/b7RHUTzfXFtl/e327GZ59XVpfj3fZc/3ol9E8csu688n9VUUv6i2UfyyXkfxD5rzKL6usvw6Dtv/iaaL4ufVKz21lHGsovi6ysbDeZvl1xuLbD663GXzRVdn48N2aKL41LLJ8iXNx+Mmmx+vgvn3q7uT6NrLKhs7l+Gzavb8dx1Uddb3r7bhWHLDGu/r2rDWyOOz+3/SZXPLB+vjKP6N+csoflWy+9+Ec8thONe9u8t+73GVjYVNWNseVVmtkWqy5pSs95dSh/k4a7P+vBuy8WQ37jf+PJzr0rm6zLLwrs6e2PM+q4VP+2UUfz/Mx2Wd1T77Fi5dSjg8l+Yq+719NlyVEubjGObXapvV2rMmu0EX2yy/DpqsFqu3WX8+arIH0IfjycniOoq/m9bO4fBTl3Atkt3+0oZ7Of08a88Qjp9p+4dt9nyHTbZ22e2y+G2fxaf5NYRr0zuzrD+/2GX5+P3Ld6P4+01Wv5006d5Mlo/1Nqtvm3W41xvOL2OT9ee0nuzDgjLNx3ArvAx9dn82YT5uwnw8XR9E8cs2fACh+Z7Xm5+YPY/i/9+7rD3VOtyvuMo66NBl/adZh/NXsFwewmu34dgwzMO5rslqw+uw9B+GsHYO2//6UbYP3oZ7FZsuGxsWYW173Ye5cn4Zxddd9nyH8Pc21+HeWBPOdeFac5ZtdZUxbU8V1obh1urLIautVgdZf2vDvZwuXAv24do03WsZd9nvHdfZ3ka5zvY+q4Nwb2mR5WN7GW5W7FkVri3S+LS23YTvHZ8N2V7a2TyrNWbhe/H1Kmt/+t4xNWyy/Gqus/dkqWaW3Z9yK3yvmV29VGM2/lfh2iLdyyxpfnVZfq1Ps82Z5+FeS9WEm117djf9A2PW/uEqW3s1h1k9UGaHUXi9ycarepPNX91FFF7qbZYv6V7+LtxLSIfb2Sz7A1fPs3eJLy6yfKxm4V5Xm/XnfedLfPlNttcy9tn6pRqy+PoyrD/H7Pl252E9NmT5m66/0s29KlwvdBdZe1ZPsnrg/DysCIJ8uZddOTex3KoOsrFt3GVzUdWGc8UqHBuasHYL907acOwZ5mF7duHeyUVYu73IxqpdOLbxWxiyuX3cZvk1nmabac39bISrrsO5sQrnonB8GA/C8eQqG08WL7Ln1Z6+2t9IT04dfpMc5lc1z2qNeG8ybM9wlr0bqdL5987tKH44ydamw3K/31nelH8JDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlyCA4AAAAAAAAAAAAAAACAyXIIDgAAAAAAAAAAAAAAAIDJcggOAAAAAAAAAAAAAAAAgMlqP+oGfBht3Ze27m8U+7A9ja69qLbfQotublbdrN1f98Oziyh+XmWPtqtmUXxdqii+qZy3/Cg9Xx1G8Z+59TSKf7o7juLvtedR/HbM+vOs2kXxx/Uqik/Hk8thHsVvShPFv9VcR/FvNAdRfFdl7XnVDWM2vr13dSuKf+voeRSfutVm/eHlLusPR806il/U2Xyazr9322x+fNi+jOLPh8WNY5d1dm/Ow7HtasjuzbzpovjUuMty5XKV1RqHs00Uf2uejeV1NUbxB012/59sjqL4u7OrKH47ZmPzG7Os76fOhmws2Wyz9vdh7fn9XfZ7D6ohio9r23BuaV9m92d9lOX7wTzLr1md3Z9+yO7Put/vsrQNn++8zmrJpmTXv9dlc9cXNw+i+MNwPjqss9phPYbzUZX1z3qXjc/jNlybrrP4ap315+og6z9VmF9jOJ5s+mw8aessH5+ssvmun2ftP2qytWzqSZ+tZe83z6L44z3vhXRXWf/ZHGXtaa6zfOxn2fOtw/wtJWtPGbLr97vs/qy2Wb6cN9neQD9m7Vk02fjzxiKrl66GrJ5P9z5n4Xx6Es7X9TqM78LxP6zPm3XWn3c3X5qWUvL8iuPD+XE4yK6/3WT5dd2E9Xw4/55usvXOrVm2Pv0dR+9F8UdNdv3Xwr2TsgvrmU1WHzar7PmOYT4OXdbfhvbm+duHWy1NNnTGteqwCOe6TXYvt024du+yvjNLx/JwL2cWzo335pdR/Bc32VhSrrK1V73Mxp7mMtzHr7P+M8bxUXgZ6+wPjG3Ynjg+a09fsgFiFa7t5gfhPnuYj4fh3NWH7S9jutYP56J1thdSXWfxTdg/U2l+hdNLKWGtGi+9mjC/wvllF67tNstwPAl/b9tla50hbH9syNozbrK94WqerWXry2y+i//a7jFrTzdkD7jeZvFN+K6j7sMfXIX1YVg773bZ/DUssvon3Ssd950vezauwvkorX9uZXulzVVWP8R7J4us/zThXkJzEObXLosPlxelX4Tz10FYT4a/t5+H65GpCffOqybMlzQfw/G2CuuZcCuqdNtwfg/XL80qbP9yv9+N9fNw/grfdYRbz6+0sU9rw2yuiGfq8L1Ctc7aMx6F+/LX4fXTsSGsPds018O119Hb2f0f9vuZGb+VcG8gnYvGdbYWTFXBPnsppZRw/KnTvaJdll/tRdae4y+90sdvpifc20j3Kko4PqfXj/cyD7IXv2P6bqEL12phPm4+dS+K705u3zh2HDelnN4s1skkAAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJqv9qBvwYbx58LLMlt1erv2guYjij+ttFP+Z7iiK347zKH4oQxTfVU0U34/Z9flo3TvI+nNb91H8POz/x80qij9pLqP4fszO927HbCjsw/PDsyq7n58Mx583m2UU31RZ+9N8T68/Ne+fHkfxj+6+jOLraoziP1hn7bk3y/pPF/bP59vDKP6g3kTxqbT9b3VPo/j77dWNY0/qLFfuNtnc3pZZFL93uyzXV9dZ+8fjKopPXWyz+7/ps1ppM2Rzy9Uuuz/H3TqKH8bsfr61eBbFf6rL4jdjdj/Ph4Mo/vmQjYWLKqtN7oRzb1gqlX6RxQ/n2Zroosv+A7ePrqP41S7r/1U4N277LH93QzZebYasf5bwec3rXfYHQr+2/kQUf1h9KYqv22xunzdZ/wyXCiUcTkpYOpT2PFxbzLL+Xx9n/X+1ye7nGI7/fZgv2zZ7AGkt3FVZfbUNO8QHbVZrP2zOovhFm+X7ULL7U/Xh/bwO93LCtV2aj2Mb9s95Fr9L47dhvddk+X4eRef1W1dn9dJvlPvZ9Y+yAfRZn+19ntRZvREL8yXNr/YqzK9w72rosv4QXr6Ey5dSb7L2DOssv3ZNOD/W2fyYzkezJuv/y7Be+urqbhT/A4dfi+JP6pvvbZRSyjiG+bLN5rtqlcU3bdahm1kW3wXz0Vinc2OYK7Mwvgv3ecOtljQXr8P4dy9uR/EHXba4fvMw27e922XvIb5Ysrm3qsIHsMl+b50WG2F/jncmq/28v/26sdn3XJruTYb5GL6i37ZZrbHrw7Vd2B+6cC88Ne6y/j9cZ8+rnmd7S2n+1uHc1YW1Z5qRs/TyJd1sSa8f/oFwryLdeduO4Qh3mNV6bZi/+zbuwtptG77n22X5VZ9ltWq6VhsW4V71NozfhbVzuvcc52OWX5twbbc9Cvdy0vFn/mrny3CR1ZPpVxVVFy7e07Vak/W3apc9rzrcO6+22fXDreR486TeZvHXD9L8isJLP0vHk2mJ673z7N1vfZze0LC/heu1KtxrKetwvluG9Uw4XwSfzfyby4cTwMGTLP7srez3rk/2++3JpKTvdVbZdyfVMtsLia8f70uGew/hZDHOs+tX22wfOX7Pd5HN7Y/+q6w2uf5EOHbybTVusrVXdZQ9r/EqG8zrOydRfEnnunAuqi6z94jx2rfP9qrvfH6/38TyzY3rbH4pdbjWqcO1S7iWSteOqeEsfFkQ5m8Xrk2rYDyphnUppzeLfbVPKgAAAAAAAAAAAAAAAADwHc0hOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmyyE4AAAAAAAAAAAAAAAAACbLITgAAAAAAAAAAAAAAAAAJsshOAAAAAAAAAAAAAAAAAAmq/2oG/Bh/J5b/6Isj5sbxf7z609G13549DKK/0x3FMWnuupmv/PfSuMz63EXxXdhe9Lf249DFN9UH6/zn7/+7H4Uv3x9k8XXWfy725Mofjtm/eGkuYriD+t1FJ+2p6v6KD7rzfvvzx+3fNm8WETxb1/Oovg3PnsWxb+1fBbFP9kcR/F1lY6fYxR/0c+j+D48n5/m1/mQPd/Pzm8+3x1Vy+jar3pudS+ysXA8y+K/8vz1KP7R9z6J4u8dXEbxu3DsH8Yqu/6QXf+676L4J2NWq77WZffnWZ9d/832RRS/qLZR/O06GxvquNbO1FnzS3ee9Z96G9bOl9l49TJbSpVbh6so/nqb9efUdsjG21mT9Z/nm+x+HjRZ7XyvO4/iF1V2/Xf621H87fppFH+nzmqNMH1Lvc1qk/Y6y69SsvhmnfXn1Sei8JL92lLGcD7a7MLxZL7femZWZ3sPqa+1r0Xxr7UXUfzdJsuXVFjKl7HO+kN6/SZbWpfmOotfPM3av6qz/rwLE2zdh/VemF9p/vbhfNeG4/Oz7WEWP9tvfbgK9yarIfu91S6Lb6+z9oxNti3fbLL+0GblWEnnu6EL59Ow3g5vf9kOWXsuw3xP13fzJusP9UH2LiLdC1mNWX1S1dl4MjZhPdBk93OswvVROKA3q5vHt2127TFbWpdhFuZiGz6r8FEN4Vy6qbP7c9lm+6pVuC95ujmI4ku2tCslrK3i+LDvx8K5sYxhbq2z66dzS3udtWcItx7S9oRTRZyQfcny5Sxs0K3j7L3afBEW/6l073xIi/mw/YvsPUd1FV4/zK82nEtLyRKgC8erocueV1xLhrVqFebXNm3OMrw/Ya26d2F+jdtwrXOa1bb1YTYBp7VqunOVrgXjzbqwO/RhvqT1YZxfYX/ehu++dnfSGxpK66twfE6N4XxUrcP5qMriSx/2/33Xk+n9D5/vWGd7M+ne6uw0Ci/x3szdPefLvoXPd9yF81Han8fs3VqVtn+ZfaeS3p9qFc6PaX4NWb6k96cK93LmZ9nz3R7u91uASRmyfcNqFi6W++z641X2IqgK9xmr0+w9+ngre2+RvldINweGRfj5fpq76dy7Sr9a/ZgJ90rTfIznxlVWS9Zh/x8vs72i6ih7jxj353m2Nza8cTeKr1dhrRGvvfhIpfkYrmXHbVZL7lu61mxOsu/G0rVX/9rNv2nv+66Ut28WKwsBAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYLIfgAAAAAAAAAAAAAAAAAJgsh+AAAAAAAAAAAAAAAAAAmCyH4AAAAAAAAAAAAAAAAACYrPajbsCH0ZSxNGW8Uexvm78fXXs1dlH8l7YXUfz9Jrv1/Q1/59d1pcniq2nFp5rKec5v5vx0GcWf3sniL/pFFN9VfRS/GbN8eXtzL4pP23O/PYviF9U2ip+VrD1vNJsoflnPoviPm/kH2XjVz7L4f7z4rij+7vdcRfGp6z6b75oqm4/WfZa/w5iN5++V21H82+39KP5Rc37j2O+bfbzmovmLKoof0qpzzHLrnYPXovj6U1lfbuohik9djeHYvD6IwufNLoo/aLK56/XuZRSfzo0/NMvmxnmV1TL7riVnZ1l/S41NmI9h/EWT3c/zN7PfW2XNKV2X9ed07uqHrD/sDrL4e/Ns7ZjOjbOwtu3C2vMqHJ+HcC3bbMJ8GbMOVG+z68+y0r/08yx+mGUT5OZBeP0ue151l813fZ/1z80ua086f83qrD9fhA/s19cPo/iTOqvlF9V1FF8NWX+u0/wKVX2a71n+bg+z+H6exY/h3tXQh+3ZZPlyucvih/D+nHXZXs5Xyt0o/k6X9f9Pdc+i+GWd1ZNl3G//H5rsebVX2XgVTu+lCsfnNB+HeVg/pwXfEO7NhPm4HcL6oc76z8t1ll/vXmd7G28tsnw5afa7t5Qa66z/1NswAbLpNC0nQ9lv7cOtgbHOGl+Fa4ts17mUIcyVdZPtSx4t1lF86myX5W7VhO+9uvABt2FtcpjtFaXqdVabp/2zDfcq0r2Qfh225zIKL0OXtj+7/ngdjidVttY8q7L+s95m1/9EWAuk+VUfZPlbwuuPXbi5ncaHW8/p2qveZv+BOlyLNOusPe1lFp/mezr+pLX8tsn2EuqjcO2yZ+M2m+GrWTZfj5vs+mOb5UsVxpe4Xgrfm15nz3cM3yV2l+FeXboXEs5H6buFtL6tL/f7XdG+9wbKmD2vOL8uw7VdmI/VLHtg1SLcDL8O2xPOd+n433ThfBfuhcyyV0ElXK7Fv/dVN26z9UhJ57uDrB4er8PNh202X1RpfRuOb1X6bUJYz4dbb2WYh9+hnofvQo8/Rt/y1OleRTYXlX6/382M6zB307korP2rTbgXMs/uZ7UL72c49sftCd878ltI34uEY3m6ths34VwU1qplyPrzuAvn9nTvM907CfO9hKW57Hq1pPk1OWE9UJ1k7ylLOJ7sy8eowgMAAAAAAAAAAAAAAADgVeMQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT5RAcAAAAAAAAAAAAAAAAAJPlEBwAAAAAAAAAAAAAAAAAk+UQHAAAAAAAAAAAAAAAAACT1X7UDfgwfm39Zll0N/sJ/+PDfxFd+2ycR/Evhy6KX419FH+/GaP4RZ092q5qovj1uI3it1nz4/bwzTUfzKL4Xz+8H8X/2J23o/iuyvr/OsyvYczO9w4l66BPdrei+Neaiyj+sl5H8S+Hl1H8ss76w8fN4kkVxde7rP+8XCyi+Lcf3Y3i3zg4i+Kvdll/qKvs9w5jdj/bIRv/h212P7+2ye7n+eKrUfzHyfx5OLmHqiGL3x1ltc/z15ZR/NEiG5u3/X7/rolZm82lVZi7T1ZHUfyXZlnt8JnZB1F8Kdnvbapp/V0f89MwX7Khs1RDdv3tQfYfmL3M7ufqMBubm8NdFD+Gt3MM56LL62xuTPM9nUsfzrK5/W6b1Z6fbLNa8rd12Vq5Djv07CzL97HJrj90YYKFwqVI2S2z2md3GNZKi+z39n0Yv8l+8HadzdfvDPsdz988OI3i07Xmsz6bTx82V1F8s87ypd6EBVYoz8dw/Nxl8buDLF/GcHzYhf2zD/OxhL/3Kox/3mT94WiW1cPPNln//5XqrSi+Xn4xik9VfXZ/uvNNFJ/mS3Od1UvVLttLS+eX7eGe59+wfqvDemy3y66/Duu38zbrPy+6bK/9X1+9HsXfa7N6sjTh3nyd3f9qm81fZQjzZZPlS72+efwwz2qZaszWFkMbzl3tfmvb9O/RXId9ZzfLcuVynd3PZZhb57tsLVul/aHZ815FePk0F6t+v3uB9S6tVdP8CueucChM5/Y+fE0TvlaLx84xXAtut/t9jxvnyw2/F/jG9Q8OovgxnOvKNqzdsquX0qZ7Udnlm7RWDdc6TVY6lz4bzuN3C3V4/XoVvocO5/d9q9owX+L8CufT8L1pCceHdO98TDefh6zDVeF75VSzzq7fh2u19joK3/te7N5Ve25/uvYK68/xKnxgqbT/h/PpeCvbW6o3WcHUXmUTQL9I6/lw73AW1mP73erdvzrr//Us2+saw729ch3myzx7V1aF48nwwdPs+o+yvaK0Xo1Xs+H6cQwL1jq8n93VfuffSRnDvt+Hi82wlkzniv70NIpvbmffcFaLLHdTY5eNbVX8UfV+1xb7fo84OXuu9aqw1ht32dicGs7Po/g6XKuNl9l77uoTb0TxZc9r6/7QN9V852hey76RHg/C+TGsJfvDm9fy/e7mtcm0vg4FAAAAAAAAAAAAAAAAgH+HQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATJZDcAAAAAAAAAAAAAAAAABMlkNwAAAAAAAAAAAAAAAAAEyWQ3AAAAAAAAAAAAAAAAAATFb7UTfgw/iVl58q3W52o9g/eOu/j65dD+O30qQb24bnD4fSR/H9GLa/ysLb0mR/gI/U4oPsAV/cnUfxj9e3o/jvOngaxa/6RRTfVEMU31VZfp00V1F8HbbnsNpE8edj9nzfiKI/fpZPsufVbLLx9vr1bPx8/+I4iq+rrD1H7TqKP9tm+bhss/68GcLSpN5F4We7rP3/an3zjPnR2QfRtZvq1f67CA7fz8bOKq2twvCr17ss/iKb6/o+e17LRZZbYziWb3bZWLLeZrm12mXxsybrD5+YZbPRD8w+H8Uvy83WCP//snx/m/2BsDZP86U7zPrP7jDrD5vb2fX7OvsBwy69QZlxyK7/ss9+7zBk48mvNJ+M4j9x/1kU/6jNfm9X7XctuHg/q7XHJrufYxvGh9ff3sryZf4iu/5umcWv70bhZchK4Xi8GsL7eRXOv0+7bLw9PVpG8T9y+JUoPl47RtGldE+z65ddNl+XNsv3OL/q9Bdnz2tzlOZX1qHHsPn1Nrt+uBVShnA+Oq+y+/lsnq3tXl+cR/FDOKBcjVk9X22z/t9cZfV81YcDaDrgNtnzbV5k89H6zWxvbxbOR0NYb6T1bd9n1w+3Asumztabq3n2HxiOw/pz+/9l789iLknzOzEv1rN9a36ZWZVV1bV0k91sNrfhNIfUcGiKY3hGhEzIkiFDhuZmYBiGLcCGLcC6MmxfGzDgCwsQ4AsDNrwANiyMLXgk2NJIlkYaeoY9JJtLL+zuqq4lq3LPbztrRPjC0xBvVPx+U31Ykcznuf59kXHivP93i/NWzaP8t5avR/m0/y/CdxHV9Sq7fhd+Yen+QzA/qeZZ3zO04Vg0y/Jdm+61hLWSzg3D90brsKlt59lcb95k+S58PkWVvlgL9z3L7PrVxTK7/jbbVy12Wb5eZH3VENZX34ZjYzh2tctwspeujcKxcZVudaWvuePmHHYQ6V54OPeJ6ytUrrO5cFq/RTiXLFfZ/ZRH2dx/SOtrGb5Xm2btoQ67t/IgXNtlU72iDNd2xW7P74LS9pbWVyq9fji+FHXYIV5nDSjdeS7X4XzjIFzLht3tUO95vheOL1U4lX/h/zPu+373G66Nyj2Pj8Uma//xXv48q/d+ln3eLsw3y7BBp93zJvuD5nq/78pGJxxfqtNsr2vYhPO9dbZ3WBweZvlwfE9/izGEvytKVVfZ3k8Z7i1182wC16QbEGOStoV0LpbOJVPh/aT33y+ztlYfZX35sMhe1JRdulcXb75l0u833Wt8yaTts5pn7Scdi/pVuM8e6sOxrrn3apQfJllfnu5VVJtsrbkLv69qm9XvS1ddaf+Tnnl50VXh3tvJcZQvp9laagj3JodFtrdRJONjkH3RtxAAAAAAAAAAAAAAAAAA+AvMITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqv5vG/gs/jN298s5oc3+whnVfZRT6ohyj/puih/UJVRfjNk93NZbKN8PWT3My3bKM/na/FJ1n6u3szq5aBZR/ltn13/qF5F+et+EuW3Qx3lu7BejqqsHmflLsqn9/Oou4ryd+qDKP+imz/Ivq+hyZ5/e561t/Uuy5+vZ1F+udtvf77tsvufN9nzr5qsf6vKLP/B5vaNs7+zuR9d+5enL/Z/i2D6KOv7q202V+onYdt5lI0ty2dZ29+Ec8Nw6lZU4fXLsC0P4Vix67P2+f7FaZT/neadKP/VaVZfvzHvo/y+TT94tt9/oM3af32cjRXt7awem8usvW3DtdqwyPqTog4LMoz326xeLi7nUf4H1VmU/4/ar0b531i8G+VP9jx81R8/zf6gD+u9Cj9AWF/la7ei/NUr4fWzpUJRL7N6LLvs+fTTcPxah9fPbr94+uQwyv9u+UaU/8nFgyj/q7P3ovxbzSLKl+fZ2m5YZfO3Ypc1uPDrKqrZNMq3s6xepgdZe9stsvFuqLNP3GUft6jDr6vchfczZPPhB81xlH/t4DzKf/UwWwuu+uz+43oJ2/+wzPauhnTBEI531elJlG/C+Ul7lNXL9iBsn7NwryX7eotdOMBMw/ra9Nl8+/lhlr87v4zyl2kHtN5k+atlFB+22fWHTdY/7FN19+b7REVRFPVV9uybRTbW9W3WNodwKhxua8djUdFnfcmqyWrl/fY0yu+OswdUFVnbL8L3iENai+ts8jBswuu34T7y1XUUr85Oo3y9yN4DTZ6FY1H4eZtsKlAM2VSp6CfpWBquvVZZPZbzsP0M2VymrLP7KfpwrzSsr2EVzvXC+qrmWf9WhM+nrLP2ULfh2ij83UP6Xm0IP2+X7k1mS52in4d7Ien4mCqz77ecZP1nev0inLv1y3AuGa6l4s97kc21q1unUb5ehu+hJ9nz34Z7IX24Vgt/VhHPP/deL6m0vsK95HStk/bn6V5gH84n05eh9e3sXUf1PFvsd4vTLB++q98eZgVQdeH8JGz+ZXj9F164nuqfZO+a0vlndx5O6J89j+LVIntXkD6fYpaNj7uTbL5a7rL5f32RzbfL8Lck9erlqZchXBvFI284FqVzsfIw+41i90n23i5+77vN3hP0s2wvoZ+Hew/vZZ93OMqeZxm+hxudMnwvnq6tJ+HeWJhP76cKf/fQX2d7dfXpaZQfbmWL634aPs/wvWz8w71QuQnfI+7pPv7chPUVq8J6DPvzeK4USudu5UGWT/vzIfy++qNsrpf+rreb3TzfBb+Xf7F/fQ0AAAAAAAAAAAAAAADAX2gOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWs3nfQOfxX/t4OPi+PBm5/gW1Wyv93Ky5+OE3dDv9fp9Mez1+ny+jn+4ivLnX5pH+feuz6L8P3/796N8H57XnVbbKD8rN1k+vP5BtY7yXVFG+UmZ9Q99eP2XzeTBVZTvjqZRvr1qo/zTZ4so/5XbD6P8pOqi/Kavo3zqpM36q3md1WOqrXY3zn5/80p07Tfr96P8a81hlN+39qMn2R9U4WTpLPu8k4tsLlNfZ/fTnWZ952aV1fpskY1Fm3V2/XZy87ZcFEXRddnz2eyyZcX7V6dR/v/R/KUo/1dnvx3lp2X2PGMfZ31zUYd9bZM9/7q8HeVnz7Kx7uo6u58+u3yxa8O5zC7MN1l/MmzC/iRcej17fhDl/6h5Ncr/Xw9/Psr/62ffj/Kp/nE2vgxD9kDLtL7CfLPI9h4O70+i/PYo66+6Wdj+971UCK9fXWXPP63HR/1RlP97i69E+b9++EdR/otldv/9w0dRfujCvaV0Lyq8/3KXzU+aZ9dRvj3O6qUJ54eb46xBV9l0rxi6sGDarD+swut3u2zA/oPm9Sj/cycfRfmj2TLKd588iPKpoQ8H+H3XVzh+1RfZfKM+y8a79jqcX4XLx3S8q7OtuiLYGvgn+ewDPKtPo/zuNJsv9eED7dLxJW3/qbRewvlh5ElWW+VptrdRb7LPWm2z77YJ234Xrr0m2/TZZ9cf6mxsvzrM+qqLWfaADp9kY1fal8dtP5XWyirbt02Vk+z7LU+ysau7nbWHOmzPQ5215/YqXMuGzaGfZO1tNQ3zy2wtm7a37uIiu36aT+1zbCmKottmk40qrZc2zWd7e034fIYme+/Vhe0zfVewe5bV7/Y0K8ih3PNcqc/e8/WXl3u6kX9Ke66vYR1OgOJ/IOzPZ1n/Wc7TvY1wPnnD31v9SJk1t6IL9/6LfddLKpyP9ctsryKW1kuZ7g2n89WsQXTh3n8dvvuqNtleb1Fk9ZXO99YH4Vo8fFWZ3s/opPW1CX8XMuy5/9+z/jrbCy8eZe2hPHgjynfzrB67cD1S3gp/d3WetoeRjS+J9N7DvrlfZmv9MpxbDeF7oH0bzsO146t3ovgu/A1hPw3fg34x+x1A891s76qaZ3PVPe9c7V28r52uLcLfyZWzbO+qOsnmPulafwjbQ2pI238dzlWn4e+oLrPvt9yMq3/buz2PpWUTvnvZ8+/qylnWn5dH2bug/jjbG0v7k3St0M3C5xP+8C3Zq+6Ddan/ExwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1XzeN/BZLKpJsahejnN8dbnfz1nv9ep83qrlLsr/wt/8VpT/n73x70T5SdlH+a4oo/ysHKL8NovHp4ePquz+b1XzKF+XkyjPn+G9D6N4e/d2lJ89zb7fYZ21uFuTZZQ/m1xF+UW1ifJt2UX5OuwfptU2u36RFfxJffPnc1Rnz/5iyPqG16L0/u3e/yjKV/NZlm+y2cn8YXb92ZNplC+/mn2/szYbe7s+aw93jrLa3XTh82yz2ppUWa1P6iz/4eo0yv/bl69E+f/m0dMon+ouLvZ6/WqejS3V9UGUnz3I6mV+J2tvy9eyvr/cZfUytOFkr8uuHw4tRbHOnk+/y+YCDx4dR/n/c//1KP8riz+J8n9tlt1/v1pF+VT6dZXTrP1XF9dRfvo4u/7scdh+muz5D+HaZXeY5fuwHsOpZHz/w3m2lvr28o0o/z8t/sUo/3/7yr8d5fddL/s27LL5RnOezX8mT7P54fQorK82q6/dImyf4WbdUO93/Ir7h6tFlP/fnf9qlH/r1x9H+WGXzc9HZ8g6xO78PMo3t29F+fYiq9/tQVYv9SRrb80qa9B9+lYkrpcs3yyzgv/m6iej/O5XfhDlh93HUf5l0odru3qV1Uq1CddG6b522hUO2T9QZx+3aJfZ9ScXWd9wvcrWyhe/ks2tDsPnk/blL5vuSbY3U5+dRvnmKiuAocoGi2YI33uFY93kKrt+PpnMPm/5c9naN5bW14uuz/qHfpXlh0dZ+6/DvfyhDNcKi6x9ln3WHtqwXtrLbPI2fZjd//C1/e4Nx162+tqz/jrrD5tV9p61XmYTrPIk2+uqN1l72GVL/aIM99rXX1pn/8C+vej18oLPV4eLyyhfP8kaaDPL5j/r0yy/y4bTYnOS1cvqbvb9Zm9O/xy84O1zdLrs+ZThu6z6NFtfr29lBbCbZe3/8o02u/785td/5d+LLv3iC9ci4dJ378pmXD9/H8L3Rl34Hn11ltVWe/JOlJ892PNaf9/2PLak7X8I95LLZfa7tDJ8T1wdZr8TKrtwr+vsMMrvDrK+PH0vW23TDiv8HeHf/+Pw+nyaYZutlcs6bA+3TqN8fzfL747C38Vusv4nrZe0/afvmnYH2fg7fXLztX69u3n25ThBBgAAAAAAAAAAAAAAAMALySE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEar+bxv4LP4k+1Vcbi92Tm+f7h6K7r2D9Z3o/xFN4vyZ81VlP/C5EmUf7N9nOXryyh/t86azrycRPm6dD7zx+nf+D/9H6P87y3fjvL/5sO/HuWfbBZR/qDZRPnXZ8+i/BenD6P8Vyf3o/xBtYryfTFE+TpK82c5+rtZfzWpnkX5crOO8u1mGuXfvTyL8lez7PP+0sl7Uf4vz9+N8l9qz6P8G3XWn4xrfDn4vG/gM/ng//LVKD9puijfDWWUL4rrKH0weR7lv3LrQZT/587+MMr/zOSjKP96s4vyt6t5lB9Xrbz4vve/+GeifHeQ1UvRhnOHRdZ+jg6XUf7nXvlBlP+X7/yjKP/VSTZ3Owub80mVre3a8mWbje23f/jkf/CrUX51O7v+9riP8v3pNsofnGRz/6+9kvX//8N7/0mUf7t5GuXv1ll/sijbKD8ts72El288yubm1//Sr0T5xz+T9VebW1m9dLfC8eUs2xv72t1Povx/4+7fifJfnWTXP6uy8XpRZc9/Ee6lvXzjUeb/8Dd/K8o/+MXs+a/uhuPLnWx8OTrN1js/dSdbv/wzp9+M8r+6+G6Uf73J5pNHYf+fji/Go0/3N37tb0f5T34l25u5fCfrP6vb2V7a2Uk2vtw7vLhx9kuHj6Jr/5XDvxfl072BV+usL0nHollYK1W4VqiKdO9nv9Ja/82v/60o/+F/+STKX34xm1u1t7JauX2avRe8Ncv68rNpNna9MX8W5b9+8O9H+a+02dh4FtbXifr6VL/18/9qlH/09VtR/skvZGvZ6pVs7b5YZPV1OMvyizZrb9M66x9OJ1n9/tXTb0T5n5u9H+XT3yWcVvudG45tLfVbxdej/PBXfyHKf/Ir2bupy7fDtc5R1j7LJqvfIYsXVZvdf9OGa/1Z9juGX7qX1ctv3vqPo/zPTbPfMaR75204X6rD8Sgd7/6l4pez68+yvf/tX/1alL98PdtLWJ9knzf8WVqxy14NFn12+0U/yQpyd5DV47DI6vGNL2S/q/uNe78T5X/98FtR/o0m+93Dosw+7yyc7v3tf+PXsj8I1afZeqd45U4UX3/hNMrvFtn4XvbhABPGu3lW77tp9gXvwgaxvpXlr1/LPnD7Tjbf++vvZHuNPznP1nevtzd/V/a//Tez30zuXbjWrM9Oo3x5mM0Nhzaba5fbbG5YhHP/oQ4nM2XW9vtJ9nm7SXY/13ey61+8k93/8DPZ3szPvpa9J7v4L0Xx8QnbQ9lk78XLtH2G7b/osrlD/zybmxTnN983L4qiqJ5kv0uYHYT9z0E2ud3dOYzyF+9k11/9Yva7llf+1/9plH/hpfVVZ+Ndv8723vr7H0f5IsynO7HhVDI/IxA+/1TWGxbZZs5w833Sl+vtLQAAAAAAAAAAAAAAAAAvFIfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit5vO+gc/ive1JcbCtb5Sdldvo2reaqyi/6tsovx1udt8/8mR3GOXTz3u7Wkb57dBH+bbsonwxZPG6dJ7z01z10yh/WK+i/Gl7HeWrMms/VZk1iLQen3WLKH/ez6L8ZkjrK6uXqiijvHr5dE3YPn/p5N0o/3sXb0b5RbOJ8pMq7G9Dn2yPo/zvlm9F+UX13Sh/VGb91WGV9YdtmY3XL5My63qKn7rzIMqfb7K+drnL+v6uz/rCd89vR/n/d/m1KN+dZg+0Kj/I8kU2Fp1U2fNXK58uHFqK+SvZ3Krvs/bTNNkNbXbZ95vWy7/b/HyUL05/P4p/dfIwu36RjS1pvZi7fbpwqVzsFtlaYWjCxWZos8k+wIProyj/7z7/uSj/myffjPJ1+STKF1W295CahttWL1u97OZZfzINv94uvH63y/KrVTZ/++jyJMr/g/lPRPn2aBflq/ZRlC+KbK1Wh/WVji+pF72++jp7PkfvZ/OlbpY9n9UiGy+Ws6xePr7K1u5/3L4W5c+ayyjfhuuXts72Qqo97z2n49GLrl5nz/PWd7L+czfPnueymUT5Z9X+9p7Tfbrfr7J9wKPwPc1Rle211Ol7nbRY0sXvyP47nX24L18/Oo/y9/6/WVv+YD6P8qvwcT4L9wbq8D1NE9diuO9cvB3lj4+ytX5bPovyi7D977u+8mrcbz1WD59F+VvfyfZa+klWL0+b7D3BMmzP0zYbG5932dxw1oRjb7gX/u3re1E+Hb8Optl4OivHNTes05cjqfD67f2nUf70e1n73x5mc7dVm7XnYRr2WOF4NFTZ89yFm5PrOns+f/Akq6/XZ8+i/BtN1h6Oyqx+0xGmD/cq0t+FpIZd1n82z9ZRfnKctYfNcfZ80va8b2l3W4cT1i6cntx/mO0d/v78jSj/ldn9KH9QZe2nq7Lxri+y9rxv/WX2O8vq1btRvhyy/qFvs3pZH2f9f9WF66PVfvu3dDmedrfpz5B2N/w974+su6z/TH93+yIr6+yzlm22jzwssrXXEM71+ipbqxXhPn65yfrCcpsOXuHYG87l4620sHbbNvu8R202dl1E6REKx5Yi3FstJ1l9FZOsfssm6zvTuXCR5sP+qmjCtWP4nmyo97vXtT3Y6+VffGl9he+hy0nYfrZhe+73+xvsWLoXNbb3+uG7l5sa2acEAAAAAAAAAAAAAAAAgP+cQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjFbzed/AZ/G97avFfHOzj1AXfXTtg2od5e+0F1F+3bdRfjVkX9Xj7jDKP+ufRfmT6jrKt0MX5YsyixdDFq/Ll+v85/c3r0T5tH3Oqm2UT3uefkgbROa6m0b5j3cnUf6N5jzKH1VZvdRpwaiXT3W9m0T5R9ujKH/WXkX5g3oT5ZddVr9VmTWItN7bMmvPz7pFlF/VT6N8NjoWRTfcfP7wstVK12Wfd7XL2uaXDh9H+Qfr7Nvd9dn9p7WS+sbVO1F+G84Nf3X+/Sg/K8OxPVSFY5f6+nR3Ty6j/HKbtZ8qnGqsdtn1v3t+N8pf7n4pyv/zZ9+M8l+b3o/ydZGtHduwPR+Wsyj/oquyqU+RLkX6V7M/KPusAMqwXi7W2dzzW89fjfLTahflq6M/jPLbcK3zap09//WQ3f+tOptLJnO9ohjfeDSktxO2z2odtv9lHeW3Tdb+H7fZ9/vH03tRPt17uDh8L8r/pekHUb4O11JVkdVLHXZY/ZDNh9P53t6F9RJ2n8XsYZbvpmG9tNne1eM2az/vNmdRvq2+FOW7sMNaTT+K8vfqbK/61Tprn7sie55dWC/7ltZ72j4n59n4fvxu1h6GKltfrPt5lH8aPJ55m33WeTj3+Z3qi1F+Eo4VbzfZPloXTs6Pwu+qDYeKsdXWMMn2uurL7Hm+/vezWvngN7K51Spcaz4KH38Xzq3W4V7Cps/yi3CffXH4rSh/VGV7M+m++TZ9rxPOxar0xdGeNU+y9yinf5KNXX04t3r2taxenoR7z3WdrU2vw7neRZ193qbK7idtz8f1KsqfVh9H+Tpc6/dh+4/3ttO1Ubj3MFwto/z8fjZ3PjkK36yVWT2usp8xFMMs+36HcG8v/bp2u+z72nXZ8/nD89ei/BuTbL53Uv1JlD8K+4c6rK+4XkLDLtw7+eBBlJ/NX4/y24Ns7bKbZ89nyJpbrNrt94ddQ/hyqjvI6vG9p7ei/PdOs735dLzrimw+uS3Dlyl7ltZXeZ593ursIMrX67QA0r2KrH1uDsP5+S6rl3B5FL+Lq6+z+19dZOvl59tsvr0NO7jNvjvEPRq68De39X4/a3eYrS2GJnzPFLb97ji7n3hq3qVjV3b9NJ/+bKmtw/bzkimbrPMs59ncrZhm7bOcZnt7RZ01oHKW1ktaMOFcdZqNFeERkPi9YFqPu+y19cunCsejcC+nOjzOrt+H/fk6+x1Y2p/E43v4bmTYZJO9dC4ff797Mq5f7wAAAAAAAAAAAAAAAADAn+IQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1XzeN/BZfLA+K6Zte6NsW3bRtV+bPIvyi2qz1/x2qKN8P5RR/lm/iPJn/SrK18Uuys/KPsov0uOcQxavyxf7vOij7VGUX3Y3q6sfudVeR/mTJstv+6yrWg9ZPq6v8Pzws34a5Rdd9nzOstsvZln38NLVS19kD+jh5jDKt2H/dtwso3xTZePdrs8a0DbM90PWHq6HrF4ehv1DW2bj16K8eX843fO0amy11XVZrVRh2z/fZW3hK4cPwuvPovxFmJ/X2yj/2uR5lD+qs77hYsjG9i6cu6X6cHDph6xva8twcNyzoc4+726T3f+0yb6v1w+z9vZ4dRDlm7DeT6ZZe059e/ValO/CuV49/SDKv15nz+e6z9aOafuvwrnPvsejzXGWD6caxXCdjdd3vvAsyp9fZePFapP1z8+b7Prfu7wT5RfVl6P829NHUf5Lk2y8frO+jPJFka2lpmU4lyyy+tr3eNQ34eIuXQum+XC8KzZZAS+vsvnhJ9NsL+S4zdYKf1y/HuXbMhuv7zXZeP3lJquXtky/4EwdNqC4Hkc232uvs/bfXGXPZ2iy53NdzqP8x1V2/1U4n2/CvfmLPhvv/vL83Sjfllm9HIXz2yqsr+2QXT9LF0XXZ99XmXbnB1n7nFyEe/8fZ8+zn2Tjy7a4eb18FF25KLZd1ld14Xud9D3TZpbdzzvtkyi/CPuSbsjGxrRWUtshbPxhfqjDteYq6ztf+Ub2fB79fLYWWYVTh0e7rL1dLyZRfhcuBr9V3ovyh3U2NyzCsehL4dxtlo4tUbooiiJrb2m9DKt1lC922Xvr9ln2fZ18P2s//Q1/j/AjFz+RfV/dNKvfbpH1n+twcH82zcaX75V3o3y6d56upb7WZnsV6YvQ9D1rVl1FUVbhPxDmq2X2/A8+ytrDbpqt3YcqfE95GNZvWF9DE+7lL7Lnf9Vk9/N4mu3Nv7vK9gLfah9H+Xv1eZSfhmvBfSvDtXUZzt+ap9ne5HyR3c9ums2X0s29LivfeO04zMP+Kut+im6V9SerdTa+/+F59q7plTarl9SqDOdX+xbOV4errF6a82y+14fr3/Y63EuIf6iY2YX1km4WleFeUbXN7qcM6zF9F319mPWHqyHtP0ekz8bStLaK4+zZl9tw7XiYDS5lFw4u6dw5bPvdIvyNXBvWSjqWhh93CP8g/U3gi27osvZcTbK5Q7nI3nMM4fWLKv2hxH73PtP76Q/CyWcqHBuHsD/pZuHzecmUddaflGn7T99z12H/vMjes6bKIuxPZll/0j99FuWHXfg70XB+kn1f5Y236sb1a2oAAAAAAAAAAAAAAAAA+FMcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtJrP+wY+i1XXFn3X3ii7K7Pzfs93iyj/hcnjKJ+ahPffll2Uv+qnUf793UmUf1Kto/xpmL9bbKL8rWoW5esoPT5PtgdRfnnDuvqRLjxPe6e9jPIn9TLKH0XpoqjKPsqn9fW4O4zyqYsha//36ix/Uk2ifDFk8Trs3/ZtUu2i/K7PeojHYT02i6y9Lars+120WX7VZ/3DdthvD/qwy55nP1xH+deb7Y2zdVlG156W2bMcm9ns5s+mKIpi02fTzutd1pl85/KVKP/KNBuL7kyy/L71Q9Z3Puuyue1vZ11P8bXJ0yj/aj3P/oEXXNh1FtNZNhatdll9PV9nz/+ozebmt6ZZXzuvs/6kCediZ81VlL/XPIvyF304V6qz59mW2Vi6HbLnk45fL/pcL7XcZAW8mGVzq6rK1iLTOvt+qzL7wj5aZ2v9t6ePonw6l7yusvZfh+1/Fa6l0npJ11LNnncfwqVLUWbDUVGts+fTHWT/wLAL9/Yus72fH9RnUX5aZ/f/anse5dN6mRRZ+5+FX/Am3Ps5KrPxfVZm9XhWZw16qML2Gc7fwul50WbTk6LLmnNRXWbzw8twfv4gHb+arL2l88NvFO9E+dniu1F+G+5Vb8IGsQ37/1W415LuzdRX4fg4y66/W2Ttc3KRzWemT7PnP9Q3z2+LsFbCuXMT1lYdzvXStvBwdxzli/m7UXwWru2uw72lrsj6/qshXNuFc8Nqk33e9XF2P+1Vdv2T74VrwXAvc/Vqdv3zdTi2R+miaKvs+fxh/UaUn4Vzn+304yh/r872JqvwCV0PWX2twnwRzsXKy2xvqTzIJktVuPd89H7WfoZwLXt9Lxu7+k041rXZ+PK4Dd9jhePXJ+tsfPmjZr/1mObrsL5WQ9Z/Dl24OR9K66s+yMajgwfpWi3rT5bh+NJP0rlq9v1226weV+H87fkk69/evb4d5e+0WX09brPfPRyEa6kuXVy/4NrLrP85ej+7/lBn9dtNwr2T8FVf+gPFIdxr7Nus3jfT7Pk8Wmbt/8E2G+/S8WhVvdi/NUiV16so35yHew/TrP30Tdg+w3yVLnjC5V0fXj9cThX1Kruhy3X2u9X0d1cnTfa7w5dJuczG6vIg+66a66zx9G02F9jNsny9ydYufbvfWh/C2m2yrrDY9eFctXuhjxPkhnDu//hJlG8m4V7jQTi56rL2XAT74EVRFEM4tyrC2yl32R9082zu00+yz5u+F+wOwg/8ogv3wtO9jSF8L5WuHMs269/KWbYWH8L+pJxl42lRZZ+4PMzmSvUi+13pcJ3tLfVXwYvx4Fm+XDsIAAAAAAAAAAAAAAAAALxQHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLSaz/sGPotl1xZdN7lR9nByEV27rXb/NLd0Y6f1dZTvw/OK590syq/6eZTfDlnTWQ3LMN9G+aK4jNKLchvlq6KM8nU5rvOl276O8le7m9XVj5y02fe7HbL7SfMnYX2l7e2qn+41n97P7Tpr/9uwHtsmq5dF2PzrkZ3Hvo7b/yrK90PYnxR9lN+3kyarr0W1jvKrPmv/3ZC1n7bsovzV9ub38+WwLzwJm/60TMfG/drtsr65Kocov+r2+3kflQdR/qTNvrC7k6xvTtv+JhwbP96dRPk32qdR/pMbzsl/ZFJmfeetKpvbdkPWd+597lZl7b/bZfez2WVz82VYj5twLrloNlG+KrL7qeqwPwnXLh/vTqN8Ohf7dja1Kr4UzjVeqbP+bT2EN7Rn4dAertSKuB4366z9lLPs+sfTrF7qKuvfZnX2/R7W2dztye4wyqd7IRd9ODevsvlYXWYtKB0tuiFrD03YoMPhN/8A4f2UXfgH63A+eRju5YT1vt5m9f5wlbX/d9vbUb6pbkX5gyrrT1JvNNn88PmQ7YVch2u1gyocv7LmMDr1Oquv3VH4gVdZPZ5fZHvJ9+v9jl/pXstvFz8Z5VNtmb1byPfCM+ne6lBnzzN8/EW1y9pnHw6Qk+fh+mty8+sP4dpxW2dr2U/CtU46N2zKLL8Ix5b/6OqnonxaK9fpPnu419KHk59ymc2di3Du2Syzyd7mOPu87XXW3hYfpYNpNrdan2XP56LL1r4f9Fn9DmHn9ur0PMqn7fndcC3VhZP/y/C98kWYHzbZ2F5OsvZfbrO5ZHOV9T/dNHueB/fT9zrZ9ddnWb6bZe15VWTf78NwPDqcZP3n3fB3Hr9XvB3l0/dYaf0+2mZrx1hYX8PJUZQvu3C+cZ3V4/xpuhkY7p0fh+P7LtwryppDsQ3f9V1Os3/g/vw4yj85yMbT63CvLt37T68fS98F1dlaKlWus3qp2/BdzcPs+svb2fXDV03R2qsoiiJtDu1ldv3uIGsPT6+zvZAPltneXvq7rkW9373AWLgXXoT9W3r9apmNj+n8cNKGe3XzrL2FzSHeO0m3VsOfCRVV9tOE4vwqm38+Xmfj1zT6HfC43pumewnDOtyruMy+3PIo6wvTkbTswlqZ7Pd3HuFri3juU2/C/DJrD5fh3tLzTfb9jusXn0VcL/vWX15F+fIge/6xZr97Lf0inLzFWyfhWBfOtZtVVo/DPOwgXjb9fp9PPN6Fc8kyXCsX82xuO1RZD1puwzNNp9neQLkO1xa78H6usv7wpkY3DgEAAAAAAAAAAAAAAADAjzgEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoNZ/3DXwWm6Euhr6+UfZOexlde1Gto/xBtYnys3Ib5Sdlt9frd0W51+vXxRDl0+d/UmXPZ1rOo3xdvtjnRdc3rJMfqcr0+8raf5qvyj7Kz6qsfa66NsqnDsL2vOqz+3lWHET5NuxPnvTp97WL8k2Rtc991+OsztrPut/vUNpUWfvfDtnzTPNdlz3/Wdgezvusf16H9ZKOd7frm88fHnZZrU/DZ1OF/+2Ctsy+21TbZH1JE/Y9aV+4Dce6V2cXUb4Nx6JlOLZsq7R2s75nNWT383CXfV8XVVa7bfkoyk/LcK5RTqL8fqulKMKupyjCuVgZ5rd91p+sdll76xfZB+7DB7QdsvvfhmP1RTeL8nWR9Q9t2P8/jseXZZSflePaFgiXdkW4NC2KLi3IzGaTPc/zImtvi+Ns/NqE7X/ZZ/1nahPOPVNPws97WmX1eBKO133YP6TC7rAIu59YOF0qyrAe+024tzEL997C+W0qXbu8MnkS5R93h1E+XQumextnwVqqKIriKNzLSZVDNl9Kx6O09aQfN62v5iqcXzVZfthlHdDVKhtfHi6z9nzSrqJ8ujc2DceLdK+oC9f7R3X2eV9pz6N8tco+b73NGugu7H+G/U7fiiaYPvfTsFauwrVXM43yn9RHUb4PH2aaPwpr8WqXfd6Hq6xveL7J5tq3Z1dRflhln7dssrZfbtPRJZtrhFtpRZN93GKaTWWKIdzL3PZZ+7xusvbwYZQuir54J8p/4eBZlJ+H7y0ud9nY+2CZ9ScXm6x+j7cfRfkh3JuM9dncsF5nY13TZu1z/jC7n3Rw3B6Hg2l4O9dNtjf8bnkW5ZtwMnx3lq1F2nDy/yAcj56uF1G+Kd6P8sMmfI+7yfqTapXNbZsya2/dJHzvmO6FhHvh6V5Fmi/C99ybNhu/HrRZe/5G82aUT9+jz+psbbHq0r3qh1F62Gb1ks73ikX2faXqcK3WhOuRaTh+bRfZ9atdNsDswvleuvXcnGd/sLqdzbe/f3E7yj9cZ+NLlQ7YxSdhPhT2/0UfzveqcAAI55PVer/1lbbP9E1KF9ZvlY5f4eNvL7Lrr8PfIX14eRLls98F3o+uvXfhvnZci7us7ZfLbCwtw9rq72R9YXOZbrSHY0sVPs9t2jdnNptwrh3O5R9dZr9BfSVK/zlI6yV871sM2dp0WGa/2yifZ2vZ4jTbyynCtWDZZZ+3CsfqfhauNZ9lz7M7yvau4nrf8+9ORmff41F4/SEcv+L8NnxP9sqd7Pon2XjXHWVrzbLb73hUTPZ75uKmXuyTPQAAAAAAAAAAAAAAAAD8heYQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1XzeN/BZnDSrYtJ2N8qeNZfRtc/qLD8rt1m+yvLH5TrKF8UySndFGeXbss/yRZb/UttG+Wl5GOVfNsdN1n62Q9Y+b7VXUT7Vljer8x9Z9Vn7eaN9GuW7ITs/fFRl9TgJP28q7U+Oqqx/mJXZ0FKX4zqPPan3+/wXTVZfddh/9kUd5bd9lq/KIcpf95Mof1Rn9XIQ929Z+3zWHdz8XspNdO0nXfZZizq7/kk5z64f2nVZ7TZV1pYPq+y7fby6+XdVFEXRh3OfR5vs+m/MnkX5XZ89z0+2J1E+lfY9p8V1lP94dxTlD8psrL4T1sthMY3y8djVZe1tCNtDHdbXNBzrzrdZ33m+mUX5apKNLZNqF+Uvu/T7zZ5nOrashmyumq41J11Wj3eyqUBxWIZ/sG9hOZa7rB77sB6rsP/cbLL2s9xm7eeyztr/vM7a2/1NNh4977L5yXaWPZ/b4V7OUfs4yqeqPf+3p+pwqyjsropw66oIm39RpEuvbVa/61VWL90smz+su+yBPlhne1fT+AvIvD15FOXT/u0oHL9Ow3LZ905COB3Ir99l858ynE+mW0vVMnui3Tyc3w5ZftNl843H60WUn4bzybQe072TVybnUf6szvZib4fvRopt9nzKbVYw9Tp7Pn2b5XdhvSRfb72KLl10k3Duuc7a/vI623d73mRrte8Xt6P87VnWNl+ZZW3z1jRb66R7P7cm2V7d9ZDNtYsuq5Wyz9p+s8w6/6EJ22dYi0249Tk5D8eWOstv63DtVWf19UmVzfUu1ln7OZiEc9Vd9nnTvcnNLuuvjnbp2JJ93vIqa3DVIvt+m6vs/vuwvtpwcjs8SWfD2f2ks+2hydrbVZmNR98rs/Ho4Tx8VxDOVVebbK2Z5t8q3o/yQ1hfw2X4Xr8NNxMmWb5ZhYuXMlwbhWu7Mnz3VaVrtT4cf5usv71usrXR/SZ7/lX4LqKuwvfK66x/fqN4GOXT9hOvja6zBUM5zT5vP83aQx2u1dqLsD3ssu93O8/qK93bKMP+vJuG/f+zbP52vzyO8o8nYXuL0kVxr/gk/Is968IveJ3ND4s26w+rdfb86yZsz+H6rpum9RLu7YXjY1heRX2Q/cFuFe61P8rq6/n85u+m3izuR9feu3TuM8nGlvI4W8sOQ9aWizr8XdGz8DfPB9nnLcLfQDaX4T7mJHyPHu4jN9nWWFGE78WfP8/6zlei9Aj12VhUhmvfND9cZ19wFc4lY+Fas5hma9/qMnvRPcyzz1tfZNdvVuHvLMO13UsnHS+qsP8M6ze9/hDuTXafPIjy1SpbO1a3st/lDAfZ3lu/CH9Xt83Gi30Z18kDAAAAAAAAAAAAAAAAAPhTHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLSaz/sGPouDel1M6/5G2bbsomvPym2Wr7L8cbmO8j/ZDlG+Cs83tmUdXj9rOnXpvOXnadm1Uf60vY7yaX3VRdae912Pd+vzKJ9Kn8+kuFm/9iN36uzzvlYvonxdTqP8i24ePs9JtYvydZm1/y7uz7P2tu6z/vyN6bMof9ZcRvkqbP+n9VWUv11l+athEuUT2SfNdUP2L6Rj9WyS1cqmy9ra64vnUf56l31X6dh40i6j/GWX9Z33ptlYVJfZ91uF+bvNRZS/6rPnfz1kz+fjLhu7pmU2l6mrTZQ/LGdRPnz8Rbfb79y5DMeiaZuNdf1QRvlnm3l2/SK7fjr2tlU2lj7fZfe/mGVrwW+tX4/yq8nDKD8ts/527/WSPf6iWmftYaiz9lA32Q0N2eWL+oZ7Gj/ShfV1tc3650WT5aviIMtPswf0cHcU5Z+F48VRlY3vB2F+VmXznz5cK4dLkaLahtffZu0tHe9iYfvvN9le13KTzQ+bOtwLCR/Qw/owylfheJdKx6+jKpyvhuN72tzKXfZ8yj4cL7LhsejbsL7C8bHcZdevwufTrbP56m6733p83mTzsUlYv2eTbH1x2mT5N9snUf6ozsaj0yq7n3RCU19n+wP9NGsP3TRtz1E8Gh+rTXYvzTLLd/P9jnWbXTY3WW7DWqyyWjxpV1F+22ef9/Y02we8O8n2Qj7YZH1hOckaZ7nN+qpyF+4FrsN8WIt9E9bLVdb3pNcfmuz72jZZ+78O15pDOLdN93L2ff1JulYO51bDKpt7lmG+usz6n/40W2s2y/D5VNn31Vbh88wuXxRlWF/h/W/qbDy6KrPxZb3K6nc2zybz6eOswrVROhcbtuHkZ5PN3cpuv4v9ap2urdO9inAt2KVrx2x+Eu9thGvHfpbdz7NH2d5DPc/a29Cn41EUz4X11S+z8aKah3vhYf2mS7uiyPZ60x8QpvVSbdK9z3C+3Wf5bpI1uO1FVl/rIRy/2v32t/f2evXckI5HR+G70z57nun6q1qG42+o2mT3082yCq62+62v3WVW783DbP6Wft5Vvb/f/exd+DueYZntG5YH2Vqn3GVrr6Hd78/Tq1XWlwxt+BvpdC4Z5qsu+34nV+FvCJ9kz78Mf9f1wquy9pDubRThWqo6zN67D+twLVuHY2k4ty3StWkVjkXrrN6LXfib7Yvs+5o8fsnqZd/C37mW7Z7H9jrsH7ZZPQ7pWnOW/k4xXPsusuun43vZ3DxfDkNR3LA7cTIJAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wo+7xv4LKpyKKpyuFH2zfZxdO1J0UX5k2od5b/SzqL8LryfadlG+VQ39HvN16XzmT9O2yF7nodN1p7vNhdR/iCsl6rI2s+kzOrlS811lG/LMsqvhpv1Uz9SR+mieK05DP+CT3P/+jjKN1XWPn/y6GGUb8P2fFSvovyqz8aLabWN8pshm2pMyl2Un5XZ/czC6yfj+5tN1tdOy3mUb8u0d9ivy+tsLvNxndVKU2Vt/9VZNhat+6xt1jecc/7IpMra2uNN1pdvm2WUf2uazYW3Q9beTutsLE1d9Fm9PO+zuUY6d5iHc9twKlYMV1n7vDyaRvnD402Un9bZ80mlY+mm229/mI6NJ3VWj2l9deF/u+bj3WmUT8fSSZt93nbIrp8Ky7dozrPnv11k7eHwNOsPd7vsfnZh+9+G49f5Jhvf+yFbGx2Ea80Hm2xuvqiz/u27m3tR/rR6L8oXRXY/h+FeTpmuNdfZ99WH3W29yq7fzcP8JPu8ZZXlt9vsA19VkyjfhuPdeZ3Nf1LpeFSV2f2n48uX26dR/qDK2k+9DudvdXb99L81N4T332XTvaLPmmfRZeVSlLvw/rfZ81musw8wabIJQVtl9ZWOd0dNtjfzcJeNd0fh/PMgrMdyk+WHg2z+UG3C/YFl+C5imrW3vrn59xtONeJarJfhWD0Pa+s6u6EynEuma7tPVkdR/u7sMsrfmWT5W+1VlC/L0yg/bLIGVD3IxsZmOI3yRbg32bTpXHK/+fC1TtFP0rE3q6+uyeby67BeZm2213g6z8aKXR9+3jCfGsK1Tn+R1Xs1yyZXTRWOLbusvx3C945FOlVN56rhWjAZS///+ex+dmW2V7pN57bh2rEO33X0ffyFZcK96n4dvqe/yMbHqs2+r6ELf7LUh3sD4fXLcHGU7k2W4cuCoQ77n3C824bvcbtwLVjOsgdUtll73rehC7/gsL7StVeqbMO9n7S+NmF7DvcOq014/2G992F97RbhfCn8vLvD8HnueXiJhfO3+PLheqpssvbTT8P1cp/1V9Uym88X4fqo2mT9VT8J62sbju91ll8/DN+dzsL5Z/huYVT69D19+JvhtHbDtUu5DvcZw7lk2hUOk+z61Socq8O1YxH2JdPwvcL8frhvG3ZVL7xwLVWGez9F+H31z7PfvVUn2d5q/P9MCvuHchVunqdrx3CzotxmDXryLJvLLz7c7xmNl07Y3oZt2N5SVdjeptleYzq3HcK9z2Id/u7k+XmWXyyi/L44aQQAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoNZ/3DXwWX5o9KOazm32EfsjO+3191kX5qphF+dS0bKP8etju9fp16fzki6QuhyhfFVm+G8ooPyuz9lkVfZT/6uRplG/L7P7v1AdRPq1HPl+Pr7Pv92x+HeWn1S7K12XW/q/7SZRvy2y8u785jfKvTZ5F+dRFP4/ybzbnUf7t5ubPMx1LX3Sbq6ytPa+yseVgsonyqT4cu9J8FY698zobK57tFlH+pFlG+dQ77aMoPyuzvvAsfD5pNU7LOvyLTL3M2k9XZ/nLZ1lf+KTJnv/RNKvH623WP2z7cO0V1tduyL7fw2Yd5etFNlbfaS+i/HUXtuiwOT/rs/7kcbeK8m0Rzv3D7r8PdzWqrLkVw8OsPV9mly8mi+wDLzdZeyjDenmyzNpDF+61NFVWL224N7Oos+f5cHcU5f9wcy/K/8zk4yhfheNduLQo0u6kWYX97TobvyZPs/aTzg67Jmtvu81+5wPPw3y611KFa8d0rzT1Zvskym/bZ/u5kR/JHmcRbo0V9TrcS2uzfHMVxYsh3OsawvlnPw3nt8tswA67k7i+0vVdPN6F9Tirsv7/7cnDKB8L20+q2oQTsoOs/TTLsD+sb/79pl1n32TPsp6FtXiZ3VBXZc8yXMrGc8+DNhvdt302Vq/DxcJRla11hi5ry+UkXdtln7dcZ5PDKs5n7a2t0gaUXT+ux0nY94f5bdCXFEVRbKtwbzVKF0XXZ/d/PMv2Qo6nWb1sh6xv3rtdWL/L7PmkM+0mnIuVQzhZHbL+cEjrMVxKDWn/ED7RXZl93vIgG48OZuFe6XrP747C9jBsw82Eddb+y/Nwd+woey9b77L+pOzSfNh+uuz5l+F8Jl7bhfmyy/K7bZgPy73b895MLHx3MYTtrbjI6qVss/4k3vlpsuffT9LN+TAerh2rsB6H8N3+EM731rfC+g2fz+5wZPOr0LDJxtNyF45fffZ8qqvsXfrQhuNF2H6KKpyPhf1/Wi/pXukknN/e+pPsH7i8l/VXu8V+97pGJWw7Rbi3UcymWT5du6T3E6qus75nSJ9nuDeWqq+yfeTX//3sN43XXzyO8i+bMu3759mZgmEZ7k2G+WKS7UUNV1n7qQ6ztV069yxX4ZvibfjefZXNNe78fvZ8eMHseS+zDOuxO89+81wtst/99NdZe27C61e3z26e7TdF8eCG2eguAAAAAAAAAAAAAAAAAODPkUNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW83nfwGdxq7oqFnV9o+yiWkfX7uO7yc4TtuXN7vuf1rRso3w3ZJ+4L4Yov+/Py6f74Oo0ylfh9/tLB9+P8qsha5+vN0+j/Pu7RZS/Wy+j/Gq4jPIHZdY/VGUZ5dN659M9eXYQ5Z9fzqL8rdl1lP/Zo4+ifGo7ZP1zXWbjxYPtcZRP+591n7X/e/XzKP92k88IXhb14+zZb86zaef3H82j/Ns/8SDKv36QtYXdEP63I7KmXFzvsud52GZz229d3YvyP7F4GOWf9dnY+7XJ4yj/VnMY5cemWWVje3Od9c3dLGufT5anUf7qTjZXunWUjXX9kD2f1HqX9T+7SfY8P6nDsa5M59o/iPKzcrvX/DqcOxRFF6XDqUZRZbdf1NdZe6tX2fW7zSTKr1/J2lt3kH3gIRyPwqVIsevCtU44QDZhg5jX2fM5DL/gVTj3fH93GuVnZTY+ll32PMuwv0275/YyvJ8u+weqXdbeVkPW/3eH2fU34f10u6z/3Ib5tsrqpVlcRPmr3TTKv7e5E+WPwr2ZLzVPonzZp/USxdPpf9Gssr/oplm9tNd77h+qrP2n9d7tsvwqrMe+Dz9v+Hzi8a66HeXfmGR7pad1Nj8f2v2+Nuqb7Puq1+F8Mhwfd7Obf79NthQvinAsHer0D8JaDNv+LsxnLa0oPgprK92bOW6zud51n411RdgXFjd8n/kjw1G215JO5sttNndI12ppLVa78L1jNnUowql80TdhPYbtYRsurbdV9gFW4b52GU5+2jrrm/f9X+Utw/oqdrsoPsyytf6Q1mNYL+nkM62vZh3+buAyXBtN0rlnWI/he9nNLnsv+Pgkaw9lPa73TGm9DJtN9g+E1y/T8XSaPf+4/0m/rrDem3DCNA3rpW/D/jCtr3T+dpT2h/t9VxBLN0u7bHwc1mF9hZu95WXc4KJ4lW4+h/ppNv+pVtnzn1yEewntfttnul5L90rHZgj36uLrX2frwTJs/8U8XD/uwr2NdfjyK9zLKfv9zk+acHwZyuz+50+y9n8Z7q2OSjgWDdtwrROujcohrJV0bbTMNt+Gw2zvpHyS/U6oODnK8uFcZgjHuvQ9xxDODavNuNYuexeuHWPh99Wvws3nPhtb6klYv+lY0YTvFbrs+mm9DCfh78x22f3Uq7C/jdIvoXTttee1SHr9YR2OX1G6KKpZ9hv1/jpbC6bXj+eeQb7sbz52vdgrIgAAAAAAAAAAAAAAAAD+QnMIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRaj7vG/gsVkNbVEN9o+xptQmvPonSbXmz+xirvhiifFWUe7oT9uG9h7ei/K7Pzsd+fHIa5U/r6yj/sDuK8qln/SLKt0UX5dPPm/dXyyh9Us3D679cqg9n2R9k3WfxjeHNKH/vK+dRvi2z9rm94Tj6I7t+v+PdaZvVy/Mua88/3J1F+S80HwbZNrr2i276JJsLDFWWL8Ox6L3mbpTfvZld/3i6ivJdeP+bsLaerrOxa1rvonw3ZN/XIhy7vtQ+ifIvusnTLF+GY0taX+1FtgzcnB9G+YdvZe15MsnaZxk+oKbuo/zVJuvPn6+zucPVUbbWfG3yLMr/pdl7Uf5rbda/3aqz/qcbsuffrMLvN7v9WDr1GZqsHqtt1t5W97Lrd/NsPCqr7Pmvqqw9L9dZ/vxwGuUPmnWUP6qzBtTX2fNcDdn3+6zPnk+ZlVdRr7Pvt0/bc9adF+1Vdj9d9niKoQznY11YX4sw32SfdznJOqAPNtn4vjvLns/Jraxenu+ytdofLLO18tFBdj/lLp1gZfkybP9h8ywml1nBd23WPpvr8PmE/229sg/Xg7vs+v06u/5mk13/eXj/kyZrEPNNVi8fbrK93uMq2zssynDvP6yXIly/DOH9hMvZYvr85ntpu3BuVYdtbQj7hvTZxLUYToa3UbooluHa7mmd1cr5IlurXU/Dudgkm+uVbZYf+nDudhhOlsK5ZHOdfcPlEL6CDruSsgvHinBuG26bF0X43nQI1xbbOtzHn2X5vs3uJ32POAknP2WTtZ9yEb73SvOhss8KbAjH0mobXj8ee8PxLux+4rXgLLv/fpPlw3Isujrs307S976hdD4QfuDy8CDLz7LxdwjH61Q/Dd/d1eHz7MIBNexvq224V7oM5w/h40nH08mjcD55nK5NRyYcr6uDbK99SNtburZbZ/1V2WW/Sxhm2V5vtQk3W5pw/LrOrt8s0vXdfuer3eQF/91e+O5oWGV7/2XY3oqwPZfX2d7kEK4f499WbLP2PIQLnirtT8LxtJpm99NcZ+1ncvEC10u6kRy2nWIX9rW7rFaK8L1jqtxkexVD+Hnj2krn2mlthT/3H9KxcRPONfh0YXuoz06jfPfocZQfluF7gnAvM+5PUofj2svZzbJ6fOn+j1XxXkU2F0j787FJ9z771X5/GFWeHGd/ENbLvq790tUVAAAAAAAAAAAAAAAAAC8Oh+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3m876Bz+Kb128W06q9UfZvzO9H1+6GIco/H5ZRflZmj74KzytWRRnl27KO8t3Q7zVfl85n/jhtn86i/OPZNsp/sDmL8t0k+34PhnWUr4usvS2q7Ppt2UX51XCzfuo/z2fX78P64tPNH2T9Z7nLrn+xyOrxH956K8p/5fRhlJ/XWb1f7iZ7vf6Hq9Mof9Jm429V3Ivyk6Dev9BcRtd+0S0+zuZKZdhV9VnXWQxN9gf3ZydRfn0rm7vV1X775vU2u5+2ycaWdZdd/7DZRPnvzm5H+a+0qyg/NvNH+20PaX1tD7Kxrllm+YvDaZQPp5LF0IVjdR32V1G6KC7r/X6/3529GuV/YvIgyh9W2fNJpWu76bPseZbp7Yf5IVyadpOwfYbtuZtka/fdSXb9PqyXogn3BpbZ/T/eZV/A7xevR/njV7Px5YvTrL7ebJ5E+bebbO7cLMO9lnXYPsO9sbS++rBe+ma/9TJU6fPJ2mc3Dcej6/D6u+z+PymOo/zhJNs7OZtcRfkqnNB8vMvm86lqm31fVZfNt4dwflV22f30bdh+Zlk+rcc0n87I+m26l5Plt0M2v30Sjo+3Ztnexg+X2QR6mm5eldnzGaqs/ZRd9nyqPmv/zVW6AXHzfH2Y7YvtZtlY1DfZWrxv09oK9eH1++zzbutsL2cTvrf448evRPlVuBdSttnnLZowX4e1tc3GonRsKVbZ3k+5y/rOepl93t1B1n7S+urCsTSdS6Z9bV+H9TXJnk95kK2NrjZZfzhN59qzrP0U4fc7hPVVtOFPKsK1VHUd1ldY79Um/F1C2B+ma7s6rK/2IooX3SxcO2aXL4ZwL23Yhv1/Kv1dRRu+fEmvH/Zv5SYb34e0fwvrZSiy76sMf5cQj7/h1DZ9VxDnw4JJ96L6bGm0f2H7HzZZfz5Ms/G0TOs3HO+GdPwN1lJFURTDNJxvp3shTfh5w/GoXoX3E+61t1dZfhe+6xudcL5UhvPhcj6P8vF6bc/jXWq4CjvQO6dZPqz36ir8nV+4l5+qNy/w71D7cPAN92aGbbZvWIZtPx2L4lrcZc+ne/Q4ylf37kb5MqyVIu0bwn3YuK/a7fd3A3uXft50bAn3HtJ8ev/1rVtRvr/M3tvV98LrP34a5auz0yiftv94rTkP5+bp2m5s9lwv6VqqDNf68V5FaNhma7v4+uF75VRzL/udWWqI33XcPD8EtfUCz/AAAAAAAAAAAAAAAAAA+IvOITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqv5vG/gs/jh8qxoq8mNssfVLLr2ruiymxnqKN4NQ5Svyihe9EV2/WLoo3hdOj/5Ipk+zNrnxeQgyl+/fbM6/PPy8e4kyp/Vl1F+Vm2j/GlxHeX7ch3lqzLsIPhUk2dZ/9leZ/nVnaz/fHq5iPIPZ4dRflLtonzqk+vjKH9rltXLQb2J8nWZjXcfb2/en3xn+0l07a+0WV87NrPn4dxhneVTm+M2yq+eZWPX8zabGzZN+HzqLF+VWd9ztco+7zBkY8v3L25H+b9b/EKU/3L7H0T5sdXX4mHY1/bhXD40Pc/GovM3s2VjE15/12VrteEge55ls9/n2VXZ5318nrXPf9C/E+XrIutPvjb5/0T5t5psrpFafJyN7UW4tk71k2wttVtk+aHK8rPHWf+8rLP2OYT10k+y+xna7Prbq2x8f1xk7fMfNW9F+bemT6L8by0eRvlFlfUPk6dZvVSb/c79w+6nKJqsfW6PwvlMuJnWT8J6qePNuky69Xaejde7PpzvVdl872yare1+8c57UX5WZnsz5Tabz7fX2fXj+krHr012P8PhPMpvb2XzsXaZjV/9RRSP67eYZvEyXO+UXfZ5V0P2/D+aZnsnd2fZXubjbbg+Cp9/Wl/VKpzv7bLrl93+9h+qVVbrw93s2afbdM0ynQuH3234KNPaKsps7LqeZsU+vZX1nZfb7PpVl7XlMlw7xm1/G66V01rpsvup1+HYlc7dmuw9UL3J+vLpRVhfafMP62UI3wOtw/q6mGVj151b2eA+pHtdYXtLlWF9FWm9pHO9MJ/2J2l9DfVRlG8vs/vpplm+WUbxos2mSsUu3UpO6z3c+9+3Mn2vHP9QJfu8wzTb+0nrpbpeZde/zhrccCuby5fh2rEP33VUu6y+yl3aoLN4H369e35tvXflJPzdTDq+hP3nMMm+gHK957VauLdRpPPn4/B3gbNw7/8gu58+3TtMu+fw69q7cHwp6/Bdyi7sIJZZf17Os/lwEdZXscp+B5a2/3KWrWeH8Pq7sL5SdbgXm7a36fOsvY3KnuduaS0WTZhP73/Pn7e+eze7fjp2hYZFuBf1JFyLz8O+YTqyWtnz2FK24fGJcG+ymIbvNcO+vAzHoio8IzAss7VUdTd7jxivBfesW2Tf1z7fQ/xFkNZXupZK88Mm3MsP6zFVzrK5VZmOv2H/0x9nv1GvzsMzEcF4NwT7wk4yAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFrN530Dn8X/5PW/Wxwe3ewcX10eRteuw/OB26KL8n3RR/m2rKN8N2TXr0vnIf8iO/3OEOWf95Mov/yFNsofVOsovx2y9n9WX0b5SZnV76zcRvn08x5V2fWfZLdfHJb6h09z+NEuytfr7HmuT7P6uvxy9vyrMqv3VFNln/dkuozyR01WL31RRvnrsH87rFc3zr67PY2u/ZU2q/WxmTwPa+U6y5dD1panT7Np7fpWONc7ya7f7bL7n0yz59P3Wdsvw76hC69/vc1q608u7kT5vzP/+Sj/Pz77XpTft8mTm/clRVEURdj+y13WN/fTrD3Pjg6i/OY0q68hXJV2dTY3HCbZ8ym6rP0XbTgX2E2j/NMhu59vtG9G+b8z+5ko/9+/9V6UT7UfP4/y5S6cDIeGJmtv7WlWL910EeWXRXY/zXXWfrp5FI8Nu+x++qxcim1YXz/szqL8/2vy01H+nzv8oyj/lSobT5vH2dq33GbzjWKZjV9Dl/WH5TT7vH2bzR+aZVi/V2G9zMLxogzb/ySbD1TpUvAqnA8Psyj/jeoLUf4XT34Y5X918d0oXz+9ivLx+LLJ1nfDOlv7FmF9Vevsfpomaw/1cTaBK7usHsOtsfg/9den9RLOx8rH2ed9Wp1E+U+OLqL8a9NwfrXM2mdcL12WH7Zhfe3C8S5oEOXxUXTpZpLVSjsP1zrhe6M+28bP235YW2W49irDyeHVLGs7p/Ns7jNN+/JJ9gWU12GthG1/SMeucK8irfXyKHuPW949jvL1Otxr6bOxdzfL6jHd+5mke4F9Njhez7P6ehSli+K4D9vzKhyLZtlcdVhvonyxDfPxZCMU7o2Vp2G9XITPf519v5twLtmES68hm/oUm6N0LZjVVx9+X7HwdyFD2j+nc7cwX6Tjadh/DuFaPF17lZfZe9DiONs7rDbZ82yWWfvsJtnz2a2y/HAr7A/33H3GwvoqwvlDKp2/pfWV7u0VdbgYT999zbPN6ip8V9assvraHmX9+fYg3AsM12vVfl+N5NL1QqhswpeJYf8fzw+XYf+fjo/p77ReuZ3lw/6qm4e/lZhn97+bZ/P5yXk4nwl/u/FCS9ciVThXCtdqcS2mY2n6edO58yzrnHcn2djVTbNaaY6yWmnffRDlq4Ps+vud+RT53D9sD+neTzw3TNcWYX0Ns2wvZzh9PcpX59fZ9cO9pX6e1Vffhnvn4Xuv9lH23r0/CJ9/lH4JhfWVrhXK42zvOR6/wvY/hO252O558p9+3oPs+e+Obz6+JK85Xq6TDQAAAAAAAAAAAAAAAAC8UByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0ms/7Bj6LLzTz4rgZxzm+tqzDv0jz4dXLcTwXxuHsG0+i/PMv3Yny/8rZb0f5e/V1lE9bcx/mUydVGeXT+zksJ1F+UWV5Pt3Btx9G+WGWPf+D01tR/vn9RZTfvZpVzBcOn0X5SbWL8of1Osof1asovx2y8fS19lmUP6hufv+zahtd+4e7yyj/VnMY5fdt9oPH2R9ss7YzHGVt/+jDrBZXd7N8Vw9Rvp1kn3c+3WT5SdbespGrKNq6C/8iMwmv/zvP347y//fp/Sj/Lxxkc5NU/eg8yg/LrC8suux51nfPovz8QVYvm6MwfxLFi2odzsX6bGwc2qzei204Ww37k+2yjfIfPcke6P9+88tR/udm70f535iHs+HzbHwcNll/OOyy/rkss/ZWtdk2y/xRlu8m0yi/vJu1z+0m+7y7cHrSZ825qNfZXG8Iy3G4yv7gm+svRPl/ffiXo/y/85W/G+WHDz/O8uF4sW/Ddfb9NscHUb6bZ/U1fR6OF2F72x5k9dVNwxlcGB/CvY3hMvvA3XnWQfxb61+P8m/+crbX1f/wwyhf9OF8YNjvbtQQ3k95cRHlq8Usyk+eZ/O93Tysr7A999lyKm7/fbj1NoTzh+Y666++c/VWlF/8cvaAdmm9jE2/x/Hu8iqK1+HYVYa1Xu2yfHMdtv0m7AvDpWxa6+1V9gebq6Mof/8vZ5/3zfMfRvki7JuLfb/nS8euIWwPVfgedJXtI1ev343yw2m4FxjOxepNWL/ZUrYow6+rCrvCapt9Xxc/HS7uQv0q61D6T7L2s3dpvYRzh7R/qJbLKD/89E9E+e2tbC5Zhs9nqLPn015n158+TXfPs+e/Osz2omLh8+yvsvlMcb3fvfNYWl97VoV7jcWtbK1c7bIBoJtm7bNvsvafzlebcP52/eae6yX1otdXOp/c51qqKIqyyda+dZvNN8p1+O50Gs5X4/4n3GufZ/nV7XH1h6n0XU2XrqdS+15/hfWV1kuV7v3fy9ZTaf+/OcrqazfL2v/Vq2n93jz6Snbl/UvnzttsH7B7Hi5Ow/e4sXCvoppm703Lg+x3SGUXzgXarC/ZnGS1vj4Lx8bX3ozy0ydZ3zy6wwdhX9uvs/ZWpr8zmGf1WE7SuU94/XVWL/1xVi/dQXb9TbhXtw3HlnTs6ifHUb75e78b5UcnHV/SucYmfHHXh5ufYf9fHMyj+O5W1v6HdG29CfufLssPdTYexdc/DH/ncRm0h+7mcxMnpQAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABitchiG4fO+idT5+XlxcnJSPPj228Xx0c3O8V326+jfeG9XR/nV0ET5quyj/Gm1CfNRvFiU2eedlm2Ub8Pr8+P1vF9G+W9vs/b88e4kyj/cHUf5ozq7/9v1ZZavrqP8q/U2yp9Ukyg/LbPnX5fOM/84/a+evhPlj6pVlP/O6l6Uv7/K6uW0zerl3uQ8yv/s/P0o/+X2UZS/Fw4Xx9UsyquXH59f+/3/epQ/nma10g9llB/C/LTZRfmfP/kwyv/a4Xei/E+1j6P8aZW1ZbXy+fri//O/HeXreRflqzrLz2fZXObWIhtbfu2V70X5v3n8zSj/pSab6x1V2eByWE6jvHr58frq/+Zfi/K7w2xt3R1k+fooq5c7ty6i/F979ftR/l85++0o/2ad7YUcVdlaxN7A5+vr//P/XpS/fDO7/vZWVi/lSbZ3dXKSrcW//uoHUf5v3/2Po/zbTXY/6fjSFunem72BH6df/R/9d6P8sy9nz3N1N6yXs6x/Pj29ivJfPsvW4v/qK/8gyn918jDKn8V71dn4UpfhejC8/svm1/+1/06Uf/qVrL+6ejtbv9S3snp59Szb63rn+MmNs792+t3o2n9l/oMo/2qdjaX7HovSudvLNtf7r/yt/1aU/+SXsr2Zyy9le1ezO9na/dWTbO1y7yCrrbcXN6+toiiKX1y8F+W/Ovk4yp+F73WOwrlVOndL66UqsrFubHPD3/yv/q0of/83sveO51/Nvt/FnWzufy+sl1vT7PonbbZ3fhTmf2KWzd1+bpa9B3q9yZ7P2OaGVfjfjU7rsS+yn+P81htfj/LLf/GXo/z9X836n+7VcG/pJBuPFtNs/lOX2fPc9fvtD3/mLBuP/tnTb2XXn34U5V+P55Ph75zCeknrMfUvvPFXonx9nL13P/+bPx3ln/1EVl/rs7A9n2bzwyJ8dxoLf21YLrL7f/3VZ1E+3Wv/9aOsHt9pnkb5kypb+872XC9/682/ttfr16++EuX7t16N8uvb2Xpqe5D1V7tZOL434W8ZwuGoy15VFrtFdj/Le1kBV29ne5M/89r9KP+bd/8wyr8V/raiKm6+d/u//Mmfia69b/VptjYqj46i/LDIaqvos33wIu3bmmwsHZqsuIY6u34/y+ZKm1vZb0QvX8+uf/lWFC+anw33Sc+yvZztb2S1PjZlm31f5SzrnMs67PzTvZwqrK9tOJcM66UIP285zZ7nMM/y/dEiyl+9c5jlX80+791/6z+L8i+6ssn6t9SwC9szL4zdsC3+w+LvFM+fPy+O/4w1/Lh2wAEAAAAAAAAAAAAAAADgT3EIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRaj7vG/gs1sO2WA83O8dXlWV07UW1i/KbPjtPuB3qMJ9dfzN0UX5aDlE+1Q19lK9L5zN/nPoh+35nZdZ+TuvrKP+sW0T5VBfWS1dk/UP2dHjR3G0uovyb7eMo35bZ+FIXr0f51KJeR/nV0Eb5izB/OmT3s0grMhzujEf/xebtNsr/9PHH2fXr7PrvXt+O8rtwrLi/Oony/6j6YpSvFtlc6cvt0yjflpsoPy8mUV6t/HgdHS6j/GyS1cu0zvrOusra5+8++0KUP6pXUX5y8K0o/3aTPc+6Ui+fp6HJBuv+dtb+s5l/UdRNVi/LTTb3+ePze1H+P5n+VJT/Z8N6eb3I2v++/9NKbZntnbx0wgZddeEfZN1/0W+y72u5zvrPdy/Povx/evDlKD87+OMovx2yejkLm3OdfsHWOp9qcpH157NH2fPfHmX53TLblr+eTaP8w+VhlP8Pzr8W5Y9PvxHl2+Y8ytfh3ny75wFpWmbj+4tu9iDbmzmahe8uTsL8JHv+TybZ3vNBe/P+/A/a/a51ZtMPovykTN+7hH3bfl8bFVU41o1t7Jq8n+3N3J7fifLbo2ysWNWzKP9JlM73BiZpX16m9ZWt9avyWZSfhXsnbTh57uPVadb++/A9cVqPqep770f5e232eXfzoyh/3c6j/IMq6xCr8L37rM7qpemysfHb19new6LK5gLpe69Zmb1XnoXjXRHu/VfxUnnPA2To8NvZeHRyJxuPnk6ytftF2p0cZ/F5uBfeD9kNrbfZ+PtHT1+N8neml1H+INyrPq0+ivKz8Hc8bfr9hvW4b915tjY9/F72fa1uZQ16t8ge6HCRbS7106y/GuosX4Z7jUO4F3L/UfZu9rerd6L8q23WHo4W4fquzNpPHY4v6fpu34bn2fMsl9le71Bm652+CZ9PGk+nA2E+nf6k99OeZx94+Szbm/zg8DTKv3uUzU8OwvnqUZWtH8ekvwrXvtPsuxpuZfvI/SKbGw51ODffpL8BC8e6cPJf7bJijGs3/LjVNhx7w77hsM1qK1uJjFA4F461Wb2U4XugWJ993mGdtYe4waWq/a4tyvD++8m45mJjM+yyvaJqls31ynm2tzcss/E0vf8X3r7XFnvqH8a14wAAAAAAAAAAAAAAAAAAf4pDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvN538BnsRv6YjvcLLsa+ujaszK7l4NyF+Uvhuz84dWQfVVVf8MH809Myuz5tEWX5cs6yhfh91WXznN+mmd99jyv+2mUn4Tt4XZzGeUvunmUXw1tdv1+FuWPqm2WD59PXYQdUFbu6uXPsOqz9pPWy2l9HeUP63WU3w5hfxtKP29aX6sq+7yrIRt/D9PxiP9C2y57lodN9t1+cfowyl92Wdt8vs3GlqN2FeXTWnx/ezvK1+Hc7ag6j/LzcCjiz7DLxt6Tedbe7h1k3+/1bhLld312//2QNaB/fP5mlL/us/v/9cNvRfmvtc+jfPqflpkW2VwjXku94OpV1n426+wLOH41W4tUZTbZbpts7n++zuZK/+Hjr0T5Llxb/I2DPwqvn62NTsN66YtsvGuKrF5etrVRmX1dRRH25+nadLPO9roeXy2i/N9//JNRfhbu7f3K4k+ifFtm8+G2ytpzV2T334b18qKPR32btefJZdagp0+y/mSosva/arP5z8UiWx99tDyJ8r87eyvKz+bfi/J1uYzyR1E6V4UTvrReupHthQ91dv3Zo2yAOXwva8+X4buRZZGt9+8H87d5k33W363DWgkH63Z6P8oXVTZXPQzbWjp3y9JF0Q/hZCNUpfvyZZaffZLtC59+O+vdnnfZWjPbeSiK++HaKF1L3Z1ka7V/fP1OlK8XP4jyB+XjKJ/WVzazLYoqnGzXYfvc9383tzzO2nNz/2mUf+0/y9r/h222Fg+nhsX9cC213mVj3aLdRPnjSVbxv1dme3UH4XuddO1VFdnnPQrXUvl71pFtnn/4SRS//ftZ+y+7wyj/+C9lc73VNGsP601WL32ffV/p11tX2YzmG0+y+mrL8HcYdTaeTtvs3cJBlM7nA/HvJPas/jibDxy/l61FuklWL8tXs+fTdVl+aLLvK/1ZQnr9/jqr94+eHEf5f7D4YpS/02T1cjzNxsci/B3SNB3A9qxfZfONehXulV5n9bU5zhroLvyhaPizzzzf7Lc/DJtb0TzN6vHRNKvHbx29GuVPmmzv8AuTJ1H+RVa22doo7UnSfcPdPKvF/ji7/2aZzZVSZbfnvjbdisqmzsUQrk2b8HdIL7qhy9pPtcjGorIJj2c0Wb0M7Z6Pf8yz90zlKlu7p583fz7pe7usXnZZc3j5pHszdZavDrLd1SGs3+HyKsvvsg562IT1sud3I7H0PeWwn/H65fq1DwAAAAAAAAAAAAAAAAAvFIfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+BK9onNAAEAAElEQVQAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit5vO+gc/iYuiLYrhhtq+ja7dlH+Wrm97IP3FUbaL8asjuvy/KKL8Zss+7LbsoHz6eoi3Dzztk91OFz6cuX+zzoh91iyhfh1/YeT+L8gdl1v6LrDkU3ZB9X6uhjfLXfdZ1rqtdlK+LsL6y5hzXY+pFr5cPNmdR/qheRvlVn7W3k+Y6yvdh+0/tu75W4fW34fi12/P4lXjRa+VqM4nyjzeHUf6L04dR/p3Zoyj/qD6K8v2QdbaLcK63Ded62yEbiy76dK6a1Urtv63x6ars+a+7cPIT+tJhVi9PNtlc8rAJ53qhbbi2++76XpRP56o/O9lG+XQtkurCsXFs41HY3RblLrv/XZfl751cRPnVLuufmyr7vppwLvN7529G+XQt+KuL70b5bTh3Pquz+5nteW00tnoJt66Keh1eP3w+1SJb+w5duHcV1tej5UGU/8bFW1F+WmX9/2z+/Sg/KdPxJTMrwgYUGt3e236H3yJcuhfhdLvoL7P2/7A4jvJ1OB59s/lClE/XO39l/oMo/3ZzHuVn6d5/lbXPfs/11Q9ZB53WYxmuH/tJ9nymz8P10UV2/aEJ18vNzdc7395m196Ea5dpuI/chd/tVyefRPnTcG/jrMqeTxWOXtsiHRv3XLtt9nn7WbZPenA/+7zbg2yvrp9k978s51H+QZMNdt/os7XLO0dPonz6HrfItkKKN5tnUf5unT2fRbzW2W997V1YX5NPLqP8q/8w658/KbP6uuqzLywc2ovLNruf7SL7vKsu66+qcPHYHmXtf1Zm49cknOttw/6/DceXOl2MlGF+nr2nbx5mc+eTd7P2MDTTKP8k7XBPs/lJGe4tpXsVV1G6KJo6a29/dJ7tbX9hko2PZ3W6mM3mq5N9L8bDeimbrD0X4Vpw+iB7nidN+nzC9+63s6t32XQv3stP5ydDk9Xvbp3NH7796JUo/+Y82zt8pcneLXRFlp+lv3vYszJci5eXWb3Ul9l4MTnP7meosvnS5iic79VhPqyvehXu5bTh3m346ne3zJ7ng+vstxvXJ9l8OP2d1pgM2+zhD+twrrTL5iZp2+zb/e777+bh7yrSqXkX1lY4tsfvxcOtqy5cm6Z7mS+8cDE+XGaz//KVO9n1w72Qog7rK5zbFtvwve9J9rvAIZ3Lh99XPwnPIITN/wUeWv589OlvdMPNsbT9hHsnaX5YrqJ8Eb6HK8L5QH+V/S5n6Ma1tripcf16BwAAAAAAAAAAAAAAAAD+FIfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit5vO+gc/iuq+Kqr/ZOb6LfhJduyr7KD8psnwbXj/Nd0UZ5ddDFC8mQ3Y/fZH9A+thF+WnZdaU0/yL7nF3GOUf7o6j/KzaRvmjapldv8yu35ZdlE9twvPDqyFr/1WR3f82rMf0+UzLNsoX4f3U5bjOYz/eHkT5D+rbUf6wXkX51KJaR/kubM91OB5ddPMsX2ft7WDIPm8bji9tMH61ZR1d+0WvlWmTPcvtkN3/d5b3ovxhnbWFtC3faa+ifCqtxdWQ1co2nBs+6bLneVJlY92iyubmL5vVJhx7Q2m99G3WflLHTTY2pvWbzlU3RdafP+uzue1hM4vyqXS86EY2HvWTcHGa3X6xWWf1NW/CtUi137XIrM7G39M2a5+pB91RlD+qNlH+9XDt3oT1m9oO2fdbheNvXL9h/zyEWyH1dXb97XX2Dxzevo7yZZn1D1frbL7xved3ovxJWF8H4VptO7kf5e/WWX0V4d7DKmz/bdieF0X2faXrr77J2nNaX9Uua59xfZ2G4+OQXf/hk2wv8I+idL4eTPeuThffjvJ9OD+shyw/Ddd36d5eahbWS7nNnn/ZZ/OrZhXO5x9l7bmfhPnHN7//VZ9d+8P2JMpX4ViX1kodvqe51zyL8kWTje2Lcr9rzT4c67pwH7/osrZcbbL76SdZX3L0YbZW6CdZ7Q5VNtc777P3Urs72edtquz5H4V7D9+ts73J3LMofVZl32+qDusxrpfQUIV9+Txrz7OHWXu4/c2sfT4K6+W6y95LrQ6yucl6m93PrYN0ryvbG/h7/U9H+dmtbK2zHZ5H+bM6e55VuDaKdyrSvbcuu59hPo3y9VX2fA4/DNdqddY+L97J7n93HO7V1Vn/tg3XXutp9jzvX2VrtX88eyvKnzWXUf6d9lGUPwp/5zEL9/5j6dorna/24e82rrLxffEwq6+hDtem23TtFcXT6XP8bqqbZ593ucw+wB88ez3Kvzl7EuWv2qx/S/caU2UTbiaH49eQ/o7qMvu8k1m43gn3Docq+7y7RRQvwuV7MYQTjvBVTVEvw73SdfZ8ni+zd6ePN9l681az39967FNci7v9rh2bi6wWhzZ87xXuhaS1m0rHlnQtGy5FinBbu+h2Weewu+Fv8f/CqNLOM2wP4VxsmO/5d1RdOLiEY2m5ChtouDe5Ow5/Z7Pnveduut+9sRdeWF/9KhtfymmYr8N6b8L3avOwfW7D8Tq8nyqcPwyX2VwpncsP6/38juolG7UAAAAAAAAAAAAAAAAAeJE4BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDWf9w18FpOyLyblzbJXwyS6dlt0Ub4uN1F+WgxRPrUdsvONF0Mb5TdD9nzWQx3l27KP8kdV9vzvhMc/p2Gp1OW4zpde9PMo/7xbRPnrPmsPV9U0yt9rnkX5fbvus/t/GNb7rMyeZ+qo2kX5s7Reyqw/yXqH/evD/vP+5iT8F7J8G7aHO+1llD9rsnxVZP1zF563f9IdRvm0Xp5lt18cBOP7nTprzYsym5sUQ3bz+x6L2jp79ssu6xs+6Y+j/OMqu5/Tdhnln++ysfGoXkX5bZQuilWfPc+PdkdR/m59FeVXQzYXuxv2JenYUhU3XCT8E3ufuzX7nftf77L+5IfLW1F+12f92+kkq69tuFY4a7L2eVRl9Zh6L+wfHnXrKP+VNmvP03K/a5duz+NRuBSMlVX2DzxeZt/vyTRrb4sm6z+bcLxLpfW4CvcSroasfa6GbO1yUmX3Ewvb/95l3UMxhPn0+uUqaz/rddYeptOsPRRlNv4eTrL++fk222v53au3ovxpOB9ry2dRfhbO5/e903UdzicXRTb/Gaq0AParzppb0TzP6mv3Svb9pt3b1Tqcf16cZf9A6LS+jvJ/efbDKN+Fe5/dkPU/1+F4ehbuhV8UWf85NFnF981+6yudH06eZfludvP775dZLV6cZ2PFo0m2O/CHzWtRPt1nfNhkewnt/N0of7vKOsNNuG+bvpdahXPVosueZ7kN87vsfoYyq8X5o6y4drN0NpDd//VwEOXf78K+KpwMT8P3KNd9NjaeT2dR/quTT6J8+p44la4dh2W2VxQvXQ6y57k7zb6v6bOsPZx+Jxvbn3dZvazDF3fX6+z72m6z/LTJns+8zsa737t+O8q3i+9H+dWw373DWDo577J8eZHNnctFVi/NdTbeHXySteehCsf3V7L62i2yuXw/yfIXZTY/rG9l3++H16dR/nfaL0b57SJ7nuneRixcexXhu9x4/Fpl41HRZfn2MquvxYMoXizDH1J14avuepWN8OHjKYrw3cgufHe33GXj+4fr7F1cKt0LSQ3pemcS/vKnz55/uc72QuqrLN+2afvP2kO6NxlOt9PHWTTX4R+E6816meWX19nv8D5eZfsV8zppD/t9r793ae1eZ3Ph4SRbu1ebbC6T7m30YX7PS+WiXmefN/wZQLE5zjqHbpd94KttVot8unKZ7X0Oi+z5l7uwvqpw7RXOncsmXMvWWQGU4dq3n2b3n77n2B6/4OPFvoXv1cpp1v6HdVZf5WE2fg2LcDGyS98VhL97SOsxzBeb8Jer4Xwj/b5ualwndQAAAAAAAAAAAAAAAADgT3EIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAP5/7P1rrG3rfRdovuMyL2uutfZa+34u9jm2Y+fi4CKVEDpuikshKmlV1NU0kUqtliiQInWLdpAACSEkhBC0FAmpm0+BTyhB6k6j4gNCRAiRkCIUlbhDBwIhTmyH2D4+t33Ovq37vI0x+kPK7riVOqyfj2fO2D7PI/kD5LfHHnPM9/J/3zHffQAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRat/rG3g3HnSLct5d7xzfvNpE127K8PXc0vWvX2XX74cqyq/D841Pu0WU35QmyqfPc1Jto3xdzqL8rbqP8k3lvOg7Sb+vpmTP/7KfRfm77WmUP+v3ovxb3WGUf3N7FOW7sP8eNxdR/rBeRvnSnkfxW2F3qUs2vj3r/fHpJhtv706z8e2yn0b5Wdi/DuurKN+F89dpP4/yj1YHUX6/XkX54/ry2tkunIteaLLaZFZNonw2U+facC5NrfqsTN0M2dgwq7O5a1J1UT7ti0dN1rdSj7qsr6T5D04eRfnLIXv+L7fPdn+pmqy/tGH+apt93n7Yj/KbLntCfTi31+FaYdlkn/ftbVa7LYfs+mktdhZ+3kX9OMp/IGzQs5FtCwzh/Vdd1t62q+zzbsP2f7nJxv9Vl93PtMnmo76so/zJNlsbbabZ/ffhfP1r6+x53m2ytcv9Jrv/vSq7n11L+0s4PJew/Imvv11m421q/8b1a/lSSpnW6QferbMu649nwdqllFImJdsbeLnd7XzRh3tFmyH7vsKlaQm3bstQZ39BFS6n6qwcLtV5OD4fZPX5Muy/q1k2Hy277Pqvrm9F+YtwL+Rj0zej/Ivh3mQXDqCPw/XmJG1wYfuvhuwPbObZBJb2x/TjtufXf/7dNKtlurDWeNhma/H0vdFhm+2L9Yvs+v/m6kNRvk6/3FC6N7MJi6vqKnuewyIbe/qwvTXrrPF32+z7nT/Ovq+hza4/VNnzX5WsVnqjzu7/35QPRvmXDp5E+UWdzY1pbZg6C/flz7ssP1xktWoJa89qndUyYelZhiZrz5PLrL3tvxYXn1F8s85qq0241/JqdRzll9vs+z2cZGuXf7d8Kcqne/Pp/HKyzd4LlrC26i+z/tUcZHvD1TLrX9U8+36bZdYhFw/DxV343n11K7t+Ojxv6qw/Pq2y76sJ57vn97K1y2/U96P8YZP137R/7dyO90Kaq2yx38+yeqm9Suu9KF5WN7Lr99Nw7ySeHrP+vg7Hq6dXWf3zYJW9m0p9ecj2QvICaLfrtWqW9fdhkn1faf1Wb7LnMzkP9ybDnzn14XoqbP7x9YdwfpmeZNe/Cpvnk1VWXy3aZP2VzY27NvRhX5xlew+lyx5+tczmrrrNGme8lxAuBUt4P03YONOxpw1r4WYVPs9lVjs8vMz61p0o/bugCtcKQ/j9XmVrx2Ga1f71WZZPr1+Fz6daZntXJR2vwv5YhXN1+t66n4Tjz3Rc75WfdcMq3Guvs/FteCN7z9eU57LrH2SbA8MiW1vsvDYPzxClOzP9Rfa7uut6tk8SAAAAAAAAAAAAAAAAAPBNzSE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEarfa9v4N2YVdsyr653jm9S9dG1l0MT5edVF+VTu75+aS6zeBl2ml/U2yj/Le1elG+u2W6+WcyrTZSvw/6yqFdRfhq258PmKspf9LMoHz+fkj2faZ193q5UUX5Ssus34f1vsu4bG1t/vNFm7a2usgc0CdvDollH+Tocby/7aZRP7Yfjw9vbG1H+sM6+r3U4v18M138+T8NnOa+yZ3Mr7Cp1OJakfbEJ54pb06zWONlkc/uqy8ratO9uwrYTDrVlEs6Nj7qDKJ+O/fM6mxs/v34uyr/YPonyi+o0yt8Nv67UpAr/gqw7lmmb1cL7bTZXbIesv1dhf+mH7AP34QM66bLxYdFk421YWsW15+3mPMq/HX7eblhG+Q+22fgwqyZRPu2OYfMs/Ty7/7rJ2vNyk80vaX9JrWfZE03nx02TXf9pt4jyvz48H+XTtdd6+jDKT6qsP96pswYazxdD9nnD4bakW0v1NvwLwvpn6LPrd5vseZ4vs/H5ZJLVP/M2y6fzY1rvpXszyyEbz1dDVs+/3GYNblZl41VTZc+z6rPxeajD9p8O/2n/DftXvQ771zIcr/ay9p86WWX1z1vrwyh/pz2L8l/c3I3yb26Povy3z96I8ofhem2SNtC0/YftM+2P4auCEj6e0gT9pb3Mns0wyWqHbpX1xat1NpZ/8fxWlD+eZGN/undy0GRrlyeb/Sif7nvem2RjQ6raZp2l6sK1eNjeUmktmT7Ovg3HnjrsL+08yr+5472QvSZ9L5XdTxu+h/jVp9la7WqTjT8H3atRvlqHg/k2+7zpXJT2xzp8sTY9D9vbW1G8VGH73AxZbR6WnuV0mk3uv35yP8q/Nctqw8NJNh+t++z5vHJ+M8q35ZUoX02z+W5YZmvHai9bWzfL7Pl082w8T+uxvcdRPO4v66N07ZjN15s6G2+fttle3ZcXx1F+1Wff1zbMX27T99YPovSwzt6llC4sgIZwvlhm42F7Ee5FpfVVGI/bc9Y8S5XuTYZL336W3f/5SbZX8cW921H+4TTbC8y9vtOrD5tw8R72l2EvHB/CvcPmIhsfhrR/hbq9rH32TfhuNvzF8BBevw6H26HLPu/D82x/YLm9/gc+KNnvEmJh24yl+3pt+juYcG9jE/6m8TxrPNUsa8zpvn8fvpdNf2TZhXNRe5lOdtnnPT3LJus7Ufp3QTi3pHtL6dorriXTtVo6906ztcWQjg/h80/3WkqfPc/2LBtP2mX2/Vbrcf3meXTS+S7tv2F7CH+GUfqnJ1G+Or/I8jfC2j/8Hc8wD8ercDxJ95Z2RS8EAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtNr3+gbejXnVlXk1XDubaMr1rvv1moTXv99Ms+tXTZTfDNnz6Usf5dP7mVX7UZ53thmy5/9cexLl5/UmynfDbs/f3qiXUf4wzKfjwzo8b5yOV5OwP35kMonys+ogyj/ruvD7OmouovxVlz3/m212/YebwyjfDFn7mVdZf7/bnkb5W+H4sByy55ne/361vnY2HWu7sNTodlybpA4mqyg/Cce2tsraZmm2WT50tp1H+b36+m2nlFIWYb4Jx/5U2lfSsfNpv4jyt4bLKD/ps/Zwq87uvy5Vlm/C2mGbLdPqsL8ctNn3++Aym1tS59tsrdOG48mTbba2SPvjnfYsyj/tsvbfhN9v2h8P+/Mon/aXVD8N57swXtXZH5i22Xiy2Wb1QNtk3+/Dq6w234b1SeqgyeqBVZPVbqnNkI2fm+HtKD+ZZGvlwzq7n3TvZNeGsL/EwnKm32bjz2qZtbflXvZ9XYbz13k3i/KvrW5G+cs+u58PTh5H+f1JNj9uSjZ+pnsbfTr+h+0t3OoqVTh/VV1WT6b5sJwpfZv1r23Yvy7mWftcTLIv4PE6q/c+U16I8s9Ns72ND0wfRfld26/T9pZ1mHoT5rusvaX7J2l/T5YX6djQXGXPvp9ntcB6Hc5dm6zvPljdiPJt/TTKb/pwLy1c67w0y+a6FyZPovz/1H0oyldXWe3cLLO9qC5sP/U261zNOsv32cctk4uwv0yyfHeVPZ/VXjZ3PW33ovwrk6zWuzHJ3mOltWodLq5n4Vo5NayzYqbeZPdTX2YD+pDOpbNwrzHsj9NsK6cMbXb/Jdz7HJqsf5232d7Y69f8PchXnM2ztdfVerd7FZfLrD++nP4Fm7BAmWX3U/qw1rvK7qedZu1naLL2Ocles5b43xFPt06GsH+Fa7XNPKsPX316HOVfP83qw3T02YZrhQ+UB9lfUGXXH66y+bfez8a3YZJ9X9U264/tZfYuJZ2P6rA+bNZhe97P8uF0EdeT2/1svnhzlr1ba9tsb2MIx5OXyutRfteGVbZgqM+z/tgfhOup/ax+qMK9kDb96cM6fDc4y+bT7d5u3/Vt98L6+UnWv067rL+cNdcfnz8WXfnrMKQbXeH112FtGNbOpQ1ryVS6j78K16bhe+4q3pjM4qUKfxfSZX29Wodz3emOv99dq8KxJ1zLVnvZ3JIawrVXlfbfcHxIm/PQhP0r3Cstbfh9hePt5DyrndO1xTMv7F+xOvydRPib53oW1nrh5x2urrJ8WgvfPI7yVRe25/R3YOH978r7rBcCAAAAAAAAAAAAAAAA8CxxCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wrf6xt4Nw7qrhzWw7WyR3UTXfuk76L8RZ+dJ/xAuxflJ1V2/6ldX5/31nKYRPlbzXmUb6o+ys+r6/XbrziuL6P8ot5E+RearL8vqux5TqpsfJiE1+cbqylZez5ollG+m2TtIb2fw/B+6rD/TqptlP9g+zTK74fXvxiyUqYfqih/GIwnH2hn0bVn1UGUH5u2ztrOw3X2eV/aexzlU5s+q322YX6vyeaizZBdf1Jlc9c8nBvTfDo2pM76aZRPx5LLIfu8TZWNJU2bfV9dn11/0YbfV53dz+F0FeWn4fWXXVb7XIXXX/XZXPGRvYdRvgv/bZnj5iLKP+0WUT7tj4/7rHYoZR2lj+vs+VebrP2n+SHsX8019xy+Ym+SPZ+rTfZ8DsL+uNpm179qs/74aLMf5dP57v7kNMqfhP3li+u7Uf52uDZtwv44K1l7C4fDMoTTdbXN+ku9zvJd1nxKOP2GT7OULtzbe7rM9vamdfYF9EN2P+l8Nw/b5zrsv115K8p/fJKuZcMGEaq7rAVV4VozLOfzBh3mw+ZZumXWHlarbH65nGX50808ys/CD3zeZOv9B9ujKH+vPYvyd+tHUb6UcDy/ytYX9V42/jSrbD9hO9vtu4ukP4ZL5dIss2ffX2Rj/yZ89hezbG39ytnNKJ+6M8veQ7w4e5Jdv81qybthflhltX8Vzl31MhurmlXWHrpZlq+3Ya2a1pLZUqdMsqV16adh/wqfz3qejVVPwlqyDt+r1WExsBfuLS3arP0/HrKxf1hlDWI4y8aTOhwPh3AuqrdZvllm31ffZP1rcrbb6/dt1r/6afZ8LudZLdaHa7u9aTjBh2bT3e6dD13Wv8pVuPaaZc9/aLLvt9pm999eZM+z63b8O5hw7R6W5mWo0/4Y1odNtpaq2+z7ms6z72u72fX3Fc5H2+z+h4ts77CE81HaX+pNtvlQ9eFeSLh3Uq/D+0/7b7p3lT3+0p6H9eQk61+bsH+N7j97EP7OsqTzV7r+mmdfcB32ryGsl9LxpwrfZdWr7PnX4bup7V7424p5dv/Tk6xBd+FeYz9JN1fHowprq9KEg0PaF7fh3BLuhaRz3RCuRdKxqgmvP4SfN631JudZe5g9zPp6OJWOzxD29XBsLuEZhFi4Vit12P7T8WSdrZXjt3bp+BBefujDtcuTrNaYPglfdD/r0v6V9pe0lgyvP4T3359l7+3i55POF5tsbVofHUb5Ktz7iceTHRnbkggAAAAAAAAAAAAAAAAAvsohOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGq32vb+Dd6Ibf+t91zKvsox40syjftLs9T9gNfZRvqux+nvXr885eX9+M8t9+8MaO7uS3rEsT5efVNso/13RR/k6zH+X55vZgdSPKr/psfvn44vUof9Itovys3kT52815lO/C8/Nn/TTKL6tsfNgPx4e7TZZ/vj24djad6571ufHVs+MofzBdRfl7s7Mov6jXUT5ty/ttdv9X3STKzydZ303Hhkl1GuUXVfZ5p1U2994Px567zTWL/v/ZJBxLJmFt0ob57SbLn3Z7Uf6NRTZ3Pb8I20Ob9a91n33eusq+3+0QrkXC+3m8zWrDo+Yyyvfh/R/Wyyi/DOfep/08yk9K9nnT8aFUWbzeZH+gO8/G5/N5tjdw8yB7PvNJVptcbbP7b+us3ni6zsafts6+37S/98NRlH9p9ijKp/Ppa112P+uS1TMfbLL5dwj7S5oPlxal6sK/IOy/9UE4noSWm2xtN4QP9NEym1/S/nKjvYryJ2G98XB7/bVRKaVshux5NuW1KP9y+HnD6TfOp/2lqbPvt95m7W0b3n+4tRHrtmE9fJnVJ2l/qUuYD6+f7hWle591yeb3j02eRPmdy26/NJvs+Q9Z+Vz6oLyK57rs1ksVzo3DMutbl5Ostk1ryQftYZRfdllfuTPJ9hJS8yoczFNt9nmrVXY/1Tb8fi+y2mposvuvw77bZFsPpV9l/aW9DOfSRdi/TrLaqg5rga4P9zKn2QO9u5f1rw8tsrXXo2SwLaVUTfb8Y0+zvbEd300pN7K9nCG9ofDdwpAtZUs/yfpXP8vuZzMJ3zNF6VKOF9naYtZmtdvji2zvIRa+axpW4d7DxUWUr+rs+22GbDys9rO1QljK5/k+/APhiDLUYf+ahv29zcbnfhHuzcyz/tKn9XYqbG/DOptPh1WWr9dpvRc+/3Dvv59n7aEO23+6l99ssvEtfRXRt+G7vv1wvRa+q9xmr/pKlW72jkx/mb1Lafaz+bS6yua7dP4aDrL6pN6EDTQcr9K9lnqd3U/VZZ+3n2btc3ma9Zd0/yS9n1EJa73ShfkqezZVeP0hm1rKEPbF6ro/Hv/K9Zvw866zWqZKn2fa18Prz56Ee1Fh8xmdOlwsp3sPfTh2zsNaLJwb+4ePo3zzwv0oX8Latr/I7r8+2O1vtqtNVms3i2xv9eDVHa/132/S/hv2x2EV9t9wL6qEa/d0bya9ftmGa/GrbDetvpG9C8rmr+ra79bG9WtqAAAAAAAAAAAAAAAAAPhtHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLTa9/oG3o2m+q3/XUdbmvDa4zofuOv7edavzzs7ai+j/L9ffTDK/9f7n4vyqQ+0B+GfmO3kPr5ZdEMf5d9v/ffRaj/K7zWbKN9U2fOf1dn1bzfnUX49pPPjEOWXwyTKb4asNNlvtlF+vsP2vC1dlJ9V2bMZm8t1dv9Xm+y7/fLsZpT/0OJRlH+8zvr6fruK8qmT7V6Un02zsWHXbjVZrfGRSdZ+nvX+0q+ysbbU2Vj7ylu3onx7P5uLJk02vtXhXLHts7F5WWft4fbsIsqv+my8emNzHOUXdTaeHIf9625zFuWbkn1fqXTmDUuf0lfX3BT4yvWX2R1dPVxE+abJ+ldbZ/lNm/XHadh/L0vWv9L7n9XZ/TRtdv3UUdi/Hm2ztel+tY7yT6usA1TZ4yzh8FyasPyZnGT9seqy8XbTZB+gmmbt5+oy20vYTrO1yLbLxp+0f6W6cIS+M8nWmula8M3uKMovwgkjHH5KHz7+OmsOsfDxlzJk/TFdXWzr7PrdZdbfl+HzfxJ+3j7Mr/usnr+YTqN8Wj8fNVl9ezvMl7S+WmdfWDXNxp9mtdt6tZtc//MOYXEbbruVPms6pb7K/oJwKCynYV9JpWvBz9TPR/nZUTa63WiWUb6EY2FpwgZUZ/l6lU1GQ5PN1U04OA/h/Q/XfeH71Xw2NnTz7PqTs3AurcK5os72AktWKpXDWVbMr7vs/s+7rHauwr2uem8e5UuXjXBVuDc5DOFaZBu+h7vK7n9Ix5/wvdQQvkdJa9U+mHtLKWWos/a5DfcOH5QbUX46G9fe/LDNxv9qttv36MM62wupNuHaLkqXUoX9t4Rr2SpcK5RwrRNuVZe+DZ9Q2N+zb7eU7UH4fHZbfubS9hPOR8N5tlar5tn8WC3D3wF02ecdwvaW5tN6eLYN77/OFmD9JHueVRfulYa/a9zu73bvcOfS/hLOF9UkG0CrVTbCNevsfoZ5OL+E/TEer8K9nzYdH8L13f6bWf7qdjh/ZeXeqAxpX0lrw3AjfAj3NtK9gbh2C/tiFbb9+EVBeP3089bh707u/Eq213X68jP+m9vwN7Fxe2h3e9yiPs42f7oHb0X5YZntFVXh542fZzg+xHuxcX/P4rf/XfrijndSNeHaMcwPm6zWS/Op+vAwyqf9d9hk9UB/mf1upr6R3X9zdP1ibBjWpTy95n1EdwEAAAAAAAAAAAAAAAAAv4scggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtNr3+gbejcn//L/rOB9W0bWPqr34fmCsXlvdjPL3pqdRfjNE8XK/mUb5y34d5Rd1dv2x2QxdlJ9UTZRvKuef38nr5zei/GtnR1F+M2TP//cffiHKX/SzKD+ptlG+G6oo//Y2e563mvMo/6hP5+urKH0z6F5tyfris+7p44OdXv/TT7LrP3pxP8p/6PBRlD/bzKP8fpvVnk+3iyi/GbL29nBzGOW/UN+L8r9v/zej/EfbrNYo2dAzOvVptuyqslKgdJPrrop+y+fOno/yN+5nY/PNRTbWzttNlN+Gc+mrF8dRftJkX8CizWrVLrz/+SJ7Pr93mo1v95ps/OnDbYS0Vq23YYcfssVI1WXXb5bZ/V9eZbXPcCtrP3sH2fyyabP2vO2z9nm+zGrPx/OsvX3k6GGUvz25iPK/d/GlKJ9ah/P12ZCN53WXtf9hk7X/cLgqdTh/tRdpf8zW+qvbYfuf91G+m2cPaFVn3+9l+HmvjrLrt1X2ee9NzqJ86rTL6u3Xq2wtXoX9pep3219KuJfWLMM/EBbQdTg+1KtsfNvuZ9fvV9kDvVpm9cl6neWH4+z+DybZfN2Hey2vrO9E+RvNMsoPTdj+0/ValdZ7WbzeZn+gWQf58NbDoTauVdPaebvM8t0264sn4XfVhbXnEDa2/fa5KD8P90lLG75ircPPO9nxXmPYntO+lbb/OnzR1IYfoA8fZ1oLVF32F2QrwVIuSrYP/lqXtbeP3s32Ht5aZXuNpWR7gUO41q/3s73kYZHVnsPejt877vi1XTq8RXNjKWUSru3CpXJcm/Th+NlNw7VguNfSh+NJLK2t+nRtkammWX8ZZtlatrTZ9xvPp7uuVcO16fQibJ+zsD+26do3y6/rbO9wCPdmxmbYZANuPDp02fhTXWVr07LO6oGyl32/JayXwq3SuPtOT8LfScx2PWGn892z/fJ0SOejq3BvI7t6qeZhew7Xd7EmvH4Xjp/h9et11l/as2zFMwv7V7oXNbTP8O/kwrVROlfsWrUKV79hrVelbT/V7/b66ViV7ssPYV/fezSu9rNr6d5Dlfav8Hc8aftvnrsf5bevvZ5d/072HqLaz34HEM+lYX8f9rO9tCqs5YdJtrf0bFduJa5Vq0n4O7l0rz3sv0Paf/ssX8+z9lA22dqr3suu351nv5upF1n/HdL5cRbU2sE+2jNc4QEAAAAAAAAAAAAAAADwzc4hOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGq32vb+Dd+PzmsOxvmmtl/8hev+O7gfH6V299S5T/tuO3ovz/evH5KH82dFE+1ZSrKL+osvs5rrPzwzfqeZSfVNcb19iNt187zv5AX0Xxnz1dRPntR7L28C2Lt6N8ajVkpUNdhii/aFZRfhL23+fakyj/tH907ewfmL+//m2B9s1plK9XWV+pN1G8fP70xSj/+ENZX/zgjSdR/tFqP8ovu92W5QeTrG/dm59H+X9bfSjKf6T9N1H+O6ZZexub2cNsfKiyobOEQ2Hpp9n9XD05jvLnL2a1z+Iga591+IC6Pvu8TZ2tHQ/m2f1vw/u51V5E+c38tSjfVOHzidK5yVmWr7psfomFlx+q7A9sH2b95fLFbL643MsGiKrJ+lcd5q+usvH8cj2J8o/D+feFaTa/f/v0jSj/cputTedhf6zCra56k31f6fWnp1m+D8ufISy328tsxFofZ3/B5ijL92F/WbfZA3p9leXPlrMov9+uo/y37r8Z5Y+byyh/2mfjZ9r+6zYdD6N4Xu9lw0npL7K/oG+z+au9yvKrm1l/2e6H97/M7qdfZffz1ma36/20f7VhvfrF9Z0oX8J6ZufC26m2WX7+9Pr10maRtYXhMtwLCe89fTjVNryfLuy762xuyXYeSpm2WW375YvjKL/fZmu7ap593mGSzdXp2mKYZJNR1Ydz3Tobe8KlbKnC9jY06VgVjuU7HgurPvu+wq3VsgyLjVenR1H+3kHYg6ssX83CvcA2LMbC93xlyJ7n0IZru+1u+2MZwvkifO+V9sc+rG2HOrz+JHv+63B87ufZy4v9vazWi4V7CfVetpaq5lk+7o/TbO9nmIbfV9gewu5SqnB8qLo0H8VLe5Vdf3MQ1ofhhNRchnsn4fizc2E9UDU7flcczl/DwV6Wb7L+O8zDzb20vo3LvbQDZ/H2Mpt/J+G7uH6S3dBmf2T9ZceGLnzXEa53SpoP659qndUPw1623ozn3y5rz2m9Vy+zz9teZvXAPGz+76f+kvaVYRXuhaRrqXBsjvdC5rv9HUn1JHzxldbaYV8s62zzsA5r52a529/0vu+ke4Fpew7bT/vc/SjfP3ka5cvRjSierqVKWGun/Su8m7x2GJt0rRP+bq+eZbVMtZ/9jnNYZ3stTbr3sMzmx365jPLNcbYXO2zC8T98ntUiWzumquB3D1V//bno/fVrbQAAAAAAAAAAAAAAAACeKdEhuB/90R8t3/u931sODw/LvXv3yh//43+8fPazn/2azHK5LJ/61KfK7du3y8HBQfmhH/qh8uDBg6/JvPLKK+UHf/AHy2KxKPfu3St/8S/+xbLdxv/EJQAAAAAAAAAAAAAAAADf5KJDcD/3cz9XPvWpT5VPf/rT5ad/+qfLZrMp3//9318uLi6+mvnzf/7Pl3/8j/9x+Qf/4B+Un/u5nyuvv/56+RN/4k989f/edV35wR/8wbJer8vP//zPl7/39/5e+Ymf+InyV//qX/3GfSoAAAAAAAAAAAAAAAAAvim0Sfif/tN/+jX/75/4iZ8o9+7dK7/0S79U/tAf+kPl5OSk/N2/+3fLT/7kT5Y/+kf/aCmllB//8R8v3/Ed31E+/elPl+/7vu8r/+yf/bPymc98pvzMz/xMuX//fvmu7/qu8jf+xt8of+kv/aXy1/7aXyvT6fQb9+kAAAAAAAAAAAAAAAAAeKZF/yW4/38nJyellFJu3bpVSinll37pl8pmsyl/7I/9sa9mvv3bv7289NJL5Rd+4RdKKaX8wi/8QvnEJz5R7t+//9XMD/zAD5TT09Pyq7/6q7/j37Narcrp6enX/A8AAAAAAAAAAAAAAACAb35f9yG4vu/Ln/tzf678gT/wB8rv+T2/p5RSyptvvlmm02k5Pj7+muz9+/fLm2+++dXMbz8A95X/+1f+b7+TH/3RHy1HR0df/d8HP/jBr/e2AQAAAAAAAAAAAAAAAHiGfN2H4D71qU+V//Af/kP5+3//738j7+d39Jf/8l8uJycnX/3fl7/85Z3/nQAAAAAAAAAAAAAAAAC899qv5w/9yI/8SPmpn/qp8i//5b8sH/jAB776///cc8+V9Xpdnj59+jX/NbgHDx6U55577quZX/zFX/ya6z148OCr/7ffyWw2K7PZ7Ou5VQAAAAAAAAAAAAAAAACeYdF/CW4YhvIjP/Ij5R/+w39YfvZnf7Z8+MMf/pr/+/d8z/eUyWRS/vk//+df/f/77Gc/W1555ZXyyU9+spRSyic/+cnyK7/yK+Wtt976auanf/qny40bN8rHP/7xd/NZAAAAAAAAAAAAAAAAAPgmE/2X4D71qU+Vn/zJnyz/6B/9o3J4eFjefPPNUkopR0dHZW9vrxwdHZUf/uEfLn/hL/yFcuvWrXLjxo3yZ//sny2f/OQny/d93/eVUkr5/u///vLxj3+8/Mk/+SfL3/ybf7O8+eab5a/8lb9SPvWpT/mvvQEAAAAAAAAAAAAAAADwNaJDcH/n7/ydUkopf+SP/JGv+f//8R//8fKn//SfLqWU8rf+1t8qdV2XH/qhHyqr1ar8wA/8QPnbf/tvfzXbNE35qZ/6qfJn/syfKZ/85CfL/v5++VN/6k+Vv/7X//q7+yQAAAAAAAAAAAAAAAAAfNOJDsENw/CfzMzn8/JjP/Zj5cd+7Mf+FzMvv/xy+Sf/5J8kf/Xv6P9z9eEybybXyv6Rvc9H1+6GPso3VR3l4XfT64+Oonw/VFH+l2+8HOVfmjyK8pNqG+a7KL+pVlH+cZ89n+P6MsovssuX59uD7A/wjqZvR1NjqbbZF7bKppfy2af3ovxFN43yR5OrKL/us+czrbP+21T/6Vrjtztus/61GZoo35Xrz+8vNF+Krv3hybPdd/feyNp+e5V9t2HTKaXKvtuHixtRvgvH/ipsy00dPp/w+o+vFlH+4VXWPh8u9qN8N2S18//p5i9G+bHNjXsPw/aQlSalXWbXX93I2vPmMMtf1fMof34n67/NLKv16jqbfNNa+Gp5vTXpV5xc7kX5bTh3HTXZ3PjDR29G+V2bPt3tfNGss+tXYe3WzbL202dfb6nCWmx5Pxtv+3n2gbs2zA/Z/T/dZA/oapXVwj87+/Yof3h7GeX/81n2fGZVNp5MLrL2XMJ4nQ23pd5mf0Ha/lPzp1l/PO/Tvb0s383D55N1l1LW2f2crrIv4NNDtvez/1JW0Hxi/mqUP6yztWwqLLfL5DKcvzZpPqxnpll7CMuNUoV/YKjDza6S5btZdvV6Hc7Xy2x+ebA5jvLzNitonr97EuXfWB9H+VgTrpe34buXcD2e9pcqmL+aq3Dsn6VzS9q3sqtvwmdZwrVRuC1fttts7fg03Du5Mc9qt18/uR/l41ImHQvD77fqwsVL+BfUm3CfN1ualm4/q4X7cOzpm6y46tvwC0j7S/p1hXPvcpL1l/NZNpl2Ye38fHk7ysfq8PuKa5Pw8st0cztThWvltLbdpv1xmj3PZhXWquHXO3uS3c8Q9vd12F+2s922h1ja/tts/BymWfsp1/gN0tfow1ryYh3lh0k4w6f3v5c9n2oeztfh3szkPMtv9sP5LkqXMrTh89y19Hdg4XxUhf2rpP0rFdZX9dUmyvdp+w9bUNp64noynO/ivZDwA7RXu61n3nfC76tfZOvZKlxPxfNRuL6ottkCvjtMN9/C8WSd3U8TXn8evnt8lg3rrPYp27BWDZ/9cJD9TqW6Cn8oEbbloQ37Vjj3DvNsH7mEY0N1lm221GFt0izSF1PjUjXhWjnNz7OxP21v8dif5qvsd1T1LGzP4d7kEM6l6fhTLcO14Dyb69K9n9HNROFap6rC2nMSjid7YXu4kbXnapW1hypc61eX2buIuD1Psv5Yhe15mIVrzaenWX4R/E4u2PdxcgsAAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRat/rG3g3JlVfJlW3k2s3VXY+cDNk91GXKsqn9wNf4415FH99k7W38w9k1z+eXUb55TCJ8puhifLrsH81ZciuP2TXX1R9lOcba3qSjc/tefo3ZFPvyfNZ/7q3yNr/o34/yk/rbL7rhux53ppm40MXnudP64amXL8/Pu6n0bU/HKXHZ/Y0GwvbZZavt1l+O8/a/upW1hdPZ4soXzdZW5tOd1PTfr26Puu7kyZ7Pr9ano/yPzf/YJT/Pxw+ifK7NjvJ2vP0LFxbrLLaYXKR9ZerVZbvpln76fbC6y+zsb/f30b5IWz/3ZCNJ902+35/s9yO8v/99vdF+RcnPx3l/zeLVZRPLR6G7X8dzkdX4XibNYeyDWux1VGWb6+yG5o+zvrL+lYUL0MTPqBwa2PIvt6y7LL7+devvhzlJ+Fa7ePTfxblv2OarX33HmbjW7PK2n8V1mNVlz2f7SL7vOHSuqyPs/G5vcg+bzrfhVsVJd3y7MP+Um2yGzqvsnrvZ6uPRfmPL16P8v/V4nNRvl5n7bO9TOuxcK15tYny6YDYz7L2H+fD8b+bZR242wvnl3DCDsu3UmfDbUn3fr403I3yz+2fRvk/ePPzUf7fVdnzTOeLySpr/9U267/VMvvCqv761x+mYe0fznXdXrYP2Kyy76rf8RvBPqzFwm320n15L8q/Mb0R5Z8/zvpW02Vj/9Bkc2/a9uuw7cfFdjg2lE1Yq56HewM3sv6y3c+u34RrzXAbPH6e6fUXr2Qd/rLN9rZTQ9hfSri2iIXXr8L2HPeXULPJ5pe4PzbZe6M6XFtMLsPadhL+rmKVXX/2KJxPm6x/XUyz8So2ZO15CNtDFc4X1TLbOxxm2fhTpYvfULUM12pNuFmRjg/h2ms7z55n2l/ay/B+DqJ4qcP6dufC/hVfPu1fO7qPr+rC/pXef1jfxtcP778K12vp+iVdf/WzLF+Hw9XYVHX6biEbb6s23IwNr58aJlmDqDbpu6zweQZ7IaWUMkzDd02H4e/89rPrt+G78fbyGf4dXrpPF+49lDS/Wmf58L1Xf5DVzvHckq7Fw7FkezN7j9KHfSt+z/HgJMufZJ93bD1rCNcKyb5wKaUMYfuvwvZfwrF/mIT9N2zPQxOuZddZcdIvsuInXZvGez/h9ztMsr3q0dnxWqfUYXubhf0l1N/Ixuf0ftLabWjD2nYd7k2ma7tQdZgt9oe96/f35DiWk1UAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvte38C78YcWny0H+9c9xzfb6b1Mqman14d34/6nhyi/vJX1l/vfdxLlX2ivovy8Wkb55ZB93sMqOw88q7Khs6kmUb52Pvk9devXtlG+2mbtbf+t7Pt948aNKL+99TjK35+dRfm9Zh3lD5pVlK+r7HnO602UP24uo/zd9vTa2aZk9/5WdxHl7zX7UX7XZqd9lJ8/ztpOtcmu315Oo/zqZjY2Xx1ltV57kI0lTZ193sUse55p32rC/KTuonw/VFH+nz/9eJT/4OR/jPJ/YL7buXf2JGsPk/Ow/Vxk7WGosudfdYsov93LaqV+mvWv7SJrn9vs45bSZtdP9evs8172WW3+xc2tKP/XVv/bKH/3O34yyn/PLBufZ4+zub09y2qNap31r9KF89HhPMoPVdi/ZmmDDvt7n42H3V7WX/pw66TbC+//IvsLlldZ/n+4/NYof7bN+u9//5F/HuVnD7J6Mm7/m3Bt1If1xiSbL7qjvSw/z77f6Xl2/918t/1xCPvL0GbX75vs8w6XWf18fpWtZf9vqz8W5e999/XXaqWUMn8ty1erbD4q4V7UrlXT7PuqbmT9a3KeNdB+krXPbprl66wcLn32eMpQZ/fTXIWf9yKbf38xnI/q3xeOz29ke0tNmw5YYX8J55fSZ/VbqYPnP89q23oS7iVcZve+vvb7sd9Sb7JnWYWPcliHfTcdas+y628vsrnotd+TXf/l1z8T5Zvz8yhf7e94L7DL9nKGcG2UqvazuagcZLV2lX3cXLi11CzDsTmc67pw7Vj/eja+nX8k/MB99gV0T59G+Xod7j0vsrV4CWuBst3t2qs02fxS3TyK8mntU9L5Iiwd6vA93DR77RXbfy17PueTrH/Fwtqqv8zek0W1UimlCvcCy0V4P+l8NIT5NvwJ1a3jLB/uzaf9Ma3fwq2K0obz1/RJ9hdcPTeutXXcv5bZXnWzF+4ln2X1ZAnHw2rH/asO69vh6CDKb9O9w71sfNuGe4Fxfwyb/yZ7PKMzpPXSVfY7syEdzzfZArU6T+fTcMAN12vVjcMo3x+G669ut3vnm/0svzoO6+HgcWYj8++CcC4awrbTn2fvmeqDcK/iNNwLybbxSzXJNnqHxW6/4c1BNvZsF1lbXh9kc9fw0ayvL97OxubZL0fx3Qv3HvpVWMuka6Nw37yK983D9r+XrdX6efgedy8rTtL+cnkn3GtP1y7n4e/2/sWvRfmRrXTytc46q5Xqi/B3DOnad5GNb0MT5tOtwJvZ/NI+zdaO3X62Fz602XjVnmZnNIZwL79aBXu33fXnIictAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK1qGIbhvb6J1OnpaTk6OipPPveRcuNwN+f4NkMX5S+H9U7u4yuaUkX5SdVE+bZk+VRTOW/5XuqGPsr3JRsWzvtVlH/ap/eTWWTdpczD9jmr2p3m9Zf31qeX2fg/r7ZR/nSYRfnPr56L8vt11h/vtqdR/oXmLLt+k40nh/U0ys+qSZTnG+f/+IX/Msp/aPEoynfhv9XwxvJGlL87PY/yH9l7O8p/1/xL2fXbyyh/FPaVRZjnG+uj/+JPR/nFIhvLJ002d02arLp64eAkyn/y1m9G+f9q/zNR/gNtNvcuwrlC7fbe+uj/889E+e4ga//1wSbKN5Ps+i/ffRLl//Ddz0f5/+bGL0f5D4b9fVFn/SXdS9BfvrE+8X//v0T59c2sNl/fD/vLXtZf7tzM1hZ/7IXPRvn/9vhfR/m0v6TzRbpXl+Z5Z//5/zXrL1fPZf1ldS9r/+2NbC/5xmG2Xvjue69F+U/d+9ko/0Jcj+22/ZuPvrF+/1/O6rGzl7PN2NX9sL/cWkb5u+H88vLh9eu3/+7+z0fX/vg02ws53PE+dVNl35W+9c7+iz/7f47yTz+aPc+LD2dj7f69iyh//0bWV17cfxrlv/vGK1H+Dy4+F+XvN9lcuq9/vaf+6H/3w1H+rd+XvUe5+GjWHg7vZP3lhRvZe5R7e1n/en6eXf/Ds2yv+hPzL0f555qs9jyss/avNnxnP/i9/3WUf+O/eTnKP/nPslps727WHu4fZe1/f5L133mT7VUcTbJa8lv3H0T5j86y/Itttnf4QnsV5Y/qsH/F/SXr73X4ri/9ndb//gO/P8o33/ltUf5L/7vbUf7ypax+mxxn7XMS7lXXdba3UVdZftpm93P/IBsfvvPojSj/yYPfiPIfmTyM8sd1uheS/s4v6y9nffb8f/il/yLKp9L+dfKdN6P85Z3s+WwPonjpwlfpQ7ZcKFU2fZWwO5b1cdh/vyWrP7/z/ptR/vuOvxDlf+9e9tuK23VWn7yyvX57+7GPfWt07V1r7t/L/sDt4yje72XvBYcm64vDJKs1+kl2/arL2n56/e0iu/+rO1n+/MVsrrh6ORtMvuNj2XuC83W2Ft/7gayv71xaqx5kk0U1yyaLapY9z2Gb1RpV+Hl3rgnfa6b334bjycEiyq9eyNrD5b2sGDj6f3w6yo9OuNas9+bZ9bustu3XYXEV1s6xtD0/e0e3ftdsh035F+UflZOTk3Ljxjv/HnhcO3oAAAAAAAAAAAAAAAAA8Ns4BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaLXv9Q2MVV2qnV6/H4Yo31Q7vp+S3c+unw/fWE2VnXfthy7K12H7bNLmkzXPWHr/qbR/laGP4un3yzu71Syj/KLKvt/FsI3y8/mXo/xlP4vyh3X2eZvw827C+a5L80V/ea98aPEoyn/n4rUov1+vovxn2+ej/Ml2L8pf9tMo/+b2OMofh593Um2ifDNkc11bmuz6+tY7ms2y7+vuwUWU/9DB4yh/1U2i/LLLlo2fu3guyt9tz6L8pPpSlL/fhP0lrQ3DUk9/eWdDmz3QyXE2fs731tn1m2xtdLKcR/lfPvlAlH9p+jDKT+avRPkXqrBW3fHaTn95Z2FpXrpZujYNv+Dwhi5WWX31709ejPIfnT+I8vt7vxnlb9VZf9m1SZXVb+83s9Ns7bg5zMaf9SrLd5ssfxX2ly9fHEf5T199JMr/wcVvRPn74XyaqtP5wt7bOzp8NauXtousfab9azPNrn8yy9b7jybX/7z/w9l3RNe+dfyvo3zdpHsDWVsuQ/bs67TYeJ/1rf3XrqL8+mA/ym8Os7n9Ypq1/bfr7Pvaa7O19W9c3o/yL0yeRPlJldV6TVi7zcJSON3Xfr/1r73PvxXlj49eiPKbg2yv67xdRPkH4feVfr+zOquV5nXWH4+byyjfxC9ms/FwEo4/dfrvOlfZ80x/t7Hr30lsX3s9yt/79M0ovzo+ivKXk2yv62Satc9p2P7bsP5J98J/PdzbXvbZ9bu9rP0s6my+m4ftP90Lb8J3R334HjfNp7pf/WyUv/vy90b51w+ydymbWdZ+miYdn7Pn2YXrhfUm+7xX6+zzphZ1tpY9PAjnr5K9y5qH31c6H41N/9n/GOUXdz4R5ZfH2XxUbbPxrU63lna71RVrL7PPe/k4q4df28/qhzcWWf6FyY0ovx/s5TzrhstsrKr3wr7Shvvae+FYvuPfZA5tdv1wqitVH67t0vcQ+1lttTnM5t43TrO+dTjP9iZHJ51L+7D27MJ8OLlUYf/ddf8qm/A9aPr8w/sf2vA96I63xjaL99kZin63xU91eBjl62X2m+f+ItsbS/di4/bPN8S4dsABAAAAAAAAAAAAAAAA4LdxCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wrf6xv43dIN/U6vP6+yR7ks2yjflSHK10OWL1X2fOrSZNfnmVKXKso3YX5eZfmLsD13UTrXhPfPs2VRZe1tGreH7PqbKpsvltUkyqea8P5Tfcnmoz68H7PXe+d2cx7lX2hPonwdtp0vb25H+ePmMsof1ldR/mIIa8lhFeUX4Vzamuq+obou+7dHXjp4EuW/ZfF2lG/C2v/Ly1tRvg9rw89dPRfl0/7+n81ei/Ivt5sof1CH/7ZMuDZtqvfXv10TNs/StNkfuLXIxud52B7qsJZc99n4/zNPPh7lp7ey1dG0+nKUvxMWV/NwfunD+WtSvb+qvSEdfsLHU03C8aoJ95bC/vL25X6U/6ePfk+UP76X1XufmL4Z5e80WX9M91pW4fwy2/HacWyqcLOoWWb59ir7vjZ7WYdcNdn39fhqEeX/5ZNvjfKH4QP63vkrUf5unbXnSVpApP824Pusfqu32eedPwn3uh5kz+dimvWXq/k0yj+eXr+/fOEi20v4V5Nvi/J/eP/Xo/y0ymrVWTj3pnNR2hObZ/zf6azP11H+xitZ7d9PZ1H+ZJrNFWdVNle8FrafVFt/LMrPb2Ttv5k8yq4f7svX6XuC8HHG76V2+3Xlc90q6y+Hn832hrd7x1H+UZvNFafpWiesZfoh+37rsPZZ1Nnzn9dZ/+rC+aIu2drruM764yz9CcyOa8n0vVeps9qnfj3bG37uF+dR/rV5Nh89nWZr9/U2+75u7Wft5yLs7/tt1l9O1tnzXIV7gfOw3mtKNt+9kI5vYft/1n9XsffqWZS/+2+PovyDWVa/rXe8V5e+y2on2WbLepX1x89v7kb5eZP1l6M2fPe7+HyU3w/f5dbp3nkW37lhm83X01ceR/nF7exd4mVYr27DemybDf+xdPlVZ82tTB5l89Ebs+Mo/x8Xd6L8zbA/LsIPvAl/izEqm2xsK8vs2Qx3bmTXb8J98EX27Osua/xDOHhW/Y4Xy+Hl26vwPeh59nmvVlmtcf8wq312/DR3rr/Mxp7mIFvrDHvZWqqEtfMwyfpXtcnm6hLef3UVTkbb8MVdurYIf8eTjiebw2d7rRML9yqGdfg7m1thf7mVrb3a8H76B9leyxD2r2GT7T3wO3u23zABAAAAAAAAAAAAAAAA8E3NITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt9r2/g3eiGvnTDe30XX5+mVFG+K9kH7Usf5ZvShNcPH/yQ3U+qqZzn/Ea6GtZR/nLoovwkbP/74de7HrL2uYrb5zZKz6tsqK3D/tiF96+/vLOTPnv+h3XW/tN5K73+ZlhF+S7sj+shaz+LarfjfzrfbcLnP6my9vB+ct7Novx6yJ7lJPxuj5vLKP+4O4jyqeUwifJNXOtl0r6y61rPXPTOrrqs/Xxg+mhHd/JbNmH/TfOLOqs9p1U2N16E/fFi2ET5G+Fcqv2/s7DUKOtVVmtPmqz93Ns7i/LLsP8eTZZRfhXWqj9/9tEon85f3z1/Jcp/pA3Xjln3et/Vemmp3ayyB7qtsgc6m2XjZ2pSZx/40XI/yv/M0++M8uU4i3/37M0o39RhB9ixNtyrGN18Fz7Odpm1/ypt/unXG45v51fZeu2N6Y0o/6/PPxzlD+urKF+mb0fx+1W2VzcJ23MqvX49snqyb7PrN+usge49zPLro+z5bOpplH8cZGdt1tZ+Y3Yvyi/qbF9vsfh8lP9gG76XCvfZmyq7/ipce9Xhv+uZ9q1Yk12/2mS1zMGrWXtbHWW1/FWV9ZWnQ/Z5+zB/a3YR5X/u9Nuj/PzoV7J89STK36qz9tmnxXy6WA73TlLb8L1gmWTts1qHezP/Mas1VkfZWuG8nkf5x5usFth2Wb4N10bpXuNln40P3zrP1jr71etZvs7GwzJk+Vn4k5mu7LZ/papw/p1/IdtLvr+X1TNvDVl/ufxQOL/0Wf7GItt7e3q1F+UPZln99rkqe54HTXb9/bCePKxPonwdzi/pXl0f1p+xsL9Ur7wR5ff3s7X47V9eRPlH35Vdf3MYjldh+by+DH9yGPbfbTZdl19/+36UnzfZfHGrOY/yzSyb7+422buytH+NzXCZ1W8H//E0ynfTozCftc823Orqs3Is7o/hq9nSXIX98ST7AJ99O5vvpuG7u8Mmm99vtVn/HZN+mX3WapPNLfVlNvZ0893+3Lyb7Xbfcwjfu6RL67Qvxkv9cCthu81uKJ0bw6FwfNLaM9yrSGvPYbLb/tUvslpymIR7sZOsvVXbrEEP4fPs9rK5qw9/mBD+bPLZF//GPmsPwzqbj4ab4e8+0/H/xeeyy59nv1vtT7PfIQ3bbHxOn2c8Ho7EyH6NAAAAAAAAAAAAAAAAAAD/Pw7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBa7Xt9A+9GX4bSl+G9vo2vSx2eP0xPK/alj/LdkD3Huoriu/+ehuzzpprq2T4v2oXPZxPm0/ZTwvaTPv1plf0F6f1vwv41Cdt/Xekv76Xl0ET5xdCF18+eTz9k7fmw3kT5iyErBfqwA2d3U8oyfJ7xfBqOP+n4mXjW+8qqz9rO024R5V+vD6N8F/at59qTKD+ptlG+2XHtswzHhlRaS8azddi3nvX+MoTf1+V2GuXP+r0o/+2z16P8q+vbUf6ouYryi3oV5esqaz8X/SzKb4bLKJ+udbJK4/2n2objWxh/epX1l+++9eUon9ZuD9cHUf75+WmUT/tjHY7/Z302XpWyjtKzahJeP7PLWq+U3c9fYTlWqqzULsNV9hcMN8K1y94yyk+adK2Qjc+P11m9+j+dfSzKp7579maUP6qzGWbTZ6u1WbhXMdvxtnPav/pmt/VzexmulVfZ/bc3svaf1p8Pz/ej/Ofae1E+nR/7o1+L8odhf2nCenJRZf3rMtzbmIQV4q77Vyxc/jbrcDx5kvWX7WHY3i6v/zzffHwjunbqqttt7fOHF5+P8od1thcyD/flF2Gttwl3GtN9w1S1CYurUN1lfeXg9fC9zjx7PpuwfZ6WbG751ea5KP+xWw+j/GfmL0b51FlzHuXTffyjcGN7UdL+tdv2XNL3iE3WPpur7Hne+rVsL6qfZHtLy1XYX7psb+CLfdh/j7JaYxLWSpddtjcwr9I3R29H6TtNdv0unF8m6VokbP9V2N+HVbbXUi2yvbHFK9le1N02q5feHrL+dfVc1p7XR1ntPJtl7WG9ze6nrbP+9Znz56N8utaZ7Gf14QfD+W4/bM/x705SaX88zN5Vto+y53OwF+691dl4e/LR7Prbg+z5DNMwX2f5/iKbT5dh+f8rb2X969b0Isqn76JT6Xy9a9UsG8+rafhuYZt93oNXsncjpWTz4yrcC+/m4fyeLmfD7YT0Z2nNZXZDl29n68Ffa+5H+efCd2WzRVp/BsK9kHhttGNDvdu1VzfPaqWuDd+kh49zSGvt8Hbqbfgb0WzrrYRbCaVfZx8g/R3G+81wlc0tVVp7LrO9imEezr3p/azCBhpef0jHzzZci4fjT9rf47n6GVc14fPcZHsVw1m2lqpuHWXXn2Zro6oP2/N+VkvW4fzbP3ka5Yf0dyrpa/Sd/s6muvb8/j7rhgAAAAAAAAAAAAAAAAA8SxyCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC02vf6Bt6NulSlLtW1sn0Zomuvhs3Xc0vXNqmaKN8N2f3v2mbodnr9vvRRvg7Pc6bPP0uPT9r+N2H+MmyeddieJ9fr5l81r8I/kOZDmxL2l/B57rq/NOnzCe+/qcZ1Hvusn0f5RbWN8m/3iyi/GbIR6Li+ivLzKmufdTqepNNX2NzS/tUPu+svu+4rqV33raYK54p+FuXP+r0o/7TL+tYkbPu3m/Mon1aSkyEbSw7Dv+EyrN1mYQOdV+myImyfYd8d29zSNNn9r7ts7P/81f0o34S1QzoXzcP2edxcRvlUU6XtJ7v+Sb+M8pOwfR7V2Xj4rBsm2fgzdNkXtt5m7flLl7ei/Ivzp1H+aBLWbnXWvxbNKsqn8/Wj7iDKP+7fivIHOx7Odz1fdDuev4b09tP6M7v9slpl9cD0IK3ls/5+cy+bX/aatH+to/xrm5tR/lZYf35ikn3em01WP6fteRuu1dK9irQ+7CfZ5Tf7WXsLy40yOck+73qWjc+Hd7P20/fZ/Zyusr2TV5vjKP8zw3dG+ZJdvnz37M3sD8TtOZPv3Wb3k67XwuG2dNPsD/Rtlm/Dzee0f60W13+e3TJ7lm+fZLXSpMm+2y78stJa8rvnr0T5w3CfNP28Z31YO0Tp3WtW4fe7yNpbe5X1lb23snyXDf2lOs/WXk+arL98Lmz/bThZb25k9//y9GGUv9ecRfmuzfJ92N/X4Xu7uH9ts/Gh9LvdPG+usvs5+mL4pngI5942y1+us/7y5X6370Hr8F3Bry1fiPIX/TTKvzR5HOVfCPvXIny3kL4nG9L236R7CVl7GGbZYmrvzWyv9HaT7X0+7rP+sgz3Di/3sus386w9ZDtj+XvZ32juRfnnJ0+i/HyWvpvKxtv0vfWuDWfZ+FD2srX75DTbu91/kK42s/Z88WJ2/c1hOF6F01EfvivomnB8aLPx7TfP70T5fzd/Kcp/2+yNKD+vdvu7xp1rs/pqmOz2l3vzh9nzrMLNxvV+FI/3Mvvwh3Xp9SenYf3QZuPJ1TK7oYerrB5+ODmM8pH0N707/o1iNcmeZfU0XGveOYry7UW4Fgxr1W6atbUq/L7ioTb8eptVdj/tZdgXl9nYuezCweFZF/bHai9bu1RXWa3X3T+O8rG0/W/D32004VydTu3h3FJtst2reK38TJ++yQ3h3l4V7nUN6+y9e/V2tvdTXrgbxbub2Xv05iT73U/ZZM+zvpX9zqC6yu5nuMr2cvplNr6V5N1OMFaN69ehAAAAAAAAAAAAAAAAAPDbOAQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGi17/UNvBt9GUpfhmtm++jamyHLz6rsUXbD9e77K5qqivJ9dvmyKV2WD5/PMvy82dVLmYfP5yC8/qRqwj8xLmn7T7+vXZ+mHdvT34TPJ23RZ0PWH9P+kn5f+1X2JxbpXxA+zia8n1RXsvHkcT+P8pf9LMqvh6wHTKp0PM/yh/U6yqcu0/Fnx/0lEc9F1STKp7XGru03qyi/GbL7f21zM7z+bvtKE7aew+Yqyi+HrD1c9psoPylZfhk+n5Owlsw+bSm3mmzsHNvcMmmz53MwyfpX6o3NcZTvhuz5vLE+ivJ1lfWvD04eR/kmbBBnfTie1Nn3uwznrknJ5t507ZLmu3AtmPavfhrO1l02/9ZV1h5O11mtt9fsR/k2bP+LHddih80yyu/X2Xi1HLLv6wub8yi/X2fXvxd+X6ldzy9hcy7hcF6qTfYHuk02nlysp1F+MQnrmW1WcdyZXkT5Opxf0vrzzW02nz7XZPd/o97teN6Euw/p2nQb1p/hcFvqbZYPlyOxapU9z/OTvSg/38/mly4cz7fhA+rDvZnPr+5H+cM6W6/dDfvXy202PiyqbDy8HLLv63GXzddDkz3/VFhux/NdWM6U9vH19yu2R+G+W5vthTw8z2qTtLb9tfkLUT5dCz43eRrlP1YeRflluLeU2qTFUqifZNcfwtq23oS1yWWWnz9M7z/Lb+usdnvSHUb5Xwv7yywsBpqD7PpPw7XIvMpq4bM+3fsM18pDtlc3rHa7lk3nrmGatc/2PHuei7fC/tJk+VWX5a+qRZT/Ynj9asf96+Eme7O/WWTzRbo3n9aSsbD/DufhWnaW9d/qIFtbdLOstp09ydrD0W9k/b3qsuJzdSu7fneQ9Zezbfq7nzAfrqXq6mNRfnOY9a+0PtyvdjtfpIZ1Nv/GK6nwvXh7kfWX+dNwfmyy/rIM2/M222ov4av0MtTZ/a+bbLz60pPs3fW/nbwU5S8PsvH5/uQkysfC3z7ErrLFezXPvq9qno1X6d7hJKwP+7B/bdPxfBv+LjPc+0zbQ7eX5ddXWYc/3WQDyuur4yC92/f0Jdxnr/fCwTOsxUq4dq/Os1q4mmZtv17v8lddpfThe+V0ck/7YjPN/oLpWXb9apNd/3SVtbfdvmX9OoS1QBWOzcNV2P5vZGvZ+uQyyne3w+tf7rbWrjbZ3FhfZrXA9k62F5iqwkMX3Tz9DfkzLuxfQ3qIJfwd0nCZ9cf6LNzLCefHfpHNv3X4fKplVp9U07B2nmS1WDXN8t3T3axd/JfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK32vb6Bd2NSNWVSXe8c32bY7b2shm2UX9STKF+H5xW7kt3PSd9F+bO+ifKpumRfWFf1Uf5mu9v7H5uzfh3lu7C/XA7Z85xXWXvL0qWUYbcd/jK8/NvbeZRfl922z2n4RO83V1F+VmUPaFaP6zx2N2T3syzZeP60W0T51LzaRPn+mvPoV9RDNt4uw/FhOWSlyXLInn/6/U6D8epWcxld+7km+65Ss7DMa9K2EPf17POu+uy7Pe+ysXYSzkVpvgtrt8M6G2vTtn8xZO0zvX7qsF6Gf2IVpY/qaZTfdX9pm6z9tHU21jYly2/CWv7B6kaUP5xk3+8mnCt2PZee9tl48igc/9PPexyOD3fD2u1O2l+qrL90Ye1Q2mx+aWdZ/6rC+SvtLxfb7HlehvltWMvM6mxvIK0l59V+lG/CtX56P5Nwb6MuF1F+UWXz4yLsX2l/2fHWTNwfh6GK8qtNOJ702fVTbZ3O1/FuReTe4jTKv93tRfm7YT12FrbPF5tsvq5L+v2Oay8hHJ5LvQo/b5flh3U2QGynYb7L8vFebzqehOvHp102f6XrwcPuPLt+uF5IHdbha6Aqe/71Nvt+67A9byfh/YTbLU3QH4fL8D3NLMuv19l3dbnJ2v4by2xtd6vNaqVJldWek3Cf+rn2LMqn+5KX/SzKp+pNNpem+W6Wfd5waCvNMuvr05NwrgvfE2ya7H7OLrK1/mfa+1F+L9zrfW52EuU/V2X304e10jKcS0/SvZkuXLufZ3st1Tx8774K93on4XuF83Bt93ZY6zVpPhsf1lXWX35zuB3l07XjB/afRvmzcG/vi+s7UX5RZ3vVb2xuRvnUsM3m39Jn7XMIa8Mq/KFBupaanWb99+DL4XwU3tBmE9a26yx/Ed7+00nWHi72svrn16+ej/IPNkdRPt0737Vqlj2f6iLbm68nWf3fT7N8e5H1l3kd9vc+6y+ro+z63d5u9wLX4Xpttcqe//k2az9Ptll9ddlne8+x8HdXVThflLA+SVXb3a6/+nCvYnoW3k8X7j+kr/bDeiz8mWtplmF72Gaf97XTbH9jGr0ry2q9WPreNP1NXdi3hia8fjg21JfhRl04F5XwvXW1Ta+fxdO1Wh3Wzuk+bBPuZT69zN4zZbvsvwvC98TVNBvcqoPsEw/LbDypwv5bn2e/Ca/CteDYVF04l4b9vV6Ha9ko/U0gnb9S4e/w+sts73B4/c0oX59ntUZ1K1v7Vuvd/m647GV7Y+nebVmmv/vcjXH9WgAAAAAAAAAAAAAAAAAAfhuH4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYrfa9voHfLZOqifKzarePpg7PH9alivJH9V6Un1ebKL+o1lF+UmWfd1HNwutn3+/7zVE9D//EMov3XXb1IW3/fZTvs+4S68L+eFhn/WWTPp9qiPLzKvu+7jbZeLiop1F+bJbDJMpPS/Y853U23h7WV1F+M2Tf18WQjZ9d2MG6sD1vSng/4fWbKhtPNsHzWQyr6NoX/TbKz5qsrc12XOb1Q9YWkmdZSiknXVbLzOK+lc116f2cd9ncexbO1YdNdv9vbo6j/H6dtec67Ftp303nriasbVNp/5pPsv6+7rL+ktYCp9usPafXb8LabdVnc+9Zlda2mS5cq729vRHl0/71dsmuX6YPonhdslr1VvhP6cRrtTpsb204P4b9cVJn17/cZrXwts8e6KrLxp+314dRPq2V0v6S1tqpSZV9vxfDSZT/SHse5Zsqq5fSvaKwvCrh9FtK1h1jy1XWHhbz7IbOVll/PJhm95PWw0ftZZT/8vp2lF+22f2/ts36+0vt4yh/FM53i2q3ewl9unUYtv8+XH710+wvCJc7pdtm7XO7yR7Q+VW2d3syy+q3eZt94NuTiyj/qDuI8un8ctlnz+e4fhLl0732tB5L54u6y9pz2h/rTVgfhvNvstyvN9m1+6vsw/bz7OF3YS35eLUf5Tf7u33vctZna9Omy+auF5qzKH+7zeauXRua3b7oCJc6pcmWjnG+PQv7V5O1z80kqzUu5tlc9OrlcZRvwy9gEb5nWoZ7LeddNndd9tnzHLbZXFqW2d5ntc3Wvn2bjZ/hUjmeS5twrptmS9ky1OF4EtYOmyZrP2/Ms+9ru+P3pldd1l+errP562KT9Zdp+VKUT/vXcJGtTavhVpRPpf0rXavNzrLxtn+Qtf+rcG8gHSA2k2yxeTLJ2uer0+Movwz3Jn+tey7Kp3stpbwe5jPDOpt/q1m4t7HN2me9Cd+VreLFXRSvhqxDVuFicB3ubZSw/fSTcL7by+aLty6yvYd0vpg1YX216/4Srtfi60+z8adaZ8+nmmbtoQ1/VrcN9yqmp1l/7ObhXsgmrIfD+bebZffTPM2+3+WtrD/+5pPr77XfLQ+ja8fCsbP0u+1bpQ7nijbcKwr3NqrwvUV7nq3d+0n4ecO+20+z64evjUrfhs8znBsvT3f7O4ydC7+vdO6q5+HzCe8n7e9xLXaV7X0OYX+vwueZ7lXU5+H9z7O5ourCWv799p+gSttbm83tQxeuRcK93nqW7V0NF9l7x3QlOwxhf99fZNc/zd6NpPrz7PnsyvutGwIAAAAAAAAAAAAAAADwDHEIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRat/rGxirRT19r2/hd9WsmmT5Jsvz3ppUTZS/We9F+b5cZfm+j/JNFcXLZsjyzzdZf0/Hh9WwifKboYvyaf+dVPMo/34zr7Lv67n2LMo/7hZRfj1k/bcrYYcJpc9nXm+j/KLK8n34eTdDdv5/Vl2/Px7X2dh2p8nG2nQs37WDZhXlm5I9n6Mmm1s2YV9ZDtnYOQ/bZtoX53XWt+42p1F+0+y2/TQlm3z78N/iSPvucsi+r7pkzz/tj4tJdv1pE9YC4VibWvXZsrGusvZw2WW11VkX1jLTp1E8nev6stv+ddHPovyb3Y0oP6+eRPlp+HwOonQp1SSbL3btxnQZ5S+3WXvuwvEtrX3S/Mk2q09S6Xw9CWqxUkrpw+d51mWfd1pei/IlXCvfSveiwn/aKnz8ZQj7Y11n4/9kkn2/2z77wPWQtf+rbVYfPlylI1zm5uQyyqf152GdjW+/2r0Y5S+Gt6P8xyYnUf6oDhv0jv8puCqcvtJ8LNwaGNbZA1pXWX243Gb5Puy/jzb7UT5dzz7ZZte/H7bnX6mz+/lgcx7lbzXZ+Fx14fquDcfnbPgvXdh/w+VISZb74dZAqS+zm99Os7noai/Lb+bZ2PmFyztR/uEmmxtfnGVrkY+EpdJzYV+ZhWNntVxnf2CWfV/NKussQx2uFSZhZwnH5maZjiXZ9dvL8PPuhXuHV1mDezjP5op5m62tj9psbTELB6x0b+k7F9na6LPl26J82WT3U11lc2l9mO21DJNwrgtfVNZhf2yXYfvPXmOVIXwx20+y/nWxyPb20rdebVhs35xna6907bhzVfh9rcJ3OycXUX6osnqgn2XtJ61Vqy57PtOzrP0MdTY+DOH3VcK17ybcW3prkn1fZ6vs+n24l9OF9cbz5fUon/aXIewvw1747qLL6r1qG+7VbcJ6Mq7HongJt3pLFbafdPOnn2SftzvI9jaenGW/C3lSsny6F/tS2l9CQ9ieh2W2N1ldZv2rv5Ht/af9K3w1Xibb8N1jWn+us/Zc72UfYAjfjcfjQ/g8L59m3+9qfv32eTe7lZ0btuFm1Crcq5hnc/sQ7gN2B9naqzkP597wfprLcKwK10bVJrufai/8HcY2vH429JTq6cjWOjtWNWGtkfbHRfjePfxNdXWZzaXx9dfh3NiF1x/CwT/cOy/hXmkTft5+Gt7/sy59L1uF41X6s6vw+41r1XBvslxkeydpfyxhfxmW2Xxawr2Nai8b34azcHPymvyX4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit9r2+gXdjM3RlMwzXyk6qZsd3A988mio7HzsL813VRfl5eP2b7SLK79qsmuw0zzfWWb8X5Z8rZ1H+fnMe5V/vDqP80y5r/7fD+9mvNlH+VpPl7zezKL8ZsvGkLlWUb4L++H7ru334LDdDVna+MHkS5ZdD9vzf3mZ9azNkteSiXkX5edi3mqqP8sf1ZZSfluz66/Df1kivfz8cS26FY0lbsu83rZXqcr01y1e04fd72Cyj/FGbXb8fsv5eV9nnPd1mc+9+m/Wv1LzO2ts6HN/S8WEdjj+pZXj9sz6ce8PnOfRZe5tMsvuZ1Fn7Tx1Ps/G2H/aj/H6zjvJP11n/qqdZ/03nx4NwvDpusufZhPPLRZ/NF2m98bjP2n8p2fcbTi+5LuuPaf+twvli0mT9vevD+Tq8n8erbO2VXj/Np/3rcZeNP4d1dv1H3UGUP66vonzcX3YsLN9KFfavEraHWFjvDWH+cjWN8q9XR1F+vZfVY5PwC5uF9Uya/+L6TpTvJ9n41pfTKJ82t7A5lKoPx8N1uP+QLfej/pv23arLPmu1zL7b1TKrTR6G++ZNWDune0X3Jtm+ajq3XAyPonwdts3SZbVJ+s+SDlU4Nu/4NWizyZ5PPw33EsKpPSx9SnuefQGbvax/ne5la4t0rkvdmV5E+RdmT6P8YVq79dl4MoT9q7pM7yebLKpNdv/VLOuQddi/mnW41xj2l+E867/9NOtfy0XWv1bTbZS/2mbXvx0urmdNdj9tOJ/GO5/hXvWwzgbc4Sx7j1gv5lG+DdtbFe7NZN9WKU0dvus4y9rPkP4z5WE90DfZ2mi5l63V0r2cus7y80n6je3WsM3uZwjno3oSvltusvmlCttP3WQNNF3bVdswn9bnoXRtvT3N8utZVh/Gi/Fm15vDuzVcZQVKfRXOkAfZu5EqfLeQGsIFYb0K6+Fr/n72q9fvsvEkXZ92YT08OQvnu0k233Xhu4tn2bDO9iWrZbgY77Jnn25VDG04F23CvZl0brwKa4Fp9nyGcO6tw7Xg9CT8vOl7i2ddWou14XGLdC8k3FvK++9u57p0r3TYhnNduFarVuHv8C6y/OQ0rPWedUO4NzYJ23PYv9K1Wn+R7ZXW+9l79PT6pQ73DsP39On4U4W1VdnxWu26/JfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK32vb6Bd2NSNWVSOccH/ymboYvyk6qJ8kf1XpSfV5soP6smUZ531g39Tq/fPOPj8qPuIMovV1n7/L75l6L83eYiyu9X6yh/VK+i/HGdtZ9FnY0nbcnys3q340Myfu56rB2b15fHUf68nUX5o7Tt11nbT+eieZPlF2HfWvZZW+6GcY21d8PPe7+ZRvlFnY3NY/PwchHlT9dZf7kxWUb533/4m1H+vJtH+Seb7PPenp5H+boMUf7Jdj/KT6psPP/Q9O0on/rW6YMofxiOh0d19nlT8Zq9r6L41WXWX+oqaz/H86sofzjPxsN0fnmyztZeqaeb7Pr7bfZ5N0NW/zzeZuP/3fY0yu+n8/WQzddnfTbfzcPxJy0HhjZr//U6+wv6bZbvuix/Yy+b7zZd1t5W291uk5432yi/F44PD+vDKD+vs+vfCuvzB5vjKH+jzr7fUs6idB9+veFwVcLHWUo23ZXtNvwDWXcv1SRb61fhfLrZZg/0YpWNn224V9GG9c/Li8dR/rLL6pOTbVY/n3Rhfbv3hSg/1GF7q8J8qM6GzxKWwyWZrsOmH/f1qsv+wHaVDW7ndba2mzRZ30pr2y9Ud6L8W5tsrkt9++z17A/0WYOoNtnYU23DsTmsfardviYoYWkb96/0/tOxoVpmz/P8NFtLNeEHfnU4jvL1YXb9b1u8GeXP+uzzDkO4FpmExVuTfV/1Mi3eMs0qXEuFn7feZs+zSefGsDRvL7L5qz0N12ptNn89Cuev1KzNipM782zv88GOa6sS9sfhKmsQ9aOnWf7WUZR/5oV7pX2btYduluXXZ9le16rN+tdslo23V+sd/y4kbP/pWqdfZnuN1TTbe05Hh2aTjVd1+G6qX2Rr92qStf863DtM90L6Jlx/7YXtYZbNd91+OH81u323E+vDve11VqAMy2w+ak6yvcyhzb6vfj+rT+pVuLmx672Wq2x8rsL6s59m40l7ET7/Sdh/+2f3tzlDOJaXTVj8r7OxvMzDfCjdC4mvvw6fZxfuzayzvtWEn3cyzebG9iqsrXa8FNm5kf1mdZiF/SVsb0O6d3KWrU2r/ey9RenC2mTHtUO1zfp7cxH+Tiv72dX4hLVGFe69VW3WPqtF+DuYy3AtFd5Pf5HVkvU8qw2HsH3WRzeifPcwe6/ZPz2J8s3tW1E+a2/Vtdd24xr1AQAAAAAAAAAAAAAAAOC3cQgOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFq3+sbAHbv1e1VlP/w5GBHd/JbZtVkp9fnnTWV88/v5I31cZQ/bJZR/vPN7Si/Hpoo/4npW1F+v66i/FE9i/LPen+fVNnzfz95sDyM8k/qvSh/0K6i/PcsvhDlT7pFlN8M6yi/7LO2f7c9i/JnffY85/Umyk+r7Pkf19nc0lTZ2POs23TZWDIM2fP5f7/5UpTvwuvP6m2Uv9hmc8U2nOv26qw/pibVfpRvSh/lb7XnUf6wzmqND7fZ81yE4/PYdKvs816UeZT/7OpelF/dybZZqmrIrt9l19+fZP1lu8me5/km6+97TTYf3Ztk8+Okysar75q/EuXrKuvvTcm+33R8TjXL8Prx7WTt82qZ1WOpus6e/3KT3f98krW3B5fZXsvFdhrl+/3sC7szy+ajtJ7swn977bTPxud5ld1PLG3/Oy5vJ2fZX1CF9dUmvP9hmv2BZZ/lN5OsP6b19rbf7d7Y3mHWPm+1F1G+CxvcFzd3o/zOZcNzrF1mf8HQXP95DmHTCbcGSth1S3+Z/YF1l7Wdx2HfTaVrwbuz7H5++TxbK8easEGEeycl3TsZsrbfrLLadtjxe4W4/bfZ86nDya49yz7vdsg6/OmO1+JfKjej/KzJ+suH9h5F+VgTNogd969qk/WXapv1x/ayi/JDnT2fOpjrSimlCbfemmwruUxOs/sZwvZwGfavdC/2xZsnUT4WjufpWqSeZ2uvuH+FqmXW4KpJ2P6vwvY/sncX03At2E/C/tVm3++6yfYqVofh/BvutTzrhmU4gM6yvdhqFfavcPypt9n8Vc2zemmYhnvt4fybrAVLKaWbhe/6wvFzGf6Cc2iz+mRshi5rP2Ubjg+bMB/+bqY+u8yun9a36Xpzx9rH2d7VPHyem71wfAv39nb86mVUhnW2Lxk/mrBv7frRp2NtSeeuMB8/nzDfhLXw4avZ3Ht1+332G7k+nEvTtUI4FpZwrZ+uHav97L3scJ6N/dUifO+72e17viHtv2F+8eD9tXaJa5nwPV+ZZONVFTa3dK0zXGS13pCupQ6z393Ght2Ob+nzaYLPOwzrUk6vlx1XxQwAAAAAAAAAAAAAAAAAv41DcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvte3wCwe5/Z3Iny+/WjKH+v2Y/yMGb/7uTFKL9oNzu6k9/ykdlbUf5Btxfl676P8v2QnZ+fV6sof6vJnue8qqL87Tp7Pk3l3wv4X/KlJzejfD9k39XnH92N8l+4fzvK35+dRfnnpydR/iTsi8thEuWfbLO596i5ivIvTJ5E+XXJxqrfO43iz7zzk6w9DH3WX8omG6v+2Vs3ovyHXno7yt+cXUb5o+kyyr95dRjl07lr0a6j/J1Zdj/PTU+jfJln8Wb2MPsDI1NdNOEfyOL9WbYN0k2yWulzF89F+XraRfn9g6y/XEx2O+A2dfZ8TtZZg07Hh4/feCPKf/feF6P8h8Lx4ajOnn83ZO2z3kbxuL+UsH5LNVdZf19fZONtd5D1rzLL2vPVPPsChihdytNJdv+PLhZR/gNHWX17q72I8v+rxX+M8ushHP9DVdgc6nCp34XDbZMtlUsV9vd6m/Xf9jwbf7aLrEV3YX47z/rj9jK7/6vL7Au7XGfrtdQnbrwe5Z+fPo3yT7tsfEhVfTrC7XZ+SefHZnX9+6/CtVqzyvKbRZbvrrJ8P83G2u1eln+wzPri6laWn97Kvty2y8aS/3CR7QsPbfZ8hnbH+4zhPulQh30xjYdzb5OV/qXaZmNP1WUfoN6E/X2ZtYfNahblT8L774/Cvdin2V7sVZfOjVktWdpsfBj2sudZuqz9DOF42E+y/t7Ns/zQZN9vFU7V7VX4fNLxIZxPqz57PqvwJzBXfbZ3+6VN1h7qe2mtlO0dVul4Psn6b70f1pJ72d5Pf5Dlu4Osvw9tWi/ttj/W4fw1uQrf455l99/PwuczCevJJvu89UH2eXcufE9cTbLxp5pma9Mq7L/DPLv+sJ/1xyFsD2m92u+4fm4vsoJ1dhr2r0k4PtfhfBfuJY9O2L+GTbjYX2d7+eUgfJcbtv9qGW42Dmn9EAr7Y9o+29Nsgbf3KKz/w/qnC+e7URl2PDdus75VhWvBoQ3X7pfh5sAifJE+Ddey4d5SCWuBEv5mr77Ins/safiecuY3cu9oE47lVbaW6vey9lmtw7lxnq2l4pFzG24G7niuq5qwPS+zF3fTk7DWGJt0rRPu1aVrl3T8TNc6dXg/VThf9Cfh78C6dPM8rD3DteYQtv8qHE+i+w/mRrMWAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo9W+1zfwbmyGrmyG4VrZSdXs+G5gvP5fb31flH/71mei/J++8VaUhzH77Nv3ovxmk80vv3HjTpT/b1/6N1F+OZlk+SHLd0N2fv52ex7lf32d3c/d9jTLNxdRvh+qa2e/azaLrv2sO33jMMrXq6ztNMvrP/tSSvkfH+5H+Rc+8DjK35xfRflFu47ySVv7esybbZT/jUk2Fv6HyQei/BcXr0T5H9p/EuWbalz/1kf99jTLb7L2UK+zfNVF8fLlJ89n+edXUX42z/rL4V52/U232/bwpcnNKP/8fjZ3nXR7Uf5Dk4dR/vePbPqanIbf1/W2BL6qSfvLNryf3Q7n5fx+9oWdHWbjf9X2Ub4J86m355so//Aqqwe68N+G+rO3/1WUn1VZbZu2nzobPku1Ddt/2L+q8/D6YfMJlyKlejPb9lwfZR94fTNbCw6T7Ppdk+WXbVZvXFxl48m6yz7vzeeztdf3zL8Y5e82WQdI65+qy55/un5JNX12P0Ob1pPZ9dPx4epO1oE3N7L77yfZ9ftp1p6fXGbjyb+/zPpXul47ai+j/GG9jPJV2N7qbdh+JrudL1JtsNzvN+GzyUr/Mglr89Vx9iy3WalU6rAW7lbZXPT0KuuLnw/3Tn7v/dei/MU2+wKGefiFVWmxl8WH9DVoupZahX09nHtTbTa0lTq8n02347GqD+euZdbeTjfh9W9nn7cbsr2Q4yqbu6o6u/+hCfOTsJYPr193YYPItp7j/tXNdtyew73YdLyahONnFfavZTi/bOpsPPzSo6y/vFxejfKpqg1/IrTI9iaHWbgXEra3KuxfQxs2uLAWTufHdO2S9vcmXNtNn2bX78Javptlz3/ThO1nZKppVg9XhwdRfphn1y+zLL893G19OzS7zadr2T5sz3E9HN5Pune7672o0bnm70O/okrbZzq/hP1x88IiytfrbAJI21uq2mbPpw/r7WaVfd7ZabgfsniGfzcctv1hk+0zDtssXy6ytd1wcCvLH2dzY6q6yt4rxHNvuhZMx7bw+20usves09Nn+jhBKcOON5KbcCxJ+28d1j7hXNffyNZ21SRrD1WfPf+qCxc76V7sKuzv4eetr8LxNkrvXhW2txLu1ZVw7yF9/v0iaw91eP0S7m0083mUT+ffIWzPVfg75ibc+ynrbH6p5td/nkldO65fhwIAAAAAAAAAAAAAAADAb+MQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj9f9l789iNsvzPLHrrM/2rrFnRmZWZWVWVnVXb9Pd0zPNuK3BAwZbgzXACGRjIVlCGI25Q0hw5QuQMFdwAVwA4goJW2O4AmyYtdt4Fs9MVy/VXdVd1ZVdWVmZGXu8b7zbs51zuEDWdCNNTXyr8+k4b8Xnc/2NE+c5z3/5/f/n+Uc0r/oG/iT+YLMu9jcvd47vpybzHd8NjNcfvrgZ5f/66s9G+T8/+79G+Xea7PxtFZ7Xrcsyyu9aev9tWe/oTngZl08X2R/YZu3t4eUkyv+dxVej/E8dfRblF9U6ytdlH+Ufbo6ifFtto/zj7WGUv98+j/Lvtk9eOvv97Xl07S80+1F+bCbPsrGqvsz6SnsRxYtqlfWtzybHUf78cBrlm7qL8pMmy6dmTda3HlYHUf7GdC/Kv9jOovwXmn8Y5X85u/zOzZ6EtUA2nBTNxRDlyyxebBbZ/V+E3+/lnWw8WYZzad1kc9cwZOPVeZ1d//l5Vmt8+PxWlH+yyuaX2Rt/K8r/7GS3Haw9y55/vQqvH/aXepldvw93WYbwnyYq++wPLNdtlO9nWXveTrJ8UWfPv1tn48PVRTY+/N3ugyh/s8kKlP/Rzd+L8ulaMK2XwuGtqDbZ99WE/aUMy5+yz+6nb7IPXIZru3KbfV+bw6y/9JNwwg73HtYvuaf6n/uD7d0o/x8Ovxjlj9/JGvR7Tbb2bVbZ8xzW6d5S+H2Fl2+W4f1XafvJ9OHW1TRbihdDnT2gLtz6rzbZ9fswv11nN/Sf9e9G+eMPrqL8rxx+O8qnhnAvNtxaivtvOn/Vq5e/oW6ajZ1prZfOpUOVFpNh2w/HwiorPYt6lQ0m5+tsn/Hbk02U/8qNR1G+XGfX7xfZAxqqtDYJx/6w+dTrsPOGqk3WHsouneuy66dzXTy5h4+z67LrTz7L2tt5le1VrPeyxe9xvdv3XkN6/fSfCQ7XIkW41qm67A9U6yzfXIW11TTsL+Haq56E/SXczEzHz9mTLL+ssvYfbl3FhrR9DuFeab3beqMIa/+09qxWYf8K82l7q9bZ8+zbbDyvwr2NKitniulJlh/a7POudjxfxML+UoTjeSxs/0P4u5y8vkrHn3C+uMyeZz/NxudhvtvfFTWXWX51nOWr1bh+F/W6KYf03WxYz4Tzbx/WV2l/L8PxZ3uQzV/rw2z8387C356c73avdKfSsT+di7bZ70jKafa7mWIb1p5t2BYOwvs53O177rIL3wOFa69yk12/vsiKvemTbN95dD0rHWtX2WptCPcCi226Fsn64zBJf5gQPp+wP6Z7IcPdG9kfCJVX2fMpN+F4GI63Y+sv8Xyxzn5jnM4v/SIbz/t59v32s7C/lNl7vvoiez7pWq2fZbVV8yz94W249/PgcZZfBM8z+E2U/wkOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wpe9Q38SbzTlMVhU77q24DR++w7d6L8p4suyr/zQXaedl5OonxqW2T3n5qW7U6vz6vVPM+mxtmT3c5D32zejPJf/amHUX7WbKL8ri2qdZQ/qK6i/F61ivJd8fLfbzoybIZsrGrLOvwbdqtaZW1/cpZdf/Gwj/LzJ9n1n9fTKL/6StZXJuFcutpkY8+kya6/6bL20/XZ3H5ZZ3N7VQ5R/u+cfy3K329+Pcp/odmP8qkyLE3KbfZ82sssPznPbqibZO1huwjHqyEbQbeLrL9sptl4UkzCfPb4i7LJrl+G/eU/+/SLUf7fXf2VKP+/fvf/FuW/1Gb9q72I4kV7Hrb/s+z5T87CDtxn97M5zNpzH/bHoczm636S9d/t3m7/baVuFvbHPvu8jy+y8ef/8OxXovzpT8+j/P/i3m9H+foqbP8X4fxykT3/+irrL2U63IZ7gJu9rD33bdae+za7nzKsr/pJ9n314S5vvwnHh6vseX732f0o/z87/a9F+eOf/etRPm1v9Sb7A80y+76ay7C/dNn1hyr8fsP23M3D9txk7ac9j+JF2WX3P6TL64v0eWaX78+y+eL/+eLnovzq57MBol5l7TNtb5MXYYcMVevs+tXm5T9v36RjeVhbhWupZhbFiy7bCinSbfAm26YrtvOs7dThXtTzr2fvRb7xM1lfefP0WZSvZrt9r1CHa6lUGa51ym04l86y59/Ns/x2kfXfJttGLoawFptk2+A77y/teba3d/GlcDy8vIzyqXIvm0uLJsvXl+EXlgrX7kXYv4ZpNr8MVTZhDHV2/bS2TeeXdK+uCmvJ+vvh3nm34/fKfVa79RfZA633swFxCGv/MqjFiqIompNwPKnCvatt+Dz3s/6yOQoLuLA91+vsD2yn4d5G2H/n2WvrYhjZu9BiCPdmlll/qbrd/q6lXGbvNpuwP8bzVx/OX+H8st0Pf4cU9q9072QIh590L6Sbhx9gbML5a9hss3zYf9P2mc5f7eNswTZMwvVO2P6rtJ6sswa9Psj67ybca9wuonjRX+ffF6dtuQi/23DuKvf2onyR9t1pVjuHr9GLapXdz3Y/rOXD2vPqTtZ309qtb7O17+JRNraFle3oDGEtNpxlP3yr0rVRl/Xf7kbWH7eH4Vo/rPW6Wbp3nl1/O82u34XXn77I2sPB1z+N8rt9K/IjCOeXtBbrz7Litl5k41W5CUegOmsP61tZsZG+J0vXUpuDrDYcqux3Ws3zbK+ovHEU5aO9lqAu9z/BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFrNq76BP4n9albsV9fzHF839K/6Fv6Yuryez5GX8+Ff/d/v9PrdMIny26KL8pshy6faso7yaf/Vv66Xf/Jv/q92ev1V2H7O+iHKXwzZ1D4rs/51UGb3c1Rl40PaH9N8rt1R9vr7t/5bfzPKvz15FuUPqqso/9H6TpRvy22Uf6M9jfLvtU+i/P067Ith35qWr1f7LIr9V30Df0z/y1n7me9l7f/NvRdRPnV/nt3/u7OnUf4v7X0ryr/dZP1Xf/m87bZ/nXwt+36LaVZbTQ9WWX6S3c+XbmTz3c8ffxzl/8rhb0T5LzbZ/LJfTaP87msxfpjL+2WUf7GXXX/7RtZ+mmnWX+7fyuaXf+net6P8f+Po61H+i0221lmU2fxSFdn3ZS/h8/U/fiN7nqsbWXtY399E+Sqcv/b3l1H+v/zO70f5/87Nfxjl3wvrsUWV1VdV+G/3mY8+X7/wkz8b5S/ezq6/vpe1n2qe5Q8PsvXUT95++NLZ/+Gbfzu69gdtdi/74Vokbfvmos/XL/3lvxblz76YPf/Vm9ncMruRzRW3Di6i/P39rHb7b97JarE/P8vWRjfrcB+5GNe+8+s2d/3K3/wfRPlnX8uez/L9bK1/dCNr//cOzqL87Vl2/XcX2V7af+XwG1H+rfo8yh9V2Xg12/F7ndetNvxX/sP/bpT/6F89iPKr97P54sbNrP3c28/yh5Psfm5OLqP8VxYPovx7k0dR/v026783q2yvZRbWY9Mye09cl1l/b8L5dNf+8v/8z0X5i3/tF6P8p38xez7l3bA9H2Xzxd5kHeUnVZa/M8/67wd7WX/54jR7d/pO2L/u1NnzvFlla81Z2F/asP9uwt+RnIa/I/l3/t1fifJlk40n538l619xvXcvGz+HRZav2iyfLper8LcA81m2HryxOIny7x9m/fGXDv8wyqfz6d2wXr0Ysv2T31vdf+nsX//fvRFdO1XNZtkf+PK7UXz1RvYiaH2U9fW+ycbC7TzL71of/gxgs8ju/+peNjZvboe/e7ib9ZX7h9nvSB5fZO1n9v+I4juX9q/yIFtLlbPsPfowz/LFkLWf6jKsDZfh7zDW2VxUhvkirK2GNjzuEuY3d7L2f/LLb0X5/Y9/EOXHpgrbf6r7+NPsD4S189CFv3uI0kXcf1O7ffpFMaYTTdvh5ccSb7AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYreZV3wDj0A19lK9L5yf5p+L2MIR/QRnmQ9WOzwPrX9fLopxE+SpsoIsy6wBtscquP2yjfGpR1Tu9PtfHl6cPo/z77eMov6iytvxGcxrlH3cHUX6vXEf5zZCN5cuw786GLso3RdZ3zUWfrzeOzqL8Tx5l/eu9eda/Trt5lt9m+c2Qtbdvb+5G+arMns87xSa7fpW1/7Y0N36uplntvHfjKsrvz7LaatZk4/PVto3y37u6FeV/c/pOlF9Ufxjl2zLrLyn95fPVt9naYnOU1Q9lunaZZP3l2WU2v/zW6VtR/u3Jsyi/t/iDKH+vzvpL3P7DvRP12w9XL8M/ED7O8jL7fst51l9W62wb/7dPsv7ywfxLUf547/ejfFtm408b7gVuwv5iPvrhpqfZA13dyDrMJuwvRdhfluusHvvB+fFLZ//G2c9E17559I+jfFvvdl8vn4vsa/8w+59ktcBmP9t33hxm39dqmrX9yzB/uspqt79/9uUon+7t7VXZXkv8nmnHc8sm3Nu77nPX4tOsGFsdLqL8+jDrXy/qbHxrm+z7qtK1VJVd/zvTN6L83uz7Ub4N98KLIrv/1OtWG1bfz/Y+b/9O1l8e7E+j/GmTPdBJ2F8mYft/Uc6i/MfLm1E+XbscVtn4NitfRPmiyMarKrz/ItzLT8e3VDo/Dtusfj74Tz+M8nvvfRDlz6bZfHTWhv2lDt8NVln7ebbKxpPvV1n/WvXZ3sZ6yPJd+C561p5E+TosENN8ah2+i06l/evo1z+L8hdvvh3l14fZ5+1mu61PhvDr3YZ7e2dhvh+ygqkO+++9aTZ/HdeXUX6vyt7dpboR/T8h/TKrHZonz7P8YVbrbfezWqCbZm2tzKaiog9L8zos/qvwNWgVLo2GOns+Q5319fNJNlev9rK+eN2l/Sv9XUhZh2NJuPdWtFl7GOodr2XD2rbssg4/VOFiv8k+79Bk39dQZveTjofXXX+V/S6nuf9mlB9WWS0wrMIBOrz/odttLcnnYzwVHgAAAAAAAAAAAAAAAAD8/3EIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRal71DQCvn74YXvUtwD9TW9a7/QuGPoq3ZXZevSrLKN8PWX+si+z6dXg/VXj9Lnyedfg8+Wc7ri+i/FG1ifIHVdYWFuUqyh9X6yi/GbK2syi7KD+L+4q2fJ0cTa6i/E/ufRrl3588ivLLoY3y31vfjvJt2P43Q7YsfdYtovxx9SLKT4fs/tO5K/XazV3h41xMs/H8vaOnUf7u7CzKn27mUT717as3ovxxfRnl68mDKP9mvdv2mfav166/pGbZ+LY4COurRTbfdUP2/T5b7kX5Xzv5SpS/1ZxH+Xaa9ZfbVbq2C/dOrI1+qHqTPc9qnbXPoc6un1YP4XKhePDiIMr/6uyrUf5m2F/+xdknUf4gbJ5t+HzC5rD7vaKRaVbZA2qz5lB0J9kXvNrLnn9XZ+Ph2XL60tnfOnk7uvZXZtlc8RdmH0X5m3U2t6f7etmTLIp02/+6z0WT51mttP9p1pa38yx/Mc3W1mdttnaZttso//2Lm1H+708+iPIH1Tei/P06Wzume5P9jvcGrvvc1TzNJoujP8zuf300i/Jns0mUP2myvai6ykbQRZO1z29cZvNRvNYpn0T5osrGhzqcYeK98DK7ftq/dr0X2D3O9q4OvnUU5VeH2V7vs/rla6WiKIqndbZ2T61n2fgwDdvn98rs+czK7N1XF7af+3W2N1mH7T9uzjv+mcflkD3PVPf4cZS//6t3o/zHk6w/XlbZ/PUs3Cvan2f16t4km48+ucw+72dXh1H+xX5Wr27CtWPaX95tTsPrh3tRUXr39Wdq+/1s7+f2N25F+eXNrD104eZSnz7OLvwDTTiArrP7P7/cj/KrVbZ+3GvvR/nb4WbRQZ29W0jn3z58FzEm20dZbd4cZfvCzX72u4HNIhyt0r2isDgfwrV72hSqbXY/0+fZ9ftwY/tqkn1fz46ztWz8Xuq6C1+8DKusVioOs7F5qMO9nDps0OFvRFNDuNdSrHdb+6fS8WQ7u75zy5+G/vlJlC/fyn4HUzZZf6nOst/N9E+yvZl+la29dt0fXxfX+w0TAAAAAAAAAAAAAAAAAD/WHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLSaV30DAP88VXhety/6Hd3Jf379IcpXRbmjO+E6yttP1v67osuuX46rfepf10cdflez8Kuqw+82vX7a1uqwb6X305a7/bcp0s9bDNlcWu/4/q+7psqe56zcRPk79VmUP6iy679Rn0b5B91RlD+uLqP8nfoiyqetM60ltf/PV1lnz3/RZu35zVnWnt+YZvnb7XmUP93Oo3zq4/WtKH9QXUX5tsyez716GuXjHvyazV9lHxYcm+zzlmVWP6Tz3bzO6qu9Zh3lzzdZe/sbJz8d5dsb2yj/C5MnUf52nY0PqyG7n2m4LXzd+0taDpdZ84z7Yxn2lzqcH+eTbH789Dyr3/7j+mej/K072fz4tTabX27WdZRPbYasQbTlbu9n1+pl1t7ai2x82C6y/rK+zJ5nP8++r/X25a9/ssrG5v/k9CtR/o3mJMrPwlosLa3aInv2VVg7pLVbatdzV9mHtdJFOJY/Ct+LTLK5/Sp8PI+Lgyhfh+3h9yb3ovxRk+0l/IuL70T5Ni0Gdmwatud07kr32dP+Va6z2qQ9WUb54+9m7b9vs/zFMIvyD67aKL+8leXT8fbvlR9E+fYwW1vUzfMoX1RZ++yKrP0clJMon9qm7+HCCbgM22fxLKsHjr+9iPLbeZY/abN66WmULoquz57nJGxvfTgefnO4H+U3Q1ZfdZPs89blSZS/Ga5N07VOute+2+owVz88ifJ3v561/4dNNl5d1dn4n+7tbYK1UVEUxbTN5ovU6Sqbfy+67Hn2B1n/asO15rtltheyCH+3sRlGtlfXZ8+nCeu9u7+R1UuPwr3P1b2w/g+Xv8UqzIdfb7nJ2s/2UTZe/UFzO8rfmmbvcqfhu+t3J4+j/GWfvpu6xp5mtXlzcy/Kt4twbTrP8mGplO/7p1tXdbjvH16/DseG6bPseZ7dyGr5N98I13bXXH+RjVX1LBxL+t1Wt0O4F5i251R1lY3lRRWulcPnOUyz2iEtrdL3HNfekA1wwzp7r19tw72i42z+KsP3iNUkaz/Fpw+i+NCF7XmTPc/XxchWRAAAAAAAAAAAAAAAAADwTzkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoNa/6Bl5XdZmdP+yGfkd38qNJ7yf9vFwvaXuoijLK98UQXj9rb32R3v9u27P+9eMtbW+ptqij/K7vJ5X3x+zzppL++Lr1xeXQhvns+gdVWit12V8QmmZT17X3urXnXdv22fPcDNnYdq9eR/nUg3CsvVmfR/k6HvuzAWVWvmYd+DWz6rL2mfavv7T3rSj/8fZmlP/e+naUb8tsvnujOY3ys3IT5btwfu+G7A9Mq+z7Gtveya71dfgF9Nl4uN1mz/94ehXlF002fzVV1v77IZt/r7qsvv1wdS/KH1TLKN8V2Xx6EPaXOtybCaff0dWTYXMoqmw4LMpN9jyHsD6swxvaduEHDt8SfHZ5GOX/o5Ofi/Ltja9H+a+VF1H+qJpF+dRln41v0zL7Anbdv/o2a89pf5meZAPK6mb2ebfrLL8qX378P22ytvNRk9WGf3fytSjfHn4jyr/bhHNLGQ7+oTpcq8X78jveZx+qtK9k9zN9keXXL8K10UGW3w6TKP+wyOaKKmxv+2EteVBltWo9+zjK36uzWrUN29tpn9WSB1X2fW3CtVr6HqIIr1/0WfufnGST0f4PwveITfZ5l3ez8eG0XkT574XzS9q//lH9fpRv974d5Y/ryyj/Rr2K8nWftYcqnI/StVRXbKN8me5l9tn32zzJ6oGbv5f292kUP7/ci/KP72bj22qT1dpn+9n9X82zvYR0bzJ9F5faNC+i/L0661/pfDc2wzKbf2efZP3r1u8eRfkn4fx+Ga6NlgfZ9zuZZePbbJLuPWfj4e8+fSPKp3uBiyqbjw7Lj6J8Efav9TX/fw+qJ9m7i8lxth6/89tRvHj2E9l8sdnL5t/tfvi7t3Cvscy6YzE02fWXD7L5+rcm96P8pMo+QHuQrb+W/W7n053qw9/BbMNn+dnzKF922dw1vJWtdfpwnzrd99/Owr2cbdZ3h3RtEf6QajsP30Nssgc0a8LB5HUTvofbtXKTjQ9DnXWwtD13e1mtWl9ke3v9PFur9W249zMJf9eVTY3X345/dzVcZnu3fXuc/QVN1n6KJmsP1ZD9biD+vE+fZdfvwvoh3bsdieu9IgIAAAAAAAAAAAAAAADgx5pDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvOqb4DXQzf0r/oW/kTq0nnRz1NfDK/6Fv6Y6pqfBx5b/3rd+stm6KJ8N2Ttf1Nk12+LOspf9/af2mV/Sa+djoVtmX23u1YV2edty+z6z/pt9gdCm3AqWoT3n9qE7acu0xvK2s+u55Z0rkjvZ2xz0bJro/xlP43yH273o/y7zXmUT9Xh+HBQraP8pEzH26y/pP2Rz9fQZ9/XMOx2gL4YJlG+G7Lxpw7rgeP6MsrvVaso35ZZ7TkLH38+f6XXH9f4v2vDjnf1tpusfjjbZPPXTx99GuXT9vlwfRjlb7YXUb4K56PULOwv6VqwCfPXvX9t04I+Hd9WYb2xyp7/sIjixXyyifLTJlt/NVXW/j9bHkX5v3v2tSi/d/ibUf5+fRXl0/nrbr0X5dO9pe2Qfb9pfx/qsB4LtyvCcqloz7P72R5lNzQ7Wr50tgtrz2dXWef9+vN3ovyqz4qBv3z0W1H+56fZ3JjuY5732ViSzkRtOHfNwlemZRfWAlXWfqouWytMT7L88nYUL4qDLL69yp7ng+fZX1CV2edN+2/ql+cfRfmDsLY9i+8/22upw+LnMpyLij77vspN9nyqVVbLLB5l48NmP9wbmGXX33bZ9R93WW212ux28bgI9/Z+cvZJlL/sX36uLoqieK99EeVnYftv073GcO+nX4e13ixbi6dv6euL7H4OP85qsb4N986HLP9ilc0vV8dZf1zdyPrXpMrGq28Pb0T5WZl9X31YYVXF8yi/V2Xj+eiE9V51ka019z7O2nPZz6P8k5/O2ufybja+rY7D/FX2eZs2az91WB9+ep7Np99d3I3y6d7816afRfllOB7uXBVuDoTrwfbT0/D62fd74/ez9nz2TvZ51+HeYbo3GW4PFGVWvhVDuJ59/iibf789z/rXcZuNtwd1Vk+OSdmEX+40rA2nWe1Tn2bPfjbP7n+zyPL9JGubZfgeOizdinBpV/ThD6ni0mobXj+cS1833ZMnUb6+ezP7C8J9+VS1zBp0+p6gn2T9d2h3+96im4XjSdgf0/cc1174m+dhG7a3s+x3bM1JNh8t385+N9BPs/bZpu860vyNG1F+uMje7QxdNsEM67SY3M388rp1QwAAAAAAAAAAAAAAAACuEYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABit5lXfAC+nLrPzit3Q7+hOfjR9Mez4+tnnrcLzn3WUhj9u1+0/lfaX+PpD9nnb8nr3sKooo/y0zKbe834T5esyu59UOn52YXtI739s80sif5bZvaS1Q+pymO70+gfh/T/rs+dzMaRl8DZKT8OuOAvHki5s+2lb3nUlmc4VsZH1l0WzjvKbIZsbn3X7Uf6wXEX5Zd9G+U1YPe+V2Vy3CL+uZdje9qvs866G7P7T8X/X0lpm1/2lrLLv63KdfV9PVll/+SeX70X5m815lK/KbLzaq7L+25bZ/DUruyifWg7Z/aS15KKaRPnXTX2R9d/tJKuXltss/2yzF+X36qz9z6ts/j2ol1G+H7Ln+enmRpSfFFl//OXZ9V5b71qVDT/FNqzn4+FzlX1fl5fZ+qutsxtqq2w+ujPL5rt3Fs+j/FFzGeV/b/1mlL8//yjK75dZvbFrmyH7ftP1Yzi8FWE5UwxV1sHS/lWfZf3ronj5+ag5zOaWYpHFLzdZLfPR5c0o/48nX4ryVfndKP9eWAvv7XhtcdZnjedZ2LeKHe/D7tr8cXb/Q5v1re1+dv1NuBb/9OlRlE/dai+i/GFYS77TPIvyXbh2b4usds52Nn4E6V5g2L+GJhtPhnTv9lk22W3D2vwqnBv7s2zt9aLP1l6/X96N8k1YDEyrrMUd11ltmPaXvTKb32+G/b1LG1z6O49N2IOn2XhbrbP5cfIsXItP0nogXEuF+e12FuUf9Om7vqw9fPEwW0v94y6r9zYH2XiS9q93mpMo36f9Zdea8F1iOH9VF9l8PTnN+u+Nb2ft86TL+suyD+evvWw82Yblw9mQ9d/VJvt+f3PydpRvq+zzpu8Krr0q3XwI32Uts83A9iy7n4MfRPHi/H44H82z69fp8Jnu5YTr97LLxquPF9ne+cEkGz9/9uiTKD8m1SLbXCrn2Vg41Nl324e1ZLnOGlsb/i5nG/7uJ92XrDbZZFSGa9/0+Yc/IymqZXb983W2N3kYpf8UpLXYNHvvUu6F/fHZaZQf7mV7vUX4O7mhzhpQdbXj3aL0+7rM1ppVuJdZhrVwHb4qGJ10b3vHe3v9Zbb3U30vK8ba/fejfD8N55ewfw3TbLwtu7B4W2W1UjnJ5vf086bf78sa16/vAAAAAAAAAAAAAAAAAOCPcAgOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFqXvUNsBt1mZ1v7IY+ym+LLrz+EOX7Iruf1Lysd3p9frhdf79NkX2/fbHb9rnr9r8J+2+qKssoPyvTqWVc/TEdD1fDNsqn3296Wn05ZONzG84X6f3E/X3I/oZNsYnyXdjfk/5VF1lfSZ99G85d9Y7/rYNl30b5Z302NpzFc8VuP+86bJtVOpaXWdsswrmlTdt+WOvtei5K+9eiytpn+HjiWjvVhe0tdTFkz2e54/yLahrlp33WPmdl1j7Ph2xuaYesfV6E/WUS1mLtNe8vk3n2/GdtVottw/512U+ifNUtovx5N4vyq3D+/bn5R1G+D9vzWZifpWujsP8+6S6y60fpojiqsvYwLbPvK12L9G32PLu9cC3SZuPtcpPVe9+/uBHlD9tllJ/X2Xhyq83az6JaRfmD+iq8fnb/391k179ZZeNhOl+k7X/XwuGzCKfTWLnJ/oJ+m31fV6tsvNqbZO2tqbLxIZ1fPlsfR/l0fvxO+zTK/0Q4PtTh5911f9mEe0VDld1/l5XzxRBuBZbZ7Rfh8Fn065f/vNtVdvPbSbiXU4VrhbAvbsK9mQfboyi/V66j/KLMavn32rCv9FljeBAWh327233tbpKN/enWUrXO/sDkJBsbhnAtuG3C5znL2s+zy3mU//rzd6J8lX4Be1l8Vmbt+bIPB+dQuvdTbLPvKxY+/lTVZX/B9DTLD3VYfIZbh5vw3cLpaba38e3mTpSvwrX+zxx8EuXT/nISFhsXQ1YbXuy4Pw5dOIGFe439LKsfhnD+mrzIxofFo3A+Cte+q5tZf1kX2drrSXkQ5duwPnx7/yTKP9wcRvk2rN/Sdx2bYcc/YavCemOT1bdDtR/lu/1sfGjOs/Ft2mbP/+bvZ8/npMvyy9vh+BOup7pZ+DuP/ex+ztfZ9/W7L96M8ml/ude+iPK7VrbhfHF2nv0Fi+xdSrnOxqt6Gf7OLOxfew+ieHF5O7t+36bzYxQv6mwrPL7++iJbX5wss/Xdw1ky32W1XiysxWLhe7hU2WW1cxluBJZXWd8tp9n1m8twnzRdq3VZvl5l31e5CH83cBbOdctsrssqyR/BrvtLHbbPSVb7p6oXl1G+38/mxnQvYQj3Pqtl+BvacK1ZPc9qh3qazS1t2N/LcK99dNL5IlxLleF7prLJnmc5yb7f5nFWOw9h7dnPw73SsHYu0r3zcHxLldNwr+syG99elv8JDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFqXvUNMA51GZ6HHMK/oOyieFu04V+QiT8vP1T6PLdD1h52rS3rKL8a+jC/jfLL8Pq7fpp74XnpJnyeY5O250U5ifKn/VWUz1pDUXRDNkDX4YC+Ccfzuiij/PmwifJnfXb/Z306v7x8e1hUWV8/KLP8zXpcfWtRraJ8G7bmyyErU5dhfhY+/7oM+0rY9tO23IXXPymyvrUZ0lopy6f3vxd+X0X4eRfhx63Dzzurs/tvw/Hk0fYwyi/DsXA5ZPkq7O8n3SLKT8Lq5zKcu5Zh7Za6HLLaoS2z5zkLP+/NYh3lF2XWHqbhtkOZDQ/FrMm+r0kVtoewv3Th+Pnp6ijKH7dZLfnd+l6UP2teRPk36tMoXxfZ/T/uplG+CPcSFlU2X3RDVv/cDMu3Kpxf4tI2VDfZ+NPWWb4fsg6/DfvX6WYW5R+ss/m0TsfnsL0dV5dRPv2nzs622fOvwvnlfp3NL7frvSi/SfeW0r3MUB/296HObihcjhRVlf2B55fzKF9XN7J8+AEOmmWUn06y/pXWk4+7dH2Utf/98Pksqqye7OPdpUydTY/FNmtuRbh8LOpV9gf6ycvnu1XW2TfTrBY+ucrmri/sP4/yp1328J9t96P83fosyrd1Ntc97MJarMqe/3G4Fk/b5lCFc+82HPzD2irtu3VWyhfNLLufoQr7V5MVw2lte7nJxtrPltna7pNJNpfOymyuuxOu7d5vn0b5X738SpQv0r3tcHOg2mbfb1jKF9UqfO8S5puw9G9fhANQuFhYN9n4+azO5ovv1lkttt9ktdXzTba2uNFeRPnz7p0ov4kXC1n7GZZZ7Vyts3qjusrGnzLsj8N+uFd6kV1//iSKF0WV1v7Z97uusr2uh/VBlK/CtcX5Nruf8/3w/jfZ/Ljqd/wTtj4bf/qrrH/VV1mBVQ7Z+NlNs/ZWbcK9vRdZ+7n5rSz/7Cey73eTNf9iu8meTxfWhw9PshuaN9n4+XCV7U2ex3vnu333NazCBcZxNj6U26z/DunvZlbhXmOd1WNlWA9kb06LYnWw43cL4Xo2XZ+uw73qdZc9z48vjoN0VhvG0lpvm/XdMn3RGuaHdre/W0r3wSePs82KLqw9+0nWt4ZwbEjXauleTvqzn004l+5c2F/KcC1bTrL2UMyztdTQhrVt+nkvw9ozXevUYb7LaqsqnNuLJmufZbiWLfayyXGTlfKvnbh/pfPRMhwQn59E8XKd7S1Vm+zdS7nJ5vfhIpvv4to83bvtxnEGxEkgAAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARqt51TfA9VSX2fnJ2nlL/oimqKN8XwxRPm2fqWnZRvmmyj7vdNhG+VRdllE+/bz8cLMynXqz9nA6dFG+DfvXZsjyqWV4/Yshe57TMns+dfny95M+y6NqEuXH1hdn5WbH18++q9SizPrW434R5dPnsxfeT+p72xtRvg7bc1X0UT71VvMiyl+kY2GYT/vjYbuM8m3Y/u+Gz+fR9jDKT8L2mYydRVEUZ/08yl/20yifPs+LPhufU4d11h5Si3IV5bvmNMrfqnc7/i9m2f1Pm6x97jXZ9dP2c95l7TPtL9s+W+tshmwt8skmmy9Sv7d+M8qn80sf7j2k1//Z6SdRviiy9nZQhWuFJms/5SLrL+0ky8/C/rjqss9bhf1l02Xt/yKcrxfzdXb9cP76vdX9KP9W+zzKP+32o3w6npxNHkT5vriI8vthPdaHy6m4HMi2WopyCP9AmF+vsv41mWb993yVtefT6SzK32yz9tAP2fifzkcHVTY+fDesn99tn0X5+3X2fA7C/Yc+6+5Ft+PtivDrzftj//J/oNxkF99eZX3xss361vfPd1u73W7Povy3129E+a+Ec8Vln61FZuHcPgvfKwxV2NhCfZNdv+rCtcV8t/efbh3WWelcDOdZ/9rMs7VdF869V+FgeBkWG7NwLX7SZXuZy+Ykyv/S/MMo/x+VPxvlY+F7hWqTrQW7eTY+lH34XnOdtbf2PIrH41VfZ8XAdpI9z7NlON9dhPPdXhZP1zrpXtFnq6MoX5ThF7wJB9x1li+32fc7VGF/Ceevep3dT7MM34s/z+5nCN+7D3X2fNaTrL88rA6i/Go/LP5DVfiuKfdwp1cf1tnez7DM6s/qxVWULw6zdynbJuyP4ddVr7L+ePhROF+8nY4nUbwY2qyeXNfZA3p2ldVj23Dxu9dm7bMosvXXrg1n2XxXNtn3NdTZ3me6VVetwnfR27BejfPZeL7eDzdbwucTr2dX2f1crbP1VxkMcNlb9B9BWjt04eAW1ybhWmEavtcJ116pMlwLNs+zuXd7nO1rD+Hcm67VmmX2PNOxYXme1Z5jE/eX8PmntUN8/Tq7frnJ3kOUL7K5d9jPapmyC/t7+hvUMF/2YX8J5/Yd/8zv2ktrt2Iajj+bsBZOa8lVuFkd7rUU4d7AcJG9FyzC9p+Kx9sdcTIJAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Wpe9Q0A/PO0Zf2qb+FPpC6z88aLcrKjO+E66ochys/KMspvwusvqqw/pu057e9fiNJFsRm6neWnZVZWpWPD2PThv6VQl1lbmxR9lL9ZZd/t2ZD1lVm5ifL9kD2fsyHrK0fVKsq/1zyL8qlJmX1fqWn2dRU3q+x5LsJ86qBZRvm2zNpzW26j/KxcZ/kqa/+pZd9G+YthHuWP64sof6s5j/KpusjGw9SmyObSvsg62HLI+vs0bM9V2N/rcPzZ9tnzSa8/rbL+uOqz+mG/ycb/y36349t3Vvei/FF9FeX7cL4+qLPx9tl2P8qf9Nn4k7b/TZG1n6HKxpMqzA/h8191Wf+6M82+r22/2/p5E9Zv31veivKHYT2QerI9iPL32tMof9FPo/wn2xtRfhbWM8dVVs8MO95aGprdzu9lnc1Haf/dbrP2vwzXv2ebWZR/vM7G59RZl93Pm5OTKL8K69vLsH89bl5E+XebrL+H5WERftwiLYfD8qoIy6vw4uHDWWd9a73Kbv5indV6qy67/jfO3oryP7X/WZT/dvFGlH+rzfY2qm02dt4J91rCra6ib7L2U3bZX9DPsvaWbuWEW29x3x3W2fMJS/9ic5YNVqfzrPZ/3GZ7J79Xvxnlm/AL+PLiUZR/f5Llj8P+Mqyy2q3owwYavufo5mFxGN5OOj5Um3BtF27VtRdZ/xrqLN8tsud5dZnVPhd72XxXhcVGuhf7dLMX5T8I++OnZVYLD124VrjK9maKPltrlmF/TPtv0Wf5ep3lm6vwXVZWmuf9a5rVb6tpuBZpw/61yPbOZ002YK3DvaWdC9vncJUVKNU6ez7lJvu+ym32PMt0L6HJrt9eZONtOHwWl+G797Q+3zRZfzzfz+a7bZfd/0XYf4+i9O714XxUTrPnWa2z+WsI9567RfjuJZ2/luECLJxOw/KnSP+fje0s61/VKstfXGR7e+vNy/ffw+jKP4Id1z7FMlurFQfZ2rcIf5PWN+FeRVrbzrKxubrK5t7mPFvL9uH9DOGL8XoT9q1wKV4sr/fv2Ir0d3jh3F506eZYdv0y3AsZ5uFc1GX9vQxr1SLsv7Fw/Ck22eZkupc8XPfTN+HzLOtwrdaG7X8SvmgK80PYnodltrYrw/FkCH+XEO+VVtn1h3B8K8P2s6u36Nd81gIAAAAAAAAAAAAAAADgx5lDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvOqbwB4/dTl63X+thv6nV7/dXueu7YZuijflnWUn5ZtlN+U2f1UxRDl96tplE/b267bfyr9vtL862Q9ZM9mGea/2mb5s36d5busL9Zh3yrKrO0flJsoX5fZ/dypyiifmpaTMP96LUO2fTZ2rvqsfc7C9vOF9lmUP+kXUf6iz+aWzZC1h7oY19xypz6L8pPw/quwv7fh9WfheHWzyr6veTg+9OFwu+qy+9lrVlH+qL6K8mkt1rZZrdcX2Xj+ZHMQ5RdVNp/OqnD+SttntY3yB1X2fc3a7P6rsL9swn97ajmk9UYWH7rd1gP7k6z9HLbLKH+5zebHdD6a11l7eLzej/Inm2w+PW4vo/ximo1vVdgf96rs+qnHXTZeFUU2//Zh+dk3YX/ss/41TLPxrWmy76sO87uW1sMn66y/bPts/biZZvmjJuuPaX3+YHsU5XdtOw3bc7jeDMv/Ykjnu3ArJ7p+WJun+nV286tN9jA/OrsR5e8tsrH2s3XWlttw3/P3u/tR/kGd9d132qdRfmjCxhnGqy5sb2l8x68VwtK5CJtDUWZTaVFdZR/46iJby55OZ1H+B8VxlL+/dxrlP17ejPLfqN6J8m+02f0UffgFh5sDZdhfym3YYcL+XoXXr+rs+nW29CqGKruf5iq7n/ZF1r/W82xt92S+F+V/u8/mi+NZtpfwyzf+MMqneydF+l4tLJaGdbgXcpbNp/3iOLv+Otwbm2T1Ujo+NMvs+Q9V1v7TWrVvs+/3Kuxfq1nWHrZhAXG5zebT1fZ6vzvqL7P+Ul1le2NlnT3/Opxf+mn4rqYMrx/uTU5Pw+unnzec3/tJuNd7nrX/IttqLLpw/B/XzkNRFOFeePf8eZRvboSfuM3afxWO/0UTzhfh+rHpwnePYX6osvmlm2QfYB3Wn8vL7PvqLq73/JIY1tliobzM9v2HG/MoX1+Ei/fUJt18yNpauQrfg27CtW+om2VjSbrX0r54zX4jF9ZixUG2Nu0XYS2QSpv/JBvLi3CuSA3L3b53TGvn6iK7n3qVvte83sqwVirbsL1Nw/6yCeeXo7DYXobjQ5cNuMNVthc1bLPPm+ZT5V42Hu6KkxMAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMVvOqbwDgx11dOm98nfzBZhXlv9hkU+mimkT5/WoW5VOboYvydXh97f/H16ebG1H+rJ9H+X74NMr/1CTrK5shihcH1TrKV0X2F8zKPsrfrLPeuF9Oo/zY+m43ZM9nbPf/eL0f5bsd/1slv7L3+1H+RZ/1r4s+a2/H9UWUP+n2ovys3ET5Ouy//ZB9X7ebrNaYlWWUv1Fl4+3Y+sswZJ/3atNG+Uergyi/X2ff188uPo7y31rej/Ln26x/TattlK/D+WgzZPNROr691ZxF+UWVfV+3qqso3xVZ+2yL7HkuyrBAqcN8dvvFep2tdZ5eLKL8QbuM8vfnL6L8p8VhlH+8zObr1NEk+7xV2B4WYb2aOqiy+0/Hk7bMxqt0/BnCXfA+zIcftyi22XjYdVl+Osvqn0mTPf9VOP8ut9kD3XTZ99vPsgFuXmfP57zL6uE6HJ/bMtubeRGur6sua6Bh9yr6bKur6LPmU4SPJ++PwXg7THY8V3dZW75cZg9/22djSR3ORZM6+7LSWvuouYzyf7i6E+XTuaXosudT9lm+m2TfV3r9apu1t7Svp7Vn+vjDpXg8lnTr7IaenWZ7Fak27F+n4XuFVVj83J+eRvmiy+6/XGW1bX8Y7oUss9pnaLLJq5vudq8l3DqJpXNpvcxuqLrI+tdFm32/qU04P/5m/XaUf2f+PMoX4d5kEe7tleF7zWGT1c7VeTa/9/vhu4u0/1bh562y9lmHL5uay3BvKXs8xfY0aw+rJutff1DcjvK3D7O9/5vzrN7LWtv49CfZfFqF/bcK3y2Ui6zBleHirmyz/pVulc7D/BC+a+2m2fPsLsLv6zDbe7u82O3vSK674Vk2/5b72d5w2Wbfb7kO56+w/xZNWA+ssvp8ts062FBn48nyZjj/nmTPv9sPF4QjMmyzWmxYZrNjdZXl28fZ3D5MwlqsDueuTbjW7MPFzja8/jp8jxLeTzvN+kp7ls3V6fMfm7LK7n/YZmNzle69pWuXsFaKDeFYvshqjfIke6+fGs7Osz8Qfl9FOLfPH4bXH5t0L2ESvthJ9x7C519Mw/vZhP395nGU7x8/jfJD2B/HZlhn9UkR1bblS2+NjevXbgAAAAAAAAAAAAAAAADwRzgEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoNa/6BgBgTB73iyh/Z7iI8otiEuV3rS3rV30LXFOfbY6jfFe8iPKfdEdRvt08j/Lf29yP8j83/STKb8J/a+JONUT5Z10X5et6HeX3y1mU37W6vN7/dseya6P89y9uRPknq/0o35ZZ+zmor6L8Z+vjKL83W0X5fiij/EmXze2T8Pm05TbKb4bsed6ssvZz3fvLts/uv+6z8fM7z25H+R+cHUf5zd2stnqxzcbb0808yh+1WXs776ZRflpl7f+yy2rhuuij/AfTB1G+LbPrf7nJ7n8azqfdkN1P0WXj4bDJ+ld4N8Xpi2y8/eYyXBu9kcUvNll7frHO8kfTZZS/3Gaf9yqsH1J3J1l9/t7kcZT/oM3yF0O2TT0L5+simy6KKrx8H+6y1xdhfwzbz/lldkOHd8+jfN9n48/zs2x8mE83UT6tHzZdNl+vwi/45w4/jvL3m5Mon86PddoBwvjO86E6W14UQ/3y7bncZm1nexwOJuHewPo8Gxu6WXb/XRf2rbAvpmu7r+w/ivKph5tsL2pos887VNnn7duw1gvaclEURVgKx6qwL1bhNnUflkplWDtXZ9nY34W19rMoXRRD2F/u7GVz+9PVXpRfp8VPaGjCBjFk42faf+tVNp73Tdh/q+x+qrA9h1snRVpqp/nmLLv/7ZB1+IsybA9h//rD7laUf77KauGq+EGUj7VZ/y0X2V5UOt+V22xCqqow34XtYZvl07VRej9VtjQqJidp/RCujapsr+tpdjuxbPbavXKa7S2lhk3WIMqwvxdX2bvEOuy/5Sy8n3D8T6uTSTgfLR6G717CAveyyVp0fZh9X6NThvNFk7WHYZO9u0iHq+r8MvsD26xgKsN6OK2f0/Gh3GT3Pwvrgb1FNn72k6w/rsJ6e1TStc4qXIyHvzspl+HY04VzRdh2YmlfDO8/Xnw9OYniTVi77T/I9g7P0rX4yAxpe+7D7zecW4aDbC3VLXb7XrAK9w6rq3Axktae2+x5prXDcJH9prfaz9bue4/C+x+ZMhxPimZcx436WTa+VWH7KcJar7qT7RUNz0+zfDq+zbPxpz87i/JF+LuW+ujw5S89rIvi5OWy17jCAwAAAAAAAAAAAAAAAODHnUNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW86pvANi9H2zPo/zbzf6O7gTG7x9cfBDlP2xPo/x/dfFhlH/zmvfHbuijfF06n39d/PrzL0T5qhyi/KTaRvlfOv4oyk+rTZRvyy7K12XW9r+3yfKzMrv/j7bZ/S+qVZR/r1lH+RvVPMpf97Hh47PjKL/aZMu0q9Ukyn/j0ZtR/ufufRLll10b5R+uD6N8VWTjSWozZO3tVnsR5b87exLl/8wsG99+bpKND9My+7527epyGuWXVTZ+9n32/T7fZvn/+4ufjvJNk93/PPx+j+dXUX7T1VF+Gz7P/Uk2vzxcZOPD9+e3ovx/6eB3o/yXmmw+TaXzXbkto/wQ/ltYwybMR+miWBXZ+PMbz74U5ct5Vk+WdfYJTqaL7PphPfxJfRTlv9vejvJ39rK9oo/2s+u/c/tplP9qm31fqbCcj/NptToMWf8tN1m+CvvvxelxlB+arD2H5VWxWoRfQDifPqrT+eVGlP/B+XGU/6tv/UaU/5nZx1H+RT+L8uFwVdTr8A+U4fyVlSdFuJwtyu7l76cJ72Vymq3ttouwb4Vv+Lp59geWTbbWvGqyufHkVpbf3ssGk184zvrKZZd93rT4KbvsD6T5IpxbUvVVdj9V2D7LPrv/5jLLb7PmVgxNdv1umuX702xv7MmNrHa+up3l3z4+ifLPV9kDnZZnUT6eK6qw/WelQ7FdZBNAPwnbQxvWhuH4UK3TWnK340+92m1/31xle0sXt8Pv92a217IM93rvR+kfQR/WG212/8M0G3+6vWz+XR/vdi+zm2b1Rh/OF+Grr2JyltYP2fWTWvj/J6wnh2wt8mCdXf/9KF3E80t8+TobT8pFVg+Ue9n82x9m+c2NcO0Yvtvc7oXjSTq/h5pl+O467I/bWVivzsO9+ck1/8lnuhcezkflPGvPRR3uhe9l/bdfpOvNXe+17Lb+rJfZhDc9zeb37aOw3m6u8W8N0rkr7Fv9xWWUr6ZZWx4Osr6S1oZlWNtW59nvWopVmK/D+w83G8vz7PuaPcrGwm4Sjp2vm032nn6owrEnHcvTUim8n6ENN8Pn2Vq8DD9v2WZzxXCVrd2LTTh3PV5m1x+ZoQsXj2FtMoTtYZhl328fvuvoZ1m+SeffdTY+lLdvZtc/fZHlq6z/Vn22thu24eZGEzz/4F6ucYUHAAAAAAAAAAAAAAAAwI87h+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mVd8AsHt/6/K9KP8X5x9G+S+1+1Eexuw//uynonxZDlH+Hx1n/fHfvv1rUf6o2kT5y6GO8rOyi/JtGcWLTfY449P8d+qs9NmvZuHf8Pr49md3o/zmss3+gm3WeL4+/0KU/zPvfhzl78zOo/y8zvritNpG+VW/2zL+bnsW5e9Pnkf5d9qnUf7PTrPnf1TNo/yuPXx0FOWHZTY21+dZvr/M+tf/58FBlJ/evIrybZvNLfNJ1r/2Jusov+my53k8yz7vb5++FeX/wez9KP8z+59E+X/7+JtRftdz4/YsnC/6rD3XF1n10C7DYqbLnk82+hfFk/tZ+39SHkb5epHdURXWwk/qvSj/cX0c5Q/mb0T53z14M8p/fPc3ovy/eZDNd6n6MmvPQ9icU002HBZlWO+Fza0YyqxeCpdGxWavj/LdfpYv6uwDn4f557NFlP/BIqtnNkPWPv+n9/5mlE/3osKlbFFt0sVsFk/7Y7jUL6rw8xanWbwMP8A2LM+3i+z6/SRr//0syy8vs/Hk41WW/w/6X4zy0y9mDeLPzf4wyqftLV2eVll5Ho/PZTjcJqpwrkvNnmX51XHYF9dZvpvudqNutc3mot+8yPZ+tl/KGs+/cPO7Ub5Ia6sd12Lh1FsU4dfbrLI/MIRzabUObyiU1qrbeVirxnNXFC+qbTbYLs+yvZzvvZM1oNuHF1F+WoUdoMzyQ53dfz8J822W78IXI3XYv4pJeP3wxUtcq4abG+v93a4F0wG3XmZ7UVfpWnY/fEBl1t7KsP0XTVi8NeHe8yTLD+H40Fxki53tIrufeD4K42WfNuhw/Annl3qV5ecPwvYfzl/rXW9epdL+OMnGk3I/2ysdZtkXPITzabkJ97oW4d5bE36/O1zb/UjC7jt7lv2BbpbWS+G7lNdMGc53wzTsX+1u58fNfjhfp/19m3WwdK+lT38oFOrD5t8sd3MffyqG3a6Viz78cnfe1sKxc571le1eOFd32d5VGX5f5Tb8fsPnk66l5o/DjeGxCZ9/v84+b7nJ8vVptndSradRfnMje/GSzkVFk9XCdbqXE86laW1YhrVzscq+32qVrfXHVtoWQ3ZH/Yvsd3t1m423/eFu23M6Pq/uZe+h66usPZRd9vyrg+z5lJfZYr86yNam/ePsdzDJ2rfsm6J4ycv7n+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYreZV3wCwe3/v9IMo/077NMp/qe2iPIzZ88t5lL+6mkT5T58dRfl5tY7yf+HgD6L8G81JlK+LIcp3RRnl98rNTq+/HLZRflKev3T2/XY/uvZ1t93U2R9YZ//2wuRZdv1y20b531i9G+XvvfU8yr99cBLll112/03ZR/lFk40lp5tsLPx0dRzln82z/rIZPony//L8KsrX5Y7/bZDz7PttX2T3077IxsLZ02ws7x9my8aru9n3e343qyUvZln+SZV93maSzRXPmkWUr+us/35aH0b5753djPKbIRtv/ye3vhPlU+Uyu5/2PGv/7VmWnz7L2k97kX2/fZvdz1U4nqwPw9ptkfX3bbirNLTZ8yna7P4v+6w/Pppn/ev3Ht+L8suf/NtR/r939CDKD1nzKapseCuatH+9fOlcFEVRTE+y7zcs/Ys+LFe3i+wvWIf17XCe5btZOF+Hn7efZB34vJ5G+b/x7Kei/Idnt6P8/+mDfz/Kd/OwvYWqVdhfltn12/Ps/sOthFi4HCn6bPoqVsfZ8+zmWb6/zJ5nOt52Z1mH/Oxp1r/+l4/+lSj/137h16J8H87v6/D7CreW4vZcbbO/YBos96tNdu0y/azhXF2G2/LrTfZdbQ6yfDo2tGFf6U6zufSbj78U5bd/Nrt+c7LKrr/IatXVUXY/6fNP+2IfFmPtVdhf+t3O1fUqu/7FG+HeZDhZdGF/r07D68/CufHZQZT/9IPsvcjBVbbWqa6y/lVtw/41D8efaTgepkudId17CGuZcK2QznfrIvsLstZTFOHtFM1llt+GtWR7Hq6l3k0Xs9kE34e1Ur3K+lexze5naMP+FfbHvs6eZ7XOJsh0Pu1m6Vo/3EsIX13E9Vg4nmyzV0fF/GH4faWbjalwvC2K7IEOy6x/lV24lzzNFtfdXpYf2rDBhfVbHdaH6d552r/S68fCy88fhfN7teP737Uh7F/rHW92tdn400+y+Sv9vtJ6LN0b66ZhgZhK99ImWf+tw3Im/CnDtTZss99cFWHbHK7Cje1JNheVXbZaGMqw7YdtLW7L0+z6aV/vJ9kNrQ7Dva5ldj/ZTsIIpWuv0xdRPv4V0vRWFK+X2ebS+jh7D7E+Dn83MM0WC3U4XO1a2WXt//C3Hu3oTv6UhGujdH7pT06jfD3Nxv9+mv0uqgjni6pP12rh3kY6P26z51Mvsnzz7CLKV3vZXmyRrJWDjS7/ExwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1bzqGwB27//4zt971bfwJ9INfZTviyHKV0UZ5evS+eEfZ7/15/79nV4/bc+rYbvTfBf2l1lZR/lp2Ub5qsjyeX+chHn+Wf43f+H/EuXfa55F+VmZ9ZXTPms76/DfgpiVXZQ/rrK+eBC25UWVfd60L15/45qrv/DBwyh/d3EW5X/x6PtRvgr7Vxu2/zea0yj/wSR7PvfqdZQ/rrJl7341i/J8voZZ1t42x1l+cXwZ5d88ytrzF/aeR/kvzp5G+X9p/5tR/t0m6y/74XyxqNRWr1I4HBZd+HWtfuIqyg+zrP55586TKP+LN7L57l89+O0o/+V2GeUPwvbfFNlayt7DP89+lK6vsr2f7V62Vr56P+uQ7SLM72Xt81+4/2GU/68ffz3K//Qkq1f1l+vl/3wj6y/rw6y/rO9vonw1yeq9yTSbj37xrY9fOvtv3P2H0bV/aZrVekdhX6nCta998M/Xn/mVfyfKX97P+srmTthXpuHaaH8V5b94I1vr/Btv/qMo/xfnH0X5dK3fhvva+tfn65f+9b8W5U+/nF1/80bWX+aH2d7Azf0wP8/yP3/88nNRURTFXz369Sh/v87Gh/Q90K77V3r96+6/+P/+70f5B38+Gw83X8rWFrdunkf5u3vZXu9xuHf1xuxFlP9LR9+K8u+12V7FnfBd0Cwc/6dl9v3WZTYfjW3tlb5H/9f+t/9ylP/43/pqlD//iax9Hty+iPL3DrL+dRS+Szlos3rvg8WjKP/V2WdR/q0mqydv1uFeXZn+7iGs98L+1cb9K7v+MvxdyH/73/svRPn6a1+J8h/+67eifDofHR9n/etgGu691Vn9Nq2z+ei9/Wx+eWt6EuVvNNnzeaPJrn+3zvYCF1VWn1+Gv/V42u9F+X9y8d5LZ//+v7fb9171By9/L0VRFKd/5k6Uv7ybjT3royhebOfZWNuFr927w2xsqxZZfjrP5sZ0LViFc9HVNqv1hiHct91m7eHpefaFHfwHUTwXzo31zRvZ9W9l+X4vez7bWXg8I/u4xXaRXT9snsX8cTaXluuslq822V5F0WUfoF9kc0vYvYr+OJuLRifsX9VikV2/y77f7pNsbVF+/GmUL8K1ZtgcimLI2ufYdrrC3rhT2+Hl68jXa4cdAAAAAAAAAAAAAAAAgGvFITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEaredU3APDPU5fhed2h382NwOcgbc/TcKquyzLKd8Ow0+vz4+ud5iTMp//2Qpbfq7ZRfhm2/U0Wj/+liWrHfasL58Z47uWH+urxwyj/iwcfRfkvtE+jfFdk7e2sm0f5RbWK8hfDJMqvhnWU34TtfzN0Ub4t6yjPD1cfbKL8zaOLKP/2wUmU32+z9pxa9m2U/3B9N8rvlZ9G+arOnn89ZONJU2T9xXz0w4XNp+huZd9v22Tj53yajc8ny2x++f7VzSj/m+0XovxB9QdRvi2z+nOx470N/eWHq7PmWayy5lYUy+z5V/vZAmO5zjr87568GeXfnLwf5W/W34jyX9RfrpXJWdY+10dZPVCeZXtd1Z2s/fR9dj+//+zl66tfnf1kdO23bvzDKD9ts886K9NXfPrW52nxKFxr7mfPZ3uQ1c7lPFvLbjbZ9R9d7Ef5v/M86y/vt4+i/KxdRvkqbP+VbfDP1f4n2VpkfZDtFW0Ps/a8mmS11dU0G28vmuz+v3txJ8p/Zx7uDUyzvYG6ysa3tH8VZbpXl12+Cvc+xzZ/LT48ifIHd29H+efzWZQ/CfcGJnU2H00WWf1zssn2Er559VaUP64uo/xe+SLK12XWoKsie551+F55G16/CPtjqg//gv7kNMq/8Y+vovz3j7L+cjHN8qdh/T+ts3wTjucfLbPNkIM6q8fSvbRZmG+rcO8z7o/Z/HI5ZPez7LP7edKFm8Oh7pvfjvK3fueXo/xnN7N66awN393V4Xo27C8Xm+z+H60OonxbhuPzjs3KrD1XYb23Dt8dbYZsvuvD/rtL3Xc+jPKL+0dR/up2NhcN6eI3LZ3DsbY+D9+7h/mrvWzs/PQy6+vtNJu7hnAfc2+x2/fWZbXjYi/9XVT4u67hKtwrusqeZ7mYRvkh/J1cN8/ac99kz7Pahs8zbJ87H2nr7G8YwudTbrK5qwvHk3HtPOxeub+X/YFV9iK33GS1ybANx+cwX1Th/JWecQjHw9fF69avAAAAAAAAAAAAAAAAALhGHIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLSaV30DAK9aXToPzHjF7XPI4lUZ/oFQVZRRXn+8Pu5U2yg/LedRPm07bdlF+emQ3X8/ZH2lKsP7L+rs+v4ti2vli7NnUf7d9nGUf799HuXT1nNat1F+Hf4Ns7D/7lpf9FG+G8x1n6fpdBPl3zt+GuV//vDjKH+juYjyp1023/VD1h4u+mmU/3h7HOWrIhtP6iL7vvartLbN+uPr1r+6aVifTLLx9tbxeZS/MbuK8n04fm76rF76ztW9KH+nOYvyVfEgyt9v1lF+UU6ivP7yw/XpLni4Vq4OsvGwrrPva9Jk/ffJ+V6U//XpF6L8vfY0yu/NP8yuX2fPc1pm9ar+8sOl5XlzmeU3R1m+77L5ommz/rvcvPwA8ZvP346u/e7sy1H+oPpWlL9Xp3snUbxIV4/ZTH39tRfhWH6aPc/tXpZfL8K9pTrr7JerrDb58OxWlP9bi5+K8geHvxHl07llEaWLoi2z598P2fNPrz8206fLKH/4cfZ5VzfD/DzLX4XtP63dTtbZXsKvvfhqlD++ke1ttGGt14V7A4sirN3KbLyNdz9HVhuWL7Lv6+Djwyi/Ps72ls5msyj/JFzrNFX6/Wa+e3knyh+Fxe1BlY1vVZHtDbRVVtt24YviOnyXtQrfraXSvflhm93P5KNsL/n4229F+WfTrL88q7PvaxLWb7v2+5dvRPkufPc7id8dvYjSdZnOX7sdrzbhzzZO+qx+2LWjv5GtZ8/fzOr/F1XWv07D/tX12fw+bbLx5+HlQZR/sc4+78NpVg+8u8jGw9QXiuz6bZk9zy58t5a+WxiT5p98O8rP7/1MlF8fhe9pwkdZhvt66U/YwqG8aC6yD7A5CPdm5rv9Of5lWBum79377Y73wcPfXaX6y3CjOpQ+nWp2M8r3bfY3xN9Wnz3/9H7Kbfj9rrOxv+zCtc5l+LvASTY+bGdZPnzru3thf0z7V73IdlfLN7K1e3GSvdcv+2xt0Z9ma4t0bcrn4/V6ewsAAAAAAAAAAAAAAADAteIQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj1bzqGwB41bqhj/J16fwwP7rr3t6qonzVt8BIHFWTKN+WdZTfDF2Ur8J/22FWhmXwjpt+ev9pXxzbWPK6WdSrKH+rvsiuH7bPRZX1x1m5ifLLIYoXdXr/ZfYHWu3/Wpk02fh/d3oW5d9sn2fXb7LrX9TTKL8Zwv5YZf2xLbdRvg/nl02R1bZ9mK+K7Plc91o7VmcD7nSWtZ+j6TLKvzl/EeWbKuvv/RDWS2X2fD7e3Izys2od5evyaZS/X2ff17Rso3zxmvWXsDkUZZeNh/2Q5Zs6e/7TNhvP6yq7/ov1LMr/gxfvR/nj+jLKt9MHUf5m2DzT9WkR17fXu7+E5UZRZs2tqK/CemOTfV/VIhufk/ni2eU8uvavPftKlL/TZHPpX5h9EuWPw6Y5DdtyupcT98WRaa7Cz3uRfd7Ji6yvbPeyva6uDWuxJpxbltna6Osn70T5L08fRvnZ7OMo39bZ86l3vHm4Ceeise0dlpvseU5Os9rn4KPs/vtpVjuHU1ex3e527fJsshfl/9Pzr0b52cHvRPkvNlmtVxfZ9zsNf9JShd9XnxZ74VoqNZydR/npo2wvef8H2fPcLLL562qarS0ept9XuPZK+9eHV3ei/EF1FeV/avpplO+LrLY9Cov5Wbj3ltZvyyHr70+6bL5I9Y+eRPmjD7O9otXxIsq/WGT10oPiMMp3N3a7t1GF4+e3hjej/KrP5uvl7LMsP5xG+ftN1t9n4busdHZZh+8Wxubu17Pn2c2y9fjlkPXHzY3sec7n2fg8C/f20vXUw/P9KH+yzp7n1UG495w9/uKt9lmUT9+tnXfJ8ww3xnatytYWR7+TPcurm7eifDcL9ypm2VxRL3e7tq6yn23E97M5yPLpUL4us7GhvJE9/2F1veeWWJ/NvsM63He+ysaTapo9/yGt3VZZrT3U2fgzhD/8Gdq0vYX3n6412+zzbvfCvd4oPUJDuHfSh3vPh1ltUoT5+lm211LPsr2N7SfZWr8I1wqx9Pu6pq7321gAAAAAAAAAAAAAAAAAfqw5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDWv+gYAPm91mZ3v7YZ+p/n0fvjxNrb2UBXlq76FP0b/uj7ast7p9dO2uS26Hd3Jn45d90V969VaVOsoPyuz9jwLv69ZmS0D+3KI8l2RtbdUHfaXKvy3X5oiG9/0l8/XwWwV5Q+bZZQ/ri+j/Beb51G+D9vnWT+J8qmjKnueB1XWf6c7rgf44YY6G5/LcDyf1dso//7icZQ/qLP++2y7F+VXfTbfrfo2ym+G7PonYX8/DuuHvD4P569rXk8O6e2E5Xnav5o6q/fm7Sa7fjiep/mzzSzK/8blF6P8rMw+789Nnkb5oyrcOyyy8bAN68ldr69TVZe152qbdZh6leU3myzfdbsbfxbTbGw+Xc2j/K+e/mSUv1WfR/mvtqdR/mbYV3ZtbH2lDPvK5Dwba7eLcC17mPWV9UH2PNdh7TkM2f08m2a13t8++VqUX9zM1kY/M3kU5Y+r7Pksqqz2TPVFdj9p70r3Gst1NpempqfZ/cwfZJ94KMO1wnHW/h922f2kO8lVmT2fo+a9KD9bfDvK36+z+bQIa7E+3JtM9w53bVhnz6e8yvLzJ1mt3U2zFleGa+urTfb8P9tk/WXTh/NpuDbaDNn99GF7ey+cj9ZDtvd5J1yb7roe63b8rmzows/72UmUP/6DrP0PdZY/fzdbiz8N9ypWe9leV7eXted1n7Wfi+00yi/D8Wc9/yTKz8qsP96uw/E2bP+buILbre4kW2+2D19E+dvfyNrng0XWHlZ1tnd7FaWLYhPOX6l0/fXhKvu8F5ss34XzXb3I5t+2zOrD7F1B1nd3rT87i/L15k6Uv/2NrDU/HbK9rqvbYS2ZTV1F2PSL8LVyEf5sI94nDV9jFUX4Xmo9C/ce0i/gmuuXWYOoDw6ifPUs679pc+j2s1ppu8j+hrQ5VOvwN9iz7H6qKutfQ53NRUMd1mKLcf3mNlaG9z+EDWKTzdXVWdYft7f3o3x5lO09p3st9a2bUT59Pv1V9nyGTbr3dj2Na0cPAAAAAAAAAAAAAAAAAP4Ih+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3mVd8AALxOuqGP8nXpvDrsQhX+WxB9kfXdVF8MUb4qyh3dCWOwGbL22RXbLD9k7a0L2+es3G37rHZ8/ZS5/fNVlVl764esPdRl9n29UUfx4mLoovyivIryZ0O2jVOHz3MS9q+2yB5QE+b1lx+u7LPva7vNnv+yy9rbol5F+a9OP43yD+qjKH/a7UX5gzrrj3fqF1H+uFpH+bT1p/0rrT9Tm3A8bMtwwE2lHzcs//tlOD5X2Q3dmF5G+V3Pp+n1z7fTKP/d9d0o35ZZPfzV9jTKH1Th/BWu1zZh+0zXg7ueT8PHXwxh+y+32f2ny4W6fvkO3/XZvVxt2yj/6WU21/2/6p+N8vXRb0X5n56cZdcP22a617IaNlF+WmbPP+1bQxV+3iYca7PSoWguw9rwPJu7+ibru0OT1QKPz7LaLZ27DpufiPL1UdY+v9Y+ifJVOHim/Svdy6nD57nr2q3swvtfZfn54+z73c6z8X9osufThc//YXkY5dNSuA33Ttoy6++/PP9ulL9TZwPiIv7E2f3HtV54P0O4d1uG+eY8m08XD8L5ZTqJ8v0k6y/r9SzKPwxryctVdv/bW9n12/LtMJ+1z0mb5fsi61+nfbb3s4i38ne79z+ssvsvrpZRfP7ZRZTf7B9E+bLL+svFchHln9/L6sP1Nsvf3Mvq80Wbtc/t8EaU7+O1e/Z532mfRvk7Vbb3s+yz8SqWLq7T+esy61+zR9ne7c1vZf3lWfgT2vU2bD/HWXtOH38f3s96k81fP1hnz2eI1xfZ/PXmJNvbW/fX9yfSZZPde3mejSXF7WwuOvpu1pbrZTZWXd3N2k7YdIoqK4VjzXmW32ZTddFchbX5OhsLy0n4QMcmHDyrafbeYrjIar0yXBuVl1mtWrXZ99t22Vq/D6+fKrfh/YRrx24a7uXU4dy+N67fLe1c+J6sOwvfLcyztf72C8dRPi6u9rL+W7fhfP3Jwyhfhc+nD99dxGvlkfBrIgAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEaredU3APCq1WV2Hrgb+p3m0/vhevH9fr6uc/9K7z2168/alvVOr79rq2Gz0+vPy0mU74thp/mqKKP82PrWde8vq76N8m2528+7GrZRfjNk7S11UGXL0mrH/5bLtuii/LTMvt+xGVt/v1hn4+dln+XPunmU/7TLxs9ZFi8eh/dzp76K8tPwflr/VtK1MtTZ+LxdZ/Xbps/y31vejvJfm34S5WdVVr9Nyhc7vf5xtYryizL7vtJ6Ox2fd17Nj2zvpN/xLni5yu7n7HKW5WdZ/t78LMrP66z9V2G9eneS3c9b7fMov1euo/ykzCbIRbi+S/vvZZ/dfx3efx/W830dFhChapNdv1xn+c066/Czye72B+oq6yvLLrv3F9tsbPj7Fx9E+UX1O1H+fp3NjXtRuiimZfZ8zvvsflJlH+7NbLN82Wdtv15G8aJaZdffLrOxrZtk+T78vCdXWfv/1os3ovyN9jLKH+9n+b7I8u1uh+ZiFs4t6z7bWyq6bDys1tneTNll7a29zPpjWMoU271wrp6E/fEyGw8flwdRvh+y+zloswFoL1xL/cTksyh/UGW11UGVtbc23Jtf7nZrtSjD/lVuss87Oc2e5/6D8L37PNxbHbLrr6qsln8RznffidJFcbrO9gL3m93WM7fq8yh/p84GxC7ca9mE32+sCndDwrVUeZ7t3R78Yfh5y/0sHj7Py03WXy422fWXy6y/7y3C9n+Yxb9T3I3yXfg8l+G7wWL6IIp34bvfWNr+26z9pNevTi6i/N4n2fMfymmUP/tCuPcT7i0N+7v9LUPZhO8WrrL68wePb0T542n47usoW4+ke5+jsuP3svVlVusNTXY/Bz/Irl8UWV/ZZqVVUYVL2bD0L9KmFr42Kvp0c2Cb5Zv9bK0wOunvWqqsPVe3bmbX78Pf/aT3E/bffprNjVW499lPs7kibf9FF9Ym4fW7cG8m7o9jk/aX8OOWdbg3fHIa5WefZbXG1TvhYiGtVddh/9oP345swve4VfaFDeHecDpe9ZfZXvhL38ZOrgoAAAAAAAAAAAAAAAAAnwOH4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYreZV3wB8Hrqh3+n169J5Uf6ptD2k7XPX7Xls9K8f7nVrD7s2pufZF0OUr4pyR3fyo0mfZdrX0+eza1X4b0ek978Zuig/LcdVxu+6b+28Pey4PXdh/z3rJ1H+Tr2M8nWULoq6zO5/OWTf1zJs/4vw+bdl+okzY5pbimL3/aUPv6/0+Td1dv11n42Hj7eHUf5B8yLK36kvonxVZu3naT+N8u/Uqyhfhf39us9Hu+4vO6/f2nD+arL8cpt9v6ebeZT/5uqtKH+nOYvyF2F/OaivonxqEvav2cj6V2psa/1ht+VAbL3Kvt/LTRvlq0XW34/by+z6ZTZ+3g7776Nwvr7fPI/ybTg+77qeXFRZ/Z/Od9siq6/C8qros+ZZFGH5XK2y72t7mX2As+Ll568bR1mtt+mytvPW3mmUv9Vm93PUZH39e5vbUf6N+pMov6iyxnPZb6L8RbrWj9JF0U3DvaIma8vp3FWvs3xzkd5P9nm3TdYXJwfZB+i67H6utll7+83Tt6N8Fa4t/tL+N6P8UZWt7Y6rrP0/Dp9nuteVKrc73mtss/uvr7Lvd3Ky2/61acK952XWH0/OF1H+G+39KL+osv5+sz6P8o+y0qd4qzmJ8nXY35dDWFx14QdYZuNDcZCt3dMZsgxvf/446+9DFa41w/w6HH5ePNqP8l2f3c93ZnejfBt+AfV0t+Pt0y67/iRtQKGyCuevOm3/2eetrrL6dvFp9i6oGLK9sWqdtc/LsL5a3cye59mN7H6m7TbKD0O41hzC+j+8/nLInmfa33cufVcW7pWm43nzPNvr3avDvaKrbH6vwr32q3vh+usoa/9pOV9uwvVCl/0Fn55ne4GptxcnO71+JGz7ZbhWGDbZ3FIuw/xeto9ZhGPn/mfZ/VzezfpWOnTG7xXC147VJmsPk2ybvVidZx+gvj2u3z3EqrB2m8+i/DBNN8Iz5WVW6w2He9n1N1kHKMO1aVoLp3N7Ef4OaeeueXeJhbVeOcn2HspJ2L+eZO8Fp7NsvtgcZ+ND32TtuW7DvaJ0LbvNasNykvWv/ipcm+7IuH6NAAAAAAAAAAAAAAAAAAB/hENwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIxW86pvAD4Pdek8J+OVts9u6KN8XwxhPrt+qinqnV7/uku/3123n+tu1+2/G17++um1q/DfImjLrG/tuiemz74I22b6eS/7Lsqn6rIc1fVXw3an108lfaUodj8XpeblZKfX3wxZe16HPfiiz57/cZW1h/T6e+H109ZwOWyifFtk40MbPv+0f42tv3TheJ4+n6rIns+0zr6vSZWNh8sh2wbphmy+Puuz8eSkX0T54+oyyp8N4fgfzqd1tY7y6fy+HbL7SftXKh1/ZuHnTZ9P2YRrizA/a7L+temz+z/dZu2/DsertL/vVXtR/qy6iPIH1VWUn4b13rRso3y6djwfVlE+rc+Pqmz8jOvbcOtwaLL2NrTherDKrn++nEb5z9qjKL/us/5yc5LNR6dd1t/vt8+j/F6Z9ZfUJpyP0vonle4V9eH8GJY/O1eG03u5Dp/P9OW/r67Pvtv9STh2brOxvK2ytpnOvW2ZXf8srAUOynBtF7b9g3ivJVx7hddP23K89ZZOjdnjL8pt+BeEfXGzzOaixXG2Ftm1R5uDKP/97c0o/1aTzY19kY0/qQfb7PMO86zWG+qs/ZTh3lUqHG6LOmye7Yuwf4Vrx7C7F+s2648vlrMo/588/HKU78Ji/iuzB1F+OWTz72Wf1ebpfFo24U946nAvYZm1iH6WPZ96Fe7tnUXxogtqt6Ioir4J822W36Z7+W3WX75V34vy23Qvcy+7n0W4F7ios/kovX5q2GZrx+Ei2/spFrey67dh/w3nu9mzdK2cjT9Dlc7XWX69zeqHp9V+lB+Od7t2X82z5/mdq6y/32iyvZldG7ps/B/Oz7O/4DDbux2mWf9qznZbP9/9etYfH/1CNj6vVll7C8uZeH26Pcz+wNll9nmfhO8SZ01S/+y2LRTpe6y01mvD9wT7WWOoNul766zt95Ps8y4ehe+x9rPrp7Vk2aUbmWE8XJumez9dt9u5ced2vbe3Dee6vXmU725ktUz9g8dRvgjvpwhrvVi52++rfZrV8t39cK/ruv9EOm3/TTa/lNOw2Ej3AudZ7VA/PMmuvz2M8unabmjC+f1qGeWLdTYBpLX8WIzsdSYAAAAAAAAAAAAAAAAA/FMOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAADA/5e9P421Zb3vA723qlattfba05nPHXnvJSXSoiiJlk0rslqyBLulxErH7jbSSQx4QAK7bVAfbAGGIEcfbDmwAjcQOAECfwgCG0gsJB/ahmG1Y8iy1HIrklqzSJEU5+HO99wz7mlNVZUPQjMiINDnR93FU+fe5wEEmPTv1K5V6/2/U+13Exgth+AAAAAAAAAAAAAAAAAAGK3Jo74BAL5SU4Xnk4c+/AnZ9etSRfn4/t9hdv18Hvfnvxm6neb7ktXLJq6vhzcLv6u2anZ0J1+bXfcN5/06ys+qbFq7LVnb6YYhy4fXTzVV9vyXwzbKr8K2vwyfT6oN8+nzOah323ceNxdR/mqd5efZxy13+uz7XYTXP+uz9pDe/zKLl8OS3c952UT58OPG/cl5eP02fJ5p659XWftJx68r87Mof9CsonzqTncQ5fvwiS77aZS/PWTXb8L234T91abPxpfjerfjxSvb8PNWWb4Nn+emyp5PWl9NG/bn86xe6vD59EPWAd3dLqL8Zsj6k4sum0Gk9XIYj9dZe9gM2Xh00p9G+VVYjsvw+afj+yac/y/C+V43DdvzXjoAZ/m6zuo3ra/U6WYW5ddd1h72w/G6C9eb1ycPovy8uh/lz4as3tP6Sj/vYdg/H9fZfCMs9zKEb5nSfPh4yhA+nyR+croXXXvbZ3O3q/vnUf7z51ej/AcPX4ryR+FYl7oXrk0vhYuXTTi2L8K1Sz/JGmfalYdNuYRLhVKHW1dNNlSXbpPd0LDMnv+DB1k9TpqsvT17cDfKN+G+87LP5qpnfTZWX6qzsfdK2CDOmqy/Sg2TrP2k9VJ14VjRZwVcr7PrT+qwP0n7n5LV1zZcu59Ms/a5fynrUNK13eub4yh/v8vWpk+1Wf/wOxfPRPkh3WtvsnrpD+dRPq2vVLgVUupNdkPTk+z68eQzvP/NJJsM32+y9vni9FKUT/d+bsyyB/pgm7W3e5vs85aS7YWUcC8hVW2yvZ+yzvJ1eP9D2D9MH2TzgSEcv/ppOn/O7n/dZOPR/XB+2IR7Of/f198d5b/h0ptR/o3lYZQvJRu/UtUkfZsbSutrEe6FhO253mTtoeqy/M1fydbjr38o3K/Yj+JlG+6VVuvwXdlJVr8X4buO186OHjo7K3eia+/cjn8PIx0b072N+iKs3VC9zsauZhX+TtpBNnfrwxf16WvudG+mWYVj6XZcv5c2NsMsG1v66W6PZ2yfvR7lm8+/FuWr/WxsifuraTh3SK8f5ifnWX81ucjaw+OuarP2XO2Ha7v0+92Ga5ewPVev3Y7ydRu253CtNiyzASPeWwrzwyYckHbk8f5NeQAAAAAAAAAAAAAAAADe1hyCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0Jo/6BgD4w2mq7Dxzs6P7gLdCW2UtNM2f9+soPwvqq6mq8NptlB+btO9JLerpTq+/6rdRvi/9ju7k99Th36bYDF2UXw3Z/Z/1Q5RPNVm5lOzTlnI8svo6qi+i/LzKPnEb9j9lyL7f9PnPw9vZhNdfDtkPqMP6XYXN/1a3F+XX4WxsGn8DmetN1j73w/ZWlyx/dXYe5du4XrJ8XWXt5+XN5Sh/dXIa5edVVjFpe/vC9jjKp/fz6WG3/XM3ZONpH46/h2F/fqleRfnjOmufkzbLH87CuXCTzZfSfB/25xdd1n42Q9b+X98cRfnnpm9G+U9tbkT5q03WP9zuDqJ8H9ZLF9ZLev9Xwvxh2P+EH7cMdTYhqMN6TO1Ns897sQnrpcvq5SBcrr26zMaXJ6f3o/wX1tej/K1tVu+LsD8/72dRPp2fPDG5F+Wv1Mso37dZ/xx256Wf7Ha9WfXh/W8evoMYwnvfbLJXcPfOs7XF5XDu/OYmGyuuTR5E+S9ss7nwYdg2Xwy72nSuejWs9XCqEef7dOocjnV9eD9pbU2yqXPZ1uFcvsk+wMl51je/upeNXU2V9Q+vhmvHzZD1J024lt0MWX+yX2Vz/2ob7q2Ge1d9utmYxrtwbrjNfkAf9m9N1l2VIdzL6edZfVVXoniZT7L+Od77qbP2me79XGqyenlmeifK/1qX9Vdlla3164vs+W+Ps/lJCad66fg4WWY/IB5/w9+gGuq0Q8nGu/U0+wCny7D9ZEujcrbNrn9tlq3172/mUb6U7Prp+DKsw7cX03ACF/bPVZ/1V1WX5Zt1dj/tWXb92d2wXsIBO13LrhfZ5sbpLBtfmjp7PrcusvVa7u5Orz5ssvGou5/V1+Qgez7VLNy8mocDwCabnwxt1p/X4fWv/G72PO++N+yv0r2WdC92He5lXsme53L78N9vOJLm0vf6Yd8/XGSL8Wodvtc5zMbqtO2nY1e61qkvss/bhkvZzWHWl8RrtXBvMlxKxXP50Ul/jy3cWxracKxI+8J0aRF+X/0z2XvK+pVbUb5aZR94OFhE+bj/DL+vepMV/HaRzm1HJqyXai9cq03C+toP9x424d5kuHdS9rP22b/yWpSv5uGMI+yv4vnDOnw+O/49xYflfwkOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Zo86hsAAN463dBH+aZ6Z52HX9TTR30LPKbq8G9HNFW10+u3VdaWD6J0KaXJ4qthk/6EyCS8obH1bVea0yh/0rdR/skma2/Lah3lbzZ7Uf5+v4zyJ9nQVboh+7xv9tmyd1Fvo/z15iLKp60z/HpLN2T5/Tr7AQf1LMqn9TgLn/+8zvqfS815lL8a1u9RnbX/eZXd/3LI+oeTfp7lu6ze6yor4PT5pJ83fZ5pvilhgYWm4fwh1TZdlD9qs+9rEraHg2YV5Vdhf365zep9VmX9z4ubK1E+bT+3tkdRPm3Pbfh5p1XWfrqStefNkM33ViVrb0Mb1u8kyzdt9nzm8+z7WrRZvqqy+x/C+dWqy+pxf5LV++ubrP2n+eNw/nY8yfqTtB4Pw/s56bPxOh1Pw+62DOkEN8xv98L2HNZv1YYLksBmk/VtbZv1zXVY66+ujqP8aZfN/Z+YPojy19qTKJ+OFenc/3Ph2NJNs75z1/kdT1VLn46lYbxeh8+nyTqT9Xm2l3Z/P1tLPbnI7v/FZTaXXE6zvvx+t4jyN9v7UT6dSw7pWifcDKn6sO/Ppm4l7G7j9p/eT7gVUupwr3dyGs4NX8/a25fCBzoN17L3Ntn9XHRZfS2uZHurVybZ3lLZ9d72kDbQLF5vwveUF9kPSPuTepPl27MoHs+Fh0l2P9v9rIDX62wyv+2zD3BlL3tAbdjBzZtsfMlmk7lhndV7dT+8o+PD7Prhr/jF42Nav+ssPw3Hl7Q/7MP66ubZ8zyfZeuja9ey9nA8y/YGXjnN1nf7UfrrIPx+h2W2V12tsu8rfhk3zdrPENZj34bvxpfh3vzLWf98+lR2P0Ob1mP2fJYX2fquD8a7rLK+BuFcrF9nk/+6zmqrOs/2batF9uyHcO1ehS+6q3TxFT7/ZpnNTXJZX9JPwsln2LX163DxODJVE95/WF9Vn/W1fRv2VWnffx7OVcP7H65ne1fV7XtZ/iLrf0objr1p/7PO6j38ta53nCH8vso23BxL20Ocz+qx3lyL8v3tO1F+WGdr8WGbtedqEq41p+F8YBXW+0Ma12+HAgAAAAAAAAAAAAAAAMDv4xAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKM1edQ3AAC8dZrK+Xa+PjZDF+XbqtnRnXxtZlU2De7LEOXH9nl3bVa1j/oW3lbW4d8qacO+/5nJQZR/szuL8udDVi+LKoqXO0NWX8f1Jsovh+x5XgrLPR2pD+tplH/c67Gu+ih/0s2j/LXJSZS/Wp9H+eWQjS+3+/0onzrp9qJ8W2Xje6ou2fd7vXkQ5ferrN5n4edtqnA+EM4fLtfZ9zWZZPd/sQn7h6y8yv5kFeUPmiy/Cfv/g2YZ5dP2f3eb1W96P004nh5OLqL8JuyvboT9Z1eyAb4J6yWdL/XT7PqlyfLT6W77k22ffd4bi+z7Ot9m842DNqvf9PO+ujyK8geTdZQ/brJ6acLxK5WO10d11p+k9R5Or0q3l32/fTpdDdtPmWX1WNUPf/0qvZfQdpuNdffXWds53cyi/Emb5Wf1NsofT7K59n6d9T13ttnaNx27+kmW77LHGQunSrF0qRDXeqjaZGPjsM7qdxPW42fvX4vyl+fZWHTWZWP1tx9+Kcr/xulzUX6vydZeqX6SzvXCfBvWexNuXoXxuF7CqUkd1m+9Dufy59nzX6+yD/zyg2xueLHIrv/M/r0o/x/uvjfKP72XXT81bHZbj/UqG9+7g6y/iutxmuXrLpy/ZUuLEi7FyxD2J9P7WX0tD7Pn/4k3bkb5L80vR/l3X7od5Xeuyp7/0Ift5yJbq5WjbL5awr2i+iLrH4ZF1n7qdTYghdPnfDxtsnrpZtkPON/P1tbby+H42GXXr3e8Pt25Ppug9CenUb6ZhQuwOnx7F9ZjFb67q7p0LyprP7O72fiejl/x/Dz8DeZtl84/H+NfkQ5rJXaS/R5AM83acr+3282BKp3r9WFthfFmu9t95G6ejdXxa9/V4/07h8M2nPussr3GepktFqpwblWlc9U227tK66UasvY87Gd71Wn/U8K1bzr1TOcCVTaUjk5Vx08oE86Vhnk2Xgzh3mG1Cd8brcMvuA3n8pcvRfnujTejfGrYhp+32/H85CE93qMWAAAAAAAAAAAAAAAAAG9rDsEBAAAAAAAAAAAAAAAAMFrRBrSypAAAnIBJREFUIbif+ImfKB/60IfK4eFhuXHjRvnzf/7Pl09+8pNfkfne7/3eUlXVV/zf3/gbf+MrMl/60pfKD/7gD5bFYlFu3LhR/s7f+Ttlm/5P6QEAAAAAAAAAAAAAAADwtjdJwj//8z9fPvzhD5cPfehDZbvdlr/7d/9u+f7v//7y8Y9/vOzv738599f+2l8rP/7jP/7l/7xYLL78/+66rvzgD/5geeKJJ8ov/uIvlldffbX85b/8l0vbtuUf/sN/+BZ8JAAAAAAAAAAAAAAAAADeLqJDcP/23/7br/jP/+yf/bNy48aN8uu//uvle77ne7783y8Wi/LEE0/8gdf46Z/+6fLxj3+8/MzP/Ey5efNm+eAHP1j+wT/4B+VHfuRHyt/7e3+vTKfTr+FjAAAAAAAAAAAAAAAAAPB2VP9h/vH9+/dLKaVcuXLlK/77f/7P/3m5du1a+cAHPlB+9Ed/tJyfn3/5/++XfumXyrd8y7eUmzdvfvm/+4Ef+IHy4MGD8rGPfewP/Dmr1ao8ePDgK/4PAAAAAAAAAAAAAAAAgLe/6H8J7vfr+778rb/1t8p3fdd3lQ984ANf/u//4l/8i+W5554rTz31VPnIRz5SfuRHfqR88pOfLP/iX/yLUkopr7322lccgCulfPk/v/baa3/gz/qJn/iJ8vf//t//Wm8VAAAAAAAAAAAAAAAAgMfU13wI7sMf/nD5nd/5nfILv/ALX/Hf//W//te//P/+lm/5lvLkk0+WP/2n/3T57Gc/W97znvd8TT/rR3/0R8sP//APf/k/P3jwoDz77LNf240DAAAAAAAAAAAAAAAA8Niov5Z/9EM/9EPlp37qp8rP/dzPlWeeeearZr/jO76jlFLKZz7zmVJKKU888UR5/fXXvyLzP/7nJ5544g+8xmw2K0dHR1/xfwAAAAAAAAAAAAAAAAC8/UWH4IZhKD/0Qz9U/uW//JflZ3/2Z8sLL7zwH/03v/Vbv1VKKeXJJ58spZTynd/5neWjH/1oeeONN76c+Xf/7t+Vo6Oj8v73vz+5HQAAAAAAAAAAAAAAAADe5iZJ+MMf/nD5yZ/8yfKv/tW/KoeHh+W1114rpZRyfHxc9vb2ymc/+9nykz/5k+XP/tk/W65evVo+8pGPlL/9t/92+Z7v+Z7yrd/6raWUUr7/+7+/vP/97y9/6S/9pfKP/tE/Kq+99lr5sR/7sfLhD3+4zGazt/4TAgAAAAAAAAAAAAAAAPDYig7B/ZN/8k9KKaV87/d+71f89//0n/7T8lf/6l8t0+m0/MzP/Ez5x//4H5ezs7Py7LPPlr/wF/5C+bEf+7EvZ5umKT/1Uz9V/ubf/JvlO7/zO8v+/n75K3/lr5Qf//Ef/8N/GgAAvi4+tVlH+RcmTZRf1NMon2qq6H8QuWR3D1/pfMj+2Memy1rcr6zOo/x3zaN4udbsR/nPbk6j/NkQLUtLW/oovxyyen92kuVnVRvl20qP8tXU1RDl26qL8q9vjqP8Z5vrUf67916N8g9WWUHe6o6ifBPWS1tto/w0fP5Nld3PfrWJ8k9Nsvs/COt3VmX9VSqdn8zb7PO2TfZ9nW6z8Wuyzq7//PzNKP/+vZej/G+ePxfl724WUX6vydrnss/a2832QZTvS9Z+/sjslSg/D/uHS3W2XkjnA5fq7H6GNhtfqjrLr5bZ9zs9yO6/G6oo34fznycXWXt79Twbj8632fruaLqM8qsuG1/ubrN6n9dZvd9s70f597RvRPl7fXb/XQnbTzjcDeH0dgjrK7bJ2n81e/jxazbP2kIVzm3TvuR8E65F6qxWJmH+XjiW3p9k+f3pKsqnc9uT7UGUD0urlLTph9cPu/74+uFUpvTT7AMPk93mU2cX2di12oR7G2F9zcO552+dPBvlZ01WL6ddtlaohvD7Ddtn1YdzvTQfNrehyT5AnS2lSjiVKX04Vqf1m+rOsnq522X9c9+He3th+5+EexsfWz8Z5Uu5ncW7sAGF7X9owwbUZdevt2F+k+W7WTgXTrduw3IJt9JKuLQu9UlWX+fVXpQfjrPn+cntjSh/aXER5aflTpSPDVm9D2E9VneztWN1kL2rKbNsPlOH9Z6Od2E8vv50kuW7e1G8bBfZ87lbZ+8iTs+ydwX7i2x9lFX7+Ayr7PMOZ2dRvqrDBdUkq8fmbnY/ZZotwNL5ahUOePM76d5SNh518+z5rx+Ez+dSOKA+xvqLbCxNtxLqebYWrMN922Ev/D2hbXb9qs/yJbz/ap2t3et1+J5gFv6e0zKr9XqVtojH27DJnn85D+trL/wfBarSzcZQWC9lG85tw3pJP29/kv0eUtmG32+bjV2zezt+z7Fr4e8lxO2zCdcW4Vqk2w/nApusfTbn4bugs6x/GBbZ3L8Kx990bVr6MB/u9e5KVLXDf+Smn3322fLzP//z/9HrPPfcc+Xf/Jt/k/xoAAAAAAAAAAAAAAAAAN6B3llHtwEAAAAAAAAAAAAAAAB4rDgEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaE0e9Q0AwJhshi7Kt1WzozuBcbvd70X5bruM8t86jeIware3B1G+rbZR/rXhUpR/dvKZKP+uSXb/v7x8Lsp/++zFKD+t+ii/HrK//fJ6lz3/K3V2P5ebRZR/p7no2vBfZM+zKdn39evd81H+sL6I8ne6rL4+tXwiyj89vRvl10M2t90M2bbSJrz+cno7yt9s3ozyTV1l+erx/ltSXZ/d/2qbfb9vdIdR/r9bvy/K/9FLWb1/6eJKlL+1zOrxyb0HUb6ts7XmNvy+Trp5lF/2WX/7wfmXovwzk1mUn1Vp/x+qht1eP7TaZPV1scoWSOtt1t9OLmXtc7nNvq/7F1n7LEdZ/FY4nt5u96P82SJrz22VPc/rTdafvD8cH0/6cO8qGx5jVZ/9gHqTXb+bZNfvTh++PZ9vsr5572AV5Ychu/fX72TFslhk9/NgmbX903WWP9tmfdvmIGvLf3z/c1G+C/9uaPh1xcKlbCnhUBcurUu4VVEmJ2EtzsP8QdbXli67/uZeNnZt97IH9MrmOMqfHWb18tzxnSj/THsvyt/fZHvDZcgaaNo+U12btYe+yfJx/5DWY9j806VsFdZL6bPvt7mfzYX7cPy932dzvT78wq4dnEX5B8usP7lasrlerAsbUPj9lrBe4vGrC/9B+P0O4V5RuNW18/F9ei/7AdtNtra7qLMbGg6y5/nyRTbevRClc9Ukez5Vm/VvVZtdf5iEDa7PBphqmw5I4XjaZu2zj8frKB7X1+xu2L/V2Q2t66z9P9hmz/NGlP4ahO0hvvw0ez7dg9MoX3dhvZyfZ/lFtred7mRW4fNPh6P0XcrsfvYTDr6Uzrez/nb5OL/aSWsrnPwP63WU7+/ci/L19atRvoRtrbp3El5/x40hnAuUdbbxOXsjez6HL4bvccO9t3eaIRwrhnBt1E+y9lmvw826HTf/ocl+QNVk7a3ay9bW3ZvZ2nqyl+11Ld4Mn//IDNus/xlW2XhRhWuRdLzrwrXFMM/aW9ye97K1XXOSvaupj7N3QVV4/929+1E+VR8+/O+R1MO6lIcc3h/nKR4AAAAAAAAAAAAAAAAAb3MOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWpNHfQMAMCYfWXdRvq02Uf5bp/MoD2P14uZqlP94l7X9XzyP4uVPLT4d5Z+bZNPgvvRRfjOE+TJE+YOqjfLnQ9ZXHdfZ99VWTZR/p/n86vpOr//q8jjK/3/e/ECU/76rn4zymyFrDz/bvS/K90P2t1wOm4son1r2WT2+e/pGlH++vRfln2my+1nU0yi/ay+fX4rykyrrb1P3VntR/udf/4Yo/9zh3Sh/e7kf5WeTZ6P8tN5G+brKxq/UtdlZlP/N2b0o/03zV6L8n9/Prt9Uu/3bUxfrrN7X26x/vley+UAVpUs4+ynlU7ey8XQY0jvKvNheivKTJltrNvVu6+uJg5Mo/7sHT0b528e/E+V/cLGM8rEd/ym4bpP9gIvtLMoP2+z6y/vZ9e/eOYjyQx/W10XW/9y/t4jyVVgvVZPlP9HcjPK/cymrlw9cyfL/66u/HOW/Y5atB2NhdxV3z+H1m4usXpLlRXMn20tYteFcO32W4VL8dBL2PZPshu6G3+2L+5ej/O8e34jy7fPZ2PsDhx+N8v/P8PtKly5VdvslnXoO4f1PLsIvOLx+uBQpk3Bs6cM34unzH5rwfqbZA7o9y+bmdy5la8fls9na4puPX43yr2+yuXyzzBpEt5f1t/U2e/7hVlRp1lm9dGF7aFa7XevMwqn5+ji7n3qdXb8/Tes9+8JOTrIO4vxqNp5eOgpfdozM0GTPcztP+8P0+ll72+5l1++y7jAe35tVutYP6z2MT87C53metf/ljaw9VAfhhGBs+nB8OczG6yEc77ZH2fxhfSkrgH4Stp+wftP2nI7Xbdg9T5a7Ha+rLhuP1lce7//dgyqcP1fTrP03V7L1ZtnL6qVfZPnN5exd09Bk7Wd9KWs/Qx22z7B/q8LufHYS/m7F7XS+8c75XYYq/G7rRbgPe3QY5YdJ9uzTtfX2hWzfNm3Laa2k+Tr8HcX6PNvnbU+z2tp/5fEeW9LNrmGbPc9hmS2W6/vZe+5+ns3FNsfZWDQJ208fziXbW6dRftjPxsZqls0FJnvh2LtcRfn5a9lkcrdvfb8Gab1cZL93VZ+Gk+2jsD2ED7QL9x76cO+w6bL+dphl4113/VKUr+dhvRwfRfn+zTtRvj54+LVv3belPOSvMTzmoxYAAAAAAAAAAAAAAAAAb2cOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWpNHfQMAMCaf3VyP8su+jfLz6otR/r3tfpSHr5ePnD8b5b94fiXK310uovz/u//jUf4/e/KjUf656ZtRfjM0Ub6u+ig/rzZRfjNk0/79ehXlrzcnUf7ZSXb/N5rHuy/8zFk2trx+fhjlX7t3FOWXd+ZR/jfW74ny+89k7WE62Ub5vTbLD1G6lIN2HeWbOqvfo+kyyj+3uBPl3zN/I8p/995novw3TbP+OXWxzeZW9y6y9nz/JLv//u4syrd3s781dLt7IsqvL3dRfpimFZCp9rJ6rNusXqbT8Pp19nmPF++P8v/yKKvH/9Oz/22UT8e7Ifx6N9tsfrJaZvXYn2b5yb3sftqzKsoPbfaA+mkULxdZvPTp/cyy/DDN6uvWcCnKf/zgySj/7xfvjfL/3XOfiPL/9RO/GeWrWdZ/VlX4/PuwfV5k7b85yfKTs2w8qrPpeT7Byh5PSV9bdGG99NnwXjbh9V8M59svvpKtl3/1+rui/P/xm/6bKB8uZ8v6SlhfQ9ggsu6tNBdZ+2/OHz47ucjuvQr7hklwL6WUEm5Llm3WNEu3F/aFYdsZHmT/4N6drHj/b699T5S//ceyuVh7njXO1VH2eZfXw+ef/tnTsC+vu6w9h1tLZXo/y6f1lerDN+hdOLb07W7vv9zei+KffPn5KP/yNx1H+acusr2ieh2u3SfZ8zy/kdVj2t+m9VhlQ2msPd1tfzK9F7bndCoQzlWHJvsB7WnWHoZXsvb55nuyDuVKF+79bMK9k1X2QOt1dv1uL+sQ1/tZg+umu+0/w6VgCV/txOpNWL9hf9iE4/Uk29ouk7Os/a+uhBPKsZmGA0aVfV+by9n4vt3Lnmc3C+9nkdVvOr9K9yqqflzz52aZ/YP9l9Lrj6xews3qIfy+qnB8TOuxO87Wg91Btpm8vhTeT1iPXbi+SOfPdZd+X1E8triVDcBD8xj/74TsuLaGdfZePK3FYR62/YNsLrk5ymoxrq1ZOFcNpwLtefZ91dvdjnXpWP3YS+vrInszOITvTZtZ+KKyztrzdj+7n81BNtc4f+palN+G9dheZH1/e5K+t4jiZfbaaZTf7W9t7N4Q9v/dnbtRvqnDDqu+GsWrcHNvCOsrXdv14fhYr7K9mZL2J9uwXvayl03JfGPoHz77GM/wAAAAAAAAAAAAAAAAAHi7cwgOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNGaPOobAIAx+S8P7u/4J+zv9OqboYvyfel3dCe/Z1KaKN9Uzuc/Lv4PN349ytelivJ9GaL8ab+K8stht21/HrblNs5ntTWr2iifm+44/3irw/b855767Sj/ofd8Lsovh6w9NOH9r4esfd5oTqP8tWYT5Q/r7H4OqlmUf/zHrsWjvoGv8IVXr0b5+WId5T/w9KtR/o9+84tRfl5n7fO4OY/y3zh7Lcq/e5LNba806uWtteO5/6ePovx2L+vPq6vZ/Or6s3ej/Hu/9VaUf35xO8p/3+HHo/z72rBe6mw+M6uybdh3Xr3s1t7vzqN8N8/qZfVU1v+3x1l93Xgumy998OrLUf5/djmbf37b9M0or14eL+1J+A+G7PtaPrmN8s2lrL6aNrv+B59++Hr5L65neyF/cp7VYlor6d5Aujejtr66b3vhfxLlV5ey66+eyNp+Nc32uiazrFbe91S2FvmfXv+dKP9nDz4Z5a/UWd+T7o2pl7fWt/9nfzPKnz2TXX99NXsvUh9cRPmDg2WUv3mYzd3+k2ufjfJ/7ug3o/wzk6zeF2G9GI/eWn/iL2f1cv8bs+uvb4Tt4Uq2d3X1IFvrX2qzvb1vOMzWIt93/Iko/8HZK1H+Sp21z3ytk9XLO+297J/56f9tlH/p+7K9zHStf3A1q5drB2dRfr/N9raf378T5f/owRejfLpXfb3Ons+lOpvfLsJ3QU04HtXh/85AWr/p9dPfC/kv/tGfjPJ3/zcfivK3PpR9X9WVrP+/fiXbrLi2yOrrxix7F/SuvWwv/F2zbG/7avjuNM1fb7Lnc1hn7e2sz9rztMraT5uVVznpH75/+OH/y3dG126uXonyt/4X74vy9/5IFC/9U9naZbaXjXWb9W5/3fzpa/ei/FP72XudwzZ7PgdNto9fV9l7hTvr7D3iF06z9vb5l65H+dnnxnWcoLme3X/3whNRfnuQ7cWe38zWyn3YWbXnWV+4nWfXH+pwLb7K2nPdZfmDV7L+Z2jCzxuOFdPb2V5RfftBlN/tbynm6v2s/xm22V5C6bK5w/bV17Prv5KtjbKVwtfBkNVLli4le/rj0g0P3zc83jsaAAAAAAAAAAAAAAAAALytOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGhNHvUNAABvnbZqonw3VDu6E97u6pK1nabK/vZC1pJLOarnUb4d1lG+K0OUb8LnU4d/myLNd0Mf5dPvi6/u245eivLfvveFKP/uyXmU30TpUs76cbWHrDV/LddP65230vFx1p7fdXwvy+/fifLPTLN8U2UttBuy+npteynK71fZeNdUF1m+zq6/V6bZ9Y1HX9V2P+wRj7IRYP9gmeWnWXtIbYasx/2Ni+ej/H71qShfJlm9XAmb8yzctlUv/xHZ8F62++k/yJ5/23ZR/v5Ftt750vnlKP8r0/dE+av1WZSftll/0lTZeqofsu8r3Tt5p6nC5t+34fz5LKuX6ji7/hDudX36zrWHzv7i/Bujaz89uRvl5202thyGtRL/XUx7CV9Ve5q1zc1BuJd2kvVVw41tlk9r5c2Hr5VSSrk8e3eUf/f0jSj/wdm9KJ/upcVjhXr5qvZuZ/WyPs6ez+Ywa89Dl+XXm2xufu9iL8p/8vRmlP/I7Okof1h/Icq3TTZXTefa6uurW7ye9eebgzbKbxfZ81/tZ9dfzrN62ZtkexWvXBxF+d9sn4vy6fxtFu6l1VVaX9n3VYeT+X7I7id9N7hrs89k84dLTz8T5W/Ps/a/Pszafxe+e5mEe89vrvej/MfPn4ry8zqr32m4FzIP66uNx4uwPxzC/jncq0hHr/Pw+kOXPf9rP/vFKH/21PNZPhyPLtZZPfZ7u+2vTrtZlH9jk41fzY7fhrZV1p7bsB77cLz4wvY4yr+4uRrlf+UkWZ9m+5jdnWzucOkz2fXPn8zWFufXstqaHIbvgebh79n0WVtI98Hn4Vxy3WfP5yT8PaRZk9XW3dUiyq+24a/71+FYsett8zr7Af3drL6ay1lfuz3M3ltPVtnzPA/3KtaH2fOpuvD7rbP7mYTNrVll+Tr8vPU63HwI491eNtdoZln7GZthnfWf9dFBdv2LbHyp+mzuM2zDvfA+bBCpcC3y2EvfTYVrl4f1eO8AAgAAAAAAAAAAAAAAAPC25hAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKPlEBwAAAAAAAAAAAAAAAAAo+UQHAAAAAAAAAAAAAAAAACj5RAcAAAAAAAAAAAAAAAAAKM1edQ3AAA8Ok2VnYfvhn6n1+fxMbbvNr2fvTKN8tvSRflUHf5tirpUUX5s39c7zTfMXo/yz09Oo/yVZhblN0PWnhdVlt8MQ5RPzcP23IT10pdsrOsG9fhWur5/FuXfd5TV1x/b/3yUf9fkTpRfDm2UT3Vhe05twvLdhHPDWZX9gCZKv/MMbfY8FwerKP+uS/ei/JN7D6L8XrOO8m04HqU+tb4Z5evq1fAnZM//SjhczMJt3nfaeDSEu+D9LOyvjrL2PJ1k7XnSZP3txTYbj166uBzlf3Xy7ijfVp+O8mWSPc/jOlvfpeNdW73DRqSsuZWqD+fbe9kPqLrs+tNZVl/r7cN3EL995+no2k9O3xfl9w9+J8o/N9lE+UWdzlXDseIdtm/YLLN8nXVtpYR9VX+eDXb1YdZ+ui77vj52+4ko/+9n3xzlrza/EuXTejms0rWXevlqpg+yvnl+K3v+q8vZ89nuh+9Ftln+Yp31t188yeZivzz9hij/dHs3ys+q+1H+MGye6V7drusrtet6nN3N1o6L17P7WR1nc9uLvWyufdJm9T5tsvxsso3yXzi/GuV/a/quKD/f+1yUb0o4HtVpvWTfb7oXvuu9/1R/L+uvDl66EeUvrs2j/Ol0EeVvh3sDe+F8Ztpk9XJrfRDlf/X0hSg/D+efizrLt0P2eZt08RtahvXyhW32/L+wvhblU/2Dkyh/81ez8evF42x8OdvL6vHuLFuAzZusvaUuumx+WKcLwtA8XKDOq7S+svvvhmw+88o6mz+/cn4cpMPFfljrk1/9RJS/cu3bovzFzWxvYBvODdtw7pbuaw/he/dbZ/tR/rTNfq/iYJr1bWlbXgX7kqWUsu7Cfepw33ZodjzXS9dqTTZWlFvZe/12Pxtb1sfZWB2+Fi/bvSxfwr2rKp76hO0nXLpUfVYvs3XY/1xk+Xob9lfzsH2OzLAN5z6TrL+qDrN6Gc4vsuu32dyq6sPvd5vNfYZNlo9fxI1sLT4Wj/eOOQAAAAAAAAAAAAAAAABvaw7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBak0d9AwDA46OpnJ/n7SFuy0MW78N/UJcq+wE8Vg7riywfts9JabJ8leXbqovymyHLp+rwb7m04edN69HY+Na6PD+P8i/MbkX5pyd3o/xzk6x+NyXLn/W7bT/Tqo/yix0PR33J7qcb1ONXU+1to/zRYhnl37Wf1ct7F69F+Xm1ifKbIdvGrMP2f97Povyd7iDK71fZ93VYZ+NpG84HypA9n8e9vrp5Nj8fJlm+bbPvazFbR/njWVa/qbrKPu+XVlei/HHzVJQv5ZUsPsme50HVZtcPpfPP0UnnA2H7KeFyYQjnA5Mm7N/qh89fbLK289sPnonyx002F24Xn4nyT5Vs7J1V2dgbt/3HfCyarLK236zCue0yy3fhZD6trbrOPu9qk7Wf37jzbJR/ZprNVRf7n4jyTVgvizodW7L23Id7LWMbiyan2fNsz7P7n7+ZPc+zRXb97STrr6qwXs5X0yj/yfs3ovwvTN8X5Q+PfjvKP1tWUb6ps/6nDecm2beV7zWm41eqPs3mtvM7Wf+z/2r2ebeHWb0sZ1l7vj8J+7cmy0/rbC3+uxdPRvnDJlurzWYvRvkm3JtPpe0/3ds76bPnn37a4SLbi23vZd/X0Zey+truZfVyPt+P8q+k87H9bD52Y3ES5e+sF1H+18+ej/Lpu7Uyye6/CfuHthrXu9w3t0fZPxjCvbF1Nh61J+Fe16ez8eLOItu7vV1ne7dNuLeR1vt2ks2XXqouR/lVuHee7oW3s6yHvtqcRfk+HI/O+3C+sZ4/dDa7cikl7Bv6dbY2OvrlL0b50yffHeXvtVlf3l3NvqvpNOtr033qLnzPenr+8G2hlFJu19lYfRi+h0uley1DF+79bHc81qVj0SacS97N9orqbXb96eX3RvmLK1mPUmfdQ2yyzJ5/+Jo1fk0whFtXfbg5UIXtLdUv4hFjXMLn09++E+Wbp7O1dTXNnmc6Vy1dNpdJe8Puzdvhv+CtMK43RgAAAAAAAAAAAAAAAADw+zgEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoTR71DQAAwNtNXaqdXr+p/C2Lx8mN5jTKL+o2yqftoRv6KD8pTZTfcfOP7boeeWtdmZ5H+cNmmV2/zvKLOmv/bVgvi2oT5TfDEOXbKmv/8yr8vGG+9reY3lLtfBvlj2dZ+z+cZPmn2rtR/iisx+WQjY/zsL7SfFtlzz+1CsfreZXl67C/SucPY5uvdtPwH0zD+dKki/JpPV6bZ/PJNm0PYT710vpqlJ9W2fNsq1ej/HPh99WE88lNNlzH89Wx1deuVVX4QEOT5uHb/16bjRXLLnsF9+snz0f5dC5cZi9F8ZtNOJaWrC9J55IlbAq7rpVmFY6Ny6zW602WrzbZ5+3D/KbK2nNdZ1/YxSab6/3SvXdH+UW9ivLfvfhslL9S1lE+XXvNquz5pHO3VFpfaVfenodzsfPsfma3s+e/nGQfYN2F9RjmZ222Fvnog6ei/M32fpSf7n0uypeSjS+LsD9J92a6ks0NU024N1OfXWT51TzKz+9l9bV+NXueQ50tvk67cK69CfeirmTtZ95k9fWJJquvS81ZlC/lThZvsva82PHWedr+P73Zj/JDl33e+iybP8/uZPV1+GL2eYcmm1+d1tnzSeulH7L7v7E4ifIvLS9F+V9rsvnety++EOX75kGUvxKuj7rdLmXLZgjXU6Fhlc2fJ7ey+cPxF7L57eYwq8cH1V6UfyNKl7Lts/nbep59X+s+y99bZ5/383W2V7c5zO7n/fOXo3xq1Wf959n64ecn6TZyCd/blSEbu4aDRZS/+atZ37w5PIzyZ80sypdLWXzodzs5Sce69WnW1panWQtqZll72F9kfXMJ59rh1snu7Xhvo4RzydlHvxTl9/dfiPLn17K+druXfb99k+XbVbgWP8/yVThZCl8blb4J94bD7q206e9JPN6GPhzvwnz3xOUoX62yuXl9O5v7D+vs+pMnbkb57u69KJ/OzXcunf/syONeVwAAAAAAAAAAAAAAAAC8jTkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoTR71DQAAALydHdebKD8piyjfDX2Ub6rsb6Fshi7K1/7WCn8I16cnUf6wvojy8yqrl+P6IMqf9ssoP6+aKN9WQ5RPteH9pPWeXp+vrm2z/vmgXUX54yarr6cnd6P8pTq7n7pk7X817La9peP7pTqrl1nVRvmxjb+7np+k+mnWfqomu/+2yepxWmf5Z+b3onwbXn/ZZ+3tsAnHu7Be0vxJP43y5/15lG/qKsqn/VVTZddvdlzv9TbLD9ntlxJ2z1WTPc/pJGv/af0mtuFYtOqz/G+cPhflmxL2bfOXovxhlTWedG4+C+fCs/AVaDoW9ZOwdtdRvFRh02xW2f2kLb8Kn/92mz3Pk+Usyt9u96P8L97/hih/GM6FPzh7Jbt+WC+bsF7aHc+t9ko29labrMWl7X/6IGufm8Owfs+y59mFY9d2mfVX9073ovykztrPf6jfG+XTuWE7y8aXTdhjHYb9VVovm3CtE04NS7nInmdzls2d29Osvc3uhePjLKuvizq7n1U4vnxxm82vNlfDvbGwf57Xz0f5dpG1/6a6F+VLuHZMLYfd7mWWsH6H125F+clR1t/u3QrHi2m2Fh/qLL+6yNrzq2G9LLdZ/V7ZC9fiYX/ehPXY7b0Y5euwvvbD+V4/hO0nzO/acHoW5dtb2bvQwxez9l+F7flBn9X76+H87eQoW+/cODqN8vttuOAM/cbwrijfhhP6m+29KJ8a4s2rEbl7P8tfytbKVz+W9VVDk9XieZ89+2oR3k8X9oXp1GSTXb/qwr2ZdXb9i/Q9cdj0+6yr2r0dzyWHTdbe6sOsvhZffBDl+/Y4yi93vPdTb7Ln32VbRaXe7rpvDtd2m93eT/h4xqcP147brL6qVba3sT0O98aidCn13WwuNqyzuVh9kPUnfZ/V49CF31f6/Y7EuFZEAAAAAAAAAAAAAAAAAPD7OAQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGg5BAcAAAAAAAAAAAAAAADAaDkEBwAAAAAAAAAAAAAAAMBoOQQHAAAAAAAAAAAAAAAAwGhNHvUNAAAAmW7oo3xT+dsXj9JhXUX59PvaDF2UL2H7aasmyqftsy9DlN/1/fB42QzZtsZyyOrrvF9H+Tr8W0N9CeuxZO0/vX56/2k98tZaLtsoX1dZf7sK6+t2dxDln5ucR/lNdvtlWmXtfx32D/NseC91lc4Hsnxddjvf2PV4uuv5bb2N4qUfsuc5hPk+/L5m4Qc4bJZR/vLkLMpfarL6TfPPTu5E+cN6E+UXdTZ+zaqsv03H31Q6/0/7hz58a1Rvwg4xXr5k119ts+/3aP7w9TIJx5ZJFX7YHfvc6kaUX9SrKP/B2RtRvgnXgmXI+sJN2NjaIWs74dQqrq0mW4qUrCcsZViHY+kia//p2Ji6v5pH+b3JfpT/xZNvjPKpb5m+GuXTue1xHTbQ0HK42On1qyG7/6rP8pOzrH1OFuFYOsvqa2iz/m27CddqJ1n7T/235VujfHs9+7zvaW9F+U2ddaC7rpeTsH0OYfuv19nzrLbZ9aenWf/The1/uxe+uwjHl67O5vKvDJei/LrL5g9NOIFYhO25CceLMnkQxefh/advppodr6XKJpsx1RdZfrKcRvn53az9bOdZfmiyb2BdzaL8m9vs+sujbPxadVl+r8m+r004/9/svRTlrzdZfXXp2j3M79pwke1FVausf1u8nO0tbefZ/Gf4XNaeL57I6v083Nt4PRzvmibrPw/m2Xp/E453v1U/G+U/dJTNZ44n2XoknI6NyzZ7Ns2bWd8zXWR97eVPpvuMYd9/Lezb9sO9t+1u+85qHV4/3MfcDNlYXS3CtWbYHh531Tx7nuU863uqvez6i5eysa5ZZntjm/3w95AWWT5dilRd+g+y+HYvHEsn4V5O+B43mzl8HYT3X02ytfWwzOYa1XmWb6ZZf7W5sojybfqe/n72nrVsw/d84Xg6nIb304XjaRP+3tJZeD8PyW/DAgAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFoOwQEAAAAAAAAAAAAAAAAwWg7BAQAAAAAAAAAAAAAAADBaDsEBAAAAAAAAAAAAAAAAMFqTR30DAADAbnVDH+Wbalx/KyO9/9SuP++8anZ6/XbH10+ff1+GHd3J79kMXZRPn8+u29vYjK2+7m/3dnQnv6epsvZ5p19H+evNLMr3YblsStb+59Vut30e9/ElNbbPO5lk7eH+Kquv5X4b5W9tj6L8m5O7UX5WZZ93NWT9/6LeRvmmqqJ8Wo+zKnv+uza2+o3nJ2F3OPTZ93t2MY3y/XF2/dMuG1+OJ+dR/lKT5bshaw/zahPl2yr7fq/X2fNcVNn3lc+3H/P5Z/Y488uH9ZUuL/o+a59dkL+8l9XKvMnGllmdjXXPzu9k+TbLH9XLKL8Ix8ZFONathux59kPWeDbhXGMIm3I41Yjbfp0tXUrZZh9gs8oG0/kiu6E6XKs1ddZ3nmyysfSiy9rnr56+O8pPD7P29vzkdpRfh3sn03DsTWeG4ddbqm3YHtZZfnIR5s+zelmHc73SZfl06rAO6/d22Y/y+21W72m9HB1l49FmyMbr9bCK8vOwXpbh3DneLArVXXb/k/Ms386z9tyeZPk+XCr3y3BuGK7db/WHUb4PJxCTsL0t6qw9p2u7dO14KZygbIYd/wpbnX3e6uwiyk8m4Vo5Spey3cvmM0OT3U+9zday63XWnk8usutvr+723dfkcjZf+p3yTJR/Zpqtv9pwPZLmx6baZAukep193v1XwwVSuFfUhO3/tGQD2MU67K/2wvVsOB6t0/6hz/J9uBk1DRfYl/ay+eSYDGGtVNusLUxuh2PdIhurr34sipe7783azvJmOJech4upMF6HfUOTTd3K+lJ2/Wo/W1tsw72K0al3O3cos2ysGMK5Ybp3Mr2fvXepuqx+0/vpm7D9h3s57WnWPrd7WXtIlyLbcO07OuHeedWG7efoIMqnOyH1STa2D8fZWmp7mOXTlWx9ko2/ZZl93mqa9Vfd/QdRvoR7absyrt9eAAAAAAAAAAAAAAAAAIDfxyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEZr8qhvAABgrLqhf9S38DVrKn/r4K206+c5trY2tvtJbUuX/YMhi6ftoQ7/9shmyO6/LlWUT++/Tx9QKL3/9H52/TzfcfWSCpvPtm+i/HJosx8QmldZe1gO2yi/CdtPE7bPZcnuZ1FNo/w7TVovqz57/m2Vtf+mydrPdsj6/4suq6+0Hl/ujqP885O7Ub4L62UTPp9Zdvl4PvC4S8ffvux4PG2yAaluw/lDnV3/YpvVy+urwyh/PLmI8k04YLdV1r/V4fd7mF4/7D/T/nbX0vl5Ov9Mx68h7N+GSTjhC+P9Ovu+NtMsf7Z++PnPwTSr3cN2FeXrKp0b7nat9tzkQZRP55KLOsv3/W7HinRuHk4dypB2PelcY5v9gyrMD2Hn0HXhA5pkfdWi3UT5y7PzKN+HX/BBk9V76plJNjYuh6x/OOnDvatwbtuHfXOVDi11WDChOmtuZXo/u591kz2f8Osqs4OsfU7CejzdZP35x+4/GeXPulmU/6bFq1H+2entKH+9ycbHzRD+Sk7ansN6T1V9dv0mrZeT7Pp9G45fk7B/C+e2fZ3V7937+1H+k5MbUT7d+ylHWbwOO+gnJvei/Hmf1XtJ9+bD/nbnuux5Th9kn7efpPUSvqsJ67GEa/GLshflX4/Spey316J8e5iNj8s+Wz9emZzt9PqxsH8bttl8tSyz+Ul1lo2n9V72fPbeyAawOtzbq9dZvZw8n33e9eXs+mfbrL7KlSy+DOeTXzq9HOWvzrN6GZXwvWMsrMUqnEvO31xG+c1RtlZ46hfWUf71D2Vt+eJmuLcx3+2+Zzp1m5yGc9uDcO6T7vPu2o7rpb6UvacsdfiFhXO9XWtPsrFuaMK5ZLiWrXb8fOptdv10aT0cZPnRCed61SSbmwyLeZSP6z3Mtw+y8SUdv8qDsAGtsvsZzrP3vrtWLxZRvj/bzdztnfXbFwAAAAAAAAAAAAAAAAA8VhyCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0Jo/6BgAAvl66oX/Ut/A1ayp/u+DtLP1+x9aW+zLs+PrZ5+2G7H5m9bjqq62aR30Lfyh1qaJ82n52ff1dt+ddS+tlOWyz64f1dVRn7flSex7lU5shq/f0eW7C/nkTPs+w+X8N9ZLdfzoape0n7Q9XwybKp8777PonYXu4UmfbdPNpdj/X906jfF1l39eqb6P8Zsg+771+FuXPwvzTkwdR/rzvovy8ydrDKmw/syp9/tn9p/3Jab+K8vf67PO2YX84NGF/24c/INT12Xi07LLv95XVpSg/28v6k/N+GuVP+r3s+kNWj/O0Hqvs86b1la7XToesXk7Cz5uuLsLuvAzpDwjLq0rrd4fuLrO2PG+ytnZ5ms7ls7H0sL6I8qmm2m3fmc61D+psLnDSZ8+nm2Wft0sHr9BQZ7VSdeFa4SIr9r7N+qrUNhxLz7fZ2LU/WUf51KLK+v4m7DyvN9nnLSW7nzvh8+9mWfvpZrvdq0vHripc/DbL7PtqzrPPu51k9d5tsw/chvW73GTj0dW97IHWO96rq8PdjY+tnony97ts/lCF42k/3e2v/FRd9vwnF9nz3M7D9pltbZR+mo6/2f1sD8Pva5bV152zRZRv6itRfhJ2cFemZ1H+zeYwym/iDjocL7pwftLt9l1cvc7upz3L9vLD5UKJV4/h3km13e18+KLO+tvPV1m9TOvs+V+dZe86HmznUf6iS+d7Wf2WcP01bML2ucnWy1VYj815OJ+vw/Z5J4s3q7R/y/Ln4fXXR+F6KtyvOJhn64uzddae2zqcr24fvkM8iK68e8M2q63SZG1haLN8tc7up822eUsJ3yM+/bNZW3vpz1yK8tuDrG8Y0n3P9LVFG/6DdThXCmt9bKqw/ZfwvdQwzcbqYS/caN+Ga+UwP4R7M7M7WX0NzW73iupN9nnTtWz63qK/PrLjN+FeQhXOfapFNtcewt/D6+fZ86wvwrlkOH5NXw+vv9rtXnI1zfqT/mKZ/YDwvWN/Fq4tdmRcv+0JAAAAAAAAAAAAAAAAAL+PQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjNbkUd8AAMDXS1Pt7vx/N/RRfpf3wttf2n7S9tmXIcxn1++G3V5/VrVRftdm1Ttr2ZW2n7pUUX5buvD6u+1v0/a5GbL734T128X1m1lUTZRP+6vjyXmUn1ebKH9YZ89/mT3OkvY+TZW1/1Tafpod11cXXn81ZN/vMqyvtP2f9FmDWA/Z85lX2f1f3z+L8sftRZSf1dso34X9+b1uEeXTel8PWX910k+j/KLKnudyyJ5nEz7P8z57PqlNOL7c6rL2f6/P2sNhvY7ypc7uf7oXji+LVZRvm6ze5012Pw828yj/cn05yqf9wyvh9d/T3orym3B8+eI2az/X6+z53+mzEeZsyNYLd7qjKJ/2n324fOmz7rb0s3AE3mT9Sb2f1fvpxeyhs4eL7Non66wWU787PBnlr09OovwTYT6dG97tsrn/STi3/dw66xuacDbfteFcPlyaDuHlw6lPrNpmH2Bzlj3PbGZbSjsJ19Zd9oAuTbO53pVJ+gky6d7SS9tsbrII21sTzg3DqW3pw/rKx67s+uFSLRZONUr6+Lfn2QNaN1l/e3U/688PJln7rKt09Z55T3s7yqdzq0/2T0X50oQderjXPoR7UUNYL+l4VIV7LWm9NBfp3lvaYYXj4zzcWz3I2v8QTiD2w3pMx7s31odR/iLcmyklbBA73otNVV32/VbbsF7WWb49C99FtFn7T/uTeD4wy+7n4vTh14KllPLGftae6yp7/nfLXpTP15u7na+WcL1WunCCFe61lC57/s1Ztlc0TLL2U51G8bj9d2H7H+qwvm5n/fOddj/KXzrK5pNfupPtNR7sZePdToVzt7RWhlW4bx7W1jDN1hZ9OFakc8Nqne1TP/Mz96L8K3/qUpTvwq45fI0Yz+Wnt7O55/Zdu33PFEvrJRyLhnX2eauwvoYqG9uHvay+6lXW/uvz9L1a2kDT7ysbW9L+Ydhm9TK5E86Vnrue5ccm3XsIDW12/aEJf+/kIJuL1efpZkK4dmzDzcm0vibZ9atpVl/DOusfqkm29z9swv7nIfntawAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEZr8qhvAADg7aCp/G0Bxittn014/W6osn9QdVG8LW2Wr9JPwFdTl+z7TdvbZsjawyRsoX0Zonx6P5sS5oc+ymfpXDp67VXTndzH/+hKcxbl9+tVlE8/75U6+7z3+3WU74asfWatrZSmyuo3bZ9pC12G1z8Jx5fzfrfbXG2V3f8iHO8u13tR/mi6jPIHTVYvVyZZPc6rbZjfRPnlkM0HDuuLKF+H3+/9PrufO33WntP2thmy9r8M8yd91j7T7zfVD+H1J1l/27ZZ/e5Ps/5/b5Ld/7bP5j/7k+x+3lwdRPlLbVZfmza7/3the3swzKL8NBxRX9xm84Fd18uDfr7T64fdQ+lnWX2VNuvfmr3s+6qq7H6aZncz7rvLrC304drr8jSrxbM+q5Vb3X6UXw7Z3OROdznKp23/PPy8dTi37cOlUTh1KEO4tTGEi51wqlrCpXIp4dxnu84+8IOzrD2kY/uDvez6n764EeW/be+LUf6XVll/ctJfifL3ukWUT+ulm2YNNJz6lKEJ9yZDaT2GW1Gl2oZrhfvh3libPf91WL+vDEdRPh2rL4Xj3VPt3Sj/6c31KP/a5jjKp2uv0odzky5tcFk8ra8h3Iuqw6VdOn7V2VZFSZeaTR3uva3DvfNtVu+bPrv+RZe+e8m+gBvTkyj/4jIbv0q8l7lj6e3U2fdVddkPqML+IdyKKu1Fdv14PA07rGES1tcirJdN1p+n67UvnIbzt4tsfhhWVy581xELx5cqHE+HcLyo1tn167Ae29Osfc4n2fPp2yzfzcPxbhXuPZ9n66/NOrv+RbD3k+1U7N6wDRvnJtsXrrZhrTTh2BJev+rD96b74d7PMnue1z+S7XXd/uasLa8Po3isOU/fE+92bR0L+/5YOJccZtlmYD8NJz/h2qsP15qTi/A9QfqLFeH9N6fZe+u0PQzhXLuka7uDkdVLqErrK33+YX57kNVXHa6N0rXC5F42l0+vX7XhXlG4d15NsuvXs2w8HXY9939IflsbAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0Zo86hsAAAAeb02V/W2Nxt/ieKyk32+qLlWUz9tbpq3Sf7Fbm6GL8rt+nrt2qTmP8vNqE+U3QxQvi3qaXb9k39e8yrZlTvp1lF8O2QfuSpZfhs8z1Yb3c1hn7WGWlUts1/3P4WQV5Sd1H+Vn4fN89+z1KN+E329a74s6ez53uoNRXb8u2fd1VC+j/L1+EeUXVfZ522ob5rP+82aTtYdmL7yfJrufRZv1z0dt9n21dXY/e012P7M6ez7p9dPv91cvXojyh2H7r6us/zmqL6L8cmij/PXJgyg/DZ9n2n92e9nzGdLpZDj+zuZZe5tOwvlzMD52fXbze21WW02V9f39kN3Pq+tLUf7udj/Kb4ZsLnPQZLW761pP779vs+ffZ11D6WZZPrz90k/DWm/DyX9Y60OXdSabVbaWquvs/tP6Sv2H0z8S5dP2mUrr8e4m6x/6cPGV1lcX1ldcL+H1U+HQXsKpdqnD9twvw3oM907ODsO9lj77wn7u/jdF+Uk41356djfKf+rsiShfpmGDm2Tf11CF/VsYj+t3x5sz4dZGCbcqSjh9K7NbWXu+GLK1ezrevTy/FOVT27B+7673sh9Q3cny4V5pmq82WQfdHc+jfHw/cXvO/kGTbRWVNlw7pmvN6b2sP9kcZz+gDrurbfgBvvHoVpT/teWzUT6W1ks4vgxd1oGm9VXm2XwjvX69zcbrPnw33qyy+Ul7lj3/edh99mEBbw/C57OXDdh9F85vw/2cd5R0bOnDyU/YFw5hZ1uvs9odZtncpF5nn/fwxex+Hrwr29sYwt/2D7f9y7AZ1+8NxMLfexgusr2Qqsv65rQv3xxlY1fdhXtdi/D6F+Fiahk2uCZsb+HcoczC+mrCveFx/VpR3P5LnU7OdzxehPpwL6QKx5d+P9ucr8/CxVH6fNZZPQ6r7H6GbVi/I/k9s3HcBQAAAAAAAAAAAAAAAAD8ARyCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0Jo/6BgAAAN7O+jJE+WZH9zFWTeVvs3w1bfXOahGXmrMov6hXUb6ponjsuN6L8qthE+VP+qw/SZ2X3T6gzZDV+zPhrlUT3v9BPY/y3dBH+V33b5fa8yh/3FxE+UW9jvJn/SzKv2tyJ8o/6LPvqx7aKN9W2yj/2vY4yvdh+0/7t/WQjRdPTe5G+avh/aS6sH5vNIsov1hk938wy9r/vMn68/1JOn5l/X8d5rdD9vwvT7L+56TL6ncTtufT8Po32gdRPq2vtH7b0kX5w2YZ5afh9bd7WfsZFtn1m72sv63C6UldZ+P1Xvvw99OFtbLts76/C8eKvbDv+dTpjSh/eZrV+qzOvttZOPZ2dfZ85lVWi+laZJtN/UuXTZXKMAlrsQ7z03Bt0YT58H7CrZPSb3c71+7Den/p/FKUf3N1EOUP26zvvz49jfKbPlt8deHf2e0nYf85y/JDuHYMh/bSZUuL+Pp9WI/p9atsqC71Onv+XTY1j3387s0of9Bmc/mr86z/vwgbxO3Vbh/Q0GYNYgjrsZtl9R5OZ+J8/Ge+0+ErrJeSTcfi+mousg+8XGbt8/XTwyh/d5lNgJ7cz9ZeL51civJX6mxvo/TZWqF0aQeafb/1MmtA3WIa5asufDe12u3ec73Jns/0NB0fs+vPbmUTiDfnR1H+f1hm39f+PBu/1tuRvTsK98L702y+WoWbA9U06w+HefZ9lW3Wn9Rp/xP2J5OzrL+qwndNfVhfm4Nw/NrLFszVLHxX04TPf5fSja4h+666B1ltTfb3o/xwNesLq03aNtNaCSeH6d5JuM8+fZDtde2/Fq6VF+liMIuXfscv0lNh+y/he9xhnc3F6rPsPWs5zNaCzTKrl75N12rpXkt2/Sp8nml+aML7CV9rdsfhZu/Ifs2pCr/f0oT9SRvOraa7PZ7UTXf7BVSbrD+pVmH7TOe2s2yuOlxk/dWwzcavOp0/bLK1zkPfx06uCgAAAAAAAAAAAAAAAABvAYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABityaO+AQAAgLezl7YXUf6ZyV6Ur0sV5ZvK30Lh7WMzNFH+tW4W5a/V6yi/qKdRfla1Ub6tVlF+XmX9w3IYovw0vP4izOfPJ2sPqbH1n3WVfV99OF70Q9h++uz76sL7+eDsXpT/3GYe5m9E+bbqwvw2yl9qzqN86mqd9SdPNln/lvaHuzZvs+ffNtn3O6n7KN8PWX9yNMnaw7X2NMpfnpxF+Tc3h1H+i8srUf5osozyiyYbr9P5Q+pqkz3/5yf3o3xaj7Mqew007GXtv5pm+TqslzSf1vts8vD542m2tlt22dh4d5mtBT/5IBu7mip7lvuTrLby2s3Gouent6L8N7a3o/xr3X6U78M3rH0bzt3C66ddW7WX1UrThmNdF+5VTLLrd102lq4usnp8/fQgyrdNdv/Hs6xeUten2Vj0zDSrlyt9trb+xWyoKOFSofRN+A9CYfcZ/xnicGoY9ydlEq4Fs3KJP++9B4vs8mF99YfZ592bbKL8pM4adDr3j22z5xMu9UsJm1uaT+srXFqXknVXcfvP6zfLp8+zO81+wJ1w/rN/mI1f80lW7xfr9AGF6uwLG7qwgYbXL2n7T+8n7KDjpfJuh98yhHvJVZ8VTL0Jr3+STdAvqqwDGsIOerPZ7d5GSZ9/HTaIcG9jCN9dVOfZ+r0Kr1+H9TjMs/4trffwVVY8fs1OsvvZvpH9gL7N6mtzKbuf05KNR4+1Ppurdm+8GeWbPmz7R9naOhbeT5X2bdOwdoesb9vLtrpKH67t7r0vq8VqNa73oKkhnAtU4b7zsA33wVfZWrOfZ31hOnb102zuMDRZe2jC+ipn2dqiWmfPsyyzwbE6zN4r1+Ht7NrQhe91NtkHGNbh87wI2/+VbO7czcP2uQrnMgfh76nczeaeJazfeG3a7Hat0J9l75WrycP3b9UwlPKQez+P96gFAAAAAAAAAAAAAAAAwNuaQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjJZDcAAAAAAAAAAAAAAAAACMlkNwAAAAAAAAAAAAAAAAAIyWQ3AAAAAAAAAAAAAAAAAAjNbkUd8AAACPn27oo3xT+dsLvHOdD02U//x2GeWv11WUv9wsojx8PS2HNsp3Qza+TKsuyn9ik9XjH5tF8divrZ6I8k8096P8M5OLKH+7y/qfe+HzP6y2Uf7JyUGUf9xtwvElrZe0Hks2PSy/tXwuyh/Wn47y9/psvPvY+dNR/unZ3Sh/pTmN8p9b34jyqRerq1H+u/e+GOXfVU+j/K61Tdb/pNZdts1+VmXP52yb5R9s51H+2XnWn7yyuhTlX784ivKz/az/v7fJ6v12nY0Xs/pKlC/7WbwNx8f3hN1zrBmieD0J83WWH4ZsvrHpsvbcB9dv6+y7WkzWUb6UvSj9xknWlhez7H7ON1nf86XmcpT/7PRalL9/nNX69aOTKP9t02wuHE7FSp9OraZZrfSzbDJWhbXVh3P/2d4myk8mWX1tNtnYuzrPvoB797POfDrLxq4H59lYfWua3c8ynJs0VdZ+/sT+Z7PrL7Pr19vd7iWn9TuEv1Gx3Q/rNxxL0/6klOz6Jbyfss6+r80y3DwJ7+f1i+wBnRxm9Xjt4CzKf+PxrSj/SncpyterrL9tVtnz3xyEc6uwXtL85iAcv8Lrd1lzKOFwWoZwLlxtsx8wuZt94P4s+35PLsLxd5XV42Kezp9Dfbh5Fb4LrS5W2fUX2Xx7aLP+tp+k9ZLluzbLb+fh/YRbS90sLMjQ/M3s+W8vsg+wDMfTam+3e12poU/3ErLvq5qEHXoTTvhS4bvZfpbd/xBef3uQ9bfbRdbeVoe77X/m2XSpVOHez2az2/5hp+rss1Zh26nasG2enUf5dOyNa70L+8I2XExV4fPcZvdfDVnfObuffd6jz2b3f7racd+5a+HcrZTw826yuWo6N6xnWfscws2N+iJbO1brbK+rhHOBqgu/r7Aeyza7/+bNB1H+6Asj+72rsD/p11l7qM+zvfP6PPs9m+n9bO7ct9nifbuXzWUm51n77A6zvZZmk7XPahWulafZ80x3YvuzbG8sGd+roS/lIR+P30YGAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtByCAwAAAAAAAAAAAAAAAGC0HIIDAAAAAAAAAAAAAAAAYLQcggMAAAAAAAAAAAAAAABgtCaP+gYAAHj764Y+yjeVv9XA20ddhii/GbL2/+lttqzb7y6i/M0mq9/Xu+z+u1JF+Xv9PMo3Jex/wu8rvf+nmvMo/0J7EOUfd5sha89d+Ld9NqWJ8i+vL0f5X75YRPn9ehXlf+3khSjfh+3zzjq7/yvTrD1Pqi7K11VWj8/P34zyH5x/Kcp/93wb5Xc9n7nWnkb5dDxa9W2U31RZfd3d7Ef5//ODPxPlL7rs/j9553qUX4fjbxeOj7M2a2+TcLyeTrLr/+vDe1H+uy9/Osp/+NKLUT7V1tnzuTo/i/LTOu3fsvtZ91l7+8yDrD3/wovvjvLbbVbv69NplP/t8myUT1VN1h9WYX396/YDUf7pq/ej/B+/mo1f//UTvxnlyzabP+zvL6P8pMnqpe+z/nO1yeolaQ1v3j2Mrr1dZvdSXWS11ZxmzyabuZXST7NaCZeypYRzvd+cPx/l/+2z3xTl/6sX/vsoH07Fyvo4yw9X11G+Cfu2Pqz1fpt9wRe396J8qlpn99OcZfk6myqVPnuccb2chtf/aH0lyv/m1eei/K1vzfrD9jx7oJtl1h8ur2QP6OJmuPczC+cOWbwMdfoPss/brLJ8nTa48PYnZ9n1w62iUoZsLdhNsr3GV+ZHUf7sA9lc+PrqbpSvltnnbZZZPVbh81xdDvfqsq2BMmTdQ54P++d6k+Un51n7D5eO+fg1CeuxyR7Q0GTt594L2fznRpetLUq4V1cNYQfXh19YeP3NQdYhXlzN8n1YL+ujcLwIhVstcb1MH2T5ehOuj+5mz2f7ZlYvyxs7/pXPtP3vtjnkptnz3F7PxvfljWy9s93LHtDqKHzXOgvnh2F7TvuHyUV2/ckyy8/uZ5/3/IkR/e5JWlvhe+4SvgctVVi8e9ncebierU23x9n118dZra8Ps+eznYd7J2HXnI5d8/vZP5g9yAbT7lbYfsYmrK8hnEv2F9k+eD3JNg+bsB43N7PNxu5gluXn2e8NbPey9pOu9fsmez7tafb97n0+W4vXm7R/Hpk+bP9n2duFKmzPTZ3l5334ew/Xs/Gl28vmDttVNh5Vq+x+6klWX9VJ+DZoHe4tNdn9JP3nEPTlI5rhAQAAAAAAAAAAAAAAAMBXcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNFyCA4AAAAAAAAAAAAAAACA0XIIDgAAAAAAAAAAAAAAAIDRcggOAAAAAAAAAAAAAAAAgNGaPOobAAAenW7oH/UtfIWmcj7/cTG27ypty6thG+X7sttaaasmyk9Klh/b9/VO8/+6/6Eo/7eu/GqUb6suyr/epfmsvXWlivL7VVaP1yenUX5RZ/e/qKZRvo3r6yDMv7P88C/9l1H++Pg8yv+pZz4T5Z+fvxnl+yFrD5sha59/5tLHovz72jei/PVmiPKHdVYvs6qN8uMzrvH0//Gvvy/Kd9nXVYYnl1H++pWTKP/88Z0of216FuW//eiLUf5///S/ifJPhfWyqLP2//jXy7jc/pmnovzr8+z6q2vZ/GrYy9YXN5++G+XfdZTlv+/Gp6L8//zwt6P8c5Ps+aiXR+vSR7Pn2X3qcpQ/uZr1n0P4Fmt7bRPln3rq4cejH3jX70bX/l9e/pUo/+7JOsqnczF7CW+t/+uDrC2XIVsrbx5kg1HfZvfTh3PD6XsfRPnveuZzUf4/v/IbUf4D09tR/kpYL+leXZp/p/kTL/zRKL+6nNVLutaZnGXXD7feyvbJrD//wAsvR/n/9Nonovyf2v9klH+2yeaq6dzNePTV/ck//Tei/Pn17Pmk/f92keWX17OCmVzP9h6ODy+i/AuXsvHif3Uj25v/9tkrUf5Kk7X/eZVNhtP6So2tHv+Tv/BfRfmzJ8J3HWG9bA6z/PKJ7N3I5DgbX6azbO/8+mG29/bnnsjWR99/+NEo/2yzivLpu6A2rJddz/fq8N1aX7L5/w/89F+P8vffkxXAdi+7//VxFC+rcHwZZtl8pt7L6vHKpXtR/jtuZnvV33eczfeenmR7gVeabPxtwvZ2WGftYbbj8eW8f/j287/7v//n2bX/+PNR/sHz2di+vJY9y+WNsFbCvYQyDX9vpsqu3+5l+3pXwn3wpw7uZ/m9bC/kwXYW5V8+u5Rdf5ntFXV91n7uvpx1ztf+Wdaem+vXovzy/U9H+fOb2dr07Ims7+myrze2/0pYLxfhPnvWHErdZdefnIV7CS9lc8/SZ9evVtnYXp1nY+P8F7O9lvi3DqvsC2uOj6J8f5atrYfw98y60/D7Pcl+z6B8NovH5TuE42N6+TAfbk0+1obh4ecC49qhAAAAAAAAAAAAAAAAAIDfxyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEZr8qhvAAB4dJrKeXjeHtK2PAunwX0Zwnwf5Wt/m+Jt7fsOPhHlD+pZlK9LFeXfNWmj/P1+GeU3Q1YvqXlY7034fHi0nrl5N8rfWJxE+fcvXony3zx7Kcrf7g6ifB/2/3U4vqyGJsovh02Ub4dtlJ+U7H7MVb+69ZUuyjdH2fc7n6+j/LXFWZTfb7Lr11XW/t/YHEX5z26uRvl59UaULyV7/un0cFZl4/s7TZdNr8p2P5vPDJNw/lNl+dNl9gEezOdR/lNnN6L8x2ZPRflF/aUof7PKxpd0PdVW2Xj0TtNNs/x2keWHsH/r5ln/X5bZD3hw8fD18tF7Wdt/fv7uKH+4+GSUb8NaWcRrKb6atFb6cKgOp/KlT+8nvP7Z6/tR/iN7Wb08O8/WgtebbC04r7K52GGV7SV0Q5Z/p611mnU296m24fM/jOKlT+duoepuVvCfObgW5S9Nn4vyz01vRfnDcK1Th+PRPNyqa95he+f1JmufaX5zkH0BYfdWmvPs+9rcz9Y659Osvd26yPbqPnLxbJR/epKNX/PqIso3dfgFhPH43dQQzs13bHKW3U97kn3e7fXsgVbZVl1pTrMJ2Xae5SdtdkPnm2z8+pW7z0f5Z6Z3ovzh/AtRvg33DjfhXnsJ987Td1NtOD/swnfX09vZu77FYfYu/cHz4d7/KoqX5jSs33nW/oc++75OL7Lx6xP3b0b5p2b3ovz+Inugh3W2Nx/ubJfXNtnz6cLxKF3fvbgJnv8mezZ7r2bvRdbH2XuL7V7WNidhrWyuZnOrdF+7brO+dm8e9rX1bucmqz7rC5vw+cya7PmfnGe11X8mmwtfz7Ymy9CH71HOzqN8ez/r25rL4feVlXsJXzuWbpY9n/vZ11X2Xs/qPZ2rpibhWrCfZh94/mb4XrnN+pO6yx5QdTau4zf9RTbXqw+yvd7+PKvfEj7PEr7nHtLrj2wty1vjnbVjCAAAAAAAAAAAAAAAAMBjxSE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEbLITgAAAAAAAAAAAAAAAAARsshOAAAAAAAAAAAAAAAAABGyyE4AAAAAAAAAAAAAAAAAEZr8qhvAAAAvt6aKvtbEE14/W6own/B29n72gdRvq0OdnQnvydtz8f1PMqvhk34EzJ1+Ldcmko9Pk6eP7od5b/l8OUo/117n43yV+ouyj/VnEf58yGtyExdhp1eP9Wn9zP0UTwd3x939UHW3167fBLlnzq4H+Wf2Muu/8zsbpTfhPXSVFn7+eL6epS/FNZ7W51m+SHrf9Lxsa122/+MTTfL+p/tYfj8j7J6nM62Ub7vs/nMqsu2/ZddG+X/h5N3R/mrTdb+m5LNB6416yg/D1+LzKrs+TzuhvCtUd9m9dUtsv55OMjqsWSXLxcX04fO3p9na6Ofu/2+KP/EJBt7p9UrUf5mk/VVffgwJ+Fq83Gfuw2TrG/uw66km4dj137Y+MOxJXXr7mGU//npN0b5G+Fey+Hi01G+rbKxep4+znBp9NjXS/h8wql8qcLn2c+y/K7v/+LNRZT/xPyJKP+bi+ejfLrWmYdrnabebf+TjkepXddjs84a9GSZXX+dDhfTsMDCx1Otsn9wfn8vyt9vs/78o/efivLvmmZrl8P681G+rXa7N7As2Vqqjed7u633ZpU16NmDLL8+yj7vNuvOS/j1lrIK72eW5ZebbDF4tnn4tVQppfz3994b5Z+4lq6P0nrM2udyyPrD17rs+UzD9VcbToDqk2x8n93NJkz7s+x53n8h668my+z6XVgv1SwryG6b3f/d82z8+q0Hz0T5RbPK8nWW36+y8SL16VU2v/33d74pyn/u/tWHzl5evhRdu76XzYUXr2V7S5u9rBa3e2Gt7GW1MlwKJ5Ohrs9qaz7J5nrb8D3Tqk/nPmHfnC5mQ806aw9Vv9v3uMM2+76aN7O9n715NpdZH2R98/ooe56bw+x59ule4CK7n8lZlq/D9tMcZvntXvZ99eFe7N4b4ec9CRfXk3Edv6nStVc4F64P9qP8cJbNPYdwrl232fg4bLL+Z9jsdu7z2EvbW/j9PqzHe8ccAAAAAAAAAAAAAAAAgLc1h+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGC2H4AAAAAAAAAAAAAAAAAAYLYfgAAAAAAAAAAAAAAAAABgth+AAAAAAAAAAAAAAAAAAGK3Jo74BAAB4u2kqf2uC/79rzd6jvoU/lLZqonxdqijflyHKp9L74dF6YXE7yr9//nKUv970Uf64nkX5zdBF+WWY3wxZvbRV1v7Tem9LluetNV+so/xTB/ej/PuPXovy3zB/Pco/22b1vhzaKN8N2XysqbL+oSlZfhMOd5shu34b3n83ZP3D4z6/7afhP5hnz3P/YBnlnzw8ifJVlTWgaZONL6lVn71W+Pjy6Sg/rzZRvi4Povz1Zrfzw1mV9VdjE369cX0Nbdae62nWnpvJ7tr//6+9e4vZ7Lzrg32vtZ7du53xbDzjSRzbcfZNAm2gJoLSIqI47KSU9CAQqlAhEMhBggClRUBAULVKT1AENOKk4aBBBanQggRSBCT5UkyggXwhtDGJCbHDeLyZ8WzezbNd6zvIF8MUJ5lf8ON32bkuKVLk+c2a+1nr3vzX/cz9zsEs+7BXRtm74P9z7UVRfqc+jPJ1eTzKn2jC2jN8txuHX1H2bi0K1/Z4rGTxkr76dtvL8DeE8VXWoEeubUf5D1x+QZQ/O7gc5TfHj0T59MfOpuMlffdK3+3WrQ6n5rCUL134cbtwfkvXxhJePx1fly5vRfn3T7LxcsvocpQ/Wd8f5Sfhu0tqlY6vdLyE72rp+tXMwuvPsusPDrP5eZl1t9KGtV4J33XKPPu8V69tRvlLk1mU/9De7VH+OcOsHptU2d5JU2frex3uHV5qs72oUbo3GRY09TxbYOpFNt5HV7P+udxa7/iqwvpqOcs+bzvJxte1WbZ3fnGYfeD/dXBHlN/Zzt6PhtVBlF+3D01vi/LX2kn2B1zO9k7q07tRfnQlG49bD2X9+eod4fwQrnerjWy8NMPwu6B5tlf06GH2fvQX47NRfqfO9jJfOM6+K1iEBXqaTz3y2I335+PL8F15mtUOgytZfutCdm+WW+H3KBvZWJnvhGNxlK2li3CtTteinWF2/1OLNnxebbb2hqVVacN30yr8HjrVLdY8vvayWnXroexlf76Tbe7Nd7MH1m1l74LdbrYWzTey/lZPw/wsXHtH4feU4bvgYJo938GVbP6sJ9n80zfVMPweazP8e2+rrH+2V/eifDXKxmM9yPpDG+79dOHnLWueb79U9OwbIwAAAAAAAAAAAAAAAAD4Gw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbg6NuAAAAwLPZsGqOuglPq6YKf9ZK166nIV+kuP08pZ4zejzKv3B4McpvV8MoPyjZ+B2E431YraL8quuifFuy8ZXOV3X4s5XqUkX51CqcT57p4313cxrlz21cjfIvmDwc5V8yeijKnxscRvlV1v3LtW6925471TLKT9bb/eP5oa7CG/oMH1/L3Wy+HW4sovyJzaw/n5zsR/nbN7P17qAdRfl1W3TZ+nK53Yzyp7vsfk67rD+k692sZP1nHNYn67aaZPPDcjOs54fhfDLIntfWxjzKV8F8OGiyti/brO9cmO5G+T8d3R7lR2HtWUpWO+zU2f1ZlKw922Uc5fu2FqWlcDdI1+osXursN1Rhvhlmz3e5yp7XX145FeX/5+RFUX63zmrtFwyz8TKpwne1cLxMwr8CkL77rnt8xaVq2D9j675+uDamLu1ntdUHLr8gyj8v3JvZrLL8Tnj/h2EHmrXZu924ysbXMBxfpQ3f7cLlPS0H6kW2gDXZq1FZbWT5LlzwVvNsvroYjpcLk50o/783nhPlj9cHUX5cZQ9gsua9uo8ttqL86fDzjs5fjvKrzax+qJdZ/xley+7napTlu0F6/az902n2bjoeZu++01U2f56fHY/y949ujvJb1V9H+Z06+7zpXsi0y+7/+y++MMp3s6y+ba7Nonw5nu1FDQ+y+Xzj4az/790ezm+zbLy0kyw/GGT958rhJMqfHx2L8qdHJ6P8Vp31h52wIFiEe/l7y2x/oAvm8y6sxbqD7LNWq6wYG0zDvZPzWd+c72Rz1WIv/N5lku5FZQ7n2dy5v8zmqkk4dtO9wL152JfDV9N6FdYaa/4eqwv7fxd+4GoW7stfyua23Qez57vYzsbLaietDaN4qTazd9+2zuaHrg73isK9pfmx7P4srmbtH0+y+aSa9Ot7uG6Vfk+Tfd4u/by3ZLV5Hba/vXYtyleDdMBk/bMaheNlFtba4Xgs7XrX377o2TdAAAAAAAAAAAAAAAAAAPA3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLcGR90AAAAAWJem8rNfnkmeN7wY5Y+Hj3dc9WsbZFCaKF9XXfgnZNdP1aWK8sbjU+vM5l6UPzu+EuVPD65G+TPNYZTfCftDXWf9badbRflFl42vSdj+dP5pquzz1mv+WWdtCeefro3i654f6q1FlB9Psvzxcdb/b9/M1rtbRtn43QnHY2qznkX5SZXdz5NNNr/VYf9Mx/uiyuaT0mXr76Jk11/3+rsaR/HSTbLxXo+zzzsJx+PmeB7lt4c3np+32bMd1WHfCT00Pxbl/2JwNsrv1NMoP6mye19K1neudll7tuusMw+r7PkuN6J46eps7mknWb4bZ/ezCttTD7Prp8LSp6y67Dfcd/VMlD81vCPK19X9Uf5ssx/ld8K16CBcWzbrrP9vl2x8dWGpl+arNusP6XhMS+34+quw/eHnXayy5/vQQba+fGDvRVF+Z/f/jfJny0GUH4fjZRROQJdW2Xp3plnzXlRY26avdtUyzIfLRT3P7n/VhrVtuJc2mw6j/MMHO1H+LzdOR/lzw8ej/E59PsrPwvEyDNfr1Aent2e/4TCrD+tFuFcxz/pPM8vyw/30hq537yR9ezkYZvXAtWE2oVyab0b5T85ujvLHm2x9uX14Kcqvwuc1a7P5Z96G68sie7euL16O8s2ZrSg/D+vP0bVw7/aRbHxNw/f9ZTWK8othON9Osr23w2XWfx5fZOPrL6tsfD13lO19TrusP+8vsvtfFkF/CPe1u3lWG1bTbCymmsOs/TsPZGNltZHlZ+Osb9bHs7FShbXetVm4V7Tmvb2NYdYfunAvJK3Nw6UofxcJS5/uIPueo97MNuuqsH9OHs7m5u3dbG2ZncxuULuV3f90vHSDMD8M25N9DVSWkyy/CpeK1WY4X83DBvXNMqvNu2HWn6t5dv362G6UL202wbX72V5s77TrXY/WLtp7q25478rfPgIAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3BkfdAAAAAL50NZWfzcLfODe4EuU3q2ZNLXl6tKU76iZcZxjez1XXrqkl3Ijt4SzKj+vFmlryGU2V5esq/A2hYbi+DMPmNCX7DU34eQdlvfNbuv4+48d7+HwHdfZ5B/Uqyo/rZZQ/M7wc5W9urkX5E81BlJ92Wf8clex+nmiy+WoSjq/Nar1fiyxK1h/S+ST92YbpbNKO11ufrLv83xll6+PmYH7D2TPh2jtvs752YpSNxZsGWX6rztq/342i/OU2m9t2wrl2Eg6VvTaslcK5oR1G8RJ2hxK/KlTZb6gHWb5pwrVxkM2FVdj+5Sqb3Q6X2QP7xMHNUb4JH9jLJw9G+bODbG0fhmvvtbDWm9WHUb5b89zf1WH/n2UTymoYDsj1Lu2lW2a/4WBvHOUfa7ai/P8eno3yp4ZZf/5HG38V5XerbP7fCd+V01r4E4usQ9TLsD9ny298/arN2l+twgEwWm/tWR9kz2tRZ/XPo9V2lL9vmK0vZ8fZXunx8N3ueJ3ld+obr51LKaUNF4A6XL9Kl/WfwbWs/fXxsOBL98ay5pRBvJ6G9z+cr6arjSj/aDg/NGF9uNVkN/TMMBtfTZX1z60qa88q7ECLsB6uwvHSLcO9jcNsQaoX2QvSKty8HT8ev1BF6cU8u//TNhsv7cn17p1vDE5E+WGV9YdJWF8drLJ6te3C+5PWJ4Fulc0N9dW97A84dyyKrybZ3D+YZmNl9/7sXl4Jv3ecd5MoX27K4um+/94865sbg6zvp315ayN717m6k73bhUPxGW9xPOtvy42sP28+kq2Nswey2vPqJFtLu92sfw4mWfuX4d5bF+6Vhl/DleVGNr7S59uE75rrVjXhy0Kz5vaH62N7cjfK18OsA1V7m1F+9eijUf5LTvhusa5r+9uGAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9JZDcAAAAAAAAAAAAAAAAAD0lkNwAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9JZDcAAAAAAAAAAAAAAAAAD0lkNwAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9JZDcAAAAAAAAAAAAAAAAAD0lkNwAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9NbgqBsAAADA02fVtVG+qfzsFJ4+w5L1z2E1jPJpf07HS6ouVZRvS7fW66/7836pWfd8u9EsovyizbYBh2UV5add1t92urA/V9n1m7T/x+Mre15pPrXu9Xrd11/3eKnr7PkOB1n/b8P+v+iaKH95tRXlnze4FOXT9TccXqUJx1e2upeyWWX3cxjmByXLr9synJ9XYf8M46WE4yuc/kvbZuN9usx60InxwQ1njw8Po2vfNLzxa5dSynYzjfLnhpej/HMGj0f5k3X2eU824cONa+HMMKwd2vhPyFTh7amW4dhdhfnw46ZradNkf8DmKKttmzq7/myV1cLXFpMsv8ryj652o/ykzu7PbjWL8pvVMspfTPtbOB5T9SIc78OsP1fh9btBOOAHWX+uwvGYunp1I8p/enA8yv+vwe1RPq0lTw+urjW/Vc2j/DysJevFmtejdP7Ppp9SZ9NJWNmWEm5txKp5Vnsuroyj/Keb41H+D+rnR/nNOuuft40ei/LpeEk1YcHUhS8X1SLrcc08GzCDw3Avarze9bEKB1gTtr8L360XVTZeHgrfBYdN9oFPjfey64c39HiTvQ+m198ZZe+Pe204vqbZ9Zv9bP4ZTEdRfrEZ7gWG/X+4t9732WqZLWDTkr1fXFlm4zHdaxk12QI/CN/X8v6fve9Um2nFsT7dInz3nWb3vplnfWG2G9aqy2ysbD+YjZW9cG1Zzjaj/JVT4f3ZyMbuzkbWN9OxMh5m/WF1PMsvN9Od+UxVh3NnuJfQDbPn1YXtWW1kc+dykl1/+6/D76UGWX/euyOKl+5k1p/rzbC/teH3vofZ853vZtefHwu/NzoM/55KlP4i1Fn/7CZZLdaOs/u/OJ3Nz4P9rP+0G9n9T7cS6ulOlO8Os+9SumW4edI36V5v+sXgDfK3GQEAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOgth+AAAAAAAAAAAAAAAAAA6C2H4AAAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOgth+AAAAAAAAAAAAAAAAAA6C2H4AAAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOgth+AAAAAAAAAAAAAAAAAA6C2H4AAAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOitwVE3AAAAgKdPU/lZKPyNVddG+XX3n5NNF+Xr8Gf79O3zpu2pS7WmlnxG+nnT9vft/qfS9rcl688lvP7u4DDKD+tllG/D8TVMP2/Yn5swv0jHVxW2J8yn+tb/U+l4mXVZ/xyWJspXddaerdE8yo+aVZQ/XA2j/EE7ivJX20mU36mzz9t2Wf+f1Nn9mYT9P60HBmH/6Vs9sOrC+bbK7n+VLl/h7WkGWXuG4fhK++cy+AAbzSK69jC89024lu7UWS1wojnI8uHY3ayyrxzHVTYXLrqsPYuS5VdpLROWAmHXLN0gra3C64cNqtLJIdSEa/XmMBuPJyf7Uf7UeC/KHxtk4+s5g8ej/K1N1p7sbpYyTyfzUJv+jYR0LcqW9vj6qWoVDvg6a1AzzJ5wOn7rJqzlF9kDfuhgN8p/uL41yj9v41KUvzraiPJnB5ejfPpu3Q3C+TmsDatwggjLmXgCqrPpvKzGWb4bh+MlHb+h6bXsAzw0ysbLHwyeH+VXN2Wf98LyWJQ/Pbga5SdV2iHCDrpKF5gsPphmv2F5mOXbcH5YZtNbWY3D+SS8P/VhtmAvw/H4QDkR5YfpXsXJrH8eDLLx3ob12E2j7H0wqyZLqcK9z+pa1p7mcDPKDw+z+Xy+Fa6/TfZ5w/I/Hi/VQ1l9NQ3Hy+VpNh7/KtzLGYQFx3M2LofXD9szzvae12qRtaU+yPZtBxtZ3+nCsb7cSGvVKF52/iq7/sEt2VifddncPD0dxUsdvtttjbPnu1hln7fZzPrbciPbqytr/p4sVS3Dvdhpdn+aWXb/51vZeFwcz+7n9vlsru2abO7fD8dLc2oW5dvw74WktepqlN3P+VaW36j71f9jdVorrXfvcP+52feak4vZ+K1O7kT5Zp7V/t0omz9XF7O9q94Jvzetglq76rpSbvDxPrP/NgUAAAAAAAAAAAAAAAAAz2oOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQW4OjbgAAAMDns+ratV6/qfxsEJ490vHSli77A8Lrp+MrHY11qcLf0S/p/Vn3822i9Pqln3fd8/myrKL8qsvu/7jKtukGdXh/wv4w79bbIxZrnn9W4fWH4QyUPt9Blc1X6+7/675+Ol4OukWUn5Sw/U32vDYGWXs2mix/2I6i/JXlZpQv4yy+32Xzz7QbRvlh2N+G4XgZVtl81bf6P12vr7TzKJ+NxlK6cLyUVfa8wsdbhoPsEwybLF9XN/5595fZ4GrCuaoO+8IiHLtb1TLKb9bZ2BpX2dyQ1vLpWL+yysbKNC1NwqmkSrc20qkqHFtVnX3gtg1rmdV659q2y9pzdT6J8i/efjjKnx1cifK3Dq5G+TNNVjuktdVBuFZfbrP5Jx0vbTadlPjVYs3jqwvHV5ln81s3yK4/Gmf9IV2rw08brb2llLIznEb5O8aPRPmTg70of221EeVX4YTeDtJ89sDC6TPu/3E+7EDNYfYHLMP5pBuFC3Y6AML+P51nH+CBqzdF+WWbzT93bj8a5ZuN9X63U8J3uyrcy6lW6QPO1OHLWhXmm1mWL3U4vjaz+1PP4gU1ii8PsvrkUxdPRPlR+K75vM3Ho/zJUbYexdLvWsP+UMLxlRochHvDo6z9bVZulNV4vQVTnZVvZfR4uDd8kOUf39iK8le3sv7clmz9SuvJ9P03suaxVU3DzhAKt5ZKl84NofHV8HuXcDNnb5H1/dks20vYP5tdv9vN7ud4mPWHJtxXXW6vdy5PdXHtlhZX4Xhcht+7L9J8FC+Lzaz9Jz6W7Q2nE8R+l42X6qZs77YdZ+8u9SLcywzX9tVGNt57d1gn3fwJ5/+uyfKTS1n/nN0U7k2GeyeT/az2Kfv7Wf6Zrs3m26Rc6rob7wv9+rYXAAAAAAAAAAAAAAAAAP4Wh+AAAAAAAAAAAAAAAAAA6C2H4AAAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOgth+AAAAAAAAAAAAAAAAAA6C2H4AAAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOgth+AAAAAAAAAAAAAAAAAA6C2H4AAAAAAAAAAAAAAAAADoLYfgAAAAAAAAAAAAAAAAAOgth+AAAAAAAAAAAAAAAAAA6K3BUTcAAAD40rLq2qNuAjxl+taf29KF+bT92c/SacKrr/tuNtV6fxbQuvtD+nzrUq2pJf2U3v/0fi66VZSfhvnNehTljzWHUX67mUb5SbWI8mnvX3XZ/R/X2fhNr78I+88wHF6zbhnlmyr8A7KPG5t1WX+41s7DfPYBhk2WP759kOVH2fjaarLPO66z+7noshV1Ea7A6fWbcMRfa7P5bdpl89VGlV0/7c+D8H6m68tBF46XLpsfLof3vwvHVxlk/aFpsvyoydbTNrw/B8sbvz/tKJtL9lbjKL8Ka+1r7STKz7u0ls/uZVorDat0bGV959E2+wr00dVWlA+nzhI2p5TsdpaSDfXStdnzretsbujCsbhYZTc0fdMZ1tkN3Vtm4/fc8PEoPw4/QFobLsLaar/N5odLq80o34X9v0r7f1oLr/lVuVpmf0A3yD7AahbOn6Ps+VbVemvzpsrm82ODrDa/c/RIlL91kK3vH5vfFOXPL7N8O8j6zyp9OU1fNcP1Lny8pZmF4yXtbwdZ/28n4Xo3DD/wImvPcpE9gJsm2Xg5t3klyg/q7PM+vDgW5R9fZutL1YTPtwnrn0W4wKTxcKs6HV/pelpnr6alyl5HShvOJ90wu6FVuD7ODodR/qFru1F+Hta3s62sYHp4uhPlS5mF+VC4Fzs4yPZmSsme1+AwHGDp+E378yKtD7PrN9Pw+mG9N9/P7v8nHjkV5W87mb1PpfVqml+r8F2tmmdjpZ5ni8VgL1ssquxrjrKaZH0zrYXDbfkyeTSs9eqsPfNwn/ow3CfdPJF94HQvp02n5nDu79L+vwgbtMz6c3Ml+x5iubWdXX+efd5luFk02gv3EsLrn/5I1t+6Juz/Xfi9RVgbhq8WZZB1h7V/L1vSv9cS7h1Wi3BCD6V7Uftns+JqtJ/Nn8uN8O8ZHNuI8oOD7F2hDtf39iDbu/pS4V+CAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLccggMAAAAAAAAAAAAAAACgtxyCAwAAAAAAAAAAAAAAAKC3HIIDAAAAAAAAAAAAAAAAoLcGR90AAADgS0tT+VkcPHusuz8vulWUb0sb5VddF+XHdRPlU9vVMMr3bT5J25M+33VbdVn/Wbe2ZP0z7f/p/T8I8+n4Sh0bHET5k81emN+P8qlpenva7P43VZXlo3Qp9Zp/tlh6/Vm3jPKLEq4vYX++1mb5K202/59osvF+ciMbLzvDaZTfHRxG+brK7s9Ok7Vnvx1H+UWXfU0wqRZR/mxzNcofhP2tabP7MwzX62kJx1e4nj68ytrz18vjUX5SZ8+rTLL2jzaz69+0nY3H8SC7/+Mmy7fdja8Xj822omsfC+eSWZuNxdUkrD3DtWUa1j6TbOmNa6vzy2xueHB5Isr/5exMlG+HWXu6sNjowuuXOsvXg2ysLxfrfRe82k6i/M7mbE0t+YxLi2y8X1ptR/mzYa19aZV93oOw+3x8cSrK3ze7Jcq3TTZBhKVJCUurUoWv4tUibH8TNmgVTqDheJ/tj6L8YJytpV2wlpZSyqLN5pNTg+xddlJl7d9vs/Xx/PKmKP+pWTa+Ul36ahp2tyrcKkrbE5Y/cXvqefaB62WWX25G8dKNsvFbhRPc/iIb71cX2fr70s2Hovw0nNDv28vqsTLIrt812fzTDsMBE0rXo2Ye7pUO1tv+wX64PobNWYbvysvj4d5hWA9vjeZRfhK+mz46zerJw2X4XUqULqWs+7uXcO8wXV/q8P2xhHvJ6VZLFe51xfNP+r6Zrr+z7AHMp1n/vDLL1qNRk433tF5dp26ZzQ1p36ln2fWbOn0XyfLVmu/9MtwbG2bbkmVxkLV/lXXlsrqS1W7XJtkfMBhkY2WaNWfturD/d/Nscq5m2doer13pVL7Irj84zGqZLlzrVuNsfJ3542zv6pF/FH6PtRPFSzvO7ud8d733p3fa9GU/XI/C/pz2/y5cj9K9h1Q3zP6Aaier/atVWPvM1rt33hfP8FEIAAAAAAAAAAAAAAAAwLOZQ3AAAAAAAAAAAAAAAAAA9JZDcAAAAAAAAAAAAAAAAAD0lkNwAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9JZDcAAAAAAAAAAAAAAAAAD0lkNwAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9JZDcAAAAAAAAAAAAAAAAAD0lkNwAAAAAAAAAAAAAAAAAPSWQ3AAAAAAAAAAAAAAAAAA9NbgqBsAAAAAPLlh1UT5VVdF+XHdr5+Nk37eZ7r8+bZRvi1dlF/3/U/bv+hWWb5k+bbL7k86Wk42m+HvSK+/F+VPD65G+c1qGeajePi0ShlW2R8wrLInlvaHVFuy/j+Lx0uW3w/zB+H6Mu2ybedxlfWI7WoS5XeH0yw/yPLjOhsvp4bXonwT9p9Ly+0of274eJSvw/YMqyy/CofjtbA9ddj/L7VZf552oyh/ebXm9aI+jPKjrXmU35xk+ckgGy8nJ/tR/mCZ3f9RMH7nq6wvPLTcjfK3bGRr9bU2mwsvhX1t0WVzYTrWD9rsWd2/uDnKT9thlE/nwnBqKO1Gdn+qjWxtrEdZfjAIa+dVVlt1Ye2QXn9/mvWf8XY292w0iyj/4PxklD83yPrbX4Xj9/zypij/6HInyqfC0rCsssdbuvRVNnx3aUdhcRJePyxlSlmE4zHrzmXRZh9gsJutF6n03eLB5Yko/9eLbLz89SzLX1xsRfmuCefPQZYPp+e4f4blQKmzUjJeX1bh+A1fTctgLxuPy93w3Wi53r3b521civKXlll/Tvt/uv5eGYQLQHg7q3T6D/Pp+rUaZv2/macfILt+dZBdfpm9vpTBNBzvi3D+DMfX/jwrUO7cfSzKX5yF42s/qw9vDvdKSx0uGOF3TVUbzs/h+pKuj4PD9e4Nl7RcCpsz3w3rgYNwfG2E/SGcENtwfa/D68/3wxeMQJf25XCuLcusOKkWWb7bzu5NG9aqaV9Oa+Fmtt53tfHlsC+Hc89qlM2di5uyd6M2fLdL59reCff9q3lWe46uZC8vi93sedVh7daGtWG9yK6/HGf9czXKPu/up7L56urtWfG8DNeutDaf72T3ZzOttcNarBqFa13694TC9qfzYTr/zLfCvzeQfU1WlpvZdwvx1uQgnB92su9927A+6Rbh5kxP9OtvuwEAAAAAAAAAAAAAAADA3+IQHAAAAAAAAAAAAAAAAAC95RAcAAAAAAAAAAAAAAAAAL3lEBwAAAAAAAAAAAAAAAAAveUQHAAAAAAAAAAAAAAAAAC95RAcAAAAAAAAAAAAAAAAAL3lEBwAAAAAAAAAAAAAAAAAveUQHAAAAAAAAAAAAAAAAAC95RAcAAAAAAAAAAAAAAAAAL3lEBwAAAAAAAAAAAAAAAAAveUQHAAAAAAAAAAAAAAAAAC9NTjqBgAAAABPjaZ6Zv+sm7pUR92EXkufb7Omdnyx0vaPw22rNJ92t76Nr7ODK1H+dH0Q5XfqNsofq0dR/qBbRPnhmu//onRZPm1/2OHS9sy7LJ/OD5Mqu/5mtYzyp5txlE/H4y2TbLxsNvMof2KwH+XT8TsM7+eF5fEof9Bm93/SZP3/WpvND/tVNv9shfcnbk+X5afdMMofD+fnrSq7/88Nl8etjVmU3x5n42XcZM9rEPaH3eE0ytfB/HawzJ5tWtseH2Z9YVitovxfzM9G+d36MMpfXm1G+dSkzvr+TpO1f1JnfXm1nfXNbiN7Xs0wu/7OVtb3q3Btny2yyaTrsv6f5psmuz/LNqsdDlfZeJ922f35H1f+UZRvwrmwDmvJdHxtpuMlW0pj7TD7vKuNLF8GWb5rsny1CsdLG7Y/fZUKL79cZn/AyUlWO1+YHYvynzw8HeXT8Z66eXwtyq/G2f3s0ucb7oWE01vcf9L+mY73cPos9TK7QatR+C5+kH3g5Th7AKtwPX14thvl27ADnd/Pxm8T7kWVQba70TXZ/W+H2edtw82WZp71nzacrlbjrP3h60WcT6eT7M2xlOYwHF+T7IGt2ux+XpxtRfkr80mUT+vntQv3JuvDrP4su+He4TR8X9gKF6RwvUvXo3BrsgwO0wU4nN8G2f2Zba93fMXC+5+o6rDtdVr8ZI2v5tns2UyzfDtK2x/ODassv9zM+lodLi7NLGvPKCv9y3Ir6z/TeXb/h6PsAy979sVyVaUvL+G7+0G4lzbL1q7xpSy/3Ar7c7iUptLxmOrCuX/ngWw+3HtONl4WO1G8LLJSL5d+Lz4I927H2cvFKqydlxvh9+Kb6313iaXTzySrVatl+AHm2YCvj2UdevXYxSjfF/362zsAAAAAAAAAAAAAAAAA8Lc4BAcAAAAAAAAAAAAAAABAbzkEBwAAAAAAAAAAAAAAAEBvOQQHAAAAAAAAAAAAAAAAQG85BAcAAAAAAAAAAAAAAABAbzkEBwAAAAAAAAAAAAAAAEBvOQQHAAAAAAAAAAAAAAAAQG85BAcAAAAAAAAAAAAAAABAbzkEBwAAAAAAAAAAAAAAAEBvOQQHAAAAAAAAAAAAAAAAQG85BAcAAAAAAAAAAAAAAABAbw2OugEAAAAApZTSVH5WD39Df/j8Tjf7UX5StVF+K7z/m/Uoy5csv9dOo3wd/uyvK90qyq+6KF5KyX5DU2VXT0fLTp1tC6f3M+0P63br5FKU36znUf5ksxflj4fjtwn7TxlcjuIH7TjKb9WzKP/IaifKN+F8dSm8P9NuGOU3q+zznm6uZfnwfj53sBHlh1UT5W/aPIzypzey/r/VZONra5Ddn41mEeUfm23feDj8Rm0Zri11lfXlv5qeWuv12y5bjLab7FkdGxxE+eNVlr99+FiUH5Vs7ik7WV8bjpdRfhzm6zqs9UZZ+zfC/OE8m2tni2yALZfZ3FZNsv6/Cvv/Bx+/I8qP6mx+SOe2nWFWO79s83yUPxvWGousFCircfi8NrJ8N8rGS7WRPa/SZv2nW6bFf1gbLsK3hbA96XyV+pNLt0b5rWFWawzC2nNzkF3/1DCrDVej7P634avXahz2t7C7dWG91A7jl+tMePl1tydcXko1yuafdD39yGPnonwV1pPDJmv/ZBDWS8Ps83bDrH7oquyBhbcnlvafLpz+w+kwv364nKbtqcLlqJpnHyAdX/dfOhnl0/EyDevtqkkfWNjhQu0ou59VFw6wnn21ULVZ+wdZOR+Pl/D1Pe4Py+3s+V7d3IzyeweTKB/Xw4n0e6w2e1jdMpsbqmvZ3km1le0LV+EXI+natRpl97MdhGt1uFY087D2ybZJy+TRrP3zm8K9liZr/+hwvXP/unXzbO+k3grX0ivZ9zr1dja+6rQ/p+9q6dbDLBuP6VqXaqbZB9jKSv9yZSucf4ZrHi9duLgvswmumoXjZRZ+17HMaoF0vl2GexvLsJZJ16NuI5tPukW2mVMtwgVslT2vZnc3yrezrJjswvyN6lnJDwAAAAAAAAAAAAAAAAB/wyE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHprcNQNAAAAAAAyO/Uqyk+qKsqPq2zbcNW1Ub6psp/NtV1PovysW0T59P6sShfmMzt1E+W3q3GUb8P2D6usPX1zenAtyp9s9qL8Tn0Y5beqrH8Oq2x8PX94NcpfWGX959HVTpS/1m5E+VWXjcdJnd3P9Pk24Xi5fTCP8ifrzSifzp+p0xvZ/bl5nI2v3cE0yg+rbAY9Nczak+QfW4R9f5mtXWl+bzmK8tth3xzVyyjflmzs7tRZX3jF+HyUv2OQrV2bdTYXbu7MovxokN3PzVE2t43D6980Pojym2H/uTTbivKPT7O14uLV7PoHs2y83H/lVJRPjZpsbjs2ysbLLZMrUf7O0cNR/mSd9Z/FsayWacdZvoyyfDXI8vUwyw+H2fNt2/BdZJXVAquD9f6VkMUim28/eflklF+Gn3evyebzW3ay2jkdX7cOL0X51Gqc9Z9FNn2WNps+y2qS1c7tMMt3a341rZbZ/QzLpVi3DPv/Qdb/w62QeH47tb0f5XeGWX01D+efepY9sKobRvnVaL3valU2XPLxEl4/1YbLUTq+BofherqR5Q+uZPVqWm+MN7L6v0o7RGoV1mOL7IHVs+zz1tOsA9XDbDxW4XpXh8O9q7P+VrXZ860X4YTeZddvwvFVz8L65Er4AAZZ+9P1PRJ+L1JW4TcF4fW7afbu2DyW1cLVPNvHXJzM8vVBNpcMptlgbJssP9wPvwcKa4HBLFusl5tZfjbNasNwmz2X9udwLarC7027ZVhshHPn4LFsn72czvaeU+HXLqVNa9vw5aJaht8rz7P84KGwP9TZWnTx5etde7uwFuhm2btUdZitF4O9bG94OElfRta7d9Wlfw9gI+v/i92s/wzbcG8ySpe43qgG2f2vLoW1/+nTN5zt2nkpj93gdaNWAAAAAAAAAAAAAAAAAMDTyCE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHprcNQNAAAAAAAyO1X2s62GYb6pqijfN+NqGOX/eLYT5SfVIsqntqp5+Du6tbTjs/7hOPu86f1ftxeOLkT5rWoZ5YdVm+XD5zUJh+Nm3YTXz/rbQZvl/+fBi8Lrj6J8U7L7P6izfNtlD+BPRlei/D/d+liUf9U4uz+prz5+f5Q/Pbga5TfrWZQfVau1Xv9kfXjD2QeXx6Nr77fjKP+He3dG+b+8djLKP9RltcDhIpvLN4bZWvHH9W1R/k+3s/w/3P5UlP+O3Qej/HSa3Z+X3PpwlL9j62KU32yyuXkV9odjg4MoX7LSqlxZbkb5v9rN+v9fPH46yj92ZTvKp7qwdDtfHYvyn7p8U5R/4OYs/0+P/0WU3zyf9be927O1+qbT16L87iRbK8ZNVhs2Ya2R1iajOmvPQ/u7Uf7q4STKz8L58LELWXtiTTbAHr+azT8P7Wbtf/hElh9fyWqf+U5Wq86OZ/npLVl/qyZZ+6tB+C41Ct/Vhll7lsvsXWp2mPX/bppdv8yz+XN1LevP6VbCIhxfD57I3l1mJ7P7c2KWzefVNJzPp+G748nsr+Dtn8vG4yp8FewG2fNaZdN/WW1l96eeZp+3XoSbIWF/Dl81y+ihcLyHzZ/tZtevb8rq/3aeva/VTThfjcK9wEU2Hkt4P+c7WfvD16Oy2MwalK7X4dZY3P5mmuXT+SEdX5sPZPNn2p7FbjBfhS9r3Sr8sKnD7GFVG+HNWYa12yLLD66FexUb2VyyGoe127EsvxpnY7cLv1dbbkTxeC7ceDhsT9h9Yun4Wobfw3VZbVLS70HrbLKtwvE7vLYf5fP7ma29o3G2t91tZR26PZa9u7TD8N1okq0tzSy7n8c+vubv0dtsvm0Pb/x7js/8hrCWD/vbZH8ryo/C/rDczoqlrg7n80GWb6bhejoL64ew3qj2s/7QzbP1ugtr+fbRR284u+pufO73L8EBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FsOwQEAAAAAAAAAAAAAAADQWw7BAQAAAAAAAAAAAAAAANBbDsEBAAAAAAAAAAAAAAAA0FuDo27AF6PrulJKKVf32iNuCQAAAAA8/a6tsn2xQZVdf1hlv2FQsnwTtmfdDg5WUX5VZflY1a99z6vzrD3jnrV/f5a1pwvbPwzzg9JF+UU4XpZ19hvmXdb+/XnW/2d7iyg/b7P21yVr/6rO8m2XtWc6Wkb5vTZrTzoeU9O9rP0Hg3A+DOfPZZjvwuc7DvIHy6wtB204VvazsbLcn0X5VZf9XMzlIruXy2HW/qrO7s+8ZNc/LFlfvhrO5e3BNMov9udRftZln7dpsnzaH6aD7H6mZsus/YvD7H6uDrLx0h6st1jtslKghKV5WbXh/Qz752HYH1azbLy0h+H1w+e7XGX5psnak65FXZ11iKrO2hOvF9Osw7XTbD5vD9f8LtWE93MVvgsOsvu5GGfja7nIxstqnv2Vn9UsfL7heKy67H5WTVjLL7P21MP0+tn6mPb/btpE+bIKF4B5+HPQw/Uonq8OwvV6Es7nbbi+r4bZ9ZfZ81qF72rpeFylz2uZ/Yb0TbMN17sSft54MyS8P214Q6uw/eFWQmnD+aqk60v4flGH7wtVm42vEtZjy2U4frOPW8KPW1bhfBuvv/H8nOVLdvvj5aidZh8gng+jdCnt6MbHVzpWSvi9SBXuw1bhZFK16dgN57ZVtjamc+0q3HtbhWv1chG2P3wZ78J8eDvjsdKFWznpWM/HS6pf4yudbKu0/W14nCPcXOra8N0uLE26VfgulearcO1dZvdzuQjfrcNaoG/jpQ77f91mtWe3yu5n2h+Wy3TvLZw/w/tZwr2KLqyFqzSfPq8w34b9uQvyy///e6DuBua4qruRVM98+tOfLrfeeutRNwMAAAAAAAAAAAAAAACAv4cHH3ywPPe5z/28mWfkIbi2bcv58+fLzs5Oqf7W6fmrV6+WW2+9tTz44INld3f3CFsIAPDsoL4CAHjqqK0AAJ5a6isAgKeO2goA4KmjtgKAG9d1Xbl27Vo5d+5cqevP/y8Ehv9+Zj/Udf15T/ft7u4qGAAAnkLqKwCAp47aCgDgqaW+AgB46qitAACeOmorALgxx44du6Hc5z8iBwAAAAAAAAAAAAAAAABHyCE4AAAAAAAAAAAAAAAAAHrrWXUIbjwel7e97W1lPB4fdVMAAJ4V1FcAAE8dtRUAwFNLfQUA8NRRWwEAPHXUVgCwHlXXdd1RNwIAAAAAAAAAAAAAAAAAnsyz6l+CAwAAAAAAAAAAAAAAAODZxSE4AAAAAAAAAAAAAAAAAHrLITgAAAAAAAAAAAAAAAAAesshOAAAAAAAAAAAAAAAAAB6yyE4AAAAAAAAAAAAAAAAAHrrWXUI7hd+4RfK7bffXiaTSbnrrrvKH/3RHx11kwAAeu+nfuqnSlVV1/3vJS95yRO/Pp1Oyz333FNOnjxZtre3yxve8Iby8MMPH2GLAQD64/3vf3/5lm/5lnLu3LlSVVX5jd/4jet+veu68pM/+ZPllltuKRsbG+U1r3lN+fjHP35d5tKlS+VNb3pT2d3dLcePHy/f9V3fVfb29p7GTwEA0B9fqL76zu/8zr+zl/W6173uuoz6CgDgM/79v//35Su/8ivLzs5Oufnmm8vrX//6ct99912XuZHvAh944IHyTd/0TWVzc7PcfPPN5Ud+5EfKcrl8Oj8KAMCRu5Ha6p/9s3/2d/auvvd7v/e6jNoKAL54z5pDcP/1v/7X8ta3vrW87W1vK3/yJ39SvuzLvqzcfffd5ZFHHjnqpgEA9N4/+Af/oDz00ENP/O8DH/jAE7/2gz/4g+U3f/M3y6/92q+V973vfeX8+fPlW7/1W4+wtQAA/bG/v1++7Mu+rPzCL/zCk/7629/+9vKOd7yjvPOd7ywf/OAHy9bWVrn77rvLdDp9IvOmN72p/Pmf/3l5z3veU37rt36rvP/97y/f8z3f83R9BACAXvlC9VUppbzuda+7bi/rV37lV677dfUVAMBnvO997yv33HNP+cM//MPynve8pywWi/La17627O/vP5H5Qt8Frlar8k3f9E1lPp+XP/iDPyi//Mu/XN71rneVn/zJnzyKjwQAcGRupLYqpZTv/u7vvm7v6u1vf/sTv6a2AoC/n6rruu6oG/FUuOuuu8pXfuVXlp//+Z8vpZTStm259dZby/d///eXf/Nv/s0Rtw4AoL9+6qd+qvzGb/xG+fCHP/x3fu3KlSvl9OnT5d3vfnf5F//iX5RSSvnYxz5WXvrSl5Z77723fNVXfdXT3FoAgP6qqqr8+q//enn9619fSvnMvwJ37ty58kM/9EPlh3/4h0spn6mvzpw5U971rneVN77xjeX//J//U172speVP/7jPy5f8RVfUUop5Xd+53fKN37jN5ZPf/rT5dy5c0f1cQAAjtz/XV+V8pl/Ce7y5ct/51+I+yz1FQDA5/boo4+Wm2++ubzvfe8rX/u1X3tD3wX+9m//dvnmb/7mcv78+XLmzJlSSinvfOc7y4/+6I+WRx99tIxGo6P8SAAAR+b/rq1K+cy/BPflX/7l5ed+7uee9PeorQDg7+dZ8S/Bzefz8qEPfai85jWveeK/1XVdXvOa15R77733CFsGAPDM8PGPf7ycO3euPP/5zy9vetObygMPPFBKKeVDH/pQWSwW19VZL3nJS8rznvc8dRYAwBfwyU9+sly4cOG6WurYsWPlrrvueqKWuvfee8vx48ef+AvapZTymte8ptR1XT74wQ8+7W0GAHgmeO9731tuvvnm8uIXv7h83/d9X7l48eITv6a+AgD43K5cuVJKKeXEiROllBv7LvDee+8tr3jFK574S9qllHL33XeXq1evlj//8z9/GlsPANAv/3dt9Vn/5b/8l3Lq1Kny8pe/vPzbf/tvy8HBwRO/prYCgL+fwVE34Knw2GOPldVqdV1BUEopZ86cKR/72MeOqFUAAM8Md911V3nXu95VXvziF5eHHnqo/PRP/3T5J//kn5SPfvSj5cKFC2U0GpXjx49f93vOnDlTLly4cDQNBgB4hvhsvfRke1af/bULFy6Um2+++bpfHwwG5cSJE+otAIAn8brXva5867d+a7njjjvK/fffX37sx36sfMM3fEO59957S9M06isAgM+hbdvyAz/wA+Wrv/qry8tf/vJSSrmh7wIvXLjwpPtbn/01AIAvRU9WW5VSyrd/+7eX2267rZw7d6585CMfKT/6oz9a7rvvvvLf/tt/K6WorQDg7+tZcQgOAIAv3jd8wzc88f9f+cpXlrvuuqvcdttt5Vd/9VfLxsbGEbYMAAAAAK73xje+8Yn//4pXvKK88pWvLHfeeWd573vfW77+67/+CFsGANBv99xzT/noRz9aPvCBDxx1UwAAnvE+V231Pd/zPU/8/1e84hXllltuKV//9V9f7r///nLnnXc+3c0EgGed+qgb8FQ4depUaZqmPPzww9f994cffricPXv2iFoFAPDMdPz48fKiF72ofOITnyhnz54t8/m8XL58+bqMOgsA4Av7bL30+faszp49Wx555JHrfn25XJZLly6ptwAAbsDzn//8curUqfKJT3yilKK+AgB4Mm95y1vKb/3Wb5Xf//3fL8997nOf+O838l3g2bNnn3R/67O/BgDwpeZz1VZP5q677iqllOv2rtRWAPDFe1YcghuNRuVVr3pV+d3f/d0n/lvbtuV3f/d3y6tf/eojbBkAwDPP3t5euf/++8stt9xSXvWqV5XhcHhdnXXfffeVBx54QJ0FAPAF3HHHHeXs2bPX1VJXr14tH/zgB5+opV796leXy5cvlw996ENPZH7v936vtG37xJdiAAB8bp/+9KfLxYsXyy233FJKUV8BAPxtXdeVt7zlLeXXf/3Xy+/93u+VO+6447pfv5HvAl/96leXP/uzP7vuBw285z3vKbu7u+VlL3vZ0/NBAAB64AvVVk/mwx/+cCmlXLd3pbYCgC/e4Kgb8FR561vfWt785jeXr/iKryj/+B//4/JzP/dzZX9/v/yrf/WvjrppAAC99sM//MPlW77lW8ptt91Wzp8/X972treVpmnKt33bt5Vjx46V7/qu7ypvfetby4kTJ8ru7m75/u///vLqV7+6fNVXfdVRNx0A4Mjt7e098ZMbSynlk5/8ZPnwhz9cTpw4UZ73vOeVH/iBHyg/+7M/W174wheWO+64o/zET/xEOXfuXHn9619fSinlpS99aXnd615Xvvu7v7u8853vLIvForzlLW8pb3zjG8u5c+eO6FMBABydz1dfnThxovz0T/90ecMb3lDOnj1b7r///vKv//W/Li94wQvK3XffXUpRXwEA/G333HNPefe7313++3//72VnZ6dcuHChlFLKsWPHysbGxg19F/ja1762vOxlLyv/8l/+y/L2t7+9XLhwofz4j/94ueeee8p4PD7KjwcA8LT6QrXV/fffX9797neXb/zGbywnT54sH/nIR8oP/uAPlq/92q8tr3zlK0spaisA+Puquq7rjroRT5Wf//mfL//xP/7HcuHChfLlX/7l5R3veIef6AgA8AW88Y1vLO9///vLxYsXy+nTp8vXfM3XlH/37/5dufPOO0sppUyn0/JDP/RD5Vd+5VfKbDYrd999d/nFX/zFcvbs2SNuOQDA0Xvve99bvu7rvu7v/Pc3v/nN5V3velfpuq687W1vK7/0S79ULl++XL7ma76m/OIv/mJ50Yte9ET20qVL5S1veUv5zd/8zVLXdXnDG95Q3vGOd5Tt7e2n86MAAPTC56uv/tN/+k/l9a9/ffnTP/3Tcvny5XLu3Lny2te+tvzMz/xMOXPmzBNZ9RUAwGdUVfWk//0//+f/XL7zO7+zlHJj3wV+6lOfKt/3fd9X3vve95atra3y5je/ufyH//AfymDwrPn56wAAX9AXqq0efPDB8h3f8R3lox/9aNnf3y+33npr+ef//J+XH//xHy+7u7tP5NVWAPDFe1YdggMAAAAAAAAAAAAAAADg2aU+6gYAAAAAAAAAAAAAAAAAwOfiEBwAAAAAAAAAAAAAAAAAveUQHAAAAAAAAAAAAAAAAAC95RAcAAAAAAAAAAAAAAAAAL3lEBwAAAAAAAAAAAAAAAAAveUQHAAAAAAAAAAAAAAAAAC95RAcAAAAAAAAAAAAAAAAAL3lEBwAAAAAAAAAAAAAAAAAveUQHAAAAAAAAAAAAAAAAAC95RAcAAAAAAAAAAAAAAAAAL3lEBwAAAAAAAAAAAAAAAAAvfX/AWEl4zON81aEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from einops import rearrange\n", "\n", "f, a = plt.subplots(1,1, figsize=(9*5, 9*5))\n", "gg = lut1s.reshape(17**4, 1, 1)\n", "gg = rearrange(gg, '(b1 b2) h w -> (b2 h) (b1 w) ', b1=17*17, b2=17*17)\n", "a.imshow(gg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "UpscaleBlock(\n", " (embed): Linear(in_features=4, out_features=64, bias=True)\n", " (linear_projections): ModuleList(\n", " (0): Linear(in_features=64, out_features=64, bias=True)\n", " (1): Linear(in_features=128, out_features=64, bias=True)\n", " (2): Linear(in_features=192, out_features=64, bias=True)\n", " (3): Linear(in_features=256, out_features=64, bias=True)\n", " )\n", " (project_channels): Linear(in_features=320, out_features=16, bias=True)\n", ")" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from models import LoadCheckpoint\n", "\n", "# m = LoadCheckpoint(\"./models/SDYNetx2_DIV2K/checkpoints/SDYLutx2_0.pth\")\n", "m = LoadCheckpoint(\"./models/HDBHNet_RGB_DIV2K_x4/checkpoints/HDBHNet_15000.pth\")\n", "m.stage1_S" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[0;31mSignature:\u001b[0m\n", "\u001b[0mtransfer_2x2_input_SxS_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mblock\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mquantization_interval\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m16\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1024\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mmax_value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m255\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mDocstring:\u001b[0m \n", "\u001b[0;31mFile:\u001b[0m /wd/lut_reproduce/src/common/lut.py\n", "\u001b[0;31mType:\u001b[0m function" ] } ], "source": [ "from common.lut import transfer_2x2_input_SxS_output\n", "transfer_2x2_input_SxS_output?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " UpscaleBlock 83521/83521 \n" ] } ], "source": [ "lut = transfer_2x2_input_SxS_output(m.stage1_S, quantization_interval=1, max_value=15)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import torch \n", "values1d = torch.arange(0, 256, 16, dtype=torch.uint8)\n", "values1d = torch.cat([values1d, torch.tensor([256])])\n", "values = torch.cartesian_prod(*([values1d]*4)).view(-1, 1, 4)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 96, 128, 192, 96]])" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "values[32000]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADcEAAA20CAYAAACH7mQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdP68tWXrY56q9z723e/5oRJHW0KTGhGHDARVQkIgBBDgkIMBfQKHAQBkjZkqkUIEAQYBAQJFyfQPBMFMzomDAgAMHtoGBqRmSkE1SlMiZW1UOqO4Z0mLz/Pr222ftOc8DTDJYe523Vr3vWqtq73V7v67r2gAAAAAAAAAAAAAAAABgQbeXDgAAAAAAAAAAAAAAAAAA/jwOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZT29dACfx3me22/91m9tX//617d93186HAAAAAAAAAAAAAAAAACC67q2P/iDP9h+5md+ZrvdPvu/9faQh+B+67d+a/vWt7710mEAAAAAAAAAAAAAAAAA8AG+853vbH/tr/21z2zzkIfgvv71r2/btm3//fY/bE/bm2d9Zn9ql7p//FFqf/vJn0jtrzfPi/vT9h+19udH7Xqv+2eflvz/tb+1/wLf9RTbx/7P4f6ve4znzXD8sXJ/4n/+v9sHYj5sf8Fp2z/rehvz/2284PhfiKz3t+dPHc/ZeLYYzlX/i5vD/4HOPP4xnre/98et/zp/xvHcr6u1P1v7Lfa/xeY5H2r9xu4n67Hm2vUUY5kW4/+PP9nm8tvR+q+5vA/3v52x/5qcMZt7/03O57pWDK9F1z32n9f21v9/+KvtAzn/a37Wesn1Ndx+eO3KW5nhesz95/qK7euzWqyXP/yZuFeq+VnzYTr/h/tfLv9rPLXeF5PXr1i/f/it4fViOJ/z/uqsE1btv7Ufn/8XU+fPur5M+6Of+377QM233L41z/mf91fD9VXnh2qxhJt+Xpt2/7l/n9pfMT9r+zPe39p/yedrOpbaftr4s85i1xv9lz/771L7mstH3BzW/Dxq7eb4Z/s/c/ypeVbjX80+vHj9/De/l9rXeqnt38eXe3ktisN5nK3ez/j0Pj2eq+X/dD5XdXz+5k9+J7Wv96s648vGnm81/5u6HtV4qjw+01+8P7hvf+P/fOkQ/pTpejxiPV7D+Xzk9ajFU/uvpvfnq/nFr/wfo/3fF3tZOp0/0/lwxXpf7Xrr/mGl+vrFj/7tS4ewtLoXe22OtabCcd96+spLhwAP476vs9bByn7/35/bz/3N/+vTs2Kf5cUOwf3ar/3a9k/+yT/Zvvvd726/8Au/sP3zf/7Pt29/+9vP+uz+n35E9LS92Z72Zx6C2+MhuP1tan+7vUvtr3s8BBTbn0+1/1d2CK4eelrsENwZK/cp5mc91JYPweX8X+wQXK0Xh+C+UNOH4J5qPsSDTOOH4OoTdT5IUH/pVvNn9v46BPcZaq3EA/11acmHgIb7Hz8EV2t9tUNwi61Fqx2Cu791CO4LbT99CG74UE+VDx3U+srt416m1ss7h+C+yP6Xy3+H4D67fayX20ePfQiuxzN9yKi1X+x3HeMe/RDc7eO44L22Q3DTh0wdgnso96+8T+3zQZScbwsdgpu+VofgHsrTV9v3LvVH+Fs8FJMPoQwfgsu1G9vXtWv6kM5qh4Cq6UNDb77avnefPrS1Dx+Cy/E4BPeFevRDcO++Fn8Xstihm/lDcLOHsh2Ceywff22tf/d9vXp0CO6z5HgWOqTzeXz1q/Hlc+QQ3BcrHyJb7Hof+RDc1z9aJ5YVOQT32V7bIbi/tNrv3mBhDsFBsz/jtzYvUlX/6l/9q+1Xf/VXt3/0j/7R9m/+zb/ZfuEXfmH7O3/n72y//du//RLhAAAAAAAAAAAAAAAAALCoFzkE90//6T/d/v7f//vbL//yL28///M/v/2Lf/Evtq985Svbv/yX//IlwgEAAAAAAAAAAAAAAABgUV/6Ibjvf//722/+5m9uv/RLv/TDIG637Zd+6Ze23/iN3/jPfuaP//iPt9///d//U/8DAAAAAAAAAAAAAAAA4Mffl34I7nd/93e34zi2b37zm3/q///mN7+5ffe73/3PfuYf/+N/vH3jG9/49H/f+ta3voxQAQAAAAAAAAAAAAAAAHhhX/ohuM/jH/yDf7D93u/93qf/+853vvPSIQEAAAAAAAAAAAAAAADwJXj6sv/gT/3UT233+3373ve+96f+/+9973vbT//0T/9nP/Pu3bvt3bt3X0Z4AAAAAAAAAAAAAAAAACzkS/8vwb19+3b7W3/rb22//uu//un/d57n9uu//uvb3/7bf/vLDgcAAAAAAAAAAAAAAACAhX3p/yW4bdu2X/3VX93+3t/7e9sv/uIvbt/+9re3f/bP/tn2h3/4h9sv//Ivv0Q4AAAAAAAAAAAAAAAAACzqRQ7B/d2/+3e33/md39n+4T/8h9t3v/vd7W/8jb+x/et//a+3b37zmy8RDgAAAAAAAAAAAAAAAACLepFDcNu2bb/yK7+y/cqv/MqHdXK7b9t+f1bT/ald6u1rX03trzet/+tdbP82tr/fWvunvbW/tfbnPfa/WPvzTWwfx/OMlVj7356eVyefqPmz3WP/79609nu83hh+rpc6PrFecj3W8ali9zme3H9rX8f/fNPyufa/nVdrv5p8f2s+t+7z+E/mW1xbxk3XblTv7WKjOW6vU0OdS3KtTNdW3bvF/uvaW/cONUFfW0JPi+mf62t4qa7x1Hzr7YfX6un8r/3X+7ta/DyW6XrJE9zwhmz62W54OzM+nywmp89i/Werzbfj80Nrnp/XptfT1fLnldnjDa7zbc+34efTcrnDa1FeGxd71nl4w+Nzi7V1xfZnav058jMmaF5689wTn2VfWf7Xubyq+VDz/8wTYnOLBX8Obybz/RoeH15WrZeq1te9rjB7fNle+68v83O5tHjOGE++v7H59Hy1mpyf0RF/eDK93vV6bM1rPle3fbbej3jBOZ7oiPHfh+O5v7IHwnq9NX/q/ar5cMvz22y9TJseT7440yM/OxPOqz8bO17X1AwAXyg7QgAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZT29dAAfYn/ztO378y5h/9pXU9/XVz9uwbxpQ3m9be3Pt/fW/9Pe2t9a+/Me+39q5y2veDzzivGccXzONvy9fb5frf/rKQYU21/v3rT28X5t+2w+X/c4oLX/en/j9W6x+Xz/rX1Wx7/GH+er/bzaH1hNzYco50O9v7F9vt7Qfrq2qtXieXWu4blhuFbqXiPnz6O3H1brd9+G8214fPbpehm2x/Dz3qTu/Yfrfbr9/PrY2tdwluv/scurq9c7/Cy1XL3khIvNV9t+Dj/L5kep6eX6tdV7Nb6fHC6Yajr+4XcJfMFe2/wwmc/TY7naXFKtFs+wW7xfRxyffTgf6mvVK8ZTt7bT41OXrmuxfM75EK12vbW+qvq1znw8sX7rgjR8e8/YfrV8q1aLf7X8rHr8MePqy5Z8uS2eM7/8aer8cK725Uh039v4H3H873mGi/YWz3w9ztbXEfNttXiqmp98tpoPdb69j7+8nZ2vbnm+qutjrcfW/PTf8eA/qZnw6DNt/Qnt8dre8wLAZ7CDBAAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABY1tNLB/Ahbh+/227722e13f/S11Pf19s3qf35tg3l+fae2l9Pe+v/3s43XvE45PUU+2+Xu53xeq97HZ/UPMeT46/j37rftjctP/P9je23ffb+XrH/7Rb7z/d3OP4qdp/zLV9v7L/mz/BwZjWeaySKH3Y/PT7T+V/zocZT5p9cW/Vaa/+tfb1X0+r47NPFsph6f/tcG/vPtTXc//TeKqr9r1WN83K9Xw9e78P1ON2+1tf4+lXrK6bPdP2Ozw+L7T2XU693OP/H6/GM7aP8KJvbL1bAw/VVL/fVqeNTB3T4XUVfH1v8+3D+9+fN1nw/Yv+vTc3/mv413+p+fnj+vwYf8OrY5FCWe5H54IZrpZp/Ddsu4Ij5lvO/9p9af46tQF3rpvPhwTd7dXxu8Y6dwxVz2+PDUXz4qvHX+q2PdrdcMLF9NPxoupwzzof3OEJH3GzXfMuu1eKfrfdeL7mCW+/D+8np+bzuT6p7nP+P/PKtqfW+7fXLr+l6nK2vI6+n0/Xe+j+H82c1efyH1Xim79c9v5xZbb6ajb8/4MX2/Nha7GuycfEntNvx2K8eAOAzva4nLgAAAAAAAAAAAAAAAAAeikNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAlvX00gF8iP2rX93227tntb3etEu93txb+3et/fk29n/bW/un2L7238LfzhrPvbU/h+PJ8cfjpVfrftti+5zPb2O91HjucYBq/zGft5xvs/FXOX9qvef8nO5/uP2Dq/Nn7j/e3/XyP7YP/U+PzXK1vpi69tYL3rcr/oEmr6V1rcv5Nr33mc3PR8/nccbnC9Xrt7YfrsfBtfHL6H+5fJ6Op/Y/u3zl/vdrOqBovH5n2/d6qTesDlBrPr4frtul6fRcrX6nLTaeOZ1XW4+m48n1OzyfLFYv4/MDX6hcjuXdz3SuTc9Vj57Li8V/i5PDGW9Y7f+o77rq5Pbg/V/T8S+mXu9qav5XtR6r1eKfrsdH9+j1ct/O2T+wD/+72leL/xj+d75vexzP+jInp1u9v/VlVOx+MUcc/3u8v7V9leOv+VDrd7gep+vrGH45c88vw9v1nvnl8Kx8vx7c9PVO3988X8V0Phf772zc4nw4GX/8yepyjpcO4EtWM+HRZ8L6E8LjwfeGALwua+1QAQAAAAAAAAAAAAAAAOBHOAQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWU8vHcCHuD7+aLvu757X9l271LO2f3NP7a/b3to/tfbnPfaf26fmuf8z9n/G8cnx1+OiLZzcvsZT83mr+Rnbb/ts/zmf8/Wm5l0dz+jK+RnHZzj/c73E+Kt6vftV+5+NP49/7n84f6brvcSfc7O1z3PzcK3n9ltM/tU8+NzZ1+rWfHovM772Pvhcm9eimTC+xD8QDU8/OZ+H54fp+hqv38X2kvN7pdn20+vL+HZgvH5nJ9Dx+pq+X4vlZ48/JtDw/NyfBWf7zxbbzvf1ZTYfev+tef3AFePZ6/Uutr/ar+ECmza8Publenh89pifOZzJCTTPDa35+Fy7WjzThuN/f7bJ6hZz/4y5XGurLqX1WfaMN2C18ZmeC6vpePJSGuN5Hxf3mg9V7/9szeP1nnGCnq6X2/RmI6rxT5uO5wfxhww1H+4xn2v7bR9+mX/NxjN9f+frK45P3BHU+XzaUXc0cfjvex3P2f6P4fHP62Osx3y/onuurxb/OT7+s/Ecwy+3a/yvTR6f6fsb3YbXl1qP0/NhccT28Ser41aLp47ntOlMW23mjD/BA4AXtc6OEAAAAAAAAAAAAAAAAAD+DIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQP4IG+etu3+vEu43rZLPd/eY/t2nvC6763/2L72f8VMmI7nbMO/XbF9jX+Lza94vPSK/ed47jGgW7y/Nf6aPzWe6fin+6/24Xim8zPGP12P+Xj4EdtXefxnE67nT/xAnT9zPc7l23JzSZ0b/NMIX6jx8RzfO8T2MZ9Xm9uWs9jl1vknhz++V5rtvu9Va/+x/fSzS47nsfeqtf1rm66m9/77dbX+F6vH8fyMcvznSBifyvWS8222/+n4t5b+3XT/1fh4LjZBT+fDYutj3k9OX+9q+b+YK96wuFzn/qs9JtBkPDmW1zYX1locXxvb+By1VlLr9dR8ruO5Wv973uytM/f8Sf+j3WdnvN7a/hbvb23ftYep+oON98P/znF9FLxN792i41zry47p/M/2Nj73mBG1fY0nu6bjaf2f8eXMre4gYvqcsfsazw8W+/LxyF9Ez8Txifse6yu2r/HX8cnraa7H1rzW1z3XVx3/Fs+x2peDUZ7fav5Pv6yO8nwybDqfj+H5fL4eW/NJ9Sdm8WcbD69e7/RP9qYt9rUdADyUtXbkAAAAAAAAAAAAAAAAAPAjHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuBDnG+ftvP+vEs4395j37H9057aX7fY/h7bxzt71v5j+7MN5+cYz9b/1rrfruH24/HE+7Xtw/lZ87/e39x/vWGzcv5U4/lZ8y32H/Nhtfub62s8H+IfqOM/ng+zA1Tmtz73D+fCYmtRTYXlTM+F1fTcOZyfy83Nw8brZbp+W/N59XqH+x+fb/NeeLb/XL8PvretVluvp+eTXmBRjWc8/9dqv8fx38/WPlusvsbXr9X2z9P1OKzvV2P7c3gDMf3wXgs+JugV+9/zs36dsBYbz5xwrXltn0cn9n/Weomu4fq6Buuxpma+1ijHM722rLYWDc/NNdeO4XjOxa532i3O5XX89+m1ty5Fw/U1fX/f1y+Ko1t82Kn5U+vrzC9zmhr/tPqoeZstr+2M47Pa/HbklxuzD/vn1up3ur6m3WtG77XeW//z80mNZ3Y+r9c7nj/x/tb8OeL13odf7uX443yV1686v9X1YrH6Oobrq+ZbfZl8H34grPmW5/Nouv/pfM73q84/9V2U/47Hn+uI7WdnkvXU663juZrZnScAPBY7SAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZT29dAAf4nx3386n513C+fbe+n6zp/bXfbb9+VT7T823M8c/3H89ntm6367Yvva/WvvrKQ5o7f82XC+1/+nxv4b7r3L+xw/kfGjtV4t/Ws3nLI7/eD7E/nP+VJPzSb3W1daKmgtRvd7hcLLp2l1t7qzxjNfuYnL9Tvcf7+++x83M8F57utxz/Q7vfXK9DPc/PT5VTc+8N68WW6+nTe9P6vqenwUXq6/xdxWr1cu0Oj71fl1xgKY3BFFefx99/sz399Hbr5Vv88+nsf/66vOI/b8ydTqsN+yq7VPr7XPEUxq3ULJc6rPPduOb1QefC49z9mVIfXavtXXWrc9wrZ+L3d9HV8e/99/av48PU7e6Wc0Pa2drPfzy84zzrXr5Yq02njmeveXnEcvrHutl2vT9OuLDxWr589rU+5VdMf9jPWbDzyPT47lavdz2eH/jfuCI6/s93uA6O5/5ZXj8A8PjWe9XzefV1ruqjs/0/ra65fGvLwOf3/9wJOPqa8/4E+CHN329q712nn1SBoCXtdo+DAAAAAAAAAAAAAAAAAA+5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZT29dAAf4nq6bdfT887xHe/aeb/rvo+2P59q/6n5dub4h/uvxy1b99sV2y/XfxyfGs91m71fuV5iPPW47rW3/vfran+g5kNU45/Ot14vw/GP13vMnzh/5vGpVrtfdX4YHp4sjM90bq52b6fV8ayXW/c+2WL3az4/10qg1eaSvW41cvv4gQeX97ar7ZXG9/6t/fR6tNX0HK6X6Xiy4fs7Pj61+5r/j/4uYboehy1XX9P5OZwPebs0Pd8Om673fL/q+Jy14GP/0xvWvJ4OX2+VN8SLTaDTrxrr+Nfbe87+24k5fWJ+5sej0P6arpXxa33sd0WrOeJasde5bXitqPlc25+1/9T6c9TjcP+P/mpmOv6aD7X9LdbXbbEJbnp8qly/Nf7h8a/5cMT+58e/7cXOWL+3/Wwf2OvDWuw/Oob/ne9ej8PxLDZf1fq6xxW+5vP0+Pd3M7P5n+tx2PR8OF/vrf9jsXpczZG/vIj1Evuv6910vk0bnw/5c9WZf7U7VffC0z+zWU0dHwDgy7PavgoAAAAAAAAAAAAAAAAAPuUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQAH+J8e9vOp+ed47tue+r7urf251PtPzXfzhxP679e7xWPT16t+y72n+MZvt4cT+2/5metlzo+uR5b/9k5naBNHc8s52f8QO1/tfkkyvlcx7Mann/6erHYDZuUc3mt2qr979ds+2p6PHP7aHwvkPuvc1vs/7Wp+b9a+2p6vorG9xrTe5/hvfb0/Dbe/2Lr0XQ91vhrPuet6mL7k7y3XS2eer/O1r4H1JqPTyeL1Vc2nQ+teTZdL30+iTesvvvJ+Tb9wPDa2g/fr1cmD/9iD3jXcL6l6x3O5X6t03NbbF9TZ7XajfEcZ1scb+Objeas+TkUx6f953oZrq9otblzXLzeWi/7YvUyrdZjbV/VfD7jAjAdf+2/zs/T8+cP4sPXPb8sqg938eXDPvuydz5/huOP9XIsdr3T418d41/exXwYfzlTXwbOOob/3f3pepzOnxp/jecWXw73643PO3W9iHL8cfzreD668fkzOl/Rf8ejZtpqI3PE9tM/+QQAXq/V9kkAAAAAAAAAAAAAAAAA8CmH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzr6aUD+BDn02073zzvHN9131Pf173FUtufTy2eM8cTrzceh7xa97yw6zacD7X/mM9bzLdrjx/Yr9Z+Mf16a/+t/Xj/1fj4rDX+df6v41Pnh3q9Wy3Hhdaj8VwYHvsc/7A8NS82t1U9nli709f72EvpuJzPw+M5Hk9sn9e66bVoOJ5+vbPry3Km55PYf62Xh6/3KL87We3ZYrX5p1otPxfL/+Xqa/p+RePvZqbfNU7vV/OCXfuP7aN9tfhjPHn9PVv75Uy/C6n1uNrzXX2+mMz/2Hceywev3eXeDUyvpbH9MfwifHxpzPk/e721vubjGZ4fHtw5/HB3xQE942bjNrw5Pxerr3q/avzV9PhMx1+d+eVD3AznBaPFc8ZyuQ1v5ut45vkqqvuBng9Nzf86PvV6az5Mj09+2ByPpzW/x/nhGP539Kfv1zFcvzX+5eKp45/n5/ryoTW/x3jy+E/X74PL+TNssr6OnJszcXxiuBLHHbF9/dqiqvE8ukd/bQ4An2W1fQ8AAAAAAAAAAAAAAAAAfMohOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMt6eukAPsy1bdf1rJb7Gbs+9tR8j8cJazx7C2e7puNpzberfqCq/dfxrN0vdr01H65b+wNXnEmuOkDD45njWUyur5o/uf8HH8+Y/7n/e6yv4fHP80OMv0+gsX21UHrWse+1OzzXPnMP9sP2tf/Y/sHnwuXm8ih3X+/vanK9xO5jfe3D9ZX7r6bzP++FW/vx+fmV/dM10/mcrVZfi41PXV+m62t8flhoL7lt2+e4Aa359Pq+3Po1PJ6r7YfXq8d2wTn+xe7vvlg8vX18d/7g8Y8bfr7L9XUuNj7VYD7UVyGrzT0PH8+0GP95zj6s7XHyHH80ivcr10vU4xl+719flS4Wz3Q9vo/1cqubh/qqpdZ7a57VfDiHv+g4azzj+TwbT20/Pd/2+O+tfayvW/whyb3Wb364a6br5cj3q13vdH3V8Zm+3uoY/yHJ8A+vqhzPTBifWO3+rhZPVeM/6nxSv2zK7yZr/s/Gc4/x1Pt7X+zL7vH5MMr5NqzWS+u7ta8/uaqGKxEAYBn2MQAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3p66QA+xO39td2261ltz31PfV/xeOB+Pi+OH7aP/cf4azxb6z6r3V/xerN6f+Nw1vx5Zhr/UO2/DmdsP36/omutcB7fYvd3Ws6fW1xfan3F/nP91v6j6z7afbdQOue5M8/NrX3tv66Ntf349Q6bHv/p/uvepMYzfruG8y2r8Uy3r1ar38Xaj6/Vw/PzcqbXlyj3v1o8+Q+s1b4+W+dn8Wqx/cZ4fq62vjx4fT16/eb6yg8Mtf/Yfjjf9vyw35rPt4/vnqfHM747Xy3+qr8rin9gul5WEwf0Ktdbb1bN5Wq5uWd4s7RYbp5nnHvi5HPVuW16+Ou7ouF8qP2vF/9o959jLpzN5+Nsi9cV+z9j+6dbm6Bvw/frjIv1OZyftf/peqnx5PhT6/nx+UHc7N3zDxla8/7DhPpDmNh9dIznZxufnM/DA1THZ/p6qxpPVh9OX1s80ZHXu9n4azxVjf9Y7H5N6+Nfvyxoze+xvmr89xjQdH6ulm/T17uSI+fmTByfqK+upjPnGO7/0U2/agSAR7LWjhYAAAAAAAAAAAAAAAAAfoRDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJb19NIBfIjrvm/XfR/pe7+uFsvV4tjP1Hzb9xbP7X2L56rHIWeG/Uf6b9f7Of7AaPMs9j89OjUfcr3ssxdcb1cs3/XU4Xz06512i/NnHf/Yf76/w/0vJ+f/Qhe8UCify/BilOeq6blwOHfG5+bpzUNUr3d8a1j7z/G3P1CvN4/P8PXmfI57z7z2Tq8V9mJfrOF8np5PxutxsfV3er2e3i/ldyHRauvXcq9yxte74ZctD16/vR7ju5+6vg/vB/ZzekJZrX18Vz1dv/Fd+Pz8MNy+yvvnWI/31v01XS/TJuf/R1+LqumHl/G9Q/2ebPZ7wdq+qt8j1varXW981fI54m/9Z+PjE693uP9z+Hrro937s33iVr+nj+3r+EyP52r3t/Zf8zn3Pzw+Z35ZUX94EruPA3rGzeeZ66tdbx/PJt/f4bczx3C+rXe9i/277/nhN8o/5BmOJ5quxyPm23g80/NPvN4cz/B6cR/OzzN/+TgTx6eGr3c+39aab+v1rhZ/ceTamonjEzWTH3fkAYDV2WcAAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzr6aUD+BDnbd/O+/68xs9s9olrjx+o/cfjh9dtNp7XZj+v+IH4B674gZgPewy/5vN+xv5r/Fu8gOiKN2z69mbq94t1tXzL97euF1Wd/uv1DidcnU+q6fknzZ9q9zP12pruv31gOv6+trf2j65ebx6e2a1JV+OpW9vpfBuu39WepVarx1wvi+X/eDzD9VWNX+9w/Y7X+3T8VY1/Joov7w8sVi/VdH09ev1O12Ndr8f/qbbpfB6vx/iua3o/WZ/1czzDE+5ir4an95O5/9U2uNVkPiyWm8vdq/Fn2bU2Y+c5/F41T+az8VzD+RZfa+d4av/T9TU+nvkDs/Ec9X7F/s/Y/9OtbWaGv+bI8U/nT40nx59ad9PjOd3/+/gwdavxx/XlFjf/9/zyuTWvD4/1flVnXH/rfFidMX9yvcfrXW38s/xyY9j0D3kWc+R8m73eo9bXcH7WeOp4fo4fYsT+Y/vpH57E9eUWd4j1fj26nG8LqZm22p09Ym0996fXn9ejj+e06ZkNAH6cvbZ9AwAAAAAAAAAAAAAAAAAPxCE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3p66QA+xHXft+u+P7Nt7Pv2vH4/FZtvV+z+bB/I8cfjkFe93tj+2usfeGz7WT8wEsYP5fyM3Q8fv93jBVxxQBcb/i8hoBzRY4vzz/R8OG2P9zfPzzV9FhufV6XO/bF9rpXVLBZ/Hf9p7u9f4NHvl/af3fzB58Maz/j8M7we5fhXa1+7z8/i8Q8sthcer6/h+5Xzuf6Bxeql9z/8LPLg9Zvfvd3iBdR3OcP1OJ3/vX18t7TaelrfTa42PtPzZ5XrN76bid915AGt+TBt+LuXlJ+LzSXZanPP9No+PZzn7MPUVefOGs5qz6bxevPXFrn/2QEaf1U0PZ5RHc+6FN1ifb0/2+a29n8Nb/bO4fys/dernY4/59vw/BB/5tHHZ3qvlB8GYwWPx9+cMaAj58PsDyVq/tTrzf0P1/sP4sPR7dF/CFPlh/21TNfLEfuv9VItF09/2djaD8//95j/+Xrj+ngbftlyPvh/B6Pn/zrXm59dRqKAL8ax2O9aAOCz2FcBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzr6aUD+BAf/Y//y/a0v3lW29vb57X7xP61r7ZgfvInUvProxbP+XFs/+7e2t/becgrHp+8nmL/LfztfNpj/6197f+MlTXd/9f+t99O7a+YD9tTu2HXu5bP197GZ8v5FvPnVvNtNp4tNs/jmftv7bc6nrX/eL1vfv/7qX3Nh/28Rttv0/1XcfzH82ey/fBcUk3X+h/9ZNxb1dw8UvPtlvuP7a9ai635XksxxlP777Uy3H/cG87H39qfb9oHav7X+rrV/mP7Lebbbbl6qQXTmvf4Y/Ppeqz9x/r9o79S91at/1xfee8Z29fuh6/39r61r/lZTdfLanK9/Bdxfnsf66vWS/2ntvL6Um/w7HxS58Mq538cz/sxPGEtVr8/+Gac4Or4nHE9je3z80WNp45/7L/ur3I8Ua33bDr+H7Txv8WXLW9/9t+n9ufZJsRzuF7OeL2p/7o3n54bVlPHfnqtyC8am5/9qf83tT9qrcT4j9o+xnPl/ofjSa17/LX9tPyqYjj+2v9/+5d/N7Wv+f8+bs5r/z2e+D39cDx5/onPUjWe1UzHX+vlv/ta+14/50P8d7LH83M8ntmH91ovdb2ejr/K4z88Pv/1u9+J/a81ntP5X/V4ZsfziC/nazy38ZcDs+r1/tX7H6T2jz4+1Xg+5/lwtflqNv5z+L/jUeJ599hb21fndc1U2xZ/5gQAP9bW2jEDAAAAAAAAAAAAAAAAwI9wCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCynl46gA+xv3na9v15l7B/9K51/hPfSM2vN20or7et/fnu3trf2/nG62lv7W+xfQt/O2s899b+rPEMx3/GSrzi8dXrKV5AbH+9ie3j/dpuMZ9j/z2f14pni82rq/Zfx7P2v8/2f72JBXZcrX10xevdt9l4psc/589w+y3Ub+47qrlQ54Z8r16b4dKa1msl/oE8l8+2z3ul1f5pkMXqsc4Pt3Mmjk/Fetyv+IHcf2tf++/5PFvv4/U1nf/T81U1Hc9i69d0vWS1/+n1azzf6gQ3HNBq+TwcT87/1SwW//h4LrYfW269qDfAA+dni+MzvZ5OT/9ZvOC95ltoXh8tqjr20/G8utodHs9bzOUzjn/t/6rxpNY9n2v8x4PnZ35VMXy9tf/x+Seq+VPlesyLb2te49kX27tNz4fTar2sFv+9zuj78Mvzazqe1v85/GXBPc9Xs/Gvlp/T7vvslxdHHP/peqz3t8fTmtf8vOf1NMYf4zmWe1nU3Ibz/9HV8ZlfL2o+t+bnYv/djFtd72L80/M/L2d2Z7ie+pNbAPhxttaOFgAAAAAAAAAAAAAAAAB+hENwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAlvX00gF8iNu7t9ttf/ustvvXv576vt6+ae0/akN5vLun9ue9nVe8nvbYf2t/5fapee7/jP2fdXzyeKbm29W637ba/k3Lz+tNu4DrKebnLV5AbF/7v2p9TddLvb9VHZ+cn9P9D7d/babvV863+AeG25d4euyt+fzYx/6nrRbPtOua7X547uxr72z/y+XPYvHUfJgOf59N//Ustve54j+NM90+W6y+louHF5Xzf7Vnndp/nM/zepTHZzqg1ryOz7jpeGL/eT9Q+59+/prOz/gHrtj/ngcoNq/l9ej1stwDdrPn/KntU/Ptmh7PEv/wu5/l1opqeC7PtTU8nreY+0eMf7r/Wrt1/OurnLx2xXgevbyq8bkzuu1n/URqfQ5fb63Hc7H5p47PLW+2W/Pp+zXd/2qm82E19y3OJ3t9ORP7jy9/Ti8Pv1C3eL/O4X8n/h7XuyPmz3T+z6+n8X4Nf7mQ9ycxniPW+/T1Prqa/8dwva+WP3X+6Q9IcTyH58NJ8WcMr87x0gF8oOlMq0++AMDnt84OEgAAAAAAAAAAAAAAAAD+DIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQP4EPtXvrLtt7fPant97ePU9/m2Dc359t7av2vtr/ve+o/ta/9XzJzpeM42nNv5FPuP13vV46UtnO2K7Ws+X2/iBdzi/d3jBdT+a/vpeomX28cz9l/F+5XjGW6f821ajee6ZuL4pPuYz7n/R6/30v/wXD4+N6xWK9Vi4e+zpdvv1/DcWfc+uf/p+qoevV6G1fF/baOZ6yWvja3/fANy/LH/4YSY3qvW7sfjyQHF9q/N8HrU19PWfnr5qumT45neD9TxfG31Eq83j8/4/jln6Gz/+d1Aaz79rqUveIv1v5jxehkenz1ewB7zv68XLZ5r8AGyjk1/lorPCufw3PPgtbhardSEmH62vsX4jxp/7L/Gk9M5xl9f4/f+h9/jD+f/mV8ONLe8WW3Nzzj+t/1sfyCOzxkvoNZLjH67xeGv8dfxr6brazU1H7YrZsQ+W+81H+41o3P8s/Xe56vWvqr1O+2ML6tveYZrajz3uF4c0+vp8Pxw1Ps1vJ4ei+Xzo8vz7bDpeGo+V/e4v53O5z5/1vWu1ntrXudn/nzxJ7rZMdz/tOGdJADwI+zwAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9fTSAXyI6+tf3a77u+e1fdsu9Xp3T+3P2v5pT+2vW2x/j+1jJpy1/9j+bMPZxzP2v7Xul2tf8/na4x+o8cR83mq+xfhzveR4UvNtq+Mf9Xhm28/nW2v/8Op6MTz+NZ9zfsb7m+ef0LzHvtZckvt/dNNzYVXv13Du171S7j/H39pPr6XLGc/P4f4fXJ0/8151eO8zX4+x/+H5eTqda/yrlVeO/5qJ43Or8Uw/W4w/e7ULznvhszXPy2+8Xzk/h8dzer+d62u4/XL1XtXxv8X6evAHqive4D2/S5gt+D3OV71eYjzT9Tvs0fO5Sldb9w6ted8LLJY7WX7Yqf3X9i2e45x98XyLk8kZ48/9p9bbtk/P/XXtemVz2zU8P9S1oubnamq9VGfsfjqe6njw+1tN5/MP4sv5e5yha/7kfLvqy4TZ9XT6fvV6jOMTX0bd4sPRmX8400zPD0d9WTc8Xd3i/T3jF933+vAb0/OI8UzPDz2e2fqqLx+O4fqqzuH55LWp62+df+r9uueXvTWfX88Pr47Yfq1Kf3x1POv9Wk2tLDMzAPzQ69mhAgAAAAAAAAAAAAAAAPBwHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuBDXG+etuv+vEs437VLPd/dU/vjbTtPeN330fbnU+0/Nd/OHP9a/V/x+OfVwtm22H46nusWP7DH8Y/913zu4zlbL3V8qul8y+NZr3c4/6fjr+1zOlxX/EDsfrrec77FD9T5MF9v7L+0r3Ph8FiOr12zQ//wVpvLH7/9Y2dQrpfHvtwsj09dSmeX3r4XzmvdYu3H95Lxhg3vVcetNt8O18tyhvc/4+8eqpw/i9XjYvk5vr6fsX29XdPjOb7+1g/E5jX+8fl8OKDFrtfz5l+g1nvtPtfL7B3YY/7ncMoHai2OL+7D8rPXg19v9P5si9Et5s8Zx7Pertp/Va+3Pjsew3uNOvecMR+m585qOp73cfNW8+fR3fa4+Y/jecbdQJ6vYvtbnLHyfLhYfdX48/y815cPLd9qPuT6jfHk661iPEf8YrPvB1Lzh3fG+a2O//i7pfy1eMu3M17vPa8vrfl0/k/X46M7cr0Mv9yO3d/zy8/Xpe4P6/xZTc8n9YdCR+1+UI0l/sSVv0Adz5Vy5/OolW6mBeDH2et6AgQAAAAAAAAAAAAAAADgoTgEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFlPLx3Ah7g+um/X/XmXcL69p76Pd639dd9H259Ptf/UfDtz/LP9nzUzW/fbFdvX46K1/xxP7f8WP1DzIfaf29frHY4/G76/1bXHP5DzrbXv9Tsb/3KG62Wr45nnw+l8W2g+idc6PfeP11ZUr/fRS3f6n5rIuR/3bn1tn+3/4a12uavFs5rxvfls+/n4F0ugxdbT+b18/EBdf6ev94rtqwevr7x/yJvb2P/0u41oOj/zfnU6n1err9WuN4/PcEKcrXk2nQ+r5du0eH9zvQ+3n96NnWdbkK4Y/xXHv/Y/viAFde169NLKxmtrNheOmstDcXzizLUVv7cb7v/R7XGxGJ8Lh9V4av7U9rfhzXmNZzV1fB79eh/d+Pjvba93xPK6x4ejY7F/tzvPJ9frut7V5occT8z/nM/1ZeNaw5mtVu81njr+R/yy9R6fAKZfLU07h/M/39+o3q9utl5uexyfeL+OxSase7zenJ+Djtg+/syDv0Adz3q/AIAvzzo7PAAAAAAAAAAAAAAAAAD4MxyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsKynlw7gQ5xv7tv5dH9e23fPa/fDvvfU/rq19udT7L+Fv533Gk/r/6r9x/i31v12xfar9Z/jifl2PbXzrrn/eJy25s+2z8aT71d0xfiznD/D/dfrXa0eh/X44wdqPY7fr+H6rfPV4Pgvt1YM39vVamva+HhGee2ttTg9Ny9mPP4rNh9eK/YaULVaPkzvtaf3nsP1mOOfli9gJozPq4afHxUWu97VTK9fff2dbT8u5ts+nZ/D47na8Fd5/BebT8brcXp8ptev5eqrBbQPV1jNh/2ciWNZ9Xkkt4/75+H6yvGMxpKab3usrWu11Wu1uW1YzbUjts/5EPs/h2vrHJ5L+Gyrjef7/EVxc4uL+y3WV62X6oybmTPO/9Px1/G84gJZ+6/z7fT4VEf+oq/lf73eOv7bPvuyscY/fX/z/Yrq/HbP80NqvpzpepnO57ofvsd8OIZf/k/n/2ru8YbVVw+13uv9zfmQ55/ZCaXm2z3egWOx5+se/2w95vtbX77F7o+tPV/cwnjm2o3tqyO2n33yen2mx7Pe36rm52t7bQ7AY3tdT6QAAAAAAAAAAAAAAAAAPBSH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzr6aUD+BDHR0/b/vS8SzjetfN+59Oe2l/31v68p+br9R8z52rdd7X/4fb1eq89fqD2H+9vbl/jucUPxOO6uf+rNc/5E13Dx5Pz+Azn/3z/s9fbj5PX+pq+X4vNP+PrxWA847k/fK+m/2mEPPZtcp5OnSvurbJHz4caTzQ+NwyL6ZzbV3U8h2/vcvNn38vH9nlvO9x+/AY3Of+n20fT9fvqTK9feb2b7b/Gn9eXs7XvE1xrnmef6fpaazrM8vq+2nhOtz+H3xWNt59+GdWa7znhWvNxtQCG82e1+fCs11vF/Llq+9R6S/Fcw7Ver7VP5qsVY7TYy4HjnH2Ztsf7W/PnnM7PqMc/PDcsZn78R7vf3seHnVud3/LDYHs4Oodfnp9xfq75X9X+p+NZzXLjv7UvL3p91ZcJs6bH/4gvc+bz4bH/XfPx+TO/TIt/YDr/9/rycCaMT9T8r9ar38eur+rML6vjH6gvn/P+sPVf8+Ee94fTpuuxOhZ7n3CPCXoMxbFt9cli/r9YUq91+mcwr81krgEAf9paO2YAAAAAAAAAAAAAAAAA+BEOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFjW00sH8CHON7ftfPO8c3znmz31fd1b+/Oemo/3fz7V6239X637bavtq9h/jT+3v8UPTMcT863Gf8XjtLn/mJ/LGc7/a18r33L/tV6iHH/uf3r817q/0/PJckr4q93b+k8d1Ft11fb1A7H7Op73Fk/uv1psbt6Gr3d6bl5OrpfWfI/1tQ/HM218b7LafLvas1c1vL6M5/Ni+f/o5tev1ny63sfXu/H1Zbb/7NHjf2XG66uuvzkf6gUM91+ttj6qr8cynJ9X7D+nT+2//IEYTL3W8bkkL47jL1Zn+6/i8Bxni3+v479aLcb253StR9PXu5rhV7E5P2s+1Pa3WF+3xV6eTI9Pleu3xh/Hv97fc7X5NrZ/H78Yv+W/cLbme31Yi/1Hx/C/893rcTieWC9Hnj/b/boN9/8+/jDqmP7ydPzd3nA9RtPry3z9zvZf863m/xHn/3vsf9qR6yvGH/vP4x/z8x7X00fP/yrnw7CV6qVGMj2SR2z/6D/hBAB+fKy14wQAAAAAAAAAAAAAAACAH+EQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQAH+J8s2/nm/1Zba/789p92vc9xvLU+r9q/zH+2v81fRyyhZ9dsf98vTX+xdpft5g/cXxqfeX83IcTaDX1/k7nT+4/5sOj397peqzjk+t9dn6Ynv+njc4/i61d9Vr3q/U/3759IN/bVzY3T6v399HXinq922rtq+H+5+fD2H/dOw/P/69u7zy8vmTD9Tge/7Dx+q31slg81X7GD+QJqDXPs890/r+y+ho3vD72d2PDG8qcb9MvP2fb7+PjE9uvpj4+Lrafz+vjag9gMZ74eiCNZx6b4bmkX+vsu5DlDM89x9mK6za82dhj/zWfz5qfqXWPZ3quqvVV46n3qz7qrzaX13qp4/Poan3V9lWeH4YXjOnrXc0xvV7nlxXt5cO5tR8C1PVxOh/O4Zc5tV5qPkzHv5p8vfVlWuz/Fvs/8pcL9WXgrBx/NJ3Px/j6tVY99uuN+R/XiyrHv1r9LmY6/6vzwcdzUq2s6ZE8Yvv4E9Hl1OsFAL48dpAAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMt6eukAPsR1/5P/PattPO533fccS3E+tf7P2P/Wuu/to2uxeGr/1x4/UPuv+Vn7j/lz3Wbzv/b/2kzXS+8/5sOD397xes/1G8e/1ledf6br95rtfnx9Cercv9ratV3xZtV7W7tfrHaXm5trvsXx34drt/a/3FqUx7N9oI5Pvl/D93e8vsbn29g+7/0XS+jpcKbzc7heVquv6fn50etrfD6Z9uD5+ej9T9fXtEev37x/OGP76Q3l+PpVb0Br3tu3eB6+vmL7nG21fvPz4Fr7z/r6Ib9PKNc7nPv9Wher9bVSpxt+1XUM11ae+6OcPjn/h+slmo5/OcPxv4+bvVvMuCsmxBk3G7fhzcm5WL6dcUKv8Verjc+0Mz+stYedI97fe2xf67c/rMXe43jW/K/qfqDnQ1Pra3p86nxb8zm/fNhjfk6/PIyXe8/zw3S+zfZf82G1eKYd0/mff3jSmt9jPNPzwy2PTzOdn1XOn2GT9XXk3JyJ48fFEdvXn0hXNZ5HNztTAcDLWmuHCgAAAAAAAAAAAAAAAAA/wiE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3p66QA+xLXv27XvLx3Gmq6XDuBP22s88bZesf1+tvbbrV3AdbaAchbX8bm1D1z31v95H65DZf6Zav5vcd7M/T+6Wl8x/6fvVz3enucHx+e/OHmtq4td7T92v9heY/p65/tfrBbr9dbuh/On9r/cWlfHZ7h9Hc88/nntmm3f99qxvWfYz7Tc+rJYfY3PD7X7xeprer1eb71YLKDF8r/3P7wBmm6/3P62to8XXOeH6XoZz+fV8jO++5wen/qud7X5Mxqf3up4LuYarJf63n+9tWU4nqpODnn8W/PqPGdfzuzDD+O5VqLa/1XfJTx4/FWNp756mI7/nF5769codfppzbN6f8/hL07r/Zq+v3l8Fou/eh9fhtxi/Le8OY8VUIdz+MuOWi/HcD6c8Xqn83N6fKavt/afHx6n+69yPDNhfKKO/zG+fs3OJzX+8XhqfeUfkrTmn+OHeK15jOce48n5udgPZ6brq8r5NqzWS+u7tZ/+ieVwJY47Yvv4E1cA4MfIavsYAAAAAAAAAAAAAAAAAPiUQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9fTSAXyI+/fP7X6dz2p7vGvn/fbndfulta+nFa89fqAa7r/Gn8PJA1r7jx/I/bcrvuL1XrH/bLH8eXh7zIfXNj7RdZ8dz1xfw/3X+SFbLN+uWC9LqblQL3V66q9r3WLX2/sfXqtXu19R3usNx1P7z+M/HP+4Oj7T+Txd76vtnatXlm+rzQ/T4z99vevVV2s/vr4vZjo/8/BM5+eD19dq9btafY3vH6brZXpCmV6Pptff2n98d75a/FVOn1q/8V31tdoCme9XfB4v/efJrTWfvtbl4llMncvPs7Xf4+RTa3Effu+ZamWbn0tq/zX+av566wfWGv/jbIvXFevljO1vtX2cEGv7M262z+H7W/ufzv8aT44/te5qPMf0DyXyBdfNZ9vMH/EC7rF+83hGZ3yYzfk8/OVdHZ/VrveY/qK7Ppy+snhq/VY136oa/3g8tb5W+yFG1POnvjxsze+xvvL6FQOarq/x+TOq17ta/MWRc3Mmjk/U17Crjfzx0gF8yer9AoAfZ6vtSwAAAAAAAAAAAAAAAADgUw7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWNbTSwfwIfZj2/ZnHuO7//HZOr/a+cBr31P7fb9a+xx+i+dqzbvYfw2nxt9Gf9vi7d3i7a3ptuUryAO6VPc9f+r41wuoCTFsvH4XU+9vNT5/xnrP8Uwfbx/Ot7qeTsczabW1t0/Os/rcPN3/Wnur8blwuhSH1+rxvUC0X3HvX/diNR/yZjh2v1j99vaLrUXT8/Nqa+lwPk/Pn+P1OGy6vnK+rRbPYvdrul7G62u8/+GXRYvV+/j6e2sXMF6PVc6315U/0/VS32338VnsflX5XVGsx/qu6Fxtg9jEx6+WP+O1vlguTz8sL1aLV9xsnLFW9uHvEWvu9/7ju7Hh/Mm1nvuv1zsUyKd/YLHxj+3P4XjyUjcSxY+Il1vHZ3o8a/4sF39sX+OZrq8zbt7OeMG3uDm/xxG9xfG55Yf9Fn8dzyrnf5wgjuXybfZ6p/uf/iK9ri+1HnP8+WF8Vs23Y/hl0fT8cNT6Gr7eGs/0u/P7cH6e+WXLTByfGr7efH+jPJ6LKfHnuTy2r45cWzNxfGK18Xl0a63UAPBY7DMAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJb19NIBfIjr9if/e17bPfW9X1dqf/9Bar7tZ2t/3Vv8163F/9xx/LT93uLJavex/d6G53OMT2ufRzPGPy7GU683X+50PuQLHq6XYXV8Hl2t35pv0/NnXl/qcfiaD7ke4/oV/0C+3ke2WO3O11btP+bOcPyrGZ/7hzcD+X5V0/3X8a9bk+nxrPVb5+bpelytfleLZ9j4/DNcX1W+3uG92HT7Op+8tvV32vi7h0evr8X6f/h6HH6XVu1nveCZOD53/3GApteX+u7h4a+3dj9dj/fYvtZjrZfVXh7mAR1qu22zsXyu9sOT7fiz7Ox4Xvf4XjLGE1975q8Vpr+GmL7eqsbT+68fmI4njv9QHD/8Ay2eYzj+M/Z/i2vXFdufi62NNX/qeNb206OT4xm+3up93Lzd8ojWl7Fx8z/+Q4AW//T9OuMF1/nwHP5iM9d7vN7p+eSo4zP+RfqwGP8RHx7vwzP0Mfzydrpear7VeqlqPHn8c3215v27jvoyqqrrb63HteaTc/i/m1HzbbXxeWRHrK34k+SsVq5MAACey74BAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZTy8dwIe47vt23ffntZ0+7ne15vs5/Ae2543Lp7235tse47n2+AfqeM4OTx/+mm+LxV/vb3XFC5i+XVWPZzaiPUe0mGv6jkV1OKeHf3h+qOtRXk+n57fafYynro98hroVyLU4u/d5+MXo0S12vTl/FlvqxvN/uH1di67bcAItdn+Xm6+q4WfB/Ow43X5Yrffl5odqtfV3Op7h/Mz1EvV6nH23tFq9z9djflmULPcstdj9rQM0vX7ld9XD9Tt+vbPdL1eP/WVI7H+64KdvWGm/3Fq02LNO3msMj+f08JyzfyB/bzfcftoVL3j8a4Ucz3A+5A8MxxMDOs74MufWNie3uNadw+Oz2r9CXK+3tq/5mfsfvl/T8ZxxgHJ+jm9uW0bX673Fh5H7Yi/fjpwPdTyH8z8m0PR8kttPf7nQf9jVjP+QLZq+3qjWyzE8njnfohp/r9/h/M/9t+Z1+r/H+I8cULve2zZbX+fwDrSPz6x6vZPzQ72zi838AAAPy74KAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZTy8dwIf4+H/6X7en/c2z2t4+/ij1vf+Vv5zan9/4amv/8fPi/sTxcbtV55t2vvG876n9VdvHTJuO57yn5tv5VONp/ef28fjq1/73/6f1f28BXW/iBdT7e6vj3wao5k+N/6zxTB9PruMZh2fbp/ufbf/0H47W/XG19mdrv8X2+xXbx/irfH9rfg63L/WeY4m1UnN5euz/6Cfa4l5z/9ZKcdvPs30gpv5e44m1WOPJ8ddw4lrU1+rh/nP8rX0tr+Nd+wM5//NaVPtv7bfY/+19a1/zeatr43g9zs4P4/Uy/OxyfNTiz/NzXl+G2+f1pbWv+VPnny3W7/T6tVr/uX5jff3Hn477q3q/zliP0/US95N1uq3xXHHDPZ5vdf096o4mWqx+3//sD1L7K+b/Vscz9p/jyflf42/Nc0EuVl91fuj536739v3Z/j/+r34/tT+O+F3EWdvHeqnpFuKpc/9V15Zc67NzeR3LGk/vv7afnTt/7q/+u9T+jPEctVZq/7H9dPxHzP86l9TrrfVe5fmkzm3D11vj+es/+d3UvufnbL28H+6/x9MeHt/neozXm9+WNtPjWdV6qfH89a//29Z/HP9j+Ivoer0/iPmc16P474JP50+t39Xmw+l6r9f737z73lAkf+Ic/nflp+txtfzv8cyOT51/jvH1bvZ6f+ZN+93YPb/8eWw1P6t6f3O+zf7sZ6v/nY3v1y87FvKV4dfmj65+jfjaPPrMOfwTQgD4QvkvwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQP4EPtHb7d9f/u8tl//Wur7/NpXUvvrbRvK8909tT/etvOK121v7e+xfcycs/Yf259tOLfzKfYfr/eK8VzxOOrVwt+uNy2g3P4+e5629l/zZ8v5FuOJ+VbVfNj2WI+5/9n2V4w/x8NnyvlQ16PYvuZzrfcSz3Rujo/9YrVS48lTzxk/MO1qzffYfrW5fLn2fKFqfk7L8eR6rAXZmo/vraafRVb7p3em54fp+Wqx+qrm63G2/9y+5n/OnxZQ3Wvn+a1ewPB+eLX1aDzfpq1Wv9Vq83/uf7Yer9j/Xp9/zzr/tO5zvq32PPjg8uuQnG+t/ysuGCWePlWt9XCal/a8+Y/9P7hbnnxa83P45c9a2fn46tyTXyXk/mfjqabrZdva4n7GL3Jvw5vVM96vOp41/un5p14vn63XV6uXY/jl3nR9bVfc/O/teuXzy7rH/DnyfBvXl/gy8D5cj/cY/3T+93ha83O5LyPWksf/lanjcwz/dyfuD76+T89vvJz4k9jtGIliXTWTzcwA8PnZQQIAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQP4ELevfGW73d4+q+31ja+lvq9399T+iO3ff9TaX/d9uH1qvp2x//NptXha/1dt38LJ7bfa/9t2AeebdgP260rtr1vMh9h+q/lwb+eBr5rP+f7WDzTT+Zbzs15v7f/Rj3vX8W/l2POh1m++v7PzQ42n9D8/lrH/4blkNfXe7rVYqunuc77F/mt+xr1b3wvE/l9ZvYzn//Dw7LVehutrNX3tin9geD7pe8man9MJGts/en6qxy9Ufjcw/ewyvdzV650u99XWr2Hj62m9X9PjM9x/zbcczmtbX2pC5A39sFwvcX++Wv3G7qcNv1rK61EyPJijsX8ZhmtrulbO4Rt8i5PDFdufq821i7mMz2eq4zNdL1Wtr+l66fEMBfJKrVbvtV5uww8L9/2Mn6gv82P/+/DLkxjPubUvR+r9OmI+rLa+H8PxTPdf3baaPy2faz0ewy8bp9fT+/B43vJ4xi9Dh9X7e9R8i+PPZ6v5dg7Xb17f43bjiOsjP76mM+EY7n9arXQzMwD80KMfDQAAAAAAAAAAAAAAAADgx5hDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJb19NIBfIjrL31tu+7vntf2bbvU811rf3x0T+2v+z7a/nyq/afm25njn+3/jJlc47laONs23P66xfGJ+bxdV2t+a+dpa/z1uO55j/HUeonx5/yppvNtjx/I+dzaj8c/rObD3soxu2K99Hwbrq/h9TTdr+m5oY7lYmvXaurcsx8zcXxuw3NhHZ/cf46/ta/1spq8VsyE8WrtcS+81bV6eK+U62ux/rPF1q9cv8PxTO8lsxhPjn+6/fCzy/yzXex+uv/WfNx4/I+e/9OG49njgI7vP+sNzgXZmi9XkNF+xg/kennwAYqmp4dcj69p/KcvNW/ma/+1/WPf2/dn2xzeYu6fw+NT46m3d7VXadPyq4R4f3v71HzcD872xewtL+6zbnkz35pP1/ujW218puM54su0Ot/eF6uvR9fX96FAfkycMf/P4X/3/bbN1kvtv15vrveYn0eMZ7X9cHWPA/SD+sO0V6aO53paffV6qfVb9w+z9VXv70rPj3lvNRIFz1XHf6VcAwA+jP8SHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAsp5eOoAPcb172q778y7h/Khd6vnu3tq/becJr/ve+n9q7a8W/nbmeFr/+Xpj/PV6txZObn/l9vEDw/FsNZ54f+v1XrfYvtZL7X/6+HC9X9F4vsXxqeM/nv9VzYdjJIpP9fGs9du6z/3X+aTWb40/9D8+NsNr1/Tcw19gtfs7vVeqc2ddu1azWPh1Plks/G2/4gdq+yrn/1p7sdXWi9XyM8cznG/j4xPjn77ecdPP+vnZqLWfVuPZz5k4Xq3F6mu59Te6+su61j4P0Go7LL5I4/VS1+vafcz/K8aT6zHa4w24Hrge66Py9ehr9Xht1dxv7Y/h3D9j/7V9dau1GBP60dN5NdNzc8/P9sVvzbfp/K9q/Lf48HWLa12u37gZOIfX3ul8rlabn+sXm/fhh/2ab3lDs8++bDmGn33vdX6L7d+v9jIqOmL8NZ/PWC//H3v3D6vdlh/0fe/nOfffYGYmdiYMKLYTF5YtJEJEYVuCBiEhChpcWZSUiAKLhgo6SipDhaBCCEoaGgoUJFyEOkKAiCzL2FEcge0k9tx3751idO+MHfn1+d73/d2znns+H+lKmFlnnd9e+/dba+39POu8t+EdSu2/xp/rPeb/Mfx3+uv6eOQvmj22M7/sbc3vMT+P+Avuq71sjPr4zNZLHs86f07PzwutX/UrYK9r5llPHf/hr/gBAO9gnR0hAAAAAAAAAAAAAAAAAPweDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABY1tNLB/Auro+etuv+wbPanh/dU99vPm7tzw/21P66t/ZnC2e9/mOmXTGe6mrh9/a3+APD8Wz7bH7m+OP41Hh6/6l5dsXxz/L4D/dfr3c8/4fbX7F9Vet3eH6ox+drPuT6fRoen2L8Xs22n5+rViuuxYyvpcP957VlON9em0cfzlrusf1+xR+ozWu9LLd3i+0f/E/p1Ot99PJazT5c77n9cH2NP+s8OtvD9yuvj7P9jxvOn7p9eHUF/OiXG+/Xw9dLdJ5xfxvHs7dPzXP/6QY/eq3X8M/YPj9cxP4X8+Zsm8lbnEzO4Xyrwz8dT7XXyXl6PB99LoxqPG/iy4TV6qWq8awW/2uz2vh/Gl/m13rZrrbAn8PxrDb+02777PhPOxa7X0f+4Homjs8ND88tb9DXco/xn9ts/t9jQtTR7/U+++HLMf3Foth9zYfV1Pyp45/HJ47/dL7V+eqI9Z7nw4WWryO2X2sn8PrU8a/3t6qVW2fa+pVhAHhJD/71NQAAAAAAAAAAAAAAAAC+yhyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsKynlw7gXRwf3rf96f6stm8+fl67z5wf7qn9dW/tzxbOeP/nU73e1n9u38LJrnr8s8azWPuaP9ettk/Nx+Opx3uvPfb/4Pk5fb25fsf7H75hVYwnX+9i+Z/nkzo/DOdD6n861Rar9XGrxVMN36+89g7PPdN7N/hSTe9lcv229tPxTNuvx+7/1VltPKfrcbH6reNf838/W/vXpt7f8ceFWo+r1W+U16/pDW4e/1e2gX5ll5vV+Xm4/yvmZ2+fmo/3X+pxeKnmD7LYXHvU3ByK4zPn8PXWWpyOp1ormvXkuTOq+VDb3xZ72J++3nO1lzlRvV+rzSfTxq93H86fq71MOIb/bvf0eN63dr3nFr84E93iy5xbHJ8jrqjT81W+v+P535rf4/06h+vlGL5ftd7renGstR3Ipsd/Wq73PD23erl7In+rul4c9YufUb1fx1Ac8K5qpchlAPjiHvsJCgAAAAAAAAAAAAAAAICvNIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQN4F8fH921/uj+zbTvvd9331P58Xhjfa//U+r9q/zH+3P905rTwx/u/9vgDtf94HPWq/ed8iO3z9cYfqONT+4/q/ZrO5/H8rPGP9z89QTR1/PfbNdr/9PyW8z/W43j9Tubzo9e6P43wXtVcHl9bptvzdm3q3/bYvvbP2z16/a62V83yw8VMGJ/J9biYOpzj6TA8ntPP1uPP+rV+p+vF+sWXaboep/NztfYP7uHXrwe/X+c5/G4m3uBev7X/57evodRXOQ+eOl/CXLjWw0vN5SO23+PmqsZzDtbKF3EuVgB1/OtqVOe26fHPYjxv6gfp0W0/Y/vZhKv1dcaHwXN491PH56zjuVo+R/X+Vkf+YLzlf40/18s++2FTr6/F7ld0ixumY7mXvU29X9P1ktX8X2z/U03nf82H+xbnwxh/3W8c8Yt499x/i7+232I89+GE7vk2XO8Pru4/6/09Uuuu1ku53po501+zGR/L4f4BAKb4ujMAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLKeXjqAd3F8dN/2D+7Pans+7anv697an88L4/v6b+1r/NPxbC2c7BrvP/6CeFy0xp+vt8YT8/m61fapee+/5me1Wr5NxzOcz1u83ul636/Wvt6v/Wq/IOf/cP7k+Wp4PhmX8/n5TfO9quq9qn/qoIYfa2uLtZL7H7baWlTzbXxvUtV8mK6vYXUtqvlf16Icz4Pra2/sf7r99N5tWN9b1V+wVvuHr6/F8mdy77ZtW3+2nt5f1a1/zc+zte8TVuz/tVmtvqL+bB3bT6930/m8Wv88lHx3h/czV8y3+niX5Xhi+9FYUvNtj5Pt9eiLy2ri/TrO2b8zmvNheK04h+eSarr/qt6vvb7by+Pf2k97Ezd7t7z5rPVYH45i7zGeM87n53i9z/Z/ixNuzYdjsfmhluOb+EWPM84nvb5m66Wazs8jviyajoe3q/Pt+Pa51sv+uv5ufa2XWo+ruccVYHq2PfPL8PgL6svnvD9s/df8uY/fgWa1/D/iBHrP+dCaH1vbL90G72/tea07y/t2vHQAv8daT8oA8H7ZVwEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQN4F8dH+7Z/sD+r7XV/XrvPnPcWy/nU+r9q/7H9NXxnr3a5Xez/2uMP5P5b+9r/dDxnzP96PPa6zeZ/vr/ThsOZzrfef7y/i92uR5+vrnpcvdZjbp+a93q5Yvtq8n5Nzw3DY19zc4/3qrYfNz6XP/jeZDVXTbjFLng6/2v/0+2n1Xqpe9vh/vOfonl19d6a5/VltXp8dNP1slq9T19vNZz/0/WVp6vXVl+LWe3dWF5Pz9g+F/xw/9Vq6+OwOt/uNR+i5ea3ms6L5fMV+8/DGfrvYxOb17HMi/ViDwurzYXRccZ3afV+LVZb0/2f0/GM9s4fpN7f2v4W6+sW58NbzKAz9j89PlXtf3o+mTY9nlXNn/7yIW6G99b/ESfce4znGP47370eh+MZ3r/V+fNe58Pp/dhwvdziw2POz6v1X+9XNT0fztevfwfgJR3TL2cWq9/11q+18j/nQ1TXo2Moji+ivpacvrN1bOJXPgEAxqy1AwYAAAAAAAAAAAAAAACA7+MQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQA7+K679t135/V9ry3vs+n5/X7vVhq/6197f9q4XfD/V97/AU1nuH2Vz1eOh1/jOe6zeZ/7X81ub7G6yX+QKyv8fnkweV6qfPJM9e5z9vX+qrzQ52fq9XyLcQzPvdH42vpsP2q7dsPrDY+eW7I+VZ/QbwBq6nxD89tNZ+34eEfj2c4/pr/uf30s8J0vQ8b3wsM51vO/2mPHn+02rNyjme6Hms+nDNhfGmm8/nB6+XRLbde5wW49h/bV+Pr44OPT5UX1MUemGv4tb7OtTagOX1iPqfHxxjMNV5b9d3Gg+f+tOH7m/Mh2uP9nY7nrOMT+5+Of7r/5Qxf7xHXlprP4+Lw1Pyfbl/V/D8XWy9q/txi+2O6XvL63pqf8YP9W3zXfqsvK/Y2P0zn/zn8MrbWS82H6fhXk6+35uf0eOZ3G2u9DDyGX5ZO5/MRb8B0PHX+PGI89Xrry4TbNpufOf44Pnn8H/zfnej5MOt88PGcVCtreiSP2D5+pXQ59XoBgC+PHSQAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLKeXjqAd3Hdvvvfs9reY9+x/RlHsrbP9tnur334F9TuY/vn5s3n7R88nuvWfuB8au1r/NP5uZqeP3H8p8ez9n+NRPHlqfVV299rfcVfUOeT2H+u92g/Z/uv0vXm3FlrLc1zyRWLvc4Ntfs6ntPjM97/dP7UC3jwyb/Gn8cndh/j2R99+If3krm+xvfmrT1/gOH1pdZXrsfh+p2eH5ar39XW69XkCas1z8OzWH2N13u12LP+cvV4izdg+llzuL56Pq8VTx2fR9/fZvV6p99d1R+oNyz2nx83azglnuHc79c6XOurWWyvfQxvDvveajae6fSpc09vn5pnee6M9jjXTsdT+38THx5vMeOueIPPOJ634c3JOZz/1RlnoBp/tdr4THtzti+q9HyOD0f5s6P6smj2Ye2M8dT8r+r+Ice/WP7XfDvjF7WO6S/mTH9wneOZCePLUvM539+oxlPV+MfjGc//+uFaa36P8UzPD31+e+wPB3P+DJucH46cmzNxfFHDlZsdsX38yjZ/gMW+ggcA79VaO1QAAAAAAAAAAAAAAAAA+D4OwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuBdXLdtO+/Pbbunvp/b7+f9x/ZZCz+79uFfsJortq/DU/sfjqfm51WPx9Z46ni+svzs4zMSxqt13duA1vtV16N6XL32P75+RavFU+S1dHruHLbHtau3bz+Qc394rh2fG4bV+5XX6nh/X53pveR4/bb2de85vlet8di7vVfT+ZYtVl85nmkPXl95PlnNavm2WDy9/5pAtf/YvnY/vR49eL2PP1CN5/Ni+blavZ+x/2r63XDtfroep+fPqj5fTNZL7Ht8LMdr/XU9vNS59jxbce1xMuyvZmYnn1xbw/3X+nr0+B/dOT2f1I9d4vgfMf5c73X+GX65VO/X9P3N4zMcT+295k++v3k+qS9D4mY7hn/GDwZv8YLreNb7VZ1xc57rcXh+yPk8/PIt918fHqdfHq4Wz7BjfP2aHZ8a/3Q81Zm/eBJ/QX45MxvPPcaT83Ox+ztdX1XOtwd25NycieOr4ojt61fMav8AwLpez44TAAAAAAAAAAAAAAAAgIfjEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlPb10AO/i9um13bfrWW2PD2Pftz21P1v32x6PH14tnG2L7fdnjuNncjzTajzx/ma1+zb82x4T7qrXG5uvlg/j8Sx2vcsZzv9pNX9yfdX5P/Z/3Vv/1bW/sgIYvNzV5s5suHZz7g/vlXr/s2tvFu9Xvd695kMdn2s44WI8OR8WW+uy4fwZr9+89sb2w2vjPpz/y63t0+Ven71qPIvFn+NZrL7m1+vYfrX5PE+4rXmeHabHZ7X6mu6/tl/sXWOfTxYrsOH7tQ/X73z74fmnvmxfLP6czXV9zOtpfPd/Du9vazzj9fL8/vPWfLlaXyyeYXmujWo+1Fzur05q/7O1OP0qp8fz2PE/uuNsi9cV8/OM7W/T7WP+nHHzfA7nT+1/Op9rPNPjM73cHfnlfGtex+dWxz/XV9z8x+ut43nml1dNzud4wTl/ojo+89c7/Hff88NpVOMfjue537/7zDH84WbNt9XiqWo+13pZTb9f9eVna36P9VXjX62+xufPqF7vavEXR87NmTg+U1eW1Ub+eOkAvmTDOxMAeCir7UsAAAAAAAAAAAAAAAAA4HMOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFjW00sH8C7u37m2+3U9q+3+vGafO87Wfn/aU/uzjnw9rtjCye1r91f9gSr3HxOiXkBtPjw+efzj8CyXD7xdvL+Prs7/1y0maJyfa//XvfVfXdMTUOz+Vc0P09f64LWec2E612KtTK+92XA8eatUr3d4rpqee/ZnPrN8r33tv7VfLt+G67e3n344is1jPD3fWvvxvcNq+RwtV4/RdH3leq977en1aDHj+bbYetT7rwlX+x9uX7uv9ThcX9dt+OVSVd/1Tm8QV8u3eL15vxrHf7X4x03XY323ND1fjddXfH4v17vc2vLg8Ty485z9O6N7nKxq++larP3Px1PbrxVP/wVrjf+x2txfNwO3uplszc/h8an913yo/U9f73R5TY/nm7Nt3s6Yz7e6OR//rKOupy3+s75cinL+xwGt8+ejX+90//Vl4xHb33N9xfbD97c/vDc1P4/hl0U5nun6Gr7eHP/w/F/rpedDfdkSu6+G62s+Px/739ko8dc7NT0yR66tmTg+s9r4PLrZmQEAvtrsMwAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAlvX00gG8i/3Ytv2Zx/ju55X7Lq576//4YE/tz6fW/rqn5tsVj0NeLZwtNu8/UNu327Xte/yBqI5nvd4afo6njmfuPtZv/A3T1zudn6sZLpd5eT6M+eb4+fuVF5gH9uC1VefaXCu1Fhfba4xbbO3K47+a6fjr/ap7seF86PW7WPtqufpqv2C/4l47tu/xpObdcH1V+Xqn8224fd4PDNfv+LuNxfJ5ueV3tfparP/l6vEWL7juB8bvV73g+AsWq/d6g8fXo9cW/3B9jb/7P2dXjLg9zOJ2teXbYrm/XDzVYnPtFSeTM9ZK/ZzpqnNhffaa/twrxp9rN1otnun6ytc7FMdnzuHrHX/WOdtiei72QVnNh3q/avvV8q2OT5XHM28mW/P+sHam1keM/x4v4LbYhwv1fh25vuL8M53P8Xqn55OjPuzsLZ+z4S8C1Ohv9XqH46/zQ1XrJedP1OeHxcY/11drXteve8znnm/tem91fVzsi0Ln8L+bUcd/tfEp8tw8EsX3HLm2ZuL4zGrjAwB8ddg3AAAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAs6+mlA1jVfl71J1Lr+9X6vx2p+XbeY/unFv8V+79a913sv4YzHf9e+88XMNz9avHEX7Dn3xDV6eS1ifPhtKsWZG1+tvbX8HH1PSZoHp/xeo+m16NirdTvairktS7uTabX0tdmdiv8+jx4vee1qM4Psf/cPm+2hy2WD3V89rh3q+3rhL7XvUYd/+n2w+r6OL6e1r3z8HiOv6uYtlo+j9fj7LPIavU+X4/DD2vV9MNgfBZfbT6fXh9z/dbxjB5+vV5sPc0DOrxALvYqsOXDamvXudh77bwXGB6f4drKjzp1Ls+3N77nHY5nenyqPPeMxzPcf/6B+C42/oLjbC9zrrh27bH99FK02l8hPuP9re3z8rVYfa0Wz5tYL7eY/7d4x24x/hpPflhb7F3OkfOt3d9cv8MDND2fTF/vGb/oVOtluS8CVNMP+1Gtl2N4PGu+rRZPHc/xfB7/YkiU83/2/t7i+ngOx3MstgDX652ux2KtTNu2I9bWfTgVVhsfAGBd9gEAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9d4Pwf3tv/23t33ff9d/P/ETP/H5//7bv/3b21/9q391+6Ef+qHtB37gB7af/dmf3X7t137tfYcBAAAAAAAAAAAAAAAAwFfAyL8E98f/+B/f/vN//s+f//ev//W//vx/++t//a9v//yf//Ptn/2zf7b9q3/1r7Zf+ZVf2f7SX/pLE2EAAAAAAAAAAAAAAAAA8OCeRjp9etq+/e1v///+///rf/2v2z/4B/9g+8f/+B9vf/bP/tlt27btH/7Df7j95E/+5PaLv/iL20//9E9PhAMAAAAAAAAAAAAAAADAgxr5l+D+/b//99sf+2N/bPuxH/ux7S//5b+8/dIv/dK2bdv2b//tv90+/fTT7c/9uT/3eduf+Imf2H7kR35k+zf/5t/8vv39zu/8zvYbv/Ebv+s/AAAAAAAAAAAAAAAAAL763vshuJ/6qZ/a/tE/+kfbv/gX/2L7+3//72//6T/9p+3P/Jk/s/3mb/7m9qu/+qvbhx9+uH3zm9/8XT/zR/7IH9l+9Vd/9fft8+/8nb+zfeMb3/j8vx/+4R9+32EDAAAAAAAAAAAAAAAAsKCn993hX/gLf+Hz//ef+BN/Yvupn/qp7Ud/9Ee3f/pP/+n2ySeffKE+/+bf/Jvbz//8z3/+f//Gb/yGg3AAAAAAAAAAAAAAAAAAr8B7/5fgfq9vfvOb24//+I9v/+E//Ift29/+9vad73xn+y//5b/8rja/9mu/tn3729/+ffv46KOPtq9//eu/6z8AAAAAAAAAAAAAAAAAvvrGD8H91m/91vYf/+N/3P7oH/2j25/6U39q++CDD7Z/+S//5ef/+7/7d/9u+6Vf+qXtZ37mZ6ZDAQAAAAAAAAAAAAAAAODBPL3vDv/G3/gb21/8i39x+9Ef/dHtV37lV7a/9bf+1na/37ef+7mf277xjW9sf+Wv/JXt53/+57cf/MEf3L7+9a9vf+2v/bXtZ37mZ7af/umfft+hAAAAAAAAAAAAAAAAAPDg3vshuF/+5V/efu7nfm779V//9e1b3/rW9qf/9J/efvEXf3H71re+tW3btv3dv/t3t9vttv3sz/7s9ju/8zvbn//zf377e3/v732h3/W1/+V/2572D5/V9vb1P5z6Pr/1zdb+a8+L4zPHJ23o33x8T+2vpz21P2P7q4Wznfe1+j9j5l+1ffw3Fq9bi7/+G45/6Jd+K7W/7u0X1Pb7dY32X8ez1kvtv9bXtsf20VW7H25/1eut/cd6+eD/fpPa72fL5+1o7ffY/RbjqfVY+99qPQ633+p6UeafnPutfR7LXLvtB37nm22x3s/UPNfWbbj/LTafvt4aT5bn2tm9Xl57Y//Tjo/jXulo/ed8q2tRzufW/vZpa9/rcXjtrfHUtbc2H6/H2D72/+Zrcf4/2vXm+pqux9h+q/1Pr19t6/wF6uWx+69qff0//328YWerl1u8v3utx5z/s+tXX1/i9U7nW11/4/3K8QzXSx3PNz/6ndT+OuK7qJgPWx3/eH+v+EBY6/fK9VvrZXrCbc2n55M8P8f9SX1B8LUf+Y3U/oz9n/F6z7PVY+4/1HutrVoreS7JL39i93nuj+MzvbbU8Yn9/9h/9+up/RE3e7W2jlgrb2L7YzqeuPbW/nP6jNfXbL30/mfj+Z+/9cup/Rnr5U1sX/P5TXzZWOOp9fgmvmzJ9R7bV2d8+Zz3GovVb43nT36j1cu0vH7F+1v7/3Q6/+MXMer88GneD8zuH6p6f6s6P//4x786FMkXU+Ovzpiftb6qWi81Pz+NX9Q68vpS54fZ/qt6f3/4g/b8Ut3HP7xu6v3q/Q/vl3J+thcQNX+Ora13ff8wO57F12ZTh/esvibl7eLXSADgRb33Q3D/5J/8k7f+7x9//PH2C7/wC9sv/MIvvO9fDQAAAAAAAAAAAAAAAMBXzDp/RgEAAAAAAAAAAAAAAAAAfg+H4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABY1tNLB/Au9k++tu23D5/V9vrBb6S+rw/b0Jwf3VP7Nx+39tfTntqfsf3VwtnOe42n9X/V/mP8V40nHhe9bi3+LTa/Yvsz5vNW47+u1vzWBrSOZ62X2n+urzqeVe0+59twPtfj2NPxT6vxxPoaV+txuP0W14seT2re1FhyrQ/3/8rsZ/yBxUq3z82ze8mlavGLWG1tGc63vfY/3D7HUz18/cb2i/X/6iyWz+P1NWy1+ar+6anpZ6PV1OGcvtzl1pfp+l2s3peLPwf02AV5xevdV7veWi/Tz3dxA7Ta+nuLAZ0PvuHbw/VeD36t+TVjflio/df2jz3+t3jB52pz7bBSiyuq80Otx97/WvG8iR/k1rWo1tfxyuqrqvV4xIfZ1fYOq63vdTzveXP7utT55Bheju55rz0UyJfkWKy+ptX7W8fntsV6j8Nf559ptzi/HfXDSt7qvtrLw2g+/pif8cOCmv/1w4Wj9Z7Hs/YPX1Sd+eUmAHx1rPUECwAAAAAAAAAAAAAAAADfxyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3p66QDeyTf/8LbdP3pW0/PDdqnnR639m4/vrf8P99T+urf2Zwtnvf5jZl4xnhr/1sJfrv31FM+7Xldrv8eAYvvrKba/1Xybrces3t88/rH/elx6sfin1fj3LdZXVce//kDOn/gDsb5yvdf6Df1feS6fTeYez2z/i5XulkuxLo11LR2eGupcVef+3P9wvo2r93cx+/RSND08uR5nwvhe/7O/IK+lq+31/Omd92q1+hqvx8eebsf3Y7ys8XqsFpsflqv31eorD9BiFzAdTs23cyaMZa1WX6/JYrX74I+m84Zr5YgPOzfF+F7dYj2+Odv9upZ7GfXYzjgfnsb/rep8UutltfF/bfHUepl++Xavm+0Yz9F63+5bi+fc6hdDmlscn7N+sWVYzrdhZ82f4Xq8D7/8qf3PX2+t99Z8uh55uyP/OwktH+6ed96qrl/9fjW13uv8PD+f+PCRL6auRHWvCgB8eewIAQAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9fTSAbyL65MPt+v+4bPanh+3Sz0+vqf254ftPOF131v/LZzx/s+n1v+V44/t63HOFv527fEHav8x/iv2n4+7nvEX1PhvMX9i+56fw/d3OH+qh6+XOj7D4zmtXu9+xV9Q67GOZ6yvXO+1fievN+b+crn84LWy1dx/dNP5s1p7XtZwfeW1q4r979dsQHWvVNeL8b2eP6XzUMbrazX1evPeObZ/ZfWVn13qL3j0/UNej2bC+Nx0PKvNP6vFw8vK+dwmoPF6Gc7nI7+w4Pe12lDmh4vaf22/WDzRGeM/l0uI12WPk/MV7299ldD7Xy2e1v+n8YPo2362XzDsFvPnFieg2v9pb/tWNZ+n1fXiqC8Hputl+GXFPcZ/1i+SRPctxrPNxrOa1Z4Vzum/+37N1tc9zv+1fY1/ejzrenfEy73H9Xet3cYXmP8Xc8TnnXq/pveHZxz/Gn8fn8XqN8ZzPPD6eMT2j3ul33Wv3/GLjuHP3QGA1+uxn6AAAAAAAAAAAAAAAAAA+EpzCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCynl46gHdxfnjfzqfnXcL50T31/eaT1v78YG/tW/fb+dT6v2r/9+H+Y6Zd9XhmC3+79vgDMZ4rx9Pa93jiL4j397rF/uv41PyM8UzHXy2X/9PXW/ufrq9p9f4erXnP5+H5cLge6/yQhfGZzuX5Wmy/YL+GAvmqGB6fer/q2pL7f/S5mfer5n9s//DzT62X6WeR4f55MNP1uFq9D69f089202r8+zkTx6v16PW1mOvRF7Aa/mr3NydcnXBj969MTp9YL9P1tcf8qa+6rpUW4IVCeZViLh9n2yzVXH74tQu+zxnz+YwfRN+GN7c1/kdXx/O6WvtzsQVvtfu7XL0MP+wf+eVJU693Oh9u8eHlFse/5sOjm86f8enq8jLtJdX6Oh68vs78src1v29xPIc/LKv3t8+3LZ57nP/r+KyWz/16H1eNfbWZ5Ih7+Xt88Vbb13im1ftV86HuZOwcAOB7/EtwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLenrpAN7F+dHTdj497xLefHJPfR8f7an9dW/tzxbOdsX2Z40nZkKNp7avrr1d7xabX7F97X+1eOp4XvE4ba2X6zZbj3l8po8PD9+v9fIt9l/VfI7t9+tK7bN6f2s9TufPeP3OJlDKz8Xm5my6Fqvh0lrOYnuN8fbwLuL8kNfq2ryudXUvWetrun9YWd0/1L3zcH3lZ6PXtl+qzG/v1/Sjb11/p+/v+C/grRa7vzU/c73U/W3svrri+OTtdu5/+n1IuIDF5ob6qug64y/IuVwDqv3X9rP3683ZNoe3PJk05/D11viv2P548M3b9Nw2PddOexMfpmq+1fy/xQnljPk5X49tQr8tFj9v92n8YkVeX+KG4ByO59HzrV/vUCCLOoe/WHFM/933eL/ucX4+Y/y3bbb/1dxf2fVWdX+S99u1fmP39f5W0/PPo7vHCe4YiuMzef584Ptbx3L4K7fZER9O79PfcwIAXq3H3RECAAAAAAAAAAAAAAAA8JXnEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlPb10AO/i+OS+7U/357X9uJ33u+57an8+L4zvtX9q/V+1/9j+iplwxeOT196uN6vdD7ev4zMfT8232L72X6+35lvM/6yO/2L5n8d/vP/h8ZlWw79i++H5ttZvzofh+aQazf/puWG4VPLaxdsN58P0XizXCm9X535e1vDev9bXau2n7erlscT7le9vbb/Ys/v4u4Hh8d/P1p6XNV5fUY0nr1+1vmo8i43nuMX2A1l9vH5t81vMz/McfjcTC77WY+2/mH4NOO7hL2AtdXiOmJvTt+vMtTg7N9TXwq9tKp/W9z7thr052+btFjeTtX0tsFovtT2PZfr+jufPPvxh0NVm6GP473bX8azzybHYfqnGv9p8tdx8W+tlOh+GL/d48A+Lb/Fh/4hfLLrHG/za9qtnzZ+cz21E6/2adjz4y7d7fZkWh//YWj3eYj5M7zcmHbH99Fcmebs6/vX+1kx+bWsRAK/L4+7wAAAAAAAAAAAAAAAAAPjKcwgOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAsp5eOoB3cXx42/YPnneO7/hwT31f9xbLeR/uP96p6fiz4e5r/1c8/nnV+BeL56r5eavtU/Pef8znPP77Wvmf862ajieOZ+1/v1r7rF5vjCfn23A+5/odnk/GDc7n4/e2/umCxYZ+u6aLdy3Ta+lkLn+h9rX7PHfOxPFlqdfb27+u+spqvtVno+n6evT5P++t6gJZ+4/tp612vx7c+LP1Yu8SVquX8Wc13u7Rx3/63ds5/DIk19dw/9Ne2/o1PX/G7qddMT+nH0fG4xl84KyvilYr9Wx6bz79ciDGc5xtc7gvtlmqtXXmWpy9X3k8F3u59Npe5Zz55ecZ+2/39zZcjzWe3v/s3zmu43PG9rc44dbxnB7/qmbbEV8GHvEX3K9WX7le9tn8fPR8uO1t/O/xaeEcXl+m55+q1st9eH2Zzv/VHhjq+L82td6P4frK/ef5ajZBe761+HlZNX+OoTi2rWfOajNhHZv6lczqeG0Pvw9u+ivkAPA+rbYPAwAAAAAAAAAAAAAAAIDPOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWU8vHcC7ePPJbds+eN45vuve+j7ve2sfRzLHU/u/tfi32Dwb7v+K/df2Nf7V4qn5XI/H1nyr+X/twwk0fb+q5eKJ93exet+vmTg+k/Nzev6J9Z7rdzj+cbm+wg/UvuufIpiM/Qv0vw3X1rT9rD/Qmq92f8fXimF1Ll/uemu9PHh9rWZ6rcvt6157tb3hsLx3m64X9fh+1fGc3nsOr9fTe+HpZ50+Ac2E8WXJz5ozYXxxw/v56f3Y9Ho6ns+r9b+axcLP9V6fH6cN75eu3H72Btd46g0u8U8vdXucbK/ViuuVOc62GNX7u5pa6+dic0neysf71T/Gmpurvts+NR/fa7yJm7dbHJ9bnqFnF/czb1Zj/3F8zly/r2t9We1635ztg/Rb3azu9eVk67+O5y3Ot9P364gvi1bLn2k138bnw9r/9O2K9VLzv+bntNXqsbrH/cNqrwaqM38RLP6Cuh7V/WHsv+bPfbE7vFq9P7r74Mu92vNqd/aI7eNXPl+dOp4AwBe32r4KAAAAAAAAAAAAAAAAAD7nEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlPb10AO/ietq285lXcD7tqe/z3mMZ7f/e4s+Gu7+G+8/xx/ZXPS46fb1VjP+6tQu4aj7X/lcbz5o/4/n/4OP56IbzIc//NR+G54f9utovGHbF8Sn3d3qtmIz9u/3H7uOtnW/ffuC13a/l9ibDav5Mr401nm219qtZrF7G55PX9qdrhteL8fx/9PqaNpz/uf1i88m0/Rz+BbV+h/vn7fL8mX/BYu1X21+tth4tVl/5+XQmjC/8C5bbn0TnudaHBdfwA1sa/hx7at6vNSfbYpuT6Yfx4Vo8c//teuNr2CzHH9V8ru3PB/+go746XOw1e/bmbA9rtzi/5fZxPrzFCeKM/U/nc+1/Op46nvX+XrF9vd7pcqz5018etpcD59a+CFDv13a1eI7hv/Pd62Wtl7e3+PLnFq/3WGx+q/GMv2zP7ypmX9bVepy/X9P1O9t/ra8jfpHqHvs/6xe1hh11/OvL6th/vl8xP+9xPX30/F9Nr5d1xqfO/OtEziOafVIAgJdlnwQAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsKynlw7gXZz3fduf9ue1jVd63WMstf/b8+L+XGxeXcP91/hzPIu1H48/Op9ZJ5+p+XnV47TT+Tas39/ZCx6v3wc3PT61/+s+W4/1eHvuP7qG839amt/yWjG7FxifG65r+BfMms796fuV195of+zbm9XrXW3trfHn+7tYPtT8X+3ZYrp+x42vL7Ptp+e31eqr5v/47X3w+l3uT0k9eL2Mry+vrL6q5Z6V87Nsa7+dNaDYf24/fQNa8z3fsNac96yOf62XmA/XcD7ndMvxl8YxlOnayotR/QWrrV5rOc/ZzeEV79ce24/Xbuz/rLWbWvO+1fub8yG1/hLEcqn5XNtXub6m47G+vNURx/+I43mP7W95xo0VvLf1dL5eYjzD+Vzzoca/mjqe+Xr34RUmxzMTxueu2es9hl+W1vtb58Pq0eurj0+73tvwDi7HH+/XLc4Pq+V/NV0vqyn5ecStT/wKWFYra3qmOmL7+BXs5dTrBQC+PI/9hAYAAAAAAAAAAAAAAADAV5pDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJb19NIBvIvzvm37/Xltr2e2+7zvODLXfW8/EF2z3W9b7H+1eKbjH7/eqsZ/az9wxeOxtf22rzags5arl+oa7n8xdT7P80msx3pc/XyK/cuftwvjc9W57dHXoqrmQmy/3PiP919/waMX46z58Y/dv7b7ldfS2H66fqfjWU1Nzzo9D68XvR5j/9Vw/zn+4fxf7ln/wf801H7GH8gD1Jrn6W26Hof7H58fVjNcv719fWCI/ef2wwt8zs/Zeh9vX7uP83meP6dNr9f58XGxDWuMJz9OhfZ5bIbnkn6ti703rMb3Au2Cj9i+75XaT9yGNyfn8NyQb2+ul7USeo/3K7+KOtd62HkTF+tbzIgrTohnHP+Hr6/Y/zm8AExfb62ven/r/F+v983ZvtjS8zNuhuvtivV+xvBvcTN/1niG87/nTx3P2fjvMd/qfFvjP8ZfZkb1YXM8ntnua35W+f5G0/FPq/ulY/zlSf2wrDW/x3iWmx8eXM6fV+TIuTwTx2eGKzc7Yvv4Fe+sxvPoVnsNDgDvkx0qAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCynl46gHdx3b7733Oc99r33tq35t1w/zn+xa63xv/cvPnCpscnqtebx2d/8Hq5RqL4nsXyIVttPIf1+ST+QK7HWF81nmmLhTNqeO1azb5arU+P//jepP1AHv+6VsfJfLV8ePT6ymvpcPt6f2v7vFet93e4//Fni0c3PD+Mzz/T9Vit1v90/a62v8rr70gU3zM8P7++/H/0DUTT3/3M9j++np6L3d/V6nG8/ezzzn629l/ggSq2Hzb9Ln94PrwWWy+ucr3DuZ/HJj+81P5j+8VKZVrKne0LDGecq44616bWXyB9xueS2fpaLf4s5s91zm7GzvHrbc1vMR/qVqOazoczDtD0/ar9j9fLYur96s/Krd7P2P8tbs7vwy+T63jW9bQ6a/wxnpw/0fT4VHU8+8Nj9OjxDDuG87Pmw2rxTDvzy/z4C3I+z8Zzj/HUfLgPv6yezs9pNd8e/XqLI+fyTByfGa7c7Ijt41fCH970sykAPJK1nrgAAAAAAAAAAAAAAAAA4Ps4BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZTy8dwLu4f7pt932m7+u6UvuzBlLjju2vGk673B5/lOOP/e9n/IFqsfG56nHXffgCquH8n75fVa5H3qvrFhMi1lft/3waTtDF8n9anh8mTcfy6HPJ8FrX14r2A9O5Nr7Xi1aLJ5u+v6tdb40nts971Tqeee2N7af3kqvlw2qGx6fOP3m+mu6/Gn7Wn382HW7/6PWYb0BrnrczD15fq8VTTdfX9Hq9nMXm53243nv7Fs90fU3HP76+DO9Xr1sL6Jp+dz7smqyX2Hf8mGl8bR+vlcX2VtNz53nOvvzZ47uKfXjzU2sr12JU6+u1xb+a42yL3RXz84ztb7V9nCBq+3P4w4Iz5k9tX9V8no5nuv/q0/Oe2t/iFx/uw/ncHwbj5jPeriPn2+zDbK7HeMH1eqs6PvV6a74dMZ7a/l6/WFTbD+dbjafOD8f4+hXv72rxTM8neX6I8Uy/C8lf3KsvT2L31fgXD2dN5+e0R4+/OGIuT32X+jPDlZsdw/0DAOt6PTtCAAAAAAAAAAAAAAAAAB6OQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9fTSAbyL+2+f29NxPqvt7dM99X1+ENs/XbH/1Hy76nHFvcW/xeZZDacNZzd8vVftf7Hb9epMD+h0Pk979PirON9et5ZA1731n602v1UmuIdRc6Gu7XXv09feWLsPnpv5fg0X4zW9uCx2f/erXW+tl/G9czW8F673K7ePa3u11/xf7f5Oq9f76OOzWr0P12+u9+E/3ZSrfbF8y/kw3H46nt7/9MPRbPd5uajPmtP1mB8AFrtfOT8Xiz/33+Ifr/fnvfL/vv7Xij/frvF6jP0//ANwbf/8642Pdl/gYaT2X9svFs+DO89WjPvw5FNrd6+fI0a1Xqbnntr/evHXH6j5ED/njv3X9lVdGo8afxyf22Iv6+r4T+fzavlT79Z0PL3/WgFxs13DiQN6xofZWo/V+P2NA5rnq+GXabl+hz9r+jTmz70+bE6PZ2x/G46/xjPtGM6fWi/HeD7U+eGx/92DHH9+WdT6v8UKqPHX+We1+3vG8Zyu36rEP5tp8LuttvYCwCOxDwMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWNbTSwfwLp7+32t7enM9q+35Qev7fGa/n7d/2mP/sX28U+cHLf6rhTNub+HPxx/7r+Fc++wvyOO5xR+I8fd4mpwOw/lWrzdf8GLy9S7murUbfN1j/8P1Xq02f+Z46nhW11xCP3qtVFf90wvx3vbcie2rB7+/83PDYpvP1QzvHfL8U+fyWO/T7fveebECzg8XI1F8acbXx8Xqa7VnhTr/L7f+Tpuux+H+lxv+4Xyerq/x+h1e7/r6O3vD9uGXM/tZB6g1H/fg+byfw/1P1+P0/vk+O6HXd1dbrZcHl7b/ebPUmuexH8/96fduw+1r93Gtq4+OV1276ucuiz1c1Out7avp+zX+KmGx8ayOGn/s/4z932K91K153fpMq/lQx7O2r6bzoZqurzfxYe0WR+hW72+tl7j5v09/cSA6h9+e1PnwjPkwnf91fKbnk3y/6suQ+jCbP7wYlh/Gm3ssyCPnz+x4HsP91/ycjqeOf6+X1vw2vGPK1zv970gs9q7xXOzfzZjO/0k1k6ev9Ii5dh9+dFxtfACArw77BgAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZT29dADvYr+ubb+uZ7W9vYl9n6397WjtzzfPi/vz9k97a/9pbP9Bar5dix2fbFe73i+49pYPOZ7x7usvaL+hDk8N54oXnOMZtlo8454573/h7ofnt+euW5+5hiegXO+vbP5JXQ/PVQ8vjn3NtfnarT8Q2z96PoxvxoZNj/+D399cXzUfptu/No8+/9Slfbh9Hp/VxlM9vtWjPwsut36N12PdINb+h9vX7sfrd7WEHrbY/e3xrPUurb47n77ebPr+DtfvdY/9R9f56AtkVPIt5/5qa9ditZX3DsPxx2ffM9ZKfy0Z3yPXtaJ+ThNrvcZTX/vX/qv8McR4PHE8h+L43i9o8RxnK7D6uWnOz9R62854vbcYT21f46lq/9P5luNZbXxi++n7O//usL5MbhusI17APdbXMZ4/bXxqPpzDL+tyPMPtj/rhRX2Yjf3Hr41t9+F4xsX4a/5XNR+m6yXnZ1Tjz+M/nZ+rfZYVr/ceAzof/N+pqOvvtDqe0/VY1FdL05Efsbbuw6mw2vgAAOuyDwAAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWNbTSwfwLr72v/7v29Ptw+c1/qH/JvV9fv2T1P7NH/ogtr+n9seH7bzi+XSl9tene+u/hb+dT63/K/Zf2x8ftHjqcdErdn/V46ix/Sf/x3fiL4iulm/ZveZnG6Ar5ucZ45k+bnztMZ7p/KxqPMPX+8FvHq37s+X/XuvlqP237sfrN96v61bXi7Xap75r13Usc/+t+Xe+3hbf/Wz932rux6Uu12JsXq839z8cf6/F4f7rWjRXul/I8XG7gL0tRbl9rq+az7neW/scT5Xrcbr/+Gw3XF/1WbDuhY9PYn4e7Xqn66vmZ86f6f5j+9ub2P90/NV0vUe1Ho8/1AZ0vl5i/3l9GV6/8n4vXu/0ejF8v2o8q9XX/o32wHAd8d1SHc+YP1vsvz4u1Hy+cv3Weon7n8We17I4PnX/XOP/gR/8v1P744z1EuM5Y/9nHM8z1PsVX7bUWqn997l5di7pH4zE5ovF8z9+6/9K7c/4suJNzP1ai0ccn9x/bj8bT39tXutl9mVUfhU4HH+N53/6b38ltX8TH45qPp+x/xpPrd8zxv8mvoydnk+qOh/W8antp+u3xvMnv/HLQ5F81xHzud6v3H9dj+LLxpr/n9b6iu2n56s6nlXPh9l4fvKTtr7c68vJqOZn7r/mT4yn1m+tlzo+Nf97PNPz/+z4V//DB//naP+34Q/v6nhOq/kznf81nk+v2a8M9/3GbL2U8fnaYt8z4P2qr1Wr6a8xVPFrIQDwUNZ6QgAAAAAAAAAAAAAAAACA7+MQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQA72L/+g9s++2jZ7U9fuB57T5v/9G9tf84tv+wnT884506n/bU/mrhb+d9uP94vbX/rYW/XbF97X88nunjrmcMKMZz3tsPXLH/6zYb/7XXGxbV/Kn5kPNzsesdDifX+1X7rxdcf0EU4xmvr9j/Fdev1Hee+2Psi61F44ZTeVyMf6+1m+eSV9Z+NTkfavvhgpmux8X6r+M/HX/dW9X1Ynxv6E/vvJ38f7+mr3fY9LNL7f/Rl99qPB9Wq6/heJYbz0dXB3T8ZQhvFcf/0dffPV7AtVh+lvjHY8+5EJ8VhvsfX+tWi2fYrdZWbH8uVouvTX4VmOt9dn6o/dd8u+XNZ2t+xu5rPLV+H70ez1f29Dh9v474Mu2+n6Pt88u92n/8YPBYbb2O88OxWL2sVr9nzLcjv+yK9bXF+ortjwf/u/V1vVutfquan6up8889zm91fG5xvajtqxp/HZ8tzg/n8Pxwy/NV/WIm78t9+jt40TH9vQQAgGd67Cc0AAAAAAAAAAAAAAAAAL7SHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuBdnH/4a9t5/+h5bT9ql3p8fI/t99T+/CC2b+FsV2x/3mM8MXNyPE8tni02n25/1eOl0/Hs9Rc0++1K7a9bi6eO5/XUfqDmZx7P6fyppvNnNt22a7reH1wdn72Vbx//Wr/T88NkPsRaGc/lxdaK5cTc38+ZML4s9f722hrOf96vmP9VXVtq++n4p+3XYnvn1faqvFWul8U8fL3XvfNi7wb4A8QJcbl6HK6v8etdbTyr1epxtXiq6ee1XC+vbH7g95dv7qMXI+/TLRbjuVj+7DH/a/vperniXN7bp+avzmr5fIubh7N+kDiszie3WI/n8AdH5yt7OVyvN9fL8Mu6+6PXS8znvF4Pz/+r1cuxWDxVjn8frq8tPszGeKbzs6rXe8YvGtT1/Vhsvpp25H8noY3n/cFfPvT94ez8sFo+1/t7DMXxGh3xYfM+/L2f6f7r9Va1Umouz860AMD38/U1AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlPb10AO/i/Oi+nU/Pu4Tj43apxyf31v7Ddp7wbN1v59Oe2l+1/9j+iplz3lv8W2xe21/x+Oe1WDxZjT86b+0C8vjH/Mn932b7z4bv17XP1uN4vQyPTx7/KzaP47/XXxDV/N9yPbb2db2o88NW8z+Yzv1eK8Nr72sTS3G/6uTQmk/nz3LteSyzS1e213iG673Oz3nvWetrun/er5yfs/2/tnoff/fgT1W9rJpA9QFgun5X8+jx5xtggeQdPPj6y1tMv+fNuTO7dvX2jx3Pm7h5uz384j5rj+NTx/Mc/2ChuWI8vX1qPt7/p/GD6Nt+tl/w4Ho+DwWyqFq/NZ9Xc8T15Yj932t91fUuLsA5/q3Ff27xizCLqfND3Z88unP6775fw+vRPhv/LdbL8cr+jv49zler7U7Oxd5FHcMvz1/b/rCq+bzF8Tzj/ar7jdp/Vcan703WcsSHtfvgd6i+iBpPvV4A4KvjdT3BAgAAAAAAAAAAAAAAAPBQHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuBdnB/dt/Pp/qy2x8ftvN+bj/cWSxzJ8976v553md/rP8bT+2/xb7H5FdtXuf8Hj//aZwO64nHaK+f/cPt6HHj8/g7/gul8Hu9/eHyier/262q/oObnGcen1u+t1tds/dZ8GJ2fx2tleO2d/tMINfd5q5oPea1eqbb46ovTw16nk8Wmn16Pa/XPC6v3a7H8H6/3YePPjurxsSyWn69tPX14+QYMv9uL8eyrTVg5n+u7nNp/bD+s3q3TBvHlGPqHUmtFbb2sPU7mZ33Pzlv1emkfXN8We3is8Tz6/HCLm59zsQVvtfn805j/9+2MvyG+3Nhr/6/LLY7PPeb/udb0lp3DHz4e0x9uTk9X11r1dY/5PD3+tb6O+sW3YeP5GeV6jPlf16Nj+MsMNX+m3eN+6RiK44u65fsb9/N1PxPTZ7Ie671aa6batiN+j+e+2Hf2AIDXa60nLgAAAAAAAAAAAAAAAAD4Pg7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWNbTSwfwLt58fN+2p/vz2n7SzvudT3trf4/t48hfz7vMd+i/xX9NH59s4Yz3n693Ov6qXm/Oh9n8yf3HeqmuffgG1/u1Wr3UeKbHczX1cq/YPNZvnw9rPdZ4Yv8532L7wb7zXPLa1q5HF2s3j/9q7avp8YF3sF8tQevauNx8Plxf43tV3q84P+91Pp9W98712XS4vnL/q41/9PDbgTr9n7H/6fu7WP7U+aTWy5V/YLGMW21+WGx4Hl5df2ei+Fytl7h9zvY4QdTXLdcDJ3S+1um1KM+1tf/afvbeHufsB2W3mPvnamvXg6v1dZ517lxrrp32Jj58Tef/LU4o5wOvFdvWx7O2P8w/71Wez/f6cqNtCM74wfujr1/3LY7PNvzFhKjOb5+Of/GnqflwTP/d98WerW85P2fHZ7V6uef1vbnFl3vHYvV1TH84Fbuv+VOdi41/lccnjv8x/MW6Wo/HUBwrqte61k5j2474cHp/8O8E1vGv97fOVHXmrF/ZOx783QMAr8tj7/gBAAAAAAAAAAAAAAAA+EpzCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCynl46gHdxfHzb9g+ed47v/GBPfef299R8u+LI9/5b/Fdrvm21fTQez3D8Vb7e2v895sOttk/Ne/+xXq49Duhq+VzF/ufjWazAojo++zUTx2dyvcTxr/W7xXjOOP9kw/N/nk+KGku9Vytd62s0PP557a39r5YOda5dLP7pteLVieO5X+0HputlfD73p274MuV6nO1//N3AYvU+Pv68rAe/vzWe8fW0xjM9X702OUFnN/Tj69Fq+TCc/1cs4Np+XEiIvV5rjWXa8F7jtTliPtThP4drxe39autzc/0F8XOC4fa3urjH8pqux+q2n6n9ecUvGiym5vNq96uW13T859byIdfX1fKzOl7Z3/lerd7PxV4+j9f73q73vrX7ddTxHL7cHE9U55PjlW1Yz9U+3Izy/JAvt9XXfbEnnmOx+1vH5xiK4zP3vN6ttR5NqmO/2s7/yA+bAADP83p2hAAAAAAAAAAAAAAAAAA8HIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQN4F28+um3bB887x3d8sKe+zzgy17217/23+K/h441XC6er/cf2Of7p661iPGfMn3o89rrF/Iz1cu0x/ul8qIb77/kc79dw/Ps12/+4Oj7xenN91fzP68tsPWa53teJP6/Vq13ro9fusFy7w/mw3F5mWs3P1zY+1Wur9zrf1r2z+n278c05X2V5L7xavU/Pt7X/1eZ/08OLys/u0/uxXF/TE0Rrbr37A7yy4cmXOzw/n+fshwtXfTcW66X2P6m+mlko9C9meq2YnjtjPOcrm8trLVb1tfNVNyev7H6t5s3ZPhi87edQJN+1Wv2uFk+1x3q8xQn3HK731cb/0/hBeh3P+zZbX9s+u5es92v6/t5q/sfN6jH8cHSP8Z+LbViP6b/7fsV6Gc7/6QeG6fGs9VjnqzPGX/cbR5yf77H/s36RKjrqy+0Y/304QXt+Dq93r0zP58f9dzlq5qx2pUdsPzvz8L6ZCQHge1bbhwEAAAAAAAAAAAAAAADA5xyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsKynlw7gXVxP23Z+8Ly2Z7zS697a1/7Pp739QGx+xfbZYv2PX2+0Wjz1uOt1axeQ6+W+2AANhzNfj/F+LTb8NZ79monjczH/t6MFlPO/1mNun5rPz//RFfM/ry9lfMbnkgffO0TjtV5N5s4X6f/B5/7l1Hyr41n7Xy3/H1yul+m1cXo+GTY9n+T5X309lun5trZ/8L3weEHW/tXXW+Vn3/wL6g8MW2x9vMbXl+F6mb6/q81v1XT8cfyXG84Yf66X6Ir10uu39v/89uOlGDfD13rZ9qoc5+zD2m345dg5vJestX4OF1jemsTxr69uz3NurlrRm7h5u8U7douLxW0/U/tp52Ivf+r8Mz2frGZ6P9DzIebzXh+mWv81H1bLtyO+LFot/1cbz/n+h+fP/FnQ8PpS63fYavU47R5XgLV2G9t25i+OxV9Q91d1fxj7r/lzX+yOrZb/1S2O57G1Lx72/ufGczpzpjPhiO3jV0R5MKt9pRcA3uaxd8wAAAAAAAAAAAAAAAAAfKU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZTy8dwLs4n/Ztf9qf1/aD1vd177Gk/qePH7Zwxvu/puOpXlk8PT+H83mx8R/Pz332FyxXX69MHf/rPluP9Xj7VfOz5tsV21d1/Afnq/GxjKbnhj3e29q+2q/ZX1D3htP5YO5/zxarlzx3Ts+1qxmul/H2D/6naKbn85rP4/Hwoqbra7rep+X92DkTx+dqPMP983bT+5Ncj9Pvls5a8LH/8fbTD5Cx/WLz4cNbbP9/xXwbfhzP+Z/jH40lNe/yZL5Y8a42t8X2R1xb6mveI47PHvOh1kp11r3DcK2vpr46rPNJnn+Gx/8cf1ndmp/xZe9tePE94wVMj+f4/Xpl6njWfOgPU+3lwLnFeqn7k6vFcwz/ne98v4Zf9t7jeNb1dzU1/4/xD1vj/Z2ePmO91Hqcnv+n6/fR1f3Gp/XD62FHrpf4sjr2f4v9P3p+Tq9H0+4x/4/a//iHI69HHvuRKL489XoBgC/PY++AAQAAAAAAAAAAAAAAAPhKcwgOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAD8f+z9T6h2W37Q+875POutP/lTVeaoKesevScND4TDQTgIuQE7YoFGEAU7gTRsiGmlITYEQW1cBEFsSERIUwT7adgIiDbSCYUKdsQLyk1DrreSc25uUifRxP3OOW+jbu2qEn2zvvt9f7XGs9fnA7tRtcca6zfH/P3GGHM+z1gbAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAlvX00gG8j/PNtu1vntn2aU99X/cWy1WPE7Zwutj/tVg82zUSxSc2Pj5Vvb+36fxfbICumED7bPw5f6aHc7H6qup47sPXe91jfdV6ietLrvfXdhw+r4/hB1Zbe6fVuXZYulfb1ufa6ftr7n8oq9VvXeum18Zpde2q9yuvjas9Cz66mp+L5f+j19e0XL/T9fXo9fjg9WJ/8rtYLD+Xq8fpd43TG77x/lvzPW+YWvPl8rk+Ptb4z9h+Wr2951o37Io3LC8vof/8KiS2r9ea5cV9rVxYTb1fx/SzyPTSMpyftf9zem7ggzrOtpk843x1G24/PR3WfK7tq+n+b7Ei6/26Yvvp660+OtsH9be9bT7vMaHr/cqb4T3OD+P5H+MZniCO5eqx3d+zfvEk+ij2f88PyzGfpz94z+9CZh9Oj/jhSK2v6ljs+aXWyxHH5177z+PT4rkNvwzJ8Q/nW72/1Wurl6rmfxnP+uwevzKW1Uxb7StgR2w/u3MAAD5NVtv3AAAAAAAAAAAAAAAAAMDHHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuB9nE/btj/zCq54pdf08cB9tvur9j8cT7ZaPNVi8V/32P7WLiDn27R9sYAWC4d3q/mc6+Ve26fmOZ5p+3W9dAjf5arzQ2g+vvauNZQPb7W93vRamrt/9HybHv86l8TxXG3uHJfX3ti+3t/p/nmnvab/cPscT/Xo5T4+3872/+j1u5/xB/IAtebT+43x+eGVmc7/vF5P78/P2fwft9j6ON2+5udy03kNqM7nUa734QlivLxi/Onxq+by8Nr78JuZanzv38bzOGcXr9v4w0iT8zk6a+3G/qfjz6+d4/3Nr6IWmx/OuDje4g2uS2nNt1qPtX2Np7avav7U+8u79ftb16NYMTGcM36weYvvwm/xZcgZHzZrPh/j62OMf7H5f1odn/wybbr/KsczE8a35PGPjuELqPFPxzPtGM/n+jKwNb/HeOr9useApvO/ms7PnD+LuQ2+fDtyLs/E8S3DlfvwjpcOAAD4YF7bPgYAAAAAAAAAAAAAAACAB+IQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQA7+Pa9+3a92e2HQ4m9p/jGY5/enz2a7b/ajwfquH8uW7tB+Tnu9V4Vsv/fL9Wiz+arpd6nPy6x/Y1nsXmt+eu06tK+fPYl/rwrvqnHcb3btOLY5uc89rVms+vFdP3azV1PIfb171M3lvVtbTe3+n+Hz3fHtz4Xnu6HqvF9uarrb85nkc3PD+/uvx/9A3Eau9mVhvOnM/TAzrbfl8u/hbP9H5yP1v75dT1ru6HH3w+jI/LKZ/z2AzXSr/Wx37PuJqzzm1xcjvy3Nna32I89XrHt265Xobr68Hl8Yn9vz3bYlTz8xYjqu2ntw65vobX6jMuADX+arr/mm91fq4+ipvbe83/GP9Z67FutvPn1m18aj7X+3sOv4yq+V+vd9r0fuOYfhlY8/m1xRMdeX2Zjb/GU03HX5355UD8Bflly3A81fDLorpeT+fntJpvj369xRFz+T48NMOVmx2xffwK3sN79NfaAPAhrfXEBQAAAAAAAAAAAAAAAADfwSE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3p66QDex/13ru1+Xc9qu5+t7/PNntpf0yP5vMv8thb+ttf+Y/vc/7Q4PtP9X/V+tebLqdc7fcE5ntXymQ8rHg+/bnG9iO2n55Nsuv/h9e6hrTZX7TU5W0DTa0Wu3cVybR9O/ism0GLD09V8rl7Z3qHWS66vvFbH9tPPUrzb8HjW+7Xas/J0PHlCz+tvbP/wC8ywPOG25nn4F8vn1eprer2Y3z/P9j9uekIZz5/Zeu/tWzzj9RXf/feAhvNneP+c26+2v52eP8sADddKHvvV5obF5v7puTPlzidovw9vZo7htbFe73T/tb5Wi//R1eutS3t1xgnrFieIa3gxrfGfw/lW+5/O/+nrrXL+54evWDHjnzW1+M/Y/y1v/ps6/uP1FW/Y9Pre83NWHZ/+cqOp2ZnzucY/XC/VdP4cww8kNf5jsXrJ8UyvFzk/W/y3WJF1fO4x/un8nM63c7H/zka93hL/bGZ2R6yt+/BWeLnxGe4fAFjXWjtUAAAAAAAAAAAAAAAAAPgODsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABY1tNLB/A+3vz2td2P61ltj7d76vv86Hn9ftz+TWq+nW9aPNe99b+18LN9uP/x+Nvwb1dsX9V4qhz/YuNTjd+v2L6m83h98U7XLa4XTzEjVquvB49nJWr3w7rqn2qIi+n02ji9l6nx5/ycHs9rsc3esD1eb71f+f4Ot+/1G/ufXrtq/7V768W7Tefzahar3/qnksbrsc4nryx/Vpv/s/H+p1+2zHY/Xr/D63W22niOv1sd3nAMt5+ef/Zztv/p+SGnz3Q93lpE19l+wR4T4nrk+TnGXsdyvtYXi+fBnYvVyh7fhdR4qhr/9KuiHs9jx7+at2db7G61XmL76fyf3jufMR9q+6rm53Q8tf/Vlq+38WHtVsc/5v8tbs7vcURv0w+/0Xh+xgniyPX12ONTHfV668Pm8HhmMf4jftGs1u+0I9bLdP7nfIv6/NDiqeOZ83/8i1T1ZdFw/a5VLsvJ+can1mKVu5w6PgDAt722fQMAAAAAAAAAAAAAAAAAD8QhOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMt6eukA3sf9P1/b09vrWW1vb1vfZxyZ86M9tT/ePC/uj/t/k5pv173Fk7Xws/1qv+DaZ693uPtti/1fsf0e71e9vXV4avw1oHq903I8i8U/bbX7dd3jDwzXbzbdfxUn0Onx6fW4WIIWw3Ntdd2Gc2GxtXS58X/wuSF3v1rpTu8Fpq93uh7jn2ap7bPF6nE8n6fnt9r9atc7/Cwy/qwwvD7melztTzEttl5nNd9movh2/6+svl5d/cYL3s+64LXmWb6/i71bHW8/vD8/4w8Mxz++36j727zfnt6wxuarPXDGeNKrnzzZtubjtbtaPIu5bvFzu7jW7fFdyD682ai1W1/l1Neq03NJ7X+9+OsPrFWPRx3/2P8Z+7/F+rpi+zO2r/HU653OzxpPbV9N58+0HM/4u4368Bg3/zH+XO/xgs/hh9M6H57x4X06n+v4rBZPfhmSH2aj8Q87oni991hfR86f2fE5an2Nzw+z8dTxvO9Haj+tjs90Pp/DH3bc4no6Hc+0nv/rXG9dKaYjP+Jeb/orxgAAU9bZEQIAAAAAAAAAAAAAAADAf8UhOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMt6eukA3sf9v5zb/Tqf1fb20Z76Pt/E9k9Xan97G/uP8R9vWjxXzYTWfbbH/q/6A1Ub/u2K7au99n+18dnzBbfmtftxq8UzbLpclhPz/8oF1vT5Lf6C1epxeP6Znm+X8uC1e8U/vZDv7XCt1HjyXPuacvmTWO1+Pbi8FtU/nTJdv6/Mcvk8Pb/F/uv15vFZrX01XY+r7VWn41nNavk5Pv8MLxiL5UNef/N6PXvBq61f+/ng+ZPrsV3v+PpYrRb/9P75Ft9dxf73532E8u3+Y70Mv0qrr5Y+wS8IFzCea8Pv5afjqaZrsU4OsbbO4Vrp7Ws8ce4ZrsUr5tvDxzNcXzn+/Avq+MTPxVPrbbvFfD7H57f6OcdsQtfrnR6ferXj8Sw2Pm/PtiDV/M/t4x271fHM8ccZIt6uY/j+nnEzn+t3+GX7avPJEcfziP3X8az10h/WFvs79zH+mv9VzYfpelkunvjAc6s7svyyojWv8dTxz/UY3eP8cA7/dy2OV/bhbM6HQflZZySKbzvi0nUfTp3VxgcAWJd9AAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAsp5eOoD38f3/j1/dnm6ffVbb4/d+IfV9fP5Nav/RD7ShPD7fzh++fd5lftu1t+ZH6/68t/ZXzLTjKcZf46nHP1s4uX28Xbn/z/8fH7UfuFrzrI7PreZDa3/G9rX/bLj76fy/9vgD0/USfeYbb9sPxHrZz/YD+xV/wdmab7H/PYYzXb+5/7q+lOYx96dzeXrt+i8/2Bbf/WjJc4u5XHMz126tlbi3mo6nqnN534vVWm/9r+b8TLuAmj95ban1VdeW2P42Xi+x/2o6nrz2DrcffvY6Pl/n2zaf5PrK9Rjb13xYbH28xa1zftYcrt/5/UPsvtbL97eEyPUS72/uv45/3E/m7VJ+thu+3uH54fa2Poy35sv5Qns3dsV83mI+bNP953cJNf7WvO7/6/NOvdy8v831W/cns/uZGv8P/p7/lNqfZ1vAzphv0+2vEP9VP3eJuVb7n87NvpZOx1/bz8bzf/19/9/U/ozxHLW2av/D8fT2s/Hk9Mn1Mvuyt9bjdPw1nv/lh76e2p/xZfVH8YPrWi81nrfD9fs2vpyZjqfmTx3PfL/G63E2nv/tS/8htT/iy4Q6/rn/ur7Ev9td+/8o1st0Pdb19xwe/5oP1fT1/ujn/2Nqf48vT2p+1uutzhxPbD9ej/F7dXU/UD+8iGp+vokP7/V+Vf/Tm/89tb/HHfQtv2xp6vhXNd96/y3+ms89f1r7/1LX0+H/Lkef355/f79v+Hs89/qdumHH8PdOVlNfq1azM2H+mAwAPtUe/OukAAAAAAAAAAAAAAAAAHyaOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWU8vHcD7OL70g9t+/+yz2p6fbZd6fP7e2n+unSc8PrOn9udTa3+18LczZkLvfzb+rIWT21+1/2HX3gLat2sokm+q8Vz3WC+xfe0/5090TR9Pzvk8Oz65Xh68HnP+zJZjlscz5vN1i/Vb15ecb8//gelczqZrfTWxVvYr/sBitThuOp8fPN2WU/Nzuv2jy/PJbP/jzy5176l+P6zF6ms8n4dNx5/7j5Z7dnl0i93f7NHjj1aLvz4e5fDV+7vV/D9n+1/O9HoXu6/2WPB7fbed98/Pj+eaXqzzvY3vxYb7f23Pmrd4AWesrlorNpOPJb+azPU+Oz+Mz4fRLW4GzuEPom+xfs/FxnO1+zutXu/0/Triy7p73QzXl4F5s10/GIz1u7X6vW+z/b82x2LzQ45nn/0ixj3O/9PjWeeHOv9Udb0+4np9j/vzY/jpd3o86/PFtDNeb82Hvt+L6+li+VPjqet1Hp+832jNz1f03/E44sPXffh7PNP91+sFAHiu17ODBAAAAAAAAAAAAAAAAODhOAQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWU8vHcD7OD97386n513C8bl76vvt59v5wOMze2v/prU/45262uV+gv5b/DWeq3W/bdPtp03HE/u/hgO64vHb6xbjqf3H/MyG7++1D/+Cmj/D9Zj7j2r/+zUTx7fU+7tvwwHV+T/Wb54fcr7FeErzxdaiPDestjZOi6Wyn8P9X/EHavPxWhysLR5OXhtzvcz2v5paL4++F3t1Xlv+rxbPsLqevrr9WJSf1WbC+Hb/q9XjauvvtBp/vIDpd2NZvQHTC3atx/o8tZo4nsvND8NyfT3yhjLf3Ae+1hXlh6Paf2wf3WL+nPF6a//HI9fiJ1Dnnt4+NX91zsXmw1ovdX549Os983zSHn7r/Pbo6vXm/MkvH5rb8IcpZ/ygfno9rer4HPH+vrZ6qc78xZCWn/fhlyG5/xh/HZ/7Vvuf/qLNrHN4/lzNkf87CbFeFnu5ccvrUa2XOv+v5Rbv7/Hg9f7IjviweZ/+DmFU46nXCwC8Xq/riQ4AAAAAAAAAAAAAAACAh+IQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQA7+P87H07n+7Pant8rp33Oz7b2p9vUvPtjCN/xfbn84blO/rfR/vfWvfLuRaLv8ZT29fLzfE8tfq6Yr6dMZ+n8/Pah3/BcD5k0/HU8byu+AuiXDAjUXxbPd5+tgu4bnW9iP3H9jUfer4Ntd0+wdwwPVfV3JnO5demjudkLn8v2vNYXlm97/V6F6vfPJ8vtjfkhS1W79P1mPuPRveefHjTD8uL5ee4R4+fD6qW1+2ov6C2f/AJt84nM1HwHNNLy3TuTz8brRZPdA7f4FvcDBxxPPtreYv7h3TF+9Xbp+bj/X8UP1i+7Wdqf8/52fo/6weVUa33W7wB0/PVtHO4XlZzxJd7det8j/V1G15Q+3o3FMj/X43nXGx5XK3ez/yyuqn10j/Xb/VS9fXrdbnH+aferbrfmM7n1Rz9iyeteRzPer+q6Xy41/GJ89UxvF+t9Vj3JyvJe6uRKD65Iz4r3Ke/07iYer9qPgzPnFv9St303hkAXtLrekIDAAAAAAAAAAAAAAAA4KE4BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZTy8dwPs4Pnvf9jf3Z7V9+/l23u94E2N5s6f2Vxz583mX+R39t3jO6Uxo4Ty+1a73FvMzdn/V/uPx29p/Hf9rH75hw91ftf88PrH/anz8Y/81345WMTXf9qtWZFPXi1zv99n+s8F6yXNJrcX6pwtWW4seXSzF8dqN+ZbX3tq/fOM75XpZrP9htV6m53/1+2BWy/9Hr/fY/orvZsb3e7ysxdaX1erl1VltPV0tnqjOh/sxE8fH/U/Xy2L1tVg4r8uD1+7Diw9Hb8/ZzdtttYfZaI/xT39MUA2/2nt1zlhfZ3z4OmO+3fYzta9q/dbx4cPq+Tl7vz6K+X/faj7XzfZsvUyr9Rg/9h03PZ8ci80/0/V15IfNmTg+dqmvD6mu70d+2TvrHE64M+b/9H7pGH55Ph3/au7xbc7wq7TtHse/5udK6liuNfNs2xEffu/DD++1/xo/APDp8bg7SAAAAAAAAAAAAAAAAAA+9RyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsKynlw7gfbz9/G3b3jzvHN/xmT31fT619lccyTO3j/HcW/9b6z67Yv/7NRPHt9R4pk3Hk/vfY77F47TXfbYes9XGv4r9T+fDazM+v8X+z1ssyJo/sX6vWx2g1jzL9RJ+oPZd/xTBZOyfoH8+sDw3r9W+zm2r7cV4YcN7/2x4rc575+n1pVK/n26r1eOwh69H3m2x+So/C76yesxqPa62AZ1+ORBdMZ59tQKL93f63fO0PPrxes/TAvYo6quf64y/IK9dNaDaf20/O1cdsVZucfI5Vlu7FlPHs0/98T14vF/L7U2GvY0PR/X+9hv8uta6Op65vq7W/lxtLzmspueZP3isLzfahuCMXzzJ9Rvdtxj/Vr84M+sex+dc7NnlXOxl1zE9n0+Pfyz3W8z/1fT6XSvfHt0x/WFW7L7mQ7XafHWPE8oxFMe33Pe6H1hrPB9Zvbdr7WS27Yh7/7vvHAIAQ+xQAQAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9fTSAbyP43P7tr3Zn9X2fHpeu4/bv2mxnHEkazzX8J26Wjivz2rjE+O5bvEH4vHY2v91b/1Pj/94/q8W/x7vV+x/v1r7V6fWb/yBq9bvvfZfE6I1n6+Xufjr2OdcGIz9m/239rzb+P2qtV7jGVbXCvnJd8p7jeG9yfT8v9yfrqnjqX7fbXqvdMb20XQ9jj9bTNfjdP6v9uxVr3e1+FczXS/D4z+938v7wxqP/Hy31db38YRrzR99fpvO/2v4AW+P+ZDCefSHU2v1B3XGfKjteVn1Vdr83Fnbx/f+ea1bK//POMHdFpvgbnHtuu3tYf/MH8yupebzo8+38/XS8qHm53bNvow6FntZulo91vntWO7hrhmv930437xrf6daX0esr3u8AcOv2rMjfzg166zx5HyevQM1H6o6397r9cbxrPVyi/Ecdb+R+5/L/5pp05V4xPar7fyPB3/RXsez3q+aPzU/41cCt+OxbxcAr8xaT0QAAAAAAAAAAAAAAAAA8B0cggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALCsp5cO4H2c933bn/ZntT3exL5r+2fG8S1XHPmrdd9N93/F5tPxDFst/useA4rNr3tsf4v1slj+z8cz+wtWy8/V1PHZYz5vR5sQr7q+1Hyu8Q8fn7+G8z/Xe7nePJcMz81q/cMaHs+Ua9snqF35AM+W63FybfkE/S8nPgv2AY39vzZ1uThj/3H895wPsfl0/b62enxtcoI+ekI8uPpsOl3w0+tdTTf1/lDybDK9nsb8rO2razj+4tWV4vhcWNtPv5xpzY/heG55b9Kci8Vf35XWRxde1tuzfZB4iw+n0/Uybboeebc6/tPZ9lH84P0WI7pPz6D77AeJ0/VSx+fc4hclojofnvWLG8Om79dH8YtXdTy3a7F6GZ6ADn9H/1PtqC/PY73chxO05medz4/F3vVO12O9X8dq/cf8PAbXx7pSTM+0/V4BADwmT7AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMt6eukA3sf5Ztv2N89v2/reW/vpkWzh8LtZbTyH47nusf2tBXTV47SLjf9V49lnLyDHs5ga/37NxPGJ1ft7tQs4n+oAzdZjrfdxdfinj/OHeK6aO/VaF7tVr830Wid/3q2uFePXW/tfba17bfJerzV/9L3wasb3hurxsQzXb/7TUKvV7/SCV/tXXy9rePyn92P5WXb20b2Pp/Xr3fICv9iEG8NfLPrsPNe6gisWfK/3uevNrxlnwvjklnsYX8txtsXrFsfziOO5x/5rbVXncP/1evfh8az1vtpcO+0cf9lyttYxH2r9VjWeM47PLa4w9XrP2L7GU/tfbT2avr81/7e9PnytVV/T68sx/HfEa/4fD/900dT1Io9Pra/p4Y/1let32HQ9Vve6vsT+b3v7iWP8iwzNWee3/Conjmjdz9TxH57P7zmDHts9jn/dz4z3v9Ablzz3jETxbUdsH7+CCgAwZq0nLgAAAAAAAAAAAAAAAAD4Dg7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWNbTSwfwPs4327a/eW7bvfVdR6Z1n13D/e/XbP95fKbjiabHP4vxXPf2A1c8Hrve+MwGtNz18qJqPly3+AO1HmP/td6r/Wztczzj62/4BTUXHnwuqXuH8b1Gle9X/IFXlg/Txsdn+H7l/F+tXh5cX6vjL1DvH9ajry+rGR6f6fktP5s++rNslPdjcW+uvj7dlru/tR7zu8a6YD94/9Vq8+Fq8UwbXk9rvV+LLZDXcL2U6x3/GCXerOvRi2U616b3qjH+I7av+TA9ntNzw7na3mRYfdV4nnVua/1P58/bsz2s3WL+3+J8eMsTRHyYqr3Hh9nz0ed/3qne3/O6p/a3OEGcccKq9btdrb6O4b/zfcb5sNbvau7xfq22XufxH//gOsrvNmbXo2m1fqfr6xbz4Yjz7T32X+fz6sgJV1+2x+4Xq8ecD4v9dydWW49ucf98bHE/k/t//vgcMZfjVzKzOvNPZ8IR28/ObPPq9U6r97fmz3Q+A8CHtNYOGAAAAAAAAAAAAAAAAAC+g0NwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAlvX00gG8j/Np3/an/Xlt38TOn9ftx67YvvafXbF5jGeP/WfT4zNtsfiveNz1urULyPn/6Fa73ul6HLba/JPzudZLbX9PzXP/+zU7oDX+3P9eE6j239ontW+1/rv8QGuecyeq11vX6jw+D54/2Uq1/j1Q82F8Lz8s720Xe7ar4//o+ZkNz2+Pnv8Pb3h9zPurR6+v1fYDq8Uz7dHzJ5re3+Z6r87YPl9w7T+2r1aLZ9pq9bjYeOb6yvmz1g24Yjzpcmvf45+jDL884Z2Oc3Y866ur+Fo4O6ffy+f6ks8vqY7/udj9OuN8eFts/pwez9Xu17TFtm7bR2f7YO22x4ed/NlU3Uy2eM5t+IPE6IzXW+eTabe4P3z0ej+mXzbW+qpyPDNhfK/U+qpyPvCijuF6vMcVvuZnXn+j11Yv9X4dtf/B+3XEzeR9+tk9tp9+LZ/v1UgUAMCnkf8SHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAsp5eOoD3cT5t2/7meW2v6eN++3D/i7ni9e7XTByfVI1/XIynxn/d2g+M18uDe/T8f3SrjX+ur/ts/30+WWxCrPdreP58bev7azKdC9N7jTwX5l9Qf2DYYuO/1bkzjud+rXYDhuW9bWxf82GxvXDdyyz3rBPlvdtw+xrPePyLGd9brTb/L2Y/4w/klwmt+fR+47XV17TV6nfccP739mvFs7+yCTQ/T9XhWWy+yrf3XGxDHOXhDAOUH9XqXn66FvNiutjcsNhceMRauQ2/qD7q9cZ4an5O5/NZ4xmK41vqWlHHf7l6jI74MueKE+4Zx3O6HqfV/K/tq+l6r/friu3r+ByLzW/9ZWZ7mXDE+ece29/iDH2LL0POOP+cMf75fFhrb97HP34wHuXxqS/Tpsd/sXim66uq889q9VLV+fCI/df9WH/5HJ+P6no0Hn+0WL7Vesn95/V0dnzui81XfDh1bqs7jdo/ALAuOzwAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU9vXQA72M/vvnPs9reW99XbJ9dw/3vsf10PMOuer3VdP/Drnjc9dWN54Pn/2ur92nXvQ1oXS+uW+y/Hlefrq/V1q/V+p+0WK3XtWKfjmd6rdtj7U6Pz9V+IMfTmo+bvl/j8v1drP2w8fod7n96fqtqPON7/yrGPz7+w/XV5//Yftj0XjX3/9qslm+r1WPuf3ZCXG4/Vuvx0ev3HO5/sQV1zzcs/oLF1qPlTD+/5+ej1ny52xvzOT4uN3WvPV6Lw3PPWlPbcurtOuL9qnP5bfjhqObzOb23qu3zXLJWAezx/q4Wf86H2PwWE6JuDWv80/VY45nOhzPesOn5YTV1/D+KD1P3OCPexvM5VlhMh3P4izx1vT6HH35fW73U6z2mxz+2v+3xJ2r8tf8qxnMMPzBM11eNfzqeaWf+sCz+gpyfLZ5brMg6P9xj/NP5P216/qymx7Pmz6Qj1lb8Cls2W7nznvnV8U+NdTIZAF7eavsSAAAAAAAAAAAAAAAAAPiYQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW9fTSAbyP29tru92uZ7beU9/nmxbLVUeyhbNtz73MV2qP43PV8V9Mvd5xcTxXG/8czmrjzzvVfLvusf2t/YKrHj9frb4Wq99qufmT/76a+7UWay4P791qPPtwMV6rLXb7YpPPtdj4DJueO3M9xrU0r71RHZ7V1iLPUh+2fU6IxeIZr8fF1t+Hlx92WvPpZ+XpfF6t3sfn/7x/nu1/OastYIutL/PtZ+erhzf87ifXe/wFyz0e1f1Pud7h3M9jOV1b+WEnth+2D4/Pebbi2uNmYPx2Da+NOf7peB59bhuWxyf2f8R6OWO93Gr7eAW1/Zlad/V+nfV7EsP1WPufnh9Wc+bNW8y44XctZ/ygtdf7bIXV8R+vl+EN1jEc//T83Oe3lp81nizm8xHjv+eXV2vVV3XkfBiOp84nMf57zp94vdPv5nO+LfZhX1TvV5Xvb3Qu9t/Z6PX1/PaLZeZ2xNy8D2+dVxsfAOD1ss8AAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFjW00sH8D6e/vO23Y/ntT3fXqnv822L5Xyzt/Zx5PcWfvfo/bfhr80/wQ8014P3v5x6vdP5uRrj807XrQ3QVY+Tr1aP+2oBzbpiQo+vv5NWq/WYa3XtqrVY+8+5ML22z3a/7ctNVo9tv2bnnpyfwwmU18Zavw9e77n7xdaiGk9+FpnO5+H2D//svlg9Vq9t9Rqf/x89n8dftsx2X1332L4Oz2rPF9MWy/99tXyO8Tz8+jgs397hP214nbP9T7vyC4XSNr7bGK6t+b3wcDwP7jzjXFifTReb+vc4mddazLUb1XpcLf6q5s90+Z55PqnvkuP3AGL7W22/2IRYxz/fr6jWy2rx13w4Yjxv48uWWx2fnP9tc3jPLw9b8zM+/Nb7lfNt+G1UzZ/qjPk2XV/VRzUf8sN4fDjKH44MWyz+Y7heaj5XR62X8fmhxZPHv47n9LvDuh7FX3DGly23rcVT79e0er3VdL2vpL5Gm86EI9bWffhWrTY+q3nw17AA8KJe274BAAAAAAAAAAAAAAAAgAfiEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlPb10AO/j6bev7em4ntX2eNv6Pj/aW/s3z4vj4/Zx5M83LZ5pe7vcrvY/PDzXcP/7Wre3i/cr508dn+n8XM0ru97p+eda7Hj49PxT5XiG67fPJy2gKwQ0vjauJt7bPDy1/1q7MaCa++P58OB7n/Fa54OanvvH99oPnj/LzT9RjWc/Z+L4uP86PsPjudp6UfNttb3ho9dLVutrJopv9z9cX3k+WSye6XdduR4Xe/Ydf7cxvr5Mb9Cn27f4x+ur3q/p+KNH3z9fy72Mmu7/+dd7DdfWarU+Hk81nfu3+DnfGeee+F5yj5NV/Zxp+nOpOpfU+pqeqx4//ta+5luN/6hrdWrd1a1w3Zqc8Xpvw5uTGk+9v7X/Ksc/FMe3rHa90+9azuve2sd8vsXN/73WS73eOKB1fqvO4Q+ua77V8alqPEcdn/qwuVr/06ZfzkfT+V/zZzr/p+PJ4zleL615f7c6nc+z+XmLO9BzOJ5jufxv7fN6wYuplevOAsDrZR8AAAAAAAAAAAAAAAAAwLLyIbhf/MVf3P7Mn/kz21e+8pVt3/ft53/+57/r31/Xtf3Nv/k3tz/wB/7A9vnPf3776le/uv27f/fvvqvNr/3ar20/9VM/tX3hC1/YvvSlL21/8S/+xe03f/M33+tCAAAAAAAAAAAAAAAAAPj0yYfgfuu3fmv7I3/kj2z/4B/8g//mv/87f+fvbD/7sz+7/dzP/dz2ta99bfv+7//+7U/+yT+5/fZv//bHbX7qp35q+zf/5t9s//Sf/tPtn/yTf7L94i/+4vbTP/3Tn/wqAAAAAAAAAAAAAAAAAPhUeqo/8BM/8RPbT/zET/w3/911Xdvf+3t/b/vrf/2vb3/2z/7Zbdu27R/9o3+0/fAP//D28z//89tP/uRPbv/23/7b7Rd+4Re2f/Ev/sX2R//oH922bdv+/t//+9uf/tN/evu7f/fvbl/5ylfe43IAAAAAAAAAAAAAAAAA+DTJ/yW4d/nlX/7l7etf//r21a9+9eP/74tf/OL2Yz/2Y9sv/dIvbdu2bb/0S7+0felLX/r4ANy2bdtXv/rV7Xa7bV/72tf+m/3+zu/8zvaNb3zju/4BAAAAAAAAAAAAAAAA4NPvgx6C+/rXv75t27b98A//8Hf9/z/8wz/88b/7+te/vv3+3//7v+vfPz09bT/0Qz/0cZv/2t/+2397++IXv/jxP3/wD/7BDxk2AAAAAAAAAAAAAAAAAIv6oIfgpvy1v/bXtt/4jd/4+J//8B/+w0uHBAAAAAAAAAAAAAAAAMD3wAc9BPflL39527Zt+5Vf+ZXv+v9/5Vd+5eN/9+Uvf3n71V/91e/692/fvt1+7dd+7eM2/7XPfvaz2xe+8IXv+gcAAAAAAAAAAAAAAACAT78PegjuR37kR7Yvf/nL2z/7Z//s4//vG9/4xva1r31t+/Ef//Ft27btx3/8x7df//Vf3/7Vv/pXH7f55//8n2/neW4/9mM/9iHDAQAAAAAAAAAAAAAAAODBPdUf+M3f/M3t3//7f//x//7lX/7l7V//63+9/dAP/dD2h/7QH9r+8l/+y9vf+lt/a/vDf/gPbz/yIz+y/Y2/8Te2r3zlK9uf+3N/btu2bfvRH/3R7U/9qT+1/aW/9Je2n/u5n9s++uij7Wd+5me2n/zJn9y+8pWvfLALAwAAAAAAAAAAAAAAAODx5UNw//Jf/svtj//xP/7x//4rf+WvbNu2bX/hL/yF7R/+w3+4/dW/+le33/qt39p++qd/evv1X//17Y/9sT+2/cIv/ML2uc997uOf+cf/+B9vP/MzP7P9iT/xJ7bb7bb9+T//57ef/dmf/QCXAwAAAAAAAAAAAAAAAMCnyX5d1/XSQVTf+MY3ti9+8Yvb/+0n/u/b05vP/e4/sG3b+WZPv+N8qu1T8+3I8bT+zzet/dbC2bbhrNlj/1eNv4r9X/t0QM3n/z/nS4fw3dYanqzmW83n6fqqcvwPbj/iBQ/nc57fFpt/xufnqNfjXAGM19Zw/3Vv1XM5tq8W28tMe/xanO5/9ob95//hltrX+Pe61avtW/jr1fuje2Xz1X/+vS0hVquX2n8e/+n6na73B7dcvfy+FtD4+lvzM/c/Oz/keh8ez1qP4+t1tNq7kN/5/Uf7gcXqPceT28f6Gl4fV4s/1+899n+rvyD2H8fn/H3/Jf6Cx5YeB+vkuVjtLhdPNR1/XEs/83t+O/6CZo+LaX0t3PufXRyvmD+9fWqejcczPD5VDf/3fuk3U/uab7eaz6l17z/HE9tP39+z7h0Wy7fxeIbH53/8wV9P7afzM7ePd6zHs9b3Hs788F77H673OCOOxxP7/59/4FdT+5pv95hvNf+r6Xhq/9OO6fqK+f/o8fzo5/9jan+PL0vr/Hwfzs9b/jClma6XOj7VMfzh7Hy9tP5LPP/rZ//fqe/pezU7kt19sc8FVxufaq2Vt/u/3L/vpUOAh3HfH33Ggu+Nb/yf5/Z7/uf/5/Ybv/Eb2xe+8IV3tlVVAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLenrpAN7H5//jf9qe7sez2h7f/yb1/fYHYvvvi+cJr9Z82/fWPoZz3lv766nFU/vf4uWOi/Fc0/HH/j//f3yU2o/HX91qvrX2V2yf82H6uHHOz+EbPF0vw/1/5v983rryLfsRJ/TYfL8W6/9szWt9XbHe63pU+099D+fyeK3H5ueb9gO3Vlrbfrbc3GNuLleLi8Vf8+eqe8lai8NL1/Te5/xM+wV7rZe4Fu11b7JcPs/2X03HU/uv+dzrd7b98bnWvtdLbB/zObefzufhfBu/3urB56tav8f3tQvYj+n1KPZfxz/uD+v2bb5e6gTdmtdntdti62lW4/mB+G6s3q+Y/1vtfzh/ar3n/cB4vcy+2+jrb51vpx94WvMf+NJ/Su2PoyXEFcfnjPlQ21/n8+OvsV/1PVrezLfmNTf7Wjodf20/G8//+D/8emp/xniOkJufqP+cD7Pxv41zSb3enD7D45NfNS4WT/WjP/QrqX3Nz7fxg+gzvmys+VbbT8f/dng+yWv7YuNf5euN7f/IF/9frf84nkfczOf1JX5RZfr+1nim67HOb+fw/arxV9PX+798X6uXKsc//Hfoa/1O12Pvv7X/KH54ceT1pcXzJr48qferOuNnuf/Tm/89tb8v9jKw3t/e/2w+V/V6+/wQ66uuR3E8e/xz9f6Dwx9k3WPtHtMPa4uJr6nH1dfIVf3KIQDwbf5LcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3p66QDex/nZ+3Y+Pe8Sjs/dU9/H5/bW/jOz7c83qfl2tsvdrqcYT+w/H7e8YvuqXe684Xiu1a73VvOttb9y+9S8G7+/8RfE5uP5s1o8UY1nn57fpsX5/Ir1Xtej3P9k/tS+c+4P1/or+9MI+xWLMTbfz9Y+91/jr4bzebW9WJ2bV1uLspxvM2GsKl/vYuNZ5/Ocz4+e/6tZLd9Wq/dHjz8a34+p33fq9TL9sN+aL7derxaP/P+wFquX/Pz16Barr/q6Yvpx9qEN11Ye+4d/+J11i4vvGcdztf6P6bn81b2ceWzXYuNf8znPt/Fyez22zcw5/MHmavd3Wr3een+n3cY/vKgvG2P/++zLkCMOz3Q9ng/+Ydz0fqCq8dzjelHb1/w/h/9u/X2brcdaX/A+7nG9O+IGrtdLa14dw/u9Pp58KEd8OXOvL96iGs+0mvlyEwBer8d+wwIAAAAAAAAAAAAAAADAp5pDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJb19NIBvI/zc/ftfLo/q+3xuee1+5a3n23nA4/P7Kn9GUe+tr/us/Fsrfuu9n+NRPHt7qevN8rx3Na6gKvGE4/rXq3cx/P52od/Qew+5890/zyUWr9Xrd/a/3A+T/ad54baf/1TB9O1e8XFenhtf21qvk3X7qPbX1t+1uuN7fN4Tve/mPH53J/G+aCm8221fJ6u30efT8br93Utv91q9bhY/U7XY7Xa/JY9ev2uFs90PuT8bwO03Pzw4PWVX5/kenz+AF1efL7b+N6wvhyr/cf20S1ODke83un+H12tX/X+su4xn8/F1rpaj+dwvuV48nzi5dK71Pt7Lrc5f2z37Uztz61+0aC57S2et+dsPNPO4fnhzF8kaeNf16PavsZTp4fp+bnXV4un1suRvyjUTI/n9Px/5A+DYr0MP1DVfOgv56uYn3H863geqTXvUsdyeqU+4vds7vHFWG1f45lWx7/e39mZc9viV7y3Y63hB4AX5Y0kAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCynl46gPfx9rP3bXtzf17bz++p7/NNi+WMI9n7b/FfMZ6rdZ/t12z/23D82WLxTN/fbY/5+byy/VjO/9t0Qs92X+X7G9v3/ocH6JqdUOr15qutPzA8f9Z6Oe+13mP74Xzu+T+YzzWW+qcLpq91em2vhuPZz/gDMZ49zm31ftW1d3wthe/04PNJfdapa11u70/dPJbp/B/O5xz/YvGsVr+rPWu+OuMvT5rxehw2/i5wev//4I9H4+q7k/o8xbtN539tHws+19dK83Od3Ibfk+bXpHkzU/uP7XmnWlur7WVem1qPdW7r7VPz8bn2GO7/ljcb8eVJHM8zrqa3WO+3eINrPNPOmA+1/aM7hl/u3WO91Pa9vmL/e+t/On9ucYI4hutxtXqv6v3K9ZI/p1/rYfa21XppzafnH17WOV0vMT/vcf6s8df9Ye2/xn+k1l1dr/P1Dvc/rT8vPF+9t/FrG9kRnxXu8d1VbV/jAQB4rrV2nAAAAAAAAAAAAAAAAADwHRyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsKynlw7gfRyfv237m+ed4zs+s7e+37T255vUfDtj/1e8U1c93njF9rX7drnbvlg808bj2Wd/Qc236xbzP7bfhsdz/n7Ndp/jH86frMZzDU8oNT+PFs8Vr3ePE3qux/ts+6ymQ82fwfDzWv3A17qk4alhXJ7Lh9vz6RbrZXovn/tfrd7rfD68XkybzodXx3i+rOH1dLV3FeMe/XoffT2aXt8Xu949XsC1WoLWG7DYhFLDuR31F9T28V3LdP5P759j+8XK93VZq3Tn1clhvBZbPG/P9rB2G344qv2fi60VPJb6scvb857a13y+7edo+/OajV89flhXHM/Vxv+jmG/3reVz/TvZ91gvtX2tr2m9focC+R45cr2s9XfWj/p33+v9Gp4ebrl+Z9X55Nzq+tj6P/J8GOs3teZDO2KB5fsb56u+P4zrac24/DWkWI8xnqPWe+6/jmfLh5pvk+prz+md0hEf7u7xe0i1fY1nNXWnZC0CgE9urTcUAAAAAAAAAAAAAAAAAPAdHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwrKeXDuB9HJ/bt+3N/qy25zPbfbt9i2W6/61139X+r5Eo1jU9/sOuGn88Hnvt7Rdc99Z/Hf98vdVw//PxP3hCT6vjc7UJsd7ferfOW/yJ2P6q/Y/Xy2w8V5kPH/1aX9vUsNj15rW0rtW1dnkn9fK7OGP3iz1b1HhqPtT6XW2+4rHk+hpuPx3PeP1O1zufag9fj6vJj+7DC+pq6/Vq8fBBTd/e8Xrh5YyvRXVyrv3X9rO5XGvliO33xRbrGk9vn5pvt9h/Hc3zjO/qzJ3vdMbV64zjeavtY/7U9jX+adPXe8XPyWo+rKbe3zz/5A8S64cF7eXtGT/Yn863Y63lcdyjzz/T5uulNc9e1+3K7vEGxI+mttvefuKIL3un17sazzH6RYkt5/M93rEaf86fB3+ZX6/3WK3/4Xp8ZP1ezTri3v8eH/Zr+xxPat3Hf9o9zrWvbe8MwOvyenaEAAAAAAAAAAAAAAAAADwch+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAs6+mlA3gfx9O+bW/2Z7U937S+z2f2+0n7v4aPH+7XbP/Trjb8y1ku/phv161dwHVv/Z/34QEa7n78/u5x/KeH88HnkzqeVR3/vdbX2W7AFeur1nueT4bHv9Z7Xn9D//laH32u4oOqa2leq60V7zReLw8+PsuJ4zmen3UtqvlmPud91Pyfrq8Hr9/l/pSU9YXvpcXyLa+ni8W/mitOuPvwBqU+u+9HbD+8fuX1LnY/7YoFdg3X155vue0xCAABAABJREFU2GojOqe+ijIVflhvz9nN4e3RX7Y8uFxf8XZNz7W1/2m1XnL+v7K94W0/U/uzvnxezGr5PO0cvt5za/mQ6/Fq+Tmtxn8Mzw/3GE/8mHg50/l85A+uY37uwy8Dx/Ntth5Xqy/e7cgvW2L+5P5b8/vW4jniL7g/+gYxqvPDGe/vdP+T6sy5TuTfFF+Txp1hd0y/OAQAXq3V9mEAAAAAAAAAAAAAAAAA8DGH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzr6aUDeB/n07btz7yCM17p+abHklyxfe1+b+33Gk/sf/p6sxr/tOHxPJ/aL7hutX1qPj7+Nf+3fTagHA8vKs+fMaGvWsBPrcBqPdZ6z6brfXj+ucr8kPtu7fldDK+lOdeqvHaNRPGJvbp8fm3X+8rUfF5tL8zL6ntJPqTx+n10q72biV5dfcX7ld/trZYP9YbV+o0JdE2P5/jL2GGLhfPqDNfvea51g69Yv3usr9T9oz/81vBrLkzPndPjH+M5Yjy3mJu1/+mP7Wr8V71ei8uL6nufdr/O4fqt/dd8ru2n45kez0dXx2e18fzouqf2tzij37czta/OLcb/4Pl/29t4nvH+VjUfVlt/zxjPWV/u5Q3TbL1s+/DLybq/Hf47+nX+OWM8tR6PWI/3xer90U3Xb8231ebD1dzyeNb9TO1/nQ936kqxTuTfdMT2r21mq9dbx7PmQ823e5zajtU+NwKAd1htXwUAAAAAAAAAAAAAAAAAH3MIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLKeXjqA93G+2bb9zXPb7qnv6/4JAipaONt2jUTxvfPg13vV+Bdz3WP+x+u9VjtOu89eb/bK8n9fLP6s5n/uP/6CWF/XLeZ/7H8/W/vx+aHerzr+ofmjrxXLWW3uXCjXvtl/a8/vwvh/WMP1O73XqGuXfPiwHn4v+eDy+D94/eb5ajXTE5AJju+h/C6qts/z2/DLgfyypfYf20/LC8Bi809d72ai+J65huf/XI+5/7n4c8/T7xmn1dp9ZXuHmmtHbL/H8b/F9meMZ3puiK+1tyte7z48/o8/+896Gz94v8XF4lY/uBhW62vaLa4weT6p81WMp/Y/vR7V2aHmw5lfbsT83+vLT/X1kur8do5/0WktR95w1w/GW/Nsur5qvUe1Ho9X9nf663r30XD9nvmLJ/EXxPnqXvcDi9XvPa6/ry3/6/09av8x346F1sc687+uzAEAeD77JAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZT29dADv43zat/3N/sy2re/rlR0PvJ43jB/br5k4PrEY/7jF4qn5fN0Wu4Co5vNq94sXNp0Psf9aj9e99V9N919de13Aav9zfW+rraXT6r26Zgdoqdz5BP2/vvyZ7b7fr/YDee/82u7vsPF6nN471Hx49L1tvN7lnk1fmen5Lb+befT8j+r47+dMHMt6Zfmw3P6hjv/0u9i6Iaj1Uvu3P3w39fui/dfH8StvuGv/o91/ggeGOXtc3K/ViiXPbdMP+7Ptj3N28cr5MPxwdC5UKyvK9yuO5/RcOy3nT35X2urxjOVyW+xh6qzXu9p6wTvl+zWc/2d8F36r69E1W19HfNicXu9uccNxqN93qvNhfTl2xA/G7/nldmueLVZfq6n3a63dQNfnk/pFs9h9rMd8v+L8UPd7j57/1T2OTx3/6f6LI+byfXgur3PPdGYesf1iXzHL6vUCAN87r2tHDgAAAAAAAAAAAAAAAMBDcQgOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAsp5eOoD3cT19859n2WPntf0V21erxTOtXm90DfefDd/f8x5/wWrjM6zmw/7o9TXstY3ndWsXfN1n+x+v39XuV7zePP9Pjuejr+2LxZ/nnuH+r/inJvJcuNj4Z6vt9fZXtvmZNl3vsb5y/T56OkzPJ9Nq/LF9nW+n2786w+vpcvk8bbF6mY6Hx7Lceprzs05Ytf/afrUBXcxqwzM9vw3v985zsQGN+X/V9qn1YsZfJgx3/9CDv21HrJU93q9bHNAj5n6Np9bW+eD399Fdw3uNmg9vz/Zwd6v1Mty+P5zOOuP8cNpLvtNq09VHZ/sg8bafqf19PP9bPOdWr7fFX/P/HK73Wr/Taj7U9X36eo/xl41RrMf5eGa7r6bra1qdb494vffY/0fxiyc1npzP9b/DkB9nazzRg+fntJo/t7gfOOJ+oLoP7viO2HX9Cmc1XLnZEdvPZsLjm92Zz+cnAHxIdvAAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMt6eukA3se1f/OfZ7WdPu73zDg+do1E8W3D8Tx33L9ln77eaXU8F5Pzf/p6Hz0f+KBWm0+uvQV03WP/99h/rd/V1pfVPHr8fDC1tupctdW5JBZvngun96qx/zyeVRz/7Kqb59Z8j/3XfHj0vfl8/cb2j256Pqnd13gevf2DG6+v11aP0X7GH6g3rK4vrXn26OvXw6s3eLU/vXbO5n9vP71fbc338Q36WvK7qJkwvm38XVdrP50P13T/+QeeH099FFxubzj+MmHY8PjX3K+5nNvH+7XH9rd4f8/6KuTB55I6nnt8F1X7X64eo3q/6qPOtDOO/2344eWs4zncvrrFCbqOZ50/j+Hxyfmfx78+fMUKi+Gc8YPTmg81/jO+TK71XtV8q2q9TNd71eeren+bW335Vj+8yC/3ohhPvd46/sdwfdV4Xpuzrhd5u5orrDWP8dxjPDU/74s98E/XV5XzLbrFGf1Y6GX1kXN5Jo5vGa7c7Ijt41f2cv8AwLrW2eEBAAAAAAAAAAAAAAAAwH/FITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLenrpAN7Hfnzzn+e4VrvSPba/RqL4nrni9e7xemv/42I8eXxa83F5/IcvoObPcvX1yuaH1Vz32r7dsCseP1+tvqpcj/z3vbK5YTz391i702tXvIBr+gYvNpfU+8UHNpxu42vj9J9+efD5NqvXO7x+Te81Hr3/abV++3od2w9b7t3DdL28tvavTX139eh/Sm0834YniNXy/7XV12rP48Pr6RXzebl0qPGXC6ifW9S5YbW5Z7W9z2KO4fHfY/+3uNm7hh9Gav6fw+OZy2uxzf9e7+/ZNm/Tc//buJm8xd9wpcl82844nrW+qun8r/1P5/+52AKzVjTb9lGsl3usl1udn3O9nKn9Ee/AffiOTa/v5/DD9fR8Uu9vzrd4fz+KH+zX9SWL4zP+smU4nlq/1XS91PhrPPc4/udwPh91P1bzZ9hZP+wbfzez1vhUNR8eXanHemdf10iuNz7P/Or4p8ZjzzwA8GG9tn0YAAAAAAAAAAAAAAAAAA/EITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLcggOAAAAAAAAAAAAAAAAgGU5BAcAAAAAAAAAAAAAAADAshyCAwAAAAAAAAAAAAAAAGBZDsEBAAAAAAAAAAAAAAAAsCyH4AAAAAAAAAAAAAAAAABYlkNwAAAAAAAAAAAAAAAAACzLITgAAAAAAAAAAAAAAAAAluUQHAAAAAAAAAAAAAAAAADLenrpAN7H7e223Z57jC8e9zvf5HAe2x7bXyNRfLv7Gk813f9q4vXm8V9tPIfzk5dV83OP+XDd2i+44vrS62u1AmvG5/Or3eCaDw9teG2fXiv2+APLrV3D41nHhxdW557V2ld171n/NMvw3javFYs9Sy1nsXwe3wsM9z8d//R6Wuv9Ve3dPol6w2q9tObZ9P2t/T96vk2vpw+//czry2IXnPN5dn7IVhvPBzc9nNeD36/4qijlfx6b4bmnX+tj39vVnGdbfPfhzcmZ87O1vw3HM74U5foarsdp+YOR2fnhiPVyxvhrft5ixl3xBtf4p9V8PuPmP88/0XT/qznzw93Zmg+/yzyve2pf6zdfb+09j3/tf7he4g0+Hry+jvyyMebPdD7E9rfh+KfjqfV1DL+Mmq73nJ+LOesXLfNna7Pzef2i6C1WwPT9vcfxmY4n5wMfzBFr6/7YSzsAwLPZoQIAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALMshOAAAAAAAAAAAAAAAAACW5RAcAAAAAAAAAAAAAAAAAMtyCA4AAAAAAAAAAAAAAACAZTkEBwAAAAAAAAAAAAAAAMCyHIIDAAAAAAAAAAAAAAAAYFkOwQEAAAAAAAAAAAAAAACwLIfgAAAAAAAAAAAAAAAAAFiWQ3AAAAAAAAAAAAAAAAAALOvppQN4H/ffubb7dT2z9Z763o8Wy/mmtb9aONv+3Mv8pIb7n46/jme2WP+3mJ/jpvMzjk+ur9Y8X+54/U5fwCtz3WP76fkhyvFMxx/zLdfL3i7gigGN1y//XVf8Uw2r1eJipbWc5Wrr2c8UPEet37zXq/3H27vcs9ors9yz72rxTPc/vf7Weo/dvza5Xl5d++Ed2WrP+sPvTqrl1scHz4e9xr9YPY7PV6uZrsfpdF5tfzLsKjdgeC3KY7/a3JBzefZhbXruPM8YT33WjD+wx/Gs7Y/htTTV4idoX9V6XC3+1ZzxeuurnzO2z+rnuMNr3Tm8Gaj3q7avar1MxzPtbXz5eavjE+f/294q7J7X99b8jB/k3mI80/kzXb91vT7zy/ZZ+X5Nf7gQ879/eDGsxl/F6z3G168Yz/D9mq73Ko9/rpfWvM7/95jPPd9m8+EWd6zz+Tnbfx3/6eudVGfa6Ss9cm3NxPEtq40PAPDpYd8AAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALAsh+AAAAAAAAAAAAAAAAAAWJZDcAAAAAAAAAAAAAAAAAAsyyE4AAAAAAAAAAAAAAAAAJblEBwAAAAAAAAAAAAAAAAAy3IIDgAAAAAAAAAAAAAAAIBlOQQHAAAAAAAAAAAAAAAAwLIcggMAAAAAAAAAAAAAAABgWQ7BAQAAAAAAAAAAAAAAALCsp5cO4H08/fa13c/rWW1vR+v7jCNzvqnt99T+as2z/XnD+MkN978Pj8/4+Mf+95jP1Xg+ROPpWcd/sfHhwcSCn55/xsX4a3nleqzjHyJ6+Llhei2tf3phtdwfvr+51hcbn5r/47W+mP169AuYbZ/nh8WGM+8l8y+oP7CYGv+DX2+dr/L8lifQ2P10/Uavrl6qmm8zUXy7/+l3Pw/+7ipbrB6r1Ybzta1H49c7/LJiP+MPLHa/cjir7Yfr892jv7wq1xuvNT8K5s1Y7b+2H46nynvb2c1Szf3afo/x58+Z4g/UeKo+nrP9V48efxbjOWL7M7a/xfys88MZ29d4avs6PlXtv+bncvHH/uv9ms7//LA/vlltm/nj/8fe/YT4lp11o99/qvqYGNvcxhvaBu+9GFHkRZ0I4kyJaLfgKJNABgqiIGSUgeBQHIjgSBGdKqhTBw4UUWImIiqIIE4UJ3INuTd588bINZzaa99B7NNpMZX6nqqn61n1+3ygQcmqVc9e+3nWWnv/fqtOeAF78YcRo/jtSZoPqRG+HCivx/LxzK43/ZpNGv8WJtyePvx2e/kTP7xn0nxO8yGV5kO3eNLxjO9v3H/WvP55szafZ/93KtL1utoIx7O6HhNpplVHfoS1tRenQrfxqVY98wDAUzb7PgAAAAAAAAAAAAAAAACAJ8whOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAtq4eO4D72L98LlfjvFPbcZP1PcKRGTdr1v753eJ+0f46ar6cWxZPLAs/tp7ZLzjX2uuNuy8e/vXIxmcdRYG8pDMcn7U439ppdr2XNv5pfk6v+v4Wz59p+JX5fHFzW3qvqtfGZuNZPpdU999sPGPhXrJauldN98Kx6vq9tLU0FK8X8S9If6C2/+r5Oe0/jqe6fSrtP/3TR8X7mTT/y+sl1W3v3C3fmtVLt/1her1ncf220yyf1+oNfbPrTSfcdutpt/jD+u22PzxHswml+oVL0H/8qBZvftL+0/aTx1MtDGeEtbLGk0+vlz9ns/uVxpO3j5rHyuNpdr+OkS2Oeb3USrfmRzj+o/h6q+t3pNdbHE86mmk8s4/nFubbFo7oVhzPHb8e9FX99/qixIgf9tP+w/wp3m9U1/vzc4/a70uaD+H9SvMtzYew/xGOT1rv1Y7qegnzf/Z4jvhlRda8Pv+z5rHwevfweo/iC9jDC6iOp7peKqVjk459qnjlmp7xAYDLZV0HAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2rp67ADu4/2f+Y/l6o5XcPOB66jv5x/Yo/Y3I2q+LOeatQ+bH69k7c/scuP2sXR8UsXdl4cf/oJn//N5USTvjXPLrvfc0/ZR8/cgf3rlf5zP1f0Xe+WLR9R+PbP+1yP8gVQaz1kbT5rP51XYPp0fKvM5zv3avUDqDP80wgjv1RbuldYR5mac+1n7uP8w/jXdS6bS603zOd1LhrU7u3yvkc4P2Q1Op/54rYufjWrbx/Weajb/xPUbzv9xvWfNl/Esa79mW7e4fT7/h+2b5Wd1PpePT7Prra7f4/3ZgK5H9gvWm7B9Wo/pdq94P1adD2f4MDJ9/qeK+1+/8SZqfx7hAhnW11L9Lrl4vj2L93vp80Jc72n81X9KMLy/xR8tLN/46n9E7cfIfsMY2YCm/afrxRnEk87laa2k/edzf+1YxskZ36yseR5P1vyN1/5X1n0Yz01YK+nwHGkthvEf1XNDms9R65eo9+L6qo6n2nf+b5+N2o/wZUWaDzfF/efts3i6xZ/m2wh3J2k8qfLrDdv/j1f/NWp/FOfDEW6Gq/OtPp6s/+fpy9VQ9XyY1mPqKB7///G+f4nap0aYb2k9pvmcqq+v9Hpr86G6/+vw5WeaD6kRfpb4f13/P1H7PdxBp+Ofqs7PVHq95flQPF9V95+qrPdvKn8RPrf0Y9Zq6Wve6q/lVH8lsFr1+ADAQ/IvwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtXT12APdxfMPVsl7d7RKOZ9l5v+N6jdqPuH3UPI8nvLPnnrVfz6x9LLvcZSmO50zjSVVf71p9AZl0PM89+4E0n9PxP6vHs7j7OJ/j8Qn77ya9v2dWkOn4VM+31fl8XoX1u4Xti/M5aR+PZZpq1X+6YPLajWslbL+GtV6uem4I19K0dnlgcT7X9j+9yccz3mun60v8LBK253bl693c/beLJ+1evdyq+tkoz4fshnXLt3LV8Xcbn/QGx+8esuax8v6L66Wb4gl99vFZwwvIX9VNvKAWr0U8rC3M5SO8X9X9p7Uo35626lefe5hvozietL6qpdebxj8urH7T6+22d9jilxsj/g2RM+x/Lf4wqzietB7T+e35SL/I0Eu635jdtqT5Fv6CMN+OZn/nfgvnnyP+Ik8vR/GH9aPZhylHGM8eJnTef3E9ptJ8iNfrzAjj2cN4qvuvri8eTjqTHyVRvKM6c9LKDb/iuhy9Hk0BYCp2kAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbV48dwH0cz7Zlvb7bOb6b92Xn/Y5X1qz9ddR8GeHIn2n7PWufOrPhWdazJo53fkFx/6lm8aT3q1x4/DbN53MrvuDi7svvV9h/HM+a/oLqCaJWPB/WhPGeOdP6Desx7T8W53/wA2nf6bVWxn6B1nTumXuqytdS+cNXiffyxe3L4+mmen2pNvv4hy4uP7ld/CxVEsXlurT66raezj7+8QA1K+DqcGa/v3E+1w5o+bvzdH4IA1rD58fJXwVOLR77NPfL15Zm8YTS2kqvt3rq38L403dLZ9p/OD5pe25XPZ7bOtKfyJqH5TiKKyy93lH8RYD0/laPTzcjHZ9m47mX11fY/1r7MvMI671bPab5080IX1bn9ZL1vy1p/teK6zF+VVFbv0c4/nt4Ab3u1vzy+1V7B9J8OML1MY0/HZ94vxrOh+n1pvPbsWTrV9p/Oj93coTti7+iO73q8UnvF7ebt3IBuETWLQAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKCtq8cO4D5u3rcty/XdzvEdr2R9j3BkzrD9uF7D9ln/sbO4/2bObPjLpfHE4ac/kOZDeJx2XGUBnXuvG1aeP2H/9fH0Gv/pbWH+j6wg43JP8+0qK/gzPW5fnG5nms9B8+prrYz9K/1n7bndOqp/QbP2zKXZ3n+dPZ7i+LutpTyyMN+q87m8XrrFk3Zv/Z1LeMOmz/9myuNv9i6nnW7xp/lf/fwVKs/nyes9Fb8Oidffuw/o2ezlyRmvLenLorD/2YXjs4XFPibv/2iW/9Ufe6X1ntZj3n9tPNW65U8qrZdUXL9hRsfzSXq9Yfzp9abtZ3eELwP3bpvhZvYlG5+x7EWRfMUW3q9xZvGMcIWcfX5O66X62XeL863279an+b+sWTxHs/0Gtxvl9ZLl2x7uZ9L2uSz+I6zfdP5PPxw8st7j8Uz7vyT52POQ0vFM71e6Uqc78/QrsdZeAHiHfwkOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaOvqsQO4j/FsXY7r9W5tr+7W7kX76zCWsP9z6pHPndnwLOtZE8dLC+NvJ40/bH9uYf6n7avHv7j/+vgnT9A0/rN2gojnqzCBziWLP727afznntZv1n88n1Tnczy/FfadXmvcf9aeRxZObeleMl17ud3F1Ve69Fbv5cP+uz1bpGvpxeXbpanO52b9d4sn7T/eC/vTU09bs/Ul1qy+Ls7s63v6ODtqwnhp4QarPJ8nr5c1HKD8VWCjgkmTYfb3tql4bUmTIe0/bB8aYfxbmD9Hs/552tK5Nv2YZsQPU5kt3mykL2fC7sPySut3TL53qJbmczqfV0vjGecetU/zbS+vr7D/Neu/+v5u4QRxTP4wWD2fp47q+TyVzv9Lmv9Z86P4fu1h/CO8X+n6foTzYbVRXO/p/Y3nnzR/4svN7u9eXMB5/2F+Fn9YkK7X6Xxe3f8lOcL2vWY2AIA+7DgBAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAtq4eO4D7OK7WZble79R2hFc6ru7W74v211n/Z3j88MzCWdYza7+E/S9p/2n3aTzNdIv/XNMECvvfw/bp8dvi8Sy/X+n4c7t0PM9wwkq7z5rn8/OWBZTm85n2H7aPVdd74fxTPteaSh5Uer/WdC4JxWtpGP+l5U8618bj0208m8UTr3XFzxax6nhmz7fJlT9bM5V871wTx5PR7N1Sqrze00fT2dfTVPW7zLT74ncDsfINbq3y9bdb/k8ez9ksfy5K9dBX11a8uUr7T9vXDugxajeHazgZptGMcHzSePL2UfNlC/uP08dc+KBuwoepLb5jYf/rKO0/rS/mkt7fNJufhx8WpPPhctbm/+zS8Rzd9v7NVM+Hcf9rcT43e7exh+vd4eUn76Ejf4KJWu/FL2fy/rP4R/H6u4XxHEu4P4n77zP/dNspHWH78GsnAADT6rODBAAAAAAAAAAAAAAAAID/wiE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2rh47gPsYV8uy3vEKxnXYd9h+WbPmZ9i+nTT+sySKlzf7+IfOPWy/ZQN0psdpu9XLWvsLutX72q0eu2mWb2n+pPWY1nv1+FTPJ6kzuV/d5rYLk45nu7mwuNYvTVxf6nEqcf2G7dP+R7rXrn6Wks9PW3E+x/nWLJ60f+sp99JtP5lqVr+puH5nv18p+4Gnrbq+vLCYRvpa+9Kmwmo3I1uMtnizmt3guH8eVDp35u2j5u3m8hHGM8LNzBbOcNvk9bWtI2ufjmd4vWeYoOn97ZbP1dJ6ia3Z+nWE6b8vWX5WS/M5vd5qafzl+VMsnR+O9O++n8X5GdZX9QZ9D9eLaun6dYRfdNrDAe01OstyFL+sjvtP8yfsP86H+N95qL3Dab6lqusllV7vURRHR2mmVX8slY59beb0k15vOp7VM9UebvW67W0B4CH5ug8AAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQ1tVjB3Af59VX/ruLcbVmnYfNz2bHCc/0cs+aOJ6KdDy7ObfsAuJ8TuslHc+19gbk8aS/IGzPwwrz5wzbr2d2g6vzLa33dutdPJ/UXm9i9rWim3Z7mTQ397B9Wrvcrng41fvDius3bJ/2X70XLpeOZ7f4eVjN6qu8frvtbbuJn0WKJ5Rm80+8/0zbj6x9df22U/5uJnw3cGHr6RnW+zr5BVevX7Hi/uNySddfD0jzSG/VSDdXYf9x++qH/dLmyxHGr7J4L8V7nzCfb0b28LVVv+xt9jlfer3D2nurdHy6jecR/h3rI8zP/cweTuN6XC/tZUtmj+u9KJAX/c99v+L4q8s9rK/yepn9XVGxLXxZd8xeL+m/kxC/GwvzPxzP+H6F17svaf+99g97eMOOojjetof3a6Tjn34Zo5H0Y4LqmSfNhXlHHgB4auZ+QgMAAAAAAAAAAAAAAADgSXMIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgravHDuA+xvW6rNfrndqe4XG/uP3dwnhH2v4M26fdh/GsaTzV15v2X63b/d3D9luvAY3rK9Wt/9nr/dIUz/9pPab13s25pgma9p+1L50fJq+t6rEsn3vS3IkvIOy/19LbT7fxTOcqppLmz/T1O/mzV7y3rQnjyYjX37B99fqevsuZXjxhFffPVKrrPVVdv2d1/k/+fBczPdyuOB+qh3+MXgtqXL+pYEJcw7nh0qaGS3MU18oaLtbd8m1L4w/ftZxh/2n98rBGvNkbJXG86D3MhzSfU2k8PK40G9L7ezOyD/q2NayXNf0iTNb/pdVXOv6j+IPcLczQNP40P6sd+QfvNYG8Lf5eSO16F9d7M3uYz8WjuezN6j0V10v67yrEnzWFdyys33R+Oy7s35HI87nX+KTzQ5JvR9j1fmFb+SNs32smzKXxp+PT60kZAObSa4cKAAAAAAAAAAAAAAAAAF/FITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLauHjuA+zjXZTnveoxvDTuvbp9K+z9LonjvFI/nWX2/mhl7eMHd8q1ZPqyz11fo4sYnvN4z/IFzD/vfLmzCSse/23qd6DbXzq54PO+853xbda51y4dma/WyVgfU7QZclnSv0a5+Z5emf/H8nOZDdXselvq9XZzPoyYOikw+X8X1Wy3dUKbjWd1+dnGCNpvQi+9X+dWm++dm+XmG9RvHX/hhQfpo2mzo89od1S/2QsUDeoxssVvjh9kw98P+03jSWhyTfxCXjk9a7yOsl25zYRrPTbg53MLVcQsveGv2cFRdL1s4IW5h/o+wfRpP2v/sXwQY8Qdl6cNXlv9jyT7YTPNnOWvr8Zj874Kn89VIP4guFudz2n+Y/2m2xetFWo/lnyWqr6esur66OcrXx0z1fjKd36pt4Qx6pPuHuP8+43OEW5/0K5zx2hW2r3aE7XvtZPL4u0nzLc1nAHhM3fY9AAAAAAAAAAAAAAAAAPCCQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG1dPXYA93GuX/nvTm3D43537feFtP0Ztm8mHZ918uuN728zaf7HJh8f+GpxvYT5f27ZD8TrUTPp/F++/jKPNS2uLNnK94aheK9Uvfcsvt681ucu9vj+VrefXHX9zr72ttMt/y+sXqpV7/Xa1WO3eIrzv3z9SrtP30XVhPHeqd7vVe8Pu92A8vWl2wZ6cpPnW3k4xfV7Fudb+Pj+Er8gfPcWtK8OfQ0X3/xWNSuWbsIbPIrXivA18jKy5uVrSzqXxOM5ueJXn+2M8perWfNx7lH7LbwB25pV5Cj+IHeY/2/VrbyOsF6O8P7uYfstHqFwRVqL8794/knrNx3P9P5W28L9ajr+afvn6Xwezs/xhxHV/ad6pU9cL2n+p/f3CPMnldd7raM6n9N/hyFcXvb0/sbrYzq/+XcnbpOOZ5r/cT4U13snxZVbLs6FkigAgBl028cAAAAAAAAAAAAAAAAAwAsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtHX12AHcy/qf/921bWL244Hp9Z4lUbxnzvR6qzUb/7NZPq/V+TZ5Ps8urcfyfEiF8Z9b9gNjz/qvVj3+7ebnmTVbW+J4msWf1m713HaGFxzXbjq3VdfuanLg5aV7W2vRXOL5zbPFXKr3DxdmHeEPpBNimP/x7Ur7V4+Pavr1NF5fauvF+sW7FOdPXL9j7oI/wwuOhjPt+9JqsfrdT7O5dozaD17OcPOTvmoJX43FRjpXFW82tnA8x+ybn3i+Kpw7l2U5wnoZ4f1K72/aPp/fwustfvhN83n6/C+Wjk9aXzfhB4lxPi/hy4Tq/A/D3+KXIZnRrH6r7fH6WBTISzqqvwiT5lucP5k4/5t9UegoX++y693DHU3t7LMse3h/x5mtFyP9ImT8WXSc0Vnz8u8+1N7hNN+q66WbPP/r6r04k5cjzOW9+tk9bN9rZckdjx3APaXjn97f6nwDgIc0+74EAAAAAAAAAAAAAAAAgCfMITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLauHjuA98q51rZfz6z9Eva/pP2niuMpH89Uer2Xpnh80nxI8608f3jSzi1L0LGHv2DtNQHF9VjtzApYvfO2saebjZo43pZvDbOA8rW0uFiazW2x6vGJ9zK1c2G3ufMM/zRL2j7WbHwuzuT5fGn5065+U5MvX+X1Up3P3eIpNv27senrJX05nPaftu/1QLJWx9Msf+J6rH6Xn7YvXk/PZi+Lyqf/4HrjR8f0c5TyWqz+IOuyHOH9Skezeut8NNtbpfk/iutlDetlnf3dWLGb8GFwCyfQM5ygR3h/t+L2qer8T/tP6ze9v+l4nmH76vFMjXTFCNNtnNkHm3m9jKj9Ht+vLP4039LxT/cDqZHOn5Pnfyqvl+IdVpj/sTT+6niKpfl/eH651RHnT/gL4sfNND+rX4bUdl9dj/H9ndy2ZON5TPzvhKTP7unXZlLNKnc5ivvvZu6VHQAe1rw7PAAAAAAAAAAAAAAAAACePIfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADaunrsAO5jO5Zlu7lb2zH1lS7Lsobtz5Io3jNner3VwnjS+Msvt/gXnGv2C9azOEFnr5fZ4w/F9VJ8vWd6PDzM/3h+6zYfhuNffr+a5U8rzeaS6tyPazfULZdj4VxV7aJq8QJ1q/fyfCteG9s9G4Xi8S9un8ZTHX95PKHyvWqz/cn00huW5lvWvN2zQvn83yyfp3/WrI5nFPdfvWA328+Ut780tdN5rPx2NdvgRq+q07188VpdPpa9blW5NRzPMbKH0zXcnKTpkMa/NXs5M8L443JpNvek+VBdkHE2pPXSbL7awguu3kqmqsczrZcR3oDyfJjc87FH7bc1y9A9fjmZNU//DvcI+0+vN50fjnh+q/1wavZ62cIESueTI/6wIMufcYb1GMazx/mctT/C+PfwfqX1mNbLUbz/qa7faml9xeMZ11fWPH/gCde7eP7JrncLd4jxfNVMOj7V9ZuK59tA2vPcmZAzPgBAFfsGAAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoK2rxw7gPrbn57Kt593a7mvU94iDSX8gdLfLbNv/HW/TSzuz21t/vWn7NJ7q9qG12YCm0VSnT3X+87DOLcuIeP4pVh1Peb3EBZ/9hnR81O/XVj2WZ7q3Ks796rVlet1qJZwbLk35XBjWb/XaFV9vTRgvzJ6d1c8u5Wtvs2epdv03q99LW0/L5+du+dat/1S3eLr9qbNu49Pu4b22/Vq+wUrbNxv/ZroNzzmaBVQtyOczvVnFtRI/+nbbvMUvi3rlZjr+af6sa9o+fE8ata5/L5xKxzNvHzUvl9/fXvVyjGyzeobXO8L2d/1+wYv2YUafYQLF9zfM51GcDyONp9l8Xq1+fNKHweybMEeYP3tYL2l9pdc7iufz6nxO6/e4tPoKx2ece9Q+zs81/KZZ/GFoseL40/kkNdJ4ise/ev1NpeNTns/lXzyJv/kZqs2fLVyvR7uXw5m0Hme/3kpHWCvhV6oBANqwIwQAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADaunrsAO7j6v9blv24W9t1nFHfx/UatR/XUfPl3LP2axZ+bvL+1+x2vcQvyJqfYfv1jnn8ti1sX50/1enD15Hm/+Q3LK6vbtdbPV8Vi8c/7T9sv8YTdPYbkuttl2up2dfSZuOfxl8+/uH4dBtPHllx/Xbby1SvdbHqZ6m0/8mfHau1mz8nr9/Z9wPlZq/HZverXf6k9Zv+qbPq/eHkz77d8n9NJ8Tq9T2Mp3y/0ax+4/U0/gWT9x86ywc0UFwr4WurPNkmr636vWf2A2Nki+9aPhnW1kr51FNc62l9pfHk7aPm+fik+VY8/kfY/wjbX20j6z9qnRthPW7FFZaOZ3X/aT5Xx5/awvoKP9aP8ycdny1tH69fYYWFtze+3ur6Kl5/8/mz9u+gV9djmm/PR/bFqzif1zCf0/EP+x/hF82q8z+PvzY/j7D/+vrt9e8SHOm/kxCmzx5+8S0en2afJcbzQ6y4Xi4t/4N40rHZw2RLM6d6JI+41mvieFu38alWPZMAwFM2+z4AAAAAAAAAAAAAAAAAgCfMITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLauHjuA+9i/fC5X47xT23VkfW/Ps/bjOmt/XK9R+3PP+k+tdxvGl1fdfzacyxm2T61h/+uRtg8HtHj84/wpHv/pVddLsfL5pFj1/FBej7Xd10vn87j79Bfc/TekuTN7rZSvvelS1238i4sxvt60/7B9ef8XVy+1CZ2O59ntT6dUJ1zafXE9xtLrDdt3q8du8ZSrrt/qBK1eH2u7nz7fpn9WSJU/3GXarb/Fz16p8voK3w2n1up8K17fy29wut8ov1+1/bebcNP5J83nydfHSDg2wWull+q/fm6QC7eJ7284OaS1uKbvBtJn2eqlrvrZPa7f2nqv7r96L5zGM8J4tjCfb0a2eU77P+P66jUhpuMf7wVCaTxp+1R6t6rzufp6071qfL3p/Q3HZ0sfFoqH8yivl2x+q86fUTygafxH+nffz/RhM+w/zM8RfhFsq364DvPtCNvvYTxp/9X5mcaTqo8/638PwznC+Pcwn+PxD+PfwpeH5fnf7OVSff53+zD67qpzv3jliqVfWU3nklS38Zlden8B4DFZ1wEAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2rh47gPv4hs89X66u9ju1vfnGu7V70f592fnAm2dr1H4ZZ9b8Ouz+lSyeI+x/zcLPVfcf3q4zbJ9as/Rc1iML6Nn/usl+QTPnll3vGc5s51p8g1PN8rNdPMVe+bcRtV/D+bx8/kyF8cfC+h17mEBpvhXmZzyXpLWV/umCuHazH1iPrP81K6362grb1/dfXItp93F+Tj75F0vrNx3NM/2JNKHTfE7rvbi+qp8tus0/6V4szc/qrcx4lrVP16MlXo/C9s2elbvVV7d66Xa96fx/fEP2C7b01cCo3R/Gf5orrMdly8Yn3o6V52c4/s3Wx27W92cJeobv3s6wXuJ8jhf4rPmaxh8WTL4/qc3/M4w/3Q/EmtXj+z/w5aj9CPPnDBMi7j9sP5J4wtjPMHfSscn3Mum9qn4YyZrni3Wt1z/4b1H7KNeWZTnSWkn7H9lmLM3Po3puSPM5ap3Hk7ePmpeL55/Qh7/5c1H79P6O8GnqJsz/OJ7wZUt1/Km4vorvVxpPqvp6U9/5gc9G7eP5P3wYz/O/Wzy19Ziv12n9Zs+y1fNnqnp8vvt9/3fUPnWE8aT5nKqvr/R6a+/vVvwwnsZzHb78TPOnuh4//Eq2vtTnc23/aX6m9ys1wvGcPv5m80nim9p9qSuTfkxTrfq1aiqN55g7HdqNPwA8JP8SHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANDW1WMHcB/Hs21Zr+92ju/mG9as71eyWEY4kmfYflxn8Z971n872eX2k8Z/lkTxjmbjea5hPqf1FfZfPT5n9fiH/ZfHc2nSfA4Lfq2eH7bahBh7cT3G+d9nfjjTP0Uw8bW+J8JaKa+tasXxx/nD7dL7Fedz+AOXVi+h+HqrxzNtP/ufuuk2/tW65U+zeC7teuP9YbHyemk2/vXxXNb+qvx+VZv9djWr34tTPv61CbqGBZw+Pp7V82EafxCP1J9Ms1pJ46leirYw/iONP+y/fG6YXLfxSePZ1hG1H8UfdKf5n6u93jT+0Sx/qqXXW11faTx7WC/xy8Az7H8tfllRHk/Yf/hy5ihesbvVb7ofGMUvu7Z0vi1+eb6H8RzNXuan63X8MrO4/+p6PLq9vA2l+Zbmcyy8Xel8sscve8P6DeNJ56t4fS+On3mkT1JHSRTvqM604plqSb/ydnh5CADvGTtaAAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoK2rxw7gPm7ety3L9d3O8Y3rNep7XIXtr6PmcTznnvV/Zt3H0v7XsyaOl1U9PpfmXIvzeau9YeX50Kwel/B+xc5mBZ9Kh6f4cqvzM52f43osPm6fzj/p/T2T+MtrvfharY23m3xqi2tXPtzq4uolzP9471/cvjyeYtFatFxgfna73m752SyeS7veOD+b5XP87qcmjIs1fb10E19A8cvP9Pmuevyb3d/y9WjU9s/DWsOEOGfeEMe5H76XL+6/ei0qj6fYFubyCK837f8I+09rsfrhNE6fuF6K66tY9VxYfb1pPpc/q4Xi+o03M1nzNJ40f8aFPQ2m45m2r5bXV7h5Xqs/GKyNZ4TDs8fre9Z/avZ6jOur+IPoPXx4PMKX+ftSXF9hvRz+jv5U0nwb6YdN4XSS5nOe/1nzWDw+6culULxe1MYf50+xrTD+I4wl/ApkO9Xxp+OZSjOzuHKXPZyrjupn67B99fgAwEPqtUMFAAAAAAAAAAAAAAAAgK/iEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFtXjx3AfYxX1uW4Xu/U9q7tXvQdjsy4yvo/0+OHWfd5+zNsn3YfxrMWxxNLx7OZc629gHNP24f1Uj3+xf3Xxz95gk4unt/ShDtrJ8RzC+sxrffq/EyHs3D9ja919rmHW63FtVu9N6zOn257vdn3Gqny8W92f6uVj2ez/Cl3adfLk9ZtP5buhddRE8dLS+fbsH08n4c3OO8/bN/NpV1vN9XzT3G9XJzi8aner8avQ8KATvnzNcWvHozl7cLx3MJcPsLxr+4/rcU0f8LXzssZxrOG8XTbaqRzW/VcWP0q89Kk9bss2cPXSD+oaWaE+Zy2n90RPrzv4cN72v+l2cLxnL0e0/1DN9X1kpq9HvdwPcq/l5Zdb7dXk6lxYR92HOG/w5DmW9o+jSed/9N8PsJ8iOercPt5LNn6tRWP/8yOsP3cO4dcer3peKbSzJx9LQKAp+xydpwAAAAAAAAAAAAAAAAATMchOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAtq4eO4D7GFfrsl6vd2wb9n2dtT/3sH14/PC822W+vLT/sySKl1Y+PqE0nvLwi3/BuWW/IL5fYftu+bCs3QIqll7v2WxCqa6XsP1aHFC+HvWa4NL48/kk+IHZ5yoeVzg5lK+9xbrFE5s9/tBavVSH/cfxNOs/XruYSnX+dMvnS7vedvUbX/DkC9jk767KNauXauX7E/U1lXU8dgT/RfEDT3X+r+EvOKuvN30VFb97vvv15kM/eXGV7/XSl2lh/82ktZWOT3W2bWH8x/Qvf+aWfuxSPZeP8GFqixf39IOOsPtm6byFNzit31E8X1VL83k0iz+Pp/ZlRZo/yxnW71r8siWMZyzhF39C6fw20i8iFUvn82pH9fwf2sP7m7bP169sfLrNhzysI/4yQ+3+La3ffQnrK2wfi99VZ9cb36/QHk4oR1Eclygdy147gXrp9VbnZrrzSWeePSz1o3gv02unBwC3s24BAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbV09dgD3Ma6WZb3jFZzhlZ77mv1A2Dxtf4bHFdczax9LrzeM50z7T1X330yaP+eWDdC5Z/2n4nxYa29wdX6W12836f06awfoDONZ0wkuFPcery+16106/8TSeNJ8C5qXr12XJr5X6WYja14tXnv9KYuHFc8lNWE8GWF9xXufZv1XPwum4ulQPj+uZvlcXi/d4vHuga8WTojd6qWd4nrP3xWF7VPd4qlW/G64PP/jeGpvWPm7wGbzyRpe8DnzhrVb6OVrV/pwHfafKo7/GNnLmTT3t7D9CONP+z9mrsWXkH4Mkc5VU89tSz4+aX6O8IPHNJ/T9tXPmun48LjS+5WmzxH+Hesj/AX7MqL29fWVxbOs2fhU19cW3uGj3QaxVvX4x/2H+RNL63EN8z+U1ns6Pun8k9rC8Tmqv7hU7Cj+8DfuP83PsP/0/naT11f4C8LxPMLuq8XzW3y9detLmpnVX9tI7+3cM2Euvd5utQIAvDxfnwUAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADaunrsAO5jXC3LescrGPsa9X1mzZczPE6Y9p9K+1/Pmjieiur7Ve3cwvxvls/LWlu/sbT/sL7U7yNL5//wB9Y0IUJxve9FgbytfL1LCybtP2vPLYrnzunJtds12zune5NLE+9Nwvbd9j6zrxXpeM5+vdOrrpfq9s3IZ54S9f7EWbCnUr5fLe7/lD+Px9DfrtladDOyD1K2cHKobj/CWl/D/vP2UfPy6+3mTLcC4fWm/ad7jZvwg8f0/qbzQ7f6ujTG53bV68uypl8EGFn7yeX1XhTIhRrhhvhI/+57dT7H9VUTxntlX7LxHMV/p38PB/SyZrfckX5xbA1HNO4/a57m5+z2cPxHOP7V/c8szbTqkTnC9tVfGQMAqHI5O04AAAAAAAAAAAAAAAAApuMQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG1dPXYA93HuX/nvTtLjfmtt+/PSjh+m43kW939h7lwnb7ffeg3oWVyPTGZNJ9xsQknn53Vk7c80QcN40nqvdqb3K5WmQ6f5JF3ruqle24ulubCG8ae5H+fm7IqvN6/12rVlerNfbvWzxYXVbz4f1sTxXkmvl9vF49nt3cDk+cwDK87n2eefduvF5OMZi5+VswFau02IcT1OHn9x/2M0Gx++pvhRNv0Faa1U7/VSxbWehn+E8Yyw/Tb75qHYmq516bs9w3+rNJ/j/sO9yRZWcNo+ldbvFn4wtaXjE8ZzhgWQ9n+M7IOy6nyrdsQfDGb5kI7PCOfD9P7uS/hBayjOt2bzeRp/fH8n/+JSHH/5u4ewHpfsg/1u9cXjSvc/I1xftuL8Oaq/aFlc72l9xfUYxn+EXxRK7++Rzldx/3OvR4m0sqpH5gjbN/tKWiyNPx2f9H6l+bDHc0P4CwBgIpezgwQAAAAAAAAAAAAAAABgOg7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC0dfXYAdzHua7Lua53bBv2HR4PTPtf0vZn2D7tPoxnLY6nWny/Jjf2yS84rV/5fKvZr7dc8XqROjf1+6AmH85LUr23iufCbrncTbfxueMzAj3E9djs2YgHZq/6sIrrS/0+sm4X3OxdV7lu19ut3qvF499twzq5CxuebutdXL9p98X5X93/Gt6w85ISevZLbTY3HyN7MZzmZqrbUs3tzvCGpXNn2n9aX2k8N2OP2m/rCNsXV0Cv6YcHNtL8L+4/br+k9ZVOQFk9ptL4Z7eH4z+aLfBpflY7wgn6OLN826sfvlJpPa69/i5+ur6n9yuVx9NrPFNpvcT/rkJYLns6/sVf5Inzodm/O5HOV0e3/hvND0ecyzVxvC3diVVnZp47AAA1eu3IAQAAAAAAAAAAAAAAAOCrOAQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANDW1WMHcC/bcvdjfGvYd9j+rD5OmMZ/lkTxTvdhPGsaT3q91ZqNf6o6P9P7m+YPD6u8frtZswuOxycs+DONp1n9puJ6v6T5Yfa1pfjedpt7yvd6za433gtX1244d7bT7f420+7ZYvJ06ya+X9XtuVX1/YqfHf3pplul47mOmjiejG4vNyafD7u9+zlHusFNf0HY/tJM/3K4WDqf10TxwhkW8Nks/9P4k/xc07HJIplfPHfOXevHyDarazgXbmH7blu9NP74vXnYf1q/PKwRrl7j3KP2W7gYbeHDUZrPcf1Onp/p/HZ5C2TmJs3/eEDDFWPN1rsjDGcP4+lWX+l8ks5vqTQfquPP5/+0ffUH6WG9lMcTtj9rd4hH8d/d38N87rYf7uZI8zN+mRz2n64XYTxHsy9+5vNtcX0Vx1Pef6P5Id77FG/9iys3doTta3dK/aTjb60DgHf4OhEAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQ1tVjB3Af57Is53rHtuFxv7v2+0Lavloaz1kSxXsmvl+Xpnh8ysd/8vxkMmE+n2v2A+l6VM38yaWKazGs9eXMFq9upZjvhbtdQSi8X9Ob/HLz+i0Jgy7SfJ48/2eXri/le9XZ54fi/F+r66vb/b2w+SG+v7Orzud4ggv7vzTV7+bL8yFr3m05GqNbRJn48a5wwxG/SqgJ4+XFi8XcuZPegFGca+l75zW8X1vYflzYi+R0PKvzv3puO9P2UetluRnZy5w0P/O9QPpyaYTtw97D8R9h/Ft4x6rnh7j/NB8mn6+ONP6w+Tj3qP0WTkDbGtbLmuXzUbxh6rbepeOZ3t/ZPU/zOc3PdL1I+0/F8dSE8bLS9aubffJ6HOm/kxBvh9P8r40nvV9HWDB7GFB1/qfxp7ZwP3ws4fwc9z/vfJLuZfbiuby4cmNH2L7XTNtPmj/Ve20AeEjz7ggBAAAAAAAAAAAAAAAAePIcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaOvqsQO4l/U//7tr28CZHg8M+4+dxf0XO8PxWauvt/p+NRPnc7Xw/pbnQ7U035pdb7v6LZZeb75eTD4BnbU3ePb8KTX5XBLHH7fPfiCt9dQaXsDZ7YbNPlfNLk2HZulTvXeo3ttaix6X8X/a2j2bTm4d4Q/EDzth/6l0/r+wZ9NU9fVW75/bvVutrpfqeFK2/3NJ8ydN5/L5v1fCnUE85R9bhJP52a14Z393FRoj29ym93cUb5bOZu9+xuT5kN7fS1t8j7BeRjieW3X78H5txYvpuLD8qZberZHOt2H7m7FH7fN6CV8mxOt7WO/hDYjjDw0vr26Vzp9pvaSO8g8LwnxrFs9xZvPJXrxBPy5s/drC8TyK4njRf5qf1c938Xwexl/+AF+7HlWrnj/T+aQ6/5P9Q3Fm8sCqcwcA6Ms+DAAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjr6rEDuI9z+8p/d2q7hp2n7WeXXu9ZEsU73Xcb/2bjkzrX2gFdz+ILnnz8mctd15V32ocJWj2/Ved/OJ+sIwsonf9X9f61Vc+dzebmuHaLcy0fzl6bn+lrsXpvEmo3PtXPRmm9pH+apbhc4vrtdn+7SccnbF8+/sXxd+PdySMrnm/jekn7D7tPmW9v1+5dWjfpAM0+/88e/+Ticuw2/mG9nM0moHg4C+MvfzRNF8f4Unvd21jx+B9h7qxh+y28v2vYfhQPUPXc0G3uSRV/bBePT/XcOcL5ZAsDGlnzesX3d6Tj36xetjDj0vnwiFr3k9ZLXsDZy9jwY75lW7OK3OMPX2r/znc8/qF0/1AtHf80H6rl9VKdP5m0XqrjX9J4io3q62UqRzw/Z/mzhRV8hPm5F9dXGk9qFP87G+n4jPh+7VH7RDz3h+2PcO3dq59FwvZmcgCgin0GAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0NbVYwdwH+vxlf/uYqRXumbNz7D9embt03iWtP/U7PFMLs23aueaBbSGCdGtXOL6vTDl82Gxc0svIOy/un6rxz8umHSAmiUEjyauleraKl6Muq3t5Xs3Htbke/Mz/NMs9WtXbffVyvdWYf/d9nqp2eMvN/n6O712G4hQs/mqnW7re6pbelbvH6rrsTj+NY2/W77xoMb060sWf+mrqLDvs9vYd3s300x8v8KHiyPsP53LtzCeNWxfnc/pXDX70hW/Zq8J46XdjOzlT5qfW/q5Yzj5jzSe4vZp/lev7Wm9j+IFo3o8qz0fe9R+W0fUfg/rJa2v/O9wZ/EfYf7sxetvaqQvwy9MWo9H/OFClm/jDOuxegUO4481y8+03lPd6nEvzs94POP6ypqn5ZKOT54/xfnQbIM+iq83Hf94Pg+l+5+ZHXFt1cTxtnTl6jUzX57qfACAh2TfAAAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALR19dgB3Md2nMt2c96p7Xm1Rn0f+8tE1Eh2uctyt2F876Txd+s/dIbxpOGvZ7cbDO+I8786nZvND9XxpMNZvbys4W84w99Qnj8zC2/uuRYXb3Hup+Gc6Z+OaJZr0+f+5HuZeK2bfC8f10s6/9R2X6/Z/UrjKZ9P0v67xR/qFo8/lfTEdavfS1O9vk++Xy0Xry/tdhCRNY2/fH6Yezzj/Wq6P+m2/y++X1M/3qXvEqprcfraSge014vSMbJ41rDY1/hdWtb+CMczXltC5VNbGH9cv9zqGNlm9QzzeYTtt7R9mKFnuNil8afSfB7Fb9NGGs/k9Vh/venD4MiaF+9Vx5l9MSet3/R6R/xyO1Odz2n9pvuBVDp/pvc3nq+K7++yhvUVxnOE7fc0nrR9sep6TKXj3008nsX53O57jeX5P3f+HP0+bS2TXuseJmeaaXNnTu7SxqfXygsAc5l9HwAAAAAAAAAAAAAAAADAE+YQHAAAAAAAAAAAAAAAAABtxYfgPv3pTy8/8RM/sbzxxhvLuq7LH/zBH7zrf/+pn/qpZV3Xd/335ptvvqvN5z//+eXjH//48uqrry4f/OAHl5/+6Z9evvSlL93rQgAAAAAAAAAAAAAAAAB4euJDcP/+7/++fN/3fd/yG7/xG1+zzZtvvrn867/+64v/fv/3f/9d//vHP/7x5e///u+XP/mTP1n+8A//cPn0pz+9/OzP/mwePQAAAAAAAAAAAAAAAABP2lX6A2+99dby1ltv3drm2bNny+uvv/7f/m//8A//sPzRH/3R8ld/9VfL93//9y/Lsiy//uu/vvz4j//48qu/+qvLG2+8kYYEAAAAAAAAAAAAAAAAwBMV/0twd/GpT31q+dCHPrR813d91/JzP/dzy+c+97kX/9tf/MVfLB/84AdfHIBblmX5kR/5kWXbtuUv//Iv/9v+vvzlLy9f/OIX3/UfAAAAAAAAAAAAAAAAAE/fgx+Ce/PNN5ff+Z3fWf70T/90+ZVf+ZXlz//8z5e33nprOY5jWZZl+cxnPrN86EMfetfPXF1dLa+99trymc985r/t85d/+ZeXb/7mb37x37d927c9dNgAAAAAAAAAAAAAAAAANHT10B1+7GMfe/F/f8/3fM/yvd/7vcuHP/zh5VOf+tTykY985KX6/IVf+IXlk5/85Iv//4tf/KKDcAAAAAAAAAAAAAAAAAAX4MH/Jbj/6tu//duXb/mWb1n+8R//cVmWZXn99deXz372s+9qc3Nzs3z+859fXn/99f+2j2fPni2vvvrqu/4DAAAAAAAAAAAAAAAA4OkrPwT3L//yL8vnPve55Vu/9VuXZVmWH/zBH1y+8IUvLH/zN3/zos2f/dmfLWOM5Qd+4AeqwwEAAAAAAAAAAAAAAABgIlfpD3zpS1968a+6Lcuy/PM///Pyt3/7t8trr722vPbaa8sv/uIvLh/96EeX119/ffmnf/qn5ed//ueX7/iO71h+7Md+bFmWZfnu7/7u5c0331x+5md+Zvmt3/qt5fnz58snPvGJ5WMf+9jyxhtvPNyVAQAAAAAAAAAAAAAAADC9+BDcX//1Xy8//MM//OL//+QnP7ksy7L85E/+5PKbv/mby9/93d8tv/3bv7184QtfWN54443lR3/0R5df+qVfWp49e/biZ373d393+cQnPrF85CMfWbZtWz760Y8uv/ZrvxYHv395Wfbzrq3v3PA/m69R8xGPZGYNw48V918df3i7cmH/6wjbH7Xtq+9vLL1fYfv0ctNw4v67jT8Pqnz+qc6f6gJIu0/n2/ACzvAC1O8DapZr5arnhpC1kfuI17pme/Py/Oy2Fwjbz/6s2U63603rpdn6FYcz+fjH3Ve/y6ntPlc+X/W64upwpq+vVPWAzr6eFu832kkn0GbzQ/UEfV5aPgTONBfisQzfcxX3H2v3MJVZ4/Evf3uS9R7Gs6b3q3jzmcafj38mra/qeFLp/c3HP2q+jOLx2cL24ce4ufByt+K1dIQBVd+vtP80P6vjr5ber3R5GeeetQ/nky38osQe782z5un1Vovvb+iI6yWdQXs5wvjTr9ns6Rd/0vFM+0+l4xO2j8enWBp/qr5+s/i3cEI80h1T/PhSXS9Z8y3c8VXn/xFewF78siWNJ+5/8vWlk3SmTUf+CFNtn3urDQA8IfHRrR/6oR9azlvebP/xH//x1+3jtddeW37v934v/dUAAAAAAAAAAAAAAAAAXBh/dgEAAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjLITgAAAAAAAAAAAAAAAAA2nIIDgAAAAAAAAAAAAAAAIC2HIIDAAAAAAAAAAAAAAAAoK2rxw7gPq7+41z247xb43ON+l7v2u9/GtdZ/+M6ar4sWTixtbj/OP5sONPmaTrEtiP8gZH2nw1o+f0NNQuHR9YtP9MELZ5OyqXDn86f8fiEAeXxZD9wBgG1y+XZxYt72Hzy4pVvk2mWb+VzeTfhBcSPLpdWj5d2vZObfb1rN1/Fm+eSKF5es3iq589283Pxu7FUs3Dq83Py/td0QmyW/3E9lt+v4oxOb1ezd1HnaLaB6DRhFb9IS3MhzuXqWqzevBXPDWc4WZ3x/Q0/pwzjSdt3e9rPx7MokBf9197f6vi7SS/3CMdzhO23tN7D9iNsn8aTtk/HJ22f5n+qPP6odT7+6dcGUiOcz7fwitPxTP8O9whvwLZmX6zYm70cSOe31DjT8S+Op3i/UR1//Hflw/wc5x61T+s3jScW5lu16nw7iq+3Pv70eS283vhxJMzPdPzLX54U919dv6H6/M/6r44ncYTJtnd7cRsKv7K67MW1mFZKn8zpKb2/APCYrOsAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAW1ePHcB9vPKFY7m6Pu7Udv/G7LzfzbM1aj+uo+bL8UrWflxn8Zx71v+ZHofMwpneGV7vCMdzvVsav9P/mgX0yr+Fv6CZOJ/D8anO5zR/YmH/5fFM7pV/H9kPnOEvSNsXW4vjifOtuH3l/FC9llbPbem92o4wecLma1iKcS6f2Q/k/WfNq2sxnnusFQ8qnh9S6fyQ5sPoVe+p6votr/fqtbrZn8YZ4bNyvF6k+Vbcf7v1ZfZ4Us3iScfneBbuZ9L8DF8lrEf47ird3qbLUfpuJtwfhs3fg3qpfrnRrH1ofV+W0OdIXwZmzZew/7N4v5Svd2m91+4nzy3N/17Pg6nq/fP7P/DlqP0I8yFtf4bzW1q/Sf9xLOlikc49af9x/Fn39e89a+eS1P/+6pei9kc4/iNsf4QfTKX5nL4aGGE86fWm8leHtXNVtbh+i/2f3/Q/o/YjfDmZ5s9NnJ9h++L4q9un4vmkeHxS1f2/smfPIt/+/v83an+Ef/e6On/q46mtx3S9TqXx5/1nDwvp+HTzne/7TNT+CMe/Op9TeTzp9dbWY9p/tTT+6/BlaZpv1fX4f1x/vrT/6vubj2ftfJtebxr/87PXV3rT+OP+y+efu7f/pvBF4NzfyMxfa1dLv4YU91/bfazb+APATJp93Q0AAAAAAAAAAAAAAAAA3uEQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0JZDcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAW1ePHcB93Lx/W5bru53jO67XqO9xFba/jprH/S9h8zNtX3wccj1r+0+l4zO76vsbi/Mz+4Hy+9ssfy4tn6eX3q/i+bM8f8L551yLA6pcH+O1utdeoFq6F4j3Dmf2A932JrHZ459cXF9xPoftU8XxVNdXPj/Utq+OJ+2/3d4/NP39ha8S12+6PUzzeWTt85dLWfNm29WLY779OuLrra2XWDz+l1WR5fkfiufnVLf6aqZ0eIz97ZrNhdXKX8OGk9sx+dyfvzrsdb3hq8xy1eOT5md6g0dYYXE8S7hYhy9n0vi53WhX78X5eYb5uRa/PCyPp7Ye03KsXk+75XNq9v3GnuZbmM/p/c3jyZrn9VJbj0ez9fFo9uFLGs9W/fKh+P7ucb5lzXPV9ZI1T40w/nT8u9VL4gjb7yVRvCONJ1V9p9KZZy+e+o9mz+LFO2EAeNLm3XECAAAAAAAAAAAAAAAA8OQ5BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbDsEBAAAAAAAAAAAAAAAA0NbVYwdwH+N6Xcb1eue2Ud/hyIw9a79k4Sxnelwx7J+vIx3PsySKvuJ8zn7gTMe/OP/jeFJrswI+Lyuhz3D817Tg0+Fslg5xvaf5XF2/hetp9bWWzz3cbvapUL49rLTcw/xJ26f5uVav7c2ut1s8af8XV4/N7le3eFzvw/ZfHs/kyq+32/1qF0/4bFp9vd3MHn+1yet3duso/gXNxnMNJ6A1fH9S/fiSRFM+9MVrRTyW6cNIt7kn7j+73i3M/VHc/5HuHYofTtP+09e26fWmzur6CqXxVOsWT1ov1UYYTrf4j3FZf0e5Wz5X25dws7oW58NZHU/Yf/hB4tHsg9xRHE/1+jviD3Ize/iwdhTHU72f7GZLH5bD8X9+pl/cuyxpfaX3q/r+xorrfUvXl/SJp/rlUrj9HJP/Oxvx/idwhO3Tmap6ZkvjTxXv3GJ78VJ6FD/adRtPAHhMc+9QAQAAAAAAAAAAAAAAAHjSHIIDAAAAAAAAAAAAAAAAoC2H4AAAAAAAAAAAAAAAAABoyyE4AAAAAAAAAAAAAAAAANpyCA4AAAAAAAAAAAAAAACAthyCAwAAAAAAAAAAAAAAAKAth+AAAAAAAAAAAAAAAAAAaMshOAAAAAAAAAAAAAAAAADacggOAAAAAAAAAAAAAAAAgLYcggMAAAAAAAAAAAAAAACgLYfgAAAAAAAAAAAAAAAAAGjr6rEDuI9zX5Zxxyu4a7sXfafttzX7gbD5mbZPjzeG/S9n2DwdnuL+L07x+KT5H+dnqDwf1gtLuPR6z7CAu0kvN/yBNZ1AU2n38fpSm//l61foTPK/eG1nLuleJv8FWXP59nXMPj5pvoXt03yO879Z/OX9p2bPz2bK71ez/OwWz/TXG6pef+N3LTVhvGfK65fbdav3amnBxBum+OVD2H/YfoTtq4UT3PT5Vr4/CcczHNCzeMGL44k/65h9hZxYs9yvtoW5fBTXbjo+6WvhEd7g6rmkm+rrre8/a7+t6WYj+6BgNMuf+HrTD0bSeiwenxEG1O1+pbrFn64v3eKf3R6Pf1EgLyndb6RG8RdDjrD/PZyf0/bp/vYI17u03pczjD9+lsriP4rfTqbrb3V+putjtXj8w/FJxz/fH4bi/VV1POkPFM+fpb1zm3Ts95IoXr7/6typ/hddql+D7+FUezTbGwLATPxLcAAAAAAAAAAAAAAAAAC05RAcAAAAAAAAAAAAAAAAAG05BAcAAAAAAAAAAAAAAABAWw7BAQAAAAAAAAAAAAAAANCWQ3AAAAAAAAAAAAAAAAAAtOUQHAAAAAAAAAAAAAAAAABtOQQHAAAAAAAAAAAAAAAAQFsOwQEAAAAAAAAAAAAAAADQlkNwAAAAAAAAAAAAAAAAALTlEBwAAAAAAAAAAAAAAAAAbTkEBwAAAAAAAAAAAAAAAEBbV48dwH0c1+uyXK93ajvCKz3v1u07wvZnevywOJ5u4vFPTT4+1c41G6A0n+vvb+0vqI5/PWv753ZpPq8j7D+cgNYzTIh4Paqt91gaf1rvhfVbPrddmHQ8L23ulG9fR/H4pOMf53PWvN6F1Ve1uH7T8W+XQL1YX+CCpPWbPnrF/afPgmn/xe27iddHC+qtqvcnk0vf/ZSPz+QPhGtYj+fk11spfW2YP8ym/YftU9W5kO4F0rUl3Qtkvce2MP50KtzCKzjDeNZwPEfYPq2vdK6qntvi+aHYKP5gYYsLuCaOl5d+0JSNZ1zvxfNbKq/f2vkhlfaftk/vb9p+OcP8XIs/SCyPJ+t/nHvY/9yq5/M0/4/07743Wx/3MN/i6y22xV+UyOJP95+po/yLD5nqeOL+i+9vnD+h6vw8wg3lnn+xKDLC+SGNp3r+7yR/9q11hO2rdyZp/2n81Wp3hv1c2vUCcFkuZ4cKAAAAAAAAAADw/7P3dzuSJEmDnhnmnjUfh7NzsOAZiVlg7//SFgR/FsMdTJeb7UF3VzeHYHa8lSkVYuXPA+SZhoaYmoiqmrlrJAAAAAC34xAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBa3746gB9xffvrv085Yt+P+AO1/xxPaz8uxv9xjUTxh6n3qw7PtOtoEV3P2n9r/xHjqXo89RfE9u+m3t9r2YAOz8/HGfuvAU2vL8MTXJ2vptff1P+yVJ42Pdcebzae/AvTtV4N72W2yfU43H46ntr/+N6Tn2p6fVEvP7f/8Xii8fWFn8t+8qd6t3rnJ4sT6Nvd3+EFpo7nEX/gqO+ep/djeX/++YCuu28Gpufyano8h6+35sMj1tY53X9q3f+q6mtZvdS5bVu9T8+d09c7nc+1fZ4fdqXDx/lue6Vlaj5XrzjjvmI+POMK0OsrrjDH8BdhYjznR/yiRPSIHxSf9Ysby0zXS+5/ON9qfY33X6831kudr7Z5xnr8y83rcdpr+Isqdf7s9dKaj3+Rs3+xKHnF9e4Rx/Pu80Mx/WxdvWL76Zltuv96vVW9X7M7AQDgn73PjhMAAAAAAAAAAAAAAACA23EIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgrW9fHcCPuI6//vtU23rc75P9/lH953hi++Nq7bN6vTWe2v/d1Xx4xvaP2QGt+Zlt63+6vviprqPd4CPe4LpeHGdrX+u9quOTDa93o/ODueFr1dy8dt2A8bVx2nD883uHe+dPNb73j/3neLYN/93rl1uZrpfxepyOh58qv1uaCeP3q/HHZ686QOrr55rfH9YBHS6YGs/tHzCiertyvdf2s+M/Xb/XdPzxAo5YX6OPa9Nzw91Nzz3L1q5z+HofMd9qPLX/17utLTc3PZfXufbX+MHIIxZ8bp/3Vq153etNzyfbvNv11vT59Yz1kvcn8YPKq26e30udf17Db0/uvl6fcXxe9e++T+dzrK/nh/r6nkd8eH9Nf1FimVovZ66X1vyZX7Y0Z/6iTWue63F4up3O52dev2L/w/Vb54ecP4NqpUxHnu/tSBS/X42nXu+0Z5xLXsvejQHAV9qzwwMAAAAAAAAAAAAAAACA/4ZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAa3376gB+yPG3f59wHZ9s+M99B1dtH48f1v6r2v9xzcTxR5kez23O57ILHq6vals+v1s9ftT5+Rq+4BpO/IHjo8V/PVPzvt5Vy9aj6Xj4jul7Vdsvmwtvv9dYV+v3HtDbr9U3V8f/9vXLvUxvbc0//JP6Luo4Z+L4vd7uWXmbOp6xvfX6JzM+t5Lnq+H57YoFNv2q7q1sq93xD6Zmu5/u/zU8PrX3R5xMzhj/Efvv7VPz8eutpufOu8/N0+N/93fJ02q91PZXTLja/+tsD7Pj+TbsVf+O9TX78H5+tA8q6/19fsT4j9l86OtLaj7uGeP/yxk/iF7mzC+7ZuL4Ta3HmM/VdH3V6z2H/07/My7wdfZ8xP7/Ur/oMezVnzBa8zofxpfP+f4Ozw+1vur6Xq+3jmcdn+d0//F6ez6HvuPQb/tK5rRXbL9rJgQA/kz8T3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWt++OoAfcT3++u9Tjt53Evsfb3/F9tvU6+X7lo3ntSwebuaoE3qbEGt+9ul5+BcMG6/fZdc76t3W9mVyrd99/OvUOV7ry4o9rhXcS87nZenJ17r9/F/V643t83jW9tvWO77v5vvh8XzeVl9RjWe8Hqd/wc3nkyvesCO/25hNiONs3fd6jPEsq8fa/3nePKHfSH5NOhPGH/cLxvtvA/o62weJR5wcHrH9q85VqfX91fF/uxEa3iv9ej5T+0dc3Gu9TLevejxtfM6rjf+7OWP+12yo/df2H0dbj17xAp4fdbMdxfirvp4OBfI3zxjPWdsPz+fT/Vev8S+CRfld173ri3t51fzPL1ti/3l73uJ5xl9w5vFpzbd5xPX99RH387n/+85XeW8Vc2e4Et9OfTJ6xfZ1/Id3AgDwp2bfAwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKz17asD+BHXcXxcx/G5xp9s9o++Y/t4nLD2v02N/7hm4vi7txvP2v+2467D+fButtXj7dX5v/a/rR5hqby2D8+FdS3dNteO75U+uydnxHEtS7htpCd/JtPlHvsfX+/U73fV8T/OmTj+8Qtie8vXvdz8fuXtUn45HPvPE+iyCVG9f606/9ful71s97jzJza+t53N5TOvFa39FdeKI7Z/bHt5tcz0q646147vZWr3sf8zf/BSP0iZftiBP86v1zO1f8QJ4lFfDhz1izCt/7qe1vUrr9dRHc8z3t+7q/N/vV9nXC/qapHrJX+Y2JpnsR6n1fF8DddLj6fd32fs/y/L5od6vf3lc11fYvcxnmf8BXX+yfPJMnV8XkNx8K8NV2JWc2HXTLjPM+4dXl79APAn5qv4AAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFrfvjqAH3L87d8nXPW43yf7/d3tazxXbF/jqf3X7mM8x3A828ZnWs7/4eutw3/38ede6nzV14tcAc21q2DG5/N3smztumoux2SY3wvM1uIVb0C93j5XDc892yybC7eZXutyuk0/6/C16v2dbn93y/YD2+T5bZvp+xvb28t/3/S7rjz+y/JhXT3WgMbHvyZQ7T+2fzdx/NfVY+y+9j/9OHUNTxAeB78jPwveffKf9Trb9T7i8LzqXBXv17Vss1fH55wJ43er47/t5cb03Pzr2T6ofMTxfMTxfMTF4nG0jKvxT3vEzUCN/8z3a7b/M+bbNnX+788KbXzOmM5nfDmc6+XatgLs0uu9jed5PVP7aa/p9bR+0SaO5yuO53P84XHWGcezXq/Z4fvO+EXFx/CI9vqN9Zi358MZlL+4916ew/NnUTOh3tlXzM3n8Fw+fb3VK7bftTO5PzMVAHdi3QIAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADW+vbVAfyQ42//PuH6ZLvf2sfjgbX/dWr810gU/+j+7uO5zHW0AT3qDR7OB36uWl/Hu93fWC91vRivlxh/7j5PD+0H3i7f+HnqXm9473PEgLbtfawV95L3eteuG5bzf9mzS3X7eqnz4bbr3RbP3dXxXLbe3d1xfnUE/42b15f9z59cvV+5fX0gqf3H9vy5DefDed58wY71eA0+kNfXdEr9X1j28qTmzqs+S8XNxiNutqe3knV8zuHx2ZY/Nf7Juer3qPPVuSz+/m6pfRBU8/kRH+7OGs+bPYw/Yn298nw1u9fI93c43555vq0fnMb8/3im9jUf6v2t96vq80Mbn7v7y9m+8vasL9Nq++F8WBfPsNey9avmT63HR9xh/SX2/6r5MPxZXK7H6Kz/L8Rw/NvyeVqvl3a/nvGGbfsopajvEp7DqVbHcnoleg33P21259zzoeYbAHylez/xAgAAAAAAAAAAAAAAAPCn5hAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBa3746gB9xHR8f12eP8R2x89p++jhhjecaiWKvOj7DrhjPePjxF1zxB46YcDU98/i8W/4Py/m8bfyPdgGfXlf+3n56fRl2nF8dAWOm9w7TuZ/XrlnvthVbN5dfuwJaNz7bTM8P0/PV8P3Ne4dh2/I5x7Ms/mxZflZ177wt38Ytq/d1E9C0m9dXFuOv9Xj79Mnry/ADybZ4bq6vR8MFUOuxNf8D9sO7Cv4ajicNZ4ylptoRJ+fx95Lxveq7rb2vs00+j3p/a77F/uvtfcT2Z51qc33Vz7Hey/TcWb3iYn3FCfSM+V/rcbr9eT1T++qM+VDb83P9GuvlkRfU+sWW+EFiXi9a/vfrbfGfcfzPN1th+vw2Oz55/OvDY1Q/dn/UD+pzfjY5nmG1Hvm+13S9jH/W1/LzGX/BWdfHmz/PbvOIM9Yr3q/J+S3PtSNRAAC8H/sqAAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYK1vXx3Aj7iOv/77VNt43O+z/f7e9sfV2mcxno8az3T/02r8dzd8f6/4A8e1LSHgH+p8nutleP45zvoDrXmfTtovuOJvGF9PuY2616u5k1NtutZrQGqFfza81tV8y89SrfnbPetMzw/mH37E9F747UzX1937h3+WX/bW/mv7XRPisSyede/ap9V3OcOu4XxYd7vC9ebX2vXZaFktvp3hd0WveH9rNkz/1dPXcPHW/D9j+/xqIC4uRy7fXfU+PTf/erYMfcTxf8QruOKEftZ4httXtV5q+6rerzo+V2xf5+dpOZ7YvN7fR82fnP9xM5yv99l+IJrOn7N++BU94/06hxeMmp+v/OFgzLfh8c/yFwGibdcbvZbtr+p694r9P2M+5Plkul7Gv9c4/bJltl4ewy+Lzpv/vxk1/19hP1DnkmdMznpn652qz+7P4alz+noBgPdl3wAAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs9e2rA/gRj9fHx+PXz7V91SsdPh54Ha39cc3E8YeJ18vPdVwtga7pGxa7r+lfo8/9370eh91+frv7fLWsvvovaL/hir9gXb5tsiz3r7oXi/c2z1WtebcsN8fn8rg32aaOT21fEy5OneP5luu39h/bz69ds/33+trVf7Zteni36x1ef7Nt4zNt+Hrfbi988+vN+7HhZ8HbO4f7zxu+2v9we36qZY/X2TWdz8ukx9N3q638LFsfRoYXrxrO2eI5z7Z5PvL4tPbn8MuKx/BmssbfX0XF/ofnwpr+6/Z6w+M5vXWr89sjDuh4/FGur3y/7r13mI6+jv8ZX66eMT8fR8zQ8XfPy643qver93/v+pqW5594v16t949nzbfpD1Oq4XqZNl2Pr+H+a/6c1zO1f9WX//mzsuH8H16P6vi/YkDPGNC57P+1qNe7TR3/d/LKtTITx9/VlWhXpXTbVt7p+wsAP9Pd9wEAAAAAAAAAAAAAAAAA/Ik5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsNa3rw7gRzz/6/Xx/Lg+1fZ6HKnv13/XYmm9/w6fu8y1/R+x/2t8QJvj3NX+o7aP43+MJ1wU86FGX/OTP7np+XC2+3XqfJ7r8Wi/4Io32Pzwfy/f25kw/jDTe5PafS6V2H7bVgD+T6b3hrH9tme1269ddX2pz0ZvZtv6NW46/4cX7HX1m98lzJoen23j35+NRsL4h2XjM3+962a4WfX+vlk9jpt+IKzdbxv/bfNhcNW5JNfioov9I9TJ4Zwdn1orNR+O+N7ziONT25/D+ZbTP8bT26fmvd6H1fs7Hf+vZ/u7vI8af83n2L7G84gZfS1bfM+4mE7PD9P9b1Ovt+bnedW/k91evr1i/nz2+z5/V+tr+u+Cj+f/8Ob2NRx/vV81n181n6dfJg/Hc17P1L7Xy73lfIim63Farvcjjmd+do/1mOurNZ//bOHeH2bN19d9/x+P6b1PzZzpkXzFWnkOT53bxufu6v0FgK9kXQcAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADW+vbVAfyI53/5+Hien2x8Xanv4zxS+/OX1PzjiscPjxZ+t6z/ow1/F/s/XsPtz5iftf84/tPpkC3Lhzo+Ofx1N2DWVetxeHym+7/77c33q/Yf2+f7FReYK0Q0vlYvk9eWOPZH3LuNJxtwX9N7vbvPJzePf3wvOb6ZGe5/2Lrxn1a3J+PvWoYnuGnL3kVtU29vta285vNh2RWPv9vYdr3L4qmG362Ovwuv6vVuu7/5s4jP/0C+1poMsf/66mTd4lLbx8/tpp1n+6Cv5NpfzW6eaz7X+Gv7bXNJjae3T83XqfHXyz2n86Her5jPZ2z/GG4/PZ61/+l6H8+fZer19vxp693j+OwXeP7qNfzBYx6fOGOdw0/XdXzq/aruXl+vOD7PmM81H87rmdrX/Pyo8Q/HU8ez3q9qvn53/b8EZ/1/Eq52vz6O2n9rXvO5fzGzNc+G9//76mu2/xr/K9zguvY+496qxPLx8fHxzHuTZtdMNc/4AMCfh3UaAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWOvbVwfwI/7d//f18e2X16favv6tnfd7/bsrtf/1347U/oojf8XjitczxpP7b+0/WjjjrhpPvd7qqAG1/PzlP5+t+xjOleOPcjwzYfxmuP8cfx3/q+XPu/nlP8fxMZzfdcR8y/NJTf96/D/0/25z4XHO1spR28elbjqeOtfm/qtlc9X49UbT9TK9d65z23G2X1Dra9v8MN7/tJoPw/1Pq8/i8/nc2n9M9x9tq5f8KDK8H5iu99p9jef8t3bBuV4+98rtN1ftv76LWpefw/u9ZfVbN0zrrvff/9q6j/n8Md6+Nc/72+nxH673Gk/en999Pxnj+ff/4b+27uv6dbaE6P3PvUA5a3HF9ld9lsrX2ppPux4xoOFPNK94v/6H//ifW/+p9cfHK9ZKzc96vTk9a/yt+77XjpPzI69dsw/X0/1P+0//8X9N7Ws+1/a/nm0zcMaXJ9Px1/bxawM934bTs47/tLwfiP7Tf/+/pPbT+fOKf1e7x1PXixj/8P2q8VffcvjtZc50Pk/7f//b/ye1n87nqscTv/eW16/ZfK7xPOLL3hr/9NfAHssewP7TL/9zav8azodz+P9tqPm27XprPH8ZTrc6ntP6fPj59v/xMfzBXbQrmo+PV8y12r7aNj53t63WAeB7/E9wAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFrfvjqAH3H+cnycvxyfavv6pfX9+mS/v4nHCa/Y/XW0H8j9D8d/XK09P9lwvvX+W/tsuP/5+Kd/AT/V9O2q82eNZ3h+vh6zA1TXr9H5cNtceHf2Dn9qt8//ZXvh2n+OZ7j9dDzvdr1393b5HKmXe1kX/7b5Z1m+vV29xA3Zunyu+svY2L41v/v6fhifn2vZ9V4xnivmw3T/1WT/2661qvGPWzY+d3fePD+rbfHPz22j3WePuNidwx+8PI6z/UD9ICKGfy7Lz2nT9/fu4/n8iPl5DP/d62s6nl31+FqWP3fP5+l6r6bra/p+za9frf8zf1B/b6/h652ul2d+2RjzrYrhnPGLmXe/3unps+ZzHc/Xsvn/zqZn2pr5z/HcbO23jQ8A8Md5rydSAAAAAAAAAAAAAAAAAG7FITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLW+fXUAP+L85fh4/XJ8um1xPVssVz1O2MLpxxVr/7V9dMX+j2u2/3dzHfUG1P5b+/H+qzo+d1ev94oFeXN5Po+Os/7ASBh/WP/T49nnk7n50Fr0fXVtz2L/4/FMu3v805btbXN+1rWi5kOul+GEm67f6fb8XLXAbp4/0/G43p/b/7r5IdZLX19i/9P3N3bPF9tW71WOf9kG9O7zWzV8v8bXlyjP57X/u786jPc3hT9di3c3PhfOdl894uTwqnPP8Adlj3i7XsvGf9o1nM/r5s5oenxqfU07h8OZvt7z5h9ebIt/WzzPj7g5PIY/uLum44n91w8q4+2dnh+mnTd/2/KMD0ev4Q+u83we6+U1/Hfun9MfZsXxf908P7fVVx3Pmg+5/5w/rXk3m5/T13vG+Kfnz+n8ubP4leSP10gU/zC8E8uey95VTH/lbXo8q7wXAIAv5H+CAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANb69tUB/Ijz2/Fx/HJ8ru0zdv65bn9z5fbtB3L/8Xhj7X/aeDy1/ys2j/1PX27Nh239f8R6qabz7Yj5wxebnh/e7fj5cH3V9XR6fefnWTd3Xi2gdfHf3fhcMtt/XStq+5xv2+K5ufHrvftaJJ//1Kbv17bxF8+/MB3PtnxbF09bMMavd9q2eKpl8R/55fNMHO/qOId/wbL7VV/lxMfxexue+/NYTj8sb9s7DJt+tHvExf1V9w7Tm8/hfLum62VYjX+bmp/nsut91MW6fhC063Lz/HDGC5i+v9vyp9bv3etlWh+foUD+ps4P5/AHxbUep9X5pPffxvOZ5/PW/DX8d+ifHzH+OPzT+blNzZ9tpuN/xQR6Tj+Axfqt4/Oo9RXrPY/n8Hx1+n8zvswrtq9fea79V9OZUyvxObz1eU3vJWP76dfIAHAndrQAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWt++OoAfcX77+Dg+ewVH6/uqxwNj//n4Ye1/un11DffP99X8z/kzm0A5nqr2H/O5xn9sq5d6f69tF9Bc8XqPbRNcDWe4vup4ZuPzW+k89g3vbHzuiT9w97UuhnPE+PPeJMcz27/5+YtN7+Wrm+ezevkX3ux687Nm7H/62XTb9MBPtm1+q6YLJu8/W/N1xtev+C5ner0+Z/ufdsQB6o9T0++K6vPO5+NZdqv2mR6g8f5bbj5irp3D/b/qXBj7f8TF8RXv1/T1Thuf26Jt8VSPvPjOxPH7xc1A/WJCvN46/2wzHf+2epleLz6umJ/H8N/VjvG84hdtHnVzPl6Prf20betpVfNhej/5rPN/rK86P/R4WvNeL9P1GOeT/MXAWdPx1P6f+eXGrOf4y5kozyfD+Zbrq/bfmm+rr6JmzvSVvmL753D/0+p4Ts9Uz+GtUn53EvvfNZMDwM913x0nAAAAAAAAAAAAAAAAAH96DsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKz17asD+BHX8dd/n/LZdv/Ud2vffiD3H48r1v5v792ud9pwPmfuL3+kOj8PJ+hxXfEHWvO6fmXD3ef5x3zy0+TcOWZzuXa/zt3jH95rZ9Nz290N51uux7vnP/yzutxN18uyeNZd7xn7f7Plpa7X4/uxu+db7r/dgG3Xm02PZ/+B2B7+QDd/+X/EeqyPd9fNx6eorw37B1Ox/2q8/1258Ii5/6p7gdh//Supeeusdr/r7tdb558zXm+tlzyfrBv+VmHn9Uzt63ieefx3Deh0fdV8rl51hr7qDN086wpwDP8d7nq9OZ7Zenw3Z/2iU+6/vryajafWy3R9Tc9X7+ZctoGo8Zx5fWnN68v25/AD4XT/+cOFun+O96te7yu15nvqTmz6fyyp93Z6JzOda9PjObvTBgB+hP8JDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjr21cH8EOOv/37hKse9/tkv7+Z7j+2r9d7XK19Vq93OJ5rePxr99OuR4toenyqGs94PvN9R52wdt2wnG8zYfzmmv4Ny+p33QRaLFvr4IfUqXy6duvaUi1bi9Z5s+Gxl2S1mJ/vls/5eu+894Tlaj0e50wcfM4Vb9hRHwDq/Bz7z/P/dH4OX281vR+4+avAjyMM0DX+8Htz0/d2evxj/Od07cb2j1jseemN1xs/lppfi6Ja79Pzw7a5szrzy8aZOP7ukTcDM3H8XZ1Pavx5/IdNz5/V3eM5P56pfV0vnn3F4Dse8eHivNr9fQ3n85m/eFX7b/G/6he1ruF8Plo80/VV6z2PT/5svI3P9OzzHK7HbV7TX4TM7+bb+D+XfViZ46kvl+rzabxfNf9rPHl+fiN1bpseyVdsX2fC2r7GM62Ov50zAPxx7DgBAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtb59dQA/5Pjbv0+4PtnuH+3bD+T+4/HD2n9V+z+umTj+8QuG+38zNd9y/+4XPyLOtx/X8ASU14vYfwx/urzG69f8wO9Vc2e4FrOb75Xy3FDncn6u6Xzb5t2ulz+3bflc96o1/m3tLV/3Mr3fG8//dgHb6ivHc8b229QLrvvhvN8enuC2rUd81/T8cC172ZvLa/JV4/Tc8G7GP/ia7f5V1/ahOP6o/h8x/+v4TDum19Jo+mOOanru//VsH1TWfMvtl21+avznrvDH1fw8h/N5uv+/XM/U/jn98HXMftGg5n92tfE5P9r41/nktexl1Dn8RZL5eozxj3/wHutxuL7u7nG08XzF+XPaa/qLWsP6fFW/CBm7j/nwHN7v1fzMX9zL/bfmr7jeVc9l9Vv2S684ls/htaXu9KZnnldsX+/s9Exe459W86fmJwD8md37iQsAAAAAAAAAAAAAAACAPzWH4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1vr21QH8iOvx13+fcsTO6/HA2n9s/+nr/INcMf7jmonj72o872Z8fGr/w/kAP+J61Am6JXQul+n6Mn9+nbvPncN7n23Xm/cyy2orzyXHsguo4tzMv/Bu9QuL5XyO7af7z/Gcsf+7L1/D8dd3S3n8o5tvr/INu/16ND2fTPPy8FbG17s6v+V4hueH4Xr0OPWFtk1Vw7mfTedm7P8cvt5HLN78MWjs//Vma+kRx+caHp/p/qu6VkzXS3XGiqn1UttXj7iZeQxf7xUTYtv8M52fNRtyPEd82L9a/tR4puultp+O/1y2d34Oxz9dL3V+fm374lX+LGX25dv4+lXnk+G/0/+MM24d/Ufs/xX7r/lfvWL+P4dfDud8yC+TW/w5f+J41v1bna9qvtXrrf1X0/U76RVz8zn8aNTntlk9N/mZ6v3dVFsA8K8sO1oFAAAAAAAAAAAAAAAAAP/gEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFrfvjqAH3Edf/33ubafbPhPfaf28Thh7f+jtq+u4f63mR7PZWp+Vof8+b44PnV+eLvxH5bHPybENT3hLpvf5OdPNDz3vJvpvVjN/RxPNbwXVutfbPrZwv3lR0xvfd4sP+8+P2+Lh3+h3rC437C+/At1fOrtGu5/mytf77KHa/hnw/V7xfyv7fl58tK7bS6fjme4/9fZPnh5xMX3FWvriP3XeGr/tf26F9vDpufObfX+6/VM7R/xAh7HGdvPDtB0/3yt6bt7xg/2zxjQGTcQOZ+vVo/T+vo7FMjfPGM8Z22/bG9+Dq/vtV4+4nqR5XhmwvjNunps8bzi/oHvO+v/k5C38+3+PuMvuH38w1/ce8b4azzT/Vd1PpmOp6h7jeeupX3cK7avK0VtX+OpmbZrpQaAe9mzwwMAAAAAAAAAAAAAAACA/4ZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAa3376gB+yPG3f59Rj/t9tt/f2f56s+OHVx1Pfq46/tdIFPBzHHXCjQldu2/Ne/zDjnoBdTz508pre839mpzD3df4r+nFtMYzPT7Tls0968ZnmW355lnk+/peYFf//GTT9+vN7u/0/JO3S+dMHHzStvyfns+3qQVpfvtS4/vJ3L4FdPf91XnaQMNnXHFueNW5JBZ7/dixxjMtX29s318F7hqf8Vdjw/lw5sW99v9M7R9xQB/xYarmJz9Xzbfpu1Xj+Uv8Ismz5lv+okp8mXC0/l8x/GeNZ1idH+p8NW1b/LVeXnHBeMX4n/lhLebn9BfHdm1n1qn5/8rz82x91Xhq+/HvmcXxyfUY9fHZtR5Vj7ievj7ifjv3v+eLtPXO7on897n79b5i+107se4Z5+a61waAO9m2LwEAAAAAAAAAAAAAAACA3zgEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACw1revDuBHXMfxcR3HJ9vGvuPxwNr/x3T7a1n/02r8b+azdfJ3R7zB0+m2Lt+WqfPPYTy/a3w+r91P36/h/uXnF7r72j6t7g1z/zYn/IDhtajuDevknOdy89VPlcc/tp/u/+3cPP/H652vlR+O+K46nGfsvs7nsf/bm16/8svn2P82295t39y2/dU1PP9fb3Z/R+XJv/b/ZnNbzP3XGT93iffrEW/YK8Zf46mm55Jt6njm8sp7jV3j/+vZPnh/1HqZng/rFwfqZn7YI07QdTzPPL8N9x/b1/nzHK6vczjfXrEAnrH9I272HvXh9PB3vr+n1lfNh216vUQ1P2M8dbXI9TI8PjWeer+edb1Ird9PrveaP+Pfa8wVE1vH9bTm8/DL2BpPVevxVfuP4/O6nvE3zJnNzI+PV6yV5/DSPn2902puvptt9wsAvse6BQAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKz17asD+CGPj88f4zti37H9VY8T1ni2qfFfI1HwWTWf4w8clxt8J1fMh+PNbm+ez6M6nvl+ncP95wnlzRKIn2d67zbb/bx4Aevm8mVzw/j42Dv/XG82njk/7z4/DFPv/KkMzw/Zu+Xz9MNdFZ8F7256ONeZvmDr13fl/UOtx+H9W02f/Lh284K8BuM/8ruNNviTsX98fPyOdzPTydmaT/dfxz+3j+N5xPaPfW+7knq9x83nqm1qPr/iBy9XXIzOmv/T7WN9PeIEdN68ft9NrZdfY708Yv81n/PmNj9btOs9Y/iP+sFpdA5/sFzjP6/nUCS/zzm8/v4lXm+db7PhfMtfZFgWz+vm69dzuB5rfr5S6y7fr5yfrXn/cL/m//AXhZa9SzuHr7fXS4vnmffP7+MVc+257GOLd/sfXer11vGs97fmDwB8pXfbNwAAAAAAAAAAAAAAAABwIw7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs9e2rA/gR18fHx3V8sm087vfZfn9T20+r8VwjUfx+28aT74v3q6bbdDof2/Kfe6n5H9sf53D/rfnvqN/2G674G9TvTzS99xlOtvHcH45fLvOnsmxvmKnH75sen9r/tvu1LZ7hgsnrY7Rtfcz7jWXxv5t8v27+Lu3u+TY9n/T1ZXhDs+1+bYvn5nI6Lxv/63yvv52Yhj/ODdeye1vXum3xj4vX+4r5UOeG6Up81XdXw5uNK9fX7OahXm/eS8aMmK7f6fE8h1/ePuL1xo9d5sXrzeMZTffP99X1Zfqzl/N6tvZx/nzED0KfdT2qXxSKzngD8v1d5lHvb0y4X+OzyKve3/zB+2w8zxrPcPxZjSc6p+N/M3U86/z8yh8O1vptzfuHj3E9ir/gvPn/U5Hvb/SIO/RXHM+Sz/Vaey40294NPIe3MtvGZ9q6Z1MAuJG77wMAAAAAAAAAAAAAAAAA+BNzCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYK1vXx3Ajzg+Pj6O63Ntr6P1fdXjgbX/2P6z1/m7xXg+ajy1/2o6/rsbvt7raDfgiAHldHu3+zts3Xy1zXh9tfZ5ut12v+J8csULeLv8fCfDe7FaK9u2VtbS77v7Wpfjrwm0bK89vjZWdX6o47Osf/6F2y8Asf2wbek5Pv/Xej9nwvit/+HrHX9VtC2Bohr/3fcz4/IDwM292/2tptNhev82bDycG9fjtexebXtWy/HU9md9+dOaHzE3r+HF9xX7r/E/lk0+dTzPer9S63n13cy2+aeG8zrbB+9nzM+az4/6OWW8AdPxV7VeqjwfRnV8ruH5dnq+qmr82/bC/e92t5chr3jBz+H8OfMXkWbV6z2XrUdn/nCwjf+r9f7xrC/rhvOhvjp8LIu/1m81XY91vzGdb68638Z6r/mT72+9X+Ofpcy+nH8OP8FM19druL5y/l/PoUh+x14j3ts8l8f2AAB3Zd8DAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArPXtqwP4Ecev18fxuD7X+NsRO2/Nr9i+qv0fnxyWtYbH890c12xCXMeyG1brt3Z/9/p6NzE/t93fdetL7T+2nx7/t1tPNzGWf27De41t8tw8/GyR56rh9tNrS5XXoulfENvffS3K8Q/X1zbb9ibb6jfbVi/b6n364YLvm76/y96FrEu3dfPDrgE6ajzbxnP6ZcWy9XdcDOjuj4Ojr7br3LmtFu8++Q/X+nnG9871PXUd/9j+zPnW2j+G48m3N89ty/K5mq7f2L7e3/pXfF81njg+NZ8fMUOvuJjW+WE6n8+4Gav5kOerKL+KGq6v82oV8DjO1L7Wy7PO58MPp+f1TO1r/X58tPGs92s6n+v413y4uzo+dT5/xXz4iPX7UfsfFqPP81WtryrfryjPh8NyvR9xfOJ0W/Nh2ll3oOPP47vGZ75eZvt/rnuZOSfPzbH9Kw7lc3gqnL5eAGAv6zoAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACw1revDuBHfPsvHx/P87Otr9b5daTm5y+t++qI4WfD/df44/Bnx6fz5m/tX8PtzzZAj9j/+P2d/wVJjaam23T/08M5rdbv+PxWLYtneDr8E9RXvYD2G0o+b8vl6bV0W61kw/HnubD2H9vfvRb5vjr/HMb/++4+PMviz+vR8Po1vVet/T/is+n4/Z3eG44/TMXut43/3d383VXuf3zDHU3Pn7Pdz7v9BdzctvGv9bts/R1/nq3r482l4ax7w225Nm3Z0phNr6X5/raAar4dcXNe258xnrwVq/3n9ql5r/eojv90PHV8aj5Uj+HxGV8a67uEOv7xF0zfrzw/bHv2GtbHf/rvXg9XwLLPss7rORPH3/sfvuBXnd+u2fx5xBtQ5/NXjP8ZXwbW+1Wvt8bfX2ZGw/kwrY7nfD3uGs+zrhf15cBR+2/Nc/5Pj/+y9WubnG9Rra9XuGF1LX3WtSsmz/PmyfCK4T+Ha6uupDWT3+y1KgB8qV1PXAAAAAAAAAAAAAAAAADwTxyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABY69tXB/Aj/t3/fn58++X8VNtf/o8j9f36d1dr/0vr/3qm5rn9+Wzx1OOQZ4yn9n+04c+uevwzxpPjj+2veHt/+T+GBzTGU9XrrfHk/qtj+hdE13A+3Nx4vUybTrc6H35umf5H93V+Hp9/wi9YNvdMr6XT/WfDa3XN5fG9Q3ScdbMxE8da03PJ8Nx2xvbHo05Ysf9aL8P5WW9vvV+1fmv/VxzPPP7LnN/agB71fsWCqVvnOv6v6WflZc+y0/1viyfX46s1P+O7q486n0yPT7zeuoHO8dfxyS9zWvNt+Twfz+z9Pf67mHAxnqtuyOoCk/uPzR/DLydzPszGc8X9xnS9TL8gqPXy7//Df03t8+2K13vm/dtc/ea+YzL0uSQ2H39XEX+gfs5UDdfW//M//P9S+7w1ifG/zvZwkWuxLl0xnnq9R0zQa93LzFn1/k77H/8f/1tqX/Oht4/5Gd8uzcff2j/jDPSYflla32XWeo/j82/D61HNn//p3/+vrf+6XsQvbkzXV1XH8zU8H9brfQx/+PItX259ObPL/+vf/ufUvuZz1eurtX8Nz893j+cZX8ZOP478kl9+Nq84Pv/jt/8ltT+H/1+F6fyp4zN+vbm+dtVjNb0fqONT/IfHvT9ofS179J3+2sDdbatdALgT/xMcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsNa3rw7gR1zPv/77jNcvre/z29FiqccJW/cfV2yf+18W/3HN9v92pvOtWhePBOKf3DwdruF8Pq42Qc+vL3WBac0La9HXqnuHj9p+m1iLt7/eatteI47/tnzeFk9283jy+N9dzrfhAh7O/3X1tS3+Zflfr/c4Z+L4zbbxGb7eu9fL3eurx7Nsfq7db8uf6f6X3a+jxrOsXup4vtt+7xrOt8n6zV2PX+t0rdz7Zdf0XF67P+N4TtdKtS6erw7gv7FtfKbV633Exa7WC39u0/V1LvtgsNZLdsWH96N+0Nf6P/MHibO2xXN32+bzbevRo75Mi/n5Wja/vZvXsvnkmfOtNT/j/8PwjL+g5vO6643x1PyZHs+qzm91/X3G/cYr3K/pyp3+2Og5PPW/Yq3cfTyn1dqt7AUA+DPb9cQFAAAAAAAAAAAAAAAAAP/EITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANZyCA4AAAAAAAAAAAAAAACAtRyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLW+fXUAP+L85fh4/XJ8qu31/Fy739q35h8fsf0Vjx9ej/gLajzD8fO1pvO56vHMBpTjiY5rtv+sjue17QLu7RrO51y/9faOzw+71jt+nqPOJaae71q3tlTb9hrbxPub82G4/XS93z7/p+O/ef6P39+b11d1+3qJxu/XOdz/NuP5Xzfztf/W/ObT5+3V+j1yPU5vQGv74fyfti2edzM8/nk7P1xfd+4/v1a9eW3d/jVyzIVte4eay+fd71c0PZdMu3v81WP4YVb+38u5bsZtzmXjn+vrig9fR/0iSey/flElD3+L57z5F2e25Wf1jPfrFf9O/HS91HiqZ345NluPr5vP56+b13v1zPkwE8c/DI//tuuN5VLzs84P0/X7iON/5/V3OvL62ryKX8H+eA3XyvDO8/a21ToA/Ez33RECAAAAAAAAAAAAAAAA8KfnEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFrfvjqAH3E+j4/j2/Gptlc87ret/cfnLvMP63/atSye26v5U8f/aD8wfn9r/9dIFH8e8f6Ou2Zv2DV9vcuG84jjuW18+nwV25sf/u9tG5sYz1Hjn77eOrdtG//hqWF+71Ann3YDxvOt5v852/94PQ6bvl/brnedWPDr6mv4/q7Lz5vHU+fDPH9Wea86Wy99vRiu3yhvH26ez/Px3Ht+zuoGdDye2n56g96aH9PjOd5+Wf5Heb2bfTwabz+a/8O1dY3XyrIXk9viGfaIk8Orzj118hke/zP2n9N5Wz3e3PDHLh+PeIfP4ZeNj7o41g/el6VPfrSL+T99v6o6/2zzrHfsaPl59/G5u3cb/23zQ62v1/Dfle/13pqf+Ytjs57DL2/r9b6Wjc90vdTrfcbxr+1rPI9YL2es3+n8nL7emj45H+L4vJbN/+9kemarzxbP4VR4xdLdNj4AwO+364kOAAAAAAAAAAAAAAAAAP6JQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGt9++oAfsT1+Ou/T7U9YufD7a8j/kDuP7avxyHr+FyxfbUtnmV6/rcfGK+vafKHf1LnwyPmQ66XqMczux5V6+aT0v+7zQ3mzu+qtVjbj1tX69MBDd+A4XzI+ZP7X5agy8JZF8+7WVYv8uFr5fnznIljrW35vC0evlStx9vX77Z83hYP33X3/M+voupnHfXd2GDfd6+tfr3Tz+6z3VePuPl8xfE5hl88P+LtesVw6vicMf6cntP5GW171bJNzZ95cfHNHzS15lWtr2nb4qm2xf+s+XkM/53sazqebfVYN+ctnul8O9d9caN5xfGs9TJdX9P391EfHnO9tP7P/MW0e7t9fcX79Yz5UNtncTt55vlk9sOIOv6PPF+15jWeO5td2e9veOeWPYen2vwuZCaM34yP57aXbwDwHe+2DwMAAAAAAAAAAAAAAADgRhyCAwAAAAAAAAAAAAAAAGAth+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABY69tXB/BDjr/9+4QrHvebbv/ZuP+o/nP7qvZ/jUTxvo52A67h/Mn9R4f84Ucsy+fx+XDb9U73P+nN1rq+VrQfeJx3H6AY/7Jar6bz4e3UfIjtj235uU0ez5kw+KTxeon9R7n/6fjvHs853D/fNZ7Psfvb5/N4PG1Ec/+1HtXv18r5Vl8mtObz7Yfzv47ndP4Pv8w54gBd4y+XmhRNTf3pXL676etdNp7Tmf+ItVinnvFXOXVuHp57cv0us22urR7jDwvTYoXFLwKc8YLr/PC6ef6cN4//Ff+O9TPmW23/cQz/Xe1rOp7ZeqzzT/3oq9b7NtPzSa73mD+5XqI6P9d6qfNJ9Zx++M31GMdneP2tajzVGfPhEfO/xv/ML0Oa3P/4/n82n7N6vTH9X9cz/oL7qnfq3f7HkunrHa6Uj2fO/Zk4AID/q3fbVwEAAAAAAAAAAAAAAABwIw7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs9e2rA/gR1+Ov/z6lHvc7YixH/IHcf2wfr7f2f1ytfRbj4ftqPuT+3S/+RK5HnXDbhDg9f47Xo3rnD7JubxLleIZra35uWDY5xLl5nWXDWd2+HpfFzxeL+TCdb+P5vCye2v+2+efu8zn8n9R6PGP78XeNyzbotftt8xu3ktfT+APX8ANnjifX140X7Bh7flTOH0zF/qvx/nflwiPmflx68/XW1+ZnvGH1el/L7tf0XDhtOv4zbn4eNX/yZrU1P5fd31ov1Vn7j+OzbTy31W8en+O9/u71M65458dzKJI/Rp3f6ny7bT2tXvWLYFd9WbGrvvL8n6+3NT+nv4h0c69l4/PKL6Na/I84P9fxedaXjVHtv8Zfx6eOf7+/s55x/doU/ytOtc/8rNzsmkn2qeMzO5P0fKj5tu16AeAr2ScBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAa3376gB+xHX89d9n26a+6/HAZf3n9jdX7+9xzcSxVR2fnD9vNp6V/LyXfL9iwVyxYHI+DM//8vknMtfeyrZc7mv7m20O3019Fon5cFzDBTBdX7H/bfV+e8aTH3HG9u+Wb9seFqrp/fD0/L8unrq+1/6XtZ9WB6jut7dd77Tx/NmV/8fw+nWcMd9qPFFN/yPegCs/AC/ivfz3jT8LzubOOdz/dOY/Yi3mqaTOzTGeY7j/89z1d2RvPRd+9Ho5YwXUfK6m+88VFr9oUMdzm3fL/79cz9T+ebX8qfk83b6q49njaeN5xvv1iA8Ltf/Xsno58xejhvvP++3Zh6n59aV51vUoj2ddv2Y9h+txWl3fX7le6h1o/T/iHa7x1/v7HH75U+Ov45P/H4x6f+PwvN7o/+V4xbF5Dr/W2zbydeZ8jUTxD3V8ptciAOD327bvAQAAAAAAAAAAAAAAAIDfOAQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALDWt68O4Ic8Pj5/jO9oXV9H/IHcf2wfjyvW/qva/3HNxMHn1Pxxv3hrdX6u3ccfqPULf5i619jWPtbicc4ujnnvVveqd3ft2pzYK32tPP517R0ur9vnT50/73692wzn/3R9HWdsvy1/7r78elf0c71Z/Ovq9+71uM3w8xT/Qv6woDWvt/c8711g+XE5TFg59acfLqpt8VTL4n/FeB7Di2PtPy7tefwf8Xa9lq0tRx3Pc9eL/GWv0j5+jeOzrV6m46mGX1W/nXPZ+pLjOeoXSfIKMGq8vuL1nh/P1P4Rd4ivZQ+z580/iM7jGa/3jH9X/lFfngzXY94fLpsP63i+rla/25zL5odX/qJZzedYX/EJZjr+5/TL1WjbfP58s/rdZLYSu1dsXzOh9l/V8dm10waAP7ddO2AAAAAAAAAAAAAAAAAA+CcOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArPXtqwP4Edfx13+faluP+32y3z+q//H2V2xfu6/xAHyROp8fZ+2/TYjH8Pz8cU3/An6aZWv77cXxGd/LHO0XTMczPve8m/psMbz3j+m2b/65eX5uezZS7z9Xvb93H/8c//T1Lquv29s2/08bjr/Xy+yzY32WzeOzLR/uvgDXDdy28a+G87+Oz3S95HSo11vfXS2rl5z+d8//STV5zjebe4Zr5VXntni/HsPtr9i+Xu+7uftcVfP/1+uZ2j/iAD3iYj1dL7V9la83Ptzl+SHfr9n55Byef+b7r188aflwfsR6jAv8sy6oy9T8PIfn8xrPM96v6fjX1Ut+uItyPDNh/OaaXR9r/+fN/05/nQ9fQ3H8XnX8H3E+f43X42z81SsWcJ2fa//9ett4TudzXr+G4vg9fdeZ7RWn2ufwWjF9vVXNtbaz3Tc31/tb8wcA/szu/YQJAAAAAAAAAAAAAAAAwJ+aQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQEAAAAAAAAAAAAAAACwlkNwAAAAAAAAAAAAAAAAAKzlEBwAAAAAAAAAAAAAAAAAazkEBwAAAAAAAAAAAAAAAMBaDsEBAAAAAAAAAAAAAAAAsJZDcAAAAAAAAAAAAAAAAACs5RAcAAAAAAAAAAAAAAAAAGt9++oAfsjxt3+fcB2fbPjPfQdXbR+PH9b+s9r/NRLF7zc9PndX83O2+335s0yt98N4fql8v4b7r/V15Ami/QL5zO9V927H9OJS95LR9F5vXW3FuWTauvF5M3n83a/vmh7Pt7tfN39WHr9f0/nD942/LOKnmr5fZ2xf67f2Xw0PT95+qi9+RM2f6fqN7a/h/F/2OLjKEW9Wf2+4bG6bjmd47n+d7YO+en/rXzF9xfhrPPPtU/OPR62X1v3HUd9N1nji/Zqem6ed4x+k1IqZ3tzylXK+LfOXmM/PWDCPPCPGejnqF2Fm67GuF6/hveozxnMu2ztP19cZ8/mVP+ce/jvx9eXJeDyx/XA9TnvG+e3eV/vx8Yr5U9vX/HnEEe3x1DtW16PW/BnjyfPVMvV6z+H57VHHf3q+HVT3Js9lH0NMj/xruP9q25PptngA4Ge67w4PAAAAAAAAAAAAAAAAgD89h+AAAAAAAAAAAAAAAAAAWMshOAAAAAAAAAAAAAAAAADWcggOAAAAAAAAAAAAAAAAgLUcggMAAAAAAAAAAAAAAABgLYfgAAAAAAAAAAAAAAAAAFjLITgAAAAAAAAAAAAAAAAA1nIIDgAAAAAAAAAAAAAAAIC1HIIDAAAAAAAAAAAAAAAAYC2H4AAAAAAAAAAAAAAAAABYyyE4AAAAAAAAAAAAAAAAANb69tUB/Ijr8dd/n3L0vpPYf25f47li+6rGPx0P33Ud7YYd9Ya5v/yJXHF+y9Ph8Px5qEf+bjjXci7X2lq2l5muXfgzmV5L302eD6f3DsPzm73Mz1Xr8XHWXxDb31zeD0Tj+f9m9ytbtt87Yj3W/Kn9Z++2wOf19N0GaNh0/g/3nx+vh+v3PN8sP8MEegw/7FzTa8u7vQsZjueM/T9iQrziDTjiZsBfSeWfTc8/v54t4x41n3P+t/p6xAF6xMW6xs/PtW30z/xFleHNZ4ynro9n3KDkerlmN8+13s/rORTJ7zMd/zn8cqDWS82GOj75i2bTD3c5npkwtqr39xXH87lsfnhNf3GyfhYRK7KOf6+v2P/wBqLmzzb1/tb8ecV6eeYV4POGMy17xdx8vtncf3f1ftV8AIA78RkHAAAAAAAAAAAAAAAAAGs5BAcAAAAAAAAAAAAAAADAWg7BAQAAAAAAAAAAAAAAALCWQ3AAAAAAAAAAAAAAAAAArOUQHAAAAAAAAAAAAAAAAABrOQQHAAAAAAAAAAAAAAAAwFoOwQH/f/buJ9S366wb+P5zkrRN29SKSQT/4EyLgiBCgyAi0g46ETsWBUdyK6ggIoiIDgpOHFVH0jopggMRi4hVoQ5sETryD3RaQRJHTd6379vkZu/9DpLc3Ly0J7/vPee5v2ed3+cDd9Bm3XXWXvt51lp7/37PuQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtXZ17ADdxzPN0zPNpjU9s9nbfYfuwnDDtP5b2f5SM4tFVzw+3Ko3n+PZ2i89m4vkffT5PXfffcoQXXLxfpPEc3690/HH3tfN/cfHM2aRntzh3w+7tdXdbvLalAVTc/uRnrjcte3FAD/6sE+9d1WeHZvPDu2gW/2m8lb8LaWb4fGw2nvjZpVm+xNLx7MX9jy5+2VszDE6ULqBxwofd78XxU52/xa/Syl3SAaL6WbD63laPJ25fm7v7nr1cOsK1bQ7bL+EN2ML5ScdzXFLuTvn8zOHela7N5Wt5eH+38GXsEV7AnuZLdfswH5dmm296vfH8hwtu9f1N18PUHvaft1+z9vF8ZofVNX5ZlH5Yk41nn7L5Se3x+Gul+bU1+2JOGv/3w/hP5ycW5ssWjn+NPyxoNh7OKl6vwviJ1/Nw+VnC9T89f8bXG/67E+XjL5bm+1Y0jsch3RvTuamNtH4u7XoBgMfHuQEAAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANq6OvcAbmR+888JjrTc78R+H7n9pZUfpvPD7Qrn/wj/wjwdYf+ZOHzSHwAPOeYw/o/igIvzt7R7+XWXVZ99isVnvTCW08u9uFysXgtDc6/h8C6OMAHKl590fUjjrbr/ZkYff7nqDaZYmr+j65bvcfs9a8/tKr+/1evDheV7O+3W/2xAc/iupdv1Vj8/xvlbnY/FG/wx8AGiW2iWS4Oz+t5W34Cw/z283uqPBbd0rQrv7xIuPnsaPuF8puOfi/sfeW2bpinO3/R603xJ97olzd+seb3i8Innn2tVz+ceBsQSbmD5+NMdLMuwLbzetXh+Uun9Si3hy5z9WItGcjfE9yv88HEL26/py7q0ffzhaaj4ZeNePf5Qer/SfEzXqy1qnYvnvzo+0/Nhuh9VX+/gXxSN9+s4X8L1Mz3/RK17qY609F3CWv3sErYfO7P6MZ8AjMS+BQAAAAAAAAAAAAAAAEBbURHcpz/96eknf/Inpw984APTs88+O/38z//89LWvfe0dbb71rW9N9+7dm777u797ev/73z998pOfnF566aV3tPn6178+feITn5je9773Tc8+++z0W7/1W9Prr79+86sBAAAAAAAAAAAAAAAA4E6JiuC+9KUvTffu3Zu+8pWvTF/84hen+/fvTx/72Memb37zmw/a/MZv/Mb0N3/zN9Nf/uVfTl/60pem//7v/55+4Rd+4cF/37Zt+sQnPjG99tpr07/8y79Mf/7nfz597nOfm37v937v9q4KAAAAAAAAAAAAAAAAgDvhKmn8d3/3d+/435/73OemZ599dvrqV786/fRP//T08ssvT3/2Z382ff7zn59+9md/dpqmafrsZz87/ciP/Mj0la98ZfroRz86/f3f//30n//5n9M//MM/TM8999z04z/+49Mf/uEfTr/92789/f7v//705JNP3t7VAQAAAAAAAAAAAAAAADC06F+C+/+9/PLL0zRN04c//OFpmqbpq1/96nT//v3p537u5x60+eEf/uHpB37gB6Yvf/nL0zRN05e//OXpx37sx6bnnnvuQZuPf/zj0yuvvDL9x3/8x7f9Oa+++ur0yiuvvOMPAAAAAAAAAAAAAAAAAHffIxfB7fs+/fqv//r0Uz/1U9OP/uiPTtM0TS+++OL05JNPTh/60Ife0fa5556bXnzxxQdtHi6Ae+u/v/Xfvp1Pf/rT0zPPPPPgz/d///c/6rABAAAAAAAAAAAAAAAAGMgjF8Hdu3dv+vd///fpL/7iL25zPN/W7/zO70wvv/zygz//9V//Vf4zAQAAAAAAAAAAAAAAADi/q0f5S5/61KemL3zhC9M///M/T9/3fd/34P9//vnnp9dee236xje+8Y5/De6ll16ann/++Qdt/vVf//Ud/b300ksP/tu389RTT01PPfXUowwVAAAAAAAAAAAAAAAAgIFF/xLccRzTpz71qemv/uqvpn/6p3+afuiHfugd//0nfuInpieeeGL6x3/8xwf/39e+9rXp61//+vTCCy9M0zRNL7zwwvRv//Zv0//8z/88aPPFL35x+uAHPzh95CMfucm1AAAAAAAAAAAAAAAAAHDHRP8S3L1796bPf/7z01//9V9PH/jAB6YXX3xxmqZpeuaZZ6b3vve90zPPPDP9yq/8yvSbv/mb04c//OHpgx/84PRrv/Zr0wsvvDB99KMfnaZpmj72sY9NH/nIR6Zf/MVfnP7oj/5oevHFF6ff/d3fne7du+dfewMAAAAAAAAAAAAAAADgHaIiuD/90z+dpmmafuZnfuYd//9nP/vZ6Zd/+ZenaZqmP/7jP56WZZk++clPTq+++ur08Y9/fPqTP/mTB23XdZ2+8IUvTL/6q786vfDCC9PTTz89/dIv/dL0B3/wBze7EgAAAAAAAAAAAAAAAADunKgI7jiOd23znve8Z/rMZz4zfeYzn/mObX7wB39w+tu//dvkR39785t/TnCc2O5B+yVsn/Yftp/ffepvJhzPVD0ebteF3a92+dWM+bnefMJed7MfkDVPR1N9v+L4iS84uwDxfEbhXNbHZhYMc3oBYmco1WtD2n981m6mfG8M5XtR+gNq25fvRb1uV/2zcnF+jX7WaPcuIdVsPrledbwNvp3mRs/fbor393zDC/vndlXHwx62b+YI43n0cB55OZzDzTd+lo3/QrHitXYO+9+LcyUdz1J8GNuaJXu6VlVLn03T/E37r56feGssHs8eruZLeAWnfEfiYXt4f9P8Tdun8199vy5NdT5Wx38eD+EXbWLhYbs4nLfq+5t+calYt/Vnq56fufjhzvhv1Tb00129LVyf13C9jderND7j/rPmS3i98fpTnI9ruL9X50s6P/H8h/G8FM5/OpfpveomfTewFi/N6Z3ttXPVS+e/27sfALjOpe3rAAAAAAAAAAAAAAAAAAxEERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgratzD+Am5u2Y5u04rfHVHHYeDqa4nPBIh3/itDyydH7S8VT3P7o4HrIJOubsB6Tt5/CGdQuftP+Li89uwvgc/n4VX259fqUXMPoNq5OeHVLlZ41m4rNY2n/Yvrx/9/e8qseT3t+wfXW+tNurPbuMZfQFulh5/lYL5zPe76r7T5X33+4Ot1IdP6l27w67ubTrLTZ3Wx/ifKwd/+j5FQ+/WzyENyBqHV5r/NqqWezEr1WbhUL1s2/qKN6st7D/dC1fwvHMaS6G49nTfIxaX544PuP1MLy/UevHIJyeJQy46uuN86XZgp6uP0fYPp2faul6Huv27jmWfTFnD8ezzFlG7kftF4Wq43ON86VoII9oDwN6CQN0C+/vmsZP/Ll4Np7q8U9p+2LV+ZjOZxxvUev8fsX7y1z9RciwfRpvaTyMvj8W52Ma/6k93N/z+F+DtlkwpHvpFgbbGgZPGgnV/4LKqV/tfstanIvd5gcAeHT2aQAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq3AO4ieX+NC3zaW2PsNxvW8PBHFnzE4f9yP3Hivufw/6PcILmPWy/Ze2XsP28ZRdcPf48PqsDjpGk+VgtXU+69V8tXj/jH5D+hbD7ePzZXzjCC0jioVuuxObsAtK9K96Ljupgq+2ewYTxn4rXtjQ+q9sXK5+fZi7teuPDRnrBxfkbj794f0zbV58Nq8OzPP67nW3T8Yx+/qxWvp+GN6A8YbLmcbiNvh9VP7B1i7fU4OttKj5uhP0P/34gvIDqx/dU+q5oZEe3YGv2bDoXz086/3O4+JT3H7Wepj0++xTPf9q+Wb6k92uufneVtg+ffdP4qf4tvumje95/er3p+lC7gKbjj9eHUHX/1dLx7+EXW5bww5otHM8arlfV8R+vJ+n40y8WheJ4KD7bpvFQLb1fqer43ML4WcP87Tb+6utNpeNJVedjtT09YYUHvnS/2OLxZM3jLzOU52+4v4cn1vr47/XvbMTrT+ELiOqz1RauPem1pitzdSSEX7md1uKlufrZsVo6nwAwkl4nVAAAAAAAAAAAAAAAAAB4iCI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFtX5x7ATTz18j5dPbGf1PZY5qjv7YlsLMea9b+vaf+17fdw/NXjmbPhjO+obX/1rfQHhNL7lQ4n7P9IxxMGXNr/XDz9wztqJyid/6v/WzOOx6Z6/Qznc97Tv5A1P9INo3A9GT/XswtIz1b5Xpf1H8daKL6/1fFQnIvzaUfsx6d4bTviCa0dUHp2jte28FehzHE+Zv2n05+PP/0BWfNUOj/V7cul058+a4YL9Bzmb7r+5/GZtc/X/9r+U+XXW93/FrZP5z/s/7gKz2/p/pKuP6PHc/X5s/bRqPzdUvl5OI6H8H49FSZY2H/8aiN+eVV8nkm7D+enOh+P8AbsT0XN4/Nw9fxX79dPv+/VqP0e50t1+6h51H/c954dDuPX5vG1hj8g/AtzetYIpbFQ7UPvy14kb8Wxv5f3HzWPVd/f6v7T+Y+t4WE4/Jw7lYbD80+/ErVP5zNvn63Pe3g6rx5/Ku1/De9w+DUD3sVzT2X5shX/3uvq/Eql+Zjuv9XSj9a43vc+8Y2ofX2+ZP1vxR9+jT6e1Fr84Ujx4870RPryOfT81ctR++p42OLzWG38pON5LX7Znsr6r86vbirX86eXbC3ZBv+eULpydvsYOn1XUb22ja7b2RkArnNZJ2AAAAAAAAAAAAAAAAAAhqIIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANDW1bkHcBP7Ok/7Op/U9lizvo/ltH7fbp/1P2Xdx+2P4v7L24fS6y0eTj/dLrg8nsP87TY/jKVZ/MTr4VEzjrek+2msej3h1sSxVhyb3aTzU92+XLOzYXp2mI5sQsvjv/r+NoufOZz/auX52Otyc2k+dlvfus1/s/FUx3N5/3vYvrj/2KWtJ6nwQFC9nsTHnwu7v+3yq5vy82S3Azq3Kpz/Y/D7lY4/erxoNjfxo1H1e8DytaS2+1Sz4bST52Jt/OzN8rea+LzbLi2eu6ler5b04ejIHo62Zr8ne+/2QSu3ao+/SJUZPV/WcMfe5As3sEzpy7Qs/tP4XNOXe9UH3PizrNr1IZ3PpfhlafV6nlrDeK5cz0/86vIj24pjv/rOdnuNn+69qdH36rXdF4sA4DvrdUIFAAAAAAAAAAAAAAAAgIcoggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0dXXuAdzIMk3HiWV8xxz2HbZP+z913I/ePhtQ+XjS+ed6xfFZbg7jszh/pyNsz1DS+AnDM9YuH6t1m0/rw+0xN7crnc8j/AvV96vb2SRdzNP5LDbH8VDcf7Vu40ld2v2qVny97fKrWf/Dq56fvbj/Zsrjudt8Xlh+la8ncTyk57esedq+2fGwXrf4L99Pe8Vb3n7sl0tHOP7yfAzGE4+9cCyPQ3q97fbGZvM5ujx3a+d/L+6/WzhXq75f8DiJ5+ut6cuNOf292mH/4RdP9uIPHvf0izDcaXm+ZM3TeFurX76F49mqvwjAtbbi9WqJX4YXr59hPKfzE19vGP7peNJ8r87HJZx/++ntWYuX2q344bf4JNlOvFeH7L0A8DYnTgAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq3AO4kfnNPyc4lhMbPmifDaVb+7i8MZuevD3nNYc37DhK+z/EG43F8Zmq7j9M31i6nIye78l4queeoczpVlrcvjq36tfObotDKL1fzdaTON6ajT8dT3n+7ln7S5PHW3o4CftPVedL8fir871b/2k+Dp+/5Rt2sXD85fEWdl+d793263mvXZ/Hz8fq9sX7Y/V6Esd/9fVWt++1vqWvho9m+0s6/k7isVffq25rQ7GRY2ea8vu7N7vevTh+ml1urNtam1rCzas6Hi7N6PHTzV78sj3Nl5T84nGqjrd1Sl/uZV+kSsefjydrvsdfHMss6cuWdDxh/9XXW20bfPypJYz/Pfxi49rt5WHxZ/Vp/KTzs5WfZy4n36tHXv0afC0+Gm5hrqTzOfrHBKluuQ4A5zTuCRIAAAAAAAAAAAAAAACAO08RHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKCtq3MP4CaOeZqOU8v45rzvSHH7Y87+Qjr+k+fxEftnMM3ibT6y9nAjxetbmi/V8V++ntsvaCrOrfL2vTa7/CzcLNmbzWe7s0z1eML+52b3qzzfuVXV+VW9X7RbH0Ll40/nc69t306z+Innszpfms3P8IrvV3n+Vj/8duu/W/x3G8+F6bbfpcf/I47/8N120D4OZR+kXKvbo2DK3T2v8keRwfN39PEv5Q+b4eYYf7CZNU/tg9/f1D74ipverzWNz7n4914f1ePplo/ZePZ0PM2Mvp5s4e99r86v6vlc0oe7MD63wdfbbfB8THXbH9c4PrPme5zv2Q9I47/6estv74WtD5XS127pSlW9slW/NlzD0NnCXBl9fqpVr4UAcE6X9QQIAAAAAAAAAAAAAAAAwFAUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaujr3AG7imOfpmOfT2oblft3ax+WKp03L42tf7Tj3AHo7iu9v3D80Vh7PJ+5bbznCBW5O10P5e3vSubR33a7i+Uxzq7p9Kj8LWBxuVXp/m8XP6OtVef7uWXveRbpgFedXeT4227/K8706v7pdbzPl8RC3Lz5vpPFW3H+79STOx3CG0vytzvdqze5XeT6Wx3+v8VTPZ3z+3LL2U5i/6ePg0S0fK4X3Np6bsP1RnivF15sa/IOIJUz2LV1Lwv6X8PSzDZ7rcb4U6zaeVJrvS/nhvFp2WN2PtWgcb0jXk/ioHcbn3u+GRfZm+bgV/x7rNH5iRxhxc3q9Yf/pF3PicEjXh2w83eIzVb0+xPMTx1smzq8wX6rXh7X65W2cj7UfvmzxF/dqledLGD9LuL6l87nG8ZM1z2Xj38L7VX296f3Nx1M7P5ckXdmqV6rq/tPrXYtDJ3230W1+AIC39XqiAwAAAAAAAAAAAAAAAICHKIIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtHV17gHcxLG88efUtpGwfdr/scxZ+6x5Pp6wfwaTxo944HGa0wA9asbxVvfh+pyaw+Gn7bvlezx+xpHGzuixkI4/XKvK9950re2meO1PVa/N1fky/Noc52PYfg/bc71m8RbH/4WNv7z/ML/is3Oav4Nvj9Xi+Uz7HzwfR1edX+XPvqn0B1Qf0Efvn/Oq3h9Dc5hfc/h82uxxkNtUvhbWdr+Esb+H15vmVvoxaHx0rt5amu1dR7vxnHsEN7OHD19LvNllzdN8TFWPv1p8dCiez+r7VS0df9o+3Y/gYen63M0Wf7ErW+G65deartDx/tjr9+ivxQ+/W3i94+dLOv5sfpYwPtP5X4vvbzr+8n93In2ZE6bLHo4/n/81at/JFs7lWrw0NIvMWPW7ilR6v9J4SLWbHx/EATCQbuceAAAAAAAAAAAAAAAAAHhAERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgratzD+BG5jf/nOA4sd2jtj91HF3bH8XlkPNR2z/Xi+P50qTzI57vtHQ9jNe3sL38vcMGX3uqz0rlZ4ew/3ZnmTmb0PR+tbvewcXz3219aBYPaXzOe8043jL6Xl19lhl9Pamen+FVz8+lzWeq2/pTvSCm609x/+XrYXn79OVh2H+6/15avqcB0e3AEcd/cbw1y5f4vLqF7ffa+ZzDCzi6xWdlfhXnbjyX1Wt/N82efffi+VzCeIsffcPxL+Hl7uGEpte7NYvnY/CzTPVaHudL8e1N4y0XZmT8wVTWPFW9vo3ef7V0/Gn7NP7L8+UI82VOv9jSKx/34uncm70sqt6v9+r1M43PUHzeC+dzTeM/np90/rPxxPd3cFvx9cb9xx+uZf0vYXym41/LPxzMmu/h/Kzxy5x0v8uadxt/p/VhCy91rT7Lh+37zOQbik96ser7lcYPAPC2bucYAAAAAAAAAAAAAAAAAHhAERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgratzD+AmjuWNPycJy/1O7vdB+zlrnzXPxxP23006/vmoGcedkcaD+eSSpetzbffTNBcv6IeEH4a1/FaVnx2Kc3f0s163tcdZ8nbN6f1N57+6/eDieA7bV/ffTfWzabv7Fep2vVwvjuf0B6Q3ePgDTS9xPu692g+v2/OafDyv9P7u4fyn+ZiGQ3E8zOGA0sfrdPzJeLrNTfV44kf3bmtJ8fjLl/Li/pcw3uKtvTAXp2ma5mb3K1Wdv9XS8b++Zx90p/FZ3b5emGHhFwf28hWl1t4sX6rz9/6xRu3jeD5qH9bK8ysd/5z+XvCs/z2+X7X9p7Zm+ZXa4g/2w3ionp4wnuPzW7P7u4YnsupXS2txPm5pvBXb4y9Ohj8gfhkYng/DiEjnP42HtH06n+n9SvMrvV97s3ge2RbeqrXXUt5OdWR2+5ij9mQLAGNxQgUAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLauzj2AmziWN/6c2jYyj92+/HqPsHnaP7cqnf/4doXxcGni+TefZ1V9v+L1Oexf/PDYNDv7jK76rGRtOLMLi+dUGp/zXjOOruL8Hf3sEA9Igt2q4ngbPT4vbb9On13mrWYcj6xbfFaPZ88CNN1PL27/Td/FVudv8bvbcs3yJV3Q4/NquB7G/WfN4/xN4/lo9vK/U/52GktL1debxmaYK9ueHZbmMNmX4vbx1h7O5xJO/1YcD+n8p2tbt7Ww23j2+IOR2sPnHsdzcT4W36/q8Vfnb6pb/KfK82XO+k/v73pk40njLbWG87NPa9R+CQ8024W9y8zjubj/8OFoO7J4WOOXOVnzKcyvVJov6fjT+7UU36/R7cXryZ7+uwrxRztpPIfxE8bzFsbnGo4/bZ/OZ3y/Qul8puHZKX9rIzMXn8VqX4Vc3L+40utJFgB42KWdSwAAAAAAAAAAAAAAAAAYiCI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFtX5x7Ajcxv/jnBcWK7B+2X7C/k/Yftw/5PnRcuRBoPR8koYAzF622aXvFy3ix/0/1rbjb+oVn7b1V8FoObSPeW4r1rTvvfw/7D9qOvV/FeF7Yv30u7zb/1+XZVx1vY3v7LjQx+Hp738AKq99Nm8xMLF5Sj+noHj8+LE+dLcf4W5/u+9/rdienzSJy/wYFmTteScCixS1tLqveu8P7uYfs0s7aw/7n4YXAJ+0+XqjTX0/Gk85lK57/bWlt99nk9/GB8CRe4JbyAJX4ZlUnjM22fZth+rGH/mSVccPdmL3PS9bxaOj/p/S3Plzn9IkzWf7wfpft13H/UPFZ9vak9/aJTsS3+MKV4/Gm+hOPZwxNlmr9rfIK7LOl+t4X9V++PWxhvaxg/aXzmX5xJ4zM9f2b9V89n2j5/3s/Gn8Zzao3Pk33URmY/l3a91dZw6d9Gf7cHALfIOQMAAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANq6OvcAbuJY3vhzkjnsvFn7k6/zcUmv9yjuf3TNrvcIxxMPP42HCxPPv/k8q275ko8n3ZAEHG9IYy0NteqtsVvuptqt/c3WhnbzA51d2npVLT1a1XY/TXvYf9jes9314vivbt9MfB6rfheVCvtP8yuNn7h9mu/QWbigxPmyhe2b5Xuq2ePddMQvIBqJb27xYXJ0aSwUz8+2Z+M5wvs7h/HT7WPE0aXzX71Wjb42v75nEbqk8R/nSzb+JbwBS3gYSMfP9fZmZ4d0PPf3NWqfxlv+PY90h8nGs0/h9YYb/Jq+HCu2hvm+D748VOfjHsZnGg1xfqX5Uv1yJh5PzTAelzVcH3qtDrktvL9b8RcV1zCe9/QJJv4wJc74sHXWf3q/0vmsFt/f4i+6putzOv+VaiNzmrYwV9bitb/6erle7UkeAM7LuQEAAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANq6OvcAbuKY3/hzUtvlxIYP9R21D8sJ0/6n6vZH2D6VjodbdczZDZjDgEjDpzo85+p45k6L8+WoDbh0vxg9v+Lrle+359L26vSsV9t9/VmMs6pey8uF8Vm+Njd71omvt3o+rSfXivOxWbxVE2/Xa5fvoUtbn9tJF6A97D9tf2nzX836eb1m68O8he339F1R1n+3+DniDy/S/ku7z89vUd/he/PiuYzHE+di8dNpea7UvvxJ7+8e/oAlXDy3cDxp/HSTjn8O56f86Fy8nnRby/N8aSZeP9PfQ9zripcwPsOjVTt79X5XbC+Oty1MgDVsv8Qrbpgvc+3vBV/mbDz7sRaN5DJtcfwXC+NhC+NhjV82hvnSbT6LpfmbxtvabH2I94vi+InnJ/13HuIP99PzWHG+jP24Ni3xeaN2PtdgPPnZZ+ybtYXDX4uPzs0yMVb9JJjOf3p/AWAk3c4BAAAAAAAAAAAAAAAAAPCAIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW1fnHsCNzG/+ObVt2ndh+yMtP0zHk0r7P0pGATyCI8zfWf7ernT9r+2+fn2e0wuuHZD454HqXLy02CnO3VT1/KdrSbV4bWs2/nLFzy5xvFX3P7g0nuP4z5qXKz+bVLdPtbsBWfPy+a/WbgM79wB6S+Otuv2liY+33fKrm2bvktvtp4Pnb7PHwTgfj4E3pGav3erHEz8shP2nwv6PNDbT9uHiMIftl3aH+V7S+ZzDhOm21lbn7x6/vE3nM7uAPc2X6vaD52O+/oT3q9nZvDp96683+6LKMu9R+6345d5+rFH7JVwf0uvd4y/+1Erzaytef+L1v7j/eH6a3d8pjM/4i2lp/wxlS/+dhPjD9Nr4XNP1udn1run558L+XYv0/qbxU7m6pXtpHguZy4oc8wMAl8y+DgAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbV2dewA3cSzzdCzzaW1Pa/ZQ32H7sP8pHU/Yfj6y9txxabyFf2GesoBLwzNNr7h/+TKWOY2IsPsjjOdwPGm+xM3T/SJr/gj5my5AEvI7ic8axdK1s3qtjXMxjbV4Ly3t/uL2um7xH+9Fzcaf529tAI3+rFM+nmbX200cP8XP7hd3v8zPWNL1f68Zxp2RxnO39pem3YEy5P7ervjDgrT/4vapeL/ulS9HOJ7K0adjKTf62TbOlfACwrPMHPa/F8dD9W8x3dKzYfHDb3V+LeH4t+LxpPM5hw+ze3qWL47/6nxJ17clDOc0Hvbw/qbxmbZPld+vCxPnSxjQS7ih5ve3ekcqfvkQn3+y603vV7qeLOHLmf1Yo/bV0vh8Pf2iVii9X7Hi8cfC+NnC+FmbvazYiu/vWpyPab5sUetHON/O6Rcns+bxy+cwv+L7le531dcbSvOxX77Urp/pflopnfv03qZXms58+i5h9WgxlGYnGQC4ln0LAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaujr3AB6bubb9kZYTpuPppnr8R3H/l6Z4Po85C4j5cIPP6Wi2/szdwiEcz1ycYOn9Sm9vOvr0fuXjTzfgbEDd4r9UuDbH0lzZa/uPVScL51Ud/82U51f12j94fg1/vd3Spdt4Bhef3dJ3G/HZORSub3F+dcvHVHzBvRKs23qYjqfb+OsfBov776Z6Pbmoh9NHUDz/cb5nzevXh/TVSfyqZez4HH38Q7uwtb/6cvc4ebP2S7vDTCbN9Xg+Q3M4n93WqurxVM9/LBzOEmZ8HJ9R63rp/aqOn3S9OsL26fVWz89W/MFgGs/p9ab3aw9fRi3hy/Dq+Uz7T6/30qTxsxXP5xrG2x4GUJqP1dcbiz+c6kU+Xi9fP8P5jN9NhvEW3t8834uvN1Wcj9XrzxKeiLfCf/cjjf118Gfrals4PWvxo2OaKWmkjb0zAsBYPNEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbV+cewE0srx/Tshwntd3WOer7yJpPU9j+SMsPT7vMt5uH45nD/mPV/Yfi6+02P2H7+ai9gGNOAy7sP2uedl/ef7f47yZeb4ul60O321u+/lcnWCpdf4rXw0g69maWLfwLzfauVJxbaf9h+/r+m+VWcb6U70Vx/Nf2327z6ra3dDP2dlEvTZji9SQeTnH76vWt/F3C4NrNz+jrSbf9MU2w4niofpfZLp5To5+XUtUbQLP8mvew/2LV+djN6OlSqtmLzzlczI/q4Ow1Pf3G08yRrs1pvDXLl2qDvxqO17fq+NnLH36z5ku4O6bzU330ycczdkAv8f6Y2YrjM+6/2bvwdP738Is2S/iwUH2/Uun6lubjGs9/1Lxcer3p+ryF8baG8Tb8+OMvvvWSzk83ebyF62d44sj3o3D+4w+7wxNTeb5Xz3+veE6vN5XO/3asRSPJYz/de7d0bw+TJX22qI60rfisEX6FvPzZK1U9P92uFwCu0+sEDAAAAAAAAAAAAAAAAAAPUQQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq3AO4iSdfPqarJ46T2h7Lae3eMmfNp33N2h/rXNx/bfs9HH/1eKbwfs172j6Mny3tv7b9+mo4QaH5qO0/dWThOU1z+he4VcXxk67n0+slw2grnp90vQ3v75HmY9g8Xh9K9Vo7U/tVNpnp3nWEN6s8lsO/kA6nfPzpWSa8X2kupo74govjJxXOT3r2j5fO9Clwb5aP1ferWX5VP1t0c5T/qp7as8mcjr86/rvlY3H+puOJ86u6fZq/6buW8N1YnI/xYbv2XV31u6L4WTY938bjyZrHx7dm8z9v2RUsT2YJeYTnn+r4j1+dVD/8puEfz2fWfKuen/L9tHg8oaff+1rUPn1+T+N532sPiMl4qq+1Onfj8a/hYaZ8/KXdxz74nlej9unw9zjews8de70ojcefCh/dy8cTK/5Ev/p6n33f/4rap/GZt8/2lr345We3fEzHk36sX225qt0wqu/X9zz5v6P2W/Hvva7Or2rV+Zta05dFzbx3vX/uIbzD9z7xjah9mi/V8byF8dltPKNbRv8wJfQ9V69E7bfieNvDfKweTxr/W/jFxm7746VJ1v/3NFsbeo0mH0+3veV+s3dLqa3ZsyMAnJMTNgAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtHV17gHcyDpNx3pa03nPuj7C8sBjmbP2WfNpKm5fPZ58PrP285a1vzhzeoNDx5E1j+OtOL9Cc3a58E7F8Tk1i88jzd+0PP/C5rMVc3Or0r2lun11blWfBcqFZ59U+f29tPytnp/0foXPppd2v7rFs7P/u2g2/2l+lbfvFj/NxlOd7/F6mwoPNO3ioVi3/D2qXxaNrtn+m4/H/b1WOJ9pvqSPR9X52G08ifK5if9CbSyUKx5P2v0ez2fWPu2/Wj7+ooG8qX7t6TX/3XSLz2rdrrfbeKpd2vWmRp+fvfyDwcw2+HyuxS8rRp8f6GwPv1ixFr9c3cLxLFP6MjBrno4nnZ8tHNASzmd6f7neGsTbWrx1bWEqVkdC9cco8doTSnNxdOnZzVkMgLvMiRkAAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANq6OvcAHpdjrm0/pf2H5Yf17bMLSPtP54fblcbzfNT2P81hvIkfHqfieKuO5zR/8x+QNa/eT8sl46mee27VfKSbXdj/nrWP4ycdf9p9dS6GZ4FyxfOZ39+SUXCidH2ozvfyvb2b6uuNXw6k/WfN4/vbbTzV0vGU77/F7VPd7tfoRs/fsPvyeA7zcd6L1+dmqo+f5cr30+qXM7Xt52bnjSnNL76jOHeLYzleSsLx5Ncbtm/muLAPIqqvd69+1VKdX4PHw35h49/jD67HNvr9HV31/C/xB/Xpw1eWL9XXuzf7YHC7sPwa/Xrr8yVrXr0fLeGHEdXjubT999KsxR+Ob2H8LPHLxqx5Op50frZwQN3ynduzxrFZM463pJGTfgxXLV6rQmnudrOGZ6XRz4YAXBYnYAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq3AO4kePNP6eYw66X7C8cYTlht/ZpOWT5eBhKmi9pPsZOXRcetfv0covHw/XS+1VuTjekMIDS7rPmuW7zz93VbK1N1/7qvaJ8LUzXtgvT7ixQHZ+DX+/FzU83xfPfLh+LdYvP+H7tY/ffThwP2f5eHW/p/aq+3tjg8VOeL9XxMLo0PqvX/2b7S/15b+z575YvRzif6auxUvHYw/ZR6+kRxpP2H7ZPu2/34pbr7IPHQ3X/+4XFc6el+S7oFj/dxjM6+915beb/rPYL+6LQkj58hfOzFX/wvhY/bF5aPHSzTOH9Cr9IWB0/sfTAWv49ttp8j9ef0Oj5uw3874SsYWxuxQ9r1TPZ7DVmvraFqvf21Dr8B6EAXJJxT3gAAAAAAAAAAAAAAAAA3HmK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtXZ17AI/LkZb7zWH/Yfu0/3w82V/oNv7pCNt3k15vM+XxAJ2F6+fwive7efT1PHFpe12xbrHTbTzlRl8Lj7FvWBxvY19u+fXOYTzMe9Z/Pp6w/9FVX2/88JL2nzUvz9/R46fb/FTPZ/V2Ono8NNNt/43Dp1m+zHt2Ben+W71fp/tLu+Nn8fXGqvu/MHF+bVn/aTwfze5vOp52+RuIx158rXEsDDz3vLvqtaG6/73b2nbuAdzQUv4yJDsc7vEXB8bWLZ676XaWKc+XI334SvMl7D/Mx73ZFxOq15MlfvjNXNp6GOdXmC9b8e+hX/OXM1HzS4uH0W3x+pm1X9LzVdh/Gs9buP6v6frZ7bOC8P6m85NK9yPryfmsxUelrThXik+e7VSvhQBwlzlxAgAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW1fnHsCNzG/+OcExn9jwrfZheWC39ml5Y/l4GEp6f+ejZhyPLEv3aeo2fs7qSOMn1C1fqq8XHmgW+/F4ytuHfyE82w4vnZ9i8Vrea/jjS9NlD9sX39907+12dojnv7h9rNt8hrqtP/H9Lc7HdvE2uOp4S+MhP1+FC2719Ybdl+dvmo97eAXl9zds3011fKa6zX91PjZbH6Ywv+Yt7N/Ln+sF83OEcxmnSrN7lV5v/drQa356jSa/X3v6LFs8/9X979XjL+29XvX8L8UPX9X3t5tLu97q+Ky2N9sx4nw80ofH9IskYf/xFxmy5lsYb0v4cL2H40/bd3Np69WaxnP6qiWMh7X6ZV2cj7X50s02+Pj38IuHS/wyMFU8n2F8pvc3np/4e2/ZeLbi80n1/nhJik9WsbV4a9/Cras6cqrnM5Xu7dW5DgDn5AQJAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtXZ17ADdxzNN0nFjGd2q7R22flhPm45lL+5+y7vP2nFUcD2n/YTzMR8044Fak61uzeE73i+lodgGXZPBYuzTp3hXvdXN41is+i9mruYk4fuL8Cv9C8XiqXVy+hxdcPf7qeB49Pttd7x62H108n4O/zGm2PnQzh/Ff3j7d35vlb7tH5ep8v7T1pFr182NxfoWPp3G+5O3D5+Vu+RuIxz7wtU7T1G4tOfba8Sxhsm/p2SfsfwlfTm7FuZva07WhaByPqnp+qqXjX8I7sIfxmeZX/PCYftDa7Pam+ZLqFs9p/HST3q80/qvjYXRr8X69hIfzvfiLHqPHw/1jjdqv4fpfnV/peNLlrTp+0njO99Ne+bJVf/EqlO53W9h+jc9v2fwsaT6G7dPxpNebxmcaP+n15t89Kc6X4vPYVvjvfqTPvmvxVpq+Nq9eqapf46fzmd6v1PDzGa5t1bkLALep1xMaAAAAAAAAAAAAAAAAADxEERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgratzD+Amjnmejnk+rfGJzd7uu7Z9Op7y8YflkGn/85G1BziXeH2Lf0DY/tR9Dh636rNPmCvzkf2FbmeT+CwZ6na9U3i/qrWbn1ScL7X9x9Lx72H7btdbrPp6h5/PbvHcbH7S8Yzevnr/LVd8vqpen9utP+l4wu6rxzPF85++PAz7L5EpmmAAAIoYSURBVI6Haumj+LEXz2f1/apWfj6pnv+0fTaeecu6n8N4a3feSG9Xo/HHQ2l22DgGX0viWCi+3iVMri1dG8L+0996mm7V1a+p4/gs1m08qW7jfz38IDrNr3phxqQfvIe3aw/vbzqfaf+pPX+aaqV8fprlb5yPR/rytngHC/Mxjc+1+DyQ6hY/1fm+F6+3cTw3s6Qv68L53AZfz7upzpctzpcsftbwgWoPn2CWcP1P26fjSa83f3keir+HlDWP4+eCbOHcr8VLZxpp6Z2tfveQqp7P9P6m2s1nt5eBAHANJ1QAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGjr6twDuIljeePPqW0jYfu0/2OZS/ufsu7z9qEj7H8+asYB31Ya/+LzbgvjIQ4H6yGPavC1Kj0LxLkSdh/PT9g+vl7utur87bY+hP3Pe5pgWfNu62EqPguk899tPtMBVS+41fPZTTr+vbj/ZuFQbfj4SY1+w4ql8RC3D/O3un258vPY4AtWt/F0U5xf0x7Of9x/2D40h/F/hPFW3X+i26NXO+HcH/HZsPjFbdh+S2M5635awtiPUz0cf/ix5rQXZ0D6sWl6v1KVa8/jEOdj6PU9u2Np/Fe3z2UZuR9r1D5eH+J8z/qvzq9Uer3d3E/jIVxv1zA+y/PrSB820x0g7D/8Ys5e/UWbYqOPf4s/2A/jp3h60nxM22/Fvxd/rX5Yju9Xuv/Wzk+3/NrjL0KGPyCc/zR+0vEv6X5X/fIkHH+6vq1xfmXN8xci6X6aqVwP07Hkz6ZZ+7V4Kam+3up/oaU6c9P5T+8vAPDo/EtwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQ1tW5B3ATx/LGn5PazmHfafsl+wunjvtB+3g8tf0zmPT+HiWjeLv7cDxz8XiqXdr1jq78fqXredp9s/gR/3eXe3te7ebz6DWgbvMTn7Wb5Vfcf9g+7b96PNW6zWe3+Rldt/2xOr8uLX9T5dcb7y/pDRv8ZVF6ucX9x+33rPm8Z1cwh/2Pno+xNF+qX652G0/5eab45Uk6njS/trD/4vUqDp/q80k4oCOMh3T7Kr3ebrk7uvK9N5v/PbxfS7OXFel40qODeL5es1dpsXRt3tMPrvOIi7TLx/KHl0y6vlWrHk+/6y3Olzn9IkltPnazpA/L4f3aqhO4ma08f8N4Lr6/sXB61jDf0/bpePL1iutsxfMZ91/9PbMwH9fwB+zhvwuxVJ8/4/5r95c1nP/qfE/330taf7Ywt9bqZ4WwffWd6vWkmc9/en+7XS8AnNPlnAgBAAAAAAAAAAAAAAAAGI4iOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbV+cewI3Mb/45RVjud6TlgaeO4660Tx3F/XOtI7y/cTiMfn9HHz+3q3j9TMNtFp901e2sAXdJt3wJ96J5D/9Cutc12xvjvTqdz2bXm0rHnz67pPkyV+9f3e5XdX51y1/vNsZSvkD0Mu9p++KHzXh/D/vneqPvL6Mrz6+w/zS/itsfzdbb9Px2FL58i1O32Vy2W0vS+UnHX5zr2559kHiEZ5+5+GEw7j+8X0u8FGbjSfPr0rbe6vUn7f/18IP3JbxjS7j4L+HhdgnzJW2fb9bZfO7tXjbW2pvtv2m+xPcrjYcwPPfwMJbG/xrGf9p+mtP56RU/3WzN5merzpes93h/ib+YVjz9eX6FPyC+3mw827Fm/XOtrTo+42f3dL/IfsAefrF0SfeveH3ImqdfjE3Xz/R603gYOX/jvaJkFG/bwthZe23t5arn38coAPD4+JfgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgratzD+AmjuWNP6e2zfqe47FE7bPuy/vnesecTeg8HUUjeTzS+InDbezpKRfP/+jzGebXdIx+waF0euLue83/xcV/peqzwKWdNdLrDWOzXSw3W2vbzU+qOH5Gz8f4/hbHQ/V4yuO5Wb7Ez6Zx+2YJU53voeHjuXp9q77ebvNZLH13NW8143hk6f3ai9s3G8/w4vwd/IBVrXq/a7beputVeb4X7xfH4PE/F54P00fleCZ7vaarXwur1+bi/tNcSbfebr/FdAlzKz5qhPMZ53qzta3bWhvH8561f33PIjqNt7h9uOAu4YK7hIeBdPxphqXXuzeLz2rd8nEr/6A+lD7spzvAXLvjrcXj2cP0XdP9dPB3RXscP7X9x+ex9OEufjmW9b8da9R+jR+Ws+ac1x7esC1sn8bPFsd/1jz/7DTLr/R69/SJLd4v0vUna54+cVa/ys/nf1yjvxtIXdr1ptZwLdwGPxsCwG26tHMDAAAAAAAAAAAAAAAAAANRBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABo6+rcA7iR+c0/JzhObPeOvkdun5Y3HmH7VDp+blc6/9XxwK2K17fQLB6ulc5/dTrG4eD+cldUJ4tcudOq99Lhz8Jh/Mdnh+L8nfew/+rrTVl/blcYP9VnvVR1flXnS7lu61W1buO5NHH8hCtEdT6KHx6WLojlB+jQno1n3rLu57T/6nxM14f0/GN9+M665Ur150zp5Ya5Ur53Fc//XjyeYw7XnuKH06W8/6z9Fg4nHX98e4vjrbr/PczfdK9Ix59udeXi9TP9oL7dFUfi9Wf0fCnvv1n8pI+yxxq1X8IFZUlfXs1+L/hdtoX5sobxE+djGp9xvoe6jafYGp7gxt59c9XxnM5/mr/1X7Spvd49/SJns3cz5etnKD0PJPG2hcGWxkIqXavSmU+frdfiV13V13tpmj1ZAMCtcg4AAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2rs49gJs4ljf+nNZ2jvuO2mfdl/cfS/s/SkZBkWPObvAc3uA0HKrDbRafd1sYz6l2+VIcz+n+MqcZfNReQDz+RutD+d4+uPheFW8uea6E/Yft4/kpzsVUOv52+VK+F2Xt49H0Cof8AvaSUdBFetSozhfPyrfLfJ5Xuw21WHW8he3T80/cvnp/rA6f6nyvjv/45XDNMB4Yfb0tzpdpL75f1flbHc6Xtl90MvrDcpwrzdbOsP99zz7om8P7u4cDWooXh26P4ul8Vq9t6XjSV0vp+Ju9Cpz2MD6XNB+z5rE9nP8ljIc0f5d2h7expfe3X//ZfrSEh88tHP8a73e1X7TZw3RJ5ydtvx9r1J7btYXxs8b3N4zPqHUeb/EX04pfLq32r7Pa0n8nIf7wOoufNB7S/K3/sL72evfB/12LJVzh4vgMrYVPDFsYbKOvhVs4/LX41VW8l5aM4tH77/auBQBGMvaJGQAAAAAAAAAAAAAAAIA7TREcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoK2rcw/gJo7ljT8nmcPOu7XvVq6Yjv8oGQWnCu/XEf6FOb3B4mEoR5rvoXnweDjmMF+O8ILj/C3t/hF+QHoBtQFRHc+l0rlMpXO/Z83nsH21NBZGX6u6Kc/F6nwJpde7pPFWHJ/x3sX1yjfrscXrc3X/3cK/2fpQ/m4gPTp3u1/cqjh/0/NndfyMnr+pwfNx+OPP6ONPlZ+Hw78weP4OH/+NzGHwHOFmFz/6puNJg618bxn74Si9v6m9ePFZLuzhtPpRJ83fdD3Z9+yD5XjtL4/nrP/0XVqzV9W5cPr38H4tabw1W5/TfEm/hlF9vfXzWf3FkyzD1jTe0vUhXKH3k7+ARAdpPMSK42ENX17F8Rn2vx1r1H6NX94WX29oiedn7PVhi1+uhtcbH4jD/SL8AfH9Kn8AqD2BxvPT7PkuXQ/T9Xn4838gvdaxV7bc6POzhqm7hWtVt+sFgOvYtwAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoK2rcw/gJo55no55Pq1tWO53nNbt4+s/bJ+aj9r+4WFpPKfhn4ZznF7y5VZVr2+p+Si+wen6X9t9/APi/I0vIJ2gRgmZjr2bcPzzHnYfts9jMxx/GjvNcjfvv1luNcuXdmft4vbO/mfWK/zH120+q/O9WvWGxO1K71e6AYQbZHzeC1XvX2n/3fbTducZeMgcvwyvGcdbuq0n8eNa9buZbjpdcPFiW34Uqz47dDucj342Dx3p2W34xSGTXm/6W2TrZ7NZfoX2MD6X4vgcPV/S+azuP71fR/G7+dQWXm86P72ip590/tdm+VhtiV+2pF9cCruP8zEb/55+8YqhVN/frXjDWNN8TK+3uv9iW/n6k83P2mwH3sL7lcZbdfxXW8L9Io23ZD+tPpuk96pbLKe2cPhrs1Au/tgLALiBXk9EAAAAAAAAAAAAAAAAAPAQRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAtq7OPYCbmPdjmvfjpLbH1Rx2ng4mbN+s/PBIp+e0aW8rvt6aYTw+xffrmLMZmsMBpcOP79fg8Tx+gIaq71d1/83uV/V6WD+dzSY0kM59N/Me/oUwGOZj9MV5cOHeXq1dvqTjCfMlPWvH+ZiOJ+2/Wjj/1WfJ8r0u/AHt8iVVPP74Wba6fbXigL60dwntFL+7iteTNWs+vx72n+6PYfftVF+AfLzbuh1oinU7rw5/HuM763Y47zaeaoNf71x8GK7u/9Kk8zmH8Vb+LiEc/7FnH1wf4fUuzeLz0vKlev73MB7S+V/C4e/hYTgeT9h+a7YfpZbiw/Z6YfnYTRrPab4DjGI7wi9yhsvhEn44m45nLd6v4/kpFl9v4fjTs1569tkG/6Agnfmt+Gi4Dn6UqZ6fZq/ZAeBavU6oAAAAAAAAAAAAAAAAAPAQRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAtq7OPYCbeOp/HdP6xHFa4+PEdm+as+axfc3aH+tc3H9t+z0c/xQ2T817GA9b2n/YPux/CduvrxXHf3F+HWk8zMUBlArnp9yFzU8ab2l+peJ4DuX5G/Yfrm+xcH6q57NSt6GnsfPa+7MryGOzuv+sedp/etaYis8Oo+/V1WfzWHp/w189sqdH5/RXm6Thmd7gZvlYnu9bmF9pvlevD6MLw3Nfw/sV5lf67F4dz93yq/rsmedvcfv07By2P8ILnpd0g8n6Tx/tjuL9qzyeQ/H5sPr8nMZn+X6atg+v9yq84PRAlk5Q8f1Nf0D8aiYcT95/1nyrPq/G8RAq30+z8T/91OtR+6M4HvL+i+Mz6z1rXfyiK9570891pmwxj+9V1Lre00+9FrWPl57i2O8mvd44PIvzcQ0/WEiPhmN/oj9N3/XU/4nap/GQt88WxL3d2/xaS3iYT9un9yvt/6modT8feiLLly18+Ry/6w2l+XVplnA/SuO/+oPcbvn1XVffLO0/jeeteL/oll/V19vNEuZX2r7ah9Zsf0nt4X60FcdzdXze358o7Z/zeTLN9aJxvKXXSpLnVrePre8Xv1yK31M3c2nPvvA4bUe2oq/xF8Hg8sgSAAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFtX5x5AW0fYfA3bL3PWPms+TcXtu42nXLfxpNLxh/Gfqo7/uXj8sTlNsPAC0v65Vry+parjoVrx/JTPP9/Rpc19vFcUt5/3sH31Xh2f3S5sb692adfbTZiP1etDPJ7RVc9nKlyw2u0vo48nlO6no89nrNv4Bz+AVsdb+foTio+H6fm2uP2lna/iVwmD52O79bbYnN6vZufJY/R4C1Rfa3Wul4+/tPdp/LWtmX3w+ayO533wvaV+frL+8/Z+7+9t6pbv3cYDD9uH/yIJcCnW8GXaFp6vlvTlQ7h8puNZwyfOzXrOmzxZXE9uXW8NP6jZmj3rLKO/OAfgoji3AQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAD8P/buJ0S37Kob8PlT3W06XxJQ6XTEJoizkIiTIEEIASGCmQjOBP9MFKUzUEFCJAONYMCRM4c6MUNFCCIalIDoSJCogYCZOLF1ZoN+X+w+53yD7nvTLUl1/apq1bt2neeBC6bdtWuffdbae5/zvuteAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq0gN4KPOR/kDW/Ajbx/2H5Yr17bMLSPtPxff3bKrnZw7jIc2XUNp/u/gJ55N7Vjz/w8dnqDrf0/201OD3anjF8z8f2S+Y9/AXdIuf4r293doW3t+8/9ruy6Xjb3a9abzF+R73X9t+dNXXe7b5bCeN/+L9NI6H6v7j/bTTYbhe9f3qpvx60/ZpPsb5m74sDfuv1m081crjs9nLw7j/4vbF+XXE7aPmsXQ8larHEs9l8b1NxaHQ6N5OUz7/ceoW36+0/9FVx/N+orXtjPZWHyzUO9v60I35H8vZ1ofRreHD0ebvib/WJv4ftbX45fxW/MXAtdl4lnA8e/UXJ7mYNVw6tzAV08hJXxtWS9ees+1Fa/hB0ObZAoa1zs4CcN9kFQAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtHV16QF0dYTlgccyF/ffq31aPhn3H5q32v7P5sjCGR6V6vifj9r+q1Wv5/BEu1wJx9Nu/HN4Vg3XwnbXe3QbULHB4zMeT9p+L+6/ejyjq463+H5lC1x5fFbnb7fxhKqvd65eH0ZXnF/dlMdDs/lJ86u8fTj/8f3qJoyH+HjbLN7i8VTvd6ny/bR2fobPl1Cnx8Hq3D3S9lHrW6he26p1G8/JpPGc2ovvb/X4U93Gw/3am93fbuNZwoeRbuPnfu2T+zuSrTgf1/TlfDqc8IP0TXzS2Fr98iHsfg+/qLjG46nN3yUcz+6LOY/WGi79W5gr1ZFT/ZoxXntCo++9a/EHs9VnMQC4T07MAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQ1tWlB3Anx5t/btJ0DrtOywPT/sP2af/5eLIfKB//De8rRdL7Va04HtJ4nsXn41Yd/93ip1u+j8xed71u1xuOZ/S1Pz67cVGjx1u1eQ/bH9mEpvOfjidVnb9xvFWvnydbn4c3ejyMHm/F11ut+n510y4+0/bp/rtnG1i8v4ftj/jlcNZ8eN3yMR7P4A881fm1Zf2n4vxiHOG9DR+9ctWfE5wslke/3r1ZPIw+n6n9ZNdbrdt8dhtPqtv40/Es6cPdkR4msy/CtJvPZh9sbs3m52zSfOkWz2v88ifL9z3+4lutbuM5myV8+bCH/65CdTyXv4uKv+tRHM+D5zv3Zw1jcyvOlepIK/7YPV+rQluzs2pqbfdBKAB8Z07AAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQ1tWlB/Bg5qz5MWc/cITlhN3ap+WQ1eOZt6x9Kr2/83QUjeR2jjCe0/jneun8z73C53TS+zX6/Y3Xh1C36+VyRo+F+eh1Ael8ni7XB79fzY6S/VTPZ7f2xarjszz+i+ez2/i7rbfV45n38Aea3a/q/bedwS+4Pt6azU+6/oTzM+/h9XbL92phPMTH23bxlr5sqRnGrVXv73G+hO+qw3fn6XiqH7+OZvGcjKc6d9O5iW9V9VqVSs9i1bGT5i73am8WD93Wqr3ZeFJL8cNmGj/Vut2vbuPpptv8VOfLdGQPa/u0Fg2kp61ZPJzNHn/RqdaavtxIHwWLr3dJX/6E49nCC07H0y0eRrc3+3cS1uKXmVsYP0txvqfjqZ4f+fV4rcVHma34qJpGZvoxRLU0d9O9FAD4FidaAAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABo6+rSA3goR1juV91+mmvbH0v2A/H4q6+Xe3WE8z8fNeO4tTR+uo0f4Nuxtt2reQ9/IJ3P4vbpXp1qt7cf3QZ0MsXxnMZbmr9zGD/V46kW52/x/WqnegE9m+r4qV5PRo/nasXzUx0P5cL1pF38p/tpvP8Wt2+2/w6v2fNO3r7X/j6n4ynOr/L5b+ZMj4/xpYaxGc9l8dwf1bm+F8/PyeyDx0N1/3uzvSs1evgv6WEy/GB8b/ZBd7d46zaeamdbT5b4sJrl4x7m4xKuWGn+ruH1bs3uV7X0flXrli+p6v1rK96/1jAf0/Gk89MtPqttg8dDef/VLxvTy61ertL4L56fs+XjmazFsbyFuVUdadUfW1SvndVrPwBckhMnAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0dXXpAdzFMU/TccMyvmOes87D5kfaPiw/TNuXjz9sDw8qjc+jZBTwbaXr5xwv6LUBHY9fft2fZmtbeSyIHR5Qu7UqHE+38c97+APF60P5eELV62F5PHSbn7Pptp9Wjydtn+Z7M85L16tez8vnvzqe4/GEB/p0PM323+r5KX4Uz1XHQ6q8/27ts+udt6z7eQ/77xafxY7K/I37PtcHKeXXG8Z+vDanuRt2v4TJuA0eP9XxUN3/Xj3+0t7rVc9/mi+58LCaflCfHrWb5Xu38aRG33/T+U/zJc6vI8yXOf1iS9b/HubjEq64e5jAa7P9PZ2fbtL434r/3vc1jM+0ff34az9MSeMtHc8W5uNSPP7U1iwf0/Gs4Xym9yuOz1B1vKXzk17uHq4P+Xiy/ofPx8L1dgvv7Tr2UbVcOj/p/KeqV/LqjzWr10IAuKReT1wAAAAAAAAAAAAAAAAA8BaK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtXV16AHcyv/nnBo6w3C9tn5YT5uO54YXesv/q8c971p7LOrJwm+ajZhyPRTqf1dyvd5Der3A+y+d/Di/gEBA8DnMYy2kudls7u42n21rSbn4GF89nnF9h/qbPFuLhesXzIx8vq3q/69Y+PsunqsdfnS/hw2m7/I3ns9fDeDqaOF/C/bG8fbf4KX7Wj6XxWT6e4vbNzOn8F+fLtNeOJx5/vHxmAXE0W58rxalyormZpimeoPjVQ3GuV5vDzTT9WDC93CXcTPdma8Ne3H+3rbF6PtP+0/lf0vgP21fHQyodf6p6/tP+Rz8L7MUvH7ZwRd/C8FmLN7y4/7l2B9vDL7Ys4YqexsMa5tfWLF+6rZ+vHWvUfo1f7mXNU3m+ZM3T+E8t4cNv9Xiqbc3Gn64/e/zFwKz5GsbDlq6f4YCWWzzxlEpfFpV/ryhsH8Z/en9T6XkpUR058dmt19Zb/u4hVT0/6f1KtZvPdm83AOA76/WEBgAAAAAAAAAAAAAAAABvoQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0NbVpQdwF8cyT8cy36zxDZs97bu4fTyesFwxbp+OHx6TNP6PklE8mDTf58GvNxXPT3X/g8//2a73VIrPPu0Ux2a72D96Dajd/KSq8yWdn7D9vNf2H4+nuP9U9Xi6XW81Z4d3UB0Paftm68PpxPtLOKHxy7Gseby/hMrXz+p8CdvPe+39Ol3+hgE0hwlZftwuzt/yl8nN8jHNr3kL+0/Xz6x5u/PSHA+oWX41Mvy1Vn8QF59Vs/63sP0Sxn7aPr3c9G9JjY9uxXtFvJaE4ynfqpt9MJuOJ11/Xt/XqP0SPixU51ecAeEH9Xvxy/N4PWkWn9XzUy2dz+p8meYsPtd8B2glnZ89zN8l3DG6xfPo+Z7er/hlVNp/Kpz+OB/jz5qy692K43kN86t6PNWq14ctzpfwF4THqzXMx/z+put5uF+E/afxnK5X6f1Nr7d6PRn5tFH9LL7FuRX+glC7dw/F0vlM7xcAcHv+JTgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGjr6tIDuItjfuPPjdqm5X5h+7T/Y7nhwJ8Im6ft4/lJx1PspnHwRLPh10sv+CgZRV9nu17uVfX6k4bnLJ55onqzG3wznfdLj4CRpWt/tfKzcLi3zEf2A3E+Fu918V4az0/Y/+DifInbZxN6hL+g/H4Vx8/o7ctVj7/b9YbavWtptgHH8R/ud+X7UfV4mpmL94vyh/fq+B/83eG8hxeQto/zMR1P2H9x+/A4H4vzMZzP6v4T7VKr2dk2jrXqXIzHn/V/tldR6cege3gD0vlfwrVhC/uvXEsepv+0fTae18MPopdwBV3CC1jCw3AaP/nmG35Q3+vRaNqbPauluo1/L/+iRxaf+7RG7dN8WdN8mbPrTe9vuj7s8fyPLY7PYltxvqTntzR+uq3/9eM/V36dLV+qH4DXMH7i6w2/KLrE+2nW/1r8sndrll/p+lM5/jR20nsV7y1h+y3OrfAXhKqvN1X9biadz/R+1Z78AWAsvU60AAAAAAAAAAAAAAAAAPAWiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbV1degB3cSxv/Llp27TvrP1c3H/YPhvONKXtGUoaD2k4HGH7Of0B6CxMmDhfwvaj52O8XjUbfyVz8w7C662ez3bzf/QaUPX8xGfhauleMXp8Vo9n9P5TvdK3XnW+xDe4+LB3tvbVuuVvN9UPF4OL99M9/AVx/4OvP83i7Wh3QDyZZvEZ5/sWtg/Xh/hV/snyZQ4vOB1/ctw7wmArXwqL71UcC+Xts+bV7ffi613C2E9zJW2f/q2q6VFpCTNmG/ysWr3Wpq8C0/Gk7eN8ScULbm1Ep/m7h/drCResvfiLAOn1bsXxUB5voerxxPc3jv9UehiuHU+ej73ih+vtaTzHL3NCxePZjjVqv4b7xVI8P+l4quenWrf9OrVV7y/FD8xrGj/xgLLrXeInpFTxehjO/1b873Ks4XxWj6dS/mydSZ+t1+Klqvp6q99tAAAPZ9wTHgAAAAAAAAAAAAAAAACPniI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFtXlx7Ancxv/rlp28ARto/7T8sPm/U/HWF7LiuNn9ru8/7F2+M2pxEUOsIAapYv5ettOv/pfBZL9+vK9SQ+OxTrNp5Uu7W/em3odr3F2sVn8V4Ur1Xd5ifdStN4Hr3/1Oj5Xn10q86X0ec/NHy+cFnpDa7e4NPx7MUHuMH3r3g83c4n1UZf37rlb2hO8zdsP29Z9/H8pPGzh+2b5e/RLX5KX75lnVe/Rhv8td4t9t5eDyNbuPYs6dKWNS//W0/ncG9Jx7OF85+OJ12r4mgrfjiqXmvT/tP1ZG+2V+zhHV7S9uEELXOW8Xv8RYBe0vztdlatlq6HazifefyH/cfxme54maV4fU7zN/4iTxz+6Xqypr9gaGl8pvd3K/9iV6g6PgcX529oazafw8d/8WdBa/X1hk9IS7iep+23qXb9T+czj4fwegvzMY2FdfAXz1ucWzXjeKL63Un1yTadn3T+e53MAeB+9XriAgAAAAAAAAAAAAAAAIC3UAQHAAAAAAAAAAAAAAAAQFtREdwXvvCF6aMf/ej0nve8Z3rhhRemn/zJn5y+/vWvv63NJz7xiWme57f9+aVf+qW3tfnXf/3X6VOf+tT0/PPPTy+88ML067/+69Prr79+96sBAAAAAAAAAAAAAAAA4FG5Shp/5StfmV5++eXpox/96PT6669Pv/EbvzF98pOfnL72ta9N7373u5+2+4Vf+IXp85///NP//fzzzz/9v7dtmz71qU9NL7744vS3f/u307/9279NP/uzPzs988wz0+/8zu/cwyUBAAAAAAAAAAAAAAAA8FhERXB//ud//rb//Yd/+IfTCy+8MP393//99PGPf/zpf3/++eenF1988dv28Rd/8RfT1772tenLX/7y9P73v3/64R/+4em3f/u3p8985jPTb/7mb07PPvvsLS4DAAAAAAAAAAAAAAAAgMdoucsP/+d//uc0TdP03d/93W/773/0R380fe/3fu/04Q9/ePrsZz87/fd///fT/9/f/d3fTR/5yEem97///U//24//+I9Pr7766vTP//zP3/b3fPOb35xeffXVt/0BAAAAAAAAAAAAAAAA4PGL/iW4t9r3ffqVX/mV6Ud/9EenD3/4w0//+0//9E9PH/zgB6fv+77vm7761a9On/nMZ6avf/3r0x//8R9P0zRNr7zyytsK4KZpevq/X3nllW/7u77whS9Mv/Vbv3XboQIAAAAAAAAAAAAAAAAwqFsXwb388svTP/3TP01/8zd/87b//ou/+ItP/++PfOQj0wc+8IHpx37sx6ZvfOMb0w/+4A/e6nd99rOfnX7t137t6f9+9dVXp5deeul2AwcAAAAAAAAAAAAAAABgGMttfujTn/709KUvfWn667/+6+n7v//7r237Iz/yI9M0TdO//Mu/TNM0TS+++OL07//+729r8+R/v/jii9+2j+eee25673vf+7Y/AAAAAAAAAAAAAAAAADx+URHccRzTpz/96elP/uRPpr/6q7+afuAHfuAdf+Yf/uEfpmmapg984APTNE3Txz72sekf//Efp//4j/942uYv//Ivp/e+973Thz70oWQ4AAAAAAAAAAAAAAAAADxyV0njl19+efriF784/emf/un0nve8Z3rllVemaZqm973vfdO73vWu6Rvf+Mb0xS9+cfqJn/iJ6Xu+53umr371q9Ov/uqvTh//+MenH/qhH5qmaZo++clPTh/60Iemn/mZn5l+93d/d3rllVemz33uc9PLL788Pffcc/d/hQAAAAAAAAAAAAAAAAAMKyqC+/3f//1pmqbpE5/4xNv++x/8wR9MP//zPz89++yz05e//OXp937v96b/+q//ml566aXpp37qp6bPfe5zT9uu6zp96Utfmn75l395+tjHPja9+93vnn7u535u+vznPx8P/lje+HPTtlnfczyWSNb9dITt0/7bGX388Iik68981Izj1uaxF5R4/tP+w/ZzvIH1Coh4P63ULTar71Xafa/Q6adZbrVTnF/dzubx3lsdPs3Cs9/Z5NIDaK44v6rzt/r2Vuf7vIf9p7qtV6OrPvwXS9+lzVvNOB5MugAV58vwz/pnM3i+x9L9q3p/TNtnzevzK36VU/w81Sw+k8fHeOzhzZ3DuT/i4AzvbXg27HZvu62FezieJUze6qN8+jFoag7jOZ2fNF/S693T/A37T/Orei1PpeMpj+cwHtL7m5/dsohb0of3+OEra55K53OJD29Z83Q8cb7H/ccrUNg+FM5ner/S603jP4636vWhmfR603TcixeULYyfNY6f2vjcwvlZi/Or+uVwOv7q/tP5rxavn+H4t/SEmz6/FMd/+XkmvN50PcnjLVx/wvNAnI/x+TNrnk7PdqxR+7X8CaOP9Eqrn/XPpvokv8a5krUXDwCMJCqCO97hDftLL700feUrX3nHfj74wQ9Of/Znf5b8agAAAAAAAAAAAAAAAABOSPE2AAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoK2rSw/gLo7ljT83bRsJ28f9z736j1X3z7065uyGzdOR9R+1zsMn7j/9gbMpvgHH4OuDfOFtwngYWnqte9h9t1irTq5q6f06ml1As9xqt3cV3640H+cwfrrle3p/u41/dHF+pctben+z5rE8v2rG8WBGH//gjjCA5vj8kDXnwtwv7iLer8OA25sduNMDRJpf1e1Hf55tJnncmePDW/HDSBjLcShUp255bvVae5Zew2lnCeM/fDVZ/ioq/Rh3L47PI10f0uUn7D9fP7nOHn9xoJfqfO+2/qeWOb7iyCofLyq+v2m+x+GfjWc/1vQXwINJ82sL47l6fd4G39/T80n1fFZL79dafL178b+DsYYP5FvROJ5IxzMF87+FZ8n0bLWFm3V8rVwrzcSxV2YAeNzs0wAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0NbVpQdwJ/Obf27gmG/Y8Gn7W4xl4P7nI2sfS6+X+5XGT/gD85QFUBpuafhU9x//glS3fOk2nur5D6X7S5ov3eItz69uAVQn3tsHN++17WPFm0V8tsqa57kV/8DYAVqeX8X9l+dL2j6Mn/L8DY2ej2fbL1LVZ/n0fpU/K1drdpbsdpYfXvG7pfhZYclu8LxZEK+Tn/fC9tX5eLZ873YgqI6HbgeabvFc/nKS+5Q8Lh/pWTJcG+LUCn8gfTXQbilvNyBGsoTxv6efe8X5GJ6di9/tpeNP18PUMvzD+NiW+OVhzTie2MP4TMe/hxeQ5ks6fsaSrlejx0O8PofN03yEu1jDAN2K43NNP4w7/LsH19nS+Qlv7xJ/OHsueTyHvyB+f1KXL1u4t6/hXpquPenalkZyOpNb8aPdWv0sUtt9O2e7XgDG5okIAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaurr0AO7iWN74cyNhud+N+31i7tV/6gj7n4+acZxW8f2d3K/Lapa/qXb5Xn69vS44Xp/T/sP2cf/VAxrZ4Gv/vIc/0Ozetjv7pGfJmlE8lV5v9V4Ua7b3zlvYPsyvJe6/WUIWK99L7XX3q9t6kt6vbu1TxftRfHvly/Xid1HZhM7pLwj3o1i7A0em3bP1yczhDTiKF8Q57n70A3qoWb60m81m83Mmce4Wrw3p5nKMvjZUP3s1y61070otzQ4n6fWmH7OmrzKXMOCOZi/T8vgZfH3gWkv4snGPv8hQK12vtmb73d5sPKmleINM4zPvv3b8a7rDzMU7WJq/cXim68ma/oLIWh4/tf1zvTVcf7bi80w6nvTDvm77bzfp/Y3vV7EtXp9r159u+dXJHl5relZKz6prehYuzpXqnTFdCbfiVF+LQ796/E4yADxmnqAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKCtq0sP4C6effWY1mePG7Wd95u1e9o+az7Ne9b+CMsP9zXsf52L+8/aT9lw+gnv77Jl7dP4SeN5eT3rf0rjP2w/HekvaBZA6fiLNZudcnG8pf3vtTN6hN1X51e8/sTjCduH85POJ99Zem//573pzcqa53tRNp409uPxxGeH4tyNrzccT5i89Wth2D40h/OzPxP+gvApLe4/zZfy/K3tP20fn+W75W/13l6sejzps/gRDmhOn5Wb5WO3/J3TfCzer+PxFOdv9f2NFefXsVYvENX5WLtflJ9/ttrzdpxf6XjSvwouffeTNk/Xq6z5NC3pgMLzfPqpQtp/7fTHP7ClDzBx/tY+X6f58u6rLCGP4vubysfT5+XSHJ89w/bh2rCGuR7f20ZzP015LLzrmeyDl3R69mbzk+qWi0v8sBDmS3jWuDrSzWJs/+eZb0bt0/jf04f9k6menyVc4fJ8zJrHL/eaedf6Wmn/o+8vqerr3af0ZWDYf3H+XoUP41fhdD4Xf1El83/W/xe1r57PLVywuu1f1eN57XTfbMks4cu0tP17lv8btd+L/12FLYy3NL/S9q/FH7byWD0T5tZa/sFLL2lu5f2H7avPts1u724vhWFtxe8C1/iDUBifqAcAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLauLj2Ax+KYw/Zp+WHaf9g+7b98PKmw/3mvGcYT1fNfPZ3l5uGvYGzp/B9HzTiaKl+vTibe7+C2ipeqOex/3sMfSMdfvTSHe0W6dqbzObw0fs42P8Xis391Pha3bxc/g19v3H+4IOb9h+27qR5/s3zsFs+x0eOzOh8HN++185Puv9Xth3+1UbwfDa96fprFT5q/U/G78GrHieK527XGa2fx+Kvnp1mql+sWb93szebH/eIx2cf/pBtubW/2wWm38ZzNEr7cGP1+reGJe7NfXNQSvkzYi/8dhur4OVs+8p2lsZZKI2fw13rl1uIPdrZmz+JLGJ+evQB4zJzIAQAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgratLD+Au5mma5qOo87TfOew+bb9kP3CE5Y3V7aul85ner7T7s4nnP1SW57c1pwlcfAHpeAaXxlscP9XTWR0Oxf1X5zs80W7tD8eTjr/b9Zavtd1U79XNxPerOp6bjWfesx8oz/du4Tn69Xabz2rN7ld1vnQbf9p/fNaOx9/sMD96Psb7S80wnkrvbzqe6vbxy9Kw/9To8RmKj8Pd7le16vkpzq95b7b+D6zbo2P5eIrPDkfYf/n0dzsrhdL5HN0++PWOfr/CVycMZvfJOCe2d/siDMA9WcOXk1vxelg9njV8gtzC888Sjt/+8nhV39m0/+qPIapzq5s1/GBwa/asvwz/Yh4AvjMnbAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq0gN4LI6wnPBY5tL+p6z7uP1R3H/sKO6/evxcK423uToeqs3NAi4dzzH2DYjXt9D48Rm2H/16T6Q69rvFwryH7dO1rdn1lt/fbgbfi2Inu9w0f6e0fTqf1e2rheNpd5apHk+4gMbz020+U93ypTqeR79fo6vOx27SeI7Pt83ap+NP9/diR3rgjtefkx3oq+en/PyQNZ/L4ydsHo6n2+NXnI+FOo1lmqbytSSOnfgXFI8/3FvS8e9xbjWLn1B6vd1Uz//ebO08m90HvxeVrg/L4A93o6+He/xFFXg4a/ryP0xH8c9jsla/bAy738N/t2ENx7PJX04qjfzq1+zp2rMN/qy2Fj+7bIM/WwA3t87OMvBOZAkAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALR1dekBPJT5yNofYXngMWftp7B92n88/rh9esG15im8wb2G3086P+H0V0vzJV0fYrOAG0oaP3vNMB5Mt/DsNp5KzdbOWLPxx2t5dfvU6PPJ/Trb/KdH+bh99gN5/1l79/d61euP9e1+tbtfabylZ/nR42f081K16vhJxS8D0/7D9uH1zns2/nQ+h38WLxYef+rjrVr5+lY8P9X5tWX9VzviD1POI87duP/auY+HXz2eMLfOFpv7ya63+v7u3fbG0Nnin/tVvZ6cbb1aw8Ph5u+9Hsp+qg9Cz2cNT8TbyeLhbNc7ujSe45d1Yfd78X5Xnb9LOD97+kVO7k0682vx0rYVP2um11v9Wt5eer01/OB0O9mzFADn4sQMAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtXV16AG3NWfNjyX7gCMsPu7VvVz65XXoAJxfmy3SUjALoKF0fzsTaeb+K52cO+0/bV+s2ntjR6wJGj4dUPP50fvaw/7R98fi7rT/x/De73li38YyuOL+Gj+fqs218vYMftsPxj76fVu+P8fkk7X8P423w/fpI82v0+KwW36/i9a34/ub5Eq6H4bvweDwn0+xxM1OcK/HUVI8n3FvOtpbvo58NQ/H9De3F8VA9/mqjj5/rnW09SVXPz5I+3KUb5Jx+0SPrf4+/eDK23QehF1WfL1nzs8X/Jv65gzV9OVn8Ln8L83cNB5TmyxLOz9nWn0rpa+21ZBRv6T+O5ZpxPFF7ksyluZgafa9bw7PS5lkQgIE4AQMAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFtXlx7AnRxv/rlJ0znsOiwPjNuH45mK2x9z9gPx+EPzDe/rE+n455sGDjXS+Cm+XWk8p/EJd3JkASeeeTTC2ExjeQ5zi3vWbP5HXwvj8Rdf77wXtw/jJ18fsvbV61W3/st1G0+14mej8vhPVcdnt/g52/x3k85/uB+l5j18d1U8/nz/rW0/fLylwof3+Phc/fK2WrP4SfN3Ks6v6vlp9rg2HY3iudNYpikfT3xri683jbV4/tP+01znXlXn1179OdPg60Nqb3a9XK/b/UrHs4SHpW7XezZL+LC5p1+0KbbHL+u4znay/SiN//iLZoPnF9ervl9buL6t4QNV2j4eT5xfWfPy5T+8v+n8jL7/jmwLY20tjrW0/3T8qepIK/5YJ17bUmmuV1tH/+IMNLbO9l64b7IKAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaurr0AB7MnDU/5vAH0v7D8sPq9mk5ZNr/fGTtp7Q9PCJHuJ6k4nwcXDyfxfPTbf7T+ek2fsaRxk55rFWfTU62lnDPut3fbvlS3X7Pmlc/64ye76OPv51m+RLv78X51e38UP4upFt+hQ8Xw68Pe/gwFcZ/3D6On+LxF68PqSO93tHjM1W+XhXPf7N4jtfDLet+Dtef6vU2zq8TOapjuZn8emvbH+lePfj8d1O9NuyDr23d1s49HE86/Uv54T/b3PdjLRrHw0jvV7Xq8bje68X5daQvZ7IvhuTjT/N37L/ne2sWz6Pbiv/e9zXcX6rHk6rOrzU8EWzpF+uKjb6epLb4i361L+uq42dNx199XI2/t5Tdr3R+zrb/drKFsbYWL53V/afXm6qOzOKPLeK1MNVt7wWA++SECgAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbV1degAP5QjL/arbp+WH+Xjm0v6nrPvpCLtP+w+bM5r0BscBF3Yv4B639P7uJaMA0rU8bD8Xt09V91/u6HUB7eaz2Xji+A/3urh9GD/l42+2/sSarVfOzverOj5j1eNptn5yYcXrf3X/6XLYbb9rt/50E2548fG524aajqdZPMzp+IvPw9NePJ9pvqfDaXZ/u40ncXTL9WJHHPvV7bPm6d1aws10C8ef9r/He1dtfO7Vn+sUj79b/sb3N+w/vd50PNXxvBQfTvbBP7lO57Ob0ce/xV8k6fVBZXn+hoftPfwiTLo+pPm+Fp8Hzia9v7Hi6U/jOf1i1xZeQHV+rWF+pePnenu8v9SM46kw3qrjZw3Hs8X7S/HL5PL1sHZ96CRfe7LYTGdmC3NxbbZ0Vo8nnZ9UdSRXn+TTtRMARjLuiRMAAAAAAAAAAAAAAACAR08RHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKCtq0sP4C6OeZqOG5bxHcucdR42P4rbp+OJxx+WQ6bt5z1rz/1K420+asbBSczpAiTgrtVsPq0nF5SeBVLpvaoeT2hOYz+93rPFcrO1uXotic/mqbT/6umvjv/i9umzRfwsko6n2/0qVp4vZ1OdLydr320+24nn52QJH7/cC/sv3o/Kx1+dL93OS6Pr9rxTHc9pfsXnyWw88Xm12/4YmsMBHc32l2Q88aNy8bW2Wwqrn92brVXVw6nOrSXsP11qt3DtTFWvJd3Wqm7S+Xl9X6P2S7iZpvGcRvQefjC+hCvEHh6G4/ytXh+K86W6/27S692nNL+y+7uG+bKFfw93fTyPne9rOD/byfLltaN2f4m/GBXK97va8W/xflSbX2uYX93G380Wf9Eva76k+0XxFw/T+IlVfxGy+N1qOv/xfJ4svxJp5KQzs4W3ah386JCOP52faun99RVsAPiW85wgAQAAAAAAAAAAAAAAABiOIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW1eXHsCdzG/+uYHjhu2etk/LA8P2af/Hkl1APP5wfuL2DCXNl/moGQcMId1f0u4Hz690PUmNPD/t1trR9/Zwfqrns11sHt0GlKleS2JzswGl8b8Xtw/jLe1/Stt3M3Y61kvTa/D5jOM/vd7q9qOPf3TV73Kqz1fF+1f5/pg1r58f+XWtOZygo/phv5v45XnNMG7b/1w9/sHblz//xo9HtQM62j1Ajit9lRDPfXn7rHlqL461JUze+KhUPv6s/Z6ubenePvjakMZbvLUUz88en62yD7rT+FnCw3/afg/Hv4R3LJ3PdD2pVr1+dpPmVxo/ufTh91x/r3aa77Hq+xum1zZ4Pm7V+0vWex4/6X5RHJ9ruB+l81+9n6bjjxWPv1p1vqTdL2GGbfF4sv7T+KnOlzVeT7Lm5d8NKb5flfkV741h8zR24r0obL+FsbOOfXSIx5/OT7X0/o7+tQoAuE6vJy4AAAAAAAAAAAAAAAAAeAtFcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2ri49gLs4lnk6lvmGbdO+q9vfbNy377+2Pe8gu7310vEcJaN4OGe73tHNxQlz1N7gIxx+dXjO6W8onp/Rpfe3UqexPIQ5DM20faq6f+5Z9d4SiveKXsOPzXtx+zQfm60n5QaPn+p8ic9WxfFWHZ+jt+fCwht2hAtQ9XI178ULRLN8H36/6zaeVDih6bN7u0f3OD675WO4XoXn1X7XGzbvFm+h/HkqueAwd8PJz4eejudkiteGbc8+WFvCvSJdesr7D9vn/deeDvfiDDiavbxNx5O3j5pPe/UHKanwg/ElPAyk7fd0PN1W9OL7FcdPsTRf9nCC0vZpPKTxlq/omXT/Stv3U7s+cL0tzK+1Or/C/WI71qh9Ov5U2n86/+l+mjpbflXHZ/zFw3B7X8L1cyu+3jT+q/Mxv181w3gq/mJU7f06W75X2sLYWXsd5WPV40/nEwD4Fic8AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABo6+rSA7iLY37jz43ctN0t2994HLfsPx5PWN6Yjn8+svZcVnx/0/7D9uLnsuL1KtTu/s7ZBbfLl/L+0w2m1w2ujudIGGvlmt2rODi7Db/bWanb/a1WnF/la8noe29x/s57cf/d0qXZdtFO9bN1Kg6g4gFV76dhPlbnL/esfP0Jb3Crw/wtpqd8/222nnBZ6X5U/QCTns/j81vYf7p/NTvfxsef4vw9wvmfmx248/Ek11t7Njyq99K4fdY8Hn712bb6epvZw+tdwlxJj/5r2H+69qTX2+3smY6/W3iW369QGs/dLPHDda09/aJBsXi9apbvXNYa72CZLfx7x/P1Khx/mr9humzy616l6226X2zhDV6LTxzV/afXG++/cX5l/Xfbf1Pp/FevV0v5+l+bX/n4s/lc5y1qn17v6PFcqTp2aiOH+7bGZ7GsfXp/ez2ZAsD1nGMAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKCtq0sP4C6O5Y0/N22b9p21n4v7z9pP2XDycsgtbM9lhfFw1Haf95/+wNlU34C0+3Q83YyeL2H76nhoZx49QAPV1xrGTre1PF2ruo2/nWa5NfxeVGze0/ZZAsiXsbTLl/Qs1m09T/svHk96vfJ3LEd4w+b8aaFUnL81w7i1OF+K8zHd30/3LBiawxtwVD/tVyfM6PtjOj/t+g/bF0vjv5va8Td7s5euVd0O/9W5lRo79MstxWtDepRJP9Y8wndXe7MPUtL8zdtHzWNp/FTHWzf9rjfMyPSLDMXb0V6cL3t4Ael4uN4a7xi10vFs/p5y3mKJX+Zk1mYH3PR693B/Sa93a/e2kUva0ngrzt/UEu5He/F+lI4nf92Snj973a8z2cKtaG22NKeZItIA4OF4wwIAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG1dXXoAd3Esb/y5adu070hx/3H7OWsPDyqMzyPtPv2Bat3ysdt4Ut3u7+DS/WIePoAyZ9pP47WzuP18ZD8Qx3K8uWTNy/eueezgbJdb1eNpll95Ptb2X61dvHGtdsthswCqzsd5D/vnstJ3ReH5Ko+fXvnSTbfzdqrdu5ZUcXjO4Q04wv0l3e+OOIGLH3iKpfGZ7ndx/1nzfP9tNv/V5uIFKOk/Hcu+px80hWtJt/d0zc7O+V7aa/z5XtFrcUhnc0nzK+w/nZ8lvIKt1/TH0nhL28NDSteTrVk8L8WHvaX45U86/92Uj/9IH0bS82TYf/hFpK34/LnHX9TikurXk6z/6viJrzcdT7Pr7WaL5zNrvsRPGLX28OV/Ov78emvjOf9wMGu+HWv4C5K+s8Gs6Vk1vNg1nMziSBher5UBAHirs51LAAAAAAAAAAAAAAAAABiIIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW1eXHsCdzG/+uWnbwDFnP3CE/afjiduH5Y3p+NPhcFlpPM/TkfUftZ6mOf2Bas0COl5Pip3tfrXLl7B9t/5PpTp3iyc/PgvsYftw/HEuHuEvaJZc1blVvZaX713N9sZUnC/F7eOA6xY/6XrV7HpPp/hZdkrjv5nys3a8/2bt2z0rnE18AwbfUEcXJli8v3Ot8PFiSh8vYnE6Fi/o3dbzZvtjt/NzLH1c7pYvA5vDvfqofrjudnaIc2vwtY1rxY+OaX6F7fOjWK+zdvXabO0fS5ovuTBjjvDlT5hee/F+mvZfPR54SGu4nmzN8mV1QOQt0njYmp33GEsaP93WqyV+QsrOe1vYeyqZzz28V0u6loR7Xbz3FsdabSRM01Yc+muzpbz6etP7Za8DYCT+JTgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGjr6tIDuItjeePPTdtGwvZp/3H7ubY9vNUxZwE0T0fWf9R6mtJwTvtPzeEvKM/H4gkafT1J79d8hPF8tnwJf0E6/1yjWS7Oe/gD5Ytz2L7ZWlh9e8tTsVl8dtu70nyZt+L+9+KIaDb/1Xsp9yy9YcXt87Nk1j7WbD8tzy9nyeul77rS9b/bhtpNt/WB64U3YA5XrHw9DN8NeDl8WWm+p8/L1YTDvQlfA07ha8ZcuxfVzcRrZ80w6GEePF/S8c/hgrXvva6Xx20JD0v7sRaN5GHEZ3ketSXej9KX//HLoqx5+EWn7WQPI+n6xvXWND7DcNvjLxLWWsMHkupoS+cnjf90fUjnZ0vvb/F3Ddbi9WEf/N/BSOenU/7uYfAscSyHuRKeNapzsXqtSiNhG/zdj5MGAHxLnxMhAAAAAAAAAAAAAAAAAPwviuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbV1degB38cx/H9P6+nGjtvOe9T3vN+v3qbB52v+xzlH7fY2ax/0fWfN61eOJ72/aPvsFcf/hBczF11vuCC+g2FI8nOp8TONhfOmEVt/grHm8nqTDT8dzuvi5uTR3u83lN98XXkB17OzZeKr3unnL2i9b8dmzev6bxWf5UTU8a2zPZt3Pz2Tt0/CZ0wWo216R9h/nY9Z+CteHNN/js3a6XlXnb7P15Aiflfd0gsL+8/iv3e+q5796P82fxbP2cX5Vj2frtZ7HG/Ca/YL0XVf8bqA8H5s9O74ejj/Nx+L9ek7jv5v0eTB9uZQuKGl4XoXvkqvTsdn5Nn7gj/ejNH+z9s8t2YDS+Y/vVyiOt2A8lX1P0zTN4dQs4dqwhA876edG05Q+TGXKX/uH9+vZNZzPqPX4tnYfJGbWcC1M21evhd181/pa1H4vnp/9yP6e4LR9Kv1awtks4Qqaxlv6LqfaVfxyMlOfX8X9V98w+XitJXzWfC5tv7wetX9++Z+ofbqeb+HDe/V+kSr/Gk/6sj2Uzv/ZpPn4XUu4P4a24vivjofX9vDDWR6t9Oy5Fn/QuhYfTtLc6rY2/8/gz9Z7s/lM7WF8LoNfL9zFdvT6kv0693p2gdsQxQAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0NbVpQdwJ8ebfxqYw3Ecyxy2z/qfsu6nI20fjiedn1Q6/lT1+NsZ/XrnNKBrL7g6Pqul4x89X6wnlzV6vlQ6Wy6W70Vh//Meti/eW7qdrcaPt9EvoFiaL8XTmfYfjydeH9KHwax5t/mvHk98FOg2P2eTzme4n1bnS3k8V4//bM42n+Xn1bB91jwfT3H7dtLjw9keluOX1Wn/YftUPJ7seuc9nJ8wX7rFW6fHteq5qb7W093b8Hr3ZvOTGn383XTLF663xx+k85h1i4dl+IcXOK+1+uVMqNv6Vi2d/y3/dOFUlvDlwB7+uwprGP9bs3iu3q/Plr98Z/HewqO2FMfDbm8E4BFzwgYAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLauLj2AB3NcegD/y5w1P9L2S/YDR1oOWTz+dtLxj369ofT+zt3ykXs1fDyk+Vs8/nbzExp+/R9Yt1zsFsvxeLq1L9btfnHPut3fdDx71nyO22cDSvOlfP1JVY8/NXh85vd37MNSefyH7O/vIL5f6cufrHk7g+fjtIfjD/fHuH31eniy9TZWPD/H6PmeSuOnWT7O6XhCx9nyq5HquS/P9eLx7/He0iuW4/GfzNnWHvEA49rjL2IAfHtL+GHH2dafdfiXk5mt+ItpS/jyYS/+dxjS+1s9Pyn5O47VFyWGkt6v7WTP1ku4du7N1k4AuI4TMwAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtHV16QG0dYTN57B9WH54LNkvSMczpeNP+68Wjmfea4Zxa8X3K43namn8zNXjn9MEaDahg+sWD93GU2708XM5zWInzsWw/Ryu/eVrQ7P5b+dke/Xoe1F6Nq/O927t69e3sP9Ucf/l8XA2o8d/sW7jGT6eBx9/+fq8he2L99O4fTqe6vNAKD5Opu+S271cLRa/PK8Zxq2V73fF89NtPot1yq9uj6bl4yme+z3OlfBztXQtz5oPr1NuPQZxPDeTxsPo1wtwKXv6xaJiS7sv2pxLt3jgstbwiWQN83crjrfq8aTzs8VfxKuVrrfWh8tJY62b0XMltYYfLGwne5ZdwnhYBo8HeEzW2VmA8xH1AAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQ1tWlB3AX8zRN83HpUbzhCMsJjzn8BWH7eDxpOWQ6/vQ+pf2H0vkvHk65LnnCDc3VCTB2QMT5G17u6PkSj796PYeHMniuV4+n2/XGBt+7YqNfbjr+NH/3tH32C8rPDtXzUx0/o/ffTXrD4pcJmTj+w3yMdcuXweNzLo6fcvH96nW9cb6k46+O53j/LR5/9frTzeDxX656fprFc5pf85b1X63b493RKF86jWWapvK1JL7esH0aa0ea66G923xyr852f8NXLfA2+/CfvMPt7fEXc3oZffxL+HKm+npHn0/GslZ/GBd2v4f/bsMajmeTX9xSnCuh6sisfm2ezs82+Nl/DT9I3Jo9uwPAY+bEDwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaEsRHAAAAAAAAAAAAAAAAABtKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbV1degAPZT6qf0HW/FiyHzjCcsXq9qlweqYj/IHq+5uOJ73gtPty8Q0rGcW3um8WD9OcJnz1gEKjj/9szD8PJN7ris172D5NlcHbl+913Kt296s43uL8Ddt3y8epeL0qj59u8cn9apYv5fFfvF7Fml1vrNt4inU7T1afh7udt6vXh/jRevB4TuXzk75bCvuvVnz+nPdwfsL285Z1n96vo9sLAoaRxk689KRrf5qLzdYquXhZe/H8d7u/e3y26jV+Lmvv90n30NbwsLr5e68vaq/+og3Xki/Qx5q+bAzPn3tx/q7hgLZm55+l/MOOWul+Wnm96b19ptnLhDRTxo6cftbwg4vNszUA3JonfAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbiuAAAAAAAAAAAAAAAAAAaOvq0gPo6gjLA9P20xz2H7ZP+4/bh+Lxp/2H7efi8cDbCDjeYt7D9ukCVy0N53iBDtufSbdYSKXjr24fSnOxXe52c/SaoOHvV/X4i/Mxzq89+4G8/7B9s/Wq234xfH41Ux3P7eKzev/tNp6ziee/18NCvF/s2fi7xXM8/932x2JH+fz0iv9y6fyE+ZXOZ5q/U7PzZHweaCbOr0LNHmXz8YRzmc59PD3Va2eqUazxzvZm96vTWgV3tfughsb2+Is58C1r/LAW/oI0PsOHNfHPXWxhQK/hA1jcf/qyovh7J5v8uqhl4JdX6cifiWMz/AWhNPLT603XklS69nSzNvsgcfNuA4CBOMEDAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG0pggMAAAAAAAAAAAAAAACgLUVwAAAAAAAAAAAAAAAAALSlCA4AAAAAAAAAAAAAAACAthTBAQAAAAAAAAAAAAAAANCWIjgAAAAAAAAAAAAAAAAA2lIEBwAAAAAAAAAAAAAAAEBbV5cewJ0cb/6pMGfNjzn7gSMsP+zWPpbep3D+5y3sPxWO53TS+anK2yfdp/FTPJ7hhevbdJxrQuP4Cedn+Hi2fvJEcWymsT+na1Wc61nzdrmbGnztT9faatXxEOfLXtt+Stt3G//Z8j3ULb+GN/h+lJ+dw/7T/B3cnCZY8fx3Ux1v095r/vPzcK/25fE2eDyn4uN59XpSrVk+ls9ns/vV7XHwaHQA7TSW25jDxTy93vjVTHHsd4vl0e2Dx//o9uL8Stsv4XpSHT+7Dy5oLM2X6UhffmZfDCnPx/IvqvCYbeHf+77GH0b0soQvP+UXb7Wl8RDG2xo+gG3F57Elzff4e2+1+VU9P1zONvi7hzTyq3fedO1JnS0X17N9kQEaW8NndzgjWQIAAAAAAAAAAAAAAABAW4rgAAAAAAAAAAAAAAAAAGhLERwAAAAAAAAAAAAAAAAAbSmCAwAAAAAAAAAAAAAAAKAtRXAAAAAAAAAAAAAAAAAAtKUIDgAAAAAAAAAAAAAAAIC2FMEBAAAAAAAAAAAAAAAA0JYiOAAAAAAAAAAAAAAAAADaUgQHAAAAAAAAAAAAAAAAQFuK4AAAAAAAAAAAAAAAAABoSxEcAAAAAAAAAAAAAAAAAG1dXXoAD+WYw/ZheWB1+7RcMR7PHE5QKux+Po7S/gG+o3T52WuGcVvpfjeH18sFVe91aew3a1+du3F7ucVbdYuH6nyJ8z37gXjvTdtXr1epbvHDvZr39GVF+Auq99Nm+3X5/HC9eP57vcwpP++1a99r/Smfz7T76vk5m3R+0v0x1Syey8/bWXN4Kl8Lm62dzc4aqTlM9vh+hfbB55PrpfFTHQ9LGP97uJ4s4QK02025gzRfXjvWqP0av/zM5PmYXe/S7IPWPf4iD5eU3q89/OJVGp9xPIfj38L9KB2P+H/c0viPn9eK1/M17H8L43lJ99PweJiOZy1+YE7Xk2qdrncLzzKrL4Zcq9vOkq5U1bHZTbe1AQCu0+2cAQAAAAAAAAAAAAAAAABPKYIDAAAAAAAAAAAAAAAAoC1FcAAAAAAAAAAAAAAAAAC0pQgOAAAAAAAAAAAAAAAAgLYUwQEAAAAAAAAAAAAAAADQliI4AAAAAAAAAAAAAAAAANpSBAcAAAAAAAAAAAAAAABAW4rgAP5/e3cbY1dVPQ543XtLEYG2KdBOJxQsKG/ylgCWRiQaGlpAkgp+qKIBQyCSloQ3RQ1SiBoNfiEEkPjF+kGImggGEk0IWAixokEJQoRAQwRSBhBSasu/tL33/D/0x8TR0s5qZ/fuO/M8SZNmZs++65yz197rnHv3DAAAAAAAAAAAAAAAANWyCQ4AAAAAAAAAAAAAAACAatkEBwAAAAAAAAAAAAAAAEC1bIIDAAAAAAAAAAAAAAAAoFrT+h3AvtIkt/s1rVbuB5LNm8Lts/Gkt0M2yfZZpfunv7Ljs/B4yOZXq7J4skrHX5vS5xM+MPC5W1uuJI+31SR/YIrNhWnZ8znosrV/ZVq9su3T+VI4nuLt3etMrMFOr/Ky692Aj+fi8xW7NuDzT3o8V9Y+/WivdPxZtcUz6JI3kOnyfNAfhpTOx1724Xyueb5+riyewprKxueUuv3NLi6l56qsbPiF587023DJ89+rLFfor156/Nc1frLjOZsv7eTNYy/5wYF2bYtpUs/DmQmVHc+l20errt97XXq9K99/XQ+jsvPVVNMtPb9Vdv47yfUoe35qG/+lTbX86maPt7LPdXWS4zPbPnt+2uk3Q3PNi5ti4z87f2bk16KyyTK1rmxe6fMz6CtpyVwBgImm7gEAAAAAAAAAAAAAAACgWjbBAQAAAAAAAAAAAAAAAFAtm+AAAAAAAAAAAAAAAAAAqJZNcAAAAAAAAAAAAAAAAABUyyY4AAAAAAAAAAAAAAAAAKplExwAAAAAAAAAAAAAAAAA1bIJDgAAAAAAAAAAAAAAAIBq2QQHAAAAAAAAAAAAAAAAQLVsggMAAAAAAAAAAAAAAACgWjbBAQAAAAAAAAAAAAAAAFAtm+AAAAAAAAAAAAAAAAAAqNa0fgewz7RyzZvk9sBs++z2w3w8uQNukucnez5bTa5908q9QCuSLzDFZK9v9npNNel8mWqS+ZvW1DVA0/mVXpDKHu9Umx8GOX8HOfaIiOxSnR1rrV7h9gM+9mubO9NKry21yV6u2vKllwtoyuXvFBvOU052wS6c77Wtv27dB0xl1yubXu1u4RfIKnw+1c9UrZddH2tbT5PPqkvnS+l6IB1Qdv7M9d8M8AOR7LnMHmv2VrlJ5mLpqTx9bStbq7vJeNrJ8ZBtny7NC8ef1RvgXN8Xstcr2z57/rOjYXvTSbVvJ59ltpOLb7Z9bXrJDw60K7u563k4tkvZ65tfAXJKz//7tXI3793kB21Kx19e2eubH291KR5/4fWiU3h+Lt1/bbrJ9SVbDwx6vmTPT/qDiqWX9+Rw7iSvb7Z9Vic5n3eLz29luy8ef0HZWrW2uTY7kktfqU7xsVa2/6zS53Ow72QBYGINbsUJAAAAAAAAAAAAAAAAwKRnExwAAAAAAAAAAAAAAAAA1bIJDgAAAAAAAAAAAAAAAIBq2QQHAAAAAAAAAAAAAAAAQLVsggMAAAAAAAAAAAAAAACgWjbBAQAAAAAAAAAAAAAAAFAtm+AAAAAAAAAAAAAAAAAAqJZNcAAAAAAAAAAAAAAAAABUyyY4AAAAAAAAAAAAAAAAAKplExwAAAAAAAAAAAAAAAAA1bIJDgAAAAAAAAAAAAAAAIBqTet3AHujaUU049zG17Rbub6T2wPLty8bf+S6T2uS7QuHM/UkT2j6emV/gL5qCidY8fHQqmyGKJ1f6RcY7IQsPT7TahtvGaXHQumhlu1/sId+fQZ57EeNc0nh7kvnS7J9q5fsP9k+3T+DJZsvhef/bH5lx2e6/9LHWzgf3Tv2Wen1sfDDhFav7AHUtp7m2xe+OR30/K1sfSkuO6AHfPy0Csefrj9L19uF42+qu6HKaaUn9HLHm300k429+LUa8LmhdPzZ85+dStrJ8ZBtn51MeoXHW+nf2lo6/qxeZbVGOn2z4z97/tO1W24EtZOLYzq/ihvwh2PJ69UrfDObHZ+l22f1Co//rE7h8Vm6/9K6yRUvO//Utt6V1k3OD52Bv9nPKZ3vpWXnt+LXN3k+s/GXlo4n/TAheb0Kj89u4XhqG29pxT/XVbb77PWtibVrYnWKj7Wy/WdlR/5gVwIwuXRag7t2Qa1kFQAAAAAAAAAAAAAAAADVsgkOAAAAAAAAAAAAAAAAgGrZBAcAAAAAAAAAAAAAAABAtWyCAwAAAAAAAAAAAAAAAKBaNsEBAAAAAAAAAAAAAAAAUC2b4AAAAAAAAAAAAAAAAAColk1wAAAAAAAAAAAAAAAAAFTLJjgAAAAAAAAAAAAAAAAAqmUTHAAAAAAAAAAAAAAAAADVsgkOAAAAAAAAAAAAAAAAgGrZBAcAAAAAAAAAAAAAAABAtab1O4C90vq/f+PQjLPdmL4Ltq8unux2yCbXvJVsD1NaNt+zCudjen6rTXb+LNv9HvSfPYDcK1R3fVv1BJQ9N8XXxorOTUT+eFvJscluVDYesqqbe0orPPzT+djL/UC+/1z7qWbKjf/C99bp9Tf7Aun+k+2T8sdbuD0Tqkle4PS9Qmmlx0/p/Crbff7ZW3I9tf7uWiuZX03hu/1s/ha/nUqvj8n22fFZeH1P50vh+mHQ8zd7e5rOx+z5TPTfFH5jJxt7vn1ttUDhuW3Aa9XKrlZ00mtjTumpLfs2aK+yfMnmb+n4s/G0k+OnnRxB7eTimI6nsje6s/HUNp6zGd9rOoXimBxKj/9O4Rm6tvwqrim84rXSK16udfqDRWV1Kiv4aotn0GXnt6zaxvNU082e/2Q50y5+h5GTj6fw+Cz9cCk5Hfb8HY9Jq5scC53Kbl1Kx5M9P8Dg6ibvBTvpezuYemQJAAAAAAAAAAAAAAAAANWyCQ4AAAAAAAAAAAAAAACAatkEBwAAAAAAAAAAAAAAAEC1bIIDAAAAAAAAAAAAAAAAoFo2wQEAAAAAAAAAAAAAAABQLZvgAAAAAAAAAAAAAAAAAKiWTXAAAAAAAAAAAAAAAAAAVMsmOAAAAAAAAAAAAAAAAACqZRMcAAAAAAAAAAAAAAAAANWyCQ4AAAAAAAAAAAAAAACAatkEBwAAAAAAAAAAAAAAAEC1pvU7gL3RtFvRtFvjbJvtu3T78cW95/3n2kcuHAZMk7y+2eHQJNu30j+QbJ/tv7Rk/OnrVfp8llbZ9aouX4r3nx2gyVdo1TXgste3pJpiidiDuaR0+9KyQz/bfW3HW1ht47m6ta60XrJ9diqvLN+rG29MqPR8W3o8ZBOgdEDZcJLzQ7r9FFvvqpN9VtTLXbD0vUJ2+GfXr9IKr3f5fCxcsMrfXUsP/9wJbdIvkMzf5PjJ3uqXHj+tbMFXWX1bfD2dYvnbyo7/9KOuzA9kY8m17/XK/t7K9FBL/kDuXO6BAe+/XVnxXDqeXvJ8dpLxZKNPl56Fx0PpfMnnu4ct/VTb/JCVzfesdnJEb09+UCIbf7a9/Oqv2ta7bDyl86s2vcJv7rSzN2uVqS3+TmUP97rJh6Xp85n9IF6y/176g345tY2fQddNz1fJ8Vk8vwr/3YzC47+T7L9bOL8GWXakOZMTq5OcSrqDfesIABNKXQIAAAAAAAAAAAAAAABAtWyCAwAAAAAAAAAAAAAAAKBaNsEBAAAAAAAAAAAAAAAAUC2b4AAAAAAAAAAAAAAAAAColk1wAAAAAAAAAAAAAAAAAFTLJjgAAAAAAAAAAAAAAAAAqmUTHAAAAAAAAAAAAAAAAADVsgkOAAAAAAAAAAAAAAAAgGrZBAcAAAAAAAAAAAAAAABAtWyCAwAAAAAAAAAAAAAAAKBaNsEBAAAAAAAAAAAAAAAAUK1p/Q5gbzTtHf/GpZXsPNm+yfaf3H447uPcw/bZ4211k/3XJnu9Bl12PJftPt9/9geyCo+H9PxQWf+Dfv7TBj1fCvcfrdwrZMdP6fGcVlM8hXMxe+6z1zY9l1Q3+JPdD/jcXDwXa8qt2AfHWzhfiudXbfmbVbqWqU1l+ZU2xeaf4uOzdP4yWLLPlppsMZ9r3qotIQvnS6tXV/upJnkrm5Yuf9I3y8nm6fujyvIxq3h9W/ZZSPH8zcZT/GFgWdn4M+2b5FjIth942bmqdO72kuc/u/ZWlivtyuKZ1s6d0F4yX7Lts+enSbbvFs737PFm5ee3QoFQRG3zQ1ZvsMOPXvLet50sDgf9+g666s5/ky1ocg+LsvmYHf+l11N2rZMtiAtL51dy/Hf93YBJrZd+GJ5r3qnsYWw6nvR8XjZf2sn5p3Q8GcXXrsLdd5KDITvys1eqm87F5AtUJnu8pWeebm3v2wHALtRTEQIAAAAAAAAAAAAAAADAf7EJDgAAAAAAAAAAAAAAAIBq2QQHAAAAAAAAAAAAAAAAQLVsggMAAAAAAAAAAAAAAACgWjbBAQAAAAAAAAAAAAAAAFAtm+AAAAAAAAAAAAAAAAAAqJZNcAAAAAAAAAAAAAAAAABUyyY4AAAAAAAAAAAAAAAAAKplExwAAAAAAAAAAAAAAAAA1bIJDgAAAAAAAAAAAAAAAIBq2QQHAAAAAAAAAAAAAAAAQLWm9TuAvdG0dvwbV9vkdr98+3EG8kH7XPOIZPts/FnZ8JncsuM5O36aZPvS4zOdv1mlT1C2+wFP+Fbh81Ob0vmYlR4/tSV8TWo71tK5VXjslK7FSs891U1thcfnwK9F3WT7XvIFkgOi1RQeQdl7l8L5PuDDZ+qprBZOK51etR0v/dXOFkDZF8hO6Nn+CytcQKTzMRtPbedzwLWSFyx9a5pev5LPkkuPt0GXPN7a6nMGR3ouqSwXB73UTgdk7hwo7cI3O90pdn1Lzz/Z/tvJhGynF192JXv+e1PsaVovXZsP9vnphPyaSNnz2R3w31OenZ97TadQJDtYLwZL6XqvNp30m1nZ/Brs+WSq6abrq+wHV5PdJ7XT9UMu/uSjuqLy1yonW5tn72U7ybk2e7zZua3syInoTq2lJS17fafasxMABps7IgAAAAAAAAAAAAAAAACqZRMcAAAAAAAAAAAAAAAAANWyCQ4AAAAAAAAAAAAAAACAatkEBwAAAAAAAAAAAAAAAEC1bIIDAAAAAAAAAAAAAAAAoFo2wQEAAAAAAAAAAAAAAABQLZvgAAAAAAAAAAAAAAAAAKiWTXAAAAAAAAAAAAAAAAAAVMsmOAAAAAAAAAAAAAAAAACqZRMcAAAAAAAAAAAAAAAAANWyCQ4AAAAAAAAAAAAAAACAak3rdwB7o2nv+Dfettm+Uwr3n46nlWzfJNszoZpW8oK1chcs238rOyCyzbOHm2ue7r/4+E/GU/r8FFfZfJIeD1nZ61u4/+T0MPD5Uvx4B1j23KT77yV/oHA8tc2d2cNNX68BH8u1zc2lpa9vMr/S/Vc2l5dW/HArq31KK56/pcdzun3ZAy4+fgqvL8XXuwFXPF/ayRPaK3uBW9kDrmw8pC9X+vyUbc+utSq7eUwvR1PpZjaieH5lr286f7P3y6UN+PBJ5+8Ukn1bobozmZ3bsrVM4dqnNr3k+WwPeG5l4+9OtbU0qRns4cAEa6eLsVzz/HyVK67ayYBKzyfmZ/ZG8fPZ5PKrF51Cgfxf/+kPRpXVGfQCkV3qpN+MyzWvbTxn48muv93kCcrmVzcZfycZfy/9wc9c82w8Wdn428nxnz4/SenrVVl+ZfSytWo6V5K5mK2FC+d6bY9Va5M9/wAwmQ1uRQgAAAAAAAAAAAAAAADApGcTHAAAAAAAAAAAAAAAAADVsgkOAAAAAAAAAAAAAAAAgGrZBAcAAAAAAAAAAAAAAABAtWyCAwAAAAAAAAAAAAAAAKBaNsEBAAAAAAAAAAAAAAAAUC2b4AAAAAAAAAAAAAAAAAColk1wAAAAAAAAAAAAAAAAAFTLJjgAAAAAAAAAAAAAAAAAqmUTHAAAAAAAAAAAAAAAAADVmtbvAPZE0zQREdHdumX8P9NJvka6fSvVvpfcflg6/miSzbfn2re6yfa9XPummzuAbP/p+Asfb6uXO96mnRufrSY7IHLNs3LR74HC8WcPIBtO8fOTVfp8FtYk8zf/AmW7H/h8yRr4hCmo8LXqtpJrS3atK7wWVZcrteVWaaUvQGW53n0/V/y3krV2k82v7YVr59LjubL8Kn68lWkK51dv/Lf5EVH+3i66Zde79L11Ot+T7QvnV+n+0wY8f3v/b2vyB5IJnGzfSuZLZJ+dJCeg1rbC8WTX6+1l55Mptz4m+++9l1tgmsILXrb/XuH8bdL5W3g+yeZLdr0uPT8M+LOl7nvvl32BpNYAF9y95BtB3eRYbpK51evm4snOPdl4mmQ8kZwb0rVPcqh1N+dypZccy6UfbbQL51bp/rO2J/Mxnb9Nsn1yfHaz8ReuNbKPbrdtzt27tNPFcE52fA56vrQLFw+95IyVzsfkeN6e/KBE6Xzcnpwftu63LdU+qx115VdppePpJM9nt/DvKU/P/+n8yh3v9uQb79t6ufzdEsmHM0mdyh4etgqvj9nxnFU6H7PjOSubv022Pkyup71k/+/tl8vH0utF6fzqlK4nk+cnG0/p89NKxt8Ujic7/rcl872buIHZNL2ua1W6lu8Ur5XqWksHXTZX0v0nc2vjfmXnWpjKkltSYNLYuGnH2tKMo35rNeNpVZnXXnst5s+f3+8wAAAAAAAAAAAAAAAAANgLr776ahx++OG7bDOQm+B6vV6sX78+Dj744Gj9x18h2bhxY8yfPz9effXVmDFjRh8jBACYHNRXAAATR20FADCx1FcAABNHbQUAMHHUVgAwfk3TxL///e8YHh6OdnvXf/162j6KaUK12+1d7u6bMWOGggEAYAKprwAAJo7aCgBgYqmvAAAmjtoKAGDiqK0AYHxmzpw5rna73iIHAAAAAAAAAAAAAAAAAH1kExwAAAAAAAAAAAAAAAAA1ZpUm+D233//WLVqVey///79DgUAYFJQXwEATBy1FQDAxFJfAQBMHLUVAMDEUVsBQBmtpmmafgcBAAAAAAAAAAAAAAAAADszqf4SHAAAAAAAAAAAAAAAAACTi01wAAAAAAAAAAAAAAAAAFTLJjgAAAAAAAAAAAAAAAAAqmUTHAAAAAAAAAAAAAAAAADVsgkOAAAAAAAAAAAAAAAAgGpNqk1wd911V3zsYx+Lj3zkI7Fw4cL485//3O+QAACqd8stt0Sr1Rrz77jjjhv9/pYtW2LFihVxyCGHxEEHHRQXX3xxvPHGG32MGACgHo8//nhceOGFMTw8HK1WKx544IEx32+aJm6++eaYN29eHHDAAbF48eJ48cUXx7R555134pJLLokZM2bErFmz4vLLL49Nmzbtw6MAAKjH7uqryy677H+eZS1dunRMG/UVAMAOP/zhD+OMM86Igw8+OObMmRPLli2LF154YUyb8bwX+Morr8QFF1wQH/3oR2POnDnxjW98I7Zv374vDwUAoO/GU1t99rOf/Z9nV1//+tfHtFFbAcCemzSb4H75y1/GddddF6tWrYq//vWvccopp8SSJUvizTff7HdoAADV++QnPxmvv/766L8nnnhi9HvXXnttPPjgg/HrX/86HnvssVi/fn1cdNFFfYwWAKAemzdvjlNOOSXuuuuunX7/tttuizvuuCPuueeeePLJJ+PAAw+MJUuWxJYtW0bbXHLJJfHcc8/Fww8/HA899FA8/vjjceWVV+6rQwAAqMru6quIiKVLl455lnXfffeN+b76CgBgh8ceeyxWrFgRf/rTn+Lhhx+Obdu2xbnnnhubN28ebbO79wK73W5ccMEFsXXr1vjjH/8YP//5z2P16tVx88039+OQAAD6Zjy1VUTEFVdcMebZ1W233Tb6PbUVAOydVtM0Tb+DmAgLFy6MM844I+68886IiOj1ejF//vy4+uqr41vf+lafowMAqNctt9wSDzzwQDz99NP/87133303DjvssLj33nvji1/8YkREPP/883H88cfH2rVr48wzz9zH0QIA1KvVasX9998fy5Yti4gdfwVueHg4rr/++rjhhhsiYkd9NXfu3Fi9enUsX748/vGPf8QJJ5wQf/nLX+L000+PiIjf//73cf7558drr70Ww8PD/TocAIC+++/6KmLHX4LbsGHD//yFuA+orwAAPtxbb70Vc+bMicceeyzOPvvscb0X+Lvf/S4+//nPx/r162Pu3LkREXHPPffEjTfeGG+99VZMnz69n4cEANA3/11bRez4S3Cnnnpq3H777Tv9GbUVAOydSfGX4LZu3RpPPfVULF68ePRr7XY7Fi9eHGvXru1jZAAAg+HFF1+M4eHhOOqoo+KSSy6JV155JSIinnrqqdi2bduYOuu4446LI444Qp0FALAbL7/8coyMjIyppWbOnBkLFy4craXWrl0bs2bNGv2AdkTE4sWLo91ux5NPPrnPYwYAGARr1qyJOXPmxLHHHhtXXXVVvP3226PfU18BAHy4d999NyIiZs+eHRHjey9w7dq1cdJJJ41+SDsiYsmSJbFx48Z47rnn9mH0AAB1+e/a6gO/+MUv4tBDD40TTzwxvv3tb8d77703+j21FQDsnWn9DmAi/Otf/4putzumIIiImDt3bjz//PN9igoAYDAsXLgwVq9eHccee2y8/vrrceutt8ZnPvOZePbZZ2NkZCSmT58es2bNGvMzc+fOjZGRkf4EDAAwID6ol3b2zOqD742MjMScOXPGfH/atGkxe/Zs9RYAwE4sXbo0LrrooliwYEGsW7cuvvOd78R5550Xa9eujU6no74CAPgQvV4vrrnmmvj0pz8dJ554YkTEuN4LHBkZ2enzrQ++BwAwFe2stoqI+PKXvxxHHnlkDA8PxzPPPBM33nhjvPDCC/Gb3/wmItRWALC3JsUmOAAA9tx55503+v+TTz45Fi5cGEceeWT86le/igMOOKCPkQEAAADAWMuXLx/9/0knnRQnn3xyHH300bFmzZo455xz+hgZAEDdVqxYEc8++2w88cQT/Q4FAGDgfVhtdeWVV47+/6STTop58+bFOeecE+vWrYujjz56X4cJAJNOu98BTIRDDz00Op1OvPHGG2O+/sYbb8TQ0FCfogIAGEyzZs2KY445Jl566aUYGhqKrVu3xoYNG8a0UWcBAOzeB/XSrp5ZDQ0NxZtvvjnm+9u3b4933nlHvQUAMA5HHXVUHHroofHSSy9FhPoKAGBnVq5cGQ899FD84Q9/iMMPP3z06+N5L3BoaGinz7c++B4AwFTzYbXVzixcuDAiYsyzK7UVAOy5SbEJbvr06XHaaafFI488Mvq1Xq8XjzzySCxatKiPkQEADJ5NmzbFunXrYt68eXHaaafFfvvtN6bOeuGFF+KVV15RZwEA7MaCBQtiaGhoTC21cePGePLJJ0drqUWLFsWGDRviqaeeGm3z6KOPRq/XG31TDACAD/faa6/F22+/HfPmzYsI9RUAwH9qmiZWrlwZ999/fzz66KOxYMGCMd8fz3uBixYtir///e9jftHAww8/HDNmzIgTTjhh3xwIAEAFdldb7czTTz8dETHm2ZXaCgD23LR+BzBRrrvuurj00kvj9NNPj0996lNx++23x+bNm+NrX/tav0MDAKjaDTfcEBdeeGEceeSRsX79+li1alV0Op340pe+FDNnzozLL788rrvuupg9e3bMmDEjrr766li0aFGceeaZ/Q4dAKDvNm3aNPqbGyMiXn755Xj66adj9uzZccQRR8Q111wT3//+9+MTn/hELFiwIL773e/G8PBwLFu2LCIijj/++Fi6dGlcccUVcc8998S2bdti5cqVsXz58hgeHu7TUQEA9M+u6qvZs2fHrbfeGhdffHEMDQ3FunXr4pvf/GZ8/OMfjyVLlkSE+goA4D+tWLEi7r333vjtb38bBx98cIyMjERExMyZM+OAAw4Y13uB5557bpxwwgnx1a9+NW677bYYGRmJm266KVasWBH7779/Pw8PAGCf2l1ttW7durj33nvj/PPPj0MOOSSeeeaZuPbaa+Pss8+Ok08+OSLUVgCwt1pN0zT9DmKi3HnnnfHjH/84RkZG4tRTT4077rjDb3QEANiN5cuXx+OPPx5vv/12HHbYYXHWWWfFD37wgzj66KMjImLLli1x/fXXx3333Rfvv/9+LFmyJO6+++4YGhrqc+QAAP23Zs2a+NznPvc/X7/00ktj9erV0TRNrFq1Kn7605/Ghg0b4qyzzoq77747jjnmmNG277zzTqxcuTIefPDBaLfbcfHFF8cdd9wRBx100L48FACAKuyqvvrJT34Sy5Yti7/97W+xYcOGGB4ejnPPPTe+973vxdy5c0fbqq8AAHZotVo7/frPfvazuOyyyyJifO8F/vOf/4yrrroq1qxZEwceeGBceuml8aMf/SimTZs0v38dAGC3dldbvfrqq/GVr3wlnn322di8eXPMnz8/vvCFL8RNN90UM2bMGG2vtgKAPTepNsEBAAAAAAAAAAAAAAAAMLm0+x0AAAAAAAAAAAAAAAAAAHwYm+AAAAAAAAAAAAAAAAAAqJZNcAAAAAAAAAAAAAAAAABUyyY4AAAAAAAAAAAAAAAAAKplExwAAAAAAAAAAAAAAAAA1bIJDgAAAAAAAAAAAAAAAIBq2QQHAAAAAAAAAAAAAAAAQLVsggMAAAAAAAAAAAAAAACgWjbBAQAAAAAAAAAAAAAAAFAtm+AAAAAAAAAAAAAAAAAAqJZNcAAAAAAAAAAAAAAAAABU6/8DJ0eMho4phbUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from einops import rearrange\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "f, a = plt.subplots(1,1, figsize=(9*5, 9*5))\n", "gg = lut[:,:,:,:,2,0].reshape(17**4, 1, 1)\n", "gg = rearrange(gg, '(b1 b2) h w -> (b2 h) (b1 w) ', b1=17*17, b2=17*17)\n", "a.imshow(gg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from models import LoadLutCheckpoint" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dict_keys(['model', 'scale', 'quantization_interval', 'state_dict'])\n" ] }, { "data": { "text/plain": [ "SRLut2x2\n", " lut size: torch.Size([17, 17, 17, 17, 4, 4])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lut = LoadLutCheckpoint(\"/wd/luts/models/srnet2x2/luts/0.pth\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[1., 1., 1., 1.],\n", " [1., 1., 1., 0.],\n", " [1., 1., 1., 0.],\n", " [1., 1., 1., 1.]], grad_fn=),\n", " tensor([[17., 16., 16., 16.],\n", " [17., 16., 16., 16.],\n", " [17., 17., 16., 16.],\n", " [17., 17., 16., 16.]], grad_fn=),\n", " tensor([0.0000, 0.0588, 0.1176, 0.1765, 0.2353, 0.2941, 0.3529, 0.4118, 0.4706,\n", " 0.5294, 0.5882, 0.6471, 0.7059, 0.7647, 0.8235, 0.8824, 0.9412]),\n", " tensor([[9.4706, 8.9412, 8.9412, 8.9412],\n", " [9.4706, 8.9412, 8.9412, 8.4706],\n", " [9.4706, 9.4706, 8.9412, 8.4706],\n", " [9.4706, 9.4706, 8.9412, 8.9412]], grad_fn=))" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# [lut.stage_lut[(i+8)%17,i,i,(i-8)%17] for i in range(17)]\n", "import torch\n", "# torch.floor_divide(torch.arange(256), 17)\n", "# torch.arange(256) % 17\n", "coefs = (torch.arange(17) % 17) / 17\n", "lut.stage_lut[0,0,0,0], lut.stage_lut[1,1,1,1], coefs, lut.stage_lut[0,0,0,0] + coefs[9]*(lut.stage_lut[1,1,1,1]-lut.stage_lut[0,0,0,0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'stage1_lut': array([[131, 131, 130, 130, 129, 129, 128, 128, 127, 126, 126, 125, 125,\n", " 124, 124, 123, 255],\n", " [115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 131, 133,\n", " 134, 136, 137, 255],\n", " [153, 150, 147, 143, 140, 137, 134, 130, 127, 124, 120, 117, 114,\n", " 110, 107, 104, 255],\n", " [115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133,\n", " 134, 136, 137, 255],\n", " [129, 129, 129, 128, 128, 128, 128, 127, 127, 127, 126, 126, 126,\n", " 125, 125, 125, 255],\n", " [115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 131, 133,\n", " 134, 136, 137, 255],\n", " [160, 156, 152, 148, 144, 140, 135, 131, 127, 123, 118, 114, 110,\n", " 106, 102, 97, 255],\n", " [ 44, 52, 60, 70, 80, 91, 103, 115, 127, 140, 152, 164, 175,\n", " 185, 194, 203, 255],\n", " [178, 172, 166, 160, 153, 147, 140, 134, 127, 120, 113, 107, 100,\n", " 94, 88, 82, 255],\n", " [112, 114, 116, 118, 120, 122, 123, 125, 127, 129, 131, 133, 134,\n", " 136, 138, 140, 255],\n", " [153, 150, 147, 143, 140, 137, 134, 130, 127, 124, 120, 117, 114,\n", " 110, 107, 104, 255],\n", " [ 44, 52, 61, 70, 80, 91, 103, 115, 127, 140, 152, 163, 174,\n", " 185, 194, 202, 255],\n", " [ 14, 20, 27, 37, 50, 66, 85, 106, 128, 150, 171, 189, 205,\n", " 217, 227, 235, 255],\n", " [125, 125, 125, 126, 126, 126, 126, 127, 127, 127, 128, 128, 128,\n", " 128, 129, 129, 255],\n", " [130, 129, 129, 129, 128, 128, 128, 127, 127, 127, 126, 126, 126,\n", " 125, 125, 125, 255],\n", " [115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133,\n", " 134, 136, 137, 255],\n", " [178, 172, 166, 160, 153, 147, 140, 134, 127, 120, 113, 107, 100,\n", " 94, 88, 82, 255],\n", " [125, 125, 125, 126, 126, 126, 126, 127, 127, 127, 128, 128, 128,\n", " 128, 129, 129, 255],\n", " [127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,\n", " 127, 127, 127, 255],\n", " [126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127,\n", " 128, 128, 128, 255],\n", " [129, 129, 129, 128, 128, 128, 128, 127, 127, 127, 126, 126, 126,\n", " 126, 125, 125, 255],\n", " [113, 114, 116, 118, 120, 122, 123, 125, 127, 129, 131, 133, 134,\n", " 136, 138, 140, 255],\n", " [130, 129, 129, 129, 128, 128, 128, 127, 127, 127, 126, 126, 126,\n", " 125, 125, 125, 255],\n", " [126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127,\n", " 128, 128, 128, 255],\n", " [127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,\n", " 127, 127, 127, 255]], dtype=uint8),\n", " 'stage1_dense_upscale_lut': array([[[[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 2, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 1],\n", " [ 61, 68, 42, 49]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 1],\n", " [ 81, 77, 49, 61]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 7, 2, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 7, 2, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 4, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [122, 104, 50, 52]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 1],\n", " [125, 107, 62, 78]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 1],\n", " [ 56, 44, 22, 37]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 1],\n", " [ 84, 62, 32, 51]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 18, 5, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 0],\n", " [124, 74, 26, 33]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [127, 89, 43, 62]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 5, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 5, 2, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 5, 2, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 1],\n", " [ 93, 64, 30, 49]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [110, 83, 44, 70]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 13, 4, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 15, 5, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 31, 10, 1, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [151, 96, 38, 48]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [158, 103, 48, 71]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 1],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 2],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 1],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 40],\n", " [ 0, 0, 0, 71],\n", " [ 0, 0, 1, 80],\n", " [ 0, 0, 2, 126]],\n", " \n", " [[ 0, 0, 0, 28],\n", " [ 0, 0, 0, 77],\n", " [ 0, 0, 1, 107],\n", " [ 0, 0, 2, 157]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 2],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 4],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 3],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 52],\n", " [ 0, 0, 0, 116],\n", " [ 0, 0, 1, 133],\n", " [ 0, 0, 2, 151]],\n", " \n", " [[ 0, 0, 0, 39],\n", " [ 0, 0, 0, 102],\n", " [ 0, 0, 1, 138],\n", " [ 0, 0, 3, 176]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 5],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 5],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 4],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 71],\n", " [ 0, 0, 1, 152],\n", " [ 0, 0, 1, 172],\n", " [ 0, 0, 3, 187]],\n", " \n", " [[ 0, 0, 0, 56],\n", " [ 0, 0, 1, 137],\n", " [ 0, 0, 1, 175],\n", " [ 0, 0, 4, 206]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 18, 139, 249],\n", " [ 8, 160, 233, 248],\n", " [ 83, 226, 235, 241],\n", " [211, 222, 191, 155]],\n", " \n", " [[ 1, 17, 136, 250],\n", " [ 9, 164, 233, 249],\n", " [ 91, 231, 238, 244],\n", " [221, 230, 208, 189]],\n", " \n", " [[ 0, 21, 168, 253],\n", " [ 10, 179, 240, 252],\n", " [ 82, 232, 239, 247],\n", " [225, 238, 223, 209]],\n", " \n", " ...,\n", " \n", " [[ 2, 21, 168, 254],\n", " [ 20, 184, 248, 255],\n", " [127, 244, 253, 255],\n", " [252, 255, 255, 255]],\n", " \n", " [[ 3, 24, 151, 254],\n", " [ 29, 189, 244, 255],\n", " [154, 246, 253, 255],\n", " [253, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 1, 39, 177, 252],\n", " [ 19, 198, 242, 252],\n", " [134, 241, 243, 246],\n", " [242, 245, 226, 188]],\n", " \n", " [[ 2, 51, 195, 253],\n", " [ 27, 208, 243, 253],\n", " [136, 241, 243, 248],\n", " [244, 248, 235, 215]],\n", " \n", " [[ 1, 34, 179, 253],\n", " [ 19, 200, 242, 253],\n", " [123, 241, 243, 248],\n", " [240, 246, 236, 225]],\n", " \n", " ...,\n", " \n", " [[ 4, 35, 200, 255],\n", " [ 40, 209, 250, 255],\n", " [173, 248, 254, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[ 4, 33, 181, 254],\n", " [ 45, 206, 248, 255],\n", " [187, 249, 254, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 7],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 6],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 6],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 110],\n", " [ 0, 0, 1, 157],\n", " [ 0, 0, 2, 150],\n", " [ 0, 0, 3, 170]],\n", " \n", " [[ 0, 0, 1, 86],\n", " [ 0, 0, 1, 162],\n", " [ 0, 0, 2, 171],\n", " [ 0, 0, 4, 182]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 7],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 7],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 10],\n", " [ 0, 0, 0, 5],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 135],\n", " [ 0, 0, 2, 201],\n", " [ 0, 0, 2, 197],\n", " [ 0, 0, 3, 187]],\n", " \n", " [[ 0, 0, 1, 120],\n", " [ 0, 0, 2, 203],\n", " [ 0, 0, 3, 209],\n", " [ 0, 0, 6, 205]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 19],\n", " [ 0, 0, 0, 8],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 13],\n", " [ 0, 0, 0, 7],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 14],\n", " [ 0, 0, 0, 9],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 133],\n", " [ 0, 0, 2, 209],\n", " [ 0, 0, 4, 217],\n", " [ 0, 0, 6, 215]],\n", " \n", " [[ 0, 0, 1, 132],\n", " [ 0, 0, 2, 213],\n", " [ 0, 0, 4, 227],\n", " [ 0, 1, 10, 230]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 1, 33, 205, 254],\n", " [ 12, 207, 249, 254],\n", " [ 99, 240, 247, 249],\n", " [226, 232, 208, 184]],\n", " \n", " [[ 0, 26, 203, 254],\n", " [ 12, 210, 250, 254],\n", " [111, 243, 248, 251],\n", " [228, 235, 216, 201]],\n", " \n", " [[ 0, 21, 190, 254],\n", " [ 9, 193, 248, 254],\n", " [ 72, 236, 247, 251],\n", " [220, 239, 231, 222]],\n", " \n", " ...,\n", " \n", " [[ 4, 55, 231, 255],\n", " [ 36, 219, 253, 255],\n", " [153, 247, 254, 255],\n", " [252, 255, 255, 255]],\n", " \n", " [[ 4, 59, 231, 255],\n", " [ 38, 219, 253, 255],\n", " [163, 248, 254, 255],\n", " [253, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 1, 48, 211, 254],\n", " [ 21, 220, 249, 254],\n", " [140, 245, 248, 250],\n", " [242, 244, 226, 200]],\n", " \n", " [[ 1, 52, 220, 254],\n", " [ 23, 222, 250, 254],\n", " [132, 244, 247, 250],\n", " [243, 246, 233, 213]],\n", " \n", " [[ 1, 51, 221, 254],\n", " [ 31, 230, 252, 254],\n", " [148, 248, 251, 253],\n", " [244, 250, 244, 234]],\n", " \n", " ...,\n", " \n", " [[ 6, 68, 233, 255],\n", " [ 56, 226, 253, 255],\n", " [196, 250, 254, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[ 6, 68, 231, 255],\n", " [ 54, 225, 253, 255],\n", " [198, 251, 254, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 6, 2, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 5, 2, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [117, 110, 66, 62]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 1],\n", " [117, 121, 80, 81]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 9, 2, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 11, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 17, 6, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 2, 1, 1, 1],\n", " [162, 146, 81, 73]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 1],\n", " [155, 135, 85, 97]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 5, 1, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 6, 2, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 7, 2, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 1],\n", " [128, 109, 63, 77]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 2],\n", " [149, 135, 89, 111]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 16, 4, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 17, 4, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 28, 8, 1, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 1, 0, 1],\n", " [174, 123, 55, 62]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 2, 1, 1, 1],\n", " [190, 147, 82, 105]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 9, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 9, 3, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 1],\n", " [134, 94, 45, 63]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 2],\n", " [161, 130, 74, 105]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 22, 6, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 23, 7, 1, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 48, 14, 1, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 2, 1, 1],\n", " [186, 125, 54, 70]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 2, 1, 2],\n", " [201, 152, 81, 111]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 2],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 3],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 5],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 65],\n", " [ 0, 0, 1, 111],\n", " [ 0, 0, 1, 113],\n", " [ 0, 0, 2, 159]],\n", " \n", " [[ 0, 0, 1, 65],\n", " [ 0, 0, 1, 136],\n", " [ 0, 0, 2, 149],\n", " [ 0, 0, 3, 177]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 5],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 7],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 7],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 84],\n", " [ 0, 0, 1, 162],\n", " [ 0, 0, 2, 169],\n", " [ 0, 0, 4, 172]],\n", " \n", " [[ 0, 0, 1, 87],\n", " [ 0, 0, 1, 175],\n", " [ 0, 0, 3, 189],\n", " [ 0, 0, 6, 201]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 8],\n", " [ 0, 0, 0, 4],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 8],\n", " [ 0, 0, 0, 4],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 8],\n", " [ 0, 0, 0, 4],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 120],\n", " [ 0, 0, 2, 199],\n", " [ 0, 0, 3, 207],\n", " [ 0, 0, 6, 204]],\n", " \n", " [[ 0, 0, 1, 89],\n", " [ 0, 0, 1, 178],\n", " [ 0, 0, 3, 202],\n", " [ 0, 0, 7, 217]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 1, 35, 202, 254],\n", " [ 26, 219, 247, 253],\n", " [166, 246, 245, 243],\n", " [232, 236, 203, 125]],\n", " \n", " [[ 1, 46, 206, 254],\n", " [ 20, 215, 248, 253],\n", " [140, 244, 246, 248],\n", " [240, 241, 218, 190]],\n", " \n", " [[ 2, 62, 220, 254],\n", " [ 27, 220, 250, 254],\n", " [132, 244, 248, 251],\n", " [242, 248, 239, 225]],\n", " \n", " ...,\n", " \n", " [[ 5, 63, 229, 255],\n", " [ 50, 221, 252, 255],\n", " [190, 250, 254, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[ 7, 64, 215, 255],\n", " [ 60, 221, 251, 255],\n", " [199, 251, 254, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 2, 60, 220, 254],\n", " [ 46, 234, 250, 254],\n", " [206, 250, 248, 246],\n", " [247, 248, 226, 158]],\n", " \n", " [[ 2, 81, 229, 254],\n", " [ 39, 232, 251, 254],\n", " [181, 248, 249, 250],\n", " [248, 248, 232, 210]],\n", " \n", " [[ 3, 97, 235, 255],\n", " [ 38, 233, 252, 254],\n", " [171, 249, 251, 253],\n", " [250, 252, 248, 242]],\n", " \n", " ...,\n", " \n", " [[ 6, 71, 232, 255],\n", " [ 60, 226, 253, 255],\n", " [212, 252, 255, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[ 6, 64, 224, 255],\n", " [ 58, 221, 252, 255],\n", " [212, 252, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 10],\n", " [ 0, 0, 0, 5],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 10],\n", " [ 0, 0, 0, 5],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 9],\n", " [ 0, 0, 0, 4],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 2, 148],\n", " [ 0, 0, 2, 190],\n", " [ 0, 0, 3, 181],\n", " [ 0, 0, 4, 199]],\n", " \n", " [[ 0, 0, 1, 122],\n", " [ 0, 0, 2, 187],\n", " [ 0, 0, 3, 192],\n", " [ 0, 0, 6, 210]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 17],\n", " [ 0, 0, 0, 7],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 14],\n", " [ 0, 0, 0, 7],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 17],\n", " [ 0, 0, 0, 8],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 2, 164],\n", " [ 0, 0, 3, 211],\n", " [ 0, 0, 4, 209],\n", " [ 0, 0, 6, 209]],\n", " \n", " [[ 0, 0, 2, 152],\n", " [ 0, 0, 3, 217],\n", " [ 0, 0, 5, 220],\n", " [ 0, 1, 10, 223]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 34],\n", " [ 0, 0, 0, 13],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 29],\n", " [ 0, 0, 0, 12],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 36],\n", " [ 0, 0, 0, 15],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 2, 178],\n", " [ 0, 0, 4, 230],\n", " [ 0, 0, 6, 230],\n", " [ 0, 1, 9, 223]],\n", " \n", " [[ 0, 0, 3, 187],\n", " [ 0, 0, 5, 235],\n", " [ 0, 1, 8, 236],\n", " [ 0, 1, 13, 232]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 1, 51, 226, 254],\n", " [ 34, 233, 252, 254],\n", " [170, 249, 250, 250],\n", " [235, 240, 218, 161]],\n", " \n", " [[ 1, 58, 226, 254],\n", " [ 25, 228, 251, 254],\n", " [146, 247, 250, 252],\n", " [238, 243, 230, 212]],\n", " \n", " [[ 1, 71, 236, 255],\n", " [ 27, 233, 253, 255],\n", " [140, 248, 251, 253],\n", " [242, 247, 238, 228]],\n", " \n", " ...,\n", " \n", " [[ 7, 98, 245, 255],\n", " [ 65, 237, 254, 255],\n", " [198, 252, 255, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[ 6, 88, 243, 255],\n", " [ 54, 233, 254, 255],\n", " [192, 252, 255, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 2, 73, 235, 255],\n", " [ 54, 241, 253, 255],\n", " [200, 251, 251, 251],\n", " [247, 249, 235, 192]],\n", " \n", " [[ 3, 96, 240, 255],\n", " [ 48, 240, 253, 255],\n", " [183, 250, 251, 253],\n", " [248, 249, 240, 225]],\n", " \n", " [[ 2, 100, 242, 255],\n", " [ 41, 239, 253, 255],\n", " [170, 250, 252, 253],\n", " [250, 251, 245, 239]],\n", " \n", " ...,\n", " \n", " [[ 9, 98, 244, 255],\n", " [ 82, 239, 254, 255],\n", " [225, 253, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[ 10, 105, 245, 255],\n", " [ 83, 239, 254, 255],\n", " [224, 253, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 11, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 12, 4, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 2, 1, 1, 1],\n", " [140, 131, 77, 59]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 1, 1],\n", " [139, 130, 92, 90]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 19, 5, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 23, 7, 1, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 0],\n", " [ 35, 11, 1, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 2, 1, 1],\n", " [208, 183, 91, 68]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 2, 1, 1],\n", " [187, 169, 106, 101]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 13, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 3, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 12, 4, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 2, 1, 1, 1],\n", " [162, 145, 94, 100]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 2, 1, 1, 2],\n", " [165, 160, 113, 120]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 25, 6, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 34, 8, 1, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 0, 0, 0],\n", " [ 48, 12, 1, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 2, 1, 1],\n", " [214, 176, 91, 101]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 2, 1, 2],\n", " [210, 169, 93, 121]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 15, 4, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 17, 4, 0, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 18, 5, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 3, 2, 1, 2],\n", " [199, 156, 87, 109]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 4, 2, 1, 3],\n", " [207, 171, 102, 131]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 0],\n", " [ 39, 10, 1, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 0],\n", " [ 34, 9, 1, 0]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 1, 1, 0, 0],\n", " [ 59, 17, 1, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 10, 4, 1, 3],\n", " [235, 198, 121, 156]],\n", " \n", " [[ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0],\n", " [ 12, 5, 2, 5],\n", " [237, 206, 136, 173]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[ 0, 0, 0, 5],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 6],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 7],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 94],\n", " [ 0, 0, 1, 132],\n", " [ 0, 0, 2, 126],\n", " [ 0, 0, 3, 171]],\n", " \n", " [[ 0, 0, 1, 97],\n", " [ 0, 0, 1, 155],\n", " [ 0, 0, 2, 156],\n", " [ 0, 0, 4, 190]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 8],\n", " [ 0, 0, 0, 5],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 10],\n", " [ 0, 0, 0, 6],\n", " [ 0, 0, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 14],\n", " [ 0, 0, 0, 7],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 1, 120],\n", " [ 0, 0, 2, 186],\n", " [ 0, 0, 4, 190],\n", " [ 0, 0, 6, 203]],\n", " \n", " [[ 0, 0, 2, 154],\n", " [ 0, 0, 3, 216],\n", " [ 0, 0, 6, 220],\n", " [ 0, 1, 11, 224]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 0, 18],\n", " [ 0, 0, 0, 9],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 21],\n", " [ 0, 0, 0, 9],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 18],\n", " [ 0, 0, 0, 9],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 2, 152],\n", " [ 0, 0, 3, 218],\n", " [ 0, 0, 6, 220],\n", " [ 0, 1, 11, 220]],\n", " \n", " [[ 0, 0, 3, 180],\n", " [ 0, 0, 4, 230],\n", " [ 0, 1, 9, 233],\n", " [ 0, 1, 20, 236]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 2, 77, 232, 254],\n", " [ 58, 240, 252, 254],\n", " [207, 251, 250, 248],\n", " [243, 245, 219, 139]],\n", " \n", " [[ 3, 79, 235, 254],\n", " [ 62, 243, 253, 254],\n", " [206, 251, 251, 251],\n", " [246, 248, 233, 185]],\n", " \n", " [[ 3, 98, 239, 255],\n", " [ 53, 240, 253, 255],\n", " [187, 250, 251, 252],\n", " [247, 249, 238, 223]],\n", " \n", " ...,\n", " \n", " [[ 10, 105, 244, 255],\n", " [ 83, 239, 254, 255],\n", " [222, 253, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[ 8, 77, 237, 255],\n", " [ 60, 227, 253, 255],\n", " [205, 252, 255, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 3, 107, 242, 255],\n", " [ 82, 244, 253, 254],\n", " [227, 252, 252, 250],\n", " [250, 250, 239, 188]],\n", " \n", " [[ 4, 114, 243, 255],\n", " [ 92, 246, 253, 255],\n", " [230, 253, 252, 251],\n", " [252, 252, 242, 206]],\n", " \n", " [[ 4, 115, 245, 255],\n", " [ 80, 246, 254, 255],\n", " [221, 252, 252, 253],\n", " [252, 253, 247, 230]],\n", " \n", " ...,\n", " \n", " [[ 16, 129, 246, 255],\n", " [122, 245, 254, 255],\n", " [236, 254, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[ 12, 99, 241, 255],\n", " [ 92, 238, 254, 255],\n", " [226, 253, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[ 0, 0, 1, 30],\n", " [ 0, 0, 1, 14],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 22],\n", " [ 0, 0, 1, 11],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 21],\n", " [ 0, 0, 0, 10],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 4, 203],\n", " [ 0, 0, 4, 216],\n", " [ 0, 0, 5, 194],\n", " [ 0, 0, 6, 208]],\n", " \n", " [[ 0, 0, 4, 186],\n", " [ 0, 0, 4, 218],\n", " [ 0, 0, 6, 216],\n", " [ 0, 1, 11, 228]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 1, 32],\n", " [ 0, 0, 0, 14],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 41],\n", " [ 0, 0, 0, 19],\n", " [ 0, 0, 0, 1],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 0, 40],\n", " [ 0, 0, 0, 18],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 4, 202],\n", " [ 0, 0, 6, 231],\n", " [ 0, 0, 8, 224],\n", " [ 0, 1, 10, 226]],\n", " \n", " [[ 0, 0, 5, 203],\n", " [ 0, 0, 6, 232],\n", " [ 0, 1, 10, 232],\n", " [ 0, 1, 19, 238]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 0, 0, 1, 60],\n", " [ 0, 0, 1, 26],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 1, 55],\n", " [ 0, 0, 1, 24],\n", " [ 0, 0, 0, 2],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[ 0, 0, 1, 59],\n", " [ 0, 0, 1, 27],\n", " [ 0, 0, 0, 3],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[ 0, 0, 5, 214],\n", " [ 0, 0, 9, 240],\n", " [ 0, 1, 12, 237],\n", " [ 0, 1, 15, 236]],\n", " \n", " [[ 0, 1, 9, 233],\n", " [ 0, 1, 14, 248],\n", " [ 0, 2, 23, 247],\n", " [ 0, 3, 42, 247]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[ 3, 103, 243, 255],\n", " [ 75, 246, 254, 255],\n", " [211, 252, 252, 252],\n", " [244, 247, 231, 175]],\n", " \n", " [[ 3, 104, 243, 255],\n", " [ 77, 246, 254, 255],\n", " [211, 252, 252, 252],\n", " [246, 249, 236, 191]],\n", " \n", " [[ 3, 117, 245, 255],\n", " [ 70, 245, 254, 255],\n", " [203, 252, 253, 253],\n", " [248, 250, 243, 228]],\n", " \n", " ...,\n", " \n", " [[ 15, 149, 251, 255],\n", " [107, 246, 255, 255],\n", " [226, 254, 255, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[ 16, 147, 251, 255],\n", " [100, 245, 255, 255],\n", " [221, 254, 255, 255],\n", " [254, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[ 6, 134, 249, 255],\n", " [ 99, 248, 254, 255],\n", " [227, 253, 253, 253],\n", " [251, 251, 245, 219]],\n", " \n", " [[ 5, 135, 248, 255],\n", " [ 99, 249, 254, 255],\n", " [229, 253, 253, 254],\n", " [252, 252, 246, 226]],\n", " \n", " [[ 5, 136, 249, 255],\n", " [ 97, 249, 254, 255],\n", " [226, 253, 253, 254],\n", " [252, 253, 249, 238]],\n", " \n", " ...,\n", " \n", " [[ 22, 155, 250, 255],\n", " [140, 248, 255, 255],\n", " [237, 254, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[ 23, 156, 250, 255],\n", " [135, 248, 255, 255],\n", " [234, 254, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]]],\n", " \n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " \n", " [[[[[215, 152, 14, 0],\n", " [165, 41, 3, 0],\n", " [ 24, 4, 0, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[215, 138, 12, 0],\n", " [160, 31, 2, 0],\n", " [ 19, 3, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[228, 139, 10, 0],\n", " [178, 34, 2, 0],\n", " [ 19, 3, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[242, 80, 5, 0],\n", " [167, 11, 1, 1],\n", " [ 35, 5, 1, 1],\n", " [ 5, 5, 3, 5]],\n", " \n", " [[242, 75, 4, 0],\n", " [152, 12, 1, 0],\n", " [ 22, 4, 1, 1],\n", " [ 5, 6, 5, 7]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[231, 159, 13, 0],\n", " [210, 60, 3, 0],\n", " [ 61, 7, 0, 0],\n", " [ 2, 0, 0, 0]],\n", " \n", " [[229, 166, 17, 0],\n", " [195, 53, 4, 0],\n", " [ 41, 4, 0, 0],\n", " [ 2, 0, 0, 0]],\n", " \n", " [[236, 168, 15, 0],\n", " [207, 53, 3, 0],\n", " [ 40, 4, 0, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[245, 105, 7, 0],\n", " [191, 19, 2, 1],\n", " [ 56, 10, 2, 2],\n", " [ 10, 11, 6, 9]],\n", " \n", " [[245, 99, 6, 0],\n", " [176, 20, 2, 1],\n", " [ 34, 8, 2, 1],\n", " [ 10, 13, 10, 11]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[237, 171, 15, 0],\n", " [228, 83, 4, 0],\n", " [107, 14, 1, 0],\n", " [ 6, 1, 0, 0]],\n", " \n", " [[241, 172, 15, 0],\n", " [231, 82, 4, 0],\n", " [102, 13, 1, 0],\n", " [ 5, 1, 0, 0]],\n", " \n", " [[244, 200, 25, 0],\n", " [229, 92, 6, 0],\n", " [ 82, 10, 1, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[247, 131, 12, 1],\n", " [228, 64, 6, 2],\n", " [146, 46, 8, 4],\n", " [ 47, 49, 19, 17]],\n", " \n", " [[250, 139, 12, 1],\n", " [218, 44, 4, 1],\n", " [ 83, 21, 6, 2],\n", " [ 30, 38, 24, 22]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 243, 41],\n", " [255, 255, 246, 47],\n", " [255, 255, 241, 22],\n", " [255, 255, 239, 8]],\n", " \n", " [[255, 255, 243, 40],\n", " [255, 255, 246, 47],\n", " [255, 255, 241, 25],\n", " [255, 255, 242, 11]],\n", " \n", " [[255, 255, 239, 27],\n", " [255, 255, 242, 52],\n", " [255, 255, 242, 43],\n", " [255, 255, 246, 26]],\n", " \n", " ...,\n", " \n", " [[255, 255, 246, 109],\n", " [255, 255, 250, 223],\n", " [255, 255, 254, 252],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 247, 143],\n", " [255, 255, 252, 240],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 248, 68],\n", " [255, 255, 249, 74],\n", " [255, 255, 247, 41],\n", " [255, 255, 246, 15]],\n", " \n", " [[255, 255, 248, 71],\n", " [255, 255, 249, 80],\n", " [255, 255, 247, 48],\n", " [255, 255, 248, 22]],\n", " \n", " [[255, 255, 249, 81],\n", " [255, 255, 250, 95],\n", " [255, 255, 248, 66],\n", " [255, 255, 250, 38]],\n", " \n", " ...,\n", " \n", " [[255, 255, 249, 137],\n", " [255, 255, 252, 233],\n", " [255, 255, 255, 253],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 249, 164],\n", " [255, 255, 252, 241],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[230, 159, 16, 0],\n", " [194, 48, 3, 0],\n", " [ 33, 5, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[231, 169, 18, 0],\n", " [173, 43, 3, 0],\n", " [ 26, 5, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " [[238, 181, 20, 0],\n", " [188, 47, 3, 0],\n", " [ 29, 5, 0, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[245, 113, 11, 1],\n", " [171, 18, 2, 1],\n", " [ 30, 6, 2, 1],\n", " [ 4, 5, 4, 6]],\n", " \n", " [[246, 108, 9, 1],\n", " [168, 17, 2, 1],\n", " [ 24, 5, 2, 1],\n", " [ 5, 5, 5, 9]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[239, 189, 28, 0],\n", " [220, 77, 6, 0],\n", " [ 64, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[240, 186, 25, 0],\n", " [220, 72, 5, 0],\n", " [ 62, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[244, 209, 36, 0],\n", " [221, 88, 7, 0],\n", " [ 59, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[247, 125, 13, 1],\n", " [199, 31, 3, 1],\n", " [ 60, 15, 4, 2],\n", " [ 11, 14, 10, 12]],\n", " \n", " [[248, 112, 9, 1],\n", " [190, 25, 3, 1],\n", " [ 40, 9, 3, 2],\n", " [ 11, 13, 9, 14]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[244, 197, 26, 0],\n", " [234, 98, 9, 0],\n", " [121, 18, 1, 0],\n", " [ 7, 1, 0, 0]],\n", " \n", " [[246, 212, 38, 0],\n", " [238, 116, 10, 0],\n", " [125, 18, 1, 0],\n", " [ 6, 1, 0, 0]],\n", " \n", " [[249, 214, 36, 0],\n", " [242, 121, 10, 0],\n", " [117, 16, 1, 0],\n", " [ 4, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[248, 157, 24, 1],\n", " [228, 84, 10, 2],\n", " [138, 51, 12, 4],\n", " [ 44, 48, 28, 25]],\n", " \n", " [[250, 157, 22, 1],\n", " [224, 72, 9, 2],\n", " [105, 35, 9, 4],\n", " [ 38, 45, 29, 33]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 249, 86],\n", " [255, 255, 250, 93],\n", " [255, 255, 247, 47],\n", " [255, 255, 246, 16]],\n", " \n", " [[255, 255, 250, 102],\n", " [255, 255, 251, 110],\n", " [255, 255, 249, 62],\n", " [255, 255, 248, 25]],\n", " \n", " [[255, 255, 251, 101],\n", " [255, 255, 251, 110],\n", " [255, 255, 249, 75],\n", " [255, 255, 250, 50]],\n", " \n", " ...,\n", " \n", " [[255, 255, 252, 185],\n", " [255, 255, 254, 246],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 252, 205],\n", " [255, 255, 254, 249],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 252, 140],\n", " [255, 255, 252, 148],\n", " [255, 255, 251, 87],\n", " [255, 255, 250, 30]],\n", " \n", " [[255, 255, 252, 135],\n", " [255, 255, 253, 149],\n", " [255, 255, 252, 97],\n", " [255, 255, 252, 43]],\n", " \n", " [[255, 255, 253, 152],\n", " [255, 255, 253, 165],\n", " [255, 255, 252, 118],\n", " [255, 255, 253, 67]],\n", " \n", " ...,\n", " \n", " [[255, 255, 253, 216],\n", " [255, 255, 254, 250],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 253, 230],\n", " [255, 255, 254, 250],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[242, 190, 27, 1],\n", " [212, 67, 5, 0],\n", " [ 55, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[244, 201, 32, 0],\n", " [219, 79, 6, 0],\n", " [ 55, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[243, 204, 32, 0],\n", " [207, 70, 5, 0],\n", " [ 43, 8, 1, 0],\n", " [ 0, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[247, 138, 18, 2],\n", " [180, 23, 3, 2],\n", " [ 31, 7, 3, 2],\n", " [ 3, 5, 5, 8]],\n", " \n", " [[246, 123, 15, 2],\n", " [173, 23, 3, 2],\n", " [ 24, 6, 2, 2],\n", " [ 4, 5, 5, 9]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[247, 216, 43, 1],\n", " [234, 108, 9, 0],\n", " [112, 23, 1, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " [[248, 219, 46, 1],\n", " [229, 99, 8, 0],\n", " [ 83, 16, 1, 0],\n", " [ 1, 1, 0, 0]],\n", " \n", " [[249, 219, 43, 1],\n", " [234, 102, 8, 0],\n", " [ 84, 16, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[249, 169, 31, 3],\n", " [212, 53, 7, 3],\n", " [ 61, 18, 6, 4],\n", " [ 7, 11, 11, 19]],\n", " \n", " [[251, 164, 28, 3],\n", " [213, 46, 8, 4],\n", " [ 58, 15, 6, 4],\n", " [ 14, 17, 16, 29]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[249, 224, 55, 1],\n", " [241, 130, 15, 1],\n", " [145, 37, 2, 0],\n", " [ 7, 2, 0, 0]],\n", " \n", " [[249, 230, 68, 1],\n", " [242, 144, 16, 0],\n", " [131, 29, 2, 0],\n", " [ 4, 1, 0, 0]],\n", " \n", " [[251, 233, 66, 1],\n", " [245, 145, 14, 0],\n", " [130, 29, 2, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[250, 179, 43, 3],\n", " [229, 94, 16, 4],\n", " [127, 52, 17, 8],\n", " [ 34, 43, 33, 40]],\n", " \n", " [[250, 177, 37, 3],\n", " [228, 95, 16, 4],\n", " [100, 39, 13, 7],\n", " [ 28, 39, 31, 45]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 253, 184],\n", " [255, 255, 253, 184],\n", " [255, 255, 252, 108],\n", " [255, 255, 250, 35]],\n", " \n", " [[255, 255, 253, 168],\n", " [255, 255, 253, 177],\n", " [255, 255, 252, 113],\n", " [255, 255, 251, 44]],\n", " \n", " [[255, 255, 254, 170],\n", " [255, 255, 254, 182],\n", " [255, 255, 252, 133],\n", " [255, 255, 252, 78]],\n", " \n", " ...,\n", " \n", " [[255, 255, 254, 243],\n", " [255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 248],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 254, 201],\n", " [255, 255, 254, 204],\n", " [255, 255, 253, 140],\n", " [255, 255, 252, 57]],\n", " \n", " [[255, 255, 254, 204],\n", " [255, 255, 254, 210],\n", " [255, 255, 253, 162],\n", " [255, 255, 253, 85]],\n", " \n", " [[255, 255, 254, 195],\n", " [255, 255, 254, 207],\n", " [255, 255, 254, 168],\n", " [255, 255, 254, 101]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 246],\n", " [255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 250],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 254, 253],\n", " [208, 192, 124, 71]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 254, 254, 253],\n", " [194, 173, 113, 76]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 254, 254, 254],\n", " [174, 157, 112, 106]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 254, 255, 255],\n", " [151, 242, 254, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 254, 255, 255],\n", " [182, 248, 254, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 254, 254],\n", " [239, 227, 168, 119]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254],\n", " [234, 221, 175, 146]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254],\n", " [234, 223, 182, 163]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [216, 252, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [238, 253, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [248, 242, 200, 141]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 244, 217, 187]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 246, 229, 214]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [248, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [250, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 254, 254],\n", " [228, 212, 153, 114]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 254, 254],\n", " [223, 214, 171, 141]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 254, 254, 254],\n", " [196, 198, 162, 153]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 254, 255, 255],\n", " [182, 249, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 255, 255, 255],\n", " [189, 249, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [244, 233, 186, 153]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [242, 239, 213, 189]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [242, 239, 218, 203]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [229, 253, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [239, 254, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 246, 221, 185]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [250, 247, 224, 194]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [251, 250, 237, 222]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [251, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [251, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[241, 195, 30, 0],\n", " [222, 79, 6, 0],\n", " [ 63, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[244, 212, 40, 0],\n", " [223, 94, 7, 0],\n", " [ 60, 11, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[247, 204, 28, 0],\n", " [222, 81, 5, 0],\n", " [ 55, 10, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[246, 141, 19, 1],\n", " [216, 59, 8, 2],\n", " [103, 37, 11, 4],\n", " [ 18, 27, 21, 19]],\n", " \n", " [[249, 148, 17, 1],\n", " [212, 44, 4, 1],\n", " [ 78, 19, 5, 2],\n", " [ 13, 16, 12, 15]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[246, 213, 38, 0],\n", " [238, 115, 10, 0],\n", " [120, 16, 1, 0],\n", " [ 5, 1, 0, 0]],\n", " \n", " [[249, 217, 38, 0],\n", " [242, 120, 10, 0],\n", " [115, 15, 1, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " [[249, 220, 41, 0],\n", " [239, 120, 10, 0],\n", " [100, 14, 1, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[248, 152, 24, 1],\n", " [227, 69, 10, 2],\n", " [133, 48, 16, 5],\n", " [ 33, 45, 36, 29]],\n", " \n", " [[249, 165, 26, 1],\n", " [229, 84, 10, 2],\n", " [136, 48, 12, 4],\n", " [ 38, 44, 27, 27]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[248, 220, 44, 0],\n", " [244, 140, 13, 0],\n", " [158, 26, 1, 0],\n", " [ 10, 2, 0, 0]],\n", " \n", " [[251, 225, 43, 0],\n", " [247, 150, 13, 0],\n", " [157, 26, 1, 0],\n", " [ 7, 2, 0, 0]],\n", " \n", " [[251, 224, 39, 0],\n", " [247, 142, 11, 0],\n", " [149, 22, 1, 0],\n", " [ 6, 2, 0, 0]],\n", " \n", " ...,\n", " \n", " [[253, 214, 59, 2],\n", " [247, 144, 33, 8],\n", " [204, 107, 38, 17],\n", " [ 93, 113, 73, 59]],\n", " \n", " [[253, 210, 55, 2],\n", " [245, 133, 23, 5],\n", " [197, 87, 25, 10],\n", " [ 97, 101, 64, 59]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 250, 73],\n", " [255, 255, 250, 75],\n", " [255, 255, 246, 38],\n", " [255, 255, 244, 18]],\n", " \n", " [[255, 255, 250, 68],\n", " [255, 255, 250, 75],\n", " [255, 255, 247, 47],\n", " [255, 255, 247, 29]],\n", " \n", " [[255, 255, 247, 43],\n", " [255, 255, 248, 72],\n", " [255, 255, 247, 64],\n", " [255, 255, 249, 44]],\n", " \n", " ...,\n", " \n", " [[255, 255, 252, 167],\n", " [255, 255, 254, 244],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 252, 181],\n", " [255, 255, 254, 247],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 251, 108],\n", " [255, 255, 251, 113],\n", " [255, 255, 249, 63],\n", " [255, 255, 249, 24]],\n", " \n", " [[255, 255, 252, 107],\n", " [255, 255, 252, 113],\n", " [255, 255, 250, 75],\n", " [255, 255, 250, 48]],\n", " \n", " [[255, 255, 251, 86],\n", " [255, 255, 251, 100],\n", " [255, 255, 249, 80],\n", " [255, 255, 251, 67]],\n", " \n", " ...,\n", " \n", " [[255, 255, 253, 194],\n", " [255, 255, 254, 247],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 253, 199],\n", " [255, 255, 254, 249],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[248, 219, 44, 1],\n", " [229, 96, 8, 0],\n", " [ 78, 15, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[250, 221, 44, 1],\n", " [235, 103, 8, 0],\n", " [ 83, 15, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[249, 222, 48, 1],\n", " [227, 97, 8, 0],\n", " [ 67, 12, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[249, 180, 43, 3],\n", " [225, 78, 12, 3],\n", " [108, 35, 12, 5],\n", " [ 15, 20, 18, 21]],\n", " \n", " [[249, 182, 40, 3],\n", " [220, 76, 11, 3],\n", " [ 85, 28, 9, 5],\n", " [ 11, 16, 15, 25]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[249, 229, 64, 1],\n", " [242, 139, 14, 0],\n", " [123, 25, 1, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " [[251, 233, 66, 1],\n", " [245, 144, 14, 0],\n", " [124, 25, 2, 0],\n", " [ 2, 1, 0, 0]],\n", " \n", " [[252, 229, 53, 1],\n", " [245, 132, 10, 0],\n", " [134, 26, 1, 0],\n", " [ 2, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[251, 184, 48, 3],\n", " [234, 90, 15, 3],\n", " [140, 49, 18, 6],\n", " [ 32, 38, 34, 33]],\n", " \n", " [[251, 189, 47, 3],\n", " [231, 98, 16, 4],\n", " [131, 51, 17, 7],\n", " [ 32, 41, 32, 39]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[251, 233, 66, 1],\n", " [246, 155, 20, 0],\n", " [164, 45, 3, 0],\n", " [ 9, 3, 0, 0]],\n", " \n", " [[252, 235, 72, 1],\n", " [248, 166, 19, 0],\n", " [161, 36, 2, 0],\n", " [ 6, 2, 0, 0]],\n", " \n", " [[253, 238, 73, 1],\n", " [251, 174, 20, 1],\n", " [177, 39, 3, 0],\n", " [ 7, 2, 0, 0]],\n", " \n", " ...,\n", " \n", " [[253, 216, 73, 4],\n", " [245, 143, 42, 12],\n", " [189, 105, 51, 27],\n", " [ 86, 115, 97, 91]],\n", " \n", " [[253, 212, 67, 4],\n", " [245, 137, 31, 8],\n", " [195, 95, 35, 17],\n", " [104, 113, 86, 91]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 252, 124],\n", " [255, 255, 252, 128],\n", " [255, 255, 250, 75],\n", " [255, 255, 249, 35]],\n", " \n", " [[255, 255, 253, 135],\n", " [255, 255, 253, 141],\n", " [255, 255, 251, 93],\n", " [255, 255, 250, 53]],\n", " \n", " [[255, 255, 253, 131],\n", " [255, 255, 253, 140],\n", " [255, 255, 251, 105],\n", " [255, 255, 252, 75]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 240],\n", " [255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 254, 237],\n", " [255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 253, 166],\n", " [255, 255, 253, 173],\n", " [255, 255, 252, 109],\n", " [255, 255, 251, 40]],\n", " \n", " [[255, 255, 254, 170],\n", " [255, 255, 254, 179],\n", " [255, 255, 253, 127],\n", " [255, 255, 252, 70]],\n", " \n", " [[255, 255, 254, 172],\n", " [255, 255, 254, 180],\n", " [255, 255, 253, 137],\n", " [255, 255, 253, 97]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 247],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 245],\n", " [255, 255, 255, 254],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[251, 235, 77, 1],\n", " [240, 132, 14, 0],\n", " [114, 26, 2, 0],\n", " [ 2, 1, 0, 0]],\n", " \n", " [[252, 235, 74, 1],\n", " [241, 135, 14, 0],\n", " [105, 22, 2, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " [[252, 231, 58, 1],\n", " [242, 119, 9, 0],\n", " [111, 18, 1, 0],\n", " [ 1, 0, 0, 0]],\n", " \n", " ...,\n", " \n", " [[250, 195, 69, 7],\n", " [224, 80, 17, 6],\n", " [ 88, 28, 12, 7],\n", " [ 11, 14, 16, 25]],\n", " \n", " [[250, 182, 50, 6],\n", " [221, 76, 14, 6],\n", " [ 81, 27, 11, 7],\n", " [ 10, 14, 16, 30]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[252, 240, 95, 2],\n", " [244, 154, 18, 1],\n", " [141, 37, 2, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " [[253, 241, 97, 2],\n", " [246, 162, 20, 1],\n", " [134, 33, 2, 0],\n", " [ 2, 1, 0, 0]],\n", " \n", " [[253, 243, 104, 2],\n", " [249, 169, 21, 1],\n", " [156, 38, 3, 0],\n", " [ 3, 1, 0, 0]],\n", " \n", " ...,\n", " \n", " [[253, 218, 99, 11],\n", " [242, 127, 35, 13],\n", " [161, 68, 32, 20],\n", " [ 38, 52, 55, 72]],\n", " \n", " [[252, 206, 79, 8],\n", " [234, 111, 27, 9],\n", " [126, 53, 23, 13],\n", " [ 29, 38, 38, 59]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[254, 247, 134, 5],\n", " [251, 198, 39, 1],\n", " [204, 81, 6, 0],\n", " [ 16, 4, 0, 0]],\n", " \n", " [[253, 244, 112, 3],\n", " [251, 189, 30, 1],\n", " [186, 58, 4, 0],\n", " [ 6, 2, 0, 0]],\n", " \n", " [[254, 245, 113, 3],\n", " [251, 190, 29, 1],\n", " [191, 63, 5, 0],\n", " [ 6, 2, 0, 0]],\n", " \n", " ...,\n", " \n", " [[254, 232, 127, 14],\n", " [248, 167, 62, 23],\n", " [200, 112, 58, 36],\n", " [ 92, 108, 98, 107]],\n", " \n", " [[254, 230, 116, 12],\n", " [247, 164, 55, 20],\n", " [201, 116, 58, 37],\n", " [106, 125, 112, 130]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 254, 182],\n", " [255, 255, 254, 190],\n", " [255, 255, 252, 126],\n", " [255, 255, 251, 58]],\n", " \n", " [[255, 255, 254, 187],\n", " [255, 255, 254, 202],\n", " [255, 255, 253, 154],\n", " [255, 255, 253, 88]],\n", " \n", " [[255, 255, 254, 194],\n", " [255, 255, 254, 206],\n", " [255, 255, 253, 163],\n", " [255, 255, 253, 108]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 254, 216],\n", " [255, 255, 254, 214],\n", " [255, 255, 254, 156],\n", " [255, 255, 253, 75]],\n", " \n", " [[255, 255, 254, 211],\n", " [255, 255, 254, 219],\n", " [255, 255, 254, 179],\n", " [255, 255, 254, 117]],\n", " \n", " [[255, 255, 255, 200],\n", " [255, 255, 254, 195],\n", " [255, 255, 253, 158],\n", " [255, 255, 254, 124]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 253],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 254],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254],\n", " [235, 224, 165, 113]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254],\n", " [230, 217, 163, 130]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254],\n", " [212, 199, 160, 164]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [217, 251, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [218, 252, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [247, 242, 205, 153]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [248, 243, 211, 178]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [246, 242, 215, 196]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [248, 254, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 254, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 250, 232, 199]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 250, 235, 217]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 251, 237, 220]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [253, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [253, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 254],\n", " [239, 226, 180, 149]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [238, 229, 191, 170]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [231, 232, 211, 207]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [229, 253, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [254, 255, 255, 255],\n", " [228, 253, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 245, 218, 188]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 247, 231, 215]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [250, 248, 235, 224]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [248, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [249, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [252, 249, 229, 198]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [253, 251, 243, 227]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [253, 252, 245, 234]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [253, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [253, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]]],\n", " \n", " \n", " \n", " \n", " [[[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " ...,\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]],\n", " \n", " \n", " \n", " [[[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " ...,\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]],\n", " \n", " \n", " [[[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " ...,\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]],\n", " \n", " [[255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255],\n", " [255, 255, 255, 255]]]]]], dtype=uint8),\n", " 'quantization_interval': 16}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "luts = np.load(\"/wd/luts/models/RCNetTest/luts/RCLutTest_200000_x4_4.0bit_int8.npz\", allow_pickle=True)\n", "state_dict = luts['state_dict'].item()\n", "state_dict" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '5x5')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAGzCAYAAABdMeh0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtUUlEQVR4nO3de3hU1dn38d/ec0xCEgyQhEgIQZSDclBATEUKQomIp4qtWEvRol76BH2AVil9kYOnKLWKVsRaFayVeuijVtGCyFFKEAVREItCEbCYgGASEshp9n7/iEwdIYRkwuxM5vu5rnWZWXutPfdstpNM7txrGbZt2wIAAAAAAAAAAABwFNPpAAAAAAAAAAAAAIDmimQaAAAAAAAAAAAAUAeSaQAAAAAAAAAAAEAdSKYBAAAAAAAAAAAAdSCZBgAAAAAAAAAAANSBZBoAAAAAAAAAAABQB5JpAAAAAAAAAAAAQB1IpgEAAAAAAAAAAAB1IJkGAAAAAAAAAAAA1IFkGgAAAAAAAAAAAFAHkmkAAAAAgGPatGmTrrrqKmVlZcnv9+vUU0/Vj370I/3hD38IGXfffffptddecybIBrr33nt12WWXKS0tTYZhaMaMGU6HBAAAAKCZI5kGAAAAADjKmjVr1K9fP3300Ue68cYb9dhjj+mGG26QaZp65JFHQsZGUzJt6tSpev/993X22Wc7HQoAAACAKOF2OgAAAAAAQPNz7733Kjk5We+//75at24dcmzv3r3OBNUEduzYoU6dOunrr79Wu3btTspz1NTUyLIseb3ek3J+AAAAAJFFZRoAAAAA4Cjbt2/XmWeeeVQiTZJSU1ODXxuGofLycj377LMyDEOGYei6666TJO3cuVP/8z//o65duyouLk5t2rTRT37yE33xxRdHnfPjjz/WD3/4Q8XFxalDhw665557NG/ePBmGcdT4f/zjH7rggguUkJCgxMREjRw5Up988skJva5OnTqd4BU4MV988YUMw9CDDz6o2bNn67TTTpPP59OWLVskSf/617/005/+VO3atVNcXJy6du2q//f//l+DnsOyLD3yyCPq2bOn/H6/2rVrp4suukgffPBBcExNTY3uvvvu4PN36tRJv/3tb1VZWRlyrk6dOumSSy7R6tWrde6558rv96tz587685//HBzzwQcfyDAMPfvss0fFsnjxYhmGoYULFzboNQAAAADRjMo0AAAAAMBRsrKyVFBQoM2bN+uss86qc9xzzz2nG264Qeeee65uuukmSdJpp50mSXr//fe1Zs0ajR49Wh06dNAXX3yhuXPnavDgwdqyZYvi4+MlSf/5z380ZMgQGYahKVOmKCEhQU899ZR8Pt8xn2/s2LHKzc3VAw88oEOHDmnu3LkaOHCgPvzwwyZPlp2oefPmqaKiQjfddJN8Pp9SUlL08ccf64ILLpDH49FNN92kTp06afv27XrjjTd07733nvC5x40bp/nz52vEiBG64YYbVFNTo3fffVdr165Vv379JEk33HCDnn32WV111VX61a9+pffee0/5+fn69NNP9eqrr4acb9u2bbrqqqs0btw4jR07Vs8884yuu+469e3bV2eeeab69eunzp0766WXXtLYsWND5r744os65ZRTlJubG/5FAwAAAKKEYdu27XQQAAAAAIDmZcmSJRoxYoQk6dxzz9UFF1ygoUOHasiQIfJ4PCFjW7Vqpauuukrz588P6T98+LDi4uJC+tauXaucnBz9+c9/1pgxYyRJt912mx577DFt2LBBffr0kSQdOHBAp59+ug4cOBBcmrGsrEyZmZn6yU9+oieffDJ4zqKiInXt2lU//elPQ/qP58gyj9OnT9eMGTMacGVCffHFF8rOzlZSUpK2bdsWsnTkD3/4Q3344YfavHmzOnbsGOy3bVuGYZzQ+ZcvX64LL7xQt91221F71R05z0cffaQ+ffrohhtu0J/+9Kfg8dtvv10PPvigli1bpiFDhkiqrUzbuXOnVq1apQsuuECStG/fPmVmZmr8+PF68MEHJUm//e1v9eCDD6qoqEinnHKKJKmqqkppaWm68sor9fTTTzfiagEAAADRiWUeAQAAAABH+dGPfqSCggJddtll+uijjzRr1izl5ubq1FNP1euvv35C5/huIq26ulr79+9Xly5d1Lp1a23YsCF4bNGiRcrJyQkm0iQpJSVF1157bcj5lixZouLiYl1zzTX6+uuvg83lcmnAgAFavnx5eC86DKNGjQpJpO3bt0+rVq3SL3/5y5BEmqQTTqRJ0v/93//JMAxNnz79qGNHzvPWW29JkiZNmhRy/Fe/+pUk6c033wzp79GjRzCRJknt2rVT165d9e9//zvYd/XVV6u6ulqvvPJKsO/tt99WcXGxrr766hOOHwAAAGgJSKYBAAAAAI6pf//+euWVV/TNN99o3bp1mjJlig4ePKirrroquCfY8Rw+fFjTpk1TZmamfD6f2rZtq3bt2qm4uFglJSXBcTt37lSXLl2Omv/9vs8//1ySdOGFF6pdu3Yh7e2339bevXvDfMWNl52dHfL4SGLqeEtknojt27crIyNDKSkpdY7ZuXOnTNM86nqlp6erdevW2rlzZ0j/95N7knTKKafom2++CT7u3bu3unXrphdffDHY9+KLL6pt27a68MILG/tyAAAAgKjEnmkAAAAAgOPyer3q37+/+vfvrzPOOEPXX3+9Xn755WNWS33Xrbfeqnnz5mnChAnKyclRcnKyDMPQ6NGjZVlWg+M4Mue5555Tenr6Ucfdbuc+4n5/OUsnnGjFm8vlOmb/93eBuPrqq3Xvvffq66+/VmJiol5//XVdc801jl5nAAAAwAn8BAwAAAAAOGH9+vWTJH311VfBvrqSOH/72980duxY/f73vw/2VVRUqLi4OGRcVlaWtm3bdtT87/eddtppkqTU1FQNGzasUfFHSufOnSVJmzdvDus8p512mhYvXqwDBw7UWZ2WlZUly7L0+eefq3v37sH+oqIiFRcXKysrq1HPffXVV2vmzJn6v//7P6Wlpam0tFSjR49u1LkAAACAaMYyjwAAAACAoyxfvvyoSiXpv/tzde3aNdiXkJBwVIJMqq2A+v45/vCHPygQCIT05ebmqqCgQBs3bgz2HThwQM8///xR45KSknTfffepurr6qOfbt29fva8rUtq1a6dBgwbpmWee0a5du0KOHeu61mXUqFGybVszZ8486tiR81x88cWSpNmzZ4ccf+ihhyRJI0eObEjoQd27d1fPnj314osv6sUXX1T79u01aNCgRp0LAAAAiGZUpgEAAAAAjnLrrbfq0KFD+vGPf6xu3bqpqqpKa9as0YsvvqhOnTrp+uuvD47t27ev3nnnHT300EPKyMhQdna2BgwYoEsuuUTPPfeckpOT1aNHDxUUFOidd95RmzZtQp7rjjvu0F/+8hf96Ec/0q233qqEhAQ99dRT6tixow4cOBCsfEtKStLcuXM1ZswYnXPOORo9erTatWunXbt26c0339T555+vxx577Liv67nnntPOnTt16NAhSdKqVat0zz33SJLGjBkTrOJasWKFhgwZounTp2vGjBmNuoaPPvqoBg4cqHPOOUc33XSTsrOz9cUXX+jNN98MSRwez5AhQzRmzBg9+uij+vzzz3XRRRfJsiy9++67GjJkiMaPH6/evXtr7NixevLJJ1VcXKwf/vCHWrdunZ599lldccUVGjJkSKPil2qr06ZNmya/369x48bJNPmbXAAAAMQekmkAAAAAgKM8+OCDevnll/XWW2/pySefVFVVlTp27Kj/+Z//0dSpU9W6devg2Iceekg33XSTpk6dqsOHD2vs2LEaMGCAHnnkEblcLj3//POqqKjQ+eefr3feeUe5ubkhz5WZmanly5frtttu03333ad27dopLy9PCQkJuu222+T3+4Njf/aznykjI0P333+/fve736myslKnnnqqLrjggpAEX12efvpprVy5Mvh4+fLlWr58uSRp4MCBwWRaWVmZJKl9+/aNvoa9e/fW2rVrdeedd2ru3LmqqKhQVlaWfvrTnzboPPPmzVOvXr309NNP6/bbb1dycrL69eunH/zgB8ExTz31lDp37qz58+fr1VdfVXp6uqZMmVLvvnb1ufrqqzV16lQdOnRIV199dVjnAgAAAKKVYTdkfQkAAAAAACJkwoQJ+uMf/6iysjK5XK6IPvcdd9yhv/71r9q2bZt8Pl9EnxsAAABA88L6DAAAAAAAxx0+fDjk8f79+/Xcc89p4MCBEU+kSbUVa3feeSeJNAAAAABUpgEAAAAAnNenTx8NHjxY3bt3V1FRkZ5++mnt2bNHS5cu1aBBg5wOr8kFAgHt27fvuGNatWqlVq1aRSgiAAAAAHVhzzQAAAAAgOMuvvhi/e1vf9OTTz4pwzB0zjnn6Omnn26RiTRJ2r17t7Kzs487Zvr06ZoxY0ZkAgIAAABQJyrTAAAAAACIsIqKCq1evfq4Yzp37qzOnTtHKCIAAAAAdSGZBgAAAAAAAAAAANTBdDoAAAAAAAAAAAAAoLkimQYAAAAAAAAAAADUgWQaAAAAAAAAAAAAUAeSaQAAAAAAAAAAAEAdSKYBAAAAOOlWrFghwzCO2dauXdvg83Xq1OmY57r55ptPQvQAAAAAgFjmdjoAAAAAALHjtttuU//+/UP6unTp0qhz9enTR7/61a9C+s4444xGxwYAAAAAwLGQTAMAAAAQMRdccIGuuuqqJjnXqaeeqp///OdNci4AAAAAAOrCMo8AAAAAIurgwYOqqak5qn/evHkyDEPPPPNMSP99990nwzD01ltvHTWnqqpK5eXlJy1WAAAAAABIpgEAAACImOuvv15JSUny+/0aMmSIPvjgg5Bjl1xyiSZNmqTdu3dLkjZt2qSZM2dq3Lhxuvjii0POtWzZMsXHx6tVq1bq1KmTHnnkkYi+FgAAAABAbDBs27adDgIAAABAy7ZmzRo99NBDuvjii9W2bVtt2bJFDz74oMrLy7VmzRqdffbZkqTCwkKdeeaZ6tu3rxYuXKjzzjtP+/fv16ZNm5SUlBQ832WXXaaBAweqa9eu2r9/v+bPn693331Xd9xxhx544AGnXiYAAAAAoAUimQYAAADAEdu2bVOvXr00aNAgLVq0KNj/wgsv6JprrtG5556r999/X0uWLNHQoUOPey7btjVixAgtXbpUO3bsUIcOHU52+AAAAACAGMEyjwAAAAAc0aVLF11++eVavny5AoFAsH/06NEaOXKk1q1bpxtvvLHeRJokGYahiRMnqqamRitWrDiJUQMAAAAAYg3JNAAAAACOyczMVFVVlcrLy4N9+/fvD+6ltmXLFlmWdcLnkqQDBw40faAAAAAAgJhFMg0AAACAY/7973/L7/erVatWwb68vDwdPHhQ+fn5Wr16tWbPnn3C55Kkdu3anYxQAQAAAAAximQaAAAAgJNu3759R/V99NFHev311zV8+HCZZu1Hk7/97W968cUXdf/99+s3v/mNRo8eralTp+qzzz4Lzjtw4EDIspCSVF1drfvvv19er1dDhgw5uS8GAAAAABBTDNu2baeDAAAAANCyXXjhhYqLi9MPfvADpaamasuWLXryySfl8XhUUFCg7t27a+/evTrzzDPVs2dPLV26VIZhaP/+/TrzzDPVuXNnrV69WqZpav78+brnnnt01VVXKTs7WwcOHNCCBQu0efNm3XfffZoyZYrTLxcAAAAA0IKQTAMAAABw0j366KN6/vnntW3bNpWWlqpdu3YaOnSopk+fri5dukiSRo0apSVLlmjTpk3KysoKzn399dd1+eWX64EHHtAdd9yh9evXa+bMmdqwYYP27dsnr9erPn366LbbbtNPfvITp14iAAAAAKCFIpkGAAAAAAAAAAAA1IE90wAAAAAAAAAAAIA6kEwDAAAAAAAAAAAA6tCgZFp+fr769++vxMREpaam6oorrtDWrVtDxgwePFiGYYS0m2++uUmDBgAAAAAAAAAAACKhQcm0lStXKi8vT2vXrtWSJUtUXV2t4cOHq7y8PGTcjTfeqK+++irYZs2a1aRBAwAAAAAAAAAAAJHgbsjgRYsWhTyeP3++UlNTtX79eg0aNCjYHx8fr/T09KaJEAAAAAAAAAAAAHBIWHumlZSUSJJSUlJC+p9//nm1bdtWZ511lqZMmaJDhw6F8zQAAAAAAAAAAACAIwzbtu3GTLQsS5dddpmKi4u1evXqYP+TTz6prKwsZWRk6OOPP9bkyZN17rnn6pVXXjnmeSorK1VZWRly3gMHDqhNmzYyDKMxoQEAAAAAAAAAgBbCtm0dPHhQGRkZMs2waoQQhoqKClVVVYV9Hq/XK7/f3wQRRU6jk2m33HKL/vGPf2j16tXq0KFDneOWLVumoUOHatu2bTrttNOOOj5jxgzNnDmzMSEAAAAAAAAAAIAYsXv37uPmI3DyVFRUKDurlQr3BsI+V3p6unbs2BFVCbVGJdPGjx+vv//971q1apWys7OPO7a8vFytWrXSokWLlJube9Tx71emlZSUqGPHjsqaMk1mFF1IAAAAAAAAAEBs2XDNU06HEBNKyyxlnfOFiouLlZyc7HQ4Mam0tFTJycnasT5LSYmNrw4sPWgpu+9OlZSUKCkpqQkjPLncDRls27ZuvfVWvfrqq1qxYkW9iTRJ2rhxoySpffv2xzzu8/nk8/mO6jf9fpJpAAAAAAAAAIBmKynR5XQIMYWtoZyX0Kq2NVagUWslOq9B6cO8vDz95S9/0YIFC5SYmKjCwkIVFhbq8OHDkqTt27fr7rvv1vr16/XFF1/o9ddf1y9+8QsNGjRIvXr1OikvAAAAAAAAAAAAAC1Lfn6++vfvr8TERKWmpuqKK67Q1q1bQ8YMHjxYhmGEtJtvvjlkzK5duzRy5EjFx8crNTVVt99+u2pqahoUS4Mq0+bOnRsM7rvmzZun6667Tl6vV++8845mz56t8vJyZWZmatSoUZo6dWqDggIAAAAAAAAAAEDzYsmWpcaXlzVk7sqVK5WXl6f+/furpqZGv/3tbzV8+HBt2bJFCQkJwXE33nij7rrrruDj+Pj44NeBQEAjR45Uenq61qxZo6+++kq/+MUv5PF4dN99951wLA1e5vF4MjMztXLlyoacEgAAAAAAAAAAAFHAkiUrzPknatGiRSGP58+fr9TUVK1fv16DBg0K9sfHxys9Pf2Y53j77be1ZcsWvfPOO0pLS1OfPn109913a/LkyZoxY4a8Xu8JxdKgZFokGVZtAwA0b3bj9xsFAAAAAOcZUbp5CwAAUay0tDTksc/nk8/nO+6ckpISSVJKSkpI//PPP6+//OUvSk9P16WXXqo777wzWJ1WUFCgnj17Ki0tLTg+NzdXt9xyiz755BOdffbZJxRvs02mAQAAAAAAAAAAoPkI2LYC9axiWN98qXalw++aPn26ZsyYUec8y7I0YcIEnX/++TrrrLOC/T/72c+UlZWljIwMffzxx5o8ebK2bt2qV155RZJUWFgYkkiTFHxcWFh4wnGTTAMAAAAAAAAAAEC9mmrPtN27dyspKSnYX19VWl5enjZv3qzVq1eH9N90003Br3v27Kn27dtr6NCh2r59u0477bRGx/l9LM4FAAAAAAAAAACAelmyFQijHUmmJSUlhbTjJdPGjx+vhQsXavny5erQocNx4xswYIAkadu2bZKk9PR0FRUVhYw58riufdaOhWQaAAAAAAAAAAAAmhXbtjV+/Hi9+uqrWrZsmbKzs+uds3HjRklS+/btJUk5OTnatGmT9u7dGxyzZMkSJSUlqUePHiccC8s8AgAAAAAAAAAAoF5NtczjicjLy9OCBQv097//XYmJicE9zpKTkxUXF6ft27drwYIFuvjii9WmTRt9/PHHmjhxogYNGqRevXpJkoYPH64ePXpozJgxmjVrlgoLCzV16lTl5eXVu7TkdzXbZJrlsSVP4/9B0ABcZgBhMHgPARAu23A6AgBRzLCcjgBA1ONnEQAATljAthWwG/8LwYbMnTt3riRp8ODBIf3z5s3TddddJ6/Xq3feeUezZ89WeXm5MjMzNWrUKE2dOjU41uVyaeHChbrllluUk5OjhIQEjR07VnfddVeD4m62yTQAAAAAAAAAAAA0H9a3LZz5J8quJ/GWmZmplStX1nuerKwsvfXWWw145qOxZxoAAAAAAAAAAABQByrTAAAAAAAAAAAAUK+AbAXC2DsqnLlOIpkGAAAAAAAAAACAegXs2hbO/GhEMg0AAAAAAAAAAAD1iuSeac0Je6YBAAAAAAAAAAAAdWi2lWneYkMun+F0GDHB5jJHjE36OnK41hHDfR05vF9HENc6ongfiRzb5XQEscM2o3TtkihkN9tPtS0P79cRxM8iEcV7dgRxb0cM9zWAk8WSoUAYb+hWlH4z4GMHAAAAAAAAAAAA6mXZtS2c+dGIZBoAAAAAAAAAAADqFQizMi2cuU5ikQYAAAAAAAAAAACgDlSmAQAAAAAAAAAAoF6xWplGMg0AAAAAAAAAAAD1smxDlt34hFg4c53UbJNpVcm2TH+U7kQHwHEGbx8AED2i9Adp4HgMi/s6UowapyMAEP14z44YPqsDQNSL1co09kwDAAAAAAAAAAAA6tCgZFp+fr769++vxMREpaam6oorrtDWrVtDxlRUVCgvL09t2rRRq1atNGrUKBUVFTVp0AAAAAAAAAAAAIisgMywWzRqUNQrV65UXl6e1q5dqyVLlqi6ulrDhw9XeXl5cMzEiRP1xhtv6OWXX9bKlSu1Z88eXXnllU0eOAAAAAAAAAAAACLH/nbPtMY2O0q3emjQnmmLFi0KeTx//nylpqZq/fr1GjRokEpKSvT0009rwYIFuvDCCyVJ8+bNU/fu3bV27Vqdd955TRc5AAAAAAAAAAAAcJKFVU9XUlIiSUpJSZEkrV+/XtXV1Ro2bFhwTLdu3dSxY0cVFBQc8xyVlZUqLS0NaQAAAAAAAAAAAGheAjLCbtGoQZVp32VZliZMmKDzzz9fZ511liSpsLBQXq9XrVu3DhmblpamwsLCY54nPz9fM2fOPKrfrDFk1kTnRQWAWGJH5zLHAACgheBnEQBhM2ynIwAAIGoEbFOBMH4ID0Tpt91Gv+K8vDxt3rxZL7zwQlgBTJkyRSUlJcG2e/fusM4HAAAAAAAAAACApmfJkCUzjBadRVSNqkwbP368Fi5cqFWrVqlDhw7B/vT0dFVVVam4uDikOq2oqEjp6enHPJfP55PP52tMGAAAAAAAAAAAAMBJ1aDKNNu2NX78eL366qtatmyZsrOzQ4737dtXHo9HS5cuDfZt3bpVu3btUk5OTtNEDAAAAAAAAAAAgIhjz7QTkJeXpwULFujvf/+7EhMTg/ugJScnKy4uTsnJyRo3bpwmTZqklJQUJSUl6dZbb1VOTo7OO++8k/ICAAAAAAAAAAAAcPKFv2dadG6a1qBk2ty5cyVJgwcPDumfN2+errvuOknSww8/LNM0NWrUKFVWVio3N1ePP/54kwQLAAAAAAAAAAAAZ9Tumdb46rKY2DPNPoGMod/v15w5czRnzpxGBwUAAAAAAAAAAAA0Bw1KpkWSbdY2AAAAAAAA4KSxo/Mv5AEAcIIlUwE1PnljKQaWeQQAAAAAAAAAAEBsYs80AAAAAAAAAAAAoA6WTFkxWJnGQooAAAAAAAAAAABAHahMAwAAAAAAAAAAQL0CtqFAGPuNhjPXSSTTAAAAAAAAAAAAUK+ATAXCWPQwEKXLPDbbZJoRqG0A0CjR+QcOABCTwti3GAAkIzo/jANALIrSYgQAwHdYtikrjA/ylh2dP7/zqwsAAAAAAAAAAACgDs22Mg0AAAAAAAAAAADNB8s8AgAAAAAAAAAAAHWwJAXCWLfXarpQIoplHgEAAAAAAAAAAIA6UJkGAAAAAAAAAACAelkyZYVRpxXOXCc122Rau3MK5U7wOR1GTDhU5XU6hJhRUdVs/5drcaqrudaRUl3BtY4Uuzo6f9iIRkYF1zqSTO7tiDErG78UBxrGVel0BLHDxX0dMSb3dcS4qpyOILbwnh05rqro3CcnGvE+EkE/dzoAILICtqmAHcaeaWHMdRK/AQUAAAAAAAAAAEC9LBmyFM6eadH5x3DRmQIEAAAAAAAAAAAAIoDKNAAAAAAAAAAAANSLZR4BAAAAAAAAAACAOgRkKhDGoofhzHUSyTQAAAAAAAAAAADUy7INWXYYe6aFMddJzTaZdmBNulw+v9NhxIQoraqMTtH5PhGVTO7riPE5HUAM4f06gni/jiju7cjhWkdOTZztdAgxoybe6QhiB+8hEcTPIpHF9Y4Y2+T7IwAgOjXbZBoAAAAAAAAAAACaDyvMZR4tlnkEAAAAAAAAAABAS2XZpqwwliwIZ66TGhz1qlWrdOmllyojI0OGYei1114LOX7dddfJMIyQdtFFFzVVvAAAAAAAAAAAAHBAQEbYLRo1OJlWXl6u3r17a86cOXWOueiii/TVV18F21//+tewggQAAAAAAAAAAACc0OBlHkeMGKERI0Ycd4zP51N6enqjgwIAAAAAAAAAAEDzwjKPTWjFihVKTU1V165ddcstt2j//v11jq2srFRpaWlIAwAAAAAAAAAAQPMSULhLPUanBlem1eeiiy7SlVdeqezsbG3fvl2//e1vNWLECBUUFMjlch01Pj8/XzNnzjyqvzrJVsBvN3V4OBYuM4AwGLyHAAiXHZ3rpQPHY1jc15FiWE5HACDq8Zkmgvj+CADRLlYr05o8mTZ69Ojg1z179lSvXr102mmnacWKFRo6dOhR46dMmaJJkyYFH5eWliozM7OpwwIAAAAAAAAAAAAarMmTad/XuXNntW3bVtu2bTtmMs3n88nn853sMAAAAAAAAAAAABCGgG0qEEZ1WThznXTSk2lffvml9u/fr/bt25/spwIAAAAAAAAAAMBJYsuQFcayvXaULvnb4GRaWVmZtm3bFny8Y8cObdy4USkpKUpJSdHMmTM1atQopaena/v27brjjjvUpUsX5ebmNmngAAAAAAAAAAAAiBwq007QBx98oCFDhgQfH9nvbOzYsZo7d64+/vhjPfvssyouLlZGRoaGDx+uu+++m6UcAQAAAAAAAAAAEHUanEwbPHiwbNuu8/jixYvDCugIs8qQaUZnuR+AZoC3DwCIGlH6R2kAmgnbVffnUwBA82LzWR0Aop5lG7LCeEMPZ66TTvqeaQAAAAAAAAAAAIh+AZkKKIxlHsOY66TojBoAAAAAAAAAAACIACrTAAAAAAAAAAAAUC+WeQQAAAAAAAAAAADqYMmUFcaih+HMdRLJNAAAAAAAAAAAANQrYBsKhFFdFs5cJzXbZFrHu96T2/A4HUZMMOPinA4hZpjx8U6HEDuSE52OIGZYp7RyOoSYUdmW9+tIOZTabH9EapEOt4vOH6Sj0eE02+kQYkZNarXTIcSM1m3LnA4hZmS3PuB0CDHj9FZ7nQ4hpnTyf+10CDEj07Pf6RBiRqrroNMhxBB+hw2cLPn5+XrllVf0r3/9S3FxcfrBD36gBx54QF27dg2Oqaio0K9+9Su98MILqqysVG5urh5//HGlpaUFx+zatUu33HKLli9frlatWmns2LHKz8+X233iv/+Jzno6AAAAAAAAAAAARNSRPdPCaSdq5cqVysvL09q1a7VkyRJVV1dr+PDhKi8vD46ZOHGi3njjDb388stauXKl9uzZoyuvvDJ4PBAIaOTIkaqqqtKaNWv07LPPav78+Zo2bVqDXjd/dg0AAAAAAAAAAIB62bYpy258nZbdgLmLFi0KeTx//nylpqZq/fr1GjRokEpKSvT0009rwYIFuvDCCyVJ8+bNU/fu3bV27Vqdd955evvtt7Vlyxa98847SktLU58+fXT33Xdr8uTJmjFjhrxe7wnFQmUaAAAAAAAAAAAA6hWQEXaTpNLS0pBWWVlZ73OXlJRIklJSUiRJ69evV3V1tYYNGxYc061bN3Xs2FEFBQWSpIKCAvXs2TNk2cfc3FyVlpbqk08+OeHXTTINAAAAAAAAAAAAEZOZmank5ORgy8/PP+54y7I0YcIEnX/++TrrrLMkSYWFhfJ6vWrdunXI2LS0NBUWFgbHfDeRduT4kWMnimUeAQAAAAAAAAAAUC/LVoP2PTvWfEnavXu3kpKSgv0+n++48/Ly8rR582atXr260c8dDpJpAAAAAAAAAAAAqJcV5p5pR+YmJSWFJNOOZ/z48Vq4cKFWrVqlDh06BPvT09NVVVWl4uLikOq0oqIipaenB8esW7cu5HxFRUXBYyeq2SbTXN27yOU6fiYSTcNK4DpHSlW8x+kQYkZ1q2b79tbiVLdixeBIqUrgWkdKdaLTEcSWmninI4ghYfz1IBqo3OV0BDGj2EhwOoSYsaWSzzOR8mVpstMhxJS2CRlOhxAz2vrKnQ4hZqR4udaR0r/9eqdDACLKkiFLYVSmNWCubdu69dZb9eqrr2rFihXKzs4OOd63b195PB4tXbpUo0aNkiRt3bpVu3btUk5OjiQpJydH9957r/bu3avU1FRJ0pIlS5SUlKQePXqccCz8thkAAAAAAAAAAADNSl5enhYsWKC///3vSkxMDO5xlpycrLi4OCUnJ2vcuHGaNGmSUlJSlJSUpFtvvVU5OTk677zzJEnDhw9Xjx49NGbMGM2aNUuFhYWaOnWq8vLy6l1a8rtIpgEAAAAAAAAAAKBeAdtQIIxVTxoyd+7cuZKkwYMHh/TPmzdP1113nSTp4YcflmmaGjVqlCorK5Wbm6vHH388ONblcmnhwoW65ZZblJOTo4SEBI0dO1Z33XVXg+ImmQYAAAAAAAAAAIB6NdWeaSfCtu16x/j9fs2ZM0dz5sypc0xWVpbeeuutE37eYyGZBgAAAAAAAAAAgHpZMmSFUZkWzn5rTmp8+hAAAAAAAAAAAABo4ZptZdpnE1rJjPM7HUZssKIzExyN7ADXOlKMGqcjiCE19Zdbo2kYAcvpEGKGwffGiOI9O3IMfhaJGG+xy+kQYoaxn2sdKUbgxDdoR3jKAolOhxBTDlW3czqEmLE74HQEscPgWkfOHeudjgCIKFtGWNVldpRWpjXbZBoAAAAAAAAAAACaD8sOc5nHMOY6qcHLPK5atUqXXnqpMjIyZBiGXnvttZDjtm1r2rRpat++veLi4jRs2DB9/vnnTRUvAAAAAAAAAAAAHGDZZtgtGjU46vLycvXu3Vtz5sw55vFZs2bp0Ucf1RNPPKH33ntPCQkJys3NVUVFRdjBAgAAAAAAAAAAAJHU4GUeR4wYoREjRhzzmG3bmj17tqZOnarLL79ckvTnP/9ZaWlpeu211zR69OjwogUAAAAAAAAAAIAjWOaxCezYsUOFhYUaNmxYsC85OVkDBgxQQUHBMedUVlaqtLQ0pAEAAAAAAAAAAKB5sWSE3aJRgyvTjqewsFCSlJaWFtKflpYWPPZ9+fn5mjlz5lH9cZ/55PL5mjI81CFKlyiNSlzrCOJaRwz3deRE6R/uRCeudUTxPhI5tsvpCGJHwGs7HULs4D0kYni/jiB+Foko2+Q9O2K4tyOG+xoAmpbjPwpPmTJFJSUlwbZ7926nQwIAAAAAAAAAAMD3HFnmMZwWjZq0Mi09PV2SVFRUpPbt2wf7i4qK1KdPn2PO8fl88lGBBgAAAAAAAAAA0KyxZ1oTyM7OVnp6upYuXRrsKy0t1XvvvaecnJymfCoAAAAAAAAAAABEEJVpJ6isrEzbtm0LPt6xY4c2btyolJQUdezYURMmTNA999yj008/XdnZ2brzzjuVkZGhK664oinjBgAAAAAAAAAAAE66BifTPvjgAw0ZMiT4eNKkSZKksWPHav78+brjjjtUXl6um266ScXFxRo4cKAWLVokv9/fdFEDAAAAAAAAAAAgomJ1mccGJ9MGDx4s27brPG4Yhu666y7dddddYQUGAAAAAAAAAACA5sOWZKnxCbG6s0vNW4OTaZFyygWFcif4nA4jJhyq8jodQsyoqGq2/8u1ONXVXOtIqa7gWkeKXd2kW53iOIwKrnUkmdzbEWNWRudfAEYj92GudaS4Kp2OIHaYXOuIcVU5HUFscfH9MWJcVdH6K9To46rivo6YK50OAIisWK1M4zcXAAAAAAAAAAAAQB0oJwAAAAAAAAAAAEC9YrUyjWQaAAAAAAAAAAAA6kUyDQAAAAAAAAAAAKhDrCbT2DMNAAAAAAAAAAAAqEOzrUxrNcUjt8vjdBgxIT7B63QIMSMQxz0dKdWJzfbtrcWpbsXfZURKVQLXOlKqE52OILZUt3I6gtjBtY6cyjYBp0OIHa1qnI4gZvhbVTkdQsxolXDY6RBiyilxh5wOIWa09ZU7HULMaOsrczoEAC2UbRuyw6guC2euk/htMwAAAAAAAAAAAOplyZClMJZ5DGOuk0imAQAAAAAAAAAAoF7smQYAAAAAAAAAAAAgBJVpAAAAAAAAAAAAqBd7pgEAAAAAAAAAAAB1iNVlHpttMm3HZL/MeL/TYcSEQDWrfUaKVROdbxRRKWA7HUHsqLGcjiB2VHNfR4rJ+3VEGVzviOFaR473G5fTIcQMcx/XOlKMGp/TIcSMg9WJTocQU8prnI4gdvwn4HQEscOsdjqCGDJ1g9MRABEVq5VpZFEAAAAAAAAAAACAOjTbyjQAAAAAAAAAAAA0H3aYyzxGa2UayTQAAAAAAAAAAADUy5Zkh7ETSbRuYsIyjwAAAAAAAAAAAEAdqEwDAAAAAAAAAABAvSwZMtT4pRqtMOY6qdkm01xbEuTy+Z0OIya4qE+MnOh8n4hKNvc1WiDu6wji/TqiuLcjh2sdOQFftC5eEn0CfGyMHL4/Rgzv1xHGvR0xtsn3RwCIdrZthLXvGXumAQAAAAAAAAAAoMWybENGGAkxK0qTaU3+t04zZsyQYRghrVu3bk39NAAAAAAAAAAAAMBJd1Iq084880y98847/30SNwVwAAAAAAAAAAAA0cy2a1s486PRSclyud1upaenn4xTAwAAAAAAAAAAwAGxumfaSdnS9vPPP1dGRoY6d+6sa6+9Vrt27ToZTwMAAAAAAAAAAIAIOZJMC6dFoyavTBswYIDmz5+vrl276quvvtLMmTN1wQUXaPPmzUpMTDxqfGVlpSorK4OPS0tLmzokAAAAAAAAAAAAoFGaPJk2YsSI4Ne9evXSgAEDlJWVpZdeeknjxo07anx+fr5mzpx5VH91oq2AP0oXzwTgOIO3DwCIHlH6V2nA8RgW93WkGJbTEQCIenx+jCC+PwJAtLNsQ0YYn+OtKP0dwElZ5vG7WrdurTPOOEPbtm075vEpU6aopKQk2Hbv3n2yQwIAAAAAAAAAAEAD2Xb4LRqd9GRaWVmZtm/frvbt2x/zuM/nU1JSUkgDAAAAAAAAAABA81KbEAtnzzSnX0HjNHky7de//rVWrlypL774QmvWrNGPf/xjuVwuXXPNNU39VAAAAAAAAAAAAMBJ1eR7pn355Ze65pprtH//frVr104DBw7U2rVr1a5du6Z+KgAAAAAAAAAAAETIkQqzcOZHoyZPpr3wwgtNfUoAAAAAAAAAAAA4zP62hTM/GjV5Mq2peA4aclVFZ4Yy2tgnfec8BHFLRwz3NVoi7usI4v06ori3I4drHTm2Ga0fEaOP7XI6gtjBe0gE8bNIZHG9I4bvjwAQ/WK1Mo0fhQEAAAAAAAAAAIA6NNvKNAAAAAAAAAAAADQjMbrOI8k0AAAAAAAAAAAA1C/MZR4Vpcs8kkwDAAAAAAAAAABAvWy7toUzPxqxZxoAAAAAAAAAAABQh2ZbmVZxWqXMuOgs94s6Ftc5UuwA1zpSjBqudcRwrSPG4D0kYgy+N0aUUeN0BLGD95HIcVVxrSPFCDgdQezgWkcO1zqyzGqnI4gd/CwSObyPADhZ7DCXeQxriUgHNdtkGgAAAAAAAAAAAJoR2whv37MoTaaxzCMAAAAAAAAAAABQByrTAAAAAAAAAAAAUC/brm3hzI9GJNMAAAAAAAAAAABQP/vbFs78KEQyDQAAAAAAAAAAAPWybUN2GPuehTPXSeyZBgAAAAAAAAAAANSh2Vam+bf75PL5nA4jJtikVCMnOpPuUYn7Gi0R93UE8X4dUdzbkcO1jpyAN0rXLolGvGdHDtc6Yni/jjDu7YixTb4/AkCLEINv5/x4BgAAAAAAAAAAgHodWeYxnNYQq1at0qWXXqqMjAwZhqHXXnst5Ph1110nwzBC2kUXXRQy5sCBA7r22muVlJSk1q1ba9y4cSorK2tQHCTTAAAAAAAAAAAAUD+7CVoDlJeXq3fv3pozZ06dYy666CJ99dVXwfbXv/415Pi1116rTz75REuWLNHChQu1atUq3XTTTQ2Ko9ku8wgAAAAAAAAAAIDYNWLECI0YMeK4Y3w+n9LT04957NNPP9WiRYv0/vvvq1+/fpKkP/zhD7r44ov14IMPKiMj44TioDINAAAAAAAAAAAAJ8Bogta0VqxYodTUVHXt2lW33HKL9u/fHzxWUFCg1q1bBxNpkjRs2DCZpqn33nvvhJ+DyjQAAAAAAAAAAADUrxFLNR41X1JpaWlIt8/nk8/na/DpLrroIl155ZXKzs7W9u3b9dvf/lYjRoxQQUGBXC6XCgsLlZqaGjLH7XYrJSVFhYWFJ/w8zTaZVp1sK+AP518EaIa4pdEScV+jBTK4r9FSNXCjZzSeWcO1RgvE90e0UPzsF0l8f4wY7msAJ0sTJdMyMzNDuqdPn64ZM2Y0+HSjR48Oft2zZ0/16tVLp512mlasWKGhQ4eGEWioZptMAwAAAAAAAAAAQMuze/duJSUlBR83pirtWDp37qy2bdtq27ZtGjp0qNLT07V3796QMTU1NTpw4ECd+6wdy0nbM23OnDnq1KmT/H6/BgwYoHXr1p2spwIAAAAAAAAAAMDJZhvhN0lJSUkhramSaV9++aX279+v9u3bS5JycnJUXFys9evXB8csW7ZMlmVpwIABJ3zek5JMe/HFFzVp0iRNnz5dGzZsUO/evZWbm3tU9g8AAAAAAAAAAADRwbbDbw1RVlamjRs3auPGjZKkHTt2aOPGjdq1a5fKysp0++23a+3atfriiy+0dOlSXX755erSpYtyc3MlSd27d9dFF12kG2+8UevWrdM///lPjR8/XqNHj1ZGRsYJx3FSkmkPPfSQbrzxRl1//fXq0aOHnnjiCcXHx+uZZ545GU8HAAAAAAAAAACAk81ugtYAH3zwgc4++2ydffbZkqRJkybp7LPP1rRp0+RyufTxxx/rsssu0xlnnKFx48apb9++evfdd0Mq3Z5//nl169ZNQ4cO1cUXX6yBAwfqySefbFAcTb5nWlVVldavX68pU6YE+0zT1LBhw1RQUHDU+MrKSlVWVgYfl5SUSJKsioqmDg1wHpu/oiXivkYLxCb0aLG+XU4DJ59hOR0BcBLw/REtFfc2WiLu64gpPRhwOoSYUFpW+wO23dCyJkS9wYMHH/ffffHixfWeIyUlRQsWLAgrjiZPpn399dcKBAJKS0sL6U9LS9O//vWvo8bn5+dr5syZR/Xvuvvupg4NAAAAAAAAAIAmc8o9TkcQWw4ePKjk5GSnw4ht39n3rNHzo1CTJ9MaasqUKZo0aVLwcXFxsbKysrRr1y7+p0CLUlpaqszMTO3evVtJSUlOhwM0Ce5rtETc12ipuLfREnFfoyXivkZLxb2Nloj7OnJs29bBgwcbtMcVTg7DDm9Fn2hdDajJk2lt27aVy+VSUVFRSH9RUZHS09OPGu/z+ULWrjwiOTmZNyC0SElJSdzbaHG4r9EScV+jpeLeRkvEfY2WiPsaLRX3Nloi7uvIoPimmWjEvmdHzY9CZlOf0Ov1qm/fvlq6dGmwz7IsLV26VDk5OU39dAAAAAAAAAAAAMBJc1KWeZw0aZLGjh2rfv366dxzz9Xs2bNVXl6u66+//mQ8HQAAAAAAAAAAAE429kxrOldffbX27dunadOmqbCwUH369NGiRYuUlpZW71yfz6fp06cfc+lHIJpxb6Ml4r5GS8R9jZaKexstEfc1WiLua7RU3NtoibivEZNidJlHw7btKA0dAAAAAAAAAAAAJ1tpaamSk5OV+dDdMuP8jT6PdbhCuyfdqZKSkqjaa/CkVKYBAAAAAAAAAACghYnRyjSSaQAAAAAAAAAAAKgfyTQAAAAAAAAAAACgDrZR28KZH4VMpwMAAAAAAAAAAAAAmqtml0ybM2eOOnXqJL/frwEDBmjdunVOhwQ0Wn5+vvr376/ExESlpqbqiiuu0NatW50OC2hS999/vwzD0IQJE5wOBQjbf/7zH/385z9XmzZtFBcXp549e+qDDz5wOiyg0QKBgO68805lZ2crLi5Op512mu6++27ZdpSuq4GYtWrVKl166aXKyMiQYRh67bXXQo7btq1p06apffv2iouL07Bhw/T55587Eyxwgo53X1dXV2vy5Mnq2bOnEhISlJGRoV/84hfas2ePcwEDJ6i+9+zvuvnmm2UYhmbPnh2x+IDGOJH7+tNPP9Vll12m5ORkJSQkqH///tq1a1fkgwVOMsMOv0WjZpVMe/HFFzVp0iRNnz5dGzZsUO/evZWbm6u9e/c6HRrQKCtXrlReXp7Wrl2rJUuWqLq6WsOHD1d5ebnToQFN4v3339cf//hH9erVy+lQgLB98803Ov/88+XxePSPf/xDW7Zs0e9//3udcsopTocGNNoDDzyguXPn6rHHHtOnn36qBx54QLNmzdIf/vAHp0MDGqS8vFy9e/fWnDlzjnl81qxZevTRR/XEE0/ovffeU0JCgnJzc1VRURHhSIETd7z7+tChQ9qwYYPuvPNObdiwQa+88oq2bt2qyy67zIFIgYap7z37iFdffVVr165VRkZGhCIDGq+++3r79u0aOHCgunXrphUrVujjjz/WnXfeKb/fH+FIgQiwm6BFIcNuRn+WOmDAAPXv31+PPfaYJMmyLGVmZurWW2/Vb37zG4ejA8K3b98+paamauXKlRo0aJDT4QBhKSsr0znnnKPHH39c99xzj/r06cNfEyKq/eY3v9E///lPvfvuu06HAjSZSy65RGlpaXr66aeDfaNGjVJcXJz+8pe/OBgZ0HiGYejVV1/VFVdcIam2Ki0jI0O/+tWv9Otf/1qSVFJSorS0NM2fP1+jR492MFrgxHz/vj6W999/X+eee6527typjh07Ri44IAx13dv/+c9/NGDAAC1evFgjR47UhAkTWO0EUeNY9/Xo0aPl8Xj03HPPORcYcJKVlpYqOTlZHR+4R2Zc4xPF1uEK7Zo8VSUlJUpKSmrCCE+uZlOZVlVVpfXr12vYsGHBPtM0NWzYMBUUFDgYGdB0SkpKJEkpKSkORwKELy8vTyNHjgx53wai2euvv65+/frpJz/5iVJTU3X22WfrT3/6k9NhAWH5wQ9+oKVLl+qzzz6TJH300UdavXq1RowY4XBkQNPZsWOHCgsLQ34mSU5O1oABA/gsiRalpKREhmGodevWTocChMWyLI0ZM0a33367zjzzTKfDAcJmWZbefPNNnXHGGcrNzVVqaqoGDBhw3CVOAUSfZpNM+/rrrxUIBJSWlhbSn5aWpsLCQoeiApqOZVmaMGGCzj//fJ111llOhwOE5YUXXtCGDRuUn5/vdChAk/n3v/+tuXPn6vTTT9fixYt1yy236LbbbtOzzz7rdGhAo/3mN7/R6NGj1a1bN3k8Hp199tmaMGGCrr32WqdDA5rMkc+LfJZES1ZRUaHJkyfrmmuuiaq/4AaO5YEHHpDb7dZtt93mdChAk9i7d6/Kysp0//3366KLLtLbb7+tH//4x7ryyiu1cuVKp8MDmpyhMPdMc/oFNJLb6QCAWJGXl6fNmzdr9erVTocChGX37t363//9Xy1ZsoS1v9GiWJalfv366b777pMknX322dq8ebOeeOIJjR071uHogMZ56aWX9Pzzz2vBggU688wztXHjRk2YMEEZGRnc1wAQJaqrq/XTn/5Utm1r7ty5TocDhGX9+vV65JFHtGHDBhlGtP46FQhlWZYk6fLLL9fEiRMlSX369NGaNWv0xBNP6Ic//KGT4QFNzzZqWzjzo1CzqUxr27atXC6XioqKQvqLioqUnp7uUFRA0xg/frwWLlyo5cuXq0OHDk6HA4Rl/fr12rt3r8455xy53W653W6tXLlSjz76qNxutwKBgNMhAo3Svn179ejRI6Sve/fu2rVrl0MRAeG7/fbbg9VpPXv21JgxYzRx4kQqi9GiHPm8yGdJtERHEmk7d+7UkiVLqEpD1Hv33Xe1d+9edezYMfh5cufOnfrVr36lTp06OR0e0Cht27aV2+3m8yRih90ELQo1m2Sa1+tV3759tXTp0mCfZVlaunSpcnJyHIwMaDzbtjV+/Hi9+uqrWrZsmbKzs50OCQjb0KFDtWnTJm3cuDHY+vXrp2uvvVYbN26Uy+VyOkSgUc4//3xt3bo1pO+zzz5TVlaWQxEB4Tt06JBMM/RHfpfLFfzrWaAlyM7OVnp6eshnydLSUr333nt8lkRUO5JI+/zzz/XOO++oTZs2TocEhG3MmDH6+OOPQz5PZmRk6Pbbb9fixYudDg9oFK/Xq/79+/N5EmjhmtUyj5MmTdLYsWPVr18/nXvuuZo9e7bKy8t1/fXXOx0a0Ch5eXlasGCB/v73vysxMTG4Z0NycrLi4uIcjg5onMTExKP2/UtISFCbNm3YDxBRbeLEifrBD36g++67Tz/96U+1bt06Pfnkk3ryySedDg1otEsvvVT33nuvOnbsqDPPPFMffvihHnroIf3yl790OjSgQcrKyrRt27bg4x07dmjjxo1KSUlRx44dNWHCBN1zzz06/fTTlZ2drTvvvFMZGRm64oornAsaqMfx7uv27dvrqquu0oYNG7Rw4UIFAoHg58mUlBR5vV6nwgbqVd979vcTwx6PR+np6eratWukQwVOWH339e23366rr75agwYN0pAhQ7Ro0SK98cYbWrFihXNBAydLuNVlUVqZZti23axCf+yxx/S73/1OhYWF6tOnjx599FENGDDA6bCARqlr/e958+bpuuuui2wwwEk0ePBg9enTR7Nnz3Y6FCAsCxcu1JQpU/T5558rOztbkyZN0o033uh0WECjHTx4UHfeeadeffVV7d27VxkZGbrmmms0bdo0fhGLqLJixQoNGTLkqP6xY8dq/vz5sm1b06dP15NPPqni4mINHDhQjz/+uM444wwHogVOzPHu6xkzZtS5ssny5cs1ePDgkxwd0Hj1vWd/X6dOnTRhwgRNmDDh5AcHNNKJ3NfPPPOM8vPz9eWXX6pr166aOXOmLr/88ghHCpw8paWlSk5OVqd775Xp9zf6PFZFhb74f/9PJSUlUbWEdbNLpgEAAAAAAAAAAKD5CCbT7mmCZNrU6EumNZs90wAAAAAAAAAAAIDmplntmQYAAAAAAAAAAIBmKkb3TCOZBgAAAAAAAAAAgHoZdm0LZ340YplHAAAAAAAAAAAAoA5UpgEAAAAAAAAAAKB+tlHbwpkfhUimAQAAAAAAAAAAoH4xumcayzwCAAAAAAAAAIBGmzNnjjp16iS/368BAwZo3bp1ToeEk+TInmnhtGhEMg0AAAAAAAAAADTKiy++qEmTJmn69OnasGGDevfurdzcXO3du9fp0IAmQzINAAAAAAAAAAA0ykMPPaQbb7xR119/vXr06KEnnnhC8fHxeuaZZ5wODSeD3QQtCrFnGgAAAAAAAAAAaLCqqiqtX79eU6ZMCfaZpqlhw4apoKDgmHMqKytVWVkZfGxZlg4cOKA2bdrIMIxjzrFtWwcPHlRGRoZMkxohR4W7VCPJNAAAAAAAAAAAECu+/vprBQIBpaWlhfSnpaXpX//61zHn5Ofna+bMmY16vt27d6tDhw6NmosmEm51Gck0AAAAAAAAAACAuk2ZMkWTJk0KPi4pKVHHjh01UBfLG5+kQK8ucpVWyvjyK319WXe1vWaXPv2ojfb89j4lJiY6GDliGck0AAAAAAAAAADQYG3btpXL5VJRUVFIf1FRkdLT0485x+fzyefzHdXvlkduwyt5/HK7JMkjt8cvbyuvzHi/JNW5DCQiKEYr01hcFAAAAAAAAAAANJjX61Xfvn21dOnSYJ9lWVq6dKlycnIadU7bY0puU7Is2YbU2ntYcltNFTLCZNjht2hEZRoAAAAAAAAAAGiUSZMmaezYserXr5/OPfdczZ49W+Xl5br++usbdqJvq84CXlMuv1umaco2pVPjiuWJT6tnMnBykUwDAAAAAAAAAACNcvXVV2vfvn2aNm2aCgsL1adPHy1atEhpaQ1MgBm1C+nZbkOWx1W7rJ4h+c1quTyBJo8baAiSaQAAAAAAAAAAoNHGjx+v8ePHh3UOwzQkw5DlMWR5TBkuUzIkn1Ejkw2rmo8Y3TONZBoAAAAAAAAAAHBU+cV95PL6tf8sl1yVbiW1667irrayfF8rs/U3+szpACEp/H3P2DMNAAAAAAAAAACgEapamTISaqvRAj6pPN1UIKVKHqNG7fxlToeH74rShFg4SKYBAAAAAAAAAABHtV6wTt6EZJ3St6tcFTVyfblPX1Vma3GPnvrn51lOh4cYRzINAAAAAAAAAAA0H7YtuyYgMyBV26bsGKyEarbYMw0AAAAAAAAAAMBBpiTblmwrmHhxeSxHQ8J/sWcaAAAAAAAAAACAgyyXKZdhSDU1kiEluStlmiTTmo0YrUwznQ4AAAAAAAAAAADEOMOQJAV8piyvS5JkG1LnuH1q1arCycgAKtMAAAAAAAAAAIDDjNraH9ttKBDnltswJUNKdh1SK2+Vw8HhCJZ5BAAAAAAAAAAAcIBhGpJhyHIbsjym5DJlm5LHqJHHFXA6PBwRo8s8kkwDAAAAAAAAAACOcqWnynT7VZlkqsZvKK5diqoTDCWYVfKSTIPDSKYBAAAAAAAAAABHfXbrqTLifXKnlsvttlQ4NFlnZO9SN2+Rrkj7UO84HSBqUZkGAAAAAAAAAAAQeZ0nvy9vQrJq+neVLJe8u/fqy8s76vnrBuhvn3SVtM7pECH2TAMAAAAAAAAAAHCUbRgybEsKWDIDks+scTokfFeMVqaZTgcAAAAAAAAAAABwhGFLsizJkiwZ8njYMw3OojINAAAAAAAAAAA0C7bLkKps2TW1FWk+o0Y+N8m0ZiNGK9NIpgEAAAAAAAAAAGcZhiQp4DVlVplSICCZUgfvfp3iP+RwcDiCPdMAAAAAAAAAAACcYNTuSmV5DdXEu+T59nFr1yGlxh90MjJ8F5VpAAAAAAAAAAAAkWe4XJJhyHIbMrymDJcp25D8RrWS3RVOh4cYRzINAAAAAAAAAAA4yvDWpisstyEZknxe2S7Jb1bLa9Y4GxyCWOYRAAAAAAAAAADAAZ/d3V0uX5xadSiRxxXQnktSdUbHnersLlNu0ibNcTpA1GKZRwAAAAAAAAAAgMjrevd2eRKSVd7nVAV8ptp+eUhfjMzS4vZd9OedvSXSac0DyTQAAAAAAAAAAIDIC3xTLFeVLfehdLkOW3IVH5KnPFEBmTpc7XE6PMQ40+kAAAAAAAAAAAAAJMk2DUmSUROQEZC8Ro3MaN1oqwUymqA1xKpVq3TppZcqIyNDhmHotddeCzlu27amTZum9u3bKy4uTsOGDdPnn38eMubAgQO69tprlZSUpNatW2vcuHEqKytrUBwk0wAAAAAAAAAAaEEilYD4+OOPdcEFF8jv9yszM1OzZs0KO3bbkAzblmxbhiXFm5WK81SHfV40EbsJWgOUl5erd+/emjPn2Mt8zpo1S48++qieeOIJvffee0pISFBubq4qKiqCY6699lp98sknWrJkiRYuXKhVq1bppptualAcJNMAAAAAAAAAAGhBIpGAKC0t1fDhw5WVlaX169frd7/7nWbMmKEnn3yycUEbtTVLlseUbRhSdY0kqY2rTKlxDasiwslj2OG3hhgxYoTuuece/fjHPz7qmG3bmj17tqZOnarLL79cvXr10p///Gft2bMnmED+9NNPtWjRIj311FMaMGCABg4cqD/84Q964YUXtGfPnhOOg2QaAAAAAAAAAAAtSCQSEM8//7yqqqr0zDPP6Mwzz9To0aN122236aGHHmpc0EZtusLyGaqJd0m2LduQEs0KZcd/3bhzokXbsWOHCgsLNWzYsGBfcnKyBgwYoIKCAklSQUGBWrdurX79+gXHDBs2TKZp6r333jvh5yKZBgAAAAAAAABAjGiqBERBQYEGDRokr9cbHJObm6utW7fqm2++qfP5KysrVVpaGtIkyXC5JMNQwGMo4Dckt0uS5JWlDt4DTXcBEJ4mWubx+/dAZWVlg0MpLCyUJKWlpYX0p6WlBY8VFhYqNTU15Ljb7VZKSkpwzIkgmQYAAAAAAAAAQIxoqgREYWHhMc/x3ec4lvz8fCUnJwdbZmamJMnwuiVJlsdQwGvI9nlluySPYamVWVHn+eCAJtgvLTMzM+Q+yM/Pj+QraDC30wEAAAAAAAAAAIDYMGXKFE2aNCn4uLS0VJmZmSoc01Nul18lZwZku2yVdkpT5ZmHlWwGlOXZ72DE+K7G7Hv2/fmStHv3biUlJQX7fT5fg8+Vnp4uSSoqKlL79u2D/UVFRerTp09wzN69e0Pm1dTU6MCBA8H5J4LKNAAAAAAAAAAAYsR3ExDfVVRUFDx2IgmI9PT0Y57ju89xLD6fT0lJSSFNklpvq1LSrhq1+rdL8Tvd8n1jywoY+rImTksOnhXGK0Zz9P17oDHJtOzsbKWnp2vp0qXBvtLSUr333nvKycmRJOXk5Ki4uFjr168Pjlm2bJksy9KAAQNO+LlIpgEAAAAAAAAAECOaKgGRk5OjVatWqbq6OjhmyZIl6tq1q0455ZQGx+V950PFL9usth9Vqt3GaqWuLZXv334VBpL1YUlmY18umloT7Zl2osrKyrRx40Zt3LhRUu2efxs3btSuXbtkGIYmTJige+65R6+//ro2bdqkX/ziF8rIyNAVV1whSerevbsuuugi3XjjjVq3bp3++c9/avz48Ro9erQyMjJOOA6WeQQAAAAAAAAAoAUpKyvTtm3bgo+PJCBSUlLUsWPHYALi9NNPV3Z2tu688846ExBPPPGEqqurj0pA/OxnP9PMmTM1btw4TZ48WZs3b9Yjjzyihx9+OLzgTaN2KcFAQEZAijcq5TYC4Z0TTaaplnk8UR988IGGDBkSfHxkidCxY8dq/vz5uuOOO1ReXq6bbrpJxcXFGjhwoBYtWiS/3x+c8/zzz2v8+PEaOnSoTNPUqFGj9OijjzYoDpJpAAAAAAAAAAC0IJFIQCQnJ+vtt99WXl6e+vbtq7Zt22ratGm66aabGhe0YUiSbEOSbcuosWTUSAlmpeLd1cefixZr8ODBsu26M3CGYeiuu+7SXXfdVeeYlJQULViwIKw4SKYBAAAAAAAAANCCRCoB0atXL7377ruNjvNYbJchs8aWqmskSQlGtU7xHGrS50AYGrFU41HzoxDJNAAAAAAAAAAA4CjD5ZIkBfymLMuWEbAkSfFmjc5K+NLJ0PAdkV7msbkgmQYAAAAAAAAAAJzlckmGoYDXkG0Yst0uGbbkka2Onq+djg5HUJkGAAAAAAAAAAAQeYb728o0jyHLLdlxXlkuyWNIyWaFw9Eh1pFMAwAAAAAAAAAAjrK6dZIsjw6lGbI8UlnnJFWlWHJJSjSrnQ4PR1CZBgAAAAAAAAAAEHm7LmolM96vQOdD8vmq9Z+ufvXr8oVchqFvAj6nw8O32DMNAAAAAAAAAADAAR3vXSdvQrIODT1LNX6fMvZW6cMRZ2hL+0T9Zf/ZknY6HSKkmK1MM50OAAAAAAAAAAAAxDjDqP2vLbmqbMmSDEuKNyvlidZyJrQYVKYBAAAAAAAAAIDmwZCMgGRWB2QEJL8RULy70umo8C3DtmXYjU9uhjPXSSTTAAAAAAAAAACAs4zahfRsl2TUSEZlQIZdm0xL9Rx0ODgExegyjyTTAAAAAAAAAACAowyXSzIM1fhMmW5bhmXJNqR4w1Znb5HT4eFbhl3bwpkfjUimAQAAAAAAAAAARxmu2j3TAl5D1W5DrUxThmXIaxjq6PnG4egQ60imAQAAAAAAAAAAZ3k8ki0FfLUJNSvOLRm2PDJ0ilnjdHQ4gmUeAQAAAAAAAAAAIs+Mj5dRZcnySAG/FPC7ZXlqj7mcDQ3fwTKPAAAAAAAAAAAADvjXnafK9MapS5cv1c5fpp3DT9Gl7b6Qz3DLb1hOh4cjqEwDAAAAAAAAAACIvDN+vUWeuETtvaqHClsbarXH0iuD2upnuWu1sOQsSYVOh4gYRjINAAAAAAAAAAA4yqqqke2qlvuwrYDfkLvCllFtyG8EFLBNp8PDt1jmEQAAAAAAAAAAwEFmjeSqsGVW2zKqTXkMS/GuKqfDwhEs8wgAAAAAAAAAAOAgQ3JVSWaVJbPaJb9hK91d7HRU+I5orS4LB7WRAAAAAAAAAADAUYbHLRmGAh5DAY/kqrJku23FG4ayPPudDg8xjso0AAAAAAAAAADgKMNVW/sT8EvVCYYMy5blt+UxTKW7Kh2ODkG2XdvCmR+FSKYBAAAAAAAAAABHGW63ZEkBj6GaOKnG75Jt2HLJUILBInvNhWGHt8xjtC4RyR0IAAAAAAAAAACc5fVJpinbJVkeKRD3baWabBmG4XBwiHVUpgEAAAAAAAAAAEf9e3xneRQnz9nfKCupVP/u3lbnZ+2U33CryrCcDg9H2N+2cOZHISrTAAAAAAAAAABoQfLz89W/f38lJiYqNTVVV1xxhbZu3RoypqKiQnl5eWrTpo1atWqlUaNGqaioKGTMrl27NHLkSMXHxys1NVW33367ampqQsasWLFC55xzjnw+n7p06aL58+c3KubsV0qV9dZBVX10ij7blS57V7w+2ZeuL2sqtfRQUqPOiaZnWOG3aEQyDQAAAAAAAACAFmTlypXKy8vT2rVrtWTJElVXV2v48OEqLy8Pjpk4caLeeOMNvfzyy1q5cqX27NmjK6+8Mng8EAho5MiRqqqq0po1a/Tss89q/vz5mjZtWnDMjh07NHLkSA0ZMkQbN27UhAkTdMMNN2jx4sUNjtnesk3Gln8rrkhy7fUqfo+h4q9bKSBD31gJ4V0QNB27CVoUYplHAAAAAAAAAABakEWLFoU8nj9/vlJTU7V+/XoNGjRIJSUlevrpp7VgwQJdeOGFkqR58+ape/fuWrt2rc477zy9/fbb2rJli9555x2lpaWpT58+uvvuuzV58mTNmDFDXq9XTzzxhLKzs/X73/9ektS9e3etXr1aDz/8sHJzcxsVu2HVZlvMgKQaQ37Dls+oOf4k4CSjMg0AAAAAAAAAgBaspKREkpSSkiJJWr9+vaqrqzVs2LDgmG7duqljx44qKCiQJBUUFKhnz55KS0sLjsnNzVVpaak++eST4JjvnuPImCPnOJbKykqVlpaGNEmS8d90hVEjuSptKWDII6mtq7TxLx5NyrDDb9GIZBoAAAAAAAAAAC2UZVmaMGGCzj//fJ111lmSpMLCQnm9XrVu3TpkbFpamgoLC4NjvptIO3L8yLHjjSktLdXhw4ePGU9+fr6Sk5ODLTMzU5JkeFy1AwzJVWnIfciWPLb8hqk0V/kxzwUH2Hb4LQqRTAMAAAAAAAAAoIXKy8vT5s2b9cILLzgdiiRpypQpKikpCbbdu3dLkgx37a5UAa+hQJwtw5J8yRXyGKbau6IzAdMSxWplGnumAQAAAAAAAADQAo0fP14LFy7UqlWr1KFDh2B/enq6qqqqVFxcHFKdVlRUpPT09OCYdevWhZyvqKgoeOzIf4/0fXdMUlKS4uLijhmTz+eTz+c7+oDbLVXZsrxSwGurKtFQUkKFTJmKMz0Nfu1AU6IyDQAAAAAAAACAFsS2bY0fP16vvvqqli1bpuzs7JDjffv2lcfj0dKlS4N9W7du1a5du5STkyNJysnJ0aZNm7R3797gmCVLligpKUk9evQIjvnuOY6MOXKOhjC8Xsk0JUOyPbZqEgzZtiFJMkllNB92E7QoRGUaAAAAAAAAAAAtSF5enhYsWKC///3vSkxMDO5xlpycrLi4OCUnJ2vcuHGaNGmSUlJSlJSUpFtvvVU5OTk677zzJEnDhw9Xjx49NGbMGM2aNUuFhYWaOnWq8vLygpVlN998sx577DHdcccd+uUvf6lly5bppZde0ptvvtngmL85v6PiKzwq7xhQ647FKjZaq1/r/XIZhkwZTXdxEJZwl2pkmUcAAAAAAAAAAOC4uXPnSpIGDx4c0j9v3jxdd911kqSHH35Ypmlq1KhRqqysVG5urh5//PHgWJfLpYULF+qWW25RTk6OEhISNHbsWN11113BMdnZ2XrzzTc1ceJEPfLII+rQoYOeeuop5ebmNjjmQ2mmKv0e+dNLdV77ndoaf1jZCftVYddoV011wy8CTg7brm3hzI9Chm1HaeQAAAAAAAAAACCqlZaWKjk5WUM8P5HHF68v83qr8uxyWf+Jk7/zQb3V7496b/8pGt3nU5WUlCgpKcnpkGPSkX+n8y6+S26Pv9Hnqamu0Nq3pkXdvyWVaQAAAAAAAAAAwFlm7VKOtikZZm0NUE2NKb9hyGdQmdZcsMwjAAAAAAAAAACAA4xvt0WzDckwbJlVhqyAKY8MpZiHnQ0O/2V/28KZH4VIpgEAAAAAAAAAAGe5XLX//Tap5qo05PZXy2OYauOqci4uhIjVyjTT6QAAAAAAAAAAAEBsM/y1+3BZbsm2DVUnWso65RuZMpVsUhcEZ3EHAgAAAAAAAAAARxk+r1RdJdtVu8yjFWerY8I3chmG4gyv0+HhCMuubeHMj0JUpgEAAAAAAAAAAEfZcX4ZLlMybMX5qmX7A6oMuGWSxmhe7CZoUYjKNAAAAAAAAAAA4KiaNq3ksVwKeKW0xIMqP+xVgrvS6bDwPYbC3DOtySKJLJJpAAAAAAAAAADAUduv88h0Jev8Xp/qp+3WaVtqurr690iSKu0ah6NDrCOZBgAAAAAAAAAAHHXG5M/lNrz64Nc99WVOa+3c1VaZmft1TvfntKnK73R4OMK2a1s486MQyTQAAAAAAAAAAOA8y5LttuV3V8tw26q2THkMQ/FGtdOR4VuGHeYyj9GZS2PnPgAAAAAAAAAA4CzDqN1Ny3JLSd4KybTlMmx5DFOJJsk0OIvKNAAAAAAAAAAA4Cy3W6qqLVvyu6plGLbaxpXLI5dOMQMOB4cg+9sWzvwoRDINAAAAAAAAAAA4yojzSzWVsjy2WrmrlJn2jXq3/lIuw1Cc6XE6PHzLsG0ZYex7Fs5cJ5FMAwAAAAAAAAAAjrLj/DIOVUum5DVr1Np3WNm+fXLLJbcMp8PDEda3LZz5UYg90wAAAAAAAAAAgKOsRL/k8Uq2FG9WqcY2FbBrUxgug1QGnEVlGgAAAAAAAAAAcFQgwSPD76tNprmqVGOZOmj5ZcmWqExrNljmEQAAAAAAAAAAwAG7xwUUqMrQhX0267KkjeoVt0sd3d/IFPulNSv2ty2c+VGIZBoAAAAAAAAAAHBU9kM18lR+rWWTeqjteWV6b18n9WnzpaanrtKO6oDT4eEI265t4cyPQiTTAAAAAAAAAACAo8x9xdLhGhlVqXLJUrVl6kBVvEzDkCtay5nQYpBMAwAAAAAAAAAAjrNtW3LZauspk9dVW43mkqE4tkxrNgy7toUzPxqRTAMAAAAAAAAAAM5yuyRVS4aU7DokSUpyV8pjuJRkep2NDf/FMo8AAAAAAAAAAACRZyfEySivku2y5TerldnqG3WNL5QpUz6D0rTmwrBqWzjzo5HpdAAAAAAAAAAAACC2BZL8ks8XXAfwtPivleXdJ1OGXAapDDiLOxAAAAAAAAAAgBZk7ty56tWrl5KSkpSUlKScnBz94x//CB6vqKhQXl6e2rRpo1atWmnUqFEqKioKOceuXbs0cuRIxcfHKzU1VbfffrtqampCxqxYsULnnHOOfD6funTpovnz5zc65uokrwy/T5LkMWrqGQ3HHFnmMZwWhUimAQAAAAAAAADQgnTo0EH333+/1q9frw8++EAXXnihLr/8cn3yySeSpIkTJ+qNN97Qyy+/rJUrV2rPnj268sorg/MDgYBGjhypqqoqrVmzRs8++6zmz5+vadOmBcfs2LFDI0eO1JAhQ7Rx40ZNmDBBN9xwgxYvXtyomGviTNnxfsk25JKtatulapudqpoduwlaFDJsO0rTgAAAAAAAAAAA4ISkpKTod7/7na666iq1a9dOCxYs0FVXXSVJ+te//qXu3buroKBA5513nv7xj3/okksu0Z49e5SWliZJeuKJJzR58mTt27dPXq9XkydP1ptvvqnNmzcHn2P06NEqLi7WokWLTjiu0tJSJScnq+MD96jVgXi1GbZHc874qzZWdtBpnr06z+9S6UFLp5zxb5WUlCgpKalpLwxOyJF/pyH9fiu329/o89TUVGj5B/dF3b8llWkAAAAAAAAAALRQgUBAL7zwgsrLy5WTk6P169erurpaw4YNC47p1q2bOnbsqIKCAklSQUGBevbsGUykSVJubq5KS0uD1W0FBQUh5zgy5sg56lJZWanS0tKQJkmt/m0qrshWaYVP26vbaFtFmj6rStMhq0rFgUNNci0QXWbMmCHDMEJat27dgsdPZLnSpkIyDQAAAAAAAACAFmbTpk1q1aqVfD6fbr75Zr366qvq0aOHCgsL5fV61bp165DxaWlpKiwslCQVFhaGJNKOHD9y7HhjSktLdfjw4Trjys/PV3JycrBlZmZKktqv+FptF27VN3uSta8mSZ8cbK8N5Z1kyVK5bYV1LdCEIrxn2plnnqmvvvoq2FavXh08Vt9ypU2JBUcBAAAAAAAAAGhhunbtqo0bN6qkpER/+9vfNHbsWK1cudLpsDRlyhRNmjQp+Li0tLQ2oRawJMuWTFvt3KVKcFdJkkyZ8huGU+Hi+2xJ4eQ2G7jxmNvtVnp6+lH9JSUlevrpp7VgwQJdeOGFkqR58+ape/fuWrt2rc4777wwgjwalWkAAAAAAAAAALQwXq9XXbp0Ud++fZWfn6/evXvrkUceUXp6uqqqqlRcXBwyvqioKJi0SE9PP2q5vCOP6xuTlJSkuLi4OuPy+XxKSkoKaZIkj1syDcm01dp1SG7Dks+skcswFGd4wrkUaEKGbYfdGuLzzz9XRkaGOnfurGuvvVa7du2SpBNarrQpkUwDAAAAAAAAAKCFsyxLlZWV6tu3rzwej5YuXRo8tnXrVu3atUs5OTmSpJycHG3atEl79+4NjlmyZImSkpLUo0eP4JjvnuPImCPnaKiaRJ8Mj0eG25bfqFaGv1gdfftlypTPYJG9lub7++ZVVlYeNWbAgAGaP3++Fi1apLlz52rHjh264IILdPDgwRNarrQpcQcCAAAAAAAAANCCTJkyRSNGjFDHjh118OBBLViwQCtWrNDixYuVnJyscePGadKkSUpJSVFSUpJuvfVW5eTkBJfGGz58uHr06KExY8Zo1qxZKiws1NSpU5WXlyefzydJuvnmm/XYY4/pjjvu0C9/+UstW7ZML730kt58881GxXw43a+4r/0y3LVrCLZ1l+l0b6FMGXKxzGPzYavB+54dNV8K7pV3xPTp0zVjxoyQvhEjRgS/7tWrlwYMGKCsrCy99NJLx61+PBlIpgEAAAAAAAAA0ILs3btXv/jFL/TVV18pOTlZvXr10uLFi/WjH/1IkvTwww/LNE2NGjVKlZWVys3N1eOPPx6c73K5tHDhQt1yyy3KyclRQkKCxo4dq7vuuis4Jjs7W2+++aYmTpyoRx55RB06dNBTTz2l3NzcRsVc1cqUlRAnw5AqbI/izUp5jUB4FwJNz7bDTKbVzt29e/d/l/iUgkna42ndurXOOOMMbdu2TT/60Y+Cy5V+tzrtu8uVNiWSaQAAAAAAAAAAtCBPP/30cY/7/X7NmTNHc+bMqXNMVlaW3nrrreOeZ/Dgwfrwww8bFeP3BXxSINEXzNN4jBp5jJomOTean5D98k5QWVmZtm/frjFjxoQsVzpq1ChJRy9X2pRIpgEAAAAAAAAAAEcdTjVUVhGn+IRSJRmV8pvV8hs1Io3RzFiSwll10zrxob/+9a916aWXKisrS3v27NH06dPlcrl0zTXXnNBypU2JuxAAAAAAAAAAADiq5oxD+qqzW5dmfq4UV7XS7RJ5jNrMS6Vd7XB0OMKwbRlhLPPYkLlffvmlrrnmGu3fv1/t2rXTwIEDtXbtWrVr105S/cuVNiWSaQAAAAAAAAAAwFEdn5Lid3+pN+7ppWEDP9HbxT2V4StW55SP9E2gyunwcEQT7Zl2Il544YXjHj+R5UqbinnSnwEAAAAAAAAAAOB4jNq1Aw2XrVTXQSW4KyVJpkz5DVIZcBaVaQAAAAAAAAAAwFEBnymZpgzTVrJZqXizSi7Dkssw5DVIZTQbEaxMa064AwEAAAAAAAAAgKOqktyy/V6Zpi2vYSnNUyLTsGXKlO/bqjU0AyTTAAAAAAAAAAAAIq/yFFNWqzi53AFJUmvXIbV2HZIpQy6Sac2HJSmcfw6rqQKJLBYaBQAAAAAAAAAAjqpKNBRI8MjlslRlm4o3K5VoHnY6LEASlWkAAAAAAAAAAMBhNX6pJsEtw6hWtUx5jYD8Ro1IYzQvhm3LCGOpxnDmOom7EAAAAAAAAAAAOMuQauJdMgxbLtUmXDxGlK4J2JKxZxoAAAAAAAAAAEDk9Rj2uXZekKGbu6xRlttQorlffsOQyzAVtRtttUSWLRlhJMSs6EymsWcaAAAAAAAAAABw1J4nTlPqdLf+sHmwNld59Ofifnqt7HQdsqq0P1DudHiIcVSmAQAAAAAAAAAAR9mGZB6qlBSneLNa8WaVqm2XJMltUBfUbLDMIwAAAAAAAAAAQOTVxBuS2yWXy1KiUaNWrgpZtiGXYcgjl9PhISjMZJpIpgEAAAAAAAAAADRYZbIhy+uWy2UpwTSU7i7WIcsnU6Z8huF0eDiCyjQAAAAAAAAAAIDIq0mQAq28MlQhSfIb1fK7qmWqtjoNcBLJNAAAAAAAAAAA4CjLZ6s60S2XaUmS/Ga1EowqkcZoZixbYS3VaFGZBgAAAAAAAAAA0GC2IVW3cskwbFXYtrwKyBWl+2u1aLZV28KZH4VMpwMAAAAAAAAAAACxzXZJllsyv7Oio88IyGWQxoDzqEwDAAAAAAAAAACO6nHuv/Vpl876ZcePlGK6JfdhJZJIa35su7aFMz8KcScCAAAAAAAAAABH/eufnZWyxK+V+05XUaBGaw5n6r3KU1RpV6vMqnA6PBxh2eG3KERlGgAAAAAAAAAAcJTvgKHWWw9pX3mCJKnc8ikgU1KZs4EhFJVpAAAAAAAAAAAAkVfjl2QacrssxRtSa9chuWRJkjyGy9ngEPNIpgEAAAAAAAAA0ELdf//9MgxDEyZMCPZVVFQoLy9Pbdq0UatWrTRq1CgVFRWFzNu1a5dGjhyp+Ph4paam6vbbb1dNTU3ImBUrVuicc86Rz+dTly5dNH/+/EbHGUiwZXlMmYateNOldHexWrsOyZQpt0imNRu2/lud1qjm9AtoHJJpAAAAAAAAAAC0QO+//77++Mc/qlevXiH9EydO1BtvvKGXX35ZK1eu1J49e3TllVcGjwcCAY0cOVJVVVVas2aNnn32Wc2fP1/Tpk0LjtmxY4dGjhypIUOGaOPGjZowYYJuuOEGLV68uFGx1iTYqol3yTBqsy1+o0aJ5mGZMuQySGU0G2El0sJcItJB3IEAAAAAAAAAALQwZWVluvbaa/WnP/1Jp5xySrC/pKRETz/9tB566CFdeOGF6tu3r+bNm6c1a9Zo7dq1kqS3335bW7Zs0V/+8hf16dNHI0aM0N133605c+aoqqpKkvTEE08oOztbv//979W9e3eNHz9eV111lR5++OFGxWv5A6pMdsk0bLlkyCVbiWZV+BcCTcuywm9RiGQaAAAAAAAAAAAtTF5enkaOHKlhw4aF9K9fv17V1dUh/d26dVPHjh1VUFAgSSooKFDPnj2VlpYWHJObm6vS0lJ98sknwTHfP3dubm7wHHWprKxUaWlpSJMk2YZq4gy5DFsVdkAew5LfCFCVhmbB7XQAAAAAAAAAAACg6bzwwgvasGGD3n///aOOFRYWyuv1qnXr1iH9aWlpKiwsDI75biLtyPEjx443prS0VIcPH1ZcXNwxY8vPz9fMmTOPecx2SaZh60jtkitaN9hqycJdqpFlHgEAAAAAAAAAgJN2796t//3f/9Xzzz8vv9/vdDhHmTJlikpKSoJt9+7dkqTEtDId7CR1TDwgn2HKbwSUaBrOBoujsWcaAAAAAAAAAACIZuvXr9fevXt1zjnnyO12y+12a+XKlXr00UfldruVlpamqqoqFRcXh8wrKipSenq6JCk9PV1FRUVHHT9y7HhjkpKS6qxKkySfz6ekpKSQJkk+T42q2tbotPivZdm2KmyX9gcMBWxL1XYgrGuCJmTZ4bcoRDINAAAAAAAAAIAWYujQodq0aZM2btwYbP369dO1114b/Nrj8Wjp0qXBOVu3btWuXbuUk5MjScrJydGmTZu0d+/e4JglS5YoKSlJPXr0CI757jmOjDlyjoYq2dRGHRcaWl50hg7alj6pSteWqnTVKKBKu7pR5wSaCnumAQAAAAAAAADQQiQmJuqss84K6UtISFCbNm2C/ePGjdOkSZOUkpKipKQk3XrrrcrJydF5550nSRo+fLh69OihMWPGaNasWSosLNTUqVOVl5cnn88nSbr55pv12GOP6Y477tAvf/lLLVu2TC+99JLefPPNRsUdiKutWPK4Aoo3DLVxlanC9siUKY/hauzlQBOzbUu2bdU/8DjzoxHJNAAAAAAAAAAAYsjDDz8s0zQ1atQoVVZWKjc3V48//njwuMvl0sKFC3XLLbcoJydHCQkJGjt2rO66667gmOzsbL355puaOHGiHnnkEXXo0EFPPfWUcnNzGxWT7bFluyRTtuINj9q5ynXI8kiSfIYnvBeMpmOHuVRjlO6ZRjINAAAAAAAAAIAWbMWKFSGP/X6/5syZozlz5tQ5JysrS2+99dZxzzt48GB9+OGHTRGibK+lGp+pGrt2dyq/EVC1YcokjdG82Lak2EumsWcaAAAAAAAAAABwlOmrUXWCIbdhyWUYcslWvFHjdFiAJCrTAAAAAAAAAACAw0yXrZo4Q4ZhK2DbMiX5DUsuw5QUnftstUiWJRlh/HuwZxoAAAAAAAAAAEDjWB7JNGxVKyBJchkOB4SjxegyjyTTAAAAAAAAAACAo1yegAI+Kd5dFezzOBgPjs22LNlhVKbZVKYBAAAAAAAAAAA03MJ+T+vABQnq7KlQspmgVsElHgHnkUwDAAAAAAAAAACOSne30hl+U1KCJJFIa65Y5hEAAAAAAAAAAACog2VLRuwl00jtAgAAAAAAAAAAAHWgMg0AAAAAAAAAAAD1s21JVpjzow/JNAAAAAAAAAAAANTLtmzZYSzzaJNMAwAAAAAAAAAAQItlWwqvMi2MuQ5izzQAAAAAAAAAAACgDlSmAQAAAAAAAAAAoF4s8wgAAAAAAAAAABBBR5IrpWV1L/935Fi0JmJakhq7MqylGmtU3YTRRA7JNAAAAAAAAAAA4Ij9+/dLkrLO+aLesQcPHlRycvJJjgjH4vV6lZ6ertWFb4V9rvT0dHm93iaIKnIMm1QuAAAAAAAAAABwQHFxsU455RTt2rXrmImy0tJSZWZmasuWLeratatM03QgSkhSRUWFqqqqwj6P1+uV3+9vgogih8o0AAAAAAAAAADgiCPJseTkZCUlJdU57tRTTyWR5jC/3x91SbCmwp0HAAAAAAAAAAAA1IFkGgAAAAAAAAAAAFAHkmkAAAAAAAAAAMARPp9P06dPl8/na9RxIBIM27Ztp4MAAAAAAAAAAAAAmiMq0wAAAAAAAAAAAIA6kEwDAAAAAAAAAAAA6kAyDQAAAAAAAAAAAKgDyTQAAAAAAAAAAACgDiTTAAAAAAAAAABAxOTn56t///7y+/1yuVxyuVzq1auX1q1bFxwzePBgGYYR0m6++eaQ8+zatUsjR45UfHy8UlNTdfvtt6umpibSLwcxwO10AAAAAAAAAAAAIHasXLlS/fr108aNGzVt2jQtW7ZMGzZs0PDhw/XZZ58pNTVVknTjjTfqrrvuCs6Lj48Pfh0IBDRy5Eilp6drzZo1+uqrr/SLX/xCHo9H9913X8RfE1o2w7Zt2+kgAAAAAAAAAABA7BgwYID69++vxx57TPv27VNqaqratGmjX//61/rNb36jwYMHq0+fPpo9e/Yx5//jH//QJZdcoj179igtLU2S9MQTT2jy5Mnat2+fvF5vBF8NWjqWeQQAAAAAAAAAABFTVVWl9evXa9iwYZKkkpISSdIPfvADFRQUBMc9//zzatu2rc466yxNmTJFhw4dCh4rKChQz549g4k0ScrNzVVpaak++eSTCL0SxAqWeQQAAAAAAAAAABHz9ddfKxAIKC0tTZZlacKECTr//PPVrVs3rVy5UpL0s5/9TFlZWcrIyNDHH3+syZMna+vWrXrllVckSYWFhSGJNEnBx4WFhZF9QWjxSKYBAAAAAAAAAABH5OXlafPmzVq9erUeffTRYP9NN90U/Lpnz55q3769hg4dqu3bt+u0005zIlTEMJZ5BAAAAAAAAAAAEdO2bVu5XC7dfffdWrhwoZYvX64OHTqoqKhI6enpx5wzYMAASdK2bdskSenp6SoqKgoZc+RxXecAGotkGgAAAAAAAAAAiBiPx6M2bdpo1apVWrZsmbKzs2VZlpYuXaqcnJxjztm4caMkqX379pKknJwcbdq0SXv37g2OWbJkiZKSktSjR4+T/hoQW1jmEQAAAAAAAAAARExeXp7KyspUXV2tt956S2effbb+9Kc/qaysTNdff722b9+uBQsW6OKLL1abNm308ccfa+LEiRo0aJB69eolSRo+fLh69OihMWPGaNasWSosLNTUqVOVl5cnn8/n8CtES2PYtm07HQQAAAAAAAAAAIgNhmEcs3/q1Km6++67tXv3bv385z/X5s2bVV5erszMTP34xz/W1KlTlZSUFBy/c+dO3XLLLVqxYoUSEhI0duxY3X///XK7qSNC0yKZBgAAAAAAAAAAANSBPdMAAAAAAAAAAACAOpBMAwAAAAAAAAAAAOpAMg0AAAAAAAAAAACoA8k0AAAAAAAAAAAAoA4k0wAAAAAAAAAAAIA6kEwDAAAAAAAAAAAA6kAyDQAAAAAAAAAAAKgDyTQAAAAAAAAAAACgDiTTAAAAAAAAAAAAgDqQTAMAAAAAAAAAAADqQDINAAAAAAAAAAAAqAPJNAAAAAAAAAAAAKAO/x/8Gd7b+JDqLwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(2,1, figsize=(25, 9/2))\n", "lut1 = state_dict['stage1_lut']\n", "# a[0].imshow(lut1)\n", "a[1].imshow(np.transpose(state_dict['stage1_dense_upscale_lut'].reshape(17**2, 17*17*16)))\n", "pcm = a[0].pcolormesh(lut1)\n", "f.colorbar(pcm, ax=a, location='right')\n", "f.suptitle(\"Stage 1, rc_conv\")\n", "a[0].set_title(f\"{int(np.sqrt(lut1.shape[0]))}x{int(np.sqrt(lut1.shape[0]))}\")\n", "# a[1].set_title(f\"stage1_dense_upscale_lut\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from einops import rearrange\n", "\n", "f, a = plt.subplots(1,1, figsize=(9*5, 9*5))\n", "gg = state_dict['stage1_dense_upscale_lut'].reshape(17**4, 4, 4)\n", "gg = rearrange(gg, '(b1 b2) h w -> (b2 h) (b1 w) ', b1=17*17, b2=17*17)\n", "a.imshow(gg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "luts = np.load(\"/wd/luts/models/dense_block/luts/RCLutTest_200000_x4_4.0bit_int8.npz\", allow_pickle=True)\n", "state_dict = luts['state_dict'].item()\n", "from einops import rearrange\n", "\n", "f, a = plt.subplots(1,1, figsize=(9*5, 9*5))\n", "gg = state_dict['stage1_dense_upscale_lut'].reshape(17**4, 4, 4)\n", "gg = rearrange(gg, '(b1 b2) h w -> (b2 h) (b1 w) ', b1=17*17, b2=17*17)\n", "a.imshow(gg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "luts = np.load(\"/wd/luts/models/dense_block_cascade/luts/RCLutTest_010000_x4_4.0bit_int8.npz\", allow_pickle=True)\n", "state_dict = luts['state_dict'].item()\n", "from einops import rearrange\n", "\n", "f, a = plt.subplots(1,1, figsize=(9*5, 9*5))\n", "gg = state_dict['stage1_dense_upscale_lut'].reshape(17**4, 1, 1)\n", "gg = rearrange(gg, '(b1 b2) h w -> (b2 h) (b1 w) ', b1=17*17, b2=17*17)\n", "a.imshow(gg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "f, a = plt.subplots(1,1, figsize=(9*5, 9*5))\n", "gg = state_dict['stage2_dense_upscale_lut'].reshape(17**4, 4, 4)\n", "gg = rearrange(gg, '(b1 b2) h w -> (b2 h) (b1 w) ', b1=17*17, b2=17*17)\n", "a.imshow(gg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '7x7')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAGzCAYAAABD1xgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgG0lEQVR4nO3deXwU9f0/8NfskoMriQGSEAmXVvDgUISYqiiCBDxaFVug1CKl2Crw/UGsB/2qQGvFq9ZWUdt+FdSKoq23LRY5aw2oKFVUqFAULAQQSsKVa/fz+yPsZK7P7Mzuzu7s5vV8PKLszGc+n/ccuzvv/XxmRhFCCBARERERERElWCDVARAREREREVFmYsJJREREREREnmDCSURERERERJ5gwklERERERESeYMJJREREREREnmDCSURERERERJ5gwklERERERESeYMJJREREREREnmDCSURERERERJ5gwklERERERESeYMJJREQZ5+OPP8bVV1+NXr16ITc3FyeeeCIuvvhiPPTQQ7pyd911F15++eXUBOnSL3/5S3zrW99CcXExFEXBvHnzUh0SERFRVEw4iYgoo7zzzjs4++yz8c9//hPTpk3Dww8/jB/96EcIBAL4zW9+oyubTgnnbbfdhvfeew9nnnlmqkMhIiJyrF2qAyAiIkqkX/7yl8jPz8d7772HgoIC3by9e/emJqgE2L59O3r37o2vv/4a3bp186SN5uZmhMNhZGdne1I/ERG1PezhJCKijLJt2zacfvrppmQTAIqKitR/K4qCI0eO4Mknn4SiKFAUBddeey0A4Msvv8QNN9yAfv36oX379ujSpQu+853v4IsvvjDV+dFHH+GCCy5A+/bt0aNHD9x5551YtGgRFEUxlf/rX/+K888/Hx07dkTnzp1x6aWX4pNPPnG0Xr1793a4BZz54osvoCgK7r//fjz44IM46aSTkJOTg08//RQAsHnzZnz3u99Ft27d0L59e/Tr1w//+7//66qNcDiM3/zmNxgwYAByc3PRrVs3jBkzBu+//75aprm5Gb/4xS/U9nv37o2f/exnaGho0NXVu3dvXHbZZXj77bcxbNgw5Obmom/fvnjqqafUMu+//z4URcGTTz5piuXNN9+Eoih4/fXXXa0DERHFhz2cRESUUXr16oXq6mps2rQJZ5xxhrTc008/jR/96EcYNmwYrrvuOgDASSedBAB477338M4772DChAno0aMHvvjiCzz66KO48MIL8emnn6JDhw4AgP/85z8YMWIEFEXBnDlz0LFjR/zf//0fcnJyLNubPHkyKisrcc899+Do0aN49NFHcd555+HDDz9MeELp1KJFi1BfX4/rrrsOOTk5KCwsxEcffYTzzz8fWVlZuO6669C7d29s27YNr732Gn75y186rnvq1KlYvHgxxo4dix/96Edobm7G3//+d6xbtw5nn302AOBHP/oRnnzySVx99dW48cYbsX79eixYsACfffYZXnrpJV19W7duxdVXX42pU6di8uTJeOKJJ3DttddiyJAhOP3003H22Wejb9++eP755zF58mTdskuXLsUJJ5yAysrK+DcaERE5J4iIiDLI3/72NxEMBkUwGBQVFRXi5ptvFm+++aZobGw0le3YsaOYPHmyafrRo0dN06qrqwUA8dRTT6nTZs6cKRRFER9++KE6bf/+/aKwsFAAENu3bxdCCHHo0CFRUFAgpk2bpquzpqZG5Ofnm6bb2bdvnwAg5s6d63gZK9u3bxcARF5enti7d69u3vDhw0Xnzp3Fl19+qZseDocd179y5UoBQPzP//yPaV6kno0bNwoA4kc/+pFu/k9/+lMBQKxcuVKd1qtXLwFArF27Vp22d+9ekZOTI2688UZ12pw5c0RWVpY4cOCAOq2hoUEUFBSIH/7wh47jJyKixOCQWiIiyigXX3wxqqur8a1vfQv//Oc/ce+996KyshInnngiXn31VUd1tG/fXv13U1MT9u/fj5NPPhkFBQX44IMP1HnLli1DRUUFBg8erE4rLCzEpEmTdPUtX74cBw8exMSJE/H111+rf8FgEOXl5Vi1alV8Kx2HcePG6a4J3bdvH9auXYsf/vCH6Nmzp66soiiO6/3zn/8MRVEwd+5c07xIPX/5y18AAFVVVbr5N954IwDgjTfe0E0/7bTTcP7556uvu3Xrhn79+uHf//63Om38+PFoamrCiy++qE7729/+hoMHD2L8+PGO4yciosRgwklERBln6NChePHFF/Hf//4X7777LubMmYNDhw7h6quvVq9RtHPs2DHccccdKCsrQ05ODrp27Ypu3brh4MGDqK2tVct9+eWXOPnkk03LG6d9/vnnAICLLroI3bp10/397W9/S+nNjPr06aN7HUne7IYjO7Ft2zaUlpaisLBQWubLL79EIBAwba+SkhIUFBTgyy+/1E03JsAAcMIJJ+C///2v+nrQoEHo378/li5dqk5bunQpunbtiosuuijW1SEiohjxGk4iIspY2dnZGDp0KIYOHYpTTjkFU6ZMwQsvvGDZ66Y1c+ZMLFq0CLNmzUJFRQXy8/OhKAomTJiAcDjsOo7IMk8//TRKSkpM89u1S93XsbY3N1Wc9pwGg0HL6UII3evx48fjl7/8Jb7++mt07twZr776KiZOnJjS7UxE1Fbxk5eIiNqEyE1qdu/erU6TJTp/+tOfMHnyZPzqV79Sp9XX1+PgwYO6cr169cLWrVtNyxunRW5GVFRUhFGjRsUUf7L07dsXALBp06a46jnppJPw5ptv4sCBA9Jezl69eiEcDuPzzz/Hqaeeqk7fs2cPDh48iF69esXU9vjx4zF//nz8+c9/RnFxMerq6jBhwoSY6iIiovhwSC0REWWUVatWmXq8gNbrBfv166dO69ixoymJBFp60ox1PPTQQwiFQrpplZWVqK6uxsaNG9VpBw4cwDPPPGMql5eXh7vuugtNTU2m9vbt2xd1vZKlW7duGD58OJ544gns2LFDN89qu8qMGzcOQgjMnz/fNC9SzyWXXAIAePDBB3XzH3jgAQDApZde6iZ01amnnooBAwZg6dKlWLp0Kbp3747hw4fHVBcREcWHPZxERJRRZs6ciaNHj+LKK69E//790djYiHfeeQdLly5F7969MWXKFLXskCFD8NZbb+GBBx5AaWkp+vTpg/Lyclx22WV4+umnkZ+fj9NOOw3V1dV466230KVLF11bN998M/74xz/i4osvxsyZM9XHovTs2RMHDhxQe1Dz8vLw6KOP4pprrsFZZ52FCRMmoFu3btixYwfeeOMNnHvuuXj44Ydt1+vpp5/Gl19+iaNHjwIA1q5dizvvvBMAcM0116i9gatXr8aIESMwd+5czJs3L6Zt+Nvf/hbnnXcezjrrLFx33XXo06cPvvjiC7zxxhu65NrOiBEjcM011+C3v/0tPv/8c4wZMwbhcBh///vfMWLECMyYMQODBg3C5MmT8fvf/x4HDx7EBRdcgHfffRdPPvkkrrjiCowYMSKm+IGWXs477rgDubm5mDp1KgIB/sZORJQSqbxFLhERUaL99a9/FT/84Q9F//79RadOnUR2drY4+eSTxcyZM8WePXt0ZTdv3iyGDx8u2rdvLwCoj0j573//K6ZMmSK6du0qOnXqJCorK8XmzZtFr169TI9R+fDDD8X5558vcnJyRI8ePcSCBQvEb3/7WwFA1NTU6MquWrVKVFZWivz8fJGbmytOOukkce2114r3338/6npdcMEFAoDl36pVq9Ryr732mgAgHnvsMdv6Io9Fue+++yznb9q0SVx55ZWioKBA5Obmin79+onbb789apxazc3N4r777hP9+/cX2dnZolu3bmLs2LFiw4YNapmmpiYxf/580adPH5GVlSXKysrEnDlzRH19va6uXr16iUsvvdTUxgUXXCAuuOAC0/TPP/9c3T5vv/22q7iJiChxFCFcjI8hIiKiqGbNmoXf/e53OHz4sPRGN165+eab8eyzz2Lr1q3IyclJattERERGHF9CREQUh2PHjule79+/H08//TTOO++8pCebQMs1rLfffjuTTSIi8gX2cBIREcVh8ODBuPDCC3Hqqadiz549ePzxx7Fr1y6sWLEiI29UEwqFot7kqFOnTujUqVOSIiIiIj/jTYOIiIjicMkll+BPf/oTfv/730NRFJx11ll4/PHHMzLZBICdO3eiT58+tmXiuWERERFlFvZwEhERkWP19fV4++23bcv07dtXfZ4nERG1bUw4iYiIiIiIyBO8aRARERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmCCScRERERERF5ggknEREREREReYIJJxEREREREXmiXaoDICIiIiIiymT19fVobGyMq47s7Gzk5uYmKKLkYcJJRERERETkkfr6evTp1Qk1e0Nx1VNSUoLt27enXdLJhJOIiIiIiMgjjY2NqNkbwvYNvZDXObYrGusOhdFnyJdobGxkwklERERERER6HTu1/MUiJBIbSzLxpkFERERERETkCfZwEhEREREReSwMgTBi66qMdTk/YMJJRERERETksTDCCMexbLrikFoiIiIiIiLyBHs4iYiIiIiIPBYSAiER29DYWJfzAyacREREREREHuM1nEREREREROSJMARCbTDh5DWcRERERERE5An2cBIREREREXmMQ2qJiIiIiIjIE7xpEBEREREREXkifPwv1mXTFa/hJCIiIiIiIk8w4SQiIk998skn+M53voO+ffuiQ4cO6Nq1K4YPH47XXnstpvruuusunHPOOejWrRtyc3PxjW98A7NmzcK+ffsSHDkREVHihI7fpTbWv3TFIbVEROSpL7/8EocOHcLkyZNRWlqKo0eP4s9//jO+9a1v4Xe/+x2uu+46V/Vt2LABgwcPxoQJE9C5c2d89tln+MMf/oA33ngDGzduRMeOHT1aEyIiotiFRMtfrMumK0WINL4ClYiI0lIoFMKQIUNQX1+PzZs3x13fn//8Z1x99dV49tlnMWHChARESERElBh1dXXIz8/Hxk+L0LlzbANMDx0KY/Bpe1FbW4u8vLwER+gtDqklIqKkCwaDKCsrw8GDBwEAK1euRCAQwB133KErt2TJEiiKgkcffdS2vt69ewOAWh8RERH5A4fUEhFRUhw5cgTHjh1DbW0tXn31Vfz1r3/F+PHjAQAXXXQRbrjhBixYsABXXHEFzjrrLOzevRszZ87EqFGj8JOf/ERXlxAC+/fvR3NzMz7//HPceuutCAaDuPDCC1OwZkRERNGFoSAEJeZl0xUTTiIiSoobb7wRv/vd7wAAgUAAV111FR5++GF1/r333os333wTP/jBD7BhwwZMmzYNzc3NePzxx6Eo+i/aPXv2oHv37urrHj16YMmSJejfv39yVoaIiMilsGj5i3XZdMWEk4iIkmLWrFm4+uqrsWvXLjz//PMIhUJobGxU53fo0AGLFy/G8OHDMXz4cLz77rt4/PHH0bNnT1NdhYWFWL58Oerr6/Hhhx/ixRdfxOHDh5O5OkRERK6E4ujhjHU5P+BNg4iIKCVGjx6NgwcPYv369boezBkzZmDhwoWorKzEsmXLHNX1zjvv4Nxzz8Vrr72Gyy67zKuQiYiIXIvcNGj9JyXoFONNgw4fCqP89BreNIiIiMipq6++Gu+99x7+9a9/qdMaGhqwevVqAMC2bdtw9OhRR3V985vfRPfu3fHMM894ESoREVHcIj2csf6lKyacRESUEseOHQMA1NbWqtPmzp2Lzz77DPfffz+2b9+OW2+91XF99fX1urqIiIj8JCyUuP7SFRNOIiLy1N69e03Tmpqa8NRTT6F9+/Y47bTTAADr16/H/fffj1mzZuHGG2/ETTfdhIcffhhr1qxRlzty5Ihlr+ef//xn/Pe//8XZZ5/t3YoQERHFoa32cPIaTiIi8tSVV16Juro6DB8+HCeeeCJqamrwzDPPYPPmzfjVr36Fqqoq1NfXY/DgwVAUBR9++CFyc3PR2NiIs846C0ePHsXHH3+Mjh07YuPGjRg1ahTGjx+P/v37IxAI4P3338cf//hH9OjRA++//z66dOmS6lUmIiJSRa7hXLPpxLiu4bzgjP+k5TWcvEstERF5avz48Xj88cfx6KOPYv/+/ejcuTOGDBmCe+65B9/61rcAAD/72c+wdetWvPPOO8jNzQUAZGdn48knn8Q555yDm266CY888gh69OiBcePGYeXKlXjyySfR1NSEXr16YcaMGfjf//1fJptERORbIQQQinGAaSjBsSQTeziJiIiIiIg8EunhXPFxT3SMsYfzyKEwRg7YkZY9nLyGk4iIiIiIiDzBIbVEREREREQei+fmP+l80yAmnERERERERB4LiQBCIsZrONP4IkgmnERERERERB4LQ0E4xisaw0jfjJPXcBIREREREZEnPEs4Fy5ciN69eyM3Nxfl5eV49913vWqKiIiIiIjI1yLXcMb658aCBQswdOhQdO7cGUVFRbjiiiuwZcsWXZn6+npMnz4dXbp0QadOnTBu3Djs2bNHV2bHjh249NJL0aFDBxQVFeGmm25Cc3Ozq1g8GVK7dOlSVFVV4bHHHkN5eTkefPBBVFZWYsuWLSgqKrJdNhwOY9euXejcuTMUJX0vjiUiIiIiovgIIXDo0CGUlpYiEEjvwZnxXcPpbkjtmjVrMH36dAwdOhTNzc342c9+htGjR+PTTz9Fx44dAQCzZ8/GG2+8gRdeeAH5+fmYMWMGrrrqKvzjH/9oaTMUwqWXXoqSkhK888472L17N37wgx8gKysLd911l+NYPHkOZ3l5OYYOHYqHH34YQEsSWVZWhpkzZ+LWW2+1Xfarr75CWVlZokMiIiIiIqI0tXPnTvTo0SPVYcQk8hzOP//zFHTsHIypjiOHQhg36F8xP4dz3759KCoqwpo1azB8+HDU1taiW7duWLJkCa6++moAwObNm3Hqqaeiuroa55xzDv7617/isssuw65du1BcXAwAeOyxx3DLLbdg3759yM7OdtR2wns4GxsbsWHDBsyZM0edFggEMGrUKFRXV5vKNzQ0oKGhQX0dyX/LbrsdgdzcRIdHAKCk70XH5D8x/lBHFB0HuZBHBI8tSiSeV3nqnYnXoqysDJ07d051KGmttrYWAFBYWAgA2LBhA5qamjBq1Ci1TP/+/dGzZ0814ayursaAAQPUZBMAKisrcf311+OTTz7BmWee6ajthCecX3/9NUKhkC4wACguLsbmzZtN5RcsWID58+ebpgdycxFsz4TTK/yypYRi0kle4YkceYjfhZRQPJ48ce6zTwJARlxqF0YAoTjvUltXV6ebnpOTg5ycHPtlw2HMmjUL5557Ls444wwAQE1NDbKzs1FQUKArW1xcjJqaGrWMVU4XmedUyk8T58yZg9raWvVv586dAIBwFk8yiIiIiIgoM0Su4Yz1DwDKysqQn5+v/i1YsCBqu9OnT8emTZvw3HPPeb2KlhLew9m1a1cEg0HTHY727NmDkpISU3knWTkREREREVE6CyMQ93M4d+7cqbuGM1oeNWPGDLz++utYu3at7hrYkpISNDY24uDBg7peTm3OVlJSYnrSSCTHs8rrZBKecGZnZ2PIkCFYsWIFrrjiCgAt3bgrVqzAjBkzXNXFXk6KF0fjEaU5jnkkD/E7IknCqQ6A0pnSzO8Brby8PEc3DRJCYObMmXjppZewevVq9OnTRzd/yJAhyMrKwooVKzBu3DgAwJYtW7Bjxw5UVFQAACoqKvDLX/4Se/fuVZ80snz5cuTl5eG0005zHLMnj0WpqqrC5MmTcfbZZ2PYsGF48MEHceTIEUyZMsVxHQo/nIiIiIiIKEOEhIJQjD+kul1u+vTpWLJkCV555RV07txZveYyPz8f7du3R35+PqZOnYqqqioUFhYiLy8PM2fOREVFBc455xwAwOjRo3Haaafhmmuuwb333ouamhrcdtttmD59uqsRqp4knOPHj8e+fftwxx13oKamBoMHD8ayZctMF50SERERERG1BaE4bhoUgrshGY8++igA4MILL9RNX7RoEa699loAwK9//WsEAgGMGzcODQ0NqKysxCOPPKKWDQaDeP3113H99dejoqICHTt2xOTJk/Hzn//cVSyePIczHpHn1PRccCeC7dunOhwiIkoljnkkImrTwvX1+PKW22J+/qQfRPKbJz44Ex1ifA7n0UMh/PCsD9NyO6T8LrUy4RyOqSUiIiIiIkpnngypJSIiIiIiolbJHFLrJ75OODO2lzN9j5fEC/POYwBHDepwWwDgMaHiXWpbZehXolt8b2hwWwDgjSZ1MvEzs963AzJdC8P9zX+0y6Yr3+7Bk6s2pDoEIiIiIiIiikPCE8558+ZBURTdX//+/RPdDBERERERUdoIIxDXX7ryZEjt6aefjrfeequ1kXaxNfONG9ZHL6RYb3wlYN1drQQld4aS1APX9Ui6yQOS+oOS+GXxSMo7alcWg3RZ2fRg9DLG9ly2IXRxS+rX1ilZN6ErI6lHs6yufFASm7aMZLWEdllNeekoioC2jObfkhi07WrrFLL9oZ2sbUuzTaSxKdHL69qVbZOA9b9NbSiSck7q1ZaRxCcvY12/fFs7qEc7XVuno+0eR1tOtqGDddfF5qCMvC0RtYy0Le2yxm0lXV5YloGkjPx92VpGkayPfrtYt6vo6nFXJiBbF2042vKKdT26j7ZA2LJMUBaDZNymtLyuzta2tPVoy7cLWA8U09bTTjNmMiBpq52kLdt6AyHLZbTTg5IxvNLy0MZnvW5Zulit101XXtHGE7acrotNU0Ybj7PykpjdxqCpR7YNs5TmqO1ql9WW15WRLKvdR9kO4pSVAeT7Rr69rPeBflnZdpEdc9ayJedYsvJBSfksyRIByYePrJ52sD5HDkrObQNREqm6QyGcMNe2SNoIiQBC0hOO6MumK08Sznbt2qGkpMSLqomIiIiIiNJOGArCsl8PHSybrjxJlT///HOUlpaib9++mDRpEnbs2CEt29DQgLq6Ot0fAPx7wVAvQiMiIiIiIqIkSXgPZ3l5ORYvXox+/fph9+7dmD9/Ps4//3xs2rQJnTt3NpVfsGAB5s+fb1nXtl9XJDo8ImqTeCvHTGAaZSYbbRpy8iuwv34pFpJ/p/NdCYmIEiFcXw/gtlSHkRBtdUhtwiMfO3YsvvOd72DgwIGorKzEX/7yFxw8eBDPP/+8Zfk5c+agtrZW/du5c2eiQyIiIiIiIkqpyHM4Y/1LV54/h7OgoACnnHIKtm7dajk/JycHOTk55hn++vGZiIiIiIgoZmGhIBzrczjT+Bmrniechw8fxrZt23DNNde4X5hPdyYiatvS+AuWiIgSgN8DaS/hfbM//elPsWbNGnzxxRd45513cOWVVyIYDGLixImJboqIiIiIiCgthOMYTsvncGp89dVXmDhxIvbv349u3brhvPPOw7p169CtWzdX9QTrFaB9oqMjIiIiIiJKvrAIIBzjzX9iXc4PEp5wPvfccwmrK3DMxxu2LfTut5EhzWn8/nWuLRyvBm1iBE6bOHbbyOdQWzhe28I6GrSJ/RpoG+/RNnH8+nQdwyJz7tcdgoJQjBs61uX8oC2crhAREREREVEKeH7ToFiF2zEbJiIiIiKizMAhtT4kstrIMI02pk0MMaLYpe/nKVHM2sTI4QStYzp9h7SJ/Rr22Q7xWTgUP6Upc3ZqCLEPjQ0lNpSk8nXCSURERERElAnYw+kTQrT8HPj25B/g/KeeSnE05IV0+nWaUiB9P0/JC22ii4jc4BFBtniOkXHC9fUAWnMESj++SzgPHToEACgrK0txJERERERE5AeHDh1Cfn5+qsOIS0gEEIqxpzLW5fzAdwlnaWkpdu7cCSEEevbsiZ07dyIvLy/VYVEGqaurQ1lZGY8tSjgeW+QVHlvkFR5b5JVEHVtCCBw6dAilpaUJjC41BBSEY+yGF2ncfe+7hDMQCKBHjx6oq6sDAOTl5fEDkDzBY4u8wmOLvMJji7zCY4u8kohjK917NiPaag9n+kZOREREREREvua7Hk4iIiIiIqJMExYKwjHePTPW5fzAtwlnTk4O5s6di5ycnFSHQhmGxxZ5hccWeYXHFnmFxxZ5hceWWQgBhGIcYBrrcn6gCN5jmIiIiIiIyBN1dXXIz8/HrH98CzmdsmKqo+FwEx4891XU1tam3fXWvu3hJCIiIiIiyhQcUktERERERESeCCOAcIxDY2Ndzg+YcBIREREREXksJBSEYuypjHU5P0jfVJmIiIiIiIh8zZcJ58KFC9G7d2/k5uaivLwc7777bqpDojQzb948KIqi++vfv786v76+HtOnT0eXLl3QqVMnjBs3Dnv27ElhxORXa9euxeWXX47S0lIoioKXX35ZN18IgTvuuAPdu3dH+/btMWrUKHz++ee6MgcOHMCkSZOQl5eHgoICTJ06FYcPH07iWpAfRTu2rr32WtPn2JgxY3RleGyRlQULFmDo0KHo3LkzioqKcMUVV2DLli26Mk6+B3fs2IFLL70UHTp0QFFREW666SY0Nzcnc1XIZ5wcWxdeeKHps+snP/mJrkxbPbYi13DG+peufJdwLl26FFVVVZg7dy4++OADDBo0CJWVldi7d2+qQ6M0c/rpp2P37t3q39tvv63Omz17Nl577TW88MILWLNmDXbt2oWrrroqhdGSXx05cgSDBg3CwoULLeffe++9+O1vf4vHHnsM69evR8eOHVFZWYn6+nq1zKRJk/DJJ59g+fLleP3117F27Vpcd911yVoF8qloxxYAjBkzRvc59uyzz+rm89giK2vWrMH06dOxbt06LF++HE1NTRg9ejSOHDmilon2PRgKhXDppZeisbER77zzDp588kksXrwYd9xxRypWiXzCybEFANOmTdN9dt17773qvLZ8bAkRQDjGPyF8l7Y55rvHopSXl2Po0KF4+OGHAQDhcBhlZWWYOXMmbr311hRHR+li3rx5ePnll7Fx40bTvNraWnTr1g1LlizB1VdfDQDYvHkzTj31VFRXV+Occ85JcrSULhRFwUsvvYQrrrgCQEvvZmlpKW688Ub89Kc/BdByfBUXF2Px4sWYMGECPvvsM5x22ml47733cPbZZwMAli1bhksuuQRfffUVSktLU7U65CPGYwto6eE8ePCgqeczgscWObVv3z4UFRVhzZo1GD58uKPvwb/+9a+47LLLsGvXLhQXFwMAHnvsMdxyyy3Yt28fsrOzU7lK5BPGYwto6eEcPHgwHnzwQctl2uKxFXksytQ130V2jI9FaTzchMcveD4tH4viq1S5sbERGzZswKhRo9RpgUAAo0aNQnV1dQojo3T0+eefo7S0FH379sWkSZOwY8cOAMCGDRvQ1NSkO8769++Pnj178jgjV7Zv346amhrdsZSfn4/y8nL1WKqurkZBQYGaEADAqFGjEAgEsH79+qTHTOll9erVKCoqQr9+/XD99ddj//796jweW+RUbW0tAKCwsBCAs+/B6upqDBgwQE0IAKCyshJ1dXX45JNPkhg9+Znx2Ip45pln0LVrV5xxxhmYM2cOjh49qs7jsdX2+OoutV9//TVCoZDuAASA4uJibN68OUVRUToqLy/H4sWL0a9fP+zevRvz58/H+eefj02bNqGmpgbZ2dkoKCjQLVNcXIyamprUBExpKXK8WH1mRebV1NSgqKhIN79du3YoLCzk8Ua2xowZg6uuugp9+vTBtm3b8LOf/Qxjx45FdXU1gsEgjy1yJBwOY9asWTj33HNxxhlnAICj78GamhrLz7bIPCKrYwsAvve976FXr14oLS3FRx99hFtuuQVbtmzBiy++CKBtH1thEfvzNMO+GpPqjq8STqJEGTt2rPrvgQMHory8HL169cLzzz+P9u3bpzAyIiJnJkyYoP57wIABGDhwIE466SSsXr0aI0eOTGFklE6mT5+OTZs26e5jQJQIsmNLex35gAED0L17d4wcORLbtm3DSSedlOwwfSVyPWasy7qxdu1a3HfffdiwYQN2795tumxDUawT33vvvRc33XQTAKB379748ssvdfMXLFjg+jJHXw2p7dq1K4LBoOkuaXv27EFJSUmKoqJMUFBQgFNOOQVbt25FSUkJGhsbcfDgQV0ZHmfkVuR4sfvMKikpMd30rLm5GQcOHODxRq707dsXXbt2xdatWwHw2KLoZsyYgddffx2rVq1Cjx491OlOvgdLSkosP9si86htkx1bVsrLywFA99nVVo+tMJS4/tyIdmM67U2ddu/ejSeeeAKKomDcuHG6cj//+c915WbOnOl6vX2VcGZnZ2PIkCFYsWKFOi0cDmPFihWoqKhIYWSU7g4fPoxt27ahe/fuGDJkCLKysnTH2ZYtW7Bjxw4eZ+RKnz59UFJSojuW6urqsH79evVYqqiowMGDB7Fhwwa1zMqVKxEOh9UvYSInvvrqK+zfvx/du3cHwGOL5IQQmDFjBl566SWsXLkSffr00c138j1YUVGBjz/+WPejxvLly5GXl4fTTjstOStCvhPt2LISuYGj9rOLx5b3xo4dizvvvBNXXnml5fySkhLd3yuvvIIRI0agb9++unKdO3fWlevYsaPrWHw3pLaqqgqTJ0/G2WefjWHDhuHBBx/EkSNHMGXKlFSHRmnkpz/9KS6//HL06tULu3btwty5cxEMBjFx4sSWu4RNnYqqqioUFhYiLy8PM2fOREVFBe9QSyaHDx9Wf5UFWm4UtHHjRhQWFqJnz56YNWsW7rzzTnzjG99Anz59cPvtt6O0tFQdtnLqqadizJgxmDZtGh577DE0NTVhxowZmDBhAu8i2sbZHVuFhYWYP38+xo0bh5KSEmzbtg0333wzTj75ZFRWVgLgsUVy06dPx5IlS/DKK6+gc+fO6nVx+fn5aN++vaPvwdGjR+O0007DNddcg3vvvRc1NTW47bbbMH36dOTk5KRy9SiFoh1b27Ztw5IlS3DJJZegS5cu+OijjzB79mwMHz4cAwcOBNC2j62QUBCK8RrOyHJ1dXW66Tk5OXFvtz179uCNN97Ak08+aZp399134xe/+AV69uyJ733ve5g9ezbatXOZQgofeuihh0TPnj1Fdna2GDZsmFi3bl2qQ6I0M378eNG9e3eRnZ0tTjzxRDF+/HixdetWdf6xY8fEDTfcIE444QTRoUMHceWVV4rdu3enMGLyq1WrVgkApr/JkycLIYQIh8Pi9ttvF8XFxSInJ0eMHDlSbNmyRVfH/v37xcSJE0WnTp1EXl6emDJlijh06FAK1ob8xO7YOnr0qBg9erTo1q2byMrKEr169RLTpk0TNTU1ujp4bJEVq+MKgFi0aJFaxsn34BdffCHGjh0r2rdvL7p27SpuvPFG0dTUlOS1IT+Jdmzt2LFDDB8+XBQWFoqcnBxx8skni5tuuknU1tbq6mlrx1Ztba0AICas+L74wfofxvQ3YcX3Lbf93Llzo7YPQLz00kvS+ffcc4844YQTxLFjx3TTf/WrX4lVq1aJf/7zn+LRRx8VBQUFYvbs2a7X33fP4SQiIiIiIsoUkedwfnfFNcjuGNtzRhuPNOL5kU9j586duudwOunhtHrWs1b//v1x8cUX46GHHrKt54knnsCPf/xjHD582FWvqu+G1BIREREREZFZXl6eLuGM19///nds2bIFS5cujVq2vLwczc3N+OKLL9CvXz/HbTDhJCIiIiIi8piI4W6z2mW98Pjjj2PIkCEYNGhQ1LIbN25EIBAwPQM6GiacREREREREHgsLBeEYbxrkdrloNz0EWob6vvDCC/jVr35lWr66uhrr16/HiBEj0LlzZ1RXV2P27Nn4/ve/jxNOOMFVLEw4iYiIiIiIPBYWAYRFbE+ldLvc+++/jxEjRqivq6qqAACTJ0/G4sWLAQDPPfcchBCYOHGiafmcnBw899xzmDdvHhoaGtCnTx/Mnj1brccN3jSIiIiIiIjII5GbBl25fAqyYrxpUNORRrx08SLU1tYm9BrOZGAPJxERERERkceSOaTWT5hwEhEREREReSwcx02DYl3OD2IbRExEREREREQUBXs4iYiIiIiIPMYhtUREREREROQJJpxERERERETkibaacPIaTiIiIiIiIvIEeziJiIiIiIg81lZ7OJlwEhEREREReUwg9sebiMSGklRMOImIiIiIiDzWVns4eQ0nEREREREReYI9nERERERERB5rqz2cTDiJiIiIiIg8xoSTiIiIiIiIPNFWE05ew0lERERERESeYA8nERERERGRx4RQIGLsqYx1OT9gwklEREREROSxMJSYn8MZ63J+wISTiIiIiIjIY7yGk4iIiIiIiCiB2MNJRERERETkMV7DSURERERERJ5oq0NqmXASERERERF5rK32cPIaTiIi8tzq1auhKIrl37p161zX17t3b8u6fvKTn3gQPREREcWKPZxERJQ0//M//4OhQ4fqpp188skx1TV48GDceOONummnnHJKzLERERF5ScQxpDadeziZcBIRUdKcf/75uPrqqxNS14knnojvf//7CamLiIjIawKAELEvm644pJaIiJLq0KFDaG5uNk1ftGgRFEXBE088oZt+1113QVEU/OUvfzEt09jYiCNHjngWKxEREcWHCScRESXNlClTkJeXh9zcXIwYMQLvv/++bt5ll12Gqqoq7Ny5EwDw8ccfY/78+Zg6dSouueQSXV0rV65Ehw4d0KlTJ/Tu3Ru/+c1vkrouREREboShxPWXrjikloiIPJednY1x48bhkksuQdeuXfHpp5/i/vvvx/nnn4933nkHZ555JgDgD3/4A04//XRMnToVr7/+OiZPnoySkhI88MADuvoGDhyI8847D/369cP+/fuxePFizJo1C7t27cI999yTilUkIiKy1VbvUqsIEetIYiIiotht3boVAwcOxPDhw7Fs2TJ1+nPPPYeJEydi2LBheO+997B8+XKMHDnSti4hBMaOHYsVK1Zg+/bt6NGjh9fhExEROVJXV4f8/Hyc8fxNCHbIiamO0NEGbPrufaitrUVeXl6CI/QWh9QSEVFKnHzyyfj2t7+NVatWIRQKqdMnTJiASy+9FO+++y6mTZsWNdkEAEVRMHv2bDQ3N2P16tUeRk1ERERuMOEkIqKUKSsrM934Z//+/eq1nZ9++inC4bDjugDgwIEDiQ+UiIgoTkLE95eumHASEVHK/Pvf/0Zubi46deqkTps+fToOHTqEBQsW4O2338aDDz7ouC4A6NatmxehEhERxSVyDWesf+mKCScREXlu3759pmn//Oc/8eqrr2L06NEIBFq+jv70pz9h6dKluPvuu3HrrbdiwoQJuO222/Cvf/1LXe7AgQO6IbgA0NTUhLvvvhvZ2dkYMWKEtytDREQUg7aacPIutURE5Lnx48ejffv2+OY3v4mioiJ8+umn+P3vf48OHTrg7rvvBgDs3bsX119/PUaMGIEZM2YAAB5++GGsWrUK1157Ld5++20EAgG8+uqruPPOO3H11VejT58+OHDgAJYsWYJNmzbhrrvuQklJSSpXlYiIiDSYcBIRkeeuuOIKPPPMM3jggQdQV1eHbt264aqrrsLcuXNx8sknAwCuv/56NDQ0YNGiRVCUll9yu3Tpgt///vf49re/jfvvvx8333wzBgwYgNNOOw1//OMfsW/fPmRnZ2Pw4MF4/vnn8Z3vfCeVq0lERCQVFgqUGHsqw2ncw8nHohAREREREXkk8liUU565Na7Hovxr0t2OH4uydu1a3HfffdiwYQN2796Nl156CVdccYU6/9prr8WTTz6pW6ayslL3mLIDBw5g5syZeO211xAIBDBu3Dj85je/0d13wQlew0lEREREROSxlrvNxnoNp7u2jhw5gkGDBmHhwoXSMmPGjMHu3bvVv2effVY3f9KkSfjkk0+wfPlyvP7661i7di2uu+461+vNIbVEREREREQZZOzYsRg7dqxtmZycHOl9Dz777DMsW7YM7733Hs4++2wAwEMPPYRLLrkE999/P0pLSx3Hwh5OIiIiIiIijyXiLrV1dXW6v4aGhpjjWb16NYqKitCvXz9cf/312L9/vzqvuroaBQUFarIJAKNGjUIgEMD69etdtcOEk4iIiIiIyGMizj8AKCsrQ35+vvq3YMGCmGIZM2YMnnrqKaxYsQL33HMP1qxZg7Fjx6qPHaupqUFRUZFumXbt2qGwsBA1NTWu2vJsSO3ChQtx3333oaamBoMGDcJDDz2EYcOGedUcERERERGRb8XzPM3Icjt37tTdNCgnJ7abEE2YMEH994ABAzBw4ECcdNJJWL16NUaOHBlTnTKe9HAuXboUVVVVmDt3Lj744AMMGjQIlZWV2Lt3rxfNERERERERZby8vDzdX6wJp1Hfvn3RtWtXbN26FQBQUlJiyt2am5tx4MAB18+79qSH84EHHsC0adMwZcoUAMBjjz2GN954A0888QRuvfVW22XD4TB27dqFzp07q89hIyIiIiKitkcIgUOHDqG0tBSBQJpfDagdGxvLsh766quvsH//fnTv3h0AUFFRgYMHD2LDhg0YMmQIAGDlypUIh8MoLy93VXfCE87GxkZs2LABc+bMUacFAgGMGjUK1dXVUZfftWsXysrKEh0WERERERGlqZ07d6JHjx6pDiM+cQyphcvlDh8+rPZWAsD27duxceNGFBYWorCwEPPnz8e4ceNQUlKCbdu24eabb8bJJ5+MyspKAMCpp56KMWPGYNq0aXjsscfQ1NSEGTNmYMKECa7uUAt4kHB+/fXXCIVCKC4u1k0vLi7G5s2bTeUbGhp0d1cSxx8yU3bHbQjk5iY6vLQQ63FIRJRR+FlIRNSiDX8ehuvr8dXcO9G5c+dUhxK3ludwxr6sG++//z5GjBihvq6qqgIATJ48GY8++ig++ugjPPnkkzh48CBKS0sxevRo/OIXv9AN0X3mmWcwY8YMjBw5EoFAAOPGjcNvf/tb17Gn/DmcCxYswPz5803TA7m5TDiJiNoyfhYSEbXg5yEvtXPpwgsvVDvyrLz55ptR6ygsLMSSJUvijiXhCWfXrl0RDAaxZ88e3fQ9e/ZYXmA6Z84cNeMGWp4tU1ZWhnBhE9A+GPOvAHFLdtYXTmJbyVy3ZO6/ZB8r3I5xU8JJfp9xO8YvQ7chACjJbC+J+yyp65XJ+yxD21KSef4BJHfdkrrPkviezuB9phXZf6GGNL9uUyMRd6lNRwnfg9nZ2RgyZAhWrFihTguHw1ixYgUqKipM5XNyckx3WyIiIiIiIsooQonvL015MqS2qqoKkydPxtlnn41hw4bhwQcfxJEjR9S71hIREREREVHm8yThHD9+PPbt24c77rgDNTU1GDx4MJYtW2a6kZCdnkuBdsboAtEze1nyLxwsKx0f72BRWf3CaR+yLG7JeHVH9UrrjL6odHvFVadkhst1d7Y/ZHW6jCHu/eey3iRuC9f7Mpnb1G1ssRyXflt/ydgvRz9oJug483y7B1yuYyz7T9KGk3XWLhlPPfrpLuuJp06Xx5b0cijJuisxrIsiq0tWXtpG9DF9AWnc7tqS1+NuetBBzG7rlH01BwPWYyzl9TgbIylbB9nysvbaSeLT1SkZt+l2HeJpKyAZq+qoTlmcDsajtguELKdLt7/DMa6ymLIk7TlpQ7aNdPUr1vU7Oe6syjQcbsJD90RdNC0k86ZBfuLZTYNmzJiBGTNmeFU9ERERERFR+vDxczi9lPK71BIREREREWW6tnrTIN8mnLsrchDMzYleMF5JvYWZnC+OIR/E4HgIa6L5YN0B2MSRvOOUx2KrlG0L2XDOJPLFcWBHNvIylJjAFe1B6INtIR3i6zXJkGOnEhZ1W94HWj7YDgBSF4cfztn8sA/8EAOQtP0RPlYP4JWktEXe8G3CSURERERElFF88LtJsjHhJCIiIiIi8hiH1PpMc14Y4dxkP9mWiIh8wy+/AvsgDiWcvicamULxzThGojam3rfpintt9KZBqbpijoiIiIiIiDJcBv1kQERERERE5FcKYr/rU/qOsvBtwpl1MIBgrvcdsCm7KyqQsrutpWwIeIraTe0+blvtJvXYSuHnblu7e21b+8xIZdt+uBttJrfd5rZvSvcrt3Vy2k3hOMsknV+FjzUnp6FkaKNDan2bcBIREREREWWMNppw8hpOIiIiIiIi8oRvezgnXbESuZ2ypPObRNByesjB+MmwZNyDbFlZW7o6JWPOZNPt6g3HsQ5NYVmdkvgcjAEJSZZtlrUlqVMWQ3PYen1l20FWv7we6/JObi9tt31k7cnqlcUh275u4w5J1z/6stI6XZaXrrvkDpvyeiwnS+uRjfm028faJoS0XslkWb3S9ZQFIavHQXlpnS7bclmP9G6pQvJvt8s6mQ6bUWSSNhQn8bneppJ6pPvPQbuSz7246tSS1ON23Z1sz5jq9dt6uo5HRC+Tsthc1mNTl75e2Qelu/bcr7/1jERtR+l6xVOnJGZHPVcx7D/5+yN6g663SzzHSsh+4ebmZnwVvfr0IJTYr1PhY1GIiIiIiIhIRgibH6EdLJuumHASERERERF5rY1ew+nbhPPtH56JdsEcICjpPlYkQ9ck0x1drRqQDJGU9WAHJDFIpstitm1Dsv7S9ZSOOJTFKmlXtm6y+qXrLKnfZT26OBO1ju5GZx6vSzPT5fJO4nC9Xx1sF9mucRJPPMt6sS66bSuJwXbEiTY+R+sQvYy0bS/WwVH8rd9I8dXjYNl4ygTcxWmkjVt/51HNv53sj4CkvJM4FJfLysa3BaKXkX59aOJXpGMmNf+U3KVVGr5uHa2XDehikFRkE18gEL0N7bJBB2Vk02WfacGA9fhB/bLW9cvikZXX1tlO0m5AcmbpJB63dQY0Yydly9q1J6u3XSBkOV26vRB93bIkdTpZN109iqQel/tSVk9Q0q4sTll5eZzy/RSUtOG2rqBkXLqsHt2y0vWXtCXdvi13pz16KIS1Z0VtlnzMtwknERERERFRxuA1nEREREREROQFRcT+6NRUPnI1Xr5NOL+qPAHBnFx5AQ+S/IT9cODRDxCe/LCRoAfjeBJbgup0cNPf2HjwzvfzMeh+O0Yf3pcwCazT18eyJ58BiTmOk/7Dq3YUZshl47qR8bEHLhK07XTi2I66aFzeENhR/YlcXx+/zzw5q/PxZ7tnZ7GJ+u71ID67od+uePAZIB0aH3fFCarGi3WOMj98tB7AxoS3mxJt9BpOPoeTiIiIiIiIPOHbHk4iIiIiIqKMwWs4/aX4/Xq0s4vO5Z1KdWUSdGdWfZ0u79IabV6Uel3fWVK7bBLu5tpap9u76crqkTTg9jhwFLPNPNd33XVZPkXrn7B9H8ddVz2Jx+4up/HcgVbL83W2HkOTuPpjv/MyJIs6uTOto/rtOLnrrIPycdXj5O61ccTg6K62Dso7ucOtvry7euyG2Dm6+61uhoM72TqJyXU97qbHc6dcXTxx3DVXX0/i76BrZHcHW7VeB3fXdRJHPHfadVKPkxgSdfddJ3W6vSuvkzpb6o39TrOJumOvltu790Y0HG7CPVFrTxMcUktERERERESUOL7t4SQiIiIiIsoYbbSH07cJp9IchiJ5QCwAIBj7kEnZqAcha85BP7C0TtsHl0dfByUkGZ4iidXJEFxFWD+sXDYaQjo808GwR2388uGirTN021ESm5Nhp7J11L5ZZeul2w6GIrqqtOuvq9dZXVb1eL3+QhKE/Hiyni47rGXvIUU27FRST8LikUx3vIx2H0j2se5jSrIvheQY1NWvqUd/bEmC8IIsNpfr4nuJGo7rBZ8No9UdB7JlJU3Z15v5Q2fTZbis3bDTaEMd7epN1XDZdBwi62Q7xzI81u2wWCf1xjos1m7ZqMNxA01R604bTDiJiIiIiIjIE230pkG8hpOIiIiIiIg84dsezuaO7WB3m1rpcFStGO5cGa1+uzuYRqvfyR10bdtwdAdaWZ1x3LXV7V0vHdTvxV1kY7lTabQ6Y7rLaRz1enJ3Xa/vuuqkLY/vOuv4Rz+/3YFWt6zXd6N1WU8c7yffk43yDMs+992OY4plkHekiOTWv7rh+dHHMkuPA+k4dtmlE5rLIjTbRzuMUjYM3S4+2fBc6bB8j4fmytpqdlSn22G60T8QvL7brZM6W+p1N5zXybKxDO1V60zQXXCdtBvPMFe3w32dtCsb+mskHWrtaH0Sf7dc2TbS1R9lSG1DY+YMqVVE7FfHeH1VjZd8m3ASERERERFljDZ6DSeH1BIREREREZEnfNvDmf3Wh2inZOknyp86LZnsYOxMMGi9rHR4kSRHd1sPIB8DIxtuEwxELyOpU5HFLZuujTvooIz8FoKWk4VuXRws6yAG6XDUoHWcju6+a9g+8qGXmnoD0beLrp6gg5i0d5rVroMuVm091tXoY5PUH5DU7zYeXZnoMTgaui1pVx+/TZ2ScvJYY29bum6y+FxuR9fTpe1qpuvaldxh2sH6KrIYNC90I0cDkraMdG1L7kTtsoxujJKTMpJtpHvrBrTTJXcF15bRVqkrr7njacC6LUVaxvrfQcl02d1VtUMy9WWs6zQOydMuox1mqB1+J6vXyVBH7XA9Xf3aOqGts3XoXlBSRteWpox2WKEsBtnQwIBkHbXltXfwlMUTlLQlG7YYhHVb8vL66bL4tAKaZYK6dWu2Kq6LSX7X0tZlg7J9o2k3W7rdo6+nrH7duru9G63kKQuy4a76/WRZRNpDZH32GWnPurIsyVD3gKR8UFI+S7Fr/XidksgDkjqthpzXHQrj0agtkZ/5NuEkIiIiIiLKFAriuIYzoZEkF4fUEhEREREReS3yWJRY/1xYu3YtLr/8cpSWlkJRFLz88svqvKamJtxyyy0YMGAAOnbsiNLSUvzgBz/Arl27dHX07t0biqLo/u6++27Xq82Ek4iIiIiIyGsizj8Xjhw5gkGDBmHhwoWmeUePHsUHH3yA22+/HR988AFefPFFbNmyBd/61rdMZX/+859j9+7d6t/MmTPdBQIfD6kNDOyPQDBHN83RNXfSCq0LuX2MiPzxItF/dbD9YSIoac/lYzJk5aXX4snW0+V2cf3IBbePnZFdP+dyWV15t+toikO2vNs4HFy36cXjOVxvFyfLxr4u8TyyxOl2iKttt/E5OFYcPXbF0f6I/ZEqjraJJ+vu8LpNXYOaJjSP6NBdq6m7BNL6WltdlY7WX3ZcR18H+TaSXBcqKSP9inHyqA5Z+LJlZfVIYtOFY6hTfom+9bWnsjJOpsuuT3WyrOy6VWfLWl/PKivjpE7Z9a5u45HVqSsvuR7V8fIuH8Mhe7yH22tqtWSP7XD7qA4n1+A6ikdSj/w62OjX7DqpvyWm6I8hcXLdqpM6jdf8RqtHt6yDa4Ijjh1uBvDvqHWS3tixYzF27FjLefn5+Vi+fLlu2sMPP4xhw4Zhx44d6Nmzpzq9c+fOKCkpiSsW9nASERERERF5LYk9nG7V1tZCURQUFBTopt99993o0qULzjzzTNx3331obra+IZgd3/ZwEhERERERZQpFxHHToOPL1dXV6abn5OQgJyfHYgnn6uvrccstt2DixInIy8tTp//P//wPzjrrLBQWFuKdd97BnDlzsHv3bjzwwAOu6vdtwnmobye0y8p1NNTKdghkhJN6HLUVvYzT20hJhx+6rMtJTG6HXrqt3w/bN5nb03FdLodSOlrWQQzJ3Geuh1smKoZEbUObOJxtx+jfHCl7/8WzfRN1fEiGS7q894FFBa3/1A6v1RWRDLXVUpwE4sX7zNHnlWbIrsv6nb3/HJz1OBjua9tEHMeIdDivrpCDIg6GDkuXdRRD9DLyYcOJicHtsGS3ZQD5cOFEtefoSXaSYb1uY5ANhdW1FUc9TmKQDVHW1e+gS8vp/nOyzomKycmwXkdtHY+56UgjgPejlk8L8fRUHl+urKxMN3nu3LmYN29ezCE1NTXhu9/9LoQQePRR/QNoqqqq1H8PHDgQ2dnZ+PGPf4wFCxa4SnJ9m3ASERERERFRq507d+p6IePp3Ywkm19++SVWrlypq9dKeXk5mpub8cUXX6Bfv36O22HCSURERERE5LUE9HDm5eVFTQydiCSbn3/+OVatWoUuXbpEXWbjxo0IBAIoKipy1ZZvE86jRUEEs4O6aY6HOkbEMWQrruFeMdyKKa72XC7rejvG01YS1yuuduMc3ue6vTj2QTLXzf17zt2naLKPj2Qe++ly/Lo/dmO/a0Hcw2ilFWv+rb0xrWSorbQa2brFMxxXxtGikjvxJqwtl3cdd9SWPk5HUcuGBcexrLy8y+0Y12eGu7YcDT+WcXl8OB2GKa/AZfE4jt+4Dke36xnHdpENa5Y2Fc/HRwxxuo0v3vZiXdZqKHPoaEPM7ftNIq7hdOrw4cPYunWr+nr79u3YuHEjCgsL0b17d1x99dX44IMP8PrrryMUCqGmpgYAUFhYiOzsbFRXV2P9+vUYMWIEOnfujOrqasyePRvf//73ccIJJ7iKxbcJJxEREREREbn3/vvvY8SIEerryPWYkydPxrx58/Dqq68CAAYPHqxbbtWqVbjwwguRk5OD5557DvPmzUNDQwP69OmD2bNn667rdIoJJxERERERkdeEEvtwH5fLXXjhhRBC3i1qNw8AzjrrLKxbt85VmzK+TTgDTcLRHbUA74faOrr7aRz1A8lYB5eLuoxH9h5wO5JLWr/LeNzusnjvZipbXFqv7OZsLm+Y6flQXrfDPhxseO2+dPQWlxWSTbYJQfos6mQOS5fRvkcdbBfdejrajpLJbrejdphqPMM8fcLRUFWPhzi7Hi7rRTyuhx66jCGWZbwY/ur1MFevh7Z6PJTV8Vehx0NVvR6e6jZ+9/F4W97JHXTjbcP1NnK5D5zccTgi1M79cx99KwHXcKYj3yacREREREREmSKZ13D6iRe/0xMRERERERH5t4ezeNVutAsYnisjGTMhgpK8WTbGQjZdVo+TGKR12o3vc1mXNryAdazSYXCSsQ5CNgZCGpukfs16SuOXPqBcFpvmhSx+6QPZHYwhdrCs7dBJzfKO1kG6bPQ4nDzc3Vlb0feNrB5dnNKYHZRJYszGGHTr4MF6St8f8ZRJWJytP406isHBvtR+TjipU/dvyRA122Hi0vUU1mXclpe1pcRRXnpstpaRDgcMaMtEj0E7fFK+y7T1tP5bNmRQG5tsiF1AFqfNMkFFvozVdNlXlXZYnjQ+zXTZUMSAg3i0D6oPSMa26WOOvZ6A0lqmnWToobZ+WT3tAtbXEQQdLGtsI0tSl5N1yJJczyDbRrp2JcsGFcl2kcQTdBSPdZ1BSZ3u67Gerq1Hvl6SOm26vbIU66GosvWRtR1PnbK4s11suyOHwrgsamRpgkNqiYiIiIiIyBNxDKllwklERERERERy7OH0l2N9uqBdu1z9RJfDKnVlpENHHQTjZMijtF339eqWdztU00H9joZwJqzO6FW6HWrraPighKNhf07rdLT/XNabxG3hdl86GtrppH6X6x5XW7EMz0zZ+rscYuroc8/lsm63iettGMMwWl1B67YVzZ1zdcNlZeVDDoarB2QLS2JTJC+kP2W7G46sq0VWp8tjy8lQXn15Sbt2V47I6pKVd/LTv4Ohvfo63bUlr8fldtGQDXt0W6eTocVuY7N7IoCTIchu25MOEXYwTNlJDPG0JRsK66hOWZwOsgQnQ59lnA6JlnE7VFpff/QhwvJlne/XhsNNAP4dtU7yL98mnERERERERBmDPZxERERERETkhbb6WBRXCeeCBQvw4osvYvPmzWjfvj2++c1v4p577kG/fv3UMvX19bjxxhvx3HPPoaGhAZWVlXjkkUdQXFzsKrCdY7IQyM1ytQxlACF90cZxW1AbZHfYy0Z3hp2Oz7WnOLregqKR7UIvPtGiD+KjdJfOJ9wUu3B9PYBXUh0GxcHVczjXrFmD6dOnY926dVi+fDmampowevRoHDlyRC0ze/ZsvPbaa3jhhRewZs0a7Nq1C1dddVXCAyciIiIiIiJ/c9XDuWzZMt3rxYsXo6ioCBs2bMDw4cNRW1uLxx9/HEuWLMFFF10EAFi0aBFOPfVUrFu3Duecc07iIiciIiIiIkoXvIbTvdraWgBAYWEhAGDDhg1oamrCqFGj1DL9+/dHz549UV1dbZlwNjQ0oKGhQX1dV1cHAMj+OoBgjqsOWHsJrMqK47ssxsPjNhzd2TQeHo+FyYR9oOX9/kjv+jNhf3u+DpK7bSaK5/Fnwj72eB+k+/sY4DaKXn8SzzIz4D3n+fZK83MlwOYO1YmS4Pd0+FhjQutLpbZ6DWfMb5twOIxZs2bh3HPPxRlnnAEAqKmpQXZ2NgoKCnRli4uLUVNTY1nPggULkJ+fr/6VlZXFGhIREREREZF/iRj/0ljMCef06dOxadMmPPfcc3EFMGfOHNTW1qp/O3fujKs+IiIiIiIi8oeYhtTOmDEDr7/+OtauXYsePXqo00tKStDY2IiDBw/qejn37NmDkpISy7pycnKQk5Njml5afQzt2unTeeFkDID0QeTRl5UOYZQ8adnJcDIhe0oz4P7h63Z1qWVc1inZLo6Gc7p86Ls0ftf12IdlX6fLGGzacvKwdkd1JWr9vV5nl3HKfs5K1XaLaRkn5T1fT+ufNZ3V3/rC7XZ0su6yQ0t+TLhcFzvS7Si7fW30euJZVj/d43pcHivSrz/N+iouY1Yk28r27SdtQ/IAeFkbsphc1+NuetBleWk8kviDgbDLetzFKSsv3S8A2kliCki6W9zGGk9bAcW6vLQeWWwOuo7aBazvgSzd1tKYo7eVJWnL7XYAgCwl+r2bpdtFMt1JnUFJTE62tdWy9YebsCDqkmmijV7D6aqHUwiBGTNm4KWXXsLKlSvRp08f3fwhQ4YgKysLK1asUKdt2bIFO3bsQEVFRWIiJiIiIiIiSjORazhj/UtXrno4p0+fjiVLluCVV15B586d1esy8/Pz0b59e+Tn52Pq1KmoqqpCYWEh8vLyMHPmTFRUVPAOtURERERE1Ha10R5OVwnno48+CgC48MILddMXLVqEa6+9FgDw61//GoFAAOPGjUNDQwMqKyvxyCOPuA5s/6ntEczO1U+M465aru/4GU9bsSwbx13PXLfnsnxcd0t121Y8d05LRlvJPC5cbvekbjvX7yd3n5LJXBcgCZ8PyTxuvH4fxHH3wYTe1VY2OjMcRyMJOw7cDWOXievurdqhwk7acn2cxRBbMt/XbuPz+DNNt6jH7zm7IbLRF45hEbfxuW+idVm36xbHtpANxZY25XLF4tlPbmOLtz23y8qGGsfaVuhoA4A3Y66TUs9VwilE9AMoNzcXCxcuxMKFC2MOioiIiIiIKJO01ceixPUcTiIiIiIiInKAQ2r9pW5oPQLtE1hhPMOsHHDQ+ZuARjx+Uq/8RmeJ5/W6JGV/eF1/mm8jr5/l7vF7GgC3UTR+3D5xjLhTQh5sL4/3gee/eCfhszTt18Hz97G39WfGPk7C98Fxidof0k3iYFtFv0+sPa/3R3OCj9lQQ31iK6Sk823CSURERERElDHYw0lERERERERe4DWcPpP1RS6CubnRC3rFJ3s1iaNE9FLVrkZcd8dNlFRuBz/sAx/EkMrt4Iv1j+dOpXHwxbonY9S0kzbiiSMYx119U7Tvddr6ZyD3Qer54XysDZ+LAUj5Pggfa0xp+wnVRns4/XBKT0RERERERBnIdz2ckUevhFN9gbAfflED2vSvauzhTGHbx7WVXi4ZX6w/ezhTL0VxCD98D7X1z0D2cKZeW34f+GH7AynfB+FjLTmBk8cz+l4b7eH0XcJ56NAhAMAXv/p5iiMhIiIiIiI/OHToEPLz81MdRlx4DadPlJaWYufOnRBCoGfPnti5cyfy8vJSHRZlkLq6OpSVlfHYooTjsUVe4vFFXuGxRV6K9/gSQuDQoUMoLS31ILokYw+nPwQCAfTo0QN1dXUAgLy8PH74kSd4bJFXeGyRl3h8kVd4bJGX4jm+0r1ns63zXcJJRERERESUaTikloiIiIiIiLzBIbX+kpOTg7lz5yInJyfVoVCG4bFFXuGxRV7i8UVe4bFFXuLxpdFGE05FZMQ9homIiIiIiPynrq4O+fn5OPWGuxDMyY2pjlBDPT575Geora1Nu2utfdvDSURERERElCkUxP54Vb88ljUWTDiJiIiIiIi81kaH1AZSHQAREREREVGmi9ylNtY/N9auXYvLL78cpaWlUBQFL7/8sm6+EAJ33HEHunfvjvbt22PUqFH4/PPPdWUOHDiASZMmIS8vDwUFBZg6dSoOHz7ser2ZcBIREREREWWQI0eOYNCgQVi4cKHl/HvvvRe//e1v8dhjj2H9+vXo2LEjKisrUV9fr5aZNGkSPvnkEyxfvhyvv/461q5di+uuu851LL5MOBcuXIjevXsjNzcX5eXlePfdd1MdEqWZefPmQVEU3V///v3V+fX19Zg+fTq6dOmCTp06Ydy4cdizZ08KIyY/89OvhJRZoh1b1157remzbMyYMboyPLbIyoIFCzB06FB07twZRUVFuOKKK7BlyxZdGSffhTt27MCll16KDh06oKioCDfddBOam5uTuSrkM06OrQsvvND02fWTn/xEV6ZNHlsizj8Xxo4dizvvvBNXXnmlOQwh8OCDD+K2227Dt7/9bQwcOBBPPfUUdu3apX4PffbZZ1i2bBn+7//+D+Xl5TjvvPPw0EMP4bnnnsOuXbtcxeK7hHPp0qWoqqrC3Llz8cEHH2DQoEGorKzE3r17Ux0apZnTTz8du3fvVv/efvttdd7s2bPx2muv4YUXXsCaNWuwa9cuXHXVVSmMlvzMT78SUmaJdmwBwJgxY3SfZc8++6xuvl+OLavkWPv3n//8x3Fdq1evtq3rl7/8pYdrkhnWrFmD6dOnY926dVi+fDmampowevRoHDlyRC0T7bswFArh0ksvRWNjI9555x08+eSTWLx4Me64445UrBL5hJNjCwCmTZum++y699571Xlt+tiKM9msq6vT/TU0NLgOYfv27aipqcGoUaPUafn5+SgvL0d1dTUAoLq6GgUFBTj77LPVMqNGjUIgEMD69etdtee7mwY98MADmDZtGqZMmQIAeOyxx/DGG2/giSeewK233pri6CidtGvXDiUlJabptbW1ePzxx7FkyRJcdNFFAIBFixbh1FNPxbp163DOOeckO1TyubFjx2Ls2LGW84y/EgLAU089heLiYrz88suYMGGC+ivhe++9p35wP/TQQ7jkkktw//33o7S0NGnrQv5id2xF5OTkWH6WAfDVsfXjH/9Yd/ICtLw/fvKTn6B379448cQTHdd16qmn4umnnzZNf/rpp/G3v/0No0ePjjveTLds2TLd68WLF6OoqAgbNmzA8OHDHX0X/u1vf8Onn36Kt956C8XFxRg8eDB+8Ytf4JZbbsG8efOQnZ2dilWjFIt2bEV06NBB+tnVVo+tWK7F1C4LAGVlZbrpc+fOxbx581zVVVNTAwAoLi7WTS8uLlbn1dTUoKioSDe/Xbt2KCwsVMs45asezsbGRmzYsEH3hRUIBDBq1Cg12yZy6vPPP0dpaSn69u2LSZMmYceOHQCADRs2oKmpSXec9e/fHz179uRxRq4l+1dCantWr16NoqIi9OvXD9dffz3279+vzvPTsVVRUYHvf//7ur8+ffrg6NGjmDRpkqu6iouLTXV9//vfx7///W984xvfwNChQz1ai8xVW1sLACgsLATg7LuwuroaAwYM0J2UVlZWoq6uDp988kkSoyc/Mx5bEc888wy6du2KM844A3PmzMHRo0fVeTy2Yrdz507U1taqf3PmzEl1SFH5KuH8+uuvEQqFbLNtIifKy8uxePFiLFu2DI8++ii2b9+O888/H4cOHUJNTQ2ys7NRUFCgW4bHGcUi2b8SUtsyZswYPPXUU1ixYgXuuecerFmzBmPHjkUoFALg/2NryZIlUBQF3/ve9wC09KApioInnnhCV+6uu+6Coij4y1/+Iq3r3XffxdatW10nrwSEw2HMmjUL5557Ls444wwAcPRdWFNTY/nZFplHZHVsAcD3vvc9/PGPf8SqVaswZ84cPP300/j+97+vzm+zx1YCruHMy8vT/eXk5LgOI9LzbLxme8+ePeq8kpIS0yWNzc3NOHDggLTnWsZ3Q2qJEkE7RG3gwIEoLy9Hr1698Pzzz6N9+/YpjIyIyLkJEyao/x4wYAAGDhyIk046CatXr8bIkSNTGFl0TU1NeP755/HNb34TvXv3BgBMmTIFL774IqqqqnDxxRejrKwMH3/8MebPn4+pU6fikksukdb3zDPPAAATzhhMnz4dmzZt0t3LgCgRZMeW9jryAQMGoHv37hg5ciS2bduGk046Kdlh+kYihtQmQp8+fVBSUoIVK1Zg8ODBAFquDV2/fj2uv/56AC2jVg4ePIgNGzZgyJAhAICVK1ciHA6jvLzcVXu+6uHs2rUrgsGgbbZNFIuCggKccsop2Lp1K0pKStDY2IiDBw/qyvA4o1gk+1dCatv69u2Lrl27YuvWrQD8fWy9+eab2L9/vylB/MMf/oBgMIipU6eisbERkydPRklJCR544AFpXaFQCEuXLsWwYcNw8sknex16RpkxYwZef/11rFq1Cj169FCnO/kuLCkpsfxsi8yjtk12bFmJJCjazy4eW946fPgwNm7ciI0bNwJouQRo48aN2LFjBxRFwaxZs3DnnXfi1Vdfxccff4wf/OAHKC0txRVXXAGg5Vr6MWPGYNq0aXj33Xfxj3/8AzNmzMCECRNc3x/AVwlndnY2hgwZghUrVqjTwuEwVqxYgYqKihRGRunu8OHD2LZtG7p3744hQ4YgKytLd5xt2bIFO3bs4HFGrml/JYyI/EoYOZ60vxJGxPorIbVtX331Ffbv34/u3bsD8PextWTJEmRlZeG73/2ubnpJSQkWLlyI5cuX4/zzz8fGjRvxxBNPIC8vT1rXihUrsGfPHvZuuiCEwIwZM/DSSy9h5cqV6NOnj26+k+/CiooKfPzxx7ofNZYvX468vDycdtppyVkR8p1ox5aVSNKj/exqk8dWEh+L8v777+PMM8/EmWeeCQCoqqrCmWeeqd4J+Oabb8bMmTNx3XXXYejQoTh8+DCWLVuG3NxctY5nnnkG/fv3x8iRI3HJJZfgvPPOw+9//3vXq60IIRLYQRu/pUuXYvLkyfjd736HYcOG4cEHH8Tzzz+PzZs3m8Z6E8n89Kc/xeWXX45evXph165dmDt3LjZu3IhPP/0U3bp1w/XXX4+//OUvWLx4MfLy8jBz5kwAwDvvvJPiyMmPDh8+rP4qe+aZZ+KBBx7AiBEjUFhYiJ49e+Kee+7B3XffjSeffBJ9+vTB7bffjo8++giffvqp+sE9duxY7NmzB4899hiampowZcoUnH322ViyZEkqV41SzO7YKiwsxPz58zFu3DiUlJRg27ZtuPnmm3Ho0CF8/PHH6nU7fjy2Dh8+jOLiYlx00UV47bXXLMtcdtlleOONN3Ddddfhd7/7nW19kydPxjPPPIP//Oc/PBdw6IYbbsCSJUvwyiuvoF+/fur0/Px89dKSaN+FoVAIgwcPRmlpKe69917U1NTgmmuuwY9+9CPcddddyV8p8oVox9a2bduwZMkSXHLJJejSpQs++ugjzJ49Gz169MCaNWsAtL1jq66uDvn5+Rj4w7sQzM6NvoCFUGM9PnriZ6itrbX9gc6XhA899NBDomfPniI7O1sMGzZMrFu3LtUhUZoZP3686N69u8jOzhYnnniiGD9+vNi6das6/9ixY+KGG24QJ5xwgujQoYO48sorxe7du1MYMfnZqlWrLH9rnDx5shBCiHA4LG6//XZRXFwscnJyxMiRI8WWLVt0dezfv19MnDhRdOrUSeTl5YkpU6aIQ4cOpWBtyE/sjq2jR4+K0aNHi27duomsrCzRq1cvMW3aNFFTU6Orw4/H1tNPPy0AiGeffdZy/tdffy2Ki4sFAHHeeeeJUCgkrevo0aOic+fOorKy0qtwM5LVcQVALFq0SC3j5Lvwiy++EGPHjhXt27cXXbt2FTfeeKNoampK8tqQn0Q7tnbs2CGGDx8uCgsLRU5Ojjj55JPFTTfdJGpra3X1tKVjq7a2VgAQA6fcJc788QMx/Q2ccpcAYNqO6cB3PZxERESU3saOHYu3334be/bsQYcOHUzzJ0yYgNdeew2333475syZg1/96leoqqqyrGvp0qWYMGECnnrqKVxzzTVeh05ElHBqD+eUOHs4F6VnD6evruEkIiKi9LZv3z689dZbuPLKKy2TzT/96U9YunQp7r77btx6662YMGECbrvtNvzrX/+yrG/JkiXo0KEDrrzySq9DJyLyVhKv4fQTJpxERESUMEuXLkVzc7PlDX727t2L66+/HiNGjMCMGTMAAA8//DDy8vJw7bXXIhwO68ofOHAAf/3rX/Gtb30LnTp1Skr8REReiTwWJda/dMWEk4iIiBLmmWeeQVFREUaNGmWad/3116OhoQGLFi2CoigAgC5duuD3v/89qqurcf/99+vKv/DCC2hqasL3vve9pMROROSpNtrDyWs4iYiIiIiIPBK5hnPQD+K7hvOfT6XnNZztUh0AERERERFRplOEgBJjX1+sy/kBE04iIiIiIiKvxTM0Nn3zTSacREREREREXovn5j+8aRARERERERGRARNOIpJauHAhevfujdzcXJSXl+Pdd99NdUhERERE6amN3qWWCScRWVq6dCmqqqowd+5cfPDBBxg0aBAqKyuxd+/eVIdGRERElHba6nM4eQ0nEVl64IEHMG3aNEyZMgUA8Nhjj+GNN97AE088gVtvvTXq8uFwGLt27ULnzp3V5+0RERERuSGEwKFDh1BaWopAIM37ynjTICKiFo2NjdiwYQPmzJmjTgsEAhg1ahSqq6stl2loaEBDQ4P6+j//+Q9OO+00z2MlIiKizLdz50706NEj1WFQDJhwEpHJ119/jVAohOLiYt304uJibN682XKZBQsWYP78+abpJ/7ifxHINTzkOI1/pfMt0dKLzL5kj/CY9Q63rafSeRier0W2q+CnbqIZj9lwfT12/PIX6Ny5c2oCSqC2epdaJpxElBBz5sxBVVWV+rqurg5lZWUIZrVHICvXZklKmDT+MqI2jOfrlK74mZsc7Vo2dEZcnsMhtURELbp27YpgMIg9e/bopu/ZswclJSWWy+Tk5CAnJ8c0XQm3/BH5DTsmiAz4nnCH2ys50vyyTaN07qmMFRNOIjLJzs7GkCFDsGLFClxxxRUAWm4CtGLFCsyYMcNVXUqTAiXowbdyun/Rp3v8SP+ETVFERuwHIP33RVrLkG0vFKT/mXAm7It0XwcP4hfNaX5cEhNOIrJWVVWFyZMn4+yzz8awYcPw4IMP4siRI+pda53y8lbe/ApKLQVpnugIBRlxFKXzPsgQaf0+iMiEZDMj9kOqA4id8OhHPBFI82NTS4iWv1iXTVNMOInI0vjx47Fv3z7ccccdqKmpweDBg7Fs2TLTjYSiEYpHJ2OZcnKRQgnZL+l+khovHoMEf7wN4n4/p33WLOL//cgPm8AHx1KsFEXxZBsqYT/smMTgTYOIiAxmzJjhegitiReJoVdJbFuTzt9ePsJjsY3zw9uIx2CC3oh+2JlpTMCb6y25W9IeE04i8pRoJyDaefNtwRN9Sjkeg/HjyWT8BJAJN/BMPW7EuCgAPLhJoBLKoP3Cu9QSESWeCLT8ERGRh9L4ZJQyhFfHYAbd6T6eO/en8x3/mXASkafC2WEgx/+fkkqqu0tTebLohxPVVMeQwv3vm5HNfokjibjtkfKhIr7YB2348zcd+g6VxnSI0iH2cBIReSBLtPzZiecDOEEERGpPvNrwCQ9wPOFPVRxC/U+Kmk/9yZQvTvpTxQ/rnuofPFL43kv90Y+Uf/6m7P3ni2M/+vqLxuSEQt5hwklEnlIaAlACUcbU+uFLD/A+DrszK79sg1Rpy70sftn3qYoj1b/z+CDjUVL4uINUP2lBpHp0SYopNjfX9XrT+OaHpihxhP0SZwLwLrVERB4INCgI8G4WLXh3XSJ/8cn7sW1/LqTxWXQCSNee3xeqcKp/FUkkPoeTiIg8pRk+xhMJIiIyOf7dwO+IzNRWezh570giomRK4y8MIiLyHpNNyjTs4SQiTwWPBBAMJei3rRh+3kvKF3csbSRjuJRX9cdYr+e5tk/3tff72cMt68f1BfwXl9ddDzF+xnjO4zZEzF1BiY3D83p1bcSwzn79LknQ+0IEmhNSjy/wLrVERImX818gmCOZqcDlF5ni/qQxlsTOZVxJicmtWNc71XXH1Ya7b2Ph+vhzX14ogOtLmF3fsFfxbt8JuN6uCrxO7rw/Nlx9Brg+JmK4NWtMCaeH6+zjNhTFxTIuY1Fi2Hdu3/9KDEmaq2UUEVNMXq+HXRuhow3uGvextjqklgknEXmq/YEwgtnWz+EUivMTZfUEM0p504mopLz0hNVqupM2HayHrk31Oh2HG8BBGwlbd6ftuKnfYt1jrV/ejmL70nJ5uzIW8xzta8N8836xP2sQkbeFi3YcH8+Gt1zU8xcFpjPm6Mme/YNeHCWLNmWEk4TC6r0Q9Xgw1Onw/aQv4zCuqPs2zlhkJ+928SkOkgTjW8zlsa2uftR2WudbrYds+UjZaPVH5ss+fuX166dH2w0BRThOvCLlAop5WrxtBCzmW8VuVU42z2mbdnXqykO+Hs1ZDfiXo1rSAG8aRESUePn/Oox27SyGwxz/prc8+Qwo5kTMdGIj6e00LhewSep0J+zy5NfUTsDQtqR+y+TEaZvaUciKxTpY9fLYxa9Z3mo5q2RYv7ysbu3ZUfSYjHVZlo+WsNm0ZYzHyTKy2KzqiDt+q30pE2W/RN3elvOFbpo5YYhep1Wc+tfG94f5JN026ZTErasg6n4SDuK2Seqsklpju6YTcPs6rXrHpIeCok/aTSfiFgmlYkjSTMmRRbz6Zcz7KWA3XxG65Kh1mkVyY5gWUMw/SmiXs0qijPUGFIEA5PHpytnUFYBAQAnL50vWKbKsua3WuoKRpAv6+qzjDKvlresOS5cNIqwpZ45XO98Yb1ATr7FNdXklbJoXVMx1BpQwghZx62Mxb29tjFbr2Hi4EassI6N0wYSTiLwVBhAS5luUCQEoSuv5mfbsKWQYcxJQ1K6Y1pN1Yf1juvFkNaxAsfoSDej7YRRhPhmMtGU8MRJhw8lSwPoEWjk+NlJ2ch1p0yoB0X4fi4A5PgFFv/6tm8gYxPEHu4vj63Q8Lu36QL+OxnoUi2mt81rnCFPNhuUU80RT8mHRuKLue305U1sKdM8ztOpnk8Z3vB3p78eSGNVVslg3WYNWcUubFYa6jSf4NseXbL5ue7qtU+jfqn76vV3XQ+kwpzeVlyaAURaPkoi76dGTNifp9XPaWydLUNX/G5azSvq0rwMWSa1dL5guebVoyyrRMCZ+unmGHjF5ImeRcOoSQHMiF20ZfTlDQmWRNOrXwyLZMiTPxnKR5a0SRycJprq8MbG2SCLtkk5tbMbE0hh3ENbrLIvNal6k3ZDFNktXHFJLROSFIICg/c/6ouWndMvFTT1Wdr2J2vol9ymy6lW07HGy6mWRxqiPy7JXSnIyKAx1CmPcsh4xq140q2mm5Sx6hqP0pCWqh1Mao4OTfCfrF71XXLJslLhly5hYzI+6jBWHddsuY2zfcKZi2p5O6kxn6g9b2mnHXxh/aTD+ihCZb0zQtfPt6rT6sSKyfwwJvCxcITQ/5ihCHVmnS/4N04RQdAmZ1Xy1SkWY2gwLxfZRBiEBBA0FjGlBAK1JZ1goanJhPG8OW3xYBSzq01GAgKYiVymJbp9Ebel4/Yo5qRWA+cumta7Q8YaCaE0owyIIwJggh03vN7UcBMKiJWkLw2JZYY7dWC4kInXq1yF0/P+RZFLbpjE51c7TrqUxgQ4dLxfW9GSGRFBNQMOG7RVAWE00rdYvJAJoTONEy0Qg9l/q0ng7MOEkIk81FOYi1C63dYJsKK2jpEP2E/7x+RbJmpGjoamS5eXlLBJox8talHOSEBuWjbtNm/kxbyM16VFM06Svo8QUbYipqQ6X9UvrMhxbUa9DjDGxNtUt+cHCbsipdN1kCbdF/dIec0lZ29jslpUVi9LLar2MzXEWWdRiWKt+w1gEAsV+nY3bSjEUiMyX9FAa5xnbaU0aFd3/rOpqjbmVKUmyGgqse20di9NhusZ5Tq97tOsddXJ9o6yH02qYrzEGuyG3spgi5YzDc2NZzq5NJ0Nr7Xp37erSxyPvqZXHEtkv1gm73RDh1jokvbGaxL3haJPlsukomT2cvXv3xpdffmmafsMNN2DhwoW48MILsWbNGt28H//4x3jsscdiC9AGE04i8tS+QdkI5mS3vLBKGrxmd6KfIFFvkmMnQbE5upFKgjm/y6tNXDGsv6sbPiWIZ8dsjMmZd/FYJWTxcR1rpCdO1+uYmKAi/YTO3y8xtBtrwi1LkqM0F21+KODh50Iij5V4P7+S8FlvbjOB7xfH3xnm7ZSgt4d9m0nctmqCfrzN8NF6AC8lL4AM8d577yEUCqmvN23ahIsvvhjf+c531GnTpk3Dz3/+c/V1hw4dPImFCScReSrUQUDk6r88kimpyW1EKk58kKLRNqnavklkOSw1GQdWkk/yIlLynokmwQe3AiR9RZP2o5Cup1dACVn00HotpvbiDDIl75UUfOpajWZJfhSeUtcnMhz7WAalK2HR8hfrsi5069ZN9/ruu+/GSSedhAsuuECd1qFDB5SUlMQWjwsZtAeJyI+aOgkE2sf/dZjOF8sng9NzZ3U7Jmp7+jE5SYY0vj2976RiU6YoT0jGG0b/Wdl23qCJ+v3A3WdkCpL5dJOA95pSH4y/Er9IwDWcdXV1usk5OTnIyZE98LxFY2Mj/vjHP6KqqgqKpkv8mWeewR//+EeUlJTg8ssvx+233+5JLycTTiLyVjwXLGjYP9mPnGq5kyt4kkREGSWhP0q6qYu/PdlLxC8Bvhx2EZt4BjpEtkJZWZlu+ty5czFv3jzbZV9++WUcPHgQ1157rTrte9/7Hnr16oXS0lJ89NFHuOWWW7Blyxa8+OKLsQVogwknEXkqWB9AwPZeh22I4p/vzXhOzlJxvWjC+WQ/xMsvx1NcMmEdAN+sR7zvzLQ/puIdiu6Xj7YUXZqRePFv0LC7exBnvJ07dyIvL099Ha13EwAef/xxjB07FqWlpeq06667Tv33gAED0L17d4wcORLbtm3DSSedlNCYmXASkaeUMJCQR2il+RevOP4fz2/ukAQKMqHH2S9nlXFI912QgdI+WQMy48ekePaDX/ahepO9DNgfcRLBNN8GWkLEfknG8eXy8vJ0CWc0X375Jd56662oPZfl5eUAgK1btzLhJKI2xi9f/nFoeexBqqNIgExYByLKfIYnyaQl9V57SnonnZmwLxIomY9FiVi0aBGKiopw6aWX2pbbuHEjAKB79+6xNWSDCScReUppVBCI43p/xz0GPv4yU3w0lFYnlpisHwWoSovTIgVJ62r2dr/7u5/Zk3X38Qp7PtQ8WeueJkM5oyZhcXy++Y6fE85kfEdncUhtrMLhMBYtWoTJkyejXbvWtG/btm1YsmQJLrnkEnTp0gUfffQRZs+ejeHDh2PgwIEJj4MJJxF5qvv6RgSzJNdwKkr0B9BbTBOmJ5VbVy8C1vOjLe/0OY/m2BXr+YrFNNd1G+dbr4NuOdd12s+3vAY1QXG7rc9JrNJ6rOZZ7Csn7URNqmLYxrpyNuXN21J/UmpZR6zbD/bzzbEdf2l4np4pNiuyslbX5jn4/DAlJk4+cyLtGcuYlrWpW1JWUfSvZeWVqPPtYzF/PBnra43HOE9bt3mevKx2vqmcIZ5A1Hr1rwNRto9VfaZpUWKIFpN2fuTfAThfxslrdTq0bYVjqssYm3w5fUIXlNQjjVWzvHFZWRzGNgOKQFByrWbTkUYstJyThhJwl1o33nrrLezYsQM//OEPddOzs7Px1ltv4cEHH8SRI0dQVlaGcePG4bbbbosxOHtMOInIU7lf/Bft2uWaZ0TOUgKKfpqk50l3ch2A1VmOfLmATTlj0htQzCfyalnja8OyxuUChrjVk32L+q1OsjXbxiq5tUuiWpJDc3InAvrX+jYVGJMGc53u4tAlc7A++bfaRrr2o9ZpjtPVemhjMLZl/K0kSizRknJTeZs2LZMy27os9p9k3Y0nxVHjMs433OnYeB4UuROygNLyQlsgWpIOq20ozDEcr0t3TEVNSC2SOMdtCf1b3KIuxRCLLCk0nbhbJHHauqySOuP8aAmbMRHQJob6j2GLRM2QaNklbgFDbJFpdsmQVZvGOo1JizZhsazfchl9EidLrFrrNCdi0eIwJk3G9bCb39pO2BRPUAmb2g7q2g4jaBObVpYS0teDsCkObZwtbVvXZdyGLXVplpVkScY6I+tiVf5YoCljEk5FCCgxXsMZy3KjR4+GsFiurKwMa9asiSmOWDDhJCJv7T8ABAwJpzHJBAAlYD0fgKIouudG6esKGOoxJn0Wian+53sIqzJWdSmKdezauoyJsV3b0CQ6xiTaqrdUl4AaEiRF0Zc11mNMfo8va50QR+K3r1Oe0JiTN21vs7lNYZm0Ctm6Gecbl7FJpOXLCE15zXybBDNaW7Lk2S5BFoZDxCqWyDTFuA7GahXD8rp69PtIX9a8LZQo20JRrO+DoUAz8DdSr6aj0na/a5dRINkfwnJ765a3mm+sVzsNkfXV984qhh5WY0+l/i0i1HmKYpgGfYKoGBNZdZq53oBuGXMPYGSaLOlTNP/WTbdIhLU9eHYJpG4ZtScsbF2XRa9g6zx9L5lVr1qkjCzxi5TVJktWcUbm66ZJErrINGNy11qXPv6goWfSLsEMIqxJLs3JrXlZfbtBYy+hIYEzJaAIq/N0bUEY6o6evEbmBy32k6lu03YVuvktsWnn6+s4kp1BQ2rDx/9iXTZNMeEkIk+Fag9BCTRC0SVqhkwsYJFQBlrLtPRSWg/L1S0XUCzrNp/N6ZNbU9uR9ux6US3rNdclovTgKpEk1qYtoSim1dLW5aT315iwmpZToKnPog5N+/oETl+HNFnV1S3p5TQmEwFDncZ2LBMgq2HawqZ8lPUwtK8orctaJ2HCMmZFaW3DuJwpqTTsFtP6Gts1zovUC82m1sSk2/yR6aI1Lm3/lXK8EqtTyeOLqf9QDG1H/qHAYh8aekjVyZZJo2G9rHo0LZJG3bI20+2GuGqTTMVQj7qYIkzJamsyaZ0cGqcbk0pZ72PrNHlCaZVgaXsQjT1/2mRT1ktoNfxR1mtp1zNoNZTTSfJolbwap2t7BXXJoVUSqUkO7XrjIgmjVe+fvo3WRFif7JqTUKskUZYcBh3Epo/Lfn2Cx/eBuS1hmQS2zjcngQEA2tszBCU/CreUa50XMHwABqGYHp2mrSuAAA5n0l1q2ygmnETkLSEAEYaIjOBRAgBCx/95/EslHIB6ShuZFgq1Jm+BABA6XoEpoQu0lgsLIGD4CTAcMA+pFWHdfOOwSQUAwpoyVsluGIAx5sj6auJUQq1n4qbhmXZ1idblFAAibPy215wwasqKsKKb17pOChBqma4mHtpeT9EagwJFXQ81AdC0rwSEmpQomhMT0bLk8TiEui6KgLp/Fd0SkZVrqcc4UE8Jt2wzwxJqO8a1bJmmjaJ11eTlI/8WuqRT0xmn740T5mXVCZoGrZIsRQj99rY4P2vZVhZ1apZRy1id30nqjVq3IXZYxJ8RLBJzWRnTNY9OFjUkm1bz7eo2Jonm5eVDTyPJplUdVsmhsT55AmlOuNSE02LIqmyoarQhqrKhqbIhqQHFOrE09lSqiahNr2RkWmuCaD9MVjscVJ+ohc3rqEmArYaQqm1btGEdZ/T1MM/XT7PqcbRKMlvnmwfsGJNN83xjkmmYplkikmBqpwW0SalshFMaSvaQWr9gwklE3tMmYZpkT4QDLUlnZJoSaEkaI/MDaEkmjcmfMenUfAgrYZiH0WrqNPUAinBLUqrO1yR86vLhlnZ166Gdf3w5uy8DRYESFoZrKK3a0syPxCrE8QRG0ZczJpaK0pLUaJPTSHvabQRF09ulTxhbGrIuq21bCegTtEhdah2AbrsrAcWyh02bOOliiSTbYVhfdypN6o4nt8YTFKvyhmm6hNCwrG1yqOinaRexTDrVFbZoR7KcMZa4kk6reYbtYptVpTvduh7/qUO7DyXJYNRqoySb2vqt2jD2bFotZ9WzCbQmm1Zk043XZcqSTav6rOo0JpRWw2YByU1lLJLaaG0Zewpb6jYPi43Ub91DaC5r1aMZqVtdNkqPZmtd+mTTrsfS2IY2mbRKMu3WI2jY9tZtmRPT1vUz92jq67dPAoNQ1CRTNy1KT2bA8METVIf2pPFYUiMB86+fbpZNU0w4ichT7XqXoV0gR3cGpg4ztRuyanztcBnTTYKMZdyW17w23lxIV4euvEUdkeUthqra3URIejObyGur6yyl13NK6jbOB0x3+JUOOTUs7zSGqNOctK2N12EbpmWcti2dL4lD8//o28oizmjxWdWjrcNuG5ji1yb65vgt2zeut7F+WWxW5bSzIgm7MQHWJMGKbozz8SG2ale1Yk6eIwUjlZu2+/HnHFq9zw1DZdVpVgmq5CNKe42n/qZC5rqtrudsnS5MZXXzj/9bdsOf1t5Oc92R5YxJqGa1dNNkPbFOhu1qRbsO1FjOrg3tfKu7ptpdEyovax2DrPdVO8803eJGQK3tSq4ftUqqLX4IMF43ahenVYxWNwUy9tzq18kiyZVcT2o7LNgiDqv1OVKPzCGE/Y/T0ZZNU0w4ichTTSUFCGflGpJH67JW1/Hp5hlZndAaz6bU5WGTBJrrdRKfdIisIonXULdl25J4XScclvUZp8ljNN/FNXobgMU2sV0/w2tpLBaJseNlbWKRJUSGsnb7Kdq2sR2WGq0Nh9vOOgbrExOrZd3MV8tZzTNtb/nJkeV2UZNGSUFhqNMuAbVivGZZP9Nct6Iv2Jq76us3bzPrpNFqWSjGJNQmdG2SZ5ovpNtbMbQhfdtb9J4ae36dDDO26oW1uhZVF7vNstp5WlY9pVbljMOQZYmqMRa1rKSHVfda0htsLCurr7UOeTIcYXXNq3Vb5qHN2rb0y0l6dSW9vca27Mpa9URHYrCbp12+8VgjgH9blqX0wISTqA1asGABXnzxRWzevBnt27fHN7/5Tdxzzz3o16+fWqa+vh433ngjnnvuOTQ0NKCyshKPPPIIiouLXbX1337tEczR36XW6Ul4vMvol4+eAMYUg4O2Y1peljQ6LOt52w7X29V1gIne7lbJlNN63Gx/3XIWyYi0bKLadDgNkhFZMexb621pTqZiJcsZddf5GhPQyLJOrveyXGf9REeJq6Q+x/0QiuGGTK6OFwetuDrmrbZlYtqUDlO2LCur19lWtUzGHdYl612O2qaDZDpafbG2bduWpKzsel6n9ZrrcxeXLAbZMuGj9QBWRI0jHdj8NuRo2XTFhJOoDVqzZg2mT5+OoUOHorm5GT/72c8wevRofPrpp+jYsSMAYPbs2XjjjTfwwgsvID8/HzNmzMBVV12Ff/zjH67aqu0nEMj1w6ekH2KIT0bexIXIyOataj7h8u5NYbz5FCVHvJ/Uvvqk5yGUEOH6DBpTyyG1RNRWLFu2TPd68eLFKCoqwoYNGzB8+HDU1tbi8ccfx5IlS3DRRRcBABYtWoRTTz0V69atwznnnJOKsNu8eH/dZMJKROQCPzMpwZRwy1+sy6YrJpxEhNraWgBAYWEhAGDDhg1oamrCqFGj1DL9+/dHz549UV1dbZlwNjQ0oKGhQX1dV1fX8g8Bn/3k3Ibx5ImIyDH+SOcPPIVIf0w4idq4cDiMWbNm4dxzz8UZZ5wBAKipqUF2djYKCgp0ZYuLi1FTU2NZz4IFCzB//nyvw6U4pPP1H4nCE0gih/heIUo8DqklorZo+vTp2LRpE95+++246pkzZw6qqqrU13V1dSgrK2s5w2+LZ/l+zO58GFJStcHDkCgebfGj2/f8+N3itUxa53hGfaXxZmDCSdSGzZgxA6+//jrWrl2LHj16qNNLSkrQ2NiIgwcP6no59+zZg5KSEsu6cnJykJOTY5qeu09BMNf5WUtcJzgxLOvJCZVic1dci7Ju6nUi5nVyuly8d+Y11efsWzTuO95qb3AayzZK8L5yfifTBJWJtBvTusd4R9RY209oXTGcpSX6fel4fRK3nV2XtVze6g6vHrSfqvWOMZFx+vHuqn6nXxmG58Dal3XefCzbIq6vaxfthY8di6Mlf1GEgBJjT2Wsy/kBE06iNkgIgZkzZ+Kll17C6tWr0adPH938IUOGICsrCytWrMC4ceMAAFu2bMGOHTtQUVHhqq3iDccQzILkkQ+GiXadoQ6fr2n76BDpYzcs4rB6xqbpMRvyR61YPf/R+lESxkcxyNu1faakdnkncVpta6vHiDh5VInTclbt2u2TGOOzXC+rZY0cbBNXz+60ma+WcVrOON9J8qwI9+sjrUsxJ8iG5Zw+C1RB9MfF2K2TqTKb+IXdyXm0eC23u4PHe1iUc/R4EcXiURHGjyZD3fLdZX72guljTvK8UKtnaFota7WcsTqrZ2LKH5OhL2e1rPVy+nbtnhtp9ZxN42urZ1w6fT6nsc5IXVbP1LRqW1ZGG1NL2/JndOqWt1gXq+Xtntfp5Pmibp7XabeM1XM5AxBoOtKABZa1ULpgwknUBk2fPh1LlizBK6+8gs6dO6vXZebn56N9+/bIz8/H1KlTUVVVhcLCQuTl5WHmzJmoqKhwfYfadnWNCLazyt4ARCbrny5uKiYU2CSchsREkgQaE1NtDFYJp2U7hnnqSbEhNmERjzQBiZYcatsLmKfLyutjMH/hW20PdRm7BPn4fOuE2kFi6zhptEgUjHHJkk2rbRqtLov4LGOTJUOG6YoxPovlFAfb2RiT+lq2TRV9QVMbFs8JVSyWt4pJMZaJkp+paYBVciLcPhdVWM83Jd8W5Zwkr5b72lCXTdKo34bmY1cx1CVLQE2TDYmjm6TRnDjqEyfT/OP/d5IkBhTz8pFltdNNdVlMs1rOuGy0RNBU1iaBaikTtoxPtqwx4dPWERFJ2qzK2pXXtmGXmAYRNk1zUkaWxOljCVtu36ASlie30K9bUDJmo2WefcIdmW8VKwA0NDVaTk9LvIaTiNqKRx99FABw4YUX6qYvWrQI1157LQDg17/+NQKBAMaNG4eGhgZUVlbikUcecd2W8p+9CASyDRMNCWhAMT+sXfs6ELA609Itb/PkbdNrof8p3VzeOM1YvylRU6TJsykJ0yWN5rZMJ+EBQx3mM1LrZDpKIq1NwoyJszkJU6S9bNGSdRGQl5P2AtttE8U64dQmh+a2hKM6dPVIplv32FontNLeXbuyxnWKTJNMFxZNS5Nbi/2gSNZL0W4zybbTVSXM66CeT6rHqFDLRopJ94s6TUiSweNVBWyyXmNCGfm/rJfUqkdQljxabQNNT5suedIkhfqEr/W1LDm0SgplCaHxN7lIL6FVImdVT0ATS7RkT5voGcsC5uTJLrGL1nsXPN6+uQ5ZubChnJAma8ZELaAIXdLjJDGLJGXGhEsbR9AiLmMSZozTmHwFENYlqa0xm9vWr0PYVFcQAgEYt5+7eCPlIjEYp+nrEtL5AQhT8m0sc7g5jZ8HYiQAi03pfNk0xYSTqA0SDn4ly83NxcKFC7Fw4cL42mpstDiZVQzjpwxf4VYJZCRJPb6cNEENBKyna14rLhNOYZdwKscfD28Zs1XyGmW+NnkFgLDh8fPG5C+gHD9xN2QeYQUKjIlW6wsFAiKo6CeHWvaCsS6hCP02Q2tiaG5DvzqRmcaTXmH4DSHSpgLDdWwWyYaiJjD6Yq3JolVCoS+sK28qK0/YrMubkxKhKPpdq7ScKygChm17fHZkuiZxixQTkf9YTLfc3Badw2ruZ1HWerpm32obEhaJoqbuZJ4Pma53dJNsGo9ZNdky1KFJCrXljUNb1WrU+vX1KdLXrdOteh+NiaFdb6NVImocbgq0Jnt2w0S1n8hWdUfKGpOvgBK27CU0ltX2EmqTDbvEMsuUSFr05lkM07RKOM3JnDjeRkg3XZe4Hf+3rGdPn3RZDBc1JJPmhM8YpzlJtE5CLZJdQ1tWybAuHsv59klg6zY3J5CR9bGeDwRtvhaDAIJWP/pmCF7DSUTkAVHfCBE0TFQU+8QwEDAnlOq8lukCaElCzT/rG17ryyiWSaAmFov5xmRLLe8gMTWthzHZlSbOMNWl/hOaXtWQeb1MQzvVXlL9ybYSViwTUvVqvYAmcQq1ftG1JlPaaZF2DKsTtk7sWqa3JraRNo2JaKQ9fRJ4/CQ6Mk2NWxOLYtwOQj9N0ZbXvLBJLE3DT23Lt2Z9QlFak0BN2UjvpLoVI7snEr+mKm0M2qaNpx9qMmiRiwnDBEVYlDVknup+McxTBFqTYz+cC8pi0MYnS1CNyaYmKbW6QUsk2TTtckXA2JtpPQTWZvrx18aEsLVH0ZwAR8rKhq/KElFtcmk1DNYycTze8+U8ARWmpLK1HoskxyaJteoRlE23SihlvZO69iU9drLePqteSatEUrucVeJqtWy0Xkm7RNKutzVSlz5xtuiV1MxvSYbNiaM+fnPiaCWoKIZy+jdDQFFM08KKrDZKF0w4ichTgc4dEQga7l5rlQTq5lskpNp5prLWiZn62ioxdFHeMqmVDZe1GfqrG3pr077VNauWQ1d1dWvqM7RhPZxVk2Rp65D0ZJqnGddDUmfAMF8bv6Qu6ZBeWTlDIqZL9KyWsZlmO6TWZVtWPaXGpBeA+QZV2lg0r62mu775kWK3/yL/NvyQEFne2L5xukUo0hjdsOqeBaAIBULbqiFZNkelK6DpuW2ZLjTtRH5QEVZjlhVx/DPAHGZLTC1Jne7HAUX7f8X8ERMI66aHLXogIwmkbpqmnOymO9GG1Ebr7VSnQduWsCzrpsfTWLfVtZHaBNRtgqrlpOdTnRYlMY3EG5kWPTm1TgrtekAjbeoTTKt1su4FtRsuq8YZZUitVcyy9XLSI9pa1ip51Sa35rqOhDJsSG3M13AmNJKkYsJJRJ46/M2+CGa310+McgIarddEl1xFLRNlvtMyWtokQzIvah3Hy0ab76SOqNsq7u1tcdJtLCP5fSDqOiQkvih1OIjBUVIUSwxO9rGj9ZefaThZ/1hjMPZsOqrbbqirtm7jdHNnolpI1oY64Fy6Dq3z9UNwFf0/LZJHq/as58na1iwb7fiKso+thvBGlrN9vISaPNvEBnl4xiHCstjsYog2P9KOLE7Zda6AdRJuXbe8jOwGSPoy0eow93gb52v/L4vTbr5Vkm5Vh107bu6say5jfaMlq3psy1j0bsvaiggdaQDwjO0yaYM3DSIiSrz6E4IIZuuzEUfD8BKRRMVYf8vy0ZOseBMltUy0Njxf1yhl4lg+7t4tJ8mgg/nJqcN8MpC0/RutjihVyDOO2Nbb1L7T48CqKqtlrbJVuzAUyIfpR93+wr5Q1O3vYOUjvaayGGTVKMJ+3zr6rI2WsEUvE60NJ8+OtE2MIY9BidQfw7KRdqMnxFGqjyOhdlWHfRVxJ98tddi3ES3xdlpGWr9FmeYjDfZBke8x4SQiTx3qBQRyDRPjTUKciLuNBJ5ER+P19kjC9vb0d9c02T4JOx6sOEjq4qvfu6oTMaQ2ahVxNBJtUSXejeNo38XYRpp8BjnZPbEe4aabR3khTT6DkiIF2zt8rN77NpOlZfR87MumKSacROSp5o4Cgdz0HQZCRD7g4UeI9+fP6ZRNpJ+4fxAg/6vPnJsG8S61RERecDKki4jarvQ9hyKiZMikz4g2eg2n7DYPRERERERERHFhDycReSrQqCAQz0ObM6B31NNr+5IpGdfuJEOG7I/MOa5SHUACZci6ZM6xxc8s34hjHUQoQ/Yj0GZ7OJlwEpGnlFDLX2wLIzO+aIEMWQ8Hd+5NA9EeM5IuFGRQYpAJnNzRNx04eYxLOsiEdQBgfqRPmorj+1y0y4D1j2DCSUSUeNkHFQRznX/LxPs8xJjqi5XDuh09BsZlnWq9Ca7TSVlX29ThiVJM+ymO9bd8hqrbemNs24qr0wil9f/Rqnd+jLiIwM1xn2iJbjvR660Y/u+A42QiBcdla3kPY0z1vkpg21Ef7RJDnVCiP0pEW9YtxzG72P6ONr+L+sLZvEutumyaYsJJRJ7KOiwQbBL2J/gRLhIIN8mWJ4mZR3ULp1fWe5DsukskndbpsFfU5bb3Iol30/OZ6PYVuNj3ahDRZzs/mVRc7H+HJ99IcNLp6v3m4gTd1WdJgk/8U7o+LnoyXdTpKumKxOGgfccJisP2HT1fVFOl8/adlQsEEpvEOnnGZjLqVuA8QXZSp6IIiCCfw5numHASkac67A2jXbb1z3KWJ4+KzTy1TOtMaTnNdPu6LMpIypuSZmk5h+1Y1ONkfSKvnfYGO61T+qOAk7adbgub19G2jalex+vlok7jTMve0ehtaqclpnzriZnT9VFk+14yTTvZ8jRQ7b0zV2B9jImWsJ1uQ5v41PJWJ6h262hZl6EOF8edNJmw2yd2MUfZ1+okl+tvOpG3LCOpz6K4uT7JcjaJodXHi7ascTnTx620XsNyMCc8TpeV3W5AUYSjJMqqnOxQ0pazqjsSm9U8WSwBOFtvq7bt1k9bb0Cx/j6Ptj6m9iw+ZWTLhY7W45/SGtMLH4tCROSB9nvr0S7L+iu3JWmQfB0HtOXkvWR2SZLupFZyJmEVg7SnySpBszqhtVneLmm1S6Is45ScKDtOsAxx2iWmxoTcVRJnk8xHXWddmxbbzkky4zTeKOWiJblRl7VYxorp+DEkwlbbVLbvjCec0faHbrqxXKQqcfyfmvmRxFIXh/rCQYJnYN6WkkTLcl/btGeb6GqWs6zbJtk0JJimjyVjEiLr3TIlWfplLRNBh8mfVQJnlZA4KWe1GQNW5RSh++i1S4DMyZ9+vaVJlmWb+uTHKrmxiqddIHoyBbQkS1aJl6mcTaLaUoc8kQvaxG2dhIYRtIjTSruA/sYKQYQdbV+7ckFZIgqhmyeLKaiEpclsU6AJz1vOSUO8hpOIKPHC2UGE2wUkiUGU5EvLImG0S1ilJ/92cURLHp0mnDbJhTkuSRIZrV5ZfYZlLRNyaSyS9pwmibKYZfVKl7HYH7EmqpFlHa6bND6XyaOrMrHsB4eJk+0+tklUpcm8rKwTTsuhdRWi9uJHAtIlv8rxZYW+TLQ4hKJp2DIqc4DGOI6XU88Lj5dTDI0K43m1esgbfiCIxKUtp92/QlHXV1edIlrOa9G6TtqPgpb5+p2svu0sehoVw+eIVeIYFkpLcmqYrksc1Vj0y4egmBJTbUpklZBGpocM62+VnAYk7RrLhY5/4FslRYouORQAgpZ16ZJIy168sGXbstdOewKjJZzaZRrC7XSxGJfTLmtMAqUJpyQZNU4Lai5ENM2zSuIh0BDKoKc4huU/EjlaNk0x4SQiT4WzAy0J53FRk0S7E2DLZSRJn5teRps23PQ6Ou4hjNImII/fKkl33a7t+sRQzjhP177NtnZch3U5x72NMayHqzpkjEmqg/Vw3YuqzjMkmW62mYtjRDYv2jBg23KmQhbtRBbU1mlZTh6jbr5RpLywqsyqbnflTB0TivFjUBwvZ35/axMdUwJ6fJqxJ1Rbj5qAA2qPqKkdRBJLq3mKKVmVvq0tZoTUZYQau2z3tCaW1km0XVJqrsN6nro85MmTbIirXXmnw1md9qKq0yW9qcZl3PSmti5jXW8iele1bVvXY9NbakheMyrhbKOYcBKRpw6VZSGYnaWb5jqBiHkZ54lltLocxRNnUhJzXW7bTUgy4bJNF3E4Ha4bdZ6svhjqdZLoRW3XRRwxxeygjCnaRLwX7YaaxsnckWi1sSwKKuZexahxOd3nprIu24nUrysr34aGzlObmBzuhxjqcHRzGbteG2MeHcMxE22Ysl0Vlu3ZxCtPqJ1vH6fXjUZr021dbt52soTPbewtdVlPt1/GWTuhIxl00yAOqSUiSrzak4FAbqpa9/mHc6zDalIhAckDWXOVpLclrnKExG9EacLqBR4DUTn9tDSWS5v3Vzp9HyRZ+FgGPRYFcSScfj+nscGEk4g8Fc4OAzlJfHhU2pxdJEYyzlH8sElTdi6Wvt/vsWkr6+u39UxCPG31PWQaAe2VuNfTBx+0biTzi6Exg4bUJrGHc968eZg/f75uWr9+/bB582YAQH19PW688UY899xzaGhoQGVlJR555BEUFxfHFp8NJpxE5CmRG4bITWbCmbymzG0n/4RBqP9JbqNWNyrxuMnU7NtUPmg7BceTIpCS4ynZUrKeQMp+vUnd+ia/SSUV7balYzgiiW0rmdTBmWSnn3463nrrLfV1u3atqd/s2bPxxhtv4IUXXkB+fj5mzJiBq666Cv/4xz8SHgcTTiLyVlhp+UsGYfh/CiQ7EQPQZk4k21KCAKSoR8pvPX8eEUqq+pNSs4GFgtT9gJFkwvqeQx43muT2Ui3J37UiGL1M2gjH8UtBDHepbdeuHUpKSkzTa2tr8fjjj2PJkiW46KKLAACLFi3CqaeeinXr1uGcc86JLUZZHAmtjYjIIHAsgID0lrFE1OalKKf3w1Dx5Ep+VtTW8jDyRjiTrm8VYZifi+RiWZc+//xzlJaWIjc3FxUVFViwYAF69uyJDRs2oKmpCaNGjVLL9u/fHz179kR1dTUTTiIiIiIioraorq5O9zonJwc5OTmmcuXl5Vi8eDH69euH3bt3Y/78+Tj//POxadMm1NTUIDs7GwUFBbpliouLUVNTk/CYmXASERERERF5LQE3DSorK9NNnjt3LubNm2cqPnbsWPXfAwcORHl5OXr16oXnn38e7du3jy2GGDHhJCJPHX/OOGWgtjckkYh8i59HmSuT9m0CruHcuXMn8vLy1MlWvZtWCgoKcMopp2Dr1q24+OKL0djYiIMHD+p6Offs2WN5zWe8mHASkbdSfSc98kyK7kNCRGSJn0eZKaNOIRLQw5mXl6dLOJ06fPgwtm3bhmuuuQZDhgxBVlYWVqxYgXHjxgEAtmzZgh07dqCioiK2+Gww4SQiIiIiIsogP/3pT3H55ZejV69e2LVrF+bOnYtgMIiJEyciPz8fU6dORVVVFQoLC5GXl4eZM2eioqIi4TcMAphwEpHXFGTWcBhSsTeBiHxD8KsmU2XUfhWIo4fTXfGvvvoKEydOxP79+9GtWzecd955WLduHbp16wYA+PWvf41AIIBx48ahoaEBlZWVeOSRR2KLLQomnETkKaEwMSEioiTIqLGXpMqk/ZqAIbVOPffcc7bzc3NzsXDhQixcuDC2eFxgwklEREREROS1cBhAjM/hDMe4nA/waexEbdzdd98NRVEwa9YsdVp9fT2mT5+OLl26oFOnThg3bhz27NmTuiCJiIiIKC2xh5OoDXvvvffwu9/9DgMHDtRNnz17Nt544w288MILyM/Px4wZM3DVVVfhH//4h+s2RFBAtPNwPAzH68aNj62JA7dd/LgNE4Lv4zhw28XPw+9ipTmDvueTOKTWT5hwErVRhw8fxqRJk/CHP/wBd955pzq9trYWjz/+OJYsWYKLLroIALBo0SKceuqpWLdunfu7lwWP/3khnovvSSUEmLjHyPVW4+FKDrlOIHlsxUYoTNYTwcNHoCkhb+pNCSacRNSWTJ8+HZdeeilGjRqlSzg3bNiApqYmjBo1Sp3Wv39/9OzZE9XV1e4Tzo7NELnNiQnaKimK5fM3UZ/ZiUjSEvn9EU9diUo4/bI+xyker5fjEIXh//FKwHol7CTbB+dAvlqXBB1zSqKOmQRtm4SslY8+HxKyfRO4Pgk5hhN97Llq2+G0GITrM+gH0XAcmXnYBx+2MWLCSdQGPffcc/jggw/w3nvvmebV1NQgOzsbBQUFuunFxcWoqamR1tnQ0ICGhgb1dV1dHQAg0C4MJStBF7oLQPgpyRNK/D84JjIhiisWEX8sif6FOwHbRiTqF2ERZ/KqtNSRkLN2of4njjqUhBx6vuoZ8kkyryTyfRBvUpWAOlTH64lrnyc44Yz7+Mukfe2jWABASeD9bUSCfrOm1GHCSdTG7Ny5E//v//0/LF++HLm5uQmrd8GCBZg/f75peuhYOwQS9VGTrC/TTBxe6mTb+alHMRbG+DMlGbLYpr5K9PwiUYdenBvX8jeOON4X8YST8MNEGOpM4XEY+Q0nLk5+kErSOib1PR31OzAxzSRqnUIZ9IEnRBhCxJaNx7qcHzDhJGpjNmzYgL179+Kss85Sp4VCIaxduxYPP/ww3nzzTTQ2NuLgwYO6Xs49e/agpKREWu+cOXNQVVWlvq6rq0NZWRmUxgCUYJrdEDtzvtv0PLzGxhcy8YcCJLjnIkP5atcbYlHi7JH21boZpTA4r98SyX7fJfUtnmafJ2n8NBAzIWIfGstrOIkoXYwcORIff/yxbtqUKVPQv39/3HLLLSgrK0NWVhZWrFiBcePGAQC2bNmCHTt2oKKiQlpvTk4OcnJyTNODRwIIhGJMOJN8LhM5d0rWj6m+PpGMRwb9Gm0pBfstY48VICXbM5lEkn9vS+6xkqL3eqZ+xiRr30U2X7LfezG2Fw5mUMYp4vglgwknEaWLzp0744wzztBN69ixI7p06aJOnzp1KqqqqlBYWIi8vDzMnDkTFRUV7m8YBCBQryAYz7dakk4shILUnPgmqc3krp+S/B8LjjebNEoST+wVkfzz62SuXzKlar2StQOT/TmmACLZB2eS1y95baUgmUjm8RLH+gmRSbepbZuYcBKRya9//WsEAgGMGzcODQ0NqKysxCOPPBJTXdmHgGCjfRnpCaCi/scwzRlXJ5Y2ZRN+guqgvqhtJmjdvGwzIdvNwUmKUKwPFev64g1I02Yit5ddW24S+EQcWy2NQom27RN1XDmRsGPY4UlvIo+lRCZlSTrmWupyELNi+H+89Tlpz9XnkH2bUd/DDuvRl40y2812ta3HWTgtheVtuqrG1XYwl5XFHK3eULsG2/lpJRyO/Y5KvIaTiNLZ6tWrda9zc3OxcOFCLFy4MO66s+sEgjn2XyZuet8cnbwqgIj2bZzoNtV2o5dx1Ga0YXhuYk9F/Amrx0Gylcht4TBRjnaC5Ha7R52fgLoivcCOzhmV44muLWcnnwriTDrd/HjhJElOVKKYwB8BXCXCiUiqHdaTsIRMcZGs2LSpKA7ail7N8bqc3+ZWcRF/tG0WCDhLGqJ+hSnCeUyOSgEBB3UqikAgAZ+RbtoMB+vxb0e1pQEOqSUiSrx29QIBu8/I419czhNJZ+WMH+im5RTJvy3Y98BKytr2mNqdUTmLy0k7urIuemxst7HdOmuLWdXhcFlteVfJSpTtFbUXVDFXI9/3sp/qW/9nPuas3wjRji/F4eNUnGxL011G7RaJ0q5lQipZx8jkRI06kLbl5Nh1tC01dbt4/1uXi6Mu4zo6+XyQ7QOHx6OxfttkQFOnbYJ0vA7bIpb701kvmdWyTnrTnCRFTpNNxcE6Bhy2bTcvYLNfAtJ9bx+/Li4HdcraMbbppFykTMDmkynUnDk9nCIchoixh5N3qSUikgjWC7QLST4kJd/MLQmS9UwnPWeWZWzbsq9S1stmlyjYxynk9bk8IXUWv3UZaeJrU6ds28bcoxllfwmrTR9DXVaTnfVkWk+XbnfF8p+2x7QijdsmQZXleg6OU8sojBMjCaIs6ZRtO6GY447jBiXy95jk5NT22HC5TNQ6bepzs0yU8tJETlKXNLmIsp52vYeWh4BND6FdUiibJ4s71p4+2WJ2PWrWSZyzhE1WRpZ0BV2W18YoK2OZHCJ6D2IghjoDUZImu/qk8yRJZ1MoynU55HtMOInIU+EcBaGslq9+d4mg1VmJVTmn9UkCNEx3E6NtouUkCbQo77j300E70XpBXcce4/pG7TGNFp+bZF/Whou6oy1r2b6DnienSaWj2DQJeVROfpSwqFv62qlYl9NWYcxdo9Vp1xmnXVjzT+Gkz9fVLxY23ciR97fu1wg1QMvyllUpmkpMvaCyH5IcDAOHYpmcWK+qIhnJIE/+5Mmw/fBd+95A+TJuk9hoiajd4WeVRDnpxTQOT3XTG2lcTjrPQT1ue0edLG+VQLpJzCPTmprS7NFqdjiklogo8Ro7KghmK856wSIUB9dgaso6r9N5WSfcDlU1Letlmx7UmdDhkG7aTsL+kNfn7Ave1+vhoqyz3mrnJz1xXbtpbEaXpMmy+khZSS+rti41X4vWhRblWk5jvQ7qczzD0TWp+uWkSyjWIyuMHB8vKbzGM5E3+2nZhE7bdlYunms+rYcHJ27or9P6gJZt42RYrKs6HV4D2lpWIHQ0g9KVsHxkQFRMOImIrDV3UCByWr5dPEtYnNaVyDpd1OeqTgfteRFfqhJO9z3B8i/cVG0XXdsOeiWj1uWsmKs63f3g4uzavlRwep7m6IZHTupympRGyjqNz3GCI+uKi1TkrBrdMgkrq0QZvaANTnH/XndUb5SiDhNn5xU6bddZct9a3m6mi/V13J67BNvJdkzUTZWs6gwdc74M+RMTTiLyVEOhQCA3hb/KuTnRToVYYvN4fXz9G6qbHt4UcNMrmlR+fx844SYviFrW+QgKL7abEu9B7DKhibSaNL5/n3r7Ho3pmPHx9gKQ0s+18DG/bxwXhAAQ62NRfPjd4hATTiLylAi2/KWMm15I76KQ8+v3qF/jgs8Tp5gSAe/5epv5mT935/EeXJ+ffPo1PMVhj3WypSAkV4m3qwd/JljYh/srRiIsYv7BQzDhJCKylvKE0yHf9kxRdD46F/HjeSzFyYcfCy13JPbPwWY67n24zchM8XlPdITSnAZBOiXCiL2Hk49FISJKa4pwct1XG8HEO2bJ2HRMatMA95G/8TOuBY9TShImnETkKSXU8tfywt8/fPv5kqikUqLcDMRvoh1UGXZy6eRGqJRCmXC9rFEmvYfSpFcvJhm0XkJzeYJolznHH4fUEhElUOSDMVxf3zoxk74MgYxaHx2eMPtbpu2fTFoXwPc/rLmWSe8dIOMTTq9viJRUx/dT5DwinROuiGbREPPQ2GY0JTia5FFEJuw9IvKdr776CmVlZakOg4iIiDLAzp070aNHj1SHEZP6+nr06dMHNTU1cdVTUlKC7du3Izc3N0GRJQcTTiLyRDgcxpYtW3Daaadh586dyMvLS3VIZFBXV4eysjLuH5/i/vE37h9/4/7xNzf7RwiBQ4cOobS0FIFAIEkRJl59fT0aGxvjqiM7Ozvtkk2AQ2qJyCOBQAAnnngiACAvL49f+D7G/eNv3D/+xv3jb9w//uZ0/+Tn5ychGm/l5uamZbKYCOn7MwERERERERH5GhNOIiIiIiIi8gQTTiLyTE5ODubOnYucnJxUh0IWuH/8jfvH37h//I37x9+4f9oW3jSIiIiIiIiIPMEeTiIiIiIiIvIEE04iIiIiIiLyBBNOIiIiIiIi8gQTTiIiIiIiIvIEE04i8sTChQvRu3dv5Obmory8HO+++26qQ2qT5s2bB0VRdH/9+/dX59fX12P69Ono0qULOnXqhHHjxmHPnj0pjDizrV27FpdffjlKS0uhKApefvll3XwhBO644w50794d7du3x6hRo/D555/ryhw4cACTJk1CXl4eCgoKMHXqVBw+fDiJa5G5ou2fa6+91vR+GjNmjK4M9493FixYgKFDh6Jz584oKirCFVdcgS1btujKOPlM27FjBy699FJ06NABRUVFuOmmm9Dc3JzMVclITvbPhRdeaHoP/eQnP9GV4f7JPEw4iSjhli5diqqqKsydOxcffPABBg0ahMrKSuzduzfVobVJp59+Onbv3q3+vf322+q82bNn47XXXsMLL7yANWvWYNeuXbjqqqtSGG1mO3LkCAYNGoSFCxdazr/33nvx29/+Fo899hjWr1+Pjh07orKyEvX19WqZSZMm4ZNPPsHy5cvx+uuvY+3atbjuuuuStQoZLdr+AYAxY8bo3k/PPvusbj73j3fWrFmD6dOnY926dVi+fDmampowevRoHDlyRC0T7TMtFArh0ksvRWNjI9555x08+eSTWLx4Me64445UrFJGcbJ/AGDatGm699C9996rzuP+yVCCiCjBhg0bJqZPn66+DoVCorS0VCxYsCCFUbVNc+fOFYMGDbKcd/DgQZGVlSVeeOEFddpnn30mAIjq6uokRdh2ARAvvfSS+jocDouSkhJx3333qdMOHjwocnJyxLPPPiuEEOLTTz8VAMR7772nlvnrX/8qFEUR//nPf5IWe1tg3D9CCDF58mTx7W9/W7oM909y7d27VwAQa9asEUI4+0z7y1/+IgKBgKipqVHLPProoyIvL080NDQkdwUynHH/CCHEBRdcIP7f//t/0mW4fzITeziJKKEaGxuxYcMGjBo1Sp0WCAQwatQoVFdXpzCytuvzzz9HaWkp+vbti0mTJmHHjh0AgA0bNqCpqUm3r/r374+ePXtyX6XA9u3bUVNTo9sf+fn5KC8vV/dHdXU1CgoKcPbZZ6tlRo0ahUAggPXr1yc95rZo9erVKCoqQr9+/XD99ddj//796jzun+Sqra0FABQWFgJw9plWXV2NAQMGoLi4WC1TWVmJuro6fPLJJ0mMPvMZ90/EM888g65du+KMM87AnDlzcPToUXUe909mapfqAIgos3z99dcIhUK6LwsAKC4uxubNm1MUVdtVXl6OxYsXo1+/fti9ezfmz5+P888/H5s2bUJNTQ2ys7NRUFCgW6a4uBg1NTWpCbgNi2xzq/dOZF5NTQ2Kiop089u1a4fCwkLusyQYM2YMrrrqKvTp0wfbtm3Dz372M4wdOxbV1dUIBoPcP0kUDocxa9YsnHvuuTjjjDMAwNFnWk1NjeV7LDKPEsNq/wDA9773PfTq1QulpaX46KOPcMstt2DLli148cUXAXD/ZComnEREGWzs2LHqvwcOHIjy8nL06tULzz//PNq3b5/CyIjSz4QJE9R/DxgwAAMHDsRJJ52E1atXY+TIkSmMrO2ZPn06Nm3apLsmnfxDtn+01zMPGDAA3bt3x8iRI7Ft2zacdNJJyQ6TkoRDaokoobp27YpgMGi6K+CePXtQUlKSoqgooqCgAKeccgq2bt2KkpISNDY24uDBg7oy3FepEdnmdu+dkpIS0823mpubceDAAe6zFOjbty+6du2KrVu3AuD+SZYZM2bg9ddfx6pVq9CjRw91upPPtJKSEsv3WGQexU+2f6yUl5cDgO49xP2TeZhwElFCZWdnY8iQIVixYoU6LRwOY8WKFaioqEhhZAQAhw8fxrZt29C9e3cMGTIEWVlZun21ZcsW7Nixg/sqBfr06YOSkhLd/qirq8P69evV/VFRUYGDBw9iw4YNapmVK1ciHA6rJ26UPF999RX279+P7t27A+D+8ZoQAjNmzMBLL72ElStXok+fPrr5Tj7TKioq8PHHH+t+GFi+fDny8vJw2mmnJWdFMlS0/WNl48aNAKB7D3H/ZKBU37WIiDLPc889J3JycsTixYvFp59+Kq677jpRUFCgu+scJceNN94oVq9eLbZv3y7+8Y9/iFGjRomuXbuKvXv3CiGE+MlPfiJ69uwpVq5cKd5//31RUVEhKioqUhx15jp06JD48MMPxYcffigAiAceeEB8+OGH4ssvvxRCCHH33XeLgoIC8corr4iPPvpIfPvb3xZ9+vQRx44dU+sYM2aMOPPMM8X69evF22+/Lb7xjW+IiRMnpmqVMord/jl06JD46U9/Kqqrq8X27dvFW2+9Jc466yzxjW98Q9TX16t1cP945/rrrxf5+fli9erVYvfu3erf0aNH1TLRPtOam5vFGWecIUaPHi02btwoli1bJrp16ybmzJmTilXKKNH2z9atW8XPf/5z8f7774vt27eLV155RfTt21cMHz5crYP7JzMx4SQiTzz00EOiZ8+eIjs7WwwbNkysW7cu1SG1SePHjxfdu3cX2dnZ4sQTTxTjx48XW7duVecfO3ZM3HDDDeKEE04QHTp0EFdeeaXYvXt3CiPObKtWrRIATH+TJ08WQrQ8GuX2228XxcXFIicnR4wcOVJs2bJFV8f+/fvFxIkTRadOnUReXp6YMmWKOHToUArWJvPY7Z+jR4+K0aNHi27duomsrCzRq1cvMW3aNNMPadw/3rHaNwDEokWL1DJOPtO++OILMXbsWNG+fXvRtWtXceONN4qmpqYkr03mibZ/duzYIYYPHy4KCwtFTk6OOPnkk8VNN90kamtrdfVw/2QeRQghktefSkRERERERG0Fr+EkIiIiIiIiTzDhJCIiIiIiIk8w4SQiIiIiIiJPMOEkIiIiIiIiTzDhJCIiIiIiIk8w4SQiIiIiIiJPMOEkIiIiIiIiTzDhJCIiIiIiIk8w4SQiIiIiIiJPMOEkIiIiIiIiTzDhJCIiIiIiIk8w4SQiIiIiIiJP/H8rqqxjhpPeTgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(3,1, figsize=(25/2, 9/2))\n", "lut1 = np.load(\"LUT_x4_8.0bit_int8_stage1_3x3_rc_conv.npy\")\n", "lut2 = np.load(\"LUT_x4_8.0bit_int8_stage1_5x5_rc_conv.npy\")\n", "lut3 = np.load(\"LUT_x4_8.0bit_int8_stage1_7x7_rc_conv.npy\")\n", "a[0].imshow(lut1)\n", "a[1].imshow(lut2)\n", "a[2].imshow(lut3)\n", "pcm = a[0].pcolormesh(lut1)\n", "f.colorbar(pcm, ax=a, location='right')\n", "f.suptitle(\"Stage 1, rc_conv\")\n", "a[0].set_title(\"3x3\")\n", "a[1].set_title(\"5x5\")\n", "a[2].set_title(\"7x7\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '7x7')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAGkCAYAAAA196gAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmiUlEQVR4nO3deXxU1f3/8fckkIUliYGsLCGA7JsGiCmLWCJhcWFrAakCpSCY0GJQQH/K0qooX6uooNTWglViUQuoVFF2ioRFBFkEChEFhAAmJiFg1rm/P2hmMRlIJoTcIa8nj/t4nDn33HPPnRxm8sm551yLYRiGAAAAAAAwGa/qbgAAAAAAAGUhYAUAAAAAmBIBKwAAAADAlAhYAQAAAACmRMAKAAAAADAlAlYAAAAAgCkRsAIAAAAATImAFQAAAABgSgSsAAAAAABTImAFAMDEvv32W1ksFi1durS6mwIHS5culcVi0bfffnvN6+ZnDgB2BKwAgCq3f/9+DR8+XFFRUfLz81OjRo1055136pVXXnEq98wzz2jVqlXV08gKevrpp3XPPfcoLCxMFotFc+bMqe4mAbp06ZLmzJmjTZs2VXdTAOCaIGAFAFSpbdu2qWvXrvrqq680YcIELVy4UL/73e/k5eWll156yamsJwWsTzzxhHbt2qVbbrmlupsC2Fy6dElz584lYAVww6hV3Q0AANzYnn76aQUGBmrXrl0KCgpy2nfu3LnqadQ1cPz4cTVr1kw//PCDQkJCqrs5AADckBhhBQBUqbS0NLVv375UsCpJoaGhtrTFYtHFixf15ptvymKxyGKxaOzYsZKk7777Tg899JBat24tf39/NWjQQL/61a/KnD+4b98+3X777fL391fjxo311FNPacmSJWXON/zkk0/Uq1cv1a1bV/Xr19egQYN08ODBcl1Xs2bNyvkOlF9WVpbGjh2rwMBABQUFacyYMcrKyiqz7OHDhzV8+HAFBwfLz89PXbt21YcffuhUpmSe5eeff67k5GSFhISobt26GjJkiM6fP+9U9osvvlBCQoIaNmwof39/RUdH67e//a1TGavVqgULFqh9+/by8/NTWFiYHnzwQf34448Vus6xY8eW+f7NmTNHFovFKc9isSgpKUnLli1T69at5efnp5iYGG3ZssWp3IULFzR16lQ1a9ZMvr6+Cg0N1Z133qkvv/zSqdyOHTs0cOBA3XTTTapbt646derkNNK/b98+jR07Vs2bN5efn5/Cw8P129/+VhkZGeW6tsr0qSvp06eP+vTpUyrf8b389ttvbX88mTt3ru3/EberA/BkjLACAKpUVFSUUlNTdeDAAXXo0MFlubfeeku/+93v1L17d02cOFGS1KJFC0nSrl27tG3bNo0cOVKNGzfWt99+q9dee019+vTR119/rTp16kiSvv/+e91xxx2yWCx67LHHVLduXf3tb3+Tr69vmecbM2aMEhIS9Nxzz+nSpUt67bXX1LNnT+3Zs6dKAtIrMQxD9957r7Zu3apJkyapbdu2WrlypcaMGVOq7MGDB9WjRw81atRIM2fOVN26dfXuu+9q8ODB+te//qUhQ4Y4lZ8yZYpuuukmzZ49W99++60WLFigpKQkLV++XNLlke5+/fopJCREM2fOVFBQkL799lutWLHCqZ4HH3xQS5cu1bhx4/T73/9ex48f18KFC7Vnzx59/vnnql27dpW8N5s3b9by5cv1+9//Xr6+vnr11VfVv39/7dy509anJk2apPfff19JSUlq166dMjIytHXrVh06dEi33nqrJGnt2rW66667FBERoT/84Q8KDw/XoUOHtHr1av3hD3+wlfnmm280btw4hYeH6+DBg3r99dd18OBBbd++vVRA7ai6+1RISIhee+01TZ48WUOGDNHQoUMlSZ06darS8wJAlTIAAKhCn332meHt7W14e3sbcXFxxvTp041PP/3UKCgoKFW2bt26xpgxY0rlX7p0qVReamqqIcn4xz/+YcubMmWKYbFYjD179tjyMjIyjODgYEOScfz4ccMwDOPChQtGUFCQMWHCBKc609PTjcDAwFL5V3L+/HlDkjF79uxyH1OWVatWGZKM+fPn2/KKioqMXr16GZKMJUuW2PL79u1rdOzY0cjLy7PlWa1W4xe/+IVx88032/KWLFliSDLi4+MNq9Vqy3/44YcNb29vIysryzAMw1i5cqUhydi1a5fL9v3nP/8xJBnLli1zyl+zZk2Z+VcyZswYIyoqqlT+7NmzjZ//aiLJkGR88cUXtrzvvvvO8PPzM4YMGWLLCwwMNBITE12es6ioyIiOjjaioqKMH3/80Wmf43tTVl975513DEnGli1bbHkl721V9Knjx4+X+pnffvvtxu23316q7M/fy2vVHwHALLglGABQpe68806lpqbqnnvu0VdffaX58+crISFBjRo1KnULqyv+/v62dGFhoTIyMtSyZUsFBQU53fK5Zs0axcXFqUuXLra84OBgjR492qm+tWvXKisrS6NGjdIPP/xg27y9vRUbG6uNGzdW7qLd8PHHH6tWrVqaPHmyLc/b21tTpkxxKpeZmakNGzbo17/+tS5cuGBre0ZGhhISEnT06FF9//33TsdMnDjRaWSwV69eKi4u1nfffSdJttu1V69ercLCwjLb99577ykwMFB33nmn03sWExOjevXqVel7FhcXp5iYGNvrpk2b6t5779Wnn36q4uJi2zXs2LFDp0+fLrOOPXv26Pjx45o6dWqp29Md3xvHvpaXl6cffvhBt912mySVur3YkRn7FADcCLglGABQ5bp166YVK1aooKBAX331lVauXKkXX3xRw4cP1969e9WuXbsrHv/TTz9p3rx5WrJkib7//nsZhmHbl52dbUt/9913iouLK3V8y5YtnV4fPXpUkvTLX/6yzPMFBASU+9qule+++04RERGqV6+eU37r1q2dXh87dkyGYejJJ5/Uk08+WWZd586dU6NGjWyvmzZt6rT/pptukiTb3NPbb79dw4YN09y5c/Xiiy+qT58+Gjx4sO677z7b7dRHjx5Vdna207zjn5+zqtx8882l8lq1aqVLly7p/PnzCg8P1/z58zVmzBg1adJEMTExGjhwoB544AE1b95c0uW51JKueFu6dPkPAnPnztU///nPUtfk2Nd+zox9CgBuBASsAIDrxsfHR926dVO3bt3UqlUrjRs3Tu+9955mz559xeOmTJmiJUuWaOrUqYqLi1NgYKAsFotGjhwpq9Va4XaUHPPWW28pPDy81P5atcz79VjS9kceeUQJCQlllvl5gO7t7V1muZLA32Kx6P3339f27dv10Ucf6dNPP9Vvf/tb/fnPf9b27dtVr149Wa1WhYaGatmyZWXWVZGVkl3NAy0ZLXXHr3/9a/Xq1UsrV67UZ599pv/7v//Tc889pxUrVmjAgAEVqmfbtm169NFH1aVLF9u19+/f/4p9rar7lMVicfpDTYnKvGcA4AnM+40MALihde3aVZJ05swZW56rQOb999/XmDFj9Oc//9mWl5eXV2oF3aioKB07dqzU8T/PK1nMKTQ0VPHx8W61/1qLiorS+vXrlZub6zTKeuTIEadyJSOGtWvXvuZtv+2223Tbbbfp6aefVkpKikaPHq1//vOf+t3vfqcWLVpo3bp16tGjh9Nts+646aabylz9uOQW5Z8rGb109N///ld16tRxCpQjIiL00EMP6aGHHtK5c+d066236umnn9aAAQNsP/MDBw64fN9+/PFHrV+/XnPnztWsWbOueP6fq+o+ddNNN+mbb74plf/z9+xKi0IBgCdiDisAoEpt3LixzJGhjz/+WJLzLa9169YtM5Dx9vYuVccrr7xSanQpISFBqamp2rt3ry0vMzOz1KhgQkKCAgIC9Mwzz5Q5Z/Pnj3y5HgYOHKiioiK99tprtrzi4mK98sorTuVCQ0PVp08f/eUvf3EK9ku40/Yff/yx1PtbMg84Pz9f0uWRx+LiYv3pT38qdXxRUZHLx++UpUWLFsrOzta+fftseWfOnNHKlSvLLJ+amuo0f/TkyZP64IMP1K9fP3l7e6u4uLjU7bqhoaGKjIy0tf/WW29VdHS0FixYUKqtJddeMhL98/diwYIFV72mqu5TLVq00OHDh53q+eqrr/T55587lStZMbsiPw8AMDNGWAEAVWrKlCm6dOmShgwZojZt2qigoEDbtm3T8uXL1axZM40bN85WNiYmRuvWrdMLL7ygyMhIRUdHKzY2VnfddZfeeustBQYGql27dkpNTdW6devUoEEDp3NNnz5db7/9tu68805NmTLF9libpk2bKjMz0zb6FBAQoNdee03333+/br31Vo0cOVIhISE6ceKE/v3vf6tHjx5auHDhFa/rrbfe0nfffadLly5JkrZs2aKnnnpKknT//fcrKipKkrRp0ybdcccdmj179hWfh3n33XerR48emjlzpr799lu1a9dOK1asKHPe5KJFi9SzZ0917NhREyZMUPPmzXX27Fmlpqbq1KlT+uqrr67+g3Hw5ptv6tVXX9WQIUPUokULXbhwQX/9618VEBCggQMHSro8z/XBBx/UvHnztHfvXvXr10+1a9fW0aNH9d577+mll17S8OHDy3W+kSNHasaMGRoyZIh+//vf2x7/0qpVqzIXNurQoYMSEhKcHmsjXX7WqHT5GayNGzfW8OHD1blzZ9WrV0/r1q3Trl27bKPyXl5eeu2113T33XerS5cuGjdunCIiInT48GEdPHhQn376qQICAtS7d2/Nnz9fhYWFatSokT777DMdP378qtd0LfrUlfz2t7/VCy+8oISEBI0fP17nzp3T4sWL1b59e+Xk5NjK+fv7q127dlq+fLlatWql4OBgdejQ4apzdwHAtKptfWIAQI3wySefGL/97W+NNm3aGPXq1TN8fHyMli1bGlOmTDHOnj3rVPbw4cNG7969DX9/f0OS7RE3P/74ozFu3DijYcOGRr169YyEhATj8OHDRlRUVKnH4OzZs8fo1auX4evrazRu3NiYN2+e8fLLLxuSjPT0dKeyGzduNBISEozAwEDDz8/PaNGihTF27FinR6i4cvvtt9seufLzbePGjbZyH330kSHJWLx48VXrzMjIMO6//34jICDACAwMNO6//35jz549pR5xYhiGkZaWZjzwwANGeHi4Ubt2baNRo0bGXXfdZbz//vu2MiWPXvn542o2btzo1M4vv/zSGDVqlNG0aVPD19fXCA0NNe66664y34fXX3/diImJMfz9/Y369esbHTt2NKZPn26cPn36qtfn6LPPPjM6dOhg+Pj4GK1btzbefvttl4+1SUxMNN5++23j5ptvNnx9fY1bbrnF6T3Oz883Hn30UaNz585G/fr1jbp16xqdO3c2Xn311VLn3bp1q3HnnXfaynXq1Ml45ZVXbPtPnTplDBkyxAgKCjICAwONX/3qV8bp06dLPSrm54+1cXxv3e1TJcp6rI1hGMbbb79tNG/e3PDx8TG6dOlifPrpp2U+Imjbtm1GTEyM4ePjwyNuAHg8i2GUcZ8WAAA3kKlTp+ovf/mLcnNzXS5AVFWmT5+ud955R8eOHbOtuIvys1gsSkxMrNToJADAczGHFQBwQ/npp5+cXmdkZOitt95Sz549r3uwKl2ew/vkk08SrAIA4AbmsAIAbihxcXHq06eP2rZtq7Nnz+qNN95QTk6Oy2eWVrVdu3ZVy3mrQ25urnJzc69YJiQkpFr+cGAGBQUFyszMvGKZwMDASq/CDAA3EgJWAMANZeDAgXr//ff1+uuvy2Kx6NZbb9Ubb7yh3r17V3fTbnjPP/+8bSEkV44fP65mzZpdnwaZzLZt23THHXdcscySJUs0duzY69MgAPAAzGEFAADXxDfffFPms0Id9ezZU35+ftepReby448/avfu3Vcs0759e0VERFynFgGA+RGwAgAAAABMiUWXAAAAAACmRMAKAAAAADAlAlYAAAAAgCkRsAIAAAAATImAFQAAAABgSgSsAAAAAABTImAFAAAAAJgSASsAAAAAwJQIWAEAAAAApkTACgAAAAAwJQJWAAAAAIApEbACAAAAAEyJgBUAAAAAYEoErAAAAAAAUyJgBQAAAACYEgErAAAAAMCUCFgBAAAAAKZEwAoAAAAAMCUCVgAAAACAKRGwAgAAAABMiYAVAAAAAGBKBKwAAAAAAFMiYAUAAAAAmBIBKwAAAADAlGpVdwMAAAAAAK7l5eWpoKCgUnX4+PjIz8/vGrXo+iFgBQAAAACTysvLU3RUPaWfK65UPeHh4Tp+/LjHBa0ErAAAAABgUgUFBUo/V6zju6MUUN+9GZ05F6yKjvlOBQUFHhewMocVAAAAAEwuoL5XpbaKmDdvnrp166b69esrNDRUgwcP1pEjR5zK9OnTRxaLxWmbNGmSU5kTJ05o0KBBqlOnjkJDQ/Xoo4+qqKioQm1hhBUAAAAATK7YsKrYcP/Yiti8ebMSExPVrVs3FRUV6fHHH1e/fv309ddfq27durZyEyZM0B//+Efb6zp16tjPWVysQYMGKTw8XNu2bdOZM2f0wAMPqHbt2nrmmWfK3RYCVgAAAAAwOasMWeVexFrR49asWeP0eunSpQoNDdXu3bvVu3dvW36dOnUUHh5eZh2fffaZvv76a61bt05hYWHq0qWL/vSnP2nGjBmaM2eOfHx8ytUWbgkGAAAAAJOzVvJfZWRnZ0uSgoODnfKXLVumhg0bqkOHDnrsscd06dIl277U1FR17NhRYWFhtryEhATl5OTo4MGD5T43I6wAAAAAUAPk5OQ4vfb19ZWvr+8Vj7FarZo6dap69OihDh062PLvu+8+RUVFKTIyUvv27dOMGTN05MgRrVixQpKUnp7uFKxKsr1OT08vd5sJWAEAAADA5IoNQ8WGe7cElxzXpEkTp/zZs2drzpw5Vzw2MTFRBw4c0NatW53yJ06caEt37NhRERER6tu3r9LS0tSiRQu32lkWAlYAAAAAMLlrMYf15MmTCggIsOVfbXQ1KSlJq1ev1pYtW9S4ceMrlo2NjZUkHTt2TC1atFB4eLh27tzpVObs2bOS5HLea1mYwwoAAAAAJmeVoWI3t5KANSAgwGlzFbAahqGkpCStXLlSGzZsUHR09FXbt3fvXklSRESEJCkuLk779+/XuXPnbGXWrl2rgIAAtWvXrtzXzQgrAAAAAMAmMTFRKSkp+uCDD1S/fn3bnNPAwED5+/srLS1NKSkpGjhwoBo0aKB9+/bp4YcfVu/evdWpUydJUr9+/dSuXTvdf//9mj9/vtLT0/XEE08oMTHxqiO7jiyG4eaN0AAAAACAKpWTk6PAwEClHQ5X/fru3SB74YJVLdqkKzs72+mWYFcsFkuZ+UuWLNHYsWN18uRJ/eY3v9GBAwd08eJFNWnSREOGDNETTzzhVP93332nyZMna9OmTapbt67GjBmjZ599VrVqlX/clIAVAAAAAEyqJGD976GwSgWsrdqeLXfAaibMYQUAAAAAmBJzWAEAAADA5Kz/29w91lMRsAIAAACAyZWs+OvusZ6KgBUAAAAATK7YuLy5e6ynYg4rAAAAAMCUGGEFAAAAAJNjDisAAAAAwJSssqhYZT8ftTzHeioCVgAAAAAwOatxeXP3WE/FHFYAAAAAgCkxwgoAAAAAJldciVuC3T3ODAhYAQAAAMDkCFgBAAAAAKZkNSyyGm4uuuTmcWbAHFYAAAAAgCkxwgoAAAAAJldTbwlmhBUAYGoHDx7Ur371KzVv3lx16tRRw4YN1bt3b3300Udu1ffMM8/otttuU0hIiPz8/HTzzTdr6tSpOn/+/DVuOQAA106xvCq1eSpGWAEApvbdd9/pwoULGjNmjCIjI3Xp0iX961//0j333KO//OUvmjhxYoXq2717t7p06aKRI0eqfv36OnTokP7617/q3//+t/bu3au6detW0ZUAAOA+oxJzWA0PnsNqMQzDgx8jCwCoiYqLixUTE6O8vDwdPny40vX961//0vDhw/XOO+9o5MiR16CFAABcGzk5OQoMDNT6/U1Vt757I6UXL1jVt+MJZWdnKyAg4Bq3sGp57tgwAKDG8vb2VpMmTZSVlSVJ2rBhg7y8vDRr1iyncikpKbJYLHrttdeuWF+zZs0kyVYfAABmUzKH1d3NU3FLMADAI1y8eFE//fSTsrOz9eGHH+qTTz7RiBEjJEm//OUv9dBDD2nevHkaPHiwbr31Vp05c0ZTpkxRfHy8Jk2a5FSXYRjKyMhQUVGRjh49qpkzZ8rb21t9+vSphisDAODqig0vFRvujTcWe/A9tQSsAACPMG3aNP3lL3+RJHl5eWno0KFauHChbf/8+fP16aef6oEHHtDu3bs1YcIEFRUV6Y033pDF4vyX5bNnzyoiIsL2unHjxkpJSVGbNm2uz8UAAFBBVllkdfMGWas8N2IlYAUAeISpU6dq+PDhOn36tN59910VFxeroKDAtr9OnTpaunSpevfurd69e2vnzp1644031LRp01J1BQcHa+3atcrLy9OePXu0YsUK5ebmXs/LAQAA5cCiSwAAj9SvXz9lZWVpx44dTiOoSUlJWrRokRISErRmzZpy1bVt2zb16NFDH330ke66666qajIAABVWsujSh/taqG59b7fquHihWPd0SmPRJQAArpfhw4dr165d+u9//2vLy8/P16ZNmyRJaWlpunTpUrnq+sUvfqGIiAgtW7asKpoKAECllcxhdXfzVJ7bcgBAjfbTTz9JkrKzs215s2fP1qFDh/T888/r+PHjmjlzZrnry8vLc6oLAABUPwJWAICpnTt3rlReYWGh/vGPf8jf31/t2rWTJO3YsUPPP/+8pk6dqmnTpunRRx/VwoULtXnzZttxFy9eLHPU9V//+pd+/PFHde3ateouBACASri86JL7m6diDisAwNSGDBminJwc9e7dW40aNVJ6erqWLVumw4cP689//rOSk5OVl5enLl26yGKxaM+ePfLz81NBQYFuvfVWXbp0Sfv371fdunW1d+9excfHa8SIEWrTpo28vLz0xRdf6O2331bjxo31xRdfqEGDBtV9yQAA2JTMYX3vqzaq4+Yc1ksXivWrzoc9cg4rqwQDAExtxIgReuONN/Taa68pIyND9evXV0xMjJ577jndc889kqTHH39cx44d07Zt2+Tn5ydJ8vHx0ZtvvqnbbrtNjz76qF599VU1btxYw4YN04YNG/Tmm2+qsLBQUVFRSkpK0v/7f/+PYBUAYFqVew6r545RMsIKAAAAACZVMsL6z73tKjXCOrLL14ywAgAAAACuPau8ZHVzCSKrPHeMkoAVAAAAAEyu2LCo2HBv8SR3jzMDAlYAAAAAMLlieanYzRHWYg8eYeWxNgAAAAAAU2KEFQAAAABMzmp4yermKsFWD15n17QjrIsWLVKzZs3k5+en2NhY7dy5s7qbBAAAAADVouSWYHc3T2XKli9fvlzJycmaPXu2vvzyS3Xu3FkJCQk6d+5cdTcNAAAAAK47q+wLL1V0s1Z34yvBlM9hjY2NVbdu3bRw4UJJktVqVZMmTTRlyhTNnDnzisdarVadPn1a9evXl8XiuathAQAAAKgcwzB04cIFRUZGysvLlGN1V1XyHNa/fBkj/3ruzej8KbdID966m+ewXgvr16/Xzp07dfToUS1atEgrV67U4MGDFR8fr9TU1FLl8/PzlZ+fb3v9/fffq127dtezyQAAAABM7OTJk2rcuHF1N6NSKvccVs8M1iUTBqxnzpyRJE2fPl2PPfaYLT8sLEyHDx8uVX7evHmaO3duqfweMY+otrdv2Sep4Mhrhec2V7T+8hQvT50uihjlObYc11iuely2wVX58r1XLm8DcHW419Xrdd2mipYve0dV1F/hOl39XB3KV/Znc9U2lKPN1+y9Kufx5eHY3y3luRHFRRGLUXYZi7XstBzO5ZjvVWjP9yqyp70LHNL5xfYyefa096UCe50/2f/ApwsXbcn3Pt9oS7+be5Mt/dJ/+9rSPx0JsqUb7Lc3LmjnaVv65BD7LwMBJ+xlfmxt74z54UW2dO2b8mzp+nXtbatX2yHtY29/oM9PtnRdb3uZurUK7eW97XX6exU6lLfnS1Kgl72uIG/7exHsdcmWDq9lPyaxbZwtXSs0xJYuigqzpXNa1rGlz99m/xn8uqt9HYZpDffa0vmGvUy21Z6+ZHjb84v9bOkfrXVt6QtW+3dcvlHbls6z2tOOv6A4LtRR7PCfwzG/0CFd5NCGYsOxnor9x/KyXP3/j7dDZ7e4+M/kWMbLUvbNbd4OaddljDLLeF3hhjnHa/B2KOft4hxeDudwXcbx3GVzPJdjW71dtNXboZ1e5WqnYxuu/r57uyhTnmOd8h3KW1y8t67KO53X6VgXbXB5bJnZTtfi8ufi4ljvK3zpuK6r7GO8XNRV0fzynevqvwS6qt/bUvaxrsoPadWx7BO4qMe5SHl+Dy1dT5FRqP8Uf6D69etf/XiTKza8nD6PK3qspzJdwPrLX/5SknT77beXq/xjjz2m5ORk2+ucnBw1adJEtbx9VauWX9kHEbCWZvaAtYIBDQHr/8pXQcB67a6rCuos5/HlUV0Bq8XqImB1+iXb4Zc0h/LexQ4Bay2HgNXhtyun73KHYC6gvv1XfX+HrwbvOvagyMvP/plaq7a9cbW87GW8fcsu4+1nP7GXvz1g9bbHd07pWj72dG2HtI+P/bp8atmv3dfh28zX217Gz8text/b+Suvjrd3mem6DreM1a9lT9ey2APBWl4OjXL4rvH2sae9/O3t8K1nPzagvr3OPIe+ZXX4WXo5Bo7FDsG+1dshv5ZDeXvaYrWniysYsHo7BKmF1RSwlif4qWgwWp4yroKly+WqNmD1dvEeOQZAXg6fSa4CI+eA1aG8i89zp/pdvu+O53UVsLoKoMvM/tnPwPG9vXp5p/NWQcDqbfKA1dU5zBewlp3v+DnqpDwBa7l+D3Vdz40wVdAqi6xu/nLj7nFmYLqAtWHDhvL29tbZs2ed8s+ePavw8PCrHl8yJfftf03S/cMWl12IgLU0swesFTwfAev/yjPC6jZPGWE1nNIOAatD2ih2GGG1OoywWu35ORfs5X/KtQeUxZfs5a159tHGokJ744oc6izOL7tMcZ5DwPOTY/328sUWez1FhfZ0YaG9nQUO6dre9nS+wwhrbW972svLITj2tqclycfLIfh1CnLt7b5Qy+E6DXu9ju9dUZHDNRQ4Xqe9zvxc+7E5fvY68w2Hc1nt6UsOnfxisUO+wyjsT1b79eQ7lM+zOgSjFR5hdbxeh58fI6wOxzPCWroeRlgvn8tTR1ivznXA6qp82e+70+doBVthKddnT9kjrJI9RoDnMV3A6uPjo5iYGK1fv96WZ7VatX79eiUlJZUq7+qW4CZNmlRpOwHgRnJTK1d7dpeZe9xV8ZeuQWNM6wN70nHResf0Lof0O/bkn1V2GgBqlm/Kzi5PLFl89SJXcuHCBQUGBlaukmrGLcEmkpycrDFjxki6PEF68uTJunjxosaNG1eq7M9vCbZarcrMzFTt2rXVtGlTnTx50uNWwoK5ldx2Tt/CtUbfQlWhb6Gq0LdQVa5V33JcJdjTVeZ5qp78HFZTBqwjRozQ+fPnNWXKFCUnJ+vWW2/VmjVrFBYWVqqsr6+vfH2dF1cKCgpSTk6OJCkgIIAPUFQJ+haqCn0LVYW+hapC30JVuRZ9y9NHVktYDUuFp2U4HuupTBtql9z++95772nHjh2KjY2t5hYBAAAAAK4n042w5ubm6tixY7bXx48f1969exUcHKymTZtWY8sAAAAAoHpYK3FLMM9hvYa++OIL3XHHHbbXJfNTx4wZo6VLl5a7Hl9fX82ePbvU7cJAZdG3UFXoW6gq9C1UFfoWqgp9qzSr4eW0sntFj/VUFoM1ngEAAADAlHJychQYGKhndt4hv3rujTfm5Rbp8e4blZ2d7XHzzU03wgoAAAAAcFYsi9NztCt6rKciYAUAAAAAk6uptwQTsAIAAACAyRXL/ZHS4mvblOvKc0NtAAAAAMAN7YYMWBctWqRmzZrJz89PsbGx2rlzZ3U3CR5mzpw5slgsTlubNm1s+/Py8pSYmKgGDRqoXr16GjZsmM6ePVuNLYZZbdmyRXfffbciIyNlsVi0atUqp/2GYWjWrFmKiIiQv7+/4uPjdfToUacymZmZGj16tAICAhQUFKTx48crNzf3Ol4FzOhqfWvs2LGlPsf69+/vVIa+hbLMmzdP3bp1U/369RUaGqrBgwfryJEjTmXK8z144sQJDRo0SHXq1FFoaKgeffRRFRUVXc9LgcmUp2/16dOn1GfXpEmTnMrU1L5Vckuwu5un8tyWu7B8+XIlJydr9uzZ+vLLL9W5c2clJCTo3Llz1d00eJj27dvrzJkztm3r1q22fQ8//LA++ugjvffee9q8ebNOnz6toUOHVmNrYVYXL15U586dtWjRojL3z58/Xy+//LIWL16sHTt2qG7dukpISFBeXp6tzOjRo3Xw4EGtXbtWq1ev1pYtWzRx4sTrdQkwqav1LUnq37+/0+fYO++847SfvoWybN68WYmJidq+fbvWrl2rwsJC9evXTxcvXrSVudr3YHFxsQYNGqSCggJt27ZNb775ppYuXapZs2ZVxyXBJMrTtyRpwoQJTp9d8+fPt+2ryX2r2PCq1OapbrjH2sTGxqpbt25auHChJMlqtapJkyaaMmWKZs6cWc2tg6eYM2eOVq1apb1795bal52drZCQEKWkpGj48OGSpMOHD6tt27ZKTU3Vbbfddp1bC09hsVi0cuVKDR48WNLl0dXIyEhNmzZNjzzyiKTL/SssLExLly7VyJEjdejQIbVr1067du1S165dJUlr1qzRwIEDderUKUVGRlbX5cBEft63pMsjrFlZWaVGXkvQt1Be58+fV2hoqDZv3qzevXuX63vwk08+0V133aXTp08rLCxMkrR48WLNmDFD58+fl4+PT3VeEkzi531LujzC2qVLFy1YsKDMY2pi3yp5rM3M1AHyrVfbrTrycwv1bNwnHvlYG88NtctQUFCg3bt3Kz4+3pbn5eWl+Ph4paamVmPL4ImOHj2qyMhINW/eXKNHj9aJEyckSbt371ZhYaFTP2vTpo2aNm1KP0OFHD9+XOnp6U59KTAwULGxsba+lJqaqqCgIFtAIUnx8fHy8vLSjh07rnub4Vk2bdqk0NBQtW7dWpMnT1ZGRoZtH30L5ZWdnS1JCg4OllS+78HU1FR17NjRFlBIUkJCgnJycnTw4MHr2HqY2c/7Volly5apYcOG6tChgx577DFdunTJto++VfPcUKsE//DDDyouLnbqwJIUFhamw4cPV1Or4IliY2O1dOlStW7dWmfOnNHcuXPVq1cvHThwQOnp6fLx8VFQUJDTMWFhYUpPT6+eBsMjlfSXsj6zSvalp6crNDTUaX+tWrUUHBxMf8MV9e/fX0OHDlV0dLTS0tL0+OOPa8CAAUpNTZW3tzd9C+VitVo1depU9ejRQx06dJCkcn0Ppqenl/nZVrIPKKtvSdJ9992nqKgoRUZGat++fZoxY4aOHDmiFStWSKrZfasyt/Z68i3BN1TAClwrAwYMsKU7deqk2NhYRUVF6d1335W/v381tgwAymfkyJG2dMeOHdWpUye1aNFCmzZtUt++fauxZfAkiYmJOnDggNM6DsC14KpvOc6j79ixoyIiItS3b1+lpaWpRYsW17uZpmI1LLIa7j3Wxt3jzMBzQ+0yNGzYUN7e3qVWqTt79qzCw8OrqVW4EQQFBalVq1Y6duyYwsPDVVBQoKysLKcy9DNUVEl/udJnVnh4eKlF44qKipSZmUl/Q4U0b95cDRs21LFjxyTRt3B1SUlJWr16tTZu3KjGjRvb8svzPRgeHl7mZ1vJPtRsrvpWWWJjYyXJ6bOrpvatYnlVaqsIM60WfkMFrD4+PoqJidH69etteVarVevXr1dcXFw1tgyeLjc3V2lpaYqIiFBMTIxq167t1M+OHDmiEydO0M9QIdHR0QoPD3fqSzk5OdqxY4etL8XFxSkrK0u7d++2ldmwYYOsVqvtSxwoj1OnTikjI0MRERGS6FtwzTAMJSUlaeXKldqwYYOio6Od9pfnezAuLk779+93+qPI2rVrFRAQoHbt2l2fC4HpXK1vlaVkAUzHzy76VtUz02rhN9wqwcuXL9eYMWP0l7/8Rd27d9eCBQv07rvv6vDhw6XudwdceeSRR3T33XcrKipKp0+f1uzZs7V37159/fXXCgkJ0eTJk/Xxxx9r6dKlCggI0JQpUyRJ27Ztq+aWw2xyc3NtfxW+5ZZb9MILL+iOO+5QcHCwmjZtqueee07PPvus3nzzTUVHR+vJJ5/Uvn379PXXX8vPz0/S5VvUz549q8WLF6uwsFDjxo1T165dlZKSUp2Xhmp2pb4VHBysuXPnatiwYQoPD1daWpqmT5+uCxcuaP/+/fL19ZVE30LZHnroIaWkpOiDDz5Q69atbfmBgYG2aTFX+x4sLi5Wly5dFBkZqfnz5ys9PV3333+/fve73+mZZ565/hcFU7ha30pLS1NKSooGDhyoBg0aaN++fXr44YfVuHFjbd68WVLN7FslqwT/fuu9lVol+OWeH7i9SnC1rhZu3IBeeeUVo2nTpoaPj4/RvXt3Y/v27dXdJHiYESNGGBEREYaPj4/RqFEjY8SIEcaxY8ds+3/66SfjoYceMm666SajTp06xpAhQ4wzZ85UY4thVhs3bjQkldrGjBljGIZhWK1W48knnzTCwsIMX19fo2/fvsaRI0ec6sjIyDBGjRpl1KtXzwgICDDGjRtnXLhwoRquBmZypb516dIlo1+/fkZISIhRu3ZtIyoqypgwYYKRnp7uVAd9C2Upq19JMpYsWWIrU57vwW+//dYYMGCA4e/vbzRs2NCYNm2aUVhYeJ2vBmZytb514sQJo3fv3kZwcLDh6+trtGzZ0nj00UeN7Oxsp3pqWt/Kzs42JBlJW4cY0/b+2q0taesQQ1Kp97K8jh49akgy9u/fbxiGYaxfv96QZPz4449O5Zo2bWq88MILhmEYxpNPPml07tzZaf8333xjSDK+/PLLcp/7hhthBQAAAIAbRckI6+T/DK3UCOtrvVbo5MmTTiOsvr6+trtuXLFarbrnnnuUlZVlWyQrJSVF48aNU35+vlPZ7t2764477tBzzz2niRMn6rvvvtOnn35q23/p0iXVrVtXH3/8sdMip1dyQ81hBQAAAACUrUmTJgoMDLRt8+bNu+oxJSs6//Of/7wOLSyNx9oAAAAAgMldi8falDXCeiUlKzpv2bLF5Wrhjs9k/vlq4Tt37nSqz50VnRlhBQAAAACTMwwvWd3cDONy2BcQEOC0uQpYDROtFs4IKwAAAADAJjEx0baic/369ZWeni7JvqJzYGCgxo8fr+TkZAUHB9tWC4+Li9Ntt90mSerXr5/atWun+++/37ai8xNPPKHExMSrjuw6ImAFAAAAAJMrlkXFcu+W4Ioe99prr0mS+vTp45S/ZMkSjR07VpL04osvysvLS8OGDVN+fr4SEhL06quv2sp6e3tr9erVmjx5suLi4lS3bl2NGTNGf/zjHyvUFlYJBgAAAACTKlkleNymX8unXjmfXfozBbkFWtLnXbefw1qdGGEFAAAAAJMrmY/q7rGeynNbDgAAAAC4oTHCCgAAAAAmZ5VFVjfnsLp7nBkQsAIAAACAyRUbFhW7+RxWd48zAwJWAAAAADA55rACAAAAAGAijLACAAAAgMlZZZHVzVt7mcMKAAAAAKgyRiUWXTIIWAEAAAAAVcVqVGKE1YMXXWIOKwAAAADAlBhhBQAAAACTq6mrBBOwAgAAAIDJ1dRbgglYAQAAAMDkrJVYdMmTVwn23LFhAAAAAMANjRFWAAAAADA5bgkGAAAAAJgSASsAAAAAwJRqasDKHFYAAAAAgCkxwgoAAAAAJldTR1gJWAEAAADA5Ay5/3ga49o25brilmAAAAAAgCkxwgoAAAAAJsctwQAAAAAAUyJgBQAAAACYUk0NWJnDCgAAAAAwJUZYAQAAAMDkauoIKwErAAAAAJicYVhkuBl4unucGRCwAgAAAIDJWWVx+zms7h5nBsxhBQAAAACYEiOsAAAAAGByzGEFAAAAAJgSc1gBAAAAAKZUU0dYmcMKAAAAADAlRlgBAAAAwOS4JRgAAAAAYEpGJW4JJmAFAAAAAFQZQ5JhuH+sp2IOKwAAAADAlBhhBQAAAACTs8oii9xcJdjN48yAgBUAAAAATI5FlwAAAAAApmQ1LLLwHFYAAAAAAMyBEVYAAAAAMDnDqMQqwR68TDABKwAAAACYXE2dw8otwQAAAAAAU2KEFQAAAABMrqaOsBKwAgAAAIDJ1dRVgglYAQAAAMDkauqiS8xhBQAAAACYEiOsAAAAAGByl0dY3Z3Deo0bcx0RsAIAAACAybHoEgAAAADAlIz/be4e66mYwwoAAAAAMCVGWAEAAADA5LglGAAAAABgTjX0nmACVgAAAAAwu0qMsMqDR1iZwwoAAAAAMCVGWAEAAADA5C4/h9X9Yz0VI6wAAAAAYHIliy65u1XEli1bdPfddysyMlIWi0WrVq1y2j927FhZLBanrX///k5lMjMzNXr0aAUEBCgoKEjjx49Xbm5uha+bgBUAAAAAzM6wVG6rgIsXL6pz585atGiRyzL9+/fXmTNnbNs777zjtH/06NE6ePCg1q5dq9WrV2vLli2aOHFihS+bW4IBAAAAADYDBgzQgAEDrljG19dX4eHhZe47dOiQ1qxZo127dqlr166SpFdeeUUDBw7U888/r8jIyHK3hRFWAAAAADC5kjms7m7X2qZNmxQaGqrWrVtr8uTJysjIsO1LTU1VUFCQLViVpPj4eHl5eWnHjh0VOg8jrAAAAABgdtfgOaw5OTlO2b6+vvL19a1wdf3799fQoUMVHR2ttLQ0Pf744xowYIBSU1Pl7e2t9PR0hYaGOh1Tq1YtBQcHKz09vULnImAFAAAAAJNzZ/Ekx2MlqUmTJk75s2fP1pw5cypc38iRI23pjh07qlOnTmrRooU2bdqkvn37utVGVwhYAQAAAKAGOHnypAICAmyv3RldLUvz5s3VsGFDHTt2TH379lV4eLjOnTvnVKaoqEiZmZku5726whxWAAAAAPAEhpvb/wQEBDht1ypgPXXqlDIyMhQRESFJiouLU1ZWlnbv3m0rs2HDBlmtVsXGxlaobkZYAQAAAMDkrsUtweWVm5urY8eO2V4fP35ce/fuVXBwsIKDgzV37lwNGzZM4eHhSktL0/Tp09WyZUslJCRIktq2bav+/ftrwoQJWrx4sQoLC5WUlKSRI0dWaIVgiRFWAAAAAICDL774QrfccotuueUWSVJycrJuueUWzZo1S97e3tq3b5/uuecetWrVSuPHj1dMTIz+85//OI3YLlu2TG3atFHfvn01cOBA9ezZU6+//nqF28IIKwAAAACY3TVYJbi8+vTpI+MKz8L59NNPr1pHcHCwUlJSKnbiMhCwAgAAAIDpWf63uXusZ+KWYACA6W3atEkWi6XMbfv27RWur1mzZmXWNWnSpCpoPQAA14C7Cy5VZmTWBBhhBQB4jN///vfq1q2bU17Lli3dqqtLly6aNm2aU16rVq3cbhsAALj2CFgBAB6jV69eGj58+DWpq1GjRvrNb35zTeoCAKDKXcc5rGbCLcEAAI9y4cIFFRUVlcpfsmSJLBaL/v73vzvlP/PMM7JYLPr4449LHVNQUKCLFy9WWVsBALhmDEvlNg9FwAoA8Bjjxo1TQECA/Pz8dMcdd+iLL75w2nfXXXcpOTlZJ0+elCTt379fc+fO1fjx4zVw4ECnujZs2KA6deqoXr16atasmV566aXrei0AAFSEYVRu81TcEgwAMD0fHx8NGzZMAwcOVMOGDfX111/r+eefV69evbRt2zbbc+L++te/qn379ho/frxWr16tMWPGKDw8XC+88IJTfZ06dVLPnj3VunVrZWRkaOnSpZo6dapOnz6t5557rjouEQAAlMFiXOkBOwAAmNSxY8fUqVMn9e7dW2vWrLHl//Of/9SoUaPUvXt37dq1S2vXrlXfvn2vWJdhGBowYIDWr1+v48ePq3HjxlXdfAAAyiUnJ0eBgYFq/Mpcefn7uVWH9ac8nZoyW9nZ2QoICLjGLaxa3BIMAPBILVu21L333quNGzequLjYlj9y5EgNGjRIO3fu1IQJE64arEqSxWLRww8/rKKiIm3atKkKWw0AgJuYwwoAgGdp0qRJqYWTMjIybHNbv/76a1mt1nLXJUmZmZnXvqEAAFSSxajc5qkIWAEAHuubb76Rn5+f6tWrZ8tLTEzUhQsXNG/ePG3dulULFiwod12SFBISUhVNBQAAbiBgBQCY3vnz50vlffXVV/rwww/Vr18/eXld/jp7//33tXz5cj377LOaOXOmRo4cqSeeeEL//e9/bcdlZmY63UIsSYWFhXr22Wfl4+OjO+64o2ovBgAAdxiV3DwUqwQDAExvxIgR8vf31y9+8QuFhobq66+/1uuvv646dero2WeflSSdO3dOkydP1h133KGkpCRJ0sKFC7Vx40aNHTtWW7dulZeXlz788EM99dRTGj58uKKjo5WZmamUlBQdOHBAzzzzjMLDw6vzUgEAKFtl5qJ68BxWAlYAgOkNHjxYy5Yt0wsvvKCcnByFhIRo6NChmj17tlq2bClJmjx5svLz87VkyRJZLJe/mBs0aKDXX39d9957r55//nlNnz5dHTt2VLt27fT222/r/Pnz8vHxUZcuXfTuu+/qV7/6VXVeJgAArlVmpNSDR1h5rA0AAAAAmFTJY22avPCnSj3W5mTykx75WBtGWAEAAADA7GroCCsBKwAAAACYHQErAAAAAMCUauiiS1X2WJvMzEyNHj1aAQEBCgoK0vjx45Wbm3vFY/r06SOLxeK0TZo0qaqaCAAAAAAwsSobYR09erTOnDmjtWvXqrCwUOPGjdPEiROVkpJyxeMmTJigP/7xj7bXderUqaomAgAAAIBHsBiXN3eP9VRVMsJ66NAhrVmzRn/7298UGxurr776Sjk5OXrnnXd06623aufOnS6PrVOnjv7zn/+oT58+atasmXr06KGPP/64KpoJAAAAAJ7BqOTmoaokYE1NTVVQUJC6du2q5cuX6w9/+IOKi4slSWlpaerbt6/OnTtX5rGvv/66fv3rX+vIkSPKz8/XgQMHNGjQIB04cKAqmgoAAAAAMKkquSU4PT1doaGhkqT/9//+nwzD0P/93/9p2rRpatu2rVJTU/Xyyy/rqaeecjruvvvu05kzZ5SWlqaXXnpJTz31lG655RadPXtWCxcu1OLFi0udKz8/X/n5+bbXVqtVmZmZatCgge3B8QAAAABqHsMwdOHCBUVGRsrLq8qW70EVqlDAOnPmTD333HNXLHPo0CFbuqCgQGlpaRowYIDGjRunGTNm6L777tOePXu0YsWKUgHrxIkT9dhjj6l27dpKTExU27Zt1bdvXyUlJWnLli1lnu9Pf/qTnn766YpcBgAAAIAa5OTJk2rcuHF1N6NSLKrEHNZr2pLrq0IB67Rp0zR27NgrlmnevLnCw8N17tw5nT59WpLUu3dvFRUVKTMzU5GRkWrevLm+//77Mo/Pzs6WYRiKioqy3Ub8ww8/KD09vSJNVeTzM+Xl7+e6gONPzcVP3uUArWN5F2UsKrtMuep0qsfx2Cv0UId9lgpem6t6LS7abXE619Xb7VWe8g75XuVom7fFetV6XL3VXk7nunp7XB3rypXKeLmYQGBx0SbH991VvY51ejm8L66u0yktV2WsZZcpR3lvl+10SLtqp8rOr20ptqV9vYoc0oVl51vs+XW87Hdg1HHIr+f1ky0d4FCmnleBLd3Q27mfBXnZP1NGtO9qb2tggL1QcJAteam5Pf39L71t6YhW9ikRPUK/saX7199vSz/TqYstXatxpC1dHBpoSxfcZG9PfqD947ygvr3jFATY04V17c0srmt/f4vq2t9f+dvTPv4O76O//X0J8re/d8F+l2zpEJ+LtnSob7YtHV7bng6rZU+Hel9wSDu+77629Mg2Mba0d/16trSlnv1ijLr2xfms9ezHFvs5f8UV17G/Lqxj/3kU+VvKTBfWsaeL/e31FDl8tVj97e9jsZ+9vxgO76O3n0P/dXhPAxzexyC/PFs63C/Hlm7kl2VLN/HNsKWb1rKnm9Syv4/Natvfo+Hde9jSliB7vym+yV6mMND+fv3UoLYtndfQ/j827yZbUgUN7NdSt7H9vAObfm1L7+1vP5eaNbIlixzOVejwsyj2s5+r2Mf5k9ta2/7aWssx3542HD5cDKcvK5WZdvyEMlwMtjh9zTt8DHgXOHxeFTrkFzp8bts/iuRVaJSZtlgd045ndsh3bKj16t89Vb2gissnYjh8aZcuY65fkcv1VA+Xv6c51lOOiip66eX4+VkMeyFXbXAsU1Ucz+3qfOV6j66ToqI8fbHuGdWvX7+6m1J5NfSxNhUKWENCQhQSEnLVcnFxccrKytLnn38uSQoODtaGDRtktVoVGxurOnXqqLCw0OXxEydO1IMPPqitW7dqypQpWrlyperVq1dm2enTpzs9+iYnJ0ft27evyGUBAAAAAEyoSuawtm3bVv3799czzzwjSdqzZ4+ef/55jRw5UpGRkbp06ZK8vb3Vpk0b/eMf/1D37t2VlpamlJQUNWzYUCEhITpx4oRefPFF9ezZUwcPHpS3t3eZ53rhhRc0d+7cUvmnH3m2Ki4NAP7nO3syQ2WnjzqkP7UnTzhk73BIv+Cq/lMqO10jnLQnc1R2Gg4cFzS0j94ryyH722t/1sOudux3tQMArq8LFy4oMDDw6gXNrDKr/XrwKsFV9hzWZcuWafLkyfr666/117/+VQ888IBefvllWa1WffPNN2rUqJGOHDmiS5cu307m4+OjdevW6ccff9TTTz+t5s2ba9iwYXriiScUHR3tchj/scceU3Jysu11yaJLtWvXVtOmTXXy5EkFBASUeSzgjpycHDVp0oS+hWuOvoWqRP9CVaFvoSpVtn85Lrrk8QhYr63g4GAtX75cu3fv1vHjx3X77bfr5MmTevHFF5WXl6cRI0boqaee0gMPPKBPP/1U8+bN0+bNm7Vt2zbdfvvtmjRpkgYNGqTnn39emZmZGjRoUJnn8fX1la+vr1NeUFCQcnIu//k9ICCAD09UCfoWqgp9C1WJ/oWqQt9CVapM//L4kdX/sRiVWHTJgwPWKl/b+emnn5aXl5eSk5PVuXNnrVq1SvXq1dOUKVMkSZ999plWr15tK79u3TrNmDFDCxcuVMeOHfXSSy/Jx8dHM2fOrOqmAgAAAABMpMoD1hEjRujFF19UvXr1ZLFYFB0drbVr1yosLEyS1KZNG8XE2FeB/PHHH/XWW2/p9OnTatCggXr27Knt27erXbt2Vd1UAAAAADAno5Kbh6qyW4IdJSUlKSkpqcx9mzZtcnr94osv6sUXX6z0OX19fTV79uxStwsDlUXfQlWhb6Eq0b9QVehbqEr0Lwc1dA6rxTCuwwObAAAAAAAVlpOTo8DAQEX/8Wl5+fld/YAyWPPydHzW/1N2drbHzTWv8luCAQAAAABwx3W5JRgAAAAAUAmG5fLm7rEeioAVAAAAAMyuhs5hvSFvCV60aJGaNWsmPz8/xcbGaufOndXdJHiYOXPmyGKxOG1t2rSx7c/Ly1NiYqIaNGigevXqadiwYTp79mw1thhmtmXLFt19992KjIyUxWLRqlWrnPYbhqFZs2YpIiJC/v7+io+P19GjR53KZGZmavTo0QoICFBQUJDGjx+v3Nzc63gVMKOr9a2xY8eW+izr37+/Uxn6Fsoyb948devWTfXr11doaKgGDx6sI0eOOJUpz3fhiRMnNGjQINWpU0ehoaF69NFHVVRUdD0vBSZTnr7Vp0+fUp9dkyZNcipTE/tWyXNY3d081Q0XsC5fvlzJycmaPXu2vvzyS3Xu3FkJCQk6d+5cdTcNHqZ9+/Y6c+aMbdu6datt38MPP6yPPvpI7733njZv3qzTp09r6NCh1dhamNnFixfVuXNnLVq0qMz98+fP18svv6zFixdrx44dqlu3rhISEpSXl2crM3r0aB08eFBr167V6tWrtWXLFk2cOPF6XQJM6mp9S5L69+/v9Fn2zjvvOO2nb6EsmzdvVmJiorZv3661a9eqsLBQ/fr108WLF21lrvZdWFxcrEGDBqmgoEDbtm3Tm2++qaVLl2rWrFnVcUkwifL0LUmaMGGC02fX/PnzbfvoWzXLDbdKcGxsrLp166aFCxdKkqxWq5o0aaIpU6Zo5syZ1dw6eIo5c+Zo1apV2rt3b6l92dnZCgkJUUpKioYPHy5JOnz4sNq2bavU1FTddttt17m18CQWi0UrV67U4MGDJV0eXY2MjNS0adP0yCOPSLrcx8LCwrR06VKNHDlShw4dUrt27bRr1y517dpVkrRmzRoNHDhQp06dUmRkZHVdDkzk531LujzCmpWVVWrktQR9C+V1/vx5hYaGavPmzerdu3e5vgs/+eQT3XXXXTp9+rTCwsIkSYsXL9aMGTN0/vx5+fj4VOclwSR+3rekyyOsXbp00YIFC8o8pqb1rZJVgpvPeqZSqwR/88fHWSW4uhUUFGj37t2Kj4+35Xl5eSk+Pl6pqanV2DJ4oqNHjyoyMlLNmzfX6NGjdeLECUnS7t27VVhY6NTP2rRpo6ZNm9LPUGHHjx9Xenq6U38KDAxUbGysrT+lpqYqKCjIFlBIUnx8vLy8vLRjx47r3mZ4lk2bNik0NFStW7fW5MmTlZGRYdtH30J5ZWdnS5KCg4Mlle+7MDU1VR07drQFFJKUkJCgnJwcHTx48Dq2Hmb2875VYtmyZWrYsKE6dOigxx57TJcuXbLtq7F9qzK3A3vwEOUNtejSDz/8oOLiYqfOK0lhYWE6fPhwNbUKnig2NlZLly5V69atdebMGc2dO1e9evXSgQMHlJ6eLh8fHwUFBTkdExYWpvT09OppMDxWSZ8p63OrZF96erpCQ0Od9teqVUvBwcH0OVxR//79NXToUEVHRystLU2PP/64BgwYoNTUVHl7e9O3UC5Wq1VTp05Vjx491KFDB0kq13dhenp6mZ9tJfuAsvqWJN13332KiopSZGSk9u3bpxkzZujIkSNasWKFpBrct2rooks3VMAKXCsDBgywpTt16qTY2FhFRUXp3Xfflb+/fzW2DADKb+TIkbZ0x44d1alTJ7Vo0UKbNm1S3759q7Fl8CSJiYk6cOCA01oOwLXgqm85zqPv2LGjIiIi1LdvX6WlpalFixbXu5moZjfULcENGzaUt7d3qRXqzp49q/Dw8GpqFW4EQUFBatWqlY4dO6bw8HAVFBQoKyvLqQz9DO4o6TNX+twKDw8vtXBcUVGRMjMz6XOokObNm6thw4Y6duyYJPoWri4pKUmrV6/Wxo0b1bhxY1t+eb4Lw8PDy/xsK9mHms1V3ypLbGysJDl9dtXIvmVUcvNQN1TA6uPjo5iYGK1fv96WZ7VatX79esXFxVVjy+DpcnNzlZaWpoiICMXExKh27dpO/ezIkSM6ceIE/QwVFh0drfDwcKf+lJOTox07dtj6U1xcnLKysrR7925bmQ0bNshqtdq+xIHyOHXqlDIyMhQRESGJvgXXDMNQUlKSVq5cqQ0bNig6Otppf3m+C+Pi4rR//36nP4qsXbtWAQEBateu3fW5EJjO1fpWWUoWwXT87KqJfaumPtbmhrslODk5WWPGjFHXrl3VvXt3LViwQBcvXtS4ceOqu2nwII888ojuvvtuRUVF6fTp05o9e7a8vb01atQoBQYGavz48UpOTlZwcLACAgI0ZcoUxcXFsUIwypSbm2v7q7B0eaGlvXv3Kjg4WE2bNtXUqVP11FNP6eabb1Z0dLSefPJJRUZG2lZ7bdu2rfr3768JEyZo8eLFKiwsVFJSkkaOHMkqrjXclfpWcHCw5s6dq2HDhik8PFxpaWmaPn26WrZsqYSEBEn0LbiWmJiolJQUffDBB6pfv75tXmBgYKD8/f3L9V3Yr18/tWvXTvfff7/mz5+v9PR0PfHEE0pMTJSvr291Xh6q0dX6VlpamlJSUjRw4EA1aNBA+/bt08MPP6zevXurU6dOkuhbNc0N91gbSVq4cKH+7//+T+np6erSpYtefvll/lKMChk5cqS2bNmijIwMhYSEqGfPnnr66adt8yby8vI0bdo0vfPOO8rPz1dCQoJeffXVG/s2FLht06ZNuuOOO0rljxkzRkuXLpVhGJo9e7Zef/11ZWVlqWfPnnr11VfVqlUrW9nMzEwlJSXpo48+kpeXl4YNG6aXX35Z9erVu56XApO5Ut967bXXNHjwYO3Zs0dZWVmKjIxUv3799Kc//clpsRL6FspisVjKzF+yZInGjh0rqXzfhd99950mT56sTZs2qW7duhozZoyeffZZ1ap1w42ZoJyu1rdOnjyp3/zmNzpw4IAuXryoJk2aaMiQIXriiSecHsdSk/pWyWNtWjz+jLzdfKxNcV6e0p7xzMfa3JABKwAAAADcCGwB62OVDFjneWbAeuP9CQIAAAAAbjCVmYvqyXNYb6hFlwAAAAAANw5GWAEAAADAE3jwSKm7CFgBAAAAwOwq8zxVDw50CVgBAAAAwOSYwwoAAAAAgIkwwgoAAAAAZsctwQAAAAAAM6qptwQTsAIAAACA2dXQEVbmsAIAAAAATImAFQAAAADMzqjkVgFbtmzR3XffrcjISFksFq1atcq5KYahWbNmKSIiQv7+/oqPj9fRo0edymRmZmr06NEKCAhQUFCQxo8fr9zc3IpeNQErAAAAAJhdyRxWd7eKuHjxojp37qxFixaVuX/+/Pl6+eWXtXjxYu3YsUN169ZVQkKC8vLybGVGjx6tgwcPau3atVq9erW2bNmiiRMnunHdhuHBdzQDAAAAwI0rJydHgYGBaj31GXn7+rlVR3F+no4seFzZ2dkKCAio0LEWi0UrV67U4MGDJV0eXY2MjNS0adP0yCOPSJKys7MVFhampUuXauTIkTp06JDatWunXbt2qWvXrpKkNWvWaODAgTp16pQiIyPLfX5GWAEAAAAA5XL8+HGlp6crPj7elhcYGKjY2FilpqZKklJTUxUUFGQLViUpPj5eXl5e2rFjR4XOxyrBAAAAAGB212CV4JycHKdsX19f+fr6Vqiq9PR0SVJYWJhTflhYmG1fenq6QkNDnfbXqlVLwcHBtjLlxQgrAAAAAJjctZjD2qRJEwUGBtq2efPmVe9FlQMjrAAAAABQA5w8edJpDmtFR1clKTw8XJJ09uxZRURE2PLPnj2rLl262MqcO3fO6biioiJlZmbaji8vRlgBAAAAwOyuwWNtAgICnDZ3Atbo6GiFh4dr/fr1trycnBzt2LFDcXFxkqS4uDhlZWVp9+7dtjIbNmyQ1WpVbGxshc7HCCsAAAAAmJw7j6dxPLYicnNzdezYMdvr48ePa+/evQoODlbTpk01depUPfXUU7r55psVHR2tJ598UpGRkbaVhNu2bav+/ftrwoQJWrx4sQoLC5WUlKSRI0dWaIVgiYAVAAAAAMzvGiy6VF5ffPGF7rjjDtvr5ORkSdKYMWO0dOlSTZ8+XRcvXtTEiROVlZWlnj17as2aNfLzsz92Z9myZUpKSlLfvn3l5eWlYcOG6eWXX65w03kOKwAAAACYVMlzWNsmVu45rIcWufcc1urGCCsAAAAAmN11HGE1EwJWAAAAADA5y/82d4/1VASsAAAAAGB2NXSElcfaAAAAAABMiRFWAAAAADC56/lYGzMhYAUAAAAAs6uhtwQTsAIAAACAJ/DgwNNdzGEFAAAAAJgSI6wAAAAAYHLMYQUAAAAAmBNzWAEAAAAAZlRTR1iZwwoAAAAAMCVGWAEAAADA7LglGAAAAABgRjX1lmACVgAAAAAwuxo6wsocVgAAAACAKTHCCgAAAABmV0NHWAlYAQAAAMDkauocVm4JBgAAAACYEiOsAAAAAGB23BIMAAAAADAji2HIYrgXebp7nBkQsAIAAACA2dXQEVbmsAIAAAAATIkRVgAAAAAwuZq6SjABKwAAAACYXQ29JZiAFQAAAABMrqaOsDKHFQAAAABgSoywAgAAAIDZcUswAAAAAMCMauotwQSsAAAAAGB2NXSElTmsAAAAAABTYoQVAAAAADyAJ9/a6y4CVgAAAAAwO8O4vLl7rIciYAUAAAAAk6upiy4xhxUAAAAAYEqMsAIAAACA2dXQVYIJWAEAAADA5CzWy5u7x3oqAlYAAAAAMLsaOsLKHFYAAAAAgCkxwgoAAAAAJldTVwkmYAUAAAAAs6uhz2HllmAAAAAAgCkxwgoAAAAAJsctwQAAAAAAc6qhqwQTsAIAAACAydXUEVbmsAIAAAAATIkRVgAAAAAwuxq6SjABKwAAAACYXE29JZiAFQAAAADMroYuusQcVgAAAACAKTHCCgAAAAAmxy3BAAAAAABzshqXN3eP9VAErAAAAABgdsxhBQAAAADAPBhhBQAAAACTs6gSc1ivaUuuLwJWAAAAADA7w7i8uXush+KWYACA6Y0dO1YWi8Xl9v3335e7rk2bNl2xrqeffroKrwQAAPeUrBLs7uapGGEFAJjegw8+qPj4eKc8wzA0adIkNWvWTI0aNSp3XW3bttVbb71VKv+tt97SZ599pn79+lW6vQAAeLI5c+Zo7ty5TnmtW7fW4cOHJUl5eXmaNm2a/vnPfyo/P18JCQl69dVXFRYWds3bQsAKADC9uLg4xcXFOeVt3bpVly5d0ujRoytUV1hYmH7zm9+Uyp87d65uvvlmdevWrVJtBQCgSlznVYLbt2+vdevW2V7XqmUPHR9++GH9+9//1nvvvafAwEAlJSVp6NCh+vzzz91soGvcEgwA8EgpKSmyWCy67777JElLliyRxWLR3//+d6dyzzzzjCwWiz7++GOXde3cuVPHjh2rcPALAMD1YjGMSm0VVatWLYWHh9u2hg0bSpKys7P1xhtv6IUXXtAvf/lLxcTEaMmSJdq2bZu2b99+rS+bgBUA4HkKCwv17rvv6he/+IWaNWsmSRo3bpzuuusuJScn6+TJk5Kk/fv3a+7cuRo/frwGDhzosr5ly5ZJEgErAMC8rJXcKujo0aOKjIxU8+bNNXr0aJ04cUKStHv3bhUWFjpN1WnTpo2aNm2q1NRUty/PFQJWAIDH+fTTT5WRkVEqwPzrX/8qb29vjR8/XgUFBRozZozCw8P1wgsvuKyruLhYy5cvV/fu3dWyZcuqbjoAANUmJyfHacvPzy+zXGxsrJYuXao1a9botdde0/Hjx9WrVy9duHBB6enp8vHxUVBQkNMxYWFhSk9Pv+ZtZg4rAMDjpKSkqHbt2vr1r3/tlB8eHq5FixZp1KhR6tWrl/bu3au1a9cqICDAZV3r16/X2bNn9fjjj1d1swEAcJu7t/aWHCtJTZo0ccqfPXu25syZU6r8gAEDbOlOnTopNjZWUVFRevfdd+Xv7+9WG9xFwAoA8Ci5ubn64IMPlJCQoAYNGpTaP3LkSL399tv697//rYkTJ6pv375XrG/ZsmXy9vbWiBEjqqrJAABU3jVYdOnkyZNOf8T19fUt1+FBQUFq1aqVjh07pjvvvFMFBQXKyspyGmU9e/aswsPD3Wyga9wSDADwKKtWrbri6sAZGRn64osvJElff/21rFbXE3d++uknrVy5UvHx8VWyFD8AAGYSEBDgtJU3YM3NzVVaWpoiIiIUExOj2rVra/369bb9R44c0YkTJ0qt6H8tELACADzKsmXLVK9ePd1zzz1l7k9MTNSFCxc0b948bd26VQsWLHBZ14cffqgLFy6w2BIAwPwMo3JbBTzyyCPavHmzvv32W23btk1DhgyRt7e3Ro0apcDAQI0fP17JycnauHGjdu/erXHjxikuLk633XbbNb9sbgkGAHiM8+fPa926dRo1apTq1KlTav/777+v5cuX6+WXX9aUKVP01Vdf6YknntBdd92lVq1alSqfkpKiOnXqaMiQIdej+QAAuM1iXN7cPbYiTp06pVGjRikjI0MhISHq2bOntm/frpCQEEnSiy++KC8vLw0bNkz5+flKSEjQq6++6l7jrsJiGG7O3AUA4DpbuHChpkyZojVr1ighIcFp37lz59S+fXt17NhR69evl8ViUUZGhtq3b6/mzZtr69at8vKy31iUmZmp8PBwDRs2TO+88871vhQAAMolJydHgYGBuj3uCdWq5edWHUVFedqc+pSys7OvuBChGXFLMADAYyxbtkyhoaFOz34rMXnyZOXn52vJkiWyWCySpAYNGuj1119Xamqqnn/+eafy7733ngoLC3Xfffddl7YDAICKY4QVAAAAAEyqZIS1T2zlRlg37fDMEVbmsAIAAACA2bmxeJLTsR6KgBUAAAAAzO4aPIfVEzGHFQAAAABgSlUWsGZmZmr06NEKCAhQUFCQxo8fr9zc3Cse06dPH1ksFqdt0qRJVdVEAAAAAPAIFsOo1OapqixgHT16tA4ePKi1a9fqt7/9rf7xj38oMDBQsbGx2rlzp8vjJkyYoNdff10tWrSQr6+v/vOf/+jjjz+uqmYCAAAAgPmVzGF1d/NQVRKwHjp0SGvWrNHf/vY3ffvtt1q0aJGmTJkiq9Wqm2++WQkJCTp37lyZx2ZlZWny5Ml68MEHtWfPHg0dOlSDBw/WgQMHqqKpAAAAAGB+hiSrm5vnxqtVs+hSamqqgoKC1LVrVyUmJuq2227TihUrJEk7duxQrVq19Pe//10zZ84sdeyKFStUXFys6dOna/r06ZIki8WihQsXavHixaXK5+fnKz8/3/baarUqMzNTDRo0sD2HDwAAAEDNYxiGLly4oMjISHl5sXyPJ6qSgDU9PV2hoaEqKCjQrl275O3trddff13Tpk1TWFiYTpw4oU2bNpUKWO+77z59+eWXys/P1wsvvKCnnnpKt9xyi9q2bat169aVea558+Zp7ty5VXEZAAAAAG4AJ0+eVOPGjau7GZVSmbmonjyHtUIB68yZM/Xcc89dscyhQ4ds6R9++EGGYejee+/VuHHjNGPGDI0aNUpfffWVDh48WOrYiRMn6qGHHpKvr68SExPVtm1b9e3bV7GxsUpPTy/zfMnJyfrd735ne52Tk6P27dtrz64Q1a/nJW+5P8p6rUZoK9MGLzfu2vauRLvLcz6vSlyPt6Vi1zOkVcerFyrP9ZbjvBYvF/W4OtZF+Ss2x9Vf9lwd5KK8y75ZnmtwdaxjvmN5hzqdzlueNrgq71jGq+y2GS6PLbttTsc6lVHFyjjU+fOPdsPbsa0O+a7a4W1xUUZll3E61l7GWqvsepzKeF/9WKuPPT8/0J7fc8heWzopZJMt/cgd99iPjWhoPzbE/tDyggD710hhHXudRQ7pYl+VnXZoj+FrOOTb04ZjurbVlrb4FtvS3rXs+bV8imzp2g75klTHp8CW9q9daM93SAfUzrOl69eypwNr/WRLB9W+ZEs3rHXBlg7zzrGlQ73t+Y1q2ds0ocvt9naHh9jSBZE32dI5zf1t6YzO9mvoEXPYlv5ufitbOj/Q/gMv8iv75+3Yt2rl2d9T7wJ72uL8dtk5/le3v+3yKnb4H+Li9yDD1Uev0/91F+eSXE5ccjqd4/8ni4v/Z64+l12VKUe+q3oclee8rlTmWOd6yvMdefV8l7/qXqF6l+9ded6vCv78KlqnyzKu6q9gneVqf0XP5VTe4SdS0b5S3p9ZJeqqcH+pzP8Jp3pKn9mal6eTf3pK9evXL0cFJmeoEs9hvaYtua4qFLBOmzZNY8eOvWKZ5s2bKzw8XOfOnVNBweVfDrp27aqioiJlZmYqMjJSUVFR+v77713WkZeXp6ioKBUXX/5mPHz4sMuy8+fP19NPP12RywAAAAAAz1KZxZNqyghrSEiIQkJCrlouLi5OWVlZ2r9/vy1vw4YNslqtio2NveKxDRo0UHx8vB599FFt3bpVU6ZM0YoVK9S8efOKNFW3dDtfofIwq2+uXqQ8///KU8bV6AJwgzvykj39htOev9mTZa+Thwp71578TmWnUx3Sy+zJf1ZRiwCgJrhw4YICAwOruxlwg8UwqibcHjBggE6dOqUDBw6oT58++v7779W1a1e9/fbbCgwMVP369RUQEKB//OMf6t69u9LS0pSSkqL//Oc/Ki4u1h/+8Ac9/PDDioyM1K5du9S+fXvt3r271HlcLbpUu3ZtNW3aVCdPnlRAQEBVXCJqqJycHDVp0oS+hWuOvoWqRP9CVaFvoSpVtn/dCIsu5eTkKDAwUL/sOEO1vH2vfkAZiorztWH/c8rOzva4/6dVsuiSJC1btkyTJ0/WgQMHtGnTJvXs2VPJycmaPHmy8vPzdeutt2rLli164oknFBMTo4ceekjr1q3Tnj17dOHCBX311Ve69957FRoaqs8//1xhYWFlnsfX11e+vs4/uKCgIOXkXJ5LFBAQ4HE/FHgG+haqCn0LVYn+hapC30JVqkz/ulFGVmvqoktV9meG4OBgLV++XN27d1fv3r114sQJ9ejRQ3v27FFQUJAGDBggwzBUUFCgM2fOqEmTJtq8ebNycnL07rvvqkGDBnr77bf14YcfqlGjRmrTpk1VNRUAAAAAzK1kDqu7m4eq8nHx5ORk7dixQ3/84x+1d+9e3XLLLSosLNS4ceMkSU2bNlVERISt/B//+EcFBgbqk08+UWpqqjp16qQffvjBaSVgAAAAAMCNr8puCS4xYsQInT9/XrNmzVJ6erq6dOmiNWvW2G7xPXHihNP95D/++KMmTJig9PR03XTTTYqJidG2bdvUrl27Cp3X19dXs2fPLnW7MFBZ9C1UFfoWqhL9C1WFvoWqRP9yUENXCa6yRZcAAAAAAJVTsuhS37bTKrXo0vpDf/bIRZc8c6ksAAAAAMANr8pvCQYAAAAAVJJVkqUSx3ooAlYAAAAAMLma+lgbAlYAAAAAMLsauujSDTmHddGiRWrWrJn8/PwUGxurnTt3VneT4GHmzJkji8XitDk+CzgvL0+JiYlq0KCB6tWrp2HDhuns2bPV2GKY2ZYtW3T33XcrMjJSFotFq1atctpvGIZmzZqliIgI+fv7Kz4+XkePHnUqk5mZqdGjRysgIEBBQUEaP368cnNzr+NVwIyu1rfGjh1b6rOsf//+TmXoWyjLvHnz1K1bN9WvX1+hoaEaPHiwjhw54lSmPN+FJ06c0KBBg1SnTh2Fhobq0UcfVVFR0fW8FJhMefpWnz59Sn12TZo0yakMfavmuOEC1uXLlys5OVmzZ8/Wl19+qc6dOyshIUHnzp2r7qbBw7Rv315nzpyxbVu3brXte/jhh/XRRx/pvffe0+bNm3X69GkNHTq0GlsLM7t48aI6d+6sRYsWlbl//vz5evnll7V48WLt2LFDdevWVUJCgvLy8mxlRo8erYMHD2rt2rVavXq1tmzZookTJ16vS4BJXa1vSVL//v2dPsveeecdp/30LZRl8+bNSkxM1Pbt27V27VoVFhaqX79+unjxoq3M1b4Li4uLNWjQIBUUFGjbtm168803tXTpUs2aNas6LgkmUZ6+JUkTJkxw+uyaP3++bV+N7VtWo3Kbh7rhHmsTGxurbt26aeHChZIkq9WqJk2aaMqUKZo5c2Y1tw6eYs6cOVq1apX27t1bal92drZCQkKUkpKi4cOHS5IOHz6stm3bKjU1Vbfddtt1bi08icVi0cqVKzV48GBJl0dXIyMjNW3aND3yyCOSLvexsLAwLV26VCNHjtShQ4fUrl077dq1S127dpUkrVmzRgMHDtSpU6cUGRlZXZcDE/l535Iuj7BmZWWVGnktQd9CeZ0/f16hoaHavHmzevfuXa7vwk8++UR33XWXTp8+rbCwMEnS4sWLNWPGDJ0/f14+Pj7VeUkwiZ/3LenyCGuXLl20YMGCMo+paX2r5LE28c3/UKnH2qz75iUea1PdCgoKtHv3bsXHx9vyvLy8FB8fr9TU1GpsGTzR0aNHFRkZqebNm2v06NE6ceKEJGn37t0qLCx06mdt2rRR06ZN6WeosOPHjys9Pd2pPwUGBio2NtbWn1JTUxUUFGQLKCQpPj5eXl5e2rFjx3VvMzzLpk2bFBoaqtatW2vy5MnKyMiw7aNvobyys7MlScHBwZLK912Ympqqjh072gIKSUpISFBOTo4OHjx4HVsPM/t53yqxbNkyNWzYUB06dNBjjz2mS5cu2fbV3L5l2OexVnST545R3lCLLv3www8qLi526rySFBYWpsOHD1dTq+CJYmNjtXTpUrVu3VpnzpzR3Llz1atXLx04cEDp6eny8fFRUFCQ0zFhYWFKT0+vngbDY5X0mbI+t0r2paenKzQ01Gl/rVq1FBwcTJ/DFfXv319Dhw5VdHS00tLS9Pjjj2vAgAFKTU2Vt7c3fQvlYrVaNXXqVPXo0UMdOnSQpHJ9F6anp5f52VayDyirb0nSfffdp6ioKEVGRmrfvn2aMWOGjhw5ohUrVkiib9U0N1TAClwrAwYMsKU7deqk2NhYRUVF6d1335W/v381tgwAym/kyJG2dMeOHdWpUye1aNFCmzZtUt++fauxZfAkiYmJOnDggNNaDsC14KpvOc6j79ixoyIiItS3b1+lpaWpRYsW17uZ5sEqwZ6vYcOG8vb2LrVC3dmzZxUeHl5NrcKNICgoSK1atdKxY8cUHh6ugoICZWVlOZWhn8EdJX3mSp9b4eHhpRaOKyoqUmZmJn0OFdK8eXM1bNhQx44dk0TfwtUlJSVp9erV2rhxoxo3bmzLL893YXh4eJmfbSX7ULO56ltliY2NlSSnz64a2bdq6KJLN1TA6uPjo5iYGK1fv96WZ7VatX79esXFxVVjy+DpcnNzlZaWpoiICMXExKh27dpO/ezIkSM6ceIE/QwVFh0drfDwcKf+lJOTox07dtj6U1xcnLKysrR7925bmQ0bNshqtdq+xIHyOHXqlDIyMhQRESGJvgXXDMNQUlKSVq5cqQ0bNig6Otppf3m+C+Pi4rR//36nP4qsXbtWAQEBateu3fW5EJjO1fpWWUoWwXT87KqRfcuwVm7zUDfcLcHJyckaM2aMunbtqu7du2vBggW6ePGixo0bV91Ngwd55JFHdPfddysqKkqnT5/W7Nmz5e3trVGjRikwMFDjx49XcnKygoODFRAQoClTpiguLo4VglGm3Nxc21+FpcsLLe3du1fBwcFq2rSppk6dqqeeeko333yzoqOj9eSTTyoyMtK22mvbtm3Vv39/TZgwQYsXL1ZhYaGSkpI0cuRIVnGt4a7Ut4KDgzV37lwNGzZM4eHhSktL0/Tp09WyZUslJCRIom/BtcTERKWkpOiDDz5Q/fr1bfMCAwMD5e/vX67vwn79+qldu3a6//77NX/+fKWnp+uJJ55QYmKifH3dW+kUnu9qfSstLU0pKSkaOHCgGjRooH379unhhx9W79691alTJ0n0rRrHuAG98sorRtOmTQ0fHx+je/fuxvbt26u7SfAwI0aMMCIiIgwfHx+jUaNGxogRI4xjx47Z9v/000/GQw89ZNx0001GnTp1jCFDhhhnzpypxhbDzDZu3FiyPJ/TNmbMGMMwDMNqtRpPPvmkERYWZvj6+hp9+/Y1jhw54lRHRkaGMWrUKKNevXpGQECAMW7cOOPChQvVcDUwkyv1rUuXLhn9+vUzQkJCjNq1axtRUVHGhAkTjPT0dKc66FsoS1n9SpKxZMkSW5nyfBd+++23xoABAwx/f3+jYcOGxrRp04zCwsLrfDUwk6v1rRMnThi9e/c2goODDV9fX6Nly5bGo48+amRnZzvVU5P6VnZ2tiHJiG8y2egfNdWtLb7JZENSqffRE9xwz2EFAAAAgBuF7TmsjSaplpebz2G15mvd94s98jmsN9wtwQAAAABww2GVYAAAAAAAzIMRVgAAAAAwO0OVGGG9pi25rghYAQAAAMDsaugtwQSsAAAAAGB2VqskN5+navXc57AyhxUAAAAAYEqMsAIAAACA2XFLMAAAAADAlGpowMotwQAAAAAAU2KEFQAAAADMzmrI7efTWD13hJWAFQAAAABMzjCsMgz3Vvt19zgzIGAFAAAAALMzDPdHSpnDCgAAAADAtcUIKwAAAACYnVGJOawePMJKwAoAAAAAZme1ShY356IyhxUAAAAAUGVq6Agrc1gBAAAAAKbECCsAAAAAmJxhtcpw85ZgHmsDAAAAAKg6NfSWYAJWAAAAADA7qyFZal7AyhxWAAAAAIApMcIKAAAAAGZnGJLcfayN546wErACAAAAgMkZVkOGm7cEGx4csHJLMAAAAACYnWGt3OaGRYsWqVmzZvLz81NsbKx27tx5jS/q6ghYAQAAAABOli9fruTkZM2ePVtffvmlOnfurISEBJ07d+66toOAFQAAAABMzrAaldoq6oUXXtCECRM0btw4tWvXTosXL1adOnX097//vQquzjUCVgAAAAAwu+t4S3BBQYF2796t+Ph4W56Xl5fi4+OVmpp6ra/silh0CQAAAABMrkiFkptrJxWpUJKUk5PjlO/r6ytfX99S5X/44QcVFxcrLCzMKT8sLEyHDx92rxFuImAFAAAAAJPy8fFReHi4tqZ/XKl66tWrpyZNmjjlzZ49W3PmzKlUvVWNgBUAAAAATMrPz0/Hjx9XQUFBpeoxDEMWi8Upr6zRVUlq2LChvL29dfbsWaf8s2fPKjw8vFLtqCgCVgAAAAAwMT8/P/n5+V238/n4+CgmJkbr16/X4MGDJUlWq1Xr169XUlLSdWuHRMAKAAAAAPiZ5ORkjRkzRl27dlX37t21YMECXbx4UePGjbuu7SBgBQAAAAA4GTFihM6fP69Zs2YpPT1dXbp00Zo1a0otxFTVLIZhuLnWFAAAAAAAVYfnsAIAAAAATImAFQAAAABgSgSsAAAAAABTImAFAAAAAJgSASsAAAAAwJQIWAEAAAAApkTACgAAAAAwJQJWAAAAAIApEbACAAAAAEyJgBUAAAAAYEoErAAAAAAAUyJgBQAAAACY0v8HlP1f3u2SgBEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(3,1, figsize=(25/2, 9/2))\n", "lut1 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage1_3x3_dense_upscale_lut.npy\"))\n", "lut2 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage1_5x5_dense_upscale_lut.npy\"))\n", "lut3 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage1_7x7_dense_upscale_lut.npy\"))\n", "a[0].imshow(lut1)\n", "a[1].imshow(lut2)\n", "a[2].imshow(lut3)\n", "pcm = a[0].pcolormesh(lut1)\n", "f.colorbar(pcm, ax=a, location='right')\n", "f.suptitle(\"Stage 1, dense_upscale_lut\")\n", "a[0].set_title(\"3x3\")\n", "a[1].set_title(\"5x5\")\n", "a[2].set_title(\"7x7\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '7x7')" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAGzCAYAAABD1xgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/+0lEQVR4nO3deXwU9f0/8Nfs5gRyNIQkRBIIoBxyVY4YFRRJCYcHEFuC1EbkB18xocUgVloB6RdF0SKCCOpXARUUbUVFFIvhKiWABKkXIlAuhQSF5iCQa+fz+yNkzR6T7Ozu7M7svp6Px4iZ/cxnPjPz2Zl57+czn5GEEAJEREREREREXmbydwGIiIiIiIgoMDHgJCIiIiIiIk0w4CQiIiIiIiJNMOAkIiIiIiIiTTDgJCIiIiIiIk0w4CQiIiIiIiJNMOAkIiIiIiIiTTDgJCIiIiIiIk0w4CQiIiIiIiJNMOAkIiIiIiIiTTDgJCKigPPll1/irrvuQseOHREREYGrrroKv/rVr7Bs2TKbdE888QTee+89/xRShW+//RYPP/ww+vXrh6ioKLRv3x6jR4/G/v37/V00IiKiZklCCOHvQhAREXnL7t27MXToUKSmpiI3NxdJSUk4ffo09uzZg2PHjuHo0aPWtG3atMFdd92F1atX+6/ALnjooYfwyiuvIDs7G4MGDUJ5eTlefPFFnDhxAps3b0ZmZqa/i0hEROQUA04iIgooo0ePxmeffYbvvvsOsbGxNp+dO3cOCQkJ1r+NEnAWFxejW7duaNOmjXXe+fPn0aNHD1xzzTXYtWuXV9ZTX18PWZYRFhbmlfyIiIjYpZaIiALKsWPHcO211zoEmwBsgk1JklBVVYU1a9ZAkiRIkoR7770XAHDy5Ek88MAD6NatGyIjI9G2bVv8+te/xokTJxzy/OKLL3DzzTcjMjISHTp0wIIFC7Bq1SpIkuSQ/uOPP8bgwYPRunVrREVFYfTo0fj6669b3Kb+/fvbBJsA0LZtWwwePBiHDh1qcXlnTpw4AUmS8Mwzz2DJkiXo0qULwsPD8c033wBo6Mb7m9/8Bu3atUNkZCS6deuGP//5z6rWIcsynnvuOfTu3RsRERFo164dRowYYdMVuL6+Hv/7v/9rXX+nTp3wpz/9CTU1NTZ5derUCbfddht27dqFQYMGISIiAp07d8Zrr71mTbN//35IkoQ1a9Y4lOWTTz6BJEn48MMPVW0DERF5hi2cREQUULKyslBUVITdu3ejV69eiuneeOMN/L//9/8waNAgTJ06FQDQpUsXZGRk4G9/+xsWLFiAO++8Ex06dMCJEyewYsUKREdH45tvvkGrVq0AAD/88AP69OkDSZLw+9//Hq1bt8b//d//ITw8HP/+979x/PhxdOrUCQDw+uuvIzc3F1lZWRg9ejQuXbqEFStWoKysDJ9//rk1nRo33ngjfvrpJxw+fFj1sidOnEBaWhp69uyJ6upqTJ06FeHh4Rg3bhzKysowePBghIaGYurUqejUqROOHTuGjz/+GF988YXL65g0aRJWr16NkSNHIisrC/X19fjnP/+JzMxM5OfnAwDuvfderFmzBnfddReGDh2KvXv34rXXXsOYMWOwYcMGa16dOnVCREQEysrKMHnyZCQnJ+PVV1/F559/ji+//BLXXnstgIZj2L17d2zatMmmLPfddx/ee+89lJaWIjQ0VPX+IiIiNwkiIqIA8o9//EOYzWZhNptFRkaGePjhh8Unn3wiamtrHdK2bt1a5ObmOsy/dOmSw7yioiIBQLz22mvWedOnTxeSJInPP//cOu/8+fMiLi5OABDHjx8XQghRWVkpYmNjxZQpU2zyLCkpETExMQ7zXbFz504hSZKYM2eO6mWFEOL48eMCgIiOjhbnzp2z+WzIkCEiKipKnDx50ma+LMsu579161YBQPz+9793+Kwxn4MHDwoA4v/9v/9n8/lDDz0kAIitW7da53Xs2FEAEDt37rTOO3funAgPDxczZ860zps9e7YIDQ0VFy5csM6rqakRsbGx4r777nO5/ERE5B3sUktERAHlV7/6FYqKinDHHXfg3//+NxYtWoSsrCxcddVV+OCDD1zKIzIy0vr/dXV1OH/+PLp27YrY2FgcOHDA+tnmzZuRkZGBfv36WefFxcVh4sSJNvlt2bIFZWVlmDBhAn766SfrZDabkZ6ejm3btqnaxnPnzuHuu+9GWloaHn74YVXL2svOzka7du2sf//444/YuXMn7rvvPqSmptqklSTJ5Xz//ve/Q5IkzJs3z+Gzxnw++ugjAEBBQYHN5zNnzgQAh1bKnj17YvDgwda/27Vrh27duuE///mPdd748eNRV1eHd9991zrvH//4B8rKyjB+/HiXy09ERN7BgJOIiALOwIED8e677+K///0v9u3bh9mzZ6OyshJ33XWX9RnF5ly+fBlz585FSkoKwsPDER8fj3bt2qGsrAzl5eXWdCdPnkTXrl0dlrefd+TIEQDArbfeinbt2tlM//jHP3Du3DmXt62qqgq33XYbKisr8f777zs826lWWlqazd+NwVtz3ZFdcezYMSQnJyMuLk4xzcmTJ2EymRz2V1JSEmJjY3Hy5Emb+fYBMAD84he/wH//+1/r33379kX37t2xfv1667z169cjPj4et956q7ubQ0REbgrxdwGIiIi0EhYWhoEDB2LgwIG45pprMGnSJLzzzjtOW92amj59OlatWoUZM2YgIyMDMTExkCQJOTk5kGVZdTkal3n99deRlJTk8HlIiGuX49raWowbNw5ffPEFPvnkE4+DQsC2NddfXG05NZvNTucLu+Eoxo8fj8cffxw//fQToqKi8MEHH2DChAku72ciIvIennmJiCgoDBgwAABw9uxZ6zylQOdvf/sbcnNz8de//tU6r7q6GmVlZTbpOnbsaPNez0b287p06QKgYZRcd9+ZKcsyfve736GwsBBvv/02br75ZrfyaUnnzp0BAF999ZVH+XTp0gWffPIJLly4oNjK2bFjR8iyjCNHjqBHjx7W+aWlpSgrK0PHjh3dWvf48eMxf/58/P3vf0diYiIqKiqQk5PjVl5EROQZdqklIqKAsm3bNocWL+Dn5wW7detmnde6dWuHIBJoaEmzz2PZsmWwWCw28xpHxD148KB13oULF7B27VqHdNHR0XjiiSdQV1fnsL4ff/yxxe2aPn061q9fjxdeeAHjxo1rMb272rVrhyFDhuDVV1/FqVOnbD5ztl+VZGdnQwiB+fPnO3zWmM+oUaMAAEuWLLH5fPHixQAa3qnqjh49eqB3795Yv3491q9fj/bt22PIkCFu5UVERJ5hCycREQWU6dOn49KlSxg7diy6d++O2tpa7N69G+vXr0enTp0wadIka9r+/fvj008/xeLFi5GcnIy0tDSkp6fjtttuw+uvv46YmBj07NkTRUVF+PTTT9G2bVubdT388MN444038Ktf/QrTp0+3vhYlNTUVFy5csLagRkdHY8WKFbjnnntw3XXXIScnB+3atcOpU6ewadMm3HjjjXj++ecVt2nJkiV44YUXkJGRgVatWuGNN96w+Xzs2LFo3bo1AGD79u0YOnQo5s2bh8cee8ytfbh06VLcdNNNuO666zB16lSkpaXhxIkT2LRpk01w3ZyhQ4finnvuwdKlS3HkyBGMGDECsizjn//8J4YOHYr8/Hz07dsXubm5eOmll1BWVoabb74Z+/btw5o1azBmzBgMHTrUrfIDDa2cc+fORUREBCZPngyTib+xExH5hT+HyCUiIvK2jz/+WNx3332ie/fuok2bNiIsLEx07dpVTJ8+XZSWltqk/fbbb8WQIUNEZGSkAGB9Rcp///tfMWnSJBEfHy/atGkjsrKyxLfffis6duzo8BqVzz//XAwePFiEh4eLDh06iIULF4qlS5cKAKKkpMQm7bZt20RWVpaIiYkRERERokuXLuLee+8V+/fvb3abcnNzBQDFqfH1K0IIsXHjRgFArFy5stk8G1+L8vTTTzv9/KuvvhJjx44VsbGxIiIiQnTr1k31K1jq6+vF008/Lbp37y7CwsJEu3btxMiRI0VxcbE1TV1dnZg/f75IS0sToaGhIiUlRcyePVtUV1fb5NWxY0cxevRoh3XcfPPN4uabb3aYf+TIEev+2bVrl6pyExGR90hCqOgfQ0RERC2aMWMGXnzxRVy8eFFxoButPPzww3jzzTdx9OhRhIeH+3TdRERE9ti/hIiIyAOXL1+2+fv8+fN4/fXXcdNNN/k82AQanmGdM2cOg00iItIFtnASERF5oF+/frjlllvQo0cPlJaW4pVXXsGZM2dQWFgYkAPVWCyWFgc5atOmjcfvByUiosDAQYOIiIg8MGrUKPztb3/DSy+9BEmScN111+GVV14JyGATAE6fPo20tLRm03gyYBEREQUWtnASERGRy6qrq7Fr165m03Tu3Nn6Pk8iIgpuDDiJiIiIiIhIExw0iIiIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINMGAk4iIiIiIiDTBgJOIiIiIiIg0wYCTiIiIiIiINBHi7wIQEREREREFsurqatTW1nqUR1hYGCIiIrxUIt9hwElERERERKSR6upqpHVsg5JzFo/ySUpKwvHjxw0XdDLgJCIiIiIi0khtbS1KzllwvLgjoqPce6KxolJGWv+TqK2tZcBJREREREREtlq3aZjcYRHeLYsvcdAgIiIiIiIi0gRbOImIiIiIiDQmQ0CGe02V7i6nBww4iYiIiIiINCZDhuzBskbFLrVERERERESkCbZwEhERERERacwiBCzCva6x7i6nBww4iYiIiIiINMZnOImIiIiIiEgTMgQsQRhw8hlOIiIiIiIi0gRbOImIiIiIiDTGLrVERERERESkCQ4aRERERERERJqQr0zuLmtUfIaTiIiIiIiINMGAk4iINPX111/j17/+NTp37oxWrVohPj4eQ4YMwcaNG93K74knnsD111+Pdu3aISIiAldffTVmzJiBH3/80cslJyIi8h7LlVFq3Z2Mil1qiYhIUydPnkRlZSVyc3ORnJyMS5cu4e9//zvuuOMOvPjii5g6daqq/IqLi9GvXz/k5OQgKioKhw4dwssvv4xNmzbh4MGDaN26tUZbQkRE5D6LaJjcXdaoJCEM/AQqEREZksViQf/+/VFdXY1vv/3W4/z+/ve/46677sKbb76JnJwcL5SQiIjIOyoqKhATE4OD3yQgKsq9DqaVlTL69TyH8vJyREdHe7mE2mKXWiIi8jmz2YyUlBSUlZUBALZu3QqTyYS5c+fapFu3bh0kScKKFSuaza9Tp04AYM2PiIiI9IFdaomIyCeqqqpw+fJllJeX44MPPsDHH3+M8ePHAwBuvfVWPPDAA1i4cCHGjBmD6667DmfPnsX06dORmZmJ+++/3yYvIQTOnz+P+vp6HDlyBI888gjMZjNuueUWP2wZERFRy2RIsEBye1mjYsBJREQ+MXPmTLz44osAAJPJhHHjxuH555+3fr5o0SJ88skn+N3vfofi4mJMmTIF9fX1eOWVVyBJthfa0tJStG/f3vp3hw4dsG7dOnTv3t03G0NERKSSLBomd5c1KnapJSIin5gxYwa2bNmCNWvWYOTIkbBYLKitrbV+3qpVK6xevRqHDh3CkCFDsGnTJjz77LNITU11yCsuLg5btmzBxo0b8Ze//AXx8fG4ePGiLzeHiIhIFcuVFk53JzV27tyJ22+/HcnJyZAkCe+9957N5xcvXkR+fj46dOiAyMhI9OzZEytXrrRJU11djby8PLRt2xZt2rRBdnY2SktLVW83Bw0iIiK/GD58OMrKyrB3716bFsz8/HwsX74cWVlZ2Lx5s0t57d69GzfeeCM2btyI2267TasiExERqdY4aNDer5PQxs1Bgy5Wyki/tsTlQYM+/vhj/Otf/0L//v0xbtw4bNiwAWPGjLF+PnXqVGzduhX/93//h06dOuEf//gHHnjgAbz77ru44447AADTpk3Dpk2bsHr1asTExCA/Px8mkwn/+te/VJWdLZxEROQXd911Fz777DN899131nk1NTXYvn07AODYsWO4dOmSS3ndcMMNaN++PdauXatFUYmIiDzmyxbOkSNHYsGCBRg7dqzTz3fv3o3c3Fzccsst6NSpE6ZOnYq+ffti3759AIDy8nK88sorWLx4MW699Vb0798fq1atwu7du7Fnzx5VZWHASUREfnH58mUADRe1RvPmzcOhQ4fwzDPP4Pjx43jkkUdczq+6utomLyIiIj2RheTRBDS0ljadampq3CrLDTfcgA8++AA//PADhBDYtm0bvvvuOwwfPhxAwzuv6+rqkJmZaV2me/fuSE1NRVFRkap1MeAkIiJNnTt3zmFeXV0dXnvtNetzIwCwd+9ePPPMM5gxYwZmzpyJWbNm4fnnn8eOHTusy1VVVTlt9fz73/+O//73vxgwYIB2G0JEROQBb7RwpqSkICYmxjotXLjQrbIsW7YMPXv2RIcOHRAWFoYRI0Zg+fLlGDJkCACgpKQEYWFhiI2NtVkuMTERJSUlqtbFUWqJiEhT//M//4OKigoMGTIEV111FUpKSrB27Vp8++23+Otf/4o2bdqguroaubm5uPrqq/H4448DAObPn4+NGzdi0qRJ+PLLL9G6dWscOXIEmZmZGD9+PLp37w6TyYT9+/fjjTfeQKdOnfCHP/zBz1tLRESkndOnT9s8wxkeHu5WPsuWLcOePXvwwQcfoGPHjti5cyfy8vKQnJxs06rpDQw4iYhIU+PHj8crr7yCFStW4Pz584iKikL//v3x1FNPWQcm+NOf/oSjR49i9+7diIiIAACEhYVhzZo1uP766zFr1iy88MIL6NChA7Kzs7F161asWbMGdXV16NixI/Lz8/HnP/8Zbdu29eemEhERKbLABIubHUwtV/6Njo52adCg5ly+fBl/+tOfsGHDBowePRoA0KdPHxw8eBDPPPMMMjMzkZSUhNraWpSVldm0cpaWliIpKUnV+hhwEhGRpnJycpCTk9NsmsWLF2Px4sUO8/v374+6ujrr3/Hx8dZ3eRIRERmJaPIspjvLektdXR3q6upgMtkGv2azGbIsA2i4/oaGhqKwsBDZ2dkAgMOHD+PUqVPIyMhQtT4GnERERERERAHk4sWLOHr0qPXv48eP4+DBg4iLi0NqaipuvvlmzJo1C5GRkejYsSN27NiB1157zfrjb0xMDCZPnoyCggLExcUhOjoa06dPR0ZGBq6//npVZWHASUREREREpDF3Xm/SdFk19u/fj6FDh1r/LigoAADk5uZi9erVeOuttzB79mxMnDgRFy5cQMeOHfH444/j/vvvty7z7LPPwmQyITs7GzU1NcjKysILL7yguuySEEKoXoqIiIiIiIhaVFFRgZiYGHz8RRpaR7n3DGdVpYyRfY6jvLzc42c4fY0tnERERERERBqTIUF2c9AgGcZtI+R7OImIiIiIiEgTmgWcy5cvR6dOnRAREYH09HTs27dPq1URERERERHpWuMznO5ORqVJl9r169ejoKAAK1euRHp6OpYsWYKsrCwcPnwYCQkJzS4ryzLOnDmDqKgoSJJxdywREREREXlGCIHKykokJyc7vMbDaCzCBItw8z2cBh52R5NBg9LT0zFw4EA8//zzABqCyJSUFEyfPh2PPPJIs8t+//33SElJ8XaRiIiIiIjIoE6fPo0OHTr4uxhuaRw06O//vgato8xu5VFVaUF23+84aBAA1NbWori4GLNnz7bOM5lMyMzMRFFRkUP6mpoa1NTUWP9ujH+vWvBnmCIivF0845H9XQAKZpIXXzJMpJZk8XcJKKjJPP+R/0i8/7P656TfISUlBVFRUf4uCrnJ6wHnTz/9BIvFgsTERJv5iYmJ+Pbbbx3SL1y4EPPnz3eYb4qIgCmSAScASLzokT8ZtwcHBQDJwvMf+Rdv/MmvWP8wePVrABAQj9rJMMHCUWp9b/bs2SgvL7dOp0+fbviAXzAiIiIiIgoQjc9wujsZlddbOOPj42E2m1FaWmozv7S0FElJSQ7pw8PDER4e7u1iEBERERER6YYMU1C+h9PrAWdYWBj69++PwsJCjBkzBkDDoEGFhYXIz89XlRe7klJAM+55g4goaBilUYFdfwOUQeqfprgPDE+T16IUFBQgNzcXAwYMwKBBg7BkyRJUVVVh0qRJLufBwUqIiIiIiChQWIQEi5sxjrvL6YEmAef48ePx448/Yu7cuSgpKUG/fv2wefNmh4GEiIiIiIiIgoHFg0GDLAbuGqdJwAkA+fn5qrvQOjDufiUiIiLyGaN0/SVSK5DqtixMkN3cIFkYNzDS7SGU6ozbbExEREREREQatnASERERERFRA3ap1SETWzkpgAVSFxEirQizcS+wRD7FWyYKUIF0HZDh/uA/Rh6IWre3vGmP7vN3EYiIiIiIiMgDXg84H3vsMUiSZDN1797d26shIiIiIiIyDBkmjyaj0qRL7bXXXotPP/3055WEuLeazg8VOZ0vmc2q5kNpvpeWhdl5BVDM0+RChVG7rEIZXCu/0rY7z1OYm+kKoFA+4dI2O89XcVnF9ArzVaaHwnw5pOVtUeouq7guxbKpy8dr6RWqhNp8ZMV8nM93Zx1K51/lfdHyfMU0SlXfW2VQub+8tk9c2C71+1OhC5TabWmOQrnVrhsK6W3KpJBGUrsuSV0+SvNNZuedq0xq81Eoj1I+ZpOsKo3NfIV1KaZXmB8iqUsPAGFmi6q8QlSuO8SkNn/n6UNVp1eYr1h+5+mbijDVqVuX6vn1mubTVJiXytCQl/NlIlwoh/L6nB+nMKirH7ZpnH/PQhWe/wuTWu7eGaqQJtSFAChUcp4mBM4veKGSY8xQUWnBLx5ucVWGYBEmWNx8psrd5fRAk4AzJCQESUlJWmRNRERERERkODIkyG4+cO3ucnqgSah85MgRJCcno3Pnzpg4cSJOnTqlmLampgYVFRU2EwCcnD9Ii6IRERERERGRj3i9hTM9PR2rV69Gt27dcPbsWcyfPx+DBw/GV199haioKIf0CxcuxPz5853mdfzJG7xdPJ9S7NZFxmDcngsG5/3vjYF7oVBzFKqKZFH4FVixt5zz9Hr4LVnp26C0KS13mPQxPexE8gre0xicga+D8uVqAHP8XQyvCNYutV4v+ciRI/HrX/8affr0QVZWFj766COUlZXh7bffdpp+9uzZKC8vt06nT5/2dpGIiIiIiIj8qvE9nO5ORqX5ezhjY2NxzTXX4OjRo04/Dw8PR3h4uMN82WzoH2OIiIiIiIisZCFBdvc9nG4upweaB5wXL17EsWPHcM8996heVoSw+wYFLgP3jCAicg0v476j8b2oJBv3ZpcAtDzArW5J9ax7Ruf1W96HHnoIO3bswIkTJ7B7926MHTsWZrMZEyZM8PaqiIiIiIiIDEH2oDst38PZxPfff48JEybg/PnzaNeuHW666Sbs2bMH7dq18/aqiIiIiIiIDEEWJshudnFzdzk98HrA+dZbb3k7S68y8LEiIiIico7dl0kv2ANWkQUSLG7uIHeX0wOGX0RERERERKQJzQcNchvf90RERERERAGCXWp1yMD7lYiIiIgo+Hi7zSiA2qAscL9rrMW7RfEpXQecREREREREgYAtnDohRMPPGLvuycVNb7zm59IQEZE/CT5eQUQU1OTqagA/xwhkPLoLOCsrKwEAKSkpfi4JERERERHpQWVlJWJiYvxdDI9YhAkWN1sq3V1OD3QXcCYnJ+P06dMQQiA1NRWnT59GdHS0v4tFAaSiogIpKSmsW+R1rFukFdYt0grrFmnFW3VLCIHKykokJyd7sXT+ISBBdvMZTmHg16LoLuA0mUzo0KEDKioqAADR0dE8AZImWLdIK6xbpBXWLdIK6xZpxRt1y+gtm42CtYXTuCUnIiIiIiIiXdNdCycREREREVGgkYUEWbjXNdbd5fRAtwFneHg45s2bh/DwcH8XhQIM6xZphXWLtMK6RVph3SKtsG45ssAEi5sdTN1dTg8kwTGGiYiIiIiINFFRUYGYmBjM+NcdCG8T6lYeNRfrsOTGD1BeXm64561128JJREREREQUKNilloiIiIiIiDQhwwTZza6x7i6nBww4iYiIiIiINGYREixutlS6u5weGDdUJiIiIiIiIl3TZcC5fPlydOrUCREREUhPT8e+ffv8XSQymMceewySJNlM3bt3t35eXV2NvLw8tG3bFm3atEF2djZKS0v9WGLSq507d+L2229HcnIyJEnCe++9Z/O5EAJz585F+/btERkZiczMTBw5csQmzYULFzBx4kRER0cjNjYWkydPxsWLF324FaRHLdWte++91+E8NmLECJs0rFvkzMKFCzFw4EBERUUhISEBY8aMweHDh23SuHIdPHXqFEaPHo1WrVohISEBs2bNQn19vS83hXTGlbp1yy23OJy77r//fps0wVq3Gp/hdHcyKt0FnOvXr0dBQQHmzZuHAwcOoG/fvsjKysK5c+f8XTQymGuvvRZnz561Trt27bJ+9uCDD2Ljxo145513sGPHDpw5cwbjxo3zY2lJr6qqqtC3b18sX77c6eeLFi3C0qVLsXLlSuzduxetW7dGVlYWqqurrWkmTpyIr7/+Glu2bMGHH36InTt3YurUqb7aBNKpluoWAIwYMcLmPPbmm2/afM66Rc7s2LEDeXl52LNnD7Zs2YK6ujoMHz4cVVVV1jQtXQctFgtGjx6N2tpa7N69G2vWrMHq1asxd+5cf2wS6YQrdQsApkyZYnPuWrRokfWzYK5bQpgguzkJoS5sa+lHTQA4dOgQ7rjjDsTExKB169YYOHAgTp06Zf3caw00QmcGDRok8vLyrH9bLBaRnJwsFi5c6MdSkdHMmzdP9O3b1+lnZWVlIjQ0VLzzzjvWeYcOHRIARFFRkY9KSEYEQGzYsMH6tyzLIikpSTz99NPWeWVlZSI8PFy8+eabQgghvvnmGwFAfPbZZ9Y0H3/8sZAkSfzwww8+Kzvpm33dEkKI3Nxcceeddyouw7pFrjp37pwAIHbs2CGEcO06+NFHHwmTySRKSkqsaVasWCGio6NFTU2NbzeAdMu+bgkhxM033yz+8Ic/KC4TjHWrvLxcABCTd/xGTCue6NY0ecdvBABRXl7u0jo/+ugj8ec//1m8++67Tq8xR48eFXFxcWLWrFniwIED4ujRo+L9998XpaWl1jT333+/SElJEYWFhWL//v3i+uuvFzfccIPq7ddVC2dtbS2Ki4uRmZlpnWcymZCZmYmioiI/loyM6MiRI0hOTkbnzp0xceJE6y82xcXFqKurs6ln3bt3R2pqKusZqXL8+HGUlJTY1KWYmBikp6db61JRURFiY2MxYMAAa5rMzEyYTCbs3bvX52UmY9m+fTsSEhLQrVs3TJs2DefPn7d+xrpFriovLwcAxMXFAXDtOlhUVITevXsjMTHRmiYrKwsVFRX4+uuvfVh60jP7utVo7dq1iI+PR69evTB79mxcunTJ+hnrlm+MHDkSCxYswNixY51+/uc//xmjRo3CokWL8Mtf/hJdunTBHXfcgYSEBAANx/aVV17B4sWLceutt6J///5YtWoVdu/ejT179qgqi64Czp9++gkWi8WmAgJAYmIiSkpK/FQqMqL09HSsXr0amzdvxooVK3D8+HEMHjwYlZWVKCkpQVhYGGJjY22WYT0jtRrrS3PnrJKSEuvJu1FISAji4uJY36hZI0aMwGuvvYbCwkI89dRT2LFjB0aOHAmLxQKAdYtcI8syZsyYgRtvvBG9evUCAJeugyUlJU7PbY2fETmrWwBw991344033sC2bdswe/ZsvP766/jtb39r/TyY65YsPHmOsyGPiooKm6mmpkZ9OWQZmzZtwjXXXIOsrCwkJCQgPT3dptutNxto+FoUCkgjR460/n+fPn2Qnp6Ojh074u2330ZkZKQfS0ZE5JqcnBzr//fu3Rt9+vRBly5dsH37dgwbNsyPJSMjycvLw1dffWUzjgGRNyjVrabPkffu3Rvt27fHsGHDcOzYMXTp0sXXxdSVxucx3V0WAFJSUmzmz5s3D4899piqvM6dO4eLFy/iySefxIIFC/DUU09h8+bNGDduHLZt24abb77Zqw00umrhjI+Ph9lsdngYtbS0FElJSX4qFQWC2NhYXHPNNTh69CiSkpJQW1uLsrIymzSsZ6RWY31p7pyVlJTkMOhZfX09Lly4wPpGqnTu3Bnx8fE4evQoANYtall+fj4+/PBDbNu2DR06dLDOd+U6mJSU5PTc1vgZBTeluuVMeno6ANicu4K1bsmQPJoA4PTp0ygvL7dOs2fPVl8OWQYA3HnnnXjwwQfRr18/PPLII7jtttuwcuVKr24zoLOAMywsDP3790dhYaF1nizLKCwsREZGhh9LRkZ38eJFHDt2DO3bt0f//v0RGhpqU88OHz6MU6dOsZ6RKmlpaUhKSrKpSxUVFdi7d6+1LmVkZKCsrAzFxcXWNFu3boUsy9aLMJErvv/+e5w/fx7t27cHwLpFyoQQyM/Px4YNG7B161akpaXZfO7KdTAjIwNffvmlzY8aW7ZsQXR0NHr27OmbDSHdaaluOXPw4EEAsDl3sW65Lzo62mYKDw9XnUd8fDxCQkIc9nePHj2sY554s4FGd11qCwoKkJubiwEDBmDQoEFYsmQJqqqqMGnSJH8XjQzkoYcewu23346OHTvizJkzmDdvHsxmMyZMmICYmBhMnjwZBQUFiIuLQ3R0NKZPn46MjAxcf/31/i466czFixetv8oCDQMFHTx4EHFxcUhNTcWMGTOwYMECXH311UhLS8OcOXOQnJyMMWPGAGg4eY8YMQJTpkzBypUrUVdXh/z8fOTk5CA5OdlPW0V60FzdiouLw/z585GdnY2kpCQcO3YMDz/8MLp27YqsrCwArFukLC8vD+vWrcP777+PqKgoa/e3mJgYREZGunQdHD58OHr27Il77rkHixYtQklJCR599FHk5eW5dYNLgaGlunXs2DGsW7cOo0aNQtu2bfHFF1/gwQcfxJAhQ9CnTx8AwV23LEKCxc33abq7nDNhYWEYOHCgwztUv/vuO3Ts2BGA7Q9T2dnZADxooFE9rq0PLFu2TKSmpoqwsDAxaNAgsWfPHn8XiQxm/Pjxon379iIsLExcddVVYvz48eLo0aPWzy9fviweeOAB8Ytf/EK0atVKjB07Vpw9e9aPJSa92rZtmwDgMOXm5gohGl6NMmfOHJGYmCjCw8PFsGHDxOHDh23yOH/+vJgwYYJo06aNiI6OFpMmTRKVlZV+2BrSk+bq1qVLl8Tw4cNFu3btRGhoqOjYsaOYMmWKzWsEhGDdIuec1SsAYtWqVdY0rlwHT5w4IUaOHCkiIyNFfHy8mDlzpqirq/Px1pCetFS3Tp06JYYMGSLi4uJEeHi46Nq1q5g1a5bDqzyCrW41vhYlp/C34nd773Nryin8rarXolRWVorPP/9cfP755wKAWLx4sfj888/FyZMnhRBCvPvuuyI0NFS89NJL4siRI2LZsmXCbDaLf/7zn9Y87r//fpGamiq2bt0q9u/fLzIyMkRGRobq7ZeEEEJdiEpERERERESuqKioQExMDH5TeA/CWoe5lUdtVS3eHvY6ysvLER0d3WL67du3Y+jQoQ7zc3NzsXr1agDAq6++ioULF+L7779Ht27dMH/+fNx5553WtNXV1Zg5cybefPNN1NTUICsrCy+88ILqLrUMOImIiIiIiDTij4BTT3T3DCcREREREVGgEU1Gm3VnWaNiwElERERERKQxWUiQ3Rz8x93l9IABJxERERERkcZkYYIs3HsrpbvL6YFxS05ERERERES6xhZOIiIiIiIijbFLLREREREREWlC9mDQIHeX0wN2qSUiIiIiIiJNsIWTiIiIiIhIY+xSS0RERERERJpgwElERERERESaCNaAk89wEhERERERkSbYwklERERERKSxYG3hZMBJRERERESkMQH3X28ivFsUn2LASUREREREpLFgbeHkM5xERERERESkCbZwEhERERERaSxYWzgZcBIREREREWmMAScRERERERFpIlgDTj7DSURERERERJpgCycREREREZHGhJAg3GypdHc5PWDASUREREREpDEZktvv4XR3OT1gwElERERERKQxPsNJRERERERE5EVs4SQiIiIiItIYn+EkIiIiIiIiTQRrl1oGnERERERERBoL1hZOPsNJRESa2759OyRJcjrt2bNHdX6dOnVymtf999+vQemJiIjIXWzhJCIin/n973+PgQMH2szr2rWrW3n169cPM2fOtJl3zTXXuF02IiIiLQkPutQauYWTAScREfnM4MGDcdddd3klr6uuugq//e1vvZIXERGR1gQAIdxf1qjYpZaIiHyqsrIS9fX1DvNXrVoFSZLw6quv2sx/4oknIEkSPvroI4dlamtrUVVVpVlZiYiIyDMMOImIyGcmTZqE6OhoREREYOjQodi/f7/NZ7fddhsKCgpw+vRpAMCXX36J+fPnY/LkyRg1apRNXlu3bkWrVq3Qpk0bdOrUCc8995xPt4WIiEgNGZJHk1GxSy0REWkuLCwM2dnZGDVqFOLj4/HNN9/gmWeeweDBg7F792788pe/BAC8/PLLuPbaazF58mR8+OGHyM3NRVJSEhYvXmyTX58+fXDTTTehW7duOH/+PFavXo0ZM2bgzJkzeOqpp/yxiURERM0K1lFqJSHc7UlMRETkvqNHj6JPnz4YMmQINm/ebJ3/1ltvYcKECRg0aBA+++wzbNmyBcOGDWs2LyEERo4cicLCQhw/fhwdOnTQuvhEREQuqaioQExMDHq9PQvmVuFu5WG5VIOvfvM0ysvLER0d7eUSaotdaomIyC+6du2KO++8E9u2bYPFYrHOz8nJwejRo7Fv3z5MmTKlxWATACRJwoMPPoj6+nps375dw1ITERGRGgw4iYjIb1JSUhwG/jl//rz12c5vvvkGsiy7nBcAXLhwwfsFJSIi8pAQnk1GxYCTiIj85j//+Q8iIiLQpk0b67y8vDxUVlZi4cKF2LVrF5YsWeJyXgDQrl07LYpKRETkkcZnON2djIoBJxERae7HH390mPfvf/8bH3zwAYYPHw6TqeFy9Le//Q3r16/Hk08+iUceeQQ5OTl49NFH8d1331mXu3Dhgk0XXACoq6vDk08+ibCwMAwdOlTbjSEiInJDsAacHKWWiIg0N378eERGRuKGG25AQkICvvnmG7z00kto1aoVnnzySQDAuXPnMG3aNAwdOhT5+fkAgOeffx7btm3Dvffei127dsFkMuGDDz7AggULcNdddyEtLQ0XLlzAunXr8NVXX+GJJ55AUlKSPzeViIiImmDASUREmhszZgzWrl2LxYsXo6KiAu3atcO4ceMwb948dO3aFQAwbdo01NTUYNWqVZCkhl9y27Zti5deegl33nknnnnmGTz88MPo3bs3evbsiTfeeAM//vgjwsLC0K9fP7z99tv49a9/7c/NJCIiUiQLCZKbLZWygVs4+VoUIiIiIiIijTS+FuWatY949FqU7yY+acjXorCFk4iIiIiISGMNo82611Jp5CZCDhpEREREREREmmALJxERERERkcY8GW2Wo9QSERERERGRInFlcndZo9KsS+3y5cvRqVMnREREID09Hfv27dNqVURERERERLoWrO/h1CTgXL9+PQoKCjBv3jwcOHAAffv2RVZWFs6dO6fF6oiIiIiIiEiHNOlSu3jxYkyZMgWTJk0CAKxcuRKbNm3Cq6++ikceeaTZZWVZxpkzZxAVFWV9DxsREREREQUfIQQqKyuRnJwMk8ng4536sE/tzp078fTTT6O4uBhnz57Fhg0bMGbMGKdp77//frz44ot49tlnMWPGDOv8CxcuYPr06di4cSNMJhOys7Px3HPPoU2bNqrK4vWAs7a2FsXFxZg9e7Z1nslkQmZmJoqKilpc/syZM0hJSfF2sYiIiIiIyKBOnz6NDh06+LsYnvGka6zK5aqqqtC3b1/cd999GDdunGK6DRs2YM+ePUhOTnb4bOLEiTh79iy2bNmCuro6TJo0CVOnTsW6detUlcXrAedPP/0Ei8WCxMREm/mJiYn49ttvHdLX1NSgpqbG+re48pKZDo89ClNEhLeLR0RERmHkERKIiMgr5OpqfD9/AaKiovxdFI81vIfT/WXVGDlyJEaOHNlsmh9++AHTp0/HJ598gtGjR9t8dujQIWzevBmfffYZBgwYAABYtmwZRo0ahWeeecZpgKrE76PULly4EPPnz3eYb4qIYMBJRBTMGHASEdEVfNSuQUVFhc3f4eHhCA8PV52PLMu45557MGvWLFx77bUOnxcVFSE2NtYabAJAZmYmTCYT9u7di7Fjx7q8Lq8HnPHx8TCbzSgtLbWZX1paiqSkJIf0s2fPRkFBgfXviooKpKSkQIQKiLAAv9uQ/V0A8ojME5/RSPzOEWmK3zHjkXgtM7Zg+M7VBk4d9cZ7OO0fPZw3bx4ee+wx1fk99dRTCAkJwe9//3unn5eUlCAhIcFmXkhICOLi4lBSUqJqXV4POMPCwtC/f38UFhZaH0yVZRmFhYXIz893SO9uVE5ERERERGQYQlL9LKbNsmh4ljU6Oto62504qri4GM899xwOHDjgk5ZjTYZ6KigowMsvv4w1a9bg0KFDmDZtGqqqqqyj1hIREREREZE60dHRNpM7Aec///lPnDt3DqmpqQgJCUFISAhOnjyJmTNnolOnTgCApKQkh1da1tfX48KFC057rTZHk2c4x48fjx9//BFz585FSUkJ+vXrh82bNzsMJNSseqlhIrLDLltERPokDP7GgmAkTPp4fInXdjcFwXdOhOijjnqDLwcNas4999yDzMxMm3lZWVm45557rA2EGRkZKCsrQ3FxMfr37w8A2Lp1K2RZRnp6uqr1aTZoUH5+vtMutEREREREREHHh+/hvHjxIo4ePWr9+/jx4zh48CDi4uKQmpqKtm3b2qQPDQ1FUlISunXrBgDo0aMHRowYgSlTpmDlypWoq6tDfn4+cnJyVI1QC+hglFoiIiIiIqJA541Bg1y1f/9+DB061Pp34yCtubm5WL16tUt5rF27Fvn5+Rg2bBhMJhOys7OxdOlSVeUA9BxwmkTDRNoy4Oh07LKlX+wSRUR6xnMUeRNH+PUN7mf33HLLLRAq+uGeOHHCYV5cXBzWrVvncVn0G3ASEREREREFkiBsT2PASUREREREpDFfdqnVE90GnFK9BKnOuDuWiIg8xEsAeZkw+7sEFEiEOQibqvxAtgTQfvbhoEF6wqfhiIiIiIiISBO6beEkIiIiIiIKHBLc775j3G4/ug04JZmjyfkTR4IlIiIi4j2Rvxn40UVHQdqlVrcBJxERERERUcAI0oCTv9kQERERERGRJnTbwmmqk2AyB1IburG6BBimqPzJxCuEycA/m+kUu2CRXrAuaoDnTO9g3fS6QLyeC0sAPWMnJPcDAiMFEnZ0G3ASEREREREFCiEaJneXNSoGnERERERERFoL0mc4dRtwRp0AzGHKn3urVdmTrkbC5MWmbY/K4Z0ieLYv/F8Gb/UD9nRbjLkNP6/Ya93vPKlPHuwHr3Yn0sN3wpM64VH5vbMf/dmd03t12YN9oYNj4NF5xavfJw/y0sE2SB7k48mytvl4sKzkWRkkk3e6NUoeHEuTl/ajyYNt8VoZPDgeZi8di4a8/F+OluqmpaoG33tlTeQvug04iYiIiIiIAgaf4SQiIiIiIiItSKJhcndZo9JtwHnhunqYIuv9XYzmycb9pUEVA1dwV0nBciwDaKA3RUFyLKVgOJYennski3eKAYu2dUr5WAZWXQ6K82wAfy+bfh09ufH15Gvtta+0C2mC4hwLGKLOytXV/i6C9wTpM5wckJqIiIiIiIg0odsWTiIiIiIiooDBZzj1xVxphqnO7O9iEPkNX9ZOQc+411ZVRJBc6oTZwP3B/IjXAgp2cmgAnTvYpZaIiIiIiIjIe3TbwklERERERBQwgrSFU7cBpxwhgEgD71kjMsBIZQEvGEZxNJCgGaVQr3gJ8Dt+B/yv6WjLQTHSr97xO+FzUnUA1XsGnERERERERKSJIB00iM9wEhERERERkSZ028KZ9E8gJFT5c2FSF+WrHeVN7Y8I7owip/k2aJxe7c8VWu9TtfvTnZ9b9HYMXEqv+X5Xl1535QFcqgvq66/Kvi9a1xW1P4y6sk9UbqPWdcWtdbiyDaqPjcpjr/rYqK1bGpRHbZ4AJJXLqE+vKjkkSW3+6vpSSi7sR5PKbTSpLIPq/FXuEwAwqyyTWWWZ1Oav9riaVaYPUb296tKHqOzHrjZ/QP02mFT25QwxWVpOZJO++fLUVdXihKoc9UsSDZO7yxqVbgNOIiIiIiKigBGkz3CySy0RERERERFpQrctnK3f248QKdSlPimSWeGt2Qrz1aa3XVYhRldatrnyK5XPpHIdSmVqSiFPobSsUhmUtkchH6G4Lc7zUZ++yXyFLrVKXW0Vu+AqrMudvIQL5Vbs6qiwK5TXpTK9SV0am/kKZfYoT1fme1Aex8+a1h33y6ScRqFQUtM06tar1NXRlfK4su8Uu4K6sI2u1OOmPcWarsu9RxKarkNtuZukVyy3Up7uL9u0i6hSd1GlbqFK3QSbdvNUOj0rdats2j1TMY3Cept242uui6RSdz+l7WnavVGpm51SnkpdEZumV8pTqcugUtfApvkorTdUaVnV6Z3Pb3psQhXSKM5XWJdSerfWoVhuucU0YVK9ynU5Tx+mMr1ZoR4opVcsP1ruUqq8LQr1Q2F43LBmuuAqnVpDFc4VYS7cc4cqnPhCFU5eoZLzm5MQtHzPbb6SZ0WljPdaTE16ptuAk4iIiIiIKFBI8OAZTq+WxLcYcBIREREREWktSF+LwoCTiIiIiIhIa0E6aJBuA86kwjYIaxPmUto6ueV+4E3Vq3xgqF5uOX29yjIAgKyycbxeVqppzp8DsNiU23maeuFJni1zZd/Z5O/CrzdC5S88astskV3LX22+sspyyy6UQ1ZbBhfyVKwSSulVlsGV4ydUjvIuXDxmrqazUpvelX2nRRnUvvXClTzVjrTvQp4qR/tvdrtsHn+y/LxuV9YhqayzruwLtV2kXNoXKveX0nFtWrSm5WyaveKqVJfBu+msXNi/avM0Shk03y6Xj5nK18ioLbdL50+VeeogvS72mxvr0LzcKvKvr6sGMFfdCkhXdBtwEhERERERBQy2cBIREREREZEWJOHBoEEMOL3v8w+uhTk8wmv5uTPsvq7X5cPnhgNq3/n4zbO+fL5b8ZUWKikWWel1DV5Zqy1f1DmfPnvv0++QtlckX54P3KlcSq8Hsk3jfB9pf/7x4d1CANU5AL4dnlHr7fFlPfD1GCMab5vS64SMvy6fraphfRpHLpLC64fcJV+qBj70apb+E6QtnD6u4kRERERERBQsdNvCSUREREREFDCCtIVTtwHn5SQZpgjvNskTEREpUT26p1pqRyg2CMnQryMn8j9fxxFGi1vk6sDpkBmsz3AGzhEkIiIiIiIiXdFtCycREREREVHAEJL7oxb6dLRD79JtwClMro02SNRI8+5wRORbBu4+RETO8VpNakkWf5fAi/gMJxEREREREWmBz3ASEREREREReZF+WzhNwrcvRw5WATRqok9fSE9OsasUEekZz1HkTVIA3UPpWUDtZ3apJSIiIiIiIk140KWWAScREREREREpYwunvkj1EqS6AGpCJyIidXgJIC/j6PfkTcJs4AjAQGQL97M7du7ciaeffhrFxcU4e/YsNmzYgDFjxgAA6urq8Oijj+Kjjz7Cf/7zH8TExCAzMxNPPvkkkpOTrXlcuHAB06dPx8aNG2EymZCdnY3nnnsObdq0UVUWPvVGRERERESkNeHhpEJVVRX69u2L5cuXO3x26dIlHDhwAHPmzMGBAwfw7rvv4vDhw7jjjjts0k2cOBFff/01tmzZgg8//BA7d+7E1KlT1RUEOm7hJCIiIiIiChS+fC3KyJEjMXLkSKefxcTEYMuWLTbznn/+eQwaNAinTp1CamoqDh06hM2bN+Ozzz7DgAEDAADLli3DqFGj8Mwzz9i0hLZEVQvnwoULMXDgQERFRSEhIQFjxozB4cOHbdJUV1cjLy8Pbdu2RZs2bZCdnY3S0lI1q2kgceLEiROnoJ48/SWYEydOnDgFxkRWFRUVNlNNTY1X8i0vL4ckSYiNjQUAFBUVITY21hpsAkBmZiZMJhP27t2rKm9VAeeOHTuQl5eHPXv2YMuWLairq8Pw4cNRVVVlTfPggw9i48aNeOedd7Bjxw6cOXMG48aNU1UoIiIiIiIispWSkoKYmBjrtHDhQo/zrK6uxh//+EdMmDAB0dHRAICSkhIkJCTYpAsJCUFcXBxKSkpU5a+qS+3mzZtt/l69ejUSEhJQXFyMIUOGoLy8HK+88grWrVuHW2+9FQCwatUq9OjRA3v27MH111+vqnBEREREREQBwZMW2yvLnT592hoUAkB4eLhHRaqrq8NvfvMbCCGwYsUKj/JS4tEznOXl5QCAuLg4AEBxcTHq6uqQmZlpTdO9e3ekpqaiqKjIacBZU1Nj0xRcUVHhSZGIiIiIiIh0xxvPcEZHR9sEnJ5oDDZPnjyJrVu32uSblJSEc+fO2aSvr6/HhQsXkJSUpGo9bo9SK8syZsyYgRtvvBG9evUC0ND0GhYWZu372ygxMVGx6XXhwoU2zcIpKSnuFomIiIiIiEi/dPIca2OweeTIEXz66ado27atzecZGRkoKytDcXGxdd7WrVshyzLS09NVrcvtFs68vDx89dVX2LVrl7tZAABmz56NgoIC698VFRUMOomIiIiIiNx08eJFHD161Pr38ePHcfDgQcTFxaF9+/a46667cODAAXz44YewWCzWxsG4uDiEhYWhR48eGDFiBKZMmYKVK1eirq4O+fn5yMnJUTVCLeBmwJmfn299F0uHDh2s85OSklBbW4uysjKbVs7S0lLFptfw8HCP+x4TERERERHpmhee4XTV/v37MXToUOvfjQ18ubm5eOyxx/DBBx8AAPr162ez3LZt23DLLbcAANauXYv8/HwMGzYMJpMJ2dnZWLp0qeqiqwo4hRCYPn06NmzYgO3btyMtLc3m8/79+yM0NBSFhYXIzs4GABw+fBinTp1CRkaG6sIREREREREFAl++h/OWW26BEMoLNfdZo7i4OKxbt07dip1QFXDm5eVh3bp1eP/99xEVFWVteo2JiUFkZCRiYmIwefJkFBQUIC4uDtHR0Zg+fToyMjI4Qi0REREREQUvH7Zw6omqgLNxqNzGZtZGq1atwr333gsAePbZZ61NrjU1NcjKysILL7ygumDmagkmSKqXCzSCu8A9bg+HRU0Jk4HPbn4mWAc9x/OfV7AueoDnQO9gHXQLr8ENZMj+LgJ5SHWX2pZERERg+fLlWL58uduFIiIiIiIiCiS+7FKrJx69h5OIiIiIiIhcwC61+lIXY4Ep0uLvYjiQZPbx0hR7TXgf66ymJNZZ7Rj44qonksKllHXXFe6fP3m/oAHWWU3ptQVNrjb7uwjkId0GnERERERERAGDLZxERERERESkBT7DqTOmahNMHNaMiCh4sUeipgR7qWlKmA18d0ikI7KRm/bsBWkLJyM6IiIiIiIi0oTuWjgbX70iV1f7uSRERORXbOEkIgp6jTGBK69n1L0gbeHUXcBZWVkJAPh+/gI/l4SIiIiIiPSgsrISMTEx/i6GR/gMp04kJyfj9OnTEEIgNTUVp0+fRnR0tL+LRQGkoqICKSkprFvkdaxbpCXWL9IK6xZpydP6JYRAZWUlkpOTNSidj7GFUx9MJhM6dOiAiooKAEB0dDRPfqQJ1i3SCusWaYn1i7TCukVa8qR+Gb1lM9jpLuAkIiIiIiIKNOxSS0RERERERNpgl1p9CQ8Px7x58xAeHu7volCAYd0irbBukZZYv0grrFukJdavJoI04JREQIwxTEREREREpD8VFRWIiYlBjweegDk8wq08LDXVOPTCn1BeXm64Z61128JJREREREQUKCS4/4ppI7+amgEnERERERGR1oK0Sy0DTiIiIiIiIo0F6yi1Jn8XgIiIiIiIiAKTLgPO5cuXo1OnToiIiEB6ejr27dvn7yKRwTz22GOQJMlm6t69u/Xz6upq5OXloW3btmjTpg2ys7NRWlrqxxKTnu3cuRO33347kpOTIUkS3nvvPZvPhRCYO3cu2rdvj8jISGRmZuLIkSM2aS5cuICJEyciOjoasbGxmDx5Mi5evOjDrSA9aqlu3XvvvQ7nshEjRtikYd0iZxYuXIiBAwciKioKCQkJGDNmDA4fPmyTxpVr4alTpzB69Gi0atUKCQkJmDVrFurr6325KaQzrtStW265xeHcdf/999ukCcq6JTycDEp3Aef69etRUFCAefPm4cCBA+jbty+ysrJw7tw5fxeNDObaa6/F2bNnrdOuXbusnz344IPYuHEj3nnnHezYsQNnzpzBuHHj/Fha0rOqqir07dsXy5cvd/r5okWLsHTpUqxcuRJ79+5F69atkZWVherqamuaiRMn4uuvv8aWLVvw4YcfYufOnZg6daqvNoF0qqW6BQAjRoywOZe9+eabNp/rpW45C46bTj/88IPLeW3fvr3ZvB5//HENtyQw7NixA3l5edizZw+2bNmCuro6DB8+HFVVVdY0LV0LLRYLRo8ejdraWuzevRtr1qzB6tWrMXfuXH9sEumEK3ULAKZMmWJz7lq0aJH1s6CuW0EWbAI6fC1Keno6Bg4ciOeffx4AIMsyUlJSMH36dDzyyCN+Lh0ZxWOPPYb33nsPBw8edPisvLwc7dq1w7p163DXXXcBAL799lv06NEDRUVFuP76631cWjISSZKwYcMGjBkzBkBD62ZycjJmzpyJhx56CEBDHUtMTMTq1auRk5ODQ4cOoWfPnvjss88wYMAAAMDmzZsxatQofP/990hOTvbX5pCO2NctoCGIKysrc2j5bKSnulVUVIRjx47ZzBNC4P7770enTp3w9ddfu5xXaWkptmzZ4jD/9ddfxz/+8Q/s27cPAwcO9LjMweTHH39EQkICduzYgSFDhrh0Lfz4449x22234cyZM0hMTAQArFy5En/84x/x448/IiwszJ+bRDphX7eAhhbOfv36YcmSJU6XCba61fhalF5Tn4A5zM3XotRW46uXjPlaFF21cNbW1qK4uBiZmZnWeSaTCZmZmSgqKvJjyciIjhw5guTkZHTu3BkTJ07EqVOnAADFxcWoq6uzqWfdu3dHamoq6xmpdvz4cZSUlNjUp5iYGKSnp1vrU1FREWJjY60BAQBkZmbCZDJh7969Pi8zGcv27duRkJCAbt26Ydq0aTh//rz1Mz3VrYyMDPz2t7+1mdLS0nDp0iVMnDhRVV6JiYkOef32t7/Ff/7zH1x99dUMNt1QXl4OAIiLiwPg2rWwqKgIvXv3tgYEAJCVlYWKigpVPyBQYLOvW43Wrl2L+Ph49OrVC7Nnz8alS5esn7FuBRddBZw//fQTLBaLTeUDGi48JSUlfioVGVF6ejpWr16NzZs3Y8WKFTh+/DgGDx6MyspKlJSUICwsDLGxsTbLsJ6ROxrrTHPnrZKSEiQkJNh8HhISgri4ONY5ataIESPw2muvobCwEE899RR27NiBkSNHwmKxANB/3Vq3bh0kScLdd98NAFi1ahUkScKrr75qk+6JJ56AJEn46KOPFPPat28fjh49qjp4pYbeYjNmzMCNN96IXr16AYBL18KSkhKn57bGz4ic1S0AuPvuu/HGG29g27ZtmD17Nl5//XX89re/tX4etHUrSJ/h5GtRKCCNHDnS+v99+vRBeno6OnbsiLfffhuRkZF+LBkRketycnKs/9+7d2/06dMHXbp0wfbt2zFs2DA/lqxldXV1ePvtt3HDDTegU6dOAIBJkybh3XffRUFBAX71q18hJSUFX375JebPn4/Jkydj1KhRivmtXbsWABhwuiEvLw9fffWVzVgGRN6gVLeaPkfeu3dvtG/fHsOGDcOxY8fQpUsXXxdTN/haFB2Ij4+H2Wx2GCGttLQUSUlJfioVBYLY2Fhcc801OHr0KJKSklBbW4uysjKbNKxn5I7GOtPceSspKclh4LP6+npcuHCBdY5U6dy5M+Lj43H06FEA+q5bn3zyCc6fP+8QIL788sswm82YPHkyamtrkZubi6SkJCxevFgxL4vFgvXr12PQoEHo2rWr1kUPKPn5+fjwww+xbds2dOjQwTrflWthUlKS03Nb42cU3JTqljPp6ekAYHPuYt0KHroKOMPCwtC/f38UFhZa58myjMLCQmRkZPixZGR0Fy9exLFjx9C+fXv0798foaGhNvXs8OHDOHXqFOsZqZaWloakpCSb+lRRUYG9e/da61NGRgbKyspQXFxsTbN161bIsmy9CBO54vvvv8f58+fRvn17APquW+vWrUNoaCh+85vf2MxPSkrC8uXLsWXLFgwePBgHDx7Eq6++2uwgGIWFhSgtLWXrpgpCCOTn52PDhg3YunUr0tLSbD535VqYkZGBL7/80uZHjS1btiA6Oho9e/b0zYaQ7rRUt5xpHMSx6bkrKOsWu9TqQ0FBAXJzczFgwAAMGjQIS5YsQVVVFSZNmuTvopGBPPTQQ7j99tvRsWNHnDlzBvPmzYPZbMaECRMQExODyZMno6CgAHFxcYiOjsb06dORkZHBEWrJqYsXL1p/lQUaBgo6ePAg4uLikJqaihkzZmDBggW4+uqrkZaWhjlz5iA5Odk62miPHj0wYsQITJkyBStXrkRdXR3y8/ORk5PDEWqDXHN1Ky4uDvPnz0d2djaSkpJw7NgxPPzww+jatSuysrIA6LduXbx4Ee+//z6ysrLQtm1bh89zcnLwxhtvYNOmTZg6dWqL3YPXrl0Ls9mM8ePHa1XkgJOXl4d169bh/fffR1RUlPW5uJiYGERGRrp0LRw+fDh69uyJe+65B4sWLUJJSQkeffRR5OXlITw83J+bR37UUt06duwY1q1bh1GjRqFt27b44osv8OCDD2LIkCHo06cPgOCtW8HapRZCh5YtWyZSU1NFWFiYGDRokNizZ4+/i0QGM378eNG+fXsRFhYmrrrqKjF+/Hhx9OhR6+eXL18WDzzwgPjFL34hWrVqJcaOHSvOnj3rxxKTnm3bts3pb425ublCCCFkWRZz5swRiYmJIjw8XAwbNkwcPnzYJo/z58+LCRMmiDZt2ojo6GgxadIkUVlZ6YetIT1prm5dunRJDB8+XLRr106EhoaKjh07iilTpoiSkhKbPPRYt15//XUBQLz55ptOP//pp59EYmKiACBuuukmYbFYFPO6dOmSiIqKEllZWVoVNyA5q1cAxKpVq6xpXLkWnjhxQowcOVJERkaK+Ph4MXPmTFFXV+fjrSE9aalunTp1SgwZMkTExcWJ8PBw0bVrVzFr1ixRXl5uk08w1a3y8nIBQPSZ9IT45f8sdmvqM+kJAcBhPxqB7t7DSURERMY2cuRI7Nq1C6WlpWjVqpXD5zk5Odi4cSPmzJmD2bNn469//SsKCgqc5rV+/Xrk5OTgtddewz333KN10YmIvK7xPZx9Jnn2Hs4vVvE9nERERBTkfvzxR3z66acYO3as02Dzb3/7G9avX48nn3wSjzzyCHJycvDoo4/iu+++c5rfunXr0KpVK4wdO1brohMRaStIn+FkwElERERes379etTX1zsd4OfcuXOYNm0ahg4divz8fADA888/j+joaNx7772QZdkm/YULF/Dxxx/jjjvuQJs2bXxSfiIirTQ+w+nuZFQMOImIiMhr1q5di4SEBGRmZjp8Nm3aNNTU1GDVqlWQJAkA0LZtW7z00ksoKirCM888Y5P+nXfeQV1dHe6++26flJ2ISFNB2sLJZziJiIiIiIg00vgMZ9/fefYM579fM+YznLp7LQoREREREVGgkYSA5GZbn7vL6QEDTiIiIiIiIq150jXWuPEmA04iIiIiIiKteTL4DwcNIiIiIiIiIrLDgJOIFC1fvhydOnVCREQE0tPTsW/fPn8XiYiIiMiYgnSUWgacROTU+vXrUVBQgHnz5uHAgQPo27cvsrKycO7cOX8XjYiIiMhwgvU9nHyGk4icWrx4MaZMmYJJkyYBAFauXIlNmzbh1VdfxSOPPNLi8rIs48yZM4iKirK+b4+IiIhIDSEEKisrkZycDJPJ4G1lHDSIiKhBbW0tiouLMXv2bOs8k8mEzMxMFBUVOV2mpqYGNTU11r9/+OEH9OzZU/OyEhERUeA7ffo0OnTo4O9ikBsYcBKRg59++gkWiwWJiYk28xMTE/Htt986XWbhwoWYP3++w/yUOY/CFOHeS47JT9ggTT4kTGCdI58ycENRUJKrq/HDvAWIioryd1E8Fqyj1DLgJCKvmD17NgoKCqx/V1RUICUlBabICAacRKSIAScRNafx9BAQj+f4sEvtzp078fTTT6O4uBhnz57Fhg0bMGbMmJ+zEwLz5s3Dyy+/jLKyMtx4441YsWIFrr76amuaCxcuYPr06di4cSNMJhOys7Px3HPPoU2bNqrKwoCTiBzEx8fDbDajtLTUZn5paSmSkpKcLhMeHo7w8HCH+UJqmIiIFBn4l3si0liAnR981VJZVVWFvn374r777sO4ceMcPl+0aBGWLl2KNWvWIC0tDXPmzEFWVha++eYbRFxpKJg4cSLOnj2LLVu2oK6uDpMmTcLUqVOxbt06VWVhwElEDsLCwtC/f38UFhZafw2TZRmFhYXIz89XlZccIQORsnsFEYAUKNFqIFwwDT4su40AqFdSoByPQNgGBNLxMP53Awik4+HvAniHBLi9LVJ1YNRJXxs5ciRGjhzp9DMhBJYsWYJHH30Ud955JwDgtddeQ2JiIt577z3k5OTg0KFD2Lx5Mz777DMMGDAAALBs2TKMGjUKzzzzDJKTk10uCwNOInKqoKAAubm5GDBgAAYNGoQlS5agqqrKOmqtyyS4311OajgpGp4AJPYZ1I8AqFJEWjLys2JWARJwehKo6Yonzy66+Zu1LgnRMLm7LBoeWWpKqYdZc44fP46SkhJkZmZa58XExCA9PR1FRUXIyclBUVERYmNjrcEmAGRmZsJkMmHv3r0YO3asy+tjwElETo0fPx4//vgj5s6di5KSEvTr1w+bN292GEioJSGVZpjqzO4XpLnzsoG66ypdaIXUzId642xnG6XsSgxSf1pilO+BU0YuO2Atv8G/CU3qkEG3xNm5yChfDEkofw+Mcjha+nHZg+2QQwMn4vTGoEEpKSk28+fNm4fHHntMVV4lJSUA4HRwyMbPSkpKkJCQYPN5SEgI4uLirGlcxYCTiBTl5+er7kJrz1QLaPnaLGHkV3JJQMMYCAa5KbIjgMYNMCYD/WDRLEkYtAY1EJ70gtABQ/1o1ByDH4eG77P9cTDQcTH8/tduXwtL4ASc3nD69GlER0db/1bbuukPDDiJSFOWcEBoeS4MhBs9ozLyzRECJNhsZORtMXjXRyP/aOTA6Jth5B/AjE7Da7FUY+Rflu14YZTa6Ohom4DTHY0DQJaWlqJ9+/bW+aWlpejXr581zblz52yWq6+vx4ULFxQHkFTCgJOINCVCBUSoge8miUhbHnQx0wUjlz3AMNz0Jw33fn3gHFlJdv+ZVG8+y5qWloakpCQUFhZaA8yKigrs3bsX06ZNAwBkZGSgrKwMxcXF6N+/PwBg69atkGUZ6enpqtbHgJOINCVZGiZPBFRLFBHZCpSuzUTknIffb+HBMBC648P3cF68eBFHjx61/n38+HEcPHgQcXFxSE1NxYwZM7BgwQJcffXV1teiJCcnW99O0KNHD4wYMQJTpkzBypUrUVdXh/z8fOTk5KgaoRZgwElEWpOlhskDUnMDKhCRoRn9GU4iUuaNZ5wdn80lV+zfvx9Dhw61/l1QUAAAyM3NxerVq/Hwww+jqqoKU6dORVlZGW666SZs3rzZ+g5OAFi7di3y8/MxbNgwmEwmZGdnY+nSparLwoCTiDQlQgREiBcuFhqNfkdEfmbwZziJgl2z8aAXnnGWLIHzi5Q3Rql11S233NLsq+UkScJf/vIX/OUvf1FMExcXh3Xr1qlbsRMMOIlIU8IkIMwa300KydjPgBEFM6M/w0kUzASa7RPvjVAxkAJOb7yH04gYcBKRpiRZ8s3FwrjnYf8IoOs3GR+f4STdYF1UR1j/o90qtP7R2od82cKpJww4iUhTUr0EKYBGmDO8xudhDXzhosAiTOBNPulKwLxbNUAEUsAZrBhwEpGmPPk1z5eCpoVFXIk2g2V7iYhUCLpg0wjXAiOU0VU+HKVWTxhwEpG2DDIgiIQgCzoNcExU4UjGRD4nTIF2IgkyRhkh2ghldBG71BIRacCTlxy7tgIv5aPFidwoF0mdl9OlHwKEH/sJ63z/UeDT/Y9lLJ93eLmcXn3diIb7MKC61HLQICIi75PqAJOGL20WJu/l5fXrpVFeaO/FfehtAoDk8j70/c4WJui/tZitvx4xTBdLHX+PG86FOt6Het53TQXrPvTGq9XIrxhwEpG2zIDQMuDUe5cgPZftCgHou5x6Lhug75tA8g69/3IkCd3/8CHpdR9KgJB1vvMAfT/3IQGwaJh/AL0WhV1qiYg0YIkQEBEGPksSUVAzxE2eXgMRg5B0/6tWkKsxShO0CzhoEBGR9wmNWzgNz8AXkIDA/a8PPA7+x2PgV4b4YcNPJC1bT32MLZxERBqQw2UgQoNRgwx84m1Kkg3+y7qWA0JpTSAgWoYkg4wErcjIZUcA7P9GQjL0Da2hz0UwdjDRlBaDBErVxj9PBzsGnESkraY/53nz5t6Pg5J6k7cG0vDb81GGvw9wcf/rODAVksEPg0He1atI72V3se4GTODsQ4b+3mnB2/VH2P0bCGTRMLm7rEEx4CQibclSwyQ0CIqMe+71Pt4sasfoLT+kLd1HHcKloFP3A7DpkTfPu4Gw7708dpX1t+pAeiyHz3ASEWngyslVEpKhT5akAR23GhIFFKP8YsJzgrFp8JuypEG+/uTJW5aMvBsYcBKRpiRZgtQ4pLlB7nnIB9hqSOQbhrpLda01Vi/YKqytxrf9GKhKkAIGnETkGwwuqAkGm0RE1BwhBeC1QoiGyd1lDYoBJxFpSwJghFdo8RlIdTzcV4H+i3XA3SSRfrBuNYvfPRWMct0zQhldxNeiEBFpQEjCayOxasn64m/9F1U/Aj1q9ICQtHk9QKBiVXJNUNQpT64XrEiuaxxfwd/lcIERykjNY8BJRJoy1ZlgMhuhiRMMNsl7WJdcx7tJlwkzWLeaJbh7VGh8RlLvZIsRSukijlJLRKQBo3TZIfV4XKkFrjRWuTzwCutbAwboylhHVDFKg7BRyukKSQhIbj6L6e5yesCAk4g01apjBcytagAAQkgQLl45XD2vuppf0/TezluoGEbP5TxdStWwXpevQWq22+U8vXs8oWrdfs7TVV5et6pXDGmw3S73eHR1wFEVP0qpWberx0hVni6mc7l2qMnTT8dc0mpfanHMXUzn9Tzh/Tz9vS9V92zWpN41/L+lxiC9pFwhX5ncXdagGHASkabaR1UgpHU4AMAiXLtoyEKC7MqLyl1MZ5+3K9c7WUVwbJFNkK9kampmEVkAsuz6PnClnGqDeFfSqgnKZdnF/e9iOcWVtC5l6eLF1+UAWk3w7vJ2w/Xg1OXtcS2dqhtRl7dHuLZ+IakKurwdSEoa3YS7kqeqdbt6A6km0HcxT5fLqUGA5uq6tdmXLm6P2jrkze0RV1qzmksrNUnrz2OudhkVeUtXLqyWWgNHWgSAAScRaez831JgDosA0Mx9orP5QmF+Yz5NLraKeQAQkuMHkhAN8+0/sv/bSd7WbZCcp7MoldehEM7La3MT0Uy6xn0gNW1NaS4tWk7n+j698lnTm4YW1u2Spuu3W85pt0ulcjZTnxzK40r5GseTcimt7Z2UqmPvyjrt97uz/CTHXah4f2efyMl+ti9D4ybazG+c6cK2OdsmdcdF2ObTdJ/b12Gl/FTV4Z8TSUJq+Lu58rbw/XHpbtuVeqMmHzfqriRdmeesEtuvu5n9LjlL28I+cnLaVtxep1VYad/Yb49SnvZ13oV0QjT8rZz2Sr29sn5X8mx5/bZ5Np3XNBvTlXn2P9CaHI65gCQJpz8OKpWh8UfWpj+6KqcVDj+m2pfB2TqlqhpgvWIyQ2GXWiIiDSR8fAIhprCGP8xm54kartKO800SYFJoEZQkiKbNiUp5SJLzZke79EKSnL++RSmdwrqcBhgmyTHwVWgKFXbzhVnpjswumJaU0zrk6Sx4U8rT6T5xkk4xP9jtP+frtp/v+LekHBCYmv/bZr59MOXyspJL6RzqgMJ2KQaize4DpXXaB3/N5+OwXJMbPoe0zZTVtko71n2lfSSZnATlDssq3Fg5HC8nwYwrgZ7DdgrlZSVhs62SXcBp//fP823X6RAI2eXbND/7wEVyUgZnN/USHG/gTSbnrUNmu31ntktnkgTMCsGAfdoQhXWYYFtOkyRsymeSBExOfg4xSbJjOsW0AqYmTXxmj9PJDvswVHL2U2LD/KZpzZLsNE9neYSa6l1KZ4ZtuX+e71jOxvkN5bDdVrOTpm+TJMMM+/I7WZddOuvyV9blSlmVPxNO8waA0CvpL1bKuMFpCgNS0XLudFmDYsBJRJq6cHNHawtnc7+yO2uJbG4ZNS0irrasutwC68N1Ke6XZsrV0r7xdDvVtNq5fJxcKaOa8rizjuby8dI+bLasLbWOurvv1GxXC5+7vk4P74yUdpTFNm9JdvJDhGKZ7X94sWvedOd7jSv7TLFFraW/m9lPbi7rcMpQsQ6nrZEerMPp19hhHd5rZWwunbPPFC87Tlr+bP6+8q+zFkJX1630+IVjuuZbN51xKJeL6byxLqU8lAJxV/Kur6oB8KJiOkNpeLbF/WUNigEnEWnqfB8JpghXIwJypPICo9DaQmQkzcarXhqyUsVTpmTH1bOScW+Pm2ffM4C0JV+u9ncRyEMMOImC0MKFC/Huu+/i22+/RWRkJG644QY89dRT6NatmzVNdXU1Zs6cibfeegs1NTXIysrCCy+8gMTERFXrMtcq94pV4tch0P19D+rh+oUnGQTzfoe/652fb151sP/9xe+vXPDnsff3tgOGPe8IT4+bQbfbH0QAvYdTEu5/5f19mfAEA06iILRjxw7k5eVh4MCBqK+vx5/+9CcMHz4c33zzDVq3bg0AePDBB7Fp0ya88847iImJQX5+PsaNG4d//etfqtZlqpFgVnl1c/m9fFpw8lybL3m67R7tNqXn9XzBn8e8Kb+VQVJ+LtQnqzfwnYyn/Lntfj3mXgiavFAG/wZeftp+v17jmnle2Ufrb+5JEeeLOH+G1pDYpZaIgsXmzZtt/l69ejUSEhJQXFyMIUOGoLy8HK+88grWrVuHW2+9FQCwatUq9OjRA3v27MH111/v8rosEQIiQm23UHXJvarxOUg/r1836/bVjtBBsOn3bnJ+3Ad+b+Xz52539ZUwGvDr/aMkIKm989ekHD5aj7N97c/t99OqrT8yGOh8I6oVBhw0IEmG66/wcbKsUTHgJCKUl5cDAOLi4gAAxcXFqKurQ2ZmpjVN9+7dkZqaiqKiIqcBZ01NDWpqaqx/V1RUAADqWwmYIo37q5xf+LvV4QpJlgL3ISw90sG9v1/IuqnyvufXYx5cFU4ScP39uVrza4XXyT5QQar2Z1cA8gYGnERBTpZlzJgxAzfeeCN69eoFACgpKUFYWBhiY2Nt0iYmJqKkpMRpPgsXLsT8+fMd5ptrJZiUhuOz4/dWFt3c9fphR/izdbO5MgQBa70P4nvQoH5uG9BHGfzAl8ddAE7fY+j3644/+fua5+K+l2W9XJu9gF1qiSgY5eXl4auvvsKuXbs8ymf27NkoKCiw/l1RUYGUlBSYqySY6128qvjxuRK/PjeKZt7rGCxl8Oexb1y/P/j7GTbA7yMbO3s/qm/Xr4ObOL8/tx4czzI6vvZHB8fe389u+/Xc59r+F2bn7yw1JL6Hk4iCTX5+Pj788EPs3LkTHTp0sM5PSkpCbW0tysrKbFo5S0tLkZSU5DSv8PBwhIeHO8yXIwTg6jOcTnpw+vTxnpZWpuXJXu2NlxZlMdAzPV4XpM9uNvL7/g/SZzgb+XuEZL++Isav267BytXUZa0D7pbK4sMfGyS7Si7UBLuB9AynEE5b2l1d1qgYcBIFISEEpk+fjg0bNmD79u1IS0uz+bx///4IDQ1FYWEhsrOzAQCHDx/GqVOnkJGRoWpddfF1MEW6ebEQOnuGUAc3pjZ0tG/0cNPuwJNfkrWgo30k6Wnf+LscTdbvr/2iVDN8871ycR16qjNN6KGR0sqDV15oQkeDzDR8t9yrz5ZqhitGxyNIFITy8vKwbt06vP/++4iKirI+lxkTE4PIyEjExMRg8uTJKCgoQFxcHKKjozF9+nRkZGSoGqEWAMK/D4M5IqzhD1fva66kc3rzpzKPFqm5O7DPVMWyrpfH9eK43RzcQjpV9wQSbG6yVC/ryedXKB2F5hZ3+ci5UgYX9qdiIOPpsXC1DjbNp3ERmy9aC8s44dVj7a1l3S3zlX0griRouku8di5xp74LceXhQzeWdScNmm/xsm+lcmUZVWVwt564so/UcHd71LZuejMd4FhuNV9Sbx1DpXRNz4Eq85Av17q4gAHwGU4iChYrVqwAANxyyy0281etWoV7770XAPDss8/CZDIhOzsbNTU1yMrKwgsvvKB6XWmvn0KIKbyh65L94EEmhYdXJAnC2UBDkuTYBcqsnEfTtEKSnD8r4yRPYVa4GjrkCcdtalyX/Wz75Zx15TJdWda6jN3fNvnZ3UuYJNu/JUn5XsNuP9iXV+mZOmfbZf/cp/22KT0b61A2++2x33b7z5uZ7/Asql0Zmi2TQ172PzI4K6eL6xK26Vxeruk8h7LY7iPXt8suI0l4Xp5mlxU2nzusy25528/tut4pbCfg5HlMh7yd5WW3jMkublB6b6BdXpKTLoKSXXmkxnQKeUt2fzfeXzaceoRiuoa/m3wOwGS3XSaTbXOXWeHZVZNdXiZJOOzGELu8JEk4rK9xWROEYjqTk+VMTqI2kyS3uFyI3TsjTJIMs7Mywb4MjulCJOfvfTRJAuYmzYb25TBDdrofAMAsyTbbZv+3zfwm22K2S2OSZId5P8+3LZtZoYkzVLJ9JtKskNZ+XQ1ldp5nmN0+M0GG2cl7PMwQNttnkwfs8riy/ouVMm51uoQBCbjf8mzceJMBJ1EwEi78ShYREYHly5dj+fLlHq1LPn8BshTWEFw23iFdCTSt74BzuKk3OQ3kGu66bKMJSSngNNt245VMCnk2KU8joZSnfYDsLF3jNl351xoQmJp8BkAoBdt26RQDR5PkJNhoXKddWeyDQrv94PC3k0C6aZ7NByaSzQ28q8Fr04Dm53U5/u1sXzgLMJsNVpsJeOwDK2cBTEuBcdNyS862ozGpw3GxzcZhu1oIpO3zaJqspYFJhEn6+bBJDa1qTfe7dKUFSdhtqtNja/1Pk4Q2CwrHFkRngaHDRjRdxsk5rLl87OqUTf52+8Y+SIRCYOYQTJpsA7OGANQ+6FP3d2PgZ/23MZ19gCkJm6+sfWDn8DfgEMAppW0paAQcA1CgMbCTbfJ3+NeF4M+VdCa7IKZpsOUQ0DoJGu0Do1CH4KkhD7N1exr+tQ+elIIp+0DUrBCMNQRp9gHsz+uyKYOTqMU+6LMPLJW2zz7Qs5ZHkhEG+32jFMTa/aAB4fS0Y5YcT0dm62cNldhknS/BJEmoCNVR32AP8RlOIiINyDW1kB1uHk2QTNLPtzAKAaYkSbZBnt3fklJLKNAQcNoEAs2sw675QrILVhVbUe2DRvvySNLPQXXT4FqSINlf4CW7ALJJ4CkpfO70pe32AaGTwFSySyPZtf46BI2S1GQXiWZadm13pf3fTYMzCQ2tQY0BUmM6+3UBTlpR7YNh+15kpiv5K5arYR1Og0674NZ6X9YYzIgm8ZP1b2Hzt+N2NFm+6b6Qbf+WZLu4zMnfNsGwXZbiSh4262hM0LhsY3WUbQM9Z12iJWG3j5pue2MBGrfN39wIWp2ltz1mzbdgSpLtOqTGNAr5KbVKqmmptP+84XRi1xrZTOtk0xa5xnTOgkv7PFpqTQwxWez+tvu8mdbHxmCuYT1Ngje7QNe+lVOpNbGlgNKEFv6+0qrWXCCptG77QLK5ALIxX+XA0zbQtG8xdBbcKgWO9gGm8+DQWWursGnhNAEIVbrk4ueAsSGtBHOT2meSbP/+OZ3JbjkTTHbpZIUgl4yDAScRaSokMQEhpjDbmU1bOwE47W7bON8+qHIS1Lm0nMnJPDQEBkqBns06FbrANkQuNv3emuQNm+1y2tXWZh1222AfBNqkV+huax9I2Xe1hfNuoo6tlPbLuLFuZ/OctZA2XY9DWZykcdb62swyzlvQPFunmlZTp59DfddfpS7FiuV2djycdoEWdn87z19xHc2U6ed5tqkcytVCi6j9ShxGvHRIYL8Suzzs67gkGupm0zwcjo/ksK8cf2CxryeuB6SA8xZO25ZM+yKp70rrSpBqsw67ec7S2y9jH0TZp7FvNW2Yp9xV1Xl6hdZEh0DVSZfUZlpHASctnC52nXXWTdaV4NYZ+8+a6zJrgcnlVtOfy68u8G2a1lnrakvBsBnNdQVuum/rHfbtxboACjgFHH8lVbOsQTHgJCJNHb+3E8wRES0ndLOVRN3AJe6drVtahySuJNIo/4aVuJW1y8uqHjzQ1fRqd4kG+8KlIrSYZwutZS0tfSV9Q11xtwzuHCcXtt7NbXG9DC1l6Pi37SLN/FBjTeHkRxQVXPsOOu5LJ0VXVwalNE3riVbfTRXpVb86Q4tzmqtF8ORcqZinB3f6Wp7fG7shtFQ8T/J3Oa2762g5iXy5GsBjbq5AZzhoEBGR99XGW2CKdN7NJ2A0F0QYkbdu2BoDcbLB3mFuUPv90iA+0iaSUViT7uqIDr7HQvIo7rPLKmA0+yNWgJCrA/weIggw4CQiTYVUmmCqa2HEEi05606pA7q+P/D2PvPmxjrrJqonkkPznCNfH3zd7zN/F6AF/th/LQ3yZNcVWnc0OYd4aXt1ek1opLo12Rf8vM/ksAAKOO2exVe9rEEx4CQiTUkWQGGEeR8VAPq8ufBjDO4K3fbcEVeeY9PjMQUgmo4cpBf2g/2Q6/wUrLv0/lW9Hk8tvp9ezE/oed8B+iybv/eZwkjRRsRRaomINFAfJWCK8MFJUqlbkR4v3oA+y+XJc2PBTu/3AXo+nnred40/cOhO09GK/FcKI7IO7CT02Uis2x+GnJXLR/tQqja3nMgo+AwnEZH3yaEyEKZtPxDJlUETqHmNwaazux093pXpjCSzDgYsHR9XSQCQ9Rqh6Iizc1jjM6E6O76GO5q+aPysM9xeITsMOIlIU6ZaE0z276vUgs5uGozK+X1Zy6OEBj3WP/exbrlN989y6oFSF1/h8DIdcocPdqIsB9CRCtIWTp0/RURERtf4DKfmk8xJ9WSRHCbIjpO1FYCT8qRjktD31FBInU965u99o/NJmABhEo6T2clkAie1k9kHUyBFK40Bp7uTChaLBXPmzEFaWhoiIyPRpUsX/O///i9Ek3yEEJg7dy7at2+PyMhIZGZm4siRI97earZwEpG2LJEyRKR3u9Qaqgutnsup5uLlr5tuAej3oaYmAZOOCet/dErnQbsRjjEAXe9Db77SxI1Vw9UTmK6PtZ7L1uhKGb19xpar9XsNUM2Ho9Q+9dRTWLFiBdasWYNrr70W+/fvx6RJkxATE4Pf//73AIBFixZh6dKlWLNmDdLS0jBnzhxkZWXhm2++QYQr71B3EQNOItJWqGiYvEhAGGN4cB0HSgAMsQ8bflzQ752WMMA+hJD03UgnDHCjr/fvMqDDd3c2Ifz3m5Wq9ep4H+rxeVNntKiHotb7eQaD3bt3484778To0aMBAJ06dcKbb76Jffv2AWho3VyyZAkeffRR3HnnnQCA1157DYmJiXjvvfeQk5PjtbIw4CQiTUnVJkiSBv1hDHDhBaCvG1WFgTP0TtfBCGCguujvAiiQdFwNBa5ELHrdeQ0kofNuh0LvexANldB+MFQ9nXx0+yWxpcUu0/HvAKp547UoFRUVNvPDw8MRHh7ukP6GG27ASy+9hO+++w7XXHMN/v3vf2PXrl1YvHgxAOD48eMoKSlBZmamdZmYmBikp6ejqKiIAScRGYepxgSTFgEnqSMJ6PT9DhTkhJ6fk9RruezoKCwyMMe9qK9BmfRSDt+TDdGVxEVeGDQoJSXFZva8efPw2GOPOSR/5JFHUFFRge7du8NsNsNiseDxxx/HxIkTAQAlJSUAgMTERJvlEhMTrZ95CwNOItKUpY0FItLi72Io0+IaruF9geTBr9yihRsnT/JueeXaZa1Z3pqW2fv72np4Dbk/jJWvpvtaw++hZrGTEesGWv49QbiUyr28PWK465Zny8vVAfSjtezBMwRXRus9ffo0oqOjrbOdtW4CwNtvv421a9di3bp1uPbaa3Hw4EHMmDEDycnJyM3Nda8MbmLASUSaMkfVwtTKw4uFkLR7jE8Awts3eBo+8yW0eude44+uWt3savn8kZaBskY/rGvxPJbQeB9rFqzIGgdCGtUPLY6hpo1pBqrLVlo+3yskTZ971SxvreqdjgNOS41Buhr4SHR0tE3AqWTWrFl45JFHrF1je/fujZMnT2LhwoXIzc1FUlISAKC0tBTt27e3LldaWop+/fp5tcwMOIlIU3K9CaizCzhV3gBqOmaMFiPeaj3IiNatFAZ5VghAkzI3n8zt1ls9ttw0t5yWwZURafj8pYCk2Izl7v7SdDe7+btfi62ARmxZvzJ0s1bPvUoCEPbPg3qLBj/+aPljleTO87t2C8g67iSlmg/fw3np0iWH96CbzWbIcsOvIWlpaUhKSkJhYaE1wKyoqMDevXsxbdo098qogAEnEWlKVJshJLsrr5ECGlcYZPRAVxnqtTOuCLDj489XTBiSVqcbpYMgrgSjbuXpfnE009L3R+Mye72q+2DEXG2/nsLxzwA6HzhrbZUDaQPhQcCpcj/cfvvtePzxx5Gamoprr70Wn3/+ORYvXoz77rsPACBJEmbMmIEFCxbg6quvtr4WJTk5GWPGjHGzjM4x4CQibclSw9SUF64dmj5vqFYgXQuBgLuBARBQP3Iw2NQ5A4xqq0ZzLblGJHlyv69HEnRV3TytKsL6nybztGot9gcftnAuW7YMc+bMwQMPPIBz584hOTkZ//M//4O5c+da0zz88MOoqqrC1KlTUVZWhptuugmbN2/26js4AUASIqC+dkSkExUVFYiJiUHKov+FKdK7Jy628BAFEC2f4SQi39LgkRK5uhonH/0zysvLXXp2UY8a74ky06YjxOR8kJ+W1Ms1+PT4MkPuB7ZwEpGmJCFB0mKgG96gEgWMAGqAJgpqEuD9X5BMAXTBlz3oQiQbdz8w4CQibckIrLc2E5F3MdgkChha/Hik1eBOfiHkhsndZQ2KAScRaUqSNRwe3h28uSXSFSGB30sindFTrwM9lYXcw4CTiDQlWSRIFv1cLQLql9JgJvlgqEkiUqXhxwPjdvujK/T2I5A5gOqUDwcN0hMGnESkKWHSWZDHQCVg8FfvAGLc+yhqomGAXn4xjU53PxzoqZeUp/gMJxGR98nhMhARSFcLJzQYlY+8x9l73UhHeGx0jd8fndNs1Hb9XNOkGj39au0htnASEXmfZJEg1XvxwqWfa+DP/HFDpsf94C8t7Qu93jDzGJI9HdYJARe+Yjost9/4el8IocvzmzfrhByiww0kVRhwEpGmwi6YYA734q+TkgY3N1rdIGhRVmveQsO8NcoXGnWv1vDHb81uczR8RkqT7nCa1mWN8r2St/fPFxp2y9e0Xmh4067Fd1DL8mp6/DQqt5bPVXq5zJKX94O4XOu1vPxOwIMWTq+WxKcYcBKRpkz1gMnsnbwabxwlL190NXvGVNMbBMnr+6GRps/vuNJc4kaWmpC8X9caadkzSgIg3NnJzR1zDWMsLUepbTHYdKeea/q91jAwNFDAonlZDRhwejuI+zljQNLg+Hm1vHUB9FgOu9QSEXmfHAJIXjzT+G0AIjdvgLzWumJ34fZpFzY/jFioOgjRKoj1R1dBLVsTFdcZmINptXS/KyCpvyn2tIt2c3VbAJJWB/9Ktl4PaCW4XmFd3TRvFtG+bmv95bL/lcpL+7uh2CrL7mLQ59YPVC2t2uS9Xxfl+gB6hlP24OXksnED7wA6gkTkjieffBKSJGHGjBnWedXV1cjLy0Pbtm3Rpk0bZGdno7S01K38G0ep9cpkRsNZyw9TQxmE6qnhZsezqSEv231hvWn10SR8PKkuoxcJaJOvSxhs+pTkjwG//PVM8ZX1ej2gFSonXxOS+jJ6Msn2k5dOirI7E9xczvNJWEwQsuS1iYyNLZxEQeyzzz7Diy++iD59+tjMf/DBB7Fp0ya88847iImJQX5+PsaNG4d//etfqtdhaSUgIozbDcRKB9e7oBuYQ0/D8vtSsB1nP/NH0Onv77Lkr0rmt++0v7bXP6u1oYcyeEi6HEDhCrvUElEwuXjxIiZOnIiXX34ZCxYssM4vLy/HK6+8gnXr1uHWW28FAKxatQo9evTAnj17cP3116tajwgREBxhjojIKlh/S/F7pE2GJFkCqN4w4CSiYJKXl4fRo0cjMzPTJuAsLi5GXV0dMjMzrfO6d++O1NRUFBUVqQ44pfomr0UJoGuG3ujuRd2BhnWXDIoxnoaCuDu6T1zZt8IcQNc22YO+5bJx9wMDTqIg9NZbb+HAgQP47LPPHD4rKSlBWFgYYmNjbeYnJiaipKREMc+amhrU1NRY/66oqADw86OIgH8e3wkWEqDJwA8EBvJkfKzD2vDXs95BQpiEzb9kXAw4iYLM6dOn8Yc//AFbtmxBRESE1/JduHAh5s+f7zBfNgNofC0Kb3q0xRsfIrLjl4GRggR3q7akK4OyWntJBQAhZAjh3miz7i6nBxyllijIFBcX49y5c7juuusQEhKCkJAQ7NixA0uXLkVISAgSExNRW1uLsrIym+VKS0uRlJSkmO/s2bNRXl5unU6fPt3wgUn8PLkz+ignv4zUSkREzfPCIOScmptkqWEKpMheiIause5MfIaTiIxi2LBh+PLLL23mTZo0Cd27d8cf//hHpKSkIDQ0FIWFhcjOzgYAHD58GKdOnUJGRoZivuHh4QgPD3eYb32NBxGRMx480kREQcC4DXuOhAcnPAacRGQUUVFR6NWrl8281q1bo23bttb5kydPRkFBAeLi4hAdHY3p06cjIyND9YBBANj6RkTNa/KcNxGRPZ4fjI8BJxE5ePbZZ2EymZCdnY2amhpkZWXhhRdecCsvIQk+8O+OQOpCZBC8qaGgwzrvezy3qycH0D6TZVgfTlXLwM9wMuAkImzfvt3m74iICCxfvhzLly/3PHMT+LS4Oww8/LlRCUgMOil4cDAhv3A31ghmAbXP2KWWiEgD7FLr3rUlUPeZzq+Xvrr/ZmBLilg3APA7YiPY90UAbb+QZQg3I2gjj1LLgJOINCUkARHkdw4SJPUXTAacvufDesrWVHKKrY4/4/ejgQjcy4Grgn37AwEDTiLSViC1cHpyA6TnfeDLGztf7ged37AKia041IQB6kLA1ldul74FynYA7FJLRKQJBpy6b+H16TvOGHA2uFIn1Ox6KZAGzggWgXbM9Pyd8kCAHaWfBcrxCpTtABrGZ3D3noABJxGRAhnNvkPLUC90Nu65vnmBuF2N22Sk+kWBR+c/NqkiJAhTYG1SowDcpAYGGrCv2TO1gbaDnGPASUSakuolSPUKlxLB59iIKIAF0u8dja3yfi4GBSbRzPPLstm3ZdGUEGj2V/gWlzUmBpxEpC0hKV5EGGwSERFRw48zCjcFAXSzIGT3B1IUDDiJiJyTEFDXCiIiItKCUo+AQOopIFp4zqjFZY2JAScRacuDAdmIKDjwUVsiUsLzg/Ex4CQibTHgJKLm8GaSiJoTQOcIdqklIvKixhOjuFxt5OfciUhjwoSAuqEkIu+Sa6oBGDvgalQvatzuGluPOi+XxnckEQhHj4h05/vvv0dKSoq/i0FEREQB4PTp0+jQoYO/i+GW6upqpKWloaSkxKN8kpKScPz4cURERHipZL7BgJOINCHLMg4fPoyePXvi9OnTiI6O9neRyE5FRQVSUlJ4fHSKx0ffeHz0jcdH39QcHyEEKisrkZycDJPJuC/lrK6uRm1trUd5hIWFGS7YBNillog0YjKZcNVVVwEAoqOjecHXMR4ffePx0TceH33j8dE3V49PTEyMD0qjrYiICEMGi95g3J8JiIiIiIiISNcYcBIREREREZEmGHASkWbCw8Mxb948hIeH+7so5ASPj77x+Ogbj4++8fjoG49PcOGgQURERERERKQJtnASERERERGRJhhwEhERERERkSYYcBIREREREZEmGHASERERERGRJhhwEpEmli9fjk6dOiEiIgLp6enYt2+fv4sUlB577DFIkmQzde/e3fp5dXU18vLy0LZtW7Rp0wbZ2dkoLS31Y4kD286dO3H77bcjOTkZkiThvffes/lcCIG5c+eiffv2iIyMRGZmJo4cOWKT5sKFC5g4cSKio6MRGxuLyZMn4+LFiz7cisDV0vG59957Hb5PI0aMsEnD46OdhQsXYuDAgYiKikJCQgLGjBmDw4cP26Rx5Zx26tQpjB49Gq1atUJCQgJmzZqF+vp6X25KQHLl+Nxyyy0O36H777/fJg2PT+BhwElEXrd+/XoUFBRg3rx5OHDgAPr27YusrCycO3fO30ULStdeey3Onj1rnXbt2mX97MEHH8TGjRvxzjvvYMeOHThz5gzGjRvnx9IGtqqqKvTt2xfLly93+vmiRYuwdOlSrFy5Env37kXr1q2RlZWF6upqa5qJEyfi66+/xpYtW/Dhhx9i586dmDp1qq82IaC1dHwAYMSIETbfpzfffNPmcx4f7ezYsQN5eXnYs2cPtmzZgrq6OgwfPhxVVVXWNC2d0ywWC0aPHo3a2lrs3r0ba9aswerVqzF37lx/bFJAceX4AMCUKVNsvkOLFi2yfsbjE6AEEZGXDRo0SOTl5Vn/tlgsIjk5WSxcuNCPpQpO8+bNE3379nX6WVlZmQgNDRXvvPOOdd6hQ4cEAFFUVOSjEgYvAGLDhg3Wv2VZFklJSeLpp5+2zisrKxPh4eHizTffFEII8c033wgA4rPPPrOm+fjjj4UkSeKHH37wWdmDgf3xEUKI3Nxcceeddyouw+PjW+fOnRMAxI4dO4QQrp3TPvroI2EymURJSYk1zYoVK0R0dLSoqanx7QYEOPvjI4QQN998s/jDH/6guAyPT2BiCycReVVtbS2Ki4uRmZlpnWcymZCZmYmioiI/lix4HTlyBMnJyejcuTMmTpyIU6dOAQCKi4tRV1dnc6y6d++O1NRUHis/OH78OEpKSmyOR0xMDNLT063Ho6ioCLGxsRgwYIA1TWZmJkwmE/bu3evzMgej7du3IyEhAd26dcO0adNw/vx562c8Pr5VXl4OAIiLiwPg2jmtqKgIvXv3RmJiojVNVlYWKioq8PXXX/uw9IHP/vg0Wrt2LeLj49GrVy/Mnj0bly5dsn7G4xOYQvxdACIKLD/99BMsFovNxQIAEhMT8e233/qpVMErPT0dq1evRrdu3XD27FnMnz8fgwcPxldffYWSkhKEhYUhNjbWZpnExESUlJT4p8BBrHGfO/vuNH5WUlKChIQEm89DQkIQFxfHY+YDI0aMwLhx45CWloZjx47hT3/6E0aOHImioiKYzWYeHx+SZRkzZszAjTfeiF69egGAS+e0kpISp9+xxs/IO5wdHwC4++670bFjRyQnJ+OLL77AH//4Rxw+fBjvvvsuAB6fQMWAk4gogI0cOdL6/3369EF6ejo6duyIt99+G5GRkX4sGZHx5OTkWP+/d+/e6NOnD7p06YLt27dj2LBhfixZ8MnLy8NXX31l80w66YfS8Wn6PHPv3r3Rvn17DBs2DMeOHUOXLl18XUzyEXapJSKvio+Ph9lsdhgVsLS0FElJSX4qFTWKjY3FNddcg6NHjyIpKQm1tbUoKyuzScNj5R+N+7y5705SUpLD4Fv19fW4cOECj5kfdO7cGfHx8Th69CgAHh9fyc/Px4cffoht27ahQ4cO1vmunNOSkpKcfscaPyPPKR0fZ9LT0wHA5jvE4xN4GHASkVeFhYWhf//+KCwstM6TZRmFhYXIyMjwY8kIAC5evIhjx46hffv26N+/P0JDQ22O1eHDh3Hq1CkeKz9IS0tDUlKSzfGoqKjA3r17rccjIyMDZWVlKC4utqbZunUrZFm23riR73z//fc4f/482rdvD4DHR2tCCOTn52PDhg3YunUr0tLSbD535ZyWkZGBL7/80uaHgS1btiA6Oho9e/b0zYYEqJaOjzMHDx4EAJvvEI9PAPL3qEVEFHjeeustER4eLlavXi2++eYbMXXqVBEbG2sz6hz5xsyZM8X27dvF8ePHxb/+9S+RmZkp4uPjxblz54QQQtx///0iNTVVbN26Vezfv19kZGSIjIwMP5c6cFVWVorPP/9cfP755wKAWLx4sfj888/FyZMnhRBCPPnkkyI2Nla8//774osvvhB33nmnSEtLE5cvX7bmMWLECPHLX/5S7N27V+zatUtcffXVYsKECf7apIDS3PGprKwUDz30kCgqKhLHjx8Xn376qbjuuuvE1VdfLaqrq6158PhoZ9q0aSImJkZs375dnD171jpdunTJmqalc1p9fb3o1auXGD58uDh48KDYvHmzaNeunZg9e7Y/NimgtHR8jh49Kv7yl7+I/fv3i+PHj4v3339fdO7cWQwZMsSaB49PYGLASUSaWLZsmUhNTRVhYWFi0KBBYs+ePf4uUlAaP368aN++vQgLCxNXXXWVGD9+vDh69Kj188uXL4sHHnhA/OIXvxCtWrUSY8eOFWfPnvVjiQPbtm3bBACHKTc3VwjR8GqUOXPmiMTERBEeHi6GDRsmDh8+bJPH+fPnxYQJE0SbNm1EdHS0mDRpkqisrPTD1gSe5o7PpUuXxPDhw0W7du1EaGio6Nixo5gyZYrDD2k8PtpxdmwAiFWrVlnTuHJOO3HihBg5cqSIjIwU8fHxYubMmaKurs7HWxN4Wjo+p06dEkOGDBFxcXEiPDxcdO3aVcyaNUuUl5fb5MPjE3gkIYTwXXsqERERERERBQs+w0lERERERESaYMBJREREREREmmDASURERERERJpgwElERERERESaYMBJREREREREmmDASURERERERJpgwElERERERESaYMBJREREREREmmDASURERERERJpgwElERERERESaYMBJREREREREmmDASURERERERJr4/0YxvL7Bvig5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(3,1, figsize=(25/2, 9/2))\n", "lut1 = np.load(\"LUT_x4_8.0bit_int8_stage2_3x3_rc_conv.npy\")\n", "lut2 = np.load(\"LUT_x4_8.0bit_int8_stage2_5x5_rc_conv.npy\")\n", "lut3 = np.load(\"LUT_x4_8.0bit_int8_stage2_7x7_rc_conv.npy\")\n", "a[0].imshow(lut1)\n", "a[1].imshow(lut2)\n", "a[2].imshow(lut3)\n", "pcm = a[0].pcolormesh(lut1)\n", "f.colorbar(pcm, ax=a, location='right')\n", "f.suptitle(\"Stage 2, rc_conv\")\n", "a[0].set_title(\"3x3\")\n", "a[1].set_title(\"5x5\")\n", "a[2].set_title(\"7x7\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '7x7')" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAGkCAYAAABdBCo4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt0klEQVR4nO3deXxU1f3/8fdM9oUkhpBNtojKIpuyxFSlKJEAbiy2oHxtQIoVAb+IFcWfErBWWr7W8lVRar8WtIJFrWC1iiKylBJAUYqiUKEoWEhQkGyQbeb8/qC5d4YkkG2SGfJ69nEfjzPnnnvn3HA613PP55zrMMYYAQAAAADQxJwtXQEAAAAAwLmJDicAAAAAwCfocAIAAAAAfIIOJwAAAADAJ+hwAgAAAAB8gg4nAAAAAMAn6HACAAAAAHyCDicAAAAAwCfocAIAAAAAfIIOJwAAPvTVV1/J4XBo6dKlLV0VeFi6dKkcDoe++uqrJj83/+YAYKPDCQA4q08//VQ333yzOnXqpPDwcJ1//vm69tpr9dRTT3mVe+yxx7Rq1aqWqWQ97N69W7NmzVLfvn3Vpk0bpaSk6LrrrtNHH33U0lVDK3fixAnNnTtX69evb+mqAECToMMJADijzZs3q3///vrHP/6hyZMn6+mnn9ZPf/pTOZ1O/e///q9X2UDpcP7f//2ffv/736t///76zW9+o5kzZ2rPnj26/PLL9f7777d09dCKnThxQvPmzaPDCeCcEdzSFQAA+Ldf/vKXio2N1Ycffqi4uDivfUeOHGmZSjXSLbfcorlz5yo6OtrKu/3229W9e3fNnTtXmZmZLVg7AADOHYxwAgDOaN++fbrkkkuqdTYlKTEx0Uo7HA6VlJTohRdekMPhkMPh0IQJEyRJX3/9te666y517dpVERERatu2rX70ox/VOH9u586d+uEPf6iIiAi1b99ejz76qJYsWVLjfLt33nlHV111laKiotSmTRtdd9112rVr11mvqV+/fl6dTUlq27atrrrqKn3xxRdnPb42x48f14QJExQbG6u4uDhlZ2fr+PHjNZbdvXu3br75ZsXHxys8PFz9+/fXX/7yF68yVfMM//73v2vmzJlq166doqKiNGrUKH377bdeZT/66CNlZWUpISFBERERSktL0+233+5Vxu12a+HChbrkkksUHh6upKQk/exnP9P3339fr+ucMGGCOnfuXC1/7ty5cjgcXnkOh0PTpk3TsmXL1LVrV4WHh6tfv37auHGjV7mioiLNmDFDnTt3VlhYmBITE3Xttdfq448/9iq3detWjRgxQuedd56ioqLUu3dvr5H2nTt3asKECbrgggsUHh6u5ORk3X777Tp69Gidrq2hbepsBg8erMGDB1fL9/xbfvXVV2rXrp0kad68edb/j+bOndvo7weAlsIIJwDgjDp16qTc3Fx99tln6tmzZ63l/vjHP+qnP/2pBg4cqDvuuEOS1KVLF0nShx9+qM2bN2vcuHFq3769vvrqKz377LMaPHiwPv/8c0VGRkqS/v3vf+vqq6+Ww+HQ7NmzFRUVpf/7v/9TWFhYjd+XnZ2trKws/frXv9aJEyf07LPP6sorr9Qnn3xSY4fobPLy8pSQkFDv4yTJGKObbrpJmzZt0p133qnu3btr5cqVys7OrlZ2165duuKKK3T++efrgQceUFRUlF555RWNHDlSf/7znzVq1Civ8tOnT9d5552nnJwcffXVV1q4cKGmTZumFStWSDo10jx06FC1a9dODzzwgOLi4vTVV1/p9ddf9zrPz372My1dulQTJ07U3Xffrf379+vpp5/WJ598or///e8KCQlp0LWfzYYNG7RixQrdfffdCgsL0zPPPKNhw4Zp27ZtVpu688479dprr2natGnq0aOHjh49qk2bNumLL77QZZddJklas2aNrr/+eqWkpOi///u/lZycrC+++EJvvfWW/vu//9sq869//UsTJ05UcnKydu3apeeee067du3Sli1bqnWIPfmiTdVHu3bt9Oyzz2rKlCkaNWqURo8eLUnq3bu3T78XAHzKAABwBu+9954JCgoyQUFBJiMjw8yaNcu8++67pry8vFrZqKgok52dXS3/xIkT1fJyc3ONJPPiiy9aedOnTzcOh8N88sknVt7Ro0dNfHy8kWT2799vjDGmqKjIxMXFmcmTJ3udMy8vz8TGxlbLr4uNGzcah8NhHn744Xofa4wxq1atMpLMggULrLzKykpz1VVXGUlmyZIlVv6QIUNMr169TGlpqZXndrvND37wA3PRRRdZeUuWLDGSTGZmpnG73Vb+PffcY4KCgszx48eNMcasXLnSSDIffvhhrfX729/+ZiSZZcuWeeWvXr26xvwzyc7ONp06daqWn5OTY07/TwtJRpL56KOPrLyvv/7ahIeHm1GjRll5sbGxZurUqbV+Z2VlpUlLSzOdOnUy33//vdc+z79NTW3t5ZdfNpLMxo0brbyqv60v2tT+/fur/Zv/8Ic/ND/84Q+rlT39b/ntt98aSSYnJ6fO3wcA/oyQWgDAGV177bXKzc3VjTfeqH/84x9asGCBsrKydP7551cLAa1NRESEla6oqNDRo0d14YUXKi4uzitkcvXq1crIyFDfvn2tvPj4eI0fP97rfGvWrNHx48d1yy236LvvvrO2oKAgpaena926dfW6xiNHjujWW29VWlqaZs2aVa9jq7z99tsKDg7WlClTrLygoCBNnz7dq9yxY8f0wQcf6Mc//rGKioqsuh89elRZWVn68ssv9e9//9vrmDvuuMNrZO6qq66Sy+XS119/LUlWuPNbb72lioqKGuv36quvKjY2Vtdee63X36wqvLi+f7P6yMjIUL9+/azPHTt21E033aR3331XLpfLuoatW7fq0KFDNZ7jk08+0f79+zVjxoxq4d2efxvPtlZaWqrvvvtOl19+uSRVC8/11NRtCgBwCiG1AICzGjBggF5//XWVl5frH//4h1auXKnf/va3uvnmm7Vjxw716NHjjMefPHlS8+fP15IlS/Tvf/9bxhhrX0FBgZX++uuvlZGRUe34Cy+80Ovzl19+KUm65ppravy+mJiYOl9bSUmJrr/+ehUVFWnTpk3V5nbW1ddff62UlJRqx3ft2tXr8969e2WM0cMPP6yHH364xnMdOXJE559/vvW5Y8eOXvvPO+88SbLmXv7whz/UmDFjNG/ePP32t7/V4MGDNXLkSN16661WOPKXX36pgoICr3m3p3+nr1x00UXV8i6++GKdOHFC3377rZKTk7VgwQJlZ2erQ4cO6tevn0aMGKGf/OQnuuCCCySdmkss6Yxh3dKpDv28efP0pz/9qdo1eba10zVlmwIA2OhwAgDqLDQ0VAMGDNCAAQN08cUXa+LEiXr11VeVk5NzxuOmT5+uJUuWaMaMGcrIyFBsbKwcDofGjRsnt9td73pUHfPHP/5RycnJ1fYHB9ft9lZeXq7Ro0dr586devfdd8/amWkKVXX/+c9/rqysrBrLnN7BDgoKqrFcVcfd4XDotdde05YtW/Tmm2/q3Xff1e23367f/OY32rJli6Kjo+V2u5WYmKhly5bVeK6qxWrqorZ5kFWjlQ3x4x//WFdddZVWrlyp9957T//zP/+jX//613r99dc1fPjwep1n8+bNuu+++9S3b1/r2ocNG3bGttZUbao2DofD60FLlcb8zQAgENDhBAA0SP/+/SVJhw8ftvJq64i89tprys7O1m9+8xsrr7S0tNoKrp06ddLevXurHX96XtViRImJiQ1+hYnb7dZPfvITrV27Vq+88op++MMfNug8VTp16qS1a9equLjYa5Rzz549XuWqRuxCQkKa/PUrl19+uS6//HL98pe/1PLlyzV+/Hj96U9/0k9/+lN16dJF77//vq644gqvsNOGOO+882pcfbcqxPd0VaOHnv75z38qMjLSq6ObkpKiu+66S3fddZeOHDmiyy67TL/85S81fPhw69/8s88+q/Xv9v3332vt2rWaN2+e5syZc8bvP11TtKkzOe+88/Svf/2rWv7pf7MzLWoEAIGIOZwAgDNat25djSMzb7/9tiTvkNGoqKgaOyJBQUHVzvHUU09VG93JyspSbm6uduzYYeUdO3as2qhcVlaWYmJi9Nhjj9U4Z/H0V4bUZPr06VqxYoWeeeYZazXQxhgxYoQqKyv17LPPWnkul0tPPfWUV7nExEQNHjxYv/vd77w66/Wp++m+//77an/fqnmwZWVlkk6N/LlcLv3iF7+odnxlZWWtr2+pSZcuXVRQUKCdO3daeYcPH9bKlStrLJ+bm+s1f/LgwYN64403NHToUAUFBcnlclULd01MTFRqaqpV/8suu0xpaWlauHBhtbpWXXvVSPDpf4uFCxee9Zqaok2dSZcuXbR7926v8/zjH//Q3//+d69yVSs21+ffAwD8GSOcAIAzmj59uk6cOKFRo0apW7duKi8v1+bNm7VixQp17txZEydOtMr269dP77//vp544gmlpqYqLS1N6enpuv766/XHP/5RsbGx6tGjh3Jzc/X++++rbdu2Xt81a9YsvfTSS7r22ms1ffp067UoHTt21LFjx6zRn5iYGD377LO67bbbdNlll2ncuHFq166dDhw4oL/+9a+64oor9PTTT9d6TQsXLtQzzzyjjIwMRUZG6qWXXvLaP2rUKEVFRUmS1q9fr6uvvlo5OTlnfB/iDTfcoCuuuEIPPPCAvvrqK/Xo0UOvv/56jfMGFy1apCuvvFK9evXS5MmTdcEFFyg/P1+5ubn65ptv9I9//OOs/y6eXnjhBT3zzDMaNWqUunTpoqKiIv3+979XTEyMRowYIenUPM+f/exnmj9/vnbs2KGhQ4cqJCREX375pV599VX97//+r26++eY6fd+4ceN0//33a9SoUbr77rut14dcfPHFNS7M07NnT2VlZXm9FkU69a5J6dQ7ONu3b6+bb75Zffr0UXR0tN5//319+OGH1qi40+nUs88+qxtuuEF9+/bVxIkTlZKSot27d2vXrl169913FRMTo0GDBmnBggWqqKjQ+eefr/fee0/79+8/6zU1tk2dze23364nnnhCWVlZmjRpko4cOaLFixfrkksuUWFhoVUuIiJCPXr00IoVK3TxxRcrPj5ePXv2bJZwbwDwiRZbHxcAEBDeeecdc/vtt5tu3bqZ6OhoExoaai688EIzffp0k5+f71V29+7dZtCgQSYiIsJIsl6R8v3335uJEyeahIQEEx0dbbKysszu3btNp06dqr1G5ZNPPjFXXXWVCQsLM+3btzfz5883Tz75pJFk8vLyvMquW7fOZGVlmdjYWBMeHm66dOliJkyY4PUKjppkZ2dbr+uoaat6VYYxxrz55ptGklm8ePFZ/1ZHjx41t912m4mJiTGxsbHmtttuM5988km1V2QYY8y+ffvMT37yE5OcnGxCQkLM+eefb66//nrz2muvWWWqXt1x+utO1q1bZySZdevWGWOM+fjjj80tt9xiOnbsaMLCwkxiYqK5/vrra/w7PPfcc6Zfv34mIiLCtGnTxvTq1cvMmjXLHDp06KzX5+m9994zPXv2NKGhoaZr167mpZdeqvW1KFOnTjUvvfSSueiii0xYWJi59NJLrbobY0xZWZm57777TJ8+fUybNm1MVFSU6dOnj3nmmWeqfe+mTZvMtddea5Xr3bu3eeqpp6z933zzjRk1apSJi4szsbGx5kc/+pE5dOhQtVeNnP5aFM+/bUPalKeaXotijDEvvfSSueCCC0xoaKjp27eveffdd2t8xczmzZtNv379TGhoKK9IARDwHMbUECcFAIAfmTFjhn73u9+puLi41gV0fGXWrFl6+eWXtXfvXmvFV9Sdw+HQ1KlTGzU6CAAIXMzhBAD4lZMnT3p9Pnr0qP74xz/qyiuvbPbOpnRqDuvDDz9MZxMAgAZgDicAwK9kZGRo8ODB6t69u/Lz8/X888+rsLCw1ndW+tqHH37YIt/bEoqLi1VcXHzGMu3atWuRjr8/KC8v17Fjx85YJjY2ttGrAAPAuYQOJwDAr4wYMUKvvfaannvuOTkcDl122WV6/vnnNWjQoJau2jnv8ccftxbyqc3+/fvVuXPn5qmQn9m8ebOuvvrqM5ZZsmSJJkyY0DwVAoAAwBxOAAAgSfrXv/5V47siPV155ZUKDw9vphr5l++//17bt28/Y5lLLrlEKSkpzVQjAPB/dDgBAAAAAD7BokEAAAAAAJ+gwwkAAAAA8Ak6nAAAAAAAn6DDCQAAAADwCTqcAAAAAACfoMMJAAAAAPAJOpwAAAAAAJ+gwwkAAAAA8Ak6nAAAAAAAn6DDCQAAAADwCTqcAAAAAACfoMMJAAAAAPAJOpwAAAAAAJ+gwwkAAAAA8Ak6nAAAAAAAn6DDCQAAAADwCTqcAAAAAACfoMMJAAAAAPAJOpwAAAAAAJ+gwwkAAAAA8Ak6nAAAAAAAn6DDCQAAAADwCTqcAAAAAACfoMMJAAAAAPCJ4JauAAAAAACcy0pLS1VeXt6oc4SGhio8PLyJatR86HACAAAAgI+UlpYqrVO08o64GnWe5ORk7d+/P+A6nXQ4AQAAAMBHysvLlXfEpf3bOymmTcNmNBYWuZXW72uVl5cHXIeTOZwAAAAA4GMxbZyN2upj/vz5GjBggNq0aaPExESNHDlSe/bs8SozePBgORwOr+3OO+/0KnPgwAFdd911ioyMVGJiou677z5VVlbWqy6McAIAAACAj7mMWy7T8GPrY8OGDZo6daoGDBigyspKPfjggxo6dKg+//xzRUVFWeUmT56sRx55xPocGRlpf6fLpeuuu07JycnavHmzDh8+rJ/85CcKCQnRY489Vue60OEEAAAAAB9zy8ithvU463vc6tWrvT4vXbpUiYmJ2r59uwYNGmTlR0ZGKjk5ucZzvPfee/r888/1/vvvKykpSX379tUvfvEL3X///Zo7d65CQ0PrVBdCagEAPrdr1y796Ec/0gUXXKDIyEglJCRo0KBBevPNNxt0vscee0yXX3652rVrp/DwcF100UWaMWOGvv322yauOQAATcPdyP81RkFBgSQpPj7eK3/ZsmVKSEhQz549NXv2bJ04ccLal5ubq169eikpKcnKy8rKUmFhoXbt2lXn72aEEwDgc19//bWKioqUnZ2t1NRUnThxQn/+859144036ne/+53uuOOOep1v+/bt6tu3r8aNG6c2bdroiy++0O9//3v99a9/1Y4dO7zChQAAOFcUFhZ6fQ4LC1NYWNgZj3G73ZoxY4auuOIK9ezZ08q/9dZb1alTJ6Wmpmrnzp26//77tWfPHr3++uuSpLy8PK/OpiTrc15eXp3r7DDGNDCSGACAhnO5XOrXr59KS0u1e/fuRp/vz3/+s26++Wa9/PLLGjduXBPUEACAxissLFRsbKwO7j6/UavUduj272r5OTk5mjt37hmPnTJlit555x1t2rRJ7du3r7XcBx98oCFDhmjv3r3q0qWL7rjjDn399dd69913rTInTpxQVFSU3n77bQ0fPrxOdSekFgDQIoKCgtShQwcdP35c0qkbndPp1Jw5c7zKLV++XA6HQ88+++wZz9e5c2dJss4HAIA/qZrD2dBNkg4ePKiCggJrmz179hm/c9q0aXrrrbe0bt26M3Y2JSk9PV2StHfvXkmn3vuZn5/vVabqc23zPmtChxMA0GxKSkr03Xffad++ffrtb3+rd955R0OGDJEkXXPNNbrrrrs0f/58ffzxx5Kkw4cPa/r06crMzKy2VLsxRt99953y8vL0t7/9TXfffbeCgoI0ePDg5r4sAADOyi0jVwO3qg5nTEyM11ZbOK0xRtOmTdPKlSv1wQcfKC0t7az127FjhyQpJSVFkpSRkaFPP/1UR44cscqsWbNGMTEx6tGjR52vm5BaAECzufPOO/W73/1OkuR0OjV69Gg999xzOu+88ySdCtXp06ePwsLCtH37do0ZM0Z/+9vf9Omnn6pjx45e58rLy7NuipLUvn17/eY3v9GPf/zj5rsgAADOoiqkdv/uFLVpYEhtUZFbad0Oq6CgQDExMWctf9ddd2n58uV644031LVrVys/NjZWERER2rdvn5YvX64RI0aobdu22rlzp+655x61b99eGzZskHRq6kvfvn2VmpqqBQsWKC8vT7fddpt++tOf8loUAIB/mjFjhm6++WYdOnRIr7zyilwul8rLy639kZGRWrp0qQYNGqRBgwZp27Ztev7556t1NqVTK+2tWbNGpaWl+uSTT/T666+ruLi4OS8HAIA6a87XolRNQzk96mfJkiWaMGGCQkND9f7772vhwoUqKSlRhw4dNGbMGD300ENW2aCgIL311luaMmWKMjIyFBUVpezsbK/3dtYFI5wAgBYzdOhQHT9+XFu3bpXD4bDyp02bpkWLFikrK6vau8Rqs3nzZl1xxRV68803df311/uqygAA1EvVCOc/v0hq1Ajnxd3z6zzC6U+YwwkAaDE333yzPvzwQ/3zn/+08srKyrR+/XpJ0r59+7zeCXYmP/jBD5SSkqJly5b5oqoAAKAB6HACAFrMyZMnJdkvpJZOLfH+xRdf6PHHH9f+/fv1wAMP1Pl8paWlXucCAMBfuBu5BSo6nAAAn/Nc4a5KRUWFXnzxRUVERFir3W3dulWPP/64ZsyYoXvvvVf33Xefnn76aWsBA+nUSrc1jXr++c9/1vfff6/+/fv77kIAAGighq5QW7UFKuZwAgB8btSoUSosLNSgQYN0/vnnKy8vT8uWLdPu3bv1m9/8RjNnzlRpaan69u0rh8OhTz75ROHh4SovL9dll12mEydO6NNPP1VUVJR27NihzMxMjR07Vt26dZPT6dRHH32kl156Se3bt9dHH32ktm3btvQlAwAgyZ7DufPzxEbN4ezd40hAzuFklVoAgM+NHTtWzz//vJ599lkdPXpUbdq0Ub9+/fTrX/9aN954oyTpwQcf1N69e7V582aFh4dLkkJDQ/XCCy/o8ssv13333adnnnlG7du315gxY/TBBx/ohRdeUEVFhTp16qRp06bp//2//0dnEwAAP8IIJwAAAAD4SNUI545GjnD2ZYQTAAAAAFATtxxyyXH2grUcG6jocAIAAACAj7nNqa2hxwYqVqkFAAAAAPgEI5wAAAAA4GOuRoTUNvQ4f+CzEc5Fixapc+fOCg8PV3p6urZt2+arrwIAAAAAv1bV4WzoFqh80uFcsWKFZs6cqZycHH388cfq06ePsrKyanzxNwAAAACc69zG0agtUPnktSjp6ekaMGCAnn76aUmS2+1Whw4dNH36dD3wwANnPNbtduvQoUNq06aNHI7A/cMCAAAAaBxjjIqKipSamiqnMzCXn6l6Lcqmz1IV3cDXohQXuXVlz0O8FkWSysvLtX37ds2ePdvKczqdyszMVG5u7lmPP3TokDp06NDU1QIAAAAQoA4ePKj27du3dDUapbXO4WzyDud3330nl8ulpKQkr/ykpCTt3r27WvmysjKVlZVZn6sGXK/UCAUrpKmrBwCBpS6RHg6nR9JRY7488z3XVjduOx0UZB8a7JEODa0xrTD7N9qEhdmnj/RIR9i3mYpoz7R9/vJop0e+Xc/yWPurKmLserriK6x0dNxJK50YXWynI+x0+/DvrXRyaKGVbhdcYKXjg+zy8U77nDFO+7uiPP6GEQ67/s5aZqcEefzbBSuoxjLe5QPzyT0A+FJxxAZ16NBBbdq0aemqNJpLTrkaOKPR1cR1aU4tvkrt/PnzNW/evGr5wQpRsIMOJwCoDh2R2jqaNeYHyaujaao6oG7JUdXpdEmOkP/cIiolhYZYaUdV59Izv0JSRPipdLnkjgy18l2Rp8oE/+fZYmVUiEJK/1O0TZCVXx7jUHBFVb5DEVX5sVJQeVXayHky4lR121boZPmpdJu4EzrmPvX9iW2KdEyn6pgcWaQjOvUAtEPE9/peCZKklNDjKlLbU2WCC1SmOEmnOp5lOvUfNW2DSuT+z3niPDqekQ6HJPOftH0bDarl4YBnhzTEcfaOZ20dWABolYp+KEnnxFQ704i5mCaA53A2+V0tISFBQUFBys/P98rPz89XcnJytfKzZ89WQUGBtR08eLCpqwQAAAAAaAFN3uEMDQ1Vv379tHbtWivP7XZr7dq1ysjIqFY+LCxMMTExXhsAAAAAnEta62tRfBJSO3PmTGVnZ6t///4aOHCgFi5cqJKSEk2cONEXXwcA5zbPeZaePEJnjee8TK+ZHh5zMUPsm5WpsMt7hd16pj3ndHqk5blKoEe+CfI4v0cZE+T9bNN4fDRBnvkex3veV2u7x3r8WSpd9knLXPatrdJtf0GZ22MOqccXl3ukKzz+Xp7zbAL5Rg8A8A8u45TLNHAOZ5O/V6T5+KTDOXbsWH377beaM2eO8vLy1LdvX61evbraQkIAAAAA0Bq45ZC7gQGmbgVuj9NniwZNmzZN06ZN89XpAQAAAAB+rsVXqQUANFBtobaeRTyja2tamVaSw+lxK/BcBdAzFNYzjNZRc9itV3htqEdoapj309zKCPtzZbjDo5xdxu3x9hW358KuHl9t3PaHykq70MkKe4Xz4gr7RCUh9hecCLbTZUF2ec9QJ8+VBD0jlt2el+/xt6htddnaVqZlNVoAaF14DycAAAAAwCcaN4czcENqebwKAAAAAPAJRjgB4FzmGUbrOkO5/3CEhNSYVphHjGuYHY5qIux8V6Sdroz0WBE22juktCLaftZZEeURFhtul3F5pN1h9lNdE+wRChzkkXZ4lPEIhS31WLH2pMsj1NYjfve4K9JKhzkqrHSoo9Kuj0cok0tlVjrSYf99wzxWDXbWEvpEGC0AtF6nFg1qWGhsQ4/zB3Q4AQAAAMDH3HJ6vXKrfscGbkgtHU4AAAAA8LHWOoeTDicAnGscNd/MHE47HMdzlVrjsmNtTckJu3x5uZ0Otm8XjtBQj7QdphrsmY6wY2JDozyWn5VUGWWXq4i10yfj7dDbUrfn6rUe9Q616xoZe9JKdzjvuJVOiz5qpTtF2Omk4EIr3c4jHee0rznG6REu67S/q41HJFO4x6qzEQ67/kG1/N0BAGjN6HACAAAAgI+55ZSbkFoAAAAAQFNzGYdcpoHv4Wzgcf6ADicAtEKe4bWeIbiOkLOHzspz9dpQz9Vr7Xy3ZzrUe5Vad5j92RVi18Ptmfa4OxnPwz2q7Xbb9S532YVOuuw6nfBYjbY0yK7TCbedH+65Mq3HUr4hHiv8lspOB3muTOv5xNmjvCdCbQEAkuRqxKJBrgAe4eQuCAAAAADwCUY4AQAAAMDH3MYpdwNXqXWzSi0AwG/UEtrpES3qFUbr9AhlrTWM1it01k4bz3SEXd4VaacrI71vNZVRdvhrRbRdD5fnYrYe92OH5+WU2zvKTtjf8V1wtF0Pj3ku5W77u4o9vqAgNMJKlwTb+XFBJR5pe/XaOKe9Iq5bdghuiLPSSoc57Ot0BvALugEAvtFaQ2rpcAIAAACAj7nV8MV/an6UHBiYwwkAAAAA8AlGOAGglfMKo420Q00VEW4l6xI664qwbymVkXYoa3kb72ebFZH2092KKDu/MtIj7ZkfbT/XNeF2XLAzyA4vcrntc5ZW2nUqLLevIdRpHxvksI8N8ghTctczFLaNxzlDPJ4/OxVUU3EAQCvWuPdwBu44IR1OAAAAAPAxl3HK1cBFgxp6nD+gwwkAAAAAPuaWo96RNJ7HBio6nADQWjhqfjrqKrFXY3WUltnpIDss1BFi3y48V68NCQurMW2i7HREtB3WKkkVbezw3PIY+ztK4z3TdnnjtOttwuyw1ZAwe4XYhDb26rIdoo/b6YjvrXT70GNWOimkwEonBhVZ6XiPlWmjHHa4bKTD4ZG2/xZhDo/rd3BLBQDgdPUem924caNuuOEGpaamyuFwaNWqVV77jTGaM2eOUlJSFBERoczMTH355ZdNVV8AAAAACDhVIbUN3QJVvWteUlKiPn36aNGiRTXuX7BggZ588kktXrxYW7duVVRUlLKyslRaWtroygIAAABAIKp6D2dDt0BV7/if4cOHa/jw4TXuM8Zo4cKFeuihh3TTTTdJkl588UUlJSVp1apVGjduXONqCwBoOOPxFi+P8Fqv0FmPcFlHuB0u6vAIl5VHGXmUcYfbobLuKDtdEe19q6mIrnkFW89Vat324TJOj5dde6xGW1Fmn/f4CXt1XafHqrPlLrtMiUddC8LsLysIsdPtgu3w2jinHV7rGWob56yw8z1CbYM8/mPAGcD/YQAA8A23ccjd0PdwNvA4f9Ckd8T9+/crLy9PmZmZVl5sbKzS09OVm5vblF8FAAAAAPBzTbrCQV5eniQpKSnJKz8pKcnad7qysjKVldmLVBQWFjZllQAAAACgxbkbERrLezgbYf78+Zo3b15LVwMAWi2H0w7T8QqjjbDDVBVpp93RdhmXR7oiyr6leIbNVkR7hwFVRjg80na+y2MxW7dH1K7DI6LWUW4f6y60424LK+zvO1lq5x/3qPd3EXbo7JGINlY6OdwjHWavXusZXpsUbOcnB9sPRkNUbqWDnXYdnLWsCAwAaL3cxil3Axf/aehx/qBJa56cnCxJys/P98rPz8+39p1u9uzZKigosLaDBw82ZZUAAAAAAC2kSTucaWlpSk5O1tq1a628wsJCbd26VRkZGTUeExYWppiYGK8NAAAAAM4lLjkatQWqeofUFhcXa+/evdbn/fv3a8eOHYqPj1fHjh01Y8YMPfroo7rooouUlpamhx9+WKmpqRo5cmRT1hsA0EQ8V6B1REdZaRNjp13RdrxrRYwd71oeY99Gytt4rCDrEUbrufqs5B066/JY/NYdYsfOGjs6VSbYM98zvtZz9VqPc1bYz1JPltl1DXLaX+z0ONbpsA/2DFlyh3muOmuXD/IoH+c8ZqVjPcq4PSrEirUAAKn1htTWu8P50Ucf6eqrr7Y+z5w5U5KUnZ2tpUuXatasWSopKdEdd9yh48eP68orr9Tq1asVHh5e2ykBAAAA4Jzmkho8Uulq2qo0q3p3OAcPHixjTK37HQ6HHnnkET3yyCONqhgAAAAAILC1+Cq1AICW5T5ZaqUdLvsZqqO4xEoHe4TdBkfYESvhUXbaHWmvDlsZ7RF228b7VlPexg4L8gy9LY/xTNvlK2I8HnJG2PULiaqw0lGR9uu14sJPWum2ESesdLswe9XZ5DB7pdn2oXZYrOfKtHHOEx5p+5yxzkorHe+0rzPM4bG0LgAApyGkFgAAAADgEy7jlKuBHceGHucP6HACAAAAgI8ZOeRu4BxO05pWqQUAnFscIfatwOmxSq08V6yNjrDSrmg7vLaijR1GWhFtLy1b7hEqWxHlfZOsjPBIe6xg6/ZcsTbUDqP1XIzWlHl8h9vjO07a9SgMsb/gcJgdmxsdcZ6VToi0w4UTw9tZ6fMjjlvplFA73SHkqEf6eysd5bTDeiNZmRYAgGrocAIAAACAjxFSCwAAAADwCbdxyG0aFhrb0OP8AR1OAGjlHEF2mKrC7bhW47ECbcV5dphq2Xl2+GpZnP3EtSzWI8Q12j6lyyOEVpJcYXaMrGforOfDW68wWs97bKX9wVnuUW+PMm6P6ykN8ahrmL2KbkmUfZ3fR9pxvcfKPNKRdkhxRZR9znCPMNq2TjvUNsbhEVLrCNwn0QAA33DJKVcDp1zU97j58+fr9ddf1+7duxUREaEf/OAH+vWvf62uXbtaZUpLS3XvvffqT3/6k8rKypSVlaVnnnlGSUlJVpkDBw5oypQpWrdunaKjo5Wdna358+crOLju3UjuiAAAAABwDtmwYYOmTp2qLVu2aM2aNaqoqNDQoUNVUmKvYXDPPffozTff1KuvvqoNGzbo0KFDGj16tLXf5XLpuuuuU3l5uTZv3qwXXnhBS5cu1Zw5c+pVF0Y4AQAAAMDHmjOkdvXq1V6fly5dqsTERG3fvl2DBg1SQUGBnn/+eS1fvlzXXHONJGnJkiXq3r27tmzZossvv1zvvfeePv/8c73//vtKSkpS37599Ytf/EL333+/5s6dq9DQ0Jq+uho6nADQ2oXaYacmxg4jLU+00ycT7DKl8R5htPbCryqPteNgK6Ps8FITbqclyRHssQKt02Ofx6qz7kr7OxwVHulyj5DaCs84Ws8vsPONx13O7RGOW+px4/a8iRuPUF6nR1xvTEiplU4NOW6lXSHHrHQQYbQAgDNwyyl3AwNMG3pclYKCAklSfHy8JGn79u2qqKhQZmamVaZbt27q2LGjcnNzdfnllys3N1e9evXyCrHNysrSlClTtGvXLl166aV1+m6/vTu+UfBiS1cBAAAAAJqEyzgatUlSYWGh11ZWVnbW73W73ZoxY4auuOIK9ezZU5KUl5en0NBQxcXFeZVNSkpSXl6eVcazs1m1v2pfXfndCKf5z+PlwsJCVZqKs5QGADSM/bzRuMvtbJd946qstG8RlRUuu0i5s6bicpd6LAbkMXJpTN1GOI3HCKepwwin5wJC3iOcdtJrhNPtUcjhcT0O+/pdsi+owiO/zGOhoBNu+9jiCvuchcGe7+H0GCoFADRYYfGp31Zj+F2VpA4dOnh9zsnJ0dy5c894zNSpU/XZZ59p06ZNPqxZ7fyuw1lUVCSp+h8TANCEPO/b39eS/ryZ6hIA3m3pCgBAK1dUVKTY2NiWrkajNMUczoMHDyomJsbKDwsLq+0QSdK0adP01ltvaePGjWrfvr2Vn5ycrPLych0/ftxrlDM/P1/JyclWmW3btnmdLz8/39pXV37X4UxNTdXBgwdljFHHjh2r/VGBxiosLFSHDh1oW2hytC34Cm0LvkLbgq80VdsyxqioqEipqalNWLuWYYxTbtOwGY3mP8fFxMTU6e9pjNH06dO1cuVKrV+/XmlpaV77+/Xrp5CQEK1du1ZjxoyRJO3Zs0cHDhxQRkaGJCkjI0O//OUvdeTIESUmJkqS1qxZo5iYGPXo0aPOdfe7DqfT6VT79u1VWFgoqe5/VKC+aFvwFdoWfIW2BV+hbcFXmqJtBfrIZkuYOnWqli9frjfeeENt2rSx5lzGxsYqIiJCsbGxmjRpkmbOnKn4+HjFxMRo+vTpysjI0OWXXy5JGjp0qHr06KHbbrtNCxYsUF5enh566CFNnTr1rCOrnvyuwwkAAAAA5xqXHHKpYSG19T3u2WeflSQNHjzYK3/JkiWaMGGCJOm3v/2tnE6nxowZo7KyMmVlZemZZ56xygYFBemtt97SlClTlJGRoaioKGVnZ+uRRx6pV13ocAIAAACAj7lN/d+n6XlsfdRlkaXw8HAtWrRIixYtqrVMp06d9Pbbb9fvy0/jtx3OsLAw5eTk1Gu4FqgL2hZ8hbYFX6FtwVdoW/AV2lZ17kbM4Wzocf7AYVhjGAAAAAB8orCwULGxscpeN06h0aENOkd5cbleuPpPKigoCLj51n47wgkAAAAA5wq3HHI3cA5nQ4/zB3Q4AQAAAMDHXMYhVwPncDb0OH9AhxMAAAAAfKy1zuEM3JoDAAAAAPyaX3Y4Fy1apM6dOys8PFzp6enatm1bS1cJAWbu3LlyOBxeW7du3az9paWlmjp1qtq2bavo6GiNGTNG+fn5LVhj+KuNGzfqhhtuUGpqqhwOh1atWuW13xijOXPmKCUlRREREcrMzNSXX37pVebYsWMaP368YmJiFBcXp0mTJqm4uLgZrwL+6Gxta8KECdV+x4YNG+ZVhraFmsyfP18DBgxQmzZtlJiYqJEjR2rPnj1eZepyHzxw4ICuu+46RUZGKjExUffdd58qKyub81LgZ+rStgYPHlztt+vOO+/0KtNa25ZbDrlNA7cAnsPpdx3OFStWaObMmcrJydHHH3+sPn36KCsrS0eOHGnpqiHAXHLJJTp8+LC1bdq0ydp3zz336M0339Srr76qDRs26NChQxo9enQL1hb+qqSkRH369Kn1HVULFizQk08+qcWLF2vr1q2KiopSVlaWSktLrTLjx4/Xrl27tGbNGr311lvauHGj7rjjjua6BPips7UtSRo2bJjX79jLL7/stZ+2hZps2LBBU6dO1ZYtW7RmzRpVVFRo6NChKikpscqc7T7ocrl03XXXqby8XJs3b9YLL7ygpUuXas6cOS1xSfATdWlbkjR58mSv364FCxZY+1pz2zL/WTSoIZsJ4A6n370WJT09XQMGDNDTTz8tSXK73erQoYOmT5+uBx54oIVrh0Axd+5crVq1Sjt27Ki2r6CgQO3atdPy5ct18803S5J2796t7t27Kzc3V5dffnkz1xaBwuFwaOXKlRo5cqSkU6Obqampuvfee/Xzn/9c0qn2lZSUpKVLl2rcuHH64osv1KNHD3344Yfq37+/JGn16tUaMWKEvvnmG6WmprbU5cCPnN62pFMjnMePH6828lmFtoW6+vbbb5WYmKgNGzZo0KBBdboPvvPOO7r++ut16NAhJSUlSZIWL16s+++/X99++61CQxv2agecW05vW9KpEc6+fftq4cKFNR7TGttW1WtRxryfrZCohl1fRUm5/pz5QkC+FsWvRjjLy8u1fft2ZWZmWnlOp1OZmZnKzc1twZohEH355ZdKTU3VBRdcoPHjx+vAgQOSpO3bt6uiosKrnXXr1k0dO3aknaFe9u/fr7y8PK+2FBsbq/T0dKst5ebmKi4uzuoQSFJmZqacTqe2bt3a7HVGYFm/fr0SExPVtWtXTZkyRUePHrX20bZQVwUFBZKk+Ph4SXW7D+bm5qpXr15Wh0CSsrKyVFhYqF27djVj7eHPTm9bVZYtW6aEhAT17NlTs2fP1okTJ6x9tK3Wx69Wqf3uu+/kcrm8GqAkJSUlaffu3S1UKwSi9PR0LV26VF27dtXhw4c1b948XXXVVfrss8+Ul5en0NBQxcXFeR2TlJSkvLy8lqkwAlJVe6npN6tqX15enhITE732BwcHKz4+nvaGMxo2bJhGjx6ttLQ07du3Tw8++KCGDx+u3NxcBQUF0bZQJ263WzNmzNAVV1yhnj17SlKd7oN5eXk1/rZV7QNqaluSdOutt6pTp05KTU3Vzp07df/992vPnj16/fXXJbXuttVaV6n1qw4n0FSGDx9upXv37q309HR16tRJr7zyiiIiIlqwZgBQN+PGjbPSvXr1Uu/evdWlSxetX79eQ4YMacGaIZBMnTpVn332mdc6BkBTqK1tec4j79Wrl1JSUjRkyBDt27dPXbp0ae5q+pWqBYAaemyg8quuckJCgoKCgqqtkpafn6/k5OQWqhXOBXFxcbr44ou1d+9eJScnq7y8XMePH/cqQztDfVW1lzP9ZiUnJ1db9KyyslLHjh2jvaFeLrjgAiUkJGjv3r2SaFs4u2nTpumtt97SunXr1L59eyu/LvfB5OTkGn/bqvahdautbdUkPT1dkrx+u1pr22rogkFVW6Dyqw5naGio+vXrp7Vr11p5brdba9euVUZGRgvWDIGuuLhY+/btU0pKivr166eQkBCvdrZnzx4dOHCAdoZ6SUtLU3JysldbKiws1NatW622lJGRoePHj2v79u1WmQ8++EBut9u6CQN18c033+jo0aNKSUmRRNtC7YwxmjZtmlauXKkPPvhAaWlpXvvrch/MyMjQp59+6vVQY82aNYqJiVGPHj2a50Lgd87WtmpStYCj528Xbat18buQ2pkzZyo7O1v9+/fXwIEDtXDhQpWUlGjixIktXTUEkJ///Oe64YYb1KlTJx06dEg5OTkKCgrSLbfcotjYWE2aNEkzZ85UfHy8YmJiNH36dGVkZLBCLaopLi62nspKpxYK2rFjh+Lj49WxY0fNmDFDjz76qC666CKlpaXp4YcfVmpqqrXaaPfu3TVs2DBNnjxZixcvVkVFhaZNm6Zx48aximgrd6a2FR8fr3nz5mnMmDFKTk7Wvn37NGvWLF144YXKysqSRNtC7aZOnarly5frjTfeUJs2bax5cbGxsYqIiKjTfXDo0KHq0aOHbrvtNi1YsEB5eXl66KGHNHXqVIWFhbXk5aEFna1t7du3T8uXL9eIESPUtm1b7dy5U/fcc48GDRqk3r17S2rdbau1htTK+KGnnnrKdOzY0YSGhpqBAweaLVu2tHSVEGDGjh1rUlJSTGhoqDn//PPN2LFjzd69e639J0+eNHfddZc577zzTGRkpBk1apQ5fPhwC9YY/mrdunVGUrUtOzvbGGOM2+02Dz/8sElKSjJhYWFmyJAhZs+ePV7nOHr0qLnllltMdHS0iYmJMRMnTjRFRUUtcDXwJ2dqWydOnDBDhw417dq1MyEhIaZTp05m8uTJJi8vz+sctC3UpKZ2JcksWbLEKlOX++BXX31lhg8fbiIiIkxCQoK59957TUVFRTNfDfzJ2drWgQMHzKBBg0x8fLwJCwszF154obnvvvtMQUGB13laW9sqKCgwkszw1ZPNjX+b2qBt+OrJRlK1v2Ug8Lv3cAIAAADAuaLqPZxZ79zRqPdwvjv8Od7DCQAAAABAFb+bwwkAAAAA55rWOoeTDicAAAAA+JiRGvx6k0CeA0lILQAAAADAJxjhBAAAAAAfI6QWAAAAAOATdDgBAAAAAD7RWjuczOEEAAAAAPgEI5wAAAAA4GOtdYSTDicAAAAA+JgxDpkGdhwbepw/oMMJAAAAAD7mlqPB7+Fs6HH+gDmcAAAAAACfYIQTAAAAAHyMOZwAAAAAAJ9gDicAAAAAwCda6wgnczgBAAAAAD7BCCcAAAAA+BghtQAAAAAAnzCNCKmlwwkAAAAAqJWRZEzDjw1UzOEEAAAAAPgEI5wAAAAA4GNuOeRQA1epbeBx/oAOJwAAAAD4GIsGAQAAAAB8wm0ccvAeTgAAAAAAmgYjnAAAAADgY8Y0YpXaAF6mlg4nAAAAAPhYa53DSUgtAAAAAMAnGOEEAAAAAB9rrSOcdDgBAAAAwMda6yq1dDgBAAAAwMda66JBzOEEAPjc+vXr5XA4aty2bNlS7/N17ty5xnPdeeedPqg9AABoKEY4AQDN5u6779aAAQO88i688MIGnatv37669957vfIuvvjiBtcNAABfOjXC2dA5nE1cmWZEhxMA0Gyuuuoq3XzzzU1yrvPPP1//9V//1STnAgDA11rrokGE1AIAmlVRUZEqKyur5S9ZskQOh0N/+MMfvPIfe+wxORwOvf3229WOKS8vV0lJic/qCgBAUzGN3AIVHU4AQLOZOHGiYmJiFB4erquvvlofffSR177rr79eM2fO1MGDByVJn376qebNm6dJkyZpxIgRXuf64IMPFBkZqejoaHXu3Fn/+7//26zXAgAAzo6QWgCAz4WGhmrMmDEaMWKEEhIS9Pnnn+vxxx/XVVddpc2bN+vSSy+VJP3+97/XJZdcokmTJumtt95Sdna2kpOT9cQTT3idr3fv3rryyivVtWtXHT16VEuXLtWMGTN06NAh/frXv26JSwQA4Ixaa0itw5hAnoIKAAhUe/fuVe/evTVo0CCtXr3ayv/Tn/6kW265RQMHDtSHH36oNWvWaMiQIWc8lzFGw4cP19q1a7V//361b9/e19UHAKBOCgsLFRsbqwteeFBBkeENOofrRKn+lf2YCgoKFBMT08Q19C1CagEALeLCCy/UTTfdpHXr1snlcln548aN03XXXadt27Zp8uTJZ+1sSpLD4dA999yjyspKrV+/3oe1BgCggf4zwtmQTQE8wkmHEwDQYjp06FBt4Z+jR49aczs///xzud3uOp9Lko4dO9b0FQUAAA1ChxMA0GL+9a9/KTw8XNHR0Vbe1KlTVVRUpPnz52vTpk1auHBhnc8lSe3atfNFVQEAaJRT7+Fs+Bao6HACAHzu22+/rZb3j3/8Q3/5y180dOhQOZ2nbkevvfaaVqxYoV/96ld64IEHNG7cOD300EP65z//aR137NgxrxBcSaqoqNCvfvUrhYaG6uqrr/btxQAA0AANDadtyGJDGzdu1A033KDU1FQ5HA6tWrXKa/+ECRPkcDi8tmHDhnmVOXbsmMaPH6+YmBjFxcVp0qRJKi4urvd1s0otAMDnxo4dq4iICP3gBz9QYmKiPv/8cz333HOKjIzUr371K0nSkSNHNGXKFF199dWaNm2aJOnpp5/WunXrNGHCBG3atElOp1N/+ctf9Oijj+rmm29WWlqajh07puXLl+uzzz7TY489puTk5Ja8VAAAataYuZj1PK6kpER9+vTR7bffrtGjR9dYZtiwYVqyZIn1OSwszGv/+PHjdfjwYa1Zs0YVFRWaOHGi7rjjDi1fvrxedaHDCQDwuZEjR2rZsmV64oknVFhYqHbt2mn06NHKycnRhRdeKEmaMmWKysrKtGTJEjkcp26sbdu21XPPPaebbrpJjz/+uGbNmqVevXqpR48eeumll/Ttt98qNDRUffv21SuvvKIf/ehHLXmZAAD4heHDh2v48OFnLBMWFlbrQ9ovvvhCq1ev1ocffqj+/ftLkp566imNGDFCjz/+uFJTU+tcFzqcAACfu/vuu3X33Xefscyf//znGvNvvPFGeb7Bq1+/fvrLX/7SpPUDAMDXGjMX0xdzONevX6/ExESdd955uuaaa/Too4+qbdu2kqTc3FzFxcVZnU1JyszMlNPp1NatWzVq1Kg6fw8dTgAAAADwNfOfraHH6tQ7PT2FhYVVC4Wti2HDhmn06NFKS0vTvn379OCDD2r48OHKzc1VUFCQ8vLylJiY6HVMcHCw4uPjlZeXV6/vosMJAAAAAD7WkMV/PI+V7FeAVcnJydHcuXPrfb5x48ZZ6V69eql3797q0qWL1q9fX6f3X9cHHU4AAAAACAAHDx5UTEyM9bkho5s1ueCCC5SQkKC9e/dqyJAhSk5O1pEjR7zKVFZW6tixY/VenI/XogAAAABAczAN3P4jJibGa2uqDuc333yjo0ePKiUlRZKUkZGh48ePa/v27VaZDz74QG63W+np6fU6t886nIsWLVLnzp0VHh6u9PR0bdu2zVdfBQAAAAB+rTnfw1lcXKwdO3Zox44dkqT9+/drx44dOnDggIqLi3Xfffdpy5Yt+uqrr7R27VrddNNNuvDCC5WVlSVJ6t69u4YNG6bJkydr27Zt+vvf/65p06Zp3Lhx9VqhVvJRh3PFihWaOXOmcnJy9PHHH6tPnz7KysqqNiwLAAAAAGhaH330kS699FJdeumlkqSZM2fq0ksv1Zw5cxQUFKSdO3fqxhtv1MUXX6xJkyapX79++tvf/uY1Yrps2TJ169ZNQ4YM0YgRI3TllVfqueeeq3ddHMY0/SK76enpGjBggJ5++mlJktvtVocOHTR9+nQ98MADZzzW7Xbr0KFDatOmjfUeNgAAAACtjzFGRUVFSk1NldMZmLMBCwsLFRsbqw6Lc+SMCG/QOdwnS3XwznkqKCjwmsMZCJp80aDy8nJt375ds2fPtvKcTqcyMzOVm5t71uMPHTpUbfUlAAAAAK3XwYMH1b59+5auRiM5/rM19NjA1OQdzu+++04ul0tJSUle+UlJSdq9e3e18mVlZSorK7M+Vw24XqkRClZIU1cPAOBjDo9wHGeEnXZERVlpd9tYK30yOdJKF3a2f/cLL3J5nbf9Rfa0jKyUz610z7CDVrpTSIGVTnDaN+cop12PEEdQHa4CAOAPCovd6nTZV2rTpk1LV6XxmuA9nIGoxV+LMn/+fM2bN69afrBCFOygwwkAgSYoPNpKO6LttIm10662dtrdNtQ+uI0dLhUU6vY673ETb6X3uNOsdHiIfSuLCP/GTgd/b6VjgyutdJRHhzPIEZjhWQDQ2jDVLnA1+Z02ISFBQUFBys/P98rPz8+v8Z0ts2fPVkFBgbUdPHiwWhkAAAAACGgNfSVKY0ZG/UCTdzhDQ0PVr18/rV271spzu91au3atMjIyqpUPCwur9j4ZAAAAADinGEfjtgDlk5DamTNnKjs7W/3799fAgQO1cOFClZSUaOLEib74OgBAS/MIdfJc/NzhctVU2mvtA7fHlErjeVc67Wluebld8FiZPe/zuwp7Xs/xEDu/XVCRla4wFTV+NwAAzcWYU1tDjw1UPulwjh07Vt9++63mzJmjvLw89e3bV6tXr662kBAAAAAA4Nzls0WDpk2bpmnTpvnq9AAAAAAQOFilFgCABvJY7dUR5LE8QIi92rg7wk5XRNm3n/IYh0favqO6I73DcSNC7c9Oh12u0m1/X4nbfv1JhbFDcN2yQ2pZmRYA0CIaMxeTOZwAAAAAgNo4zKmtoccGKh7zAgAAAAB8ghFOAEDjue1wV1NaZucH27eZoO/tdHiIR7hrSISVdoXZ+RWx3s9EI8PKrXT3mDwr3S/qKyt9Uaj9DuikILt8tCP0rJcAAIBPMYcTAAAAAOATzOEEAAAAAPgEI5wAADSQw37y6oiOsvPj46xkRUK0lS5NtFeTPZlgh85WeBx6+s21sCTcSn9RmGylPVesdXksTeAKtcNuQx12eG2kCK8FAKC50OEEAAAAAF9jhBMAAAAA4BN0OAEAaCBHLW/Z8gi1NSGe4a52ujLcLuP2jHY9bYGEijL7lnWkxA7PjQuNs9IJIUVWOjn4uJUuNfbKuS7jttJBtdUbAICm1koXDeJOCwAAAADwCUY4AQAAAMDHHObU1tBjAxUdTgBA0woKstNOj5Baz/Baj/ga43EncofZd1QT7vI6bXhEhZVuE2aHyMaElFrpEIf3MTVWjzBaAEBLaKVzOLnrAgAAAAB8gg4nAAAAAMAnCKkFADSe2w5lNSdOWmlnsH2bCXV6POP0WGzPHWQvTesO9ljJNtwjNFeS02nHE7UNL7HSF0YcsdI9wv5tpTsEF1rpWKf3uQAAaG4ONWIOZ5PWpHnR4QQAAAAAX+O1KAAAAAAANB1GOAEAAADA11rpKrX17nBu3LhR//M//6Pt27fr8OHDWrlypUaOHGntN8YoJydHv//973X8+HFdccUVevbZZ3XRRRc1Zb0BAP7E45UnjsgIK+0+L8ZKlyVHWekTSSFW+mSiHWxT0cbjtShO77tr6Ul7rudXBfFWOjyoQjUJcritdKSjwErHEtsDAGgJrbTDWe/bbklJifr06aNFixbVuH/BggV68skntXjxYm3dulVRUVHKyspSaWlpjeUBAAAA4FznMI3bAlW9RziHDx+u4cOH17jPGKOFCxfqoYce0k033SRJevHFF5WUlKRVq1Zp3LhxjastAAAAACBgNOkczv379ysvL0+ZmZlWXmxsrNLT05Wbm0uHEwDOUY4g+7UjjhA7XNYdYacro+0yFVF2CG5FpH2eSjsaVybY+3GusSNkVVZh374Ky+2DjlXaYbtFbju/wtghtS6PEwU5iK8FADSTVhpS26Qdzry8PElSUlKSV35SUpK173RlZWUqKyuzPhcWFtZYDgAAAAACVivtcLb4o9358+crNjbW2jp06NDSVQIAAACAJtVa53A2aYczOTlZkpSfn++Vn5+fb+073ezZs1VQUGBtBw8ebMoqAQCam8Nhb263tTkrjLUFlcvanJX25iXYeG3BoS5riw4vs7aY0JPWFu6ssDan3NbmlqwtyOG0NgAA4FtNerdNS0tTcnKy1q5da+UVFhZq69atysjIqPGYsLAwxcTEeG0AAAAAcE4xjsZtAarecziLi4u1d+9e6/P+/fu1Y8cOxcfHq2PHjpoxY4YeffRRXXTRRUpLS9PDDz+s1NRUr3d1AgAAAECr0krncNa7w/nRRx/p6quvtj7PnDlTkpSdna2lS5dq1qxZKikp0R133KHjx4/ryiuv1OrVqxUeHt50tQYA+BXjctnp4hIrHRRi32bCguygGuOwV5B1e6xwa5z2E9xSj3xJMh4BMNEh5VY6JdxebC4t7FsrfX7wcSsd6wzcJ8MAgHNDY+ZiBvIcznp3OAcPHixjar9ih8OhRx55RI888kijKgYAAAAACGxN+loUAAAAAEANCKkFAKCBPFZ8dURFWunKhDZW+mSKHUZ7IsEOly1ra4e7VkbWfketOBlipQ8V2vG1IUEpVjpIbisd7qiw0nHOQ1Y6wTtSFwCA5tGY15vQ4QQAAAAA1KqVjnDyEjIAAAAAgE8wwgkAaDSH5yqwDo+0R74J8kzbRdwedyK3HTUrE3za41yPd5C5XPbz0jKXfYIT7lArXeHxJS55HGvssNsgB89dAQDNpJWOcNLhBAAAAAAfa62vReHRLgAAAADAJxjhBAA0Xi2hqQ6X/UjWWW6ng8o9y9R8ShPq/Tg3OLzSSsdEllrptuElVvq84BNWOqS2EwMAgGZDhxMAAAAAfI05nP7BmFN/zUpVBPQfFgBaE4fHgj7GXWalXS57JLKywmPhnnKPBX3K7Hx3qf3D7z7pPULpDraHRV0h9ndUeOSXyX735olK+/jicnuhoMJgz0WDarwcAICfKCw+9Ztd1UcIZK11DqffdTiLiookSZv0dgvXBABQZxUe6W9qSTehrzzSH/vmKwAAfqSoqEixsbEtXQ00gN91OFNTU3Xw4EEZY9SxY0cdPHhQMTExLV0tnEMKCwvVoUMH2hZ8gvYFX6FtwVdoW/ClxrYvY4yKioqUmprqg9q1gAAeqWwov+twOp1OtW/fXoWFhZKkmJgYfvzgE7Qt+BLtC75C24Kv0LbgS41pX+fMyCZzOAEAAAAAvtBa53DyHk4AAAAAgE/47QhnWFiYcnJyFBYW1tJVwTmGtgVfon3BV2hb8BXaFnyJ9uWhlYbUOsy5sMYwAAAAAPihwsJCxcbG6uKfP6agsPAGncNVVqp/Pv6gCgoKAm6utd+OcAIAAADAOaOVjnAyhxMAAAAA4BN0OAEAAADA10wjt3rYuHGjbrjhBqWmpsrhcGjVqlXeVTFGc+bMUUpKiiIiIpSZmakvv/zSq8yxY8c0fvx4xcTEKC4uTpMmTVJxcXF9r5oOJwAAAAD4WtVrURq61UdJSYn69OmjRYsW1bh/wYIFevLJJ7V48WJt3bpVUVFRysrKUmlpqVVm/Pjx2rVrl9asWaO33npLGzdu1B133FHv6/bLDueiRYvUuXNnhYeHKz09Xdu2bWvpKiEAzZ07Vw6Hw2vr1q2btb+0tFRTp05V27ZtFR0drTFjxig/P78Fawx/5U9PCXFuOVvbmjBhQrXfsWHDhnmVoW2hJvPnz9eAAQPUpk0bJSYmauTIkdqzZ49XmbrcBw8cOKDrrrtOkZGRSkxM1H333afKysrmvBT4obq0r8GDB1f7/brzzju9yrS69tWMI5zDhw/Xo48+qlGjRlWvhjFauHChHnroId10003q3bu3XnzxRR06dMi6D33xxRdavXq1/u///k/p6em68sor9dRTT+lPf/qTDh06VK+6+F2Hc8WKFZo5c6ZycnL08ccfq0+fPsrKytKRI0daumoIQJdccokOHz5sbZs2bbL23XPPPXrzzTf16quvasOGDTp06JBGjx7dgrWFv/Knp4Q4t5ytbUnSsGHDvH7HXn75Za/9tC3UZMOGDZo6daq2bNmiNWvWqKKiQkOHDlVJSYlV5mz3QZfLpeuuu07l5eXavHmzXnjhBS1dulRz5sxpiUuCH6lL+5KkyZMne/1+LViwwNpH+2o5+/fvV15enjIzM6282NhYpaenKzc3V5KUm5uruLg49e/f3yqTmZkpp9OprVu31uv7/G6V2ieeeEKTJ0/WxIkTJUmLFy/WX//6V/3hD3/QAw880MK1Q6AJDg5WcnJytfyCggI9//zzWr58ua655hpJ0pIlS9S9e3dt2bJFl19+eXNXFX5s+PDhGj58eI37Tn9KKEkvvviikpKStGrVKo0bN856Svjhhx9aP9xPPfWURowYoccff1ypqanNdi3wL2dqW1XCwsJq/B2TRNtCrVavXu31eenSpUpMTNT27ds1aNCgOt0H33vvPX3++ed6//33lZSUpL59++oXv/iF7r//fs2dO1ehoaEtcWnwA2drX1UiIyNr/f1qle2rCVapLSws9MoOCwur9ztO8/LyJElJSUle+UlJSda+vLw8JSYmeu0PDg5WfHy8Vaau/GqEs7y8XNu3b/fqbTudTmVmZlq9baA+vvzyS6WmpuqCCy7Q+PHjdeDAAUnS9u3bVVFR4dXWunXrpo4dO9LWUC/N/ZQQrc/69euVmJiorl27asqUKTp69Ki1j7aFuiooKJAkxcfHS6rbfTA3N1e9evXy+o/SrKwsFRYWateuXc1Ye/i709tXlWXLlikhIUE9e/bU7NmzdeLECWtfa2xfTTGHs0OHDoqNjbW2+fPnt+xF1YFfjXB+9913crlcNfa2d+/e3UK1QqBKT0/X0qVL1bVrVx0+fFjz5s3TVVddpc8++0x5eXkKDQ1VXFyc1zGeT3aAumjup4RoXYYNG6bRo0crLS1N+/bt04MPPqjhw4crNzdXQUFBtC3Uidvt1owZM3TFFVeoZ8+eklSn+2BeXl6Nv21V+wCp5vYlSbfeeqs6deqk1NRU7dy5U/fff7/27Nmj119/XRLtq6EOHjyomJgY63N9RzclWaPO+fn5SklJsfLz8/PVt29fq8zpUxorKyt17NixWketa+NXHU6gKXmGqfXu3Vvp6enq1KmTXnnlFUVERLRgzQCgbsaNG2ele/Xqpd69e6tLly5av369hgwZ0oI1QyCZOnWqPvvsM691DICmUlv78pxL3qtXL6WkpGjIkCHat2+funTp0tzV9A9NEFIbExPj1eFsiLS0NCUnJ2vt2rVWB7OwsFBbt27VlClTJEkZGRk6fvy4tm/frn79+kmSPvjgA7ndbqWnp9fr+/wqpDYhIUFBQUHVVkjLz8+vd08aOF1cXJwuvvhi7d27V8nJySovL9fx48e9ytDWUF+eTwk9ebalpnxKiNbtggsuUEJCgvbu3SuJtoWzmzZtmt566y2tW7dO7du3t/Lrch9MTk6u8betah9QW/uqSVUnxfP3q7W1r+Z8LUpxcbF27NihHTt2SDo1BWjHjh06cOCAHA6HZsyYoUcffVR/+ctf9Omnn+onP/mJUlNTNXLkSElS9+7dNWzYME2ePFnbtm3T3//+d02bNk3jxo2r9/oAftXhDA0NVb9+/bR27Vorz+12a+3atcrIyGjBmuFcUFxcrH379iklJUX9+vVTSEiIV1vbs2ePDhw4QFtDvXg+JaxS9ZSwqi15PiWs0tCnhGjdvvnmGx09etQKgaJtoTbGGE2bNk0rV67UBx98oLS0NK/9dbkPZmRk6NNPP/V6qLFmzRrFxMSoR48ezXMh8Etna181qer4eP5+tbr21YyvRfnoo4906aWX6tJLL5UkzZw5U5deeqm1CvCsWbM0ffp03XHHHRowYICKi4u1evVqhYeHW+dYtmyZunXrpiFDhmjEiBG68sor9dxzz9X7sh3GmIYO7PrEihUrlJ2drd/97ncaOHCgFi5cqFdeeUW7d++uFucNnMnPf/5z3XDDDerUqZMOHTqknJwc7dixQ59//rnatWunKVOm6O2339bSpUsVExOj6dOnS5I2b97cwjWHvykuLraeyF566aV64okndPXVVys+Pl4dO3bUr3/9a/3qV7/SCy+8oLS0ND388MPauXOnPv/8c+uHe/jw4crPz9fixYtVUVGhiRMnqn///lq+fHlLXhpa2JnaVnx8vObNm6cxY8YoOTlZ+/bt06xZs1RUVKRPP/3UmrdD20JN7rrrLi1fvlxvvPGGunbtauXHxsZa00rOdh90uVzq27evUlNTtWDBAuXl5em2227TT3/6Uz322GPNf1HwG2drX/v27dPy5cs1YsQItW3bVjt37tQ999yj9u3ba8OGDZJaV/sqLCxUbGysuk99TEFh4Wc/oAauslJ9sehBFRQUNDqkttkZP/TUU0+Zjh07mtDQUDNw4ECzZcuWlq4SAtDYsWNNSkqKCQ0NNeeff74ZO3as2bt3r7X/5MmT5q677jLnnXeeiYyMNKNGjTKHDx9uwRrDX61bt67GZ43Z2dnGGGPcbrd5+OGHTVJSkgkLCzNDhgwxe/bs8TrH0aNHzS233GKio6NNTEyMmThxoikqKmqBq4E/OVPbOnHihBk6dKhp166dCQkJMZ06dTKTJ082eXl5XuegbaEmNbUrSWbJkiVWmbrcB7/66iszfPhwExERYRISEsy9995rKioqmvlq4G/O1r4OHDhgBg0aZOLj401YWJi58MILzX333WcKCgq8ztNa2ldBQYGRZLrf9Zjpec8TDdq63/WYkVTtbxgI/G6EEwAAAADOFVUjnD3uatwI5+fPBOYIJ6vUAgAAAICvNcEqtYHIrxYNAgAAAACcOxjhBAAAAAAfa8jrTTyPDVR0OAEAAADA11ppSC0dTgAAAABoDgHccWwo5nACAAAAAHyCEU4AAAAA8DHmcAIAAAAAfIM5nAAAAAAAX2itI5zM4QQAAAAA+AQjnAAAAADga4TUAgAAAAB8obWG1NLhBAAAAABfa6UjnMzhBAAAAAD4BCOcAAAAAOBrrXSEkw4nAAAAAPhYa53DSUgtAAAAAMAnGOEEAAAAAF8jpBYAAAAA4AsOY+QwDes5NvQ4f0CHEwAAAAB8rZWOcDKHEwAAAADgE4xwAgAAAICPtdZVaulwAgAAAICvtdKQWjqcAAAAAOBjrXWEkzmcAAAAAACfYIQTAAAAAHyNkFoAAAAAgC+01pBaOpwAAAAA4GutdISTOZwAAAAAAJ9ghBMAAAAAmkEgh8Y2FB1OAAAAAPA1Y05tDT02QBFSCwDwuQkTJsjhcNS6/fvf/67zudavX3/Gc/3yl7/04ZUAANAwVYsGNXQLVIxwAgB87mc/+5kyMzO98owxuvPOO9W5c2edf/75dT5X9+7d9cc//rFa/h//+Ee99957Gjp0aKPrCwAAmgYdTgCAz2VkZCgjI8Mrb9OmTTpx4oTGjx9fr3MlJSXpv/7rv6rlz5s3TxdddJEGDBjQqLoCAOATrFILAEDzWb58uRwOh2699VZJ0pIlS+RwOPSHP/zBq9xjjz0mh8Oht99+u9Zzbdu2TXv37q135xUAgObicDduC1R0OAEAza6iokKvvPKKfvCDH6hz586SpIkTJ+r666/XzJkzdfDgQUnSp59+qnnz5mnSpEkaMWJEredbtmyZJNHhBAD4L9PILUDR4QQANLt3331XR48erdZB/P3vf6+goCBNmjRJ5eXlys7OVnJysp544olaz+VyubRixQoNHDhQF154oa+rDgAA6oEOJwCg2S1fvlwhISH68Y9/7JWfnJysRYsWac2aNbrqqqu0Y8cO/eEPf1BMTEyt51q7dq3y8/MZ3QQA+LXWukotHU4AQLMqLi7WG2+8oaysLLVt27ba/nHjxum6667Ttm3bNHnyZA0ZMuSM51u2bJmCgoI0duxYX1UZAIDGq3oPZ0O3AEWHEwDQrFatWnXG1WmPHj2qjz76SJL0+eefy+2ufaWEkydPauXKlcrMzFRSUpJP6gsAABqODicAoFktW7ZM0dHRuvHGG2vcP3XqVBUVFWn+/PnatGmTFi5cWOu5/vKXv6ioqIhwWgCA3yOkFgAAH/v222/1/vvva9SoUYqMjKy2/7XXXtOKFSv0q1/9Sg888IDGjRunhx56SP/85z9rPN/y5csVGRmpUaNG+brqAAA0DqvUAgDgWytWrFBlZWWNI5JHjhzRlClTdPXVV2vatGmSpKeffloxMTGaMGFCtdDaY8eO6Z133tGNN96o6OjoZqk/AAANxQgnAAA+tmzZMiUmJiozM7PavilTpqisrExLliyRw+GQJLVt21bPPfeccnNz9fjjj3uVf/XVV1VRUaFbb721WeoOAADqz2FMAC95BAAAAAB+rLCwULGxsbp8xCMKDglv0DkqK0q15e05KigoOOOrwvxRcEtXAAAAAADOdY0JjQ3kkFo6nAAAAADga41Z/CeAO5zM4QQAAAAA+AQjnAAAAADgY601pNZnI5yLFi1S586dFR4ervT0dG3bts1XXwUAAAAA/s1tGrcFKJ90OFesWKGZM2cqJydHH3/8sfr06aOsrCwdOXLEF18HAAAAAP7NNHILUD4JqX3iiSc0efJkTZw4UZK0ePFi/fWvf9Uf/vAHPfDAA2c81u1269ChQ2rTpo31HjYAAAAArY8xRkVFRUpNTZXTyfIzgajJO5zl5eXavn27Zs+ebeU5nU5lZmYqNzf3rMcfOnRIHTp0aOpqAQAAAAhQBw8eVPv27Vu6Go3iUCPmcDZpTZpXk3c4v/vuO7lcLiUlJXnlJyUlaffu3dXKl5WVqayszPpszKl/hSs1QsEKaerqAQCak0ekijPCftm1My7WSld0SLDSR3tGWunjfSq9TnVZt6+s9HUJO+38sG+sdGqQfd8Ic9R8iwty8IQcAAJFYbFbnS77Sm3atGnpqjSeMae2hh4boFp8ldr58+dr3rx51fKDFaJgBx1OAAhonh1OR6iddoZZaRNsd0SDQj06pRHeHc6QKPv4iGj79hUdbncgY4LsdFgtHUs6nAAQeM6FqXasUttEEhISFBQUpPz8fK/8/Px8JScnVys/e/ZsFRQUWNvBgwebukoAgJbicFqbIzjY2kxEmLVVRgZbmyvcYW0KMl5bpdtpbaXuEGurME5r8xTkcNa4AQBwrps7d64cDofX1q1bN2t/aWmppk6dqrZt2yo6Olpjxoyp1n9rKk1+5w0NDVW/fv20du1aK8/tdmvt2rXKyMioVj4sLEwxMTFeGwAAAACcU5p5ldpLLrlEhw8ftrZNmzZZ++655x69+eabevXVV7VhwwYdOnRIo0ePbszV1conIbUzZ85Udna2+vfvr4EDB2rhwoUqKSmxVq0FAAAAgNbEYYwcDZyL2ZDjgoODa4wwLSgo0PPPP6/ly5frmmuukSQtWbJE3bt315YtW3T55Zc3qI611qNJz/YfY8eO1bfffqs5c+YoLy9Pffv21erVq6stJAQAOLc5nB5zbkKCa0y7w+xgG7fnXcntPV+n1GXP6z/htueAlpogK10hVyNqCwCAD7n/szX02Hr68ssvlZqaqvDwcGVkZGj+/Pnq2LGjtm/froqKCmVmZlplu3Xrpo4dOyo3NzcwOpySNG3aNE2bNs1XpwcAAACAVqWwsNDrc1hYmMLCwqqVS09P19KlS9W1a1cdPnxY8+bN01VXXaXPPvtMeXl5Cg0NVVxcnNcxSUlJysvLa/I6t/gqtQAAAABwrmuKkNoOHTp45efk5Gju3LnVyg8fPtxK9+7dW+np6erUqZNeeeUVRURENKgODUWHEwDQPJxBHuma16xzeIYMubxDak9WeobU2q9IcQX067ABAK1GAxf/sY6VdPDgQa9FVmsa3axJXFycLr74Yu3du1fXXnutysvLdfz4ca9RztreKtJYrA8PAAAAAAHg9Ld71LXDWVxcrH379iklJUX9+vVTSEiI11tF9uzZowMHDtT4VpHGYoQTAAAAAHzNmFNbQ4+th5///Oe64YYb1KlTJx06dEg5OTkKCgrSLbfcotjYWE2aNEkzZ85UfHy8YmJiNH36dGVkZDT5gkESHU4AQHMpK7OSjhOlVjqoNNrO97yfhngvydcuothKp4R8b6XbOCrsQ7itAQD8lMOcdp+r57H18c033+iWW27R0aNH1a5dO1155ZXasmWL2rVrJ0n67W9/K6fTqTFjxqisrExZWVl65plnGla5s+DODAAAAAC+1owjnH/605/OuD88PFyLFi3SokWLGlafemAOJwAAAADAJxjhBAD4jsPjuabHwgbuKHtJ9spIe/Vat70QreT2Xn22oMw+5nDFeVb629DvrHSyOWGlI2WvZAsAQEtzuE9bjb2exwYqOpwAAAAA4GvNGFLrT+hwAgAAAICvNcF7OAMRHU4AgM84guyQWkdkuJV2RdvhrpURdhnjEUXrKPdeZuD7Uo+Q2vJYK30s3F7ltjS4WAAAwH/Q4QQAAAAAH3MYI0cDQ2Mbepw/oMMJAAAAAL7GHE4AAHwoyF6N1gTVEkbruQqfy/vw0gr7lnXSZS9nW27s8552CAAA/sNIauhqs4Hb3+Q9nAAAAAAA32CEEwAAAAB8jDmcAAA0MVNZaacLCq10cJgdEhtynr1irXF6hNpGegfIpsbYx3eNzLfSnUO+s9JtnEECAMAvGTViDmeT1qRZ0eEEAAAAAF9rpYsGMYcTAAAAAOATjHACAAAAgK+5JTnOWqr2YwNUvUc4N27cqBtuuEGpqalyOBxatWqV135jjObMmaOUlBRFREQoMzNTX375ZVPVFwAQSIKCrM0RGWltlXH2VhbrtDZXuKztdEXlYdZ2oCze2g5VnmdtRW6XtQEA4E+qFg1q6Bao6t3hLCkpUZ8+fbRo0aIa9y9YsEBPPvmkFi9erK1btyoqKkpZWVkqLS1tdGUBAAAAICBVzeFs6Bag6h1SO3z4cA0fPrzGfcYYLVy4UA899JBuuukmSdKLL76opKQkrVq1SuPGjWtcbQEAAAAAAaNJ53Du379feXl5yszMtPJiY2OVnp6u3NzcGjucZWVlKisrsz4XFhZWKwMACEyOYPs2YyLCrHRlG/u1KJXhHhNaPOe2VHoH4RSX2sd/VxZtpY9UxljpstC8xlQXAADfYZXaxsvLO3WjT0pK8spPSkqy9p1u/vz5io2NtbYOHTo0ZZUAAAAAoOW10pDaFn8tyuzZs1VQUGBtBw8ebOkqAQAAAACaQJOG1CYnJ0uS8vPzlZKSYuXn5+erb9++NR4TFhamsLCwGvcBAAKc5xNZhx0v63DZ+UEVdhFnmUfxMu9nomXl9i2r3B1U49e1+FNUAABqw2tRGi8tLU3Jyclau3atlVdYWKitW7cqIyOjKb8KAAAAAAJGa30tSr1HOIuLi7V3717r8/79+7Vjxw7Fx8erY8eOmjFjhh599FFddNFFSktL08MPP6zU1FSNHDmyKesNAAAAAIGjlS4aVO8O50cffaSrr77a+jxz5kxJUnZ2tpYuXapZs2appKREd9xxh44fP64rr7xSq1evVnh4DW/xBgCc04zLZaWdhcVWOuS4PZUiuK29Yq1n2K0J844fiomy3+fcIeJ7K90x5KiVbuNsaKwSAADwhXp3OAcPHixzhh62w+HQI488okceeaRRFQMAAACAc4bbSI4GjlS6W9EIJwAAAACgngipBQCgaTk8Q2SjI610edsIK10aZ5epjPBc1db75lpSGmqlD548z0p/FZFgpbt6hNcm1LyQLQAALaQx79MM3A4nK8gDAAAAAHyCEU4AAAAA8DVCagEAaGJBHnGtofZqtK5QO8DGHeyxsqxnGK3Le8XZinL7llVYbq98XuS20xUNfqM2AAA+5jZqcGgsiwYBAAAAAGpl3Ke2hh4boJjDCQAAAADwCUY4AQDNw2P+icMjNCiowk47yx0eae9noi6X/dll7HSFO9gjn5BaAICfYg4nAAAAAMAnmMPpH8x/eu+Vqgjk180AACQ5TbmVdrjKrHRlRamVdnksBuQqs0co3aWnzVc54XF8iZ0ujaiw0sUO+5jC0MCd7wIAOKWw+NRvuQngET4LI5z+oaioSJK0SW+3cE0AAI1W4pHeXUu6AQ54pDd6pH/ZuNMCAPxUUVGRYmNjW7oaaAC/63Cmpqbq4MGDMsaoY8eOOnjwoGJiYlq6WjiHFBYWqkOHDrQt+ATtC75C24Kv0LbgS41tX8YYFRUVKTU11Qe1a2ZGjRjhbNKaNCu/63A6nU61b99ehYWFkqSYmBh+/OATtC34Eu0LvkLbgq/QtuBLjWlf58zIJiG1AAAAAACfcLslNXB9AXfgrkvAezgBAAAAAD7htyOcYWFhysnJUVhYWEtXBecY2hZ8ifYFX6FtwVdoW/Al2peHVhpS6zDnxBrDAAAAAOB/CgsLFRsbq8yE2xXsDG3QOSrd5Xr/uz+ooKAg4OZaE1ILAAAAAPAJvw2pBQAAAIBzhtuowe83cQduUCodTgAAAADwMWPcMqZhq8029Dh/4JchtYsWLVLnzp0VHh6u9PR0bdu2raWrhAA0d+5cORwOr61bt27W/tLSUk2dOlVt27ZVdHS0xowZo/z8/BasMfzVxo0bdcMNNyg1NVUOh0OrVq3y2m+M0Zw5c5SSkqKIiAhlZmbqyy+/9Cpz7NgxjR8/XjExMYqLi9OkSZNUXFzcjFcBf3S2tjVhwoRqv2PDhg3zKkPbQk3mz5+vAQMGqE2bNkpMTNTIkSO1Z88erzJ1uQ8eOHBA1113nSIjI5WYmKj77rtPlZWVzXkp8EN1aV+DBw+u9vt15513epVpde3LmFMjlQ3ZAnjZHb/rcK5YsUIzZ85UTk6OPv74Y/Xp00dZWVk6cuRIS1cNAeiSSy7R4cOHrW3Tpk3WvnvuuUdvvvmmXn31VW3YsEGHDh3S6NGjW7C28FclJSXq06ePFi1aVOP+BQsW6Mknn9TixYu1detWRUVFKSsrS6WlpVaZ8ePHa9euXVqzZo3eeustbdy4UXfccUdzXQL81NnaliQNGzbM63fs5Zdf9tpP20JNNmzYoKlTp2rLli1as2aNKioqNHToUJWUlFhlznYfdLlcuu6661ReXq7NmzfrhRde0NKlSzVnzpyWuCT4kbq0L0maPHmy1+/XggULrH20r1bE+JmBAweaqVOnWp9dLpdJTU018+fPb8FaIRDl5OSYPn361Ljv+PHjJiQkxLz66qtW3hdffGEkmdzc3GaqIQKRJLNy5Urrs9vtNsnJyeZ//ud/rLzjx4+bsLAw8/LLLxtjjPn888+NJPPhhx9aZd555x3jcDjMv//972arO/zb6W3LGGOys7PNTTfdVOsxtC3U1ZEjR4wks2HDBmNM3e6Db7/9tnE6nSYvL88q8+yzz5qYmBhTVlbWvBcAv3Z6+zLGmB/+8Ifmv//7v2s9pjW1r4KCAiPJDIm9zWTFTWrQNiT2NiPJFBQUtPTl1JtfjXCWl5dr+/btyszMtPKcTqcyMzOVm5vbgjVDoPryyy+VmpqqCy64QOPHj9eBAwckSdu3b1dFRYVXW+vWrZs6duxIW0O97N+/X3l5eV5tKTY2Vunp6VZbys3NVVxcnPr372+VyczMlNPp1NatW5u9zggs69evV2Jiorp27aopU6bo6NGj1j7aFuqqoKBAkhQfHy+pbvfB3Nxc9erVS0lJSVaZrKwsFRYWateuXc1Ye/i709tXlWXLlikhIUE9e/bU7NmzdeLECWtfq2xfbnfjtgDlV4sGfffdd3K5XF4NT5KSkpK0e/fuFqoVAlV6erqWLl2qrl276vDhw5o3b56uuuoqffbZZ8rLy1NoaKji4uK8jklKSlJeXl7LVBgBqaq91PS7VbUvLy9PiYmJXvuDg4MVHx9Pe8MZDRs2TKNHj1ZaWpr27dunBx98UMOHD1dubq6CgoJoW6gTt9utGTNm6IorrlDPnj0lqU73wby8vBp/26r2AVLN7UuSbr31VnXq1EmpqanauXOn7r//fu3Zs0evv/66pFbavkwjVqkN4DmcftXhBJrS8OHDrXTv3r2Vnp6uTp066ZVXXlFEREQL1gwA6mbcuHFWulevXurdu7e6dOmi9evXa8iQIS1YMwSSqVOn6rPPPvNaxwBoKrW1L8+55L169VJKSoqGDBmiffv2qUuXLs1dTbQgvwqpTUhIUFBQULUV0vLz85WcnNxCtcK5Ii4uThdffLH27t2r5ORklZeX6/jx415laGuor6r2cqbfreTk5GoLn1VWVurYsWO0N9TLBRdcoISEBO3du1cSbQtnN23aNL311ltat26d2rdvb+XX5T6YnJxc429b1T6gtvZVk/T0dEny+v1qbe3LuN2N2gKVX3U4Q0ND1a9fP61du9bKc7vdWrt2rTIyMlqwZjgXFBcXa9++fUpJSVG/fv0UEhLi1db27NmjAwcO0NZQL2lpaUpOTvZqS4WFhdq6davVljIyMnT8+HFt377dKvPBBx/I7XZbN2CgLr755hsdPXpUKSkpkmhbqJ0xRtOmTdPKlSv1wQcfKC0tzWt/Xe6DGRkZ+vTTT70eaqxZs0YxMTHq0aNH81wI/NLZ2ldNduzYIUlev1+trn0Z07gtQPldSO3MmTOVnZ2t/v37a+DAgVq4cKFKSko0ceLElq4aAszPf/5z3XDDDerUqZMOHTqknJwcBQUF6ZZbblFsbKwmTZqkmTNnKj4+XjExMZo+fboyMjJ0+eWXt3TV4WeKi4utJ7LSqYWCduzYofj4eHXs2FEzZszQo48+qosuukhpaWl6+OGHlZqaqpEjR0qSunfvrmHDhmny5MlavHixKioqNG3aNI0bN06pqaktdFXwB2dqW/Hx8Zo3b57GjBmj5ORk7du3T7NmzdKFF16orKwsSbQt1G7q1Klavny53njjDbVp08aaExcbG6uIiIg63QeHDh2qHj166LbbbtOCBQuUl5enhx56SFOnTlVYWFhLXh5a2Nna1759+7R8+XKNGDFCbdu21c6dO3XPPfdo0KBB6t27t6RW2r7cRnK0vjmcfvdaFGOMeeqpp0zHjh1NaGioGThwoNmyZUtLVwkBaOzYsSYlJcWEhoaa888/34wdO9bs3bvX2n/y5Elz1113mfPOO89ERkaaUaNGmcOHD7dgjeGv1q1bVzXL32vLzs42xpx6NcrDDz9skpKSTFhYmBkyZIjZs2eP1zmOHj1qbrnlFhMdHW1iYmLMxIkTTVFRUQtcDfzJmdrWiRMnzNChQ027du1MSEiI6dSpk5k8ebLXKwSMoW2hZjW1K0lmyZIlVpm63Ae/+uorM3z4cBMREWESEhLMvffeayoqKpr5auBvzta+Dhw4YAYNGmTi4+NNWFiYufDCC819991X7ZUeraV9Vb0W5ZqwH5uh4f/VoO2asB8H7GtRHMYEcncZAAAAAPxXYWGhYmNjdU3ojxTsCGnQOSpNhT4of1UFBQWKiYlp4hr6lt+F1AIAAADAuca4jUwDQ2oDeYzQrxYNAgAAAIBzknE3bmuARYsWqXPnzgoPD1d6erq2bdvWxBd1dnQ4AQAAAOAcs2LFCs2cOVM5OTn6+OOP1adPH2VlZVV7nZav0eEEAAAAAB8zbtOorb6eeOIJTZ48WRMnTlSPHj20ePFiRUZG6g9/+IMPrq52dDgBAAAAwNeaMaS2vLxc27dvV2ZmppXndDqVmZmp3Nzcpr6yM2LRIAAAAADwsUpVnHqBTEOP1akVbz2FhYXV+N7S7777Ti6XS0lJSV75SUlJ2r17d8Mq0UB0OAEAAADAR0JDQ5WcnKxNeW836jzR0dHq0KGDV15OTo7mzp3bqPP6Gh1OAAAAAPCR8PBw7d+/X+Xl5Y06jzFGDofDK6+m0U1JSkhIUFBQkPLz873y8/PzlZyc3Kh61BcdTgAAAADwofDwcIWHhzfb94WGhqpfv35au3atRo4cKUlyu91au3atpk2b1mz1kOhwAgAAAMA5Z+bMmcrOzlb//v01cOBALVy4UCUlJZo4cWKz1oMOJwAAAACcY8aOHatvv/1Wc+bMUV5envr27avVq1dXW0jI1xzGmAaulQQAAAAAQO14DycAAAAAwCfocAIAAAAAfIIOJwAAAADAJ+hwAgAAAAB8gg4nAAAAAMAn6HACAAAAAHyCDicAAAAAwCfocAIAAAAAfIIOJwAAAADAJ+hwAgAAAAB8gg4nAAAAAMAn6HACAAAAAHzi/wMM3JQJ204lcAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(3,1, figsize=(25/2, 9/2))\n", "lut1 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage2_3x3_dense_upscale_lut.npy\"))\n", "lut2 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage2_5x5_dense_upscale_lut.npy\"))\n", "lut3 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage2_7x7_dense_upscale_lut.npy\"))\n", "a[0].imshow(lut1)\n", "a[1].imshow(lut2)\n", "a[2].imshow(lut3)\n", "pcm = a[0].pcolormesh(lut1)\n", "f.colorbar(pcm, ax=a, location='right')\n", "f.suptitle(\"Stage 2, dense_upscale_lut\")\n", "a[0].set_title(\"3x3\")\n", "a[1].set_title(\"5x5\")\n", "a[2].set_title(\"7x7\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '7x7')" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5wAAAGkCAYAAABdBCo4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtL0lEQVR4nO3deXxU1cH/8e/MJJlsJDGEbAIhooLIpiAxVSmWSFi0gtiC8lhAihUDfTCtqP0pi7XS8ljLo6LUPgpaQVGruDyWishSSgBFKW5QoFiwkIAg2SDbzPn9wcO9MyRAtklmyOfd13m9zpx77p1zw+lczz2bwxhjBAAAAABAM3O2dgEAAAAAAOcmGpwAAAAAgICgwQkAAAAACAganAAAAACAgKDBCQAAAAAICBqcAAAAAICAoMEJAAAAAAgIGpwAAAAAgICgwQkAAAAACAganAAABNBXX30lh8OhxYsXt3ZR4GPx4sVyOBz66quvmv3a/JsDgI0GJwDgrD799FPdfPPNysjIUGRkpM4//3xdd911euKJJ/zyPfLII1q+fHnrFLIBtm/frhkzZqhv375q166d0tLSNGLECH300UetXTS0cceOHdPs2bO1Zs2a1i4KADQLGpwAgDPasGGD+vfvr7///e+aPHmynnzySf34xz+W0+nUf//3f/vlDZUG5//8z//oD3/4g/r376/f/va3ys/P144dO3TllVfq/fffb+3ioQ07duyY5syZQ4MTwDkjrLULAAAIbr/61a8UHx+vDz/8UAkJCX7HDh482DqFaqJbbrlFs2fPVmxsrJV2++2365JLLtHs2bOVk5PTiqUDAODcQQ8nAOCMdu/erUsvvbRWY1OSkpOTrbjD4VB5ebmef/55ORwOORwOTZgwQZL0r3/9S3fddZe6deumqKgotW/fXj/4wQ/qnD+3bds2ffe731VUVJQ6duyohx9+WIsWLapzvt2f//xnXXPNNYqJiVG7du00YsQIff7552e9p379+vk1NiWpffv2uuaaa/Tll1+e9fzTOXr0qCZMmKD4+HglJCRo/PjxOnr0aJ15t2/frptvvlmJiYmKjIxU//799dZbb/nlOTnP8G9/+5vy8/PVoUMHxcTEaNSoUTp06JBf3o8++ki5ublKSkpSVFSUMjMzdfvtt/vl8Xq9mj9/vi699FJFRkYqJSVFP/nJT/Ttt9826D4nTJigLl261EqfPXu2HA6HX5rD4dDUqVO1ZMkSdevWTZGRkerXr5/WrVvnl6+0tFTTp09Xly5d5Ha7lZycrOuuu04ff/yxX75NmzZp+PDhOu+88xQTE6PevXv79bRv27ZNEyZM0AUXXKDIyEilpqbq9ttv1+HDh+t1b42tU2czaNAgDRo0qFa679/yq6++UocOHSRJc+bMsf5/NHv27CZ/PwC0Fno4AQBnlJGRoYKCAn322Wfq2bPnafP98Y9/1I9//GMNGDBAd9xxhySpa9eukqQPP/xQGzZs0NixY9WxY0d99dVXevrppzVo0CB98cUXio6OliT9+9//1rXXXiuHw6H7779fMTEx+p//+R+53e46v2/8+PHKzc3Vb37zGx07dkxPP/20rr76an3yySd1NojOprCwUElJSQ0+T5KMMbrxxhu1fv163Xnnnbrkkkv0xhtvaPz48bXyfv7557rqqqt0/vnn67777lNMTIxeeeUVjRw5Un/60580atQov/zTpk3Teeedp1mzZumrr77S/PnzNXXqVC1btkzSiZ7mIUOGqEOHDrrvvvuUkJCgr776Sq+//rrfdX7yk59o8eLFmjhxon76059qz549evLJJ/XJJ5/ob3/7m8LDwxt172ezdu1aLVu2TD/96U/ldrv11FNPaejQodq8ebNVp+6880699tprmjp1qnr06KHDhw9r/fr1+vLLL3X55ZdLklauXKnrr79eaWlp+s///E+lpqbqyy+/1DvvvKP//M//tPL885//1MSJE5WamqrPP/9czzzzjD7//HNt3LixVoPYVyDqVEN06NBBTz/9tKZMmaJRo0bppptukiT17t07oN8LAAFlAAA4g/fee8+4XC7jcrlMdna2mTFjhvnLX/5iqqqqauWNiYkx48ePr5V+7NixWmkFBQVGknnhhRestGnTphmHw2E++eQTK+3w4cMmMTHRSDJ79uwxxhhTWlpqEhISzOTJk/2uWVhYaOLj42ul18e6deuMw+EwDz74YIPPNcaY5cuXG0lm3rx5VlpNTY255pprjCSzaNEiK33w4MGmV69epqKiwkrzer3mO9/5jrnoooustEWLFhlJJicnx3i9Xiv97rvvNi6Xyxw9etQYY8wbb7xhJJkPP/zwtOX761//aiSZJUuW+KWvWLGizvQzGT9+vMnIyKiVPmvWLHPqf1pIMpLMRx99ZKX961//MpGRkWbUqFFWWnx8vMnLyzvtd9bU1JjMzEyTkZFhvv32W79jvn+buuraSy+9ZCSZdevWWWkn/7aBqFN79uyp9W/+3e9+13z3u9+tlffUv+WhQ4eMJDNr1qx6fx8ABDOG1AIAzui6665TQUGBvv/97+vvf/+75s2bp9zcXJ1//vm1hoCeTlRUlBWvrq7W4cOHdeGFFyohIcFvyOSKFSuUnZ2tvn37WmmJiYkaN26c3/VWrlypo0eP6pZbbtE333xjBZfLpaysLK1evbpB93jw4EHdeuutyszM1IwZMxp07knvvvuuwsLCNGXKFCvN5XJp2rRpfvmOHDmiDz74QD/84Q9VWlpqlf3w4cPKzc3Vzp079e9//9vvnDvuuMOvZ+6aa66Rx+PRv/71L0myhju/8847qq6urrN8r776quLj43Xdddf5/c1ODi9u6N+sIbKzs9WvXz/rc+fOnXXjjTfqL3/5izwej3UPmzZt0v79++u8xieffKI9e/Zo+vTptYZ3+/5tfOtaRUWFvvnmG1155ZWSVGt4rq/mrlMAgBMYUgsAOKsrrrhCr7/+uqqqqvT3v/9db7zxhn73u9/p5ptv1tatW9WjR48znn/8+HHNnTtXixYt0r///W8ZY6xjxcXFVvxf//qXsrOza51/4YUX+n3euXOnJOl73/tend8XFxdX73srLy/X9ddfr9LSUq1fv77W3M76+te//qW0tLRa53fr1s3v865du2SM0YMPPqgHH3ywzmsdPHhQ559/vvW5c+fOfsfPO+88SbLmXn73u9/V6NGjNWfOHP3ud7/ToEGDNHLkSN16663WcOSdO3equLjYb97tqd8ZKBdddFGttIsvvljHjh3ToUOHlJqaqnnz5mn8+PHq1KmT+vXrp+HDh+tHP/qRLrjgAkkn5hJLOuOwbulEg37OnDl6+eWXa92Tb107VXPWKQCAjQYnAKDeIiIidMUVV+iKK67QxRdfrIkTJ+rVV1/VrFmzznjetGnTtGjRIk2fPl3Z2dmKj4+Xw+HQ2LFj5fV6G1yOk+f88Y9/VGpqaq3jYWH1e7xVVVXppptu0rZt2/SXv/zlrI2Z5nCy7D//+c+Vm5tbZ55TG9gul6vOfCcb7g6HQ6+99po2btyot99+W3/5y190++2367e//a02btyo2NhYeb1eJScna8mSJXVe6+RiNfVxunmQJ3srG+OHP/yhrrnmGr3xxht677339F//9V/6zW9+o9dff13Dhg1r0HU2bNige+65R3379rXufejQoWesa81Vp07H4XD4vWg5qSl/MwAIBTQ4AQCN0r9/f0nSgQMHrLTTNURee+01jR8/Xr/97W+ttIqKiloruGZkZGjXrl21zj817eRiRMnJyY3ewsTr9epHP/qRVq1apVdeeUXf/e53G3WdkzIyMrRq1SqVlZX59XLu2LHDL9/JHrvw8PBm337lyiuv1JVXXqlf/epXWrp0qcaNG6eXX35ZP/7xj9W1a1e9//77uuqqq/yGnTbGeeedV+fquyeH+J7qZO+hr3/84x+Kjo72a+impaXprrvu0l133aWDBw/q8ssv169+9SsNGzbM+jf/7LPPTvt3+/bbb7Vq1SrNmTNHM2fOPOP3n6o56tSZnHfeefrnP/9ZK/3Uv9mZFjUCgFDEHE4AwBmtXr26zp6Zd999V5L/kNGYmJg6GyIul6vWNZ544olavTu5ubkqKCjQ1q1brbQjR47U6pXLzc1VXFycHnnkkTrnLJ66ZUhdpk2bpmXLlumpp56yVgNtiuHDh6umpkZPP/20lebxePTEE0/45UtOTtagQYP0+9//3q+x3pCyn+rbb7+t9fc9OQ+2srJS0omeP4/Ho1/+8pe1zq+pqTnt9i116dq1q4qLi7Vt2zYr7cCBA3rjjTfqzF9QUOA3f3Lfvn168803NWTIELlcLnk8nlrDXZOTk5Wenm6V//LLL1dmZqbmz59fq6wn7/1kT/Cpf4v58+ef9Z6ao06dSdeuXbV9+3a/6/z973/X3/72N798J1dsbsi/BwAEM3o4AQBnNG3aNB07dkyjRo1S9+7dVVVVpQ0bNmjZsmXq0qWLJk6caOXt16+f3n//fT322GNKT09XZmamsrKydP311+uPf/yj4uPj1aNHDxUUFOj9999X+/bt/b5rxowZevHFF3Xddddp2rRp1rYonTt31pEjR6zen7i4OD399NO67bbbdPnll2vs2LHq0KGD9u7dq//93//VVVddpSeffPK09zR//nw99dRTys7OVnR0tF588UW/46NGjVJMTIwkac2aNbr22ms1a9asM+6HeMMNN+iqq67Sfffdp6+++ko9evTQ66+/Xue8wQULFujqq69Wr169NHnyZF1wwQUqKipSQUGBvv76a/39738/67+Lr+eff15PPfWURo0apa5du6q0tFR/+MMfFBcXp+HDh0s6Mc/zJz/5iebOnautW7dqyJAhCg8P186dO/Xqq6/qv//7v3XzzTfX6/vGjh2re++9V6NGjdJPf/pTa/uQiy++uM6FeXr27Knc3Fy/bVGkE3tNSif24OzYsaNuvvlm9enTR7GxsXr//ff14YcfWr3iTqdTTz/9tG644Qb17dtXEydOVFpamrZv367PP/9cf/nLXxQXF6eBAwdq3rx5qq6u1vnnn6/33ntPe/bsOes9NbVOnc3tt9+uxx57TLm5uZo0aZIOHjyohQsX6tJLL1VJSYmVLyoqSj169NCyZct08cUXKzExUT179myR4d4AEBCttj4uACAk/PnPfza333676d69u4mNjTURERHmwgsvNNOmTTNFRUV+ebdv324GDhxooqKijCRri5Rvv/3WTJw40SQlJZnY2FiTm5trtm/fbjIyMmpto/LJJ5+Ya665xrjdbtOxY0czd+5c8/jjjxtJprCw0C/v6tWrTW5uromPjzeRkZGma9euZsKECX5bcNRl/Pjx1nYddYWTW2UYY8zbb79tJJmFCxee9W91+PBhc9ttt5m4uDgTHx9vbrvtNvPJJ5/U2iLDGGN2795tfvSjH5nU1FQTHh5uzj//fHP99deb1157zcpzcuuOU7c7Wb16tZFkVq9ebYwx5uOPPza33HKL6dy5s3G73SY5Odlcf/31df4dnnnmGdOvXz8TFRVl2rVrZ3r16mVmzJhh9u/ff9b78/Xee++Znj17moiICNOtWzfz4osvnnZblLy8PPPiiy+aiy66yLjdbnPZZZdZZTfGmMrKSnPPPfeYPn36mHbt2pmYmBjTp08f89RTT9X63vXr15vrrrvOyte7d2/zxBNPWMe//vprM2rUKJOQkGDi4+PND37wA7N///5aW42cui2K79+2MXXKV13bohhjzIsvvmguuOACExERYfr27Wv+8pe/1LnFzIYNG0y/fv1MREQEW6QACHkOY+oYJwUAQBCZPn26fv/736usrOy0C+gEyowZM/TSSy9p165d1oqvqD+Hw6G8vLwm9Q4CAEIXczgBAEHl+PHjfp8PHz6sP/7xj7r66qtbvLEpnZjD+uCDD9LYBACgEZjDCQAIKtnZ2Ro0aJAuueQSFRUV6dlnn1VJSclp96wMtA8//LBVvrc1lJWVqays7Ix5OnTo0CoN/2BQVVWlI0eOnDFPfHx8k1cBBoBzCQ1OAEBQGT58uF577TU988wzcjgcuvzyy/Xss89q4MCBrV20c96jjz5qLeRzOnv27FGXLl1apkBBZsOGDbr22mvPmGfRokWaMGFCyxQIAEIAczgBAIAk6Z///Gede0X6uvrqqxUZGdlCJQou3377rbZs2XLGPJdeeqnS0tJaqEQAEPxocAIAAAAAAoJFgwAAAAAAAUGDEwAAAAAQEDQ4AQAAAAABQYMTAAAAABAQNDgBAAH3+eef6wc/+IEuuOACRUdHKykpSQMHDtTbb7/dqOs98sgjuvLKK9WhQwdFRkbqoosu0vTp03Xo0KFmLjkAAGgKVqkFAATcu+++q8cff1zZ2dlKT0/XsWPH9Kc//Ul//etf9fvf/1533HFHg643evRodejQQd27d1e7du305Zdf6g9/+IOSk5O1detWxcTEBOhOAABAQ9DgBAC0Co/Ho379+qmiokLbt29v8vX+9Kc/6eabb9ZLL72ksWPHNkMJAQBAUzGkFgDQKlwulzp16qSjR49Kkj744AM5nU7NnDnTL9/SpUvlcDj09NNPn/F6Xbp0kSTregAAoPXRwwkAaDHl5eU6fvy4iouL9dZbb+mee+7RmDFjtGTJEknS1KlT9fvf/16bNm3S5ZdfrgMHDqhnz566/PLL9d5778nhcFjXMsbo8OHDqqmp0c6dO3Xfffdp06ZN+uyzz9S9e/fWukUAAOCDBicAoMXceeed+v3vfy9Jcjqduummm/TMM8/ovPPOkyQdO3ZMffr0kdvt1pYtWzR69Gj99a9/1aeffqrOnTv7XauwsFBpaWnW544dO+q3v/2tfvjDH7bcDQEAgDMKa+0CAADajunTp+vmm2/W/v379corr8jj8aiqqso6Hh0drcWLF2vgwIEaOHCgNm/erGeffbZWY1OSEhMTtXLlSlVUVOiTTz7R66+/rrKyspa8HQAAcBb0cAIAWs2QIUN09OhRbdq0yW+47NSpU7VgwQLl5uZqxYoV9brWhg0bdNVVV+ntt9/W9ddfH6giAwCABmDRIABAq7n55pv14Ycf6h//+IeVVllZqTVr1kiSdu/erWPHjtXrWt/5zneUlpZmzQcFAACtjwYnAKDVHD9+XJJUXFxspc2aNUtffvmlHn30Ue3Zs0f33Xdfva9XUVHhdy0AANC6aHACAALu4MGDtdKqq6v1wgsvKCoqSj169JAkbdq0SY8++qimT5+un/3sZ7rnnnv05JNPau3atdZ55eXldfZ6/ulPf9K3336r/v37B+5GAABAgzCHEwAQcKNGjVJJSYkGDhyo888/X4WFhVqyZIm2b9+u3/72t8rPz1dFRYX69u0rh8OhTz75RJGRkaqqqtLll1+uY8eO6dNPP1VMTIy2bt2qnJwcjRkzRt27d5fT6dRHH32kF198UR07dtRHH32k9u3bt/YtAwAA0eAEALSAl19+Wc8++6w+/fRTHT58WO3atVO/fv00bdo0ff/735ck5efn6/HHH9eGDRs0YMAA69wtW7boyiuv1OTJk/XUU0/pm2++0f/7f/9P69at0759+1RdXa2MjAyNGDFC/+///T8lJSW11m0CAIBT0OAEAAAAAAQEczgBAAAAAAFBgxMAAAAAEBA0OAEAAAAAAUGDEwAAAAAQEDQ4AQAAAAABQYMTAAAAABAQYa1dgFN5vV7t379f7dq1k8PhaO3iAAAAAGglxhiVlpYqPT1dTmfo9pVVVFSoqqqqSdeIiIhQZGRkM5Wo5QRdg3P//v3q1KlTaxcDAAAAQJDYt2+fOnbs2NrFaJSKigplZsSq8KCnSddJTU3Vnj17Qq7RGXQNznbt2kmSrtZwhSm8lUsDAOcgh/2G2JUQ538srYMVrUqOseLH29u/x5Xn2edXJtinVscZK14T7bXiJtKOO8LsPA6nTx6vPaLF1NjXd1T7xKvsPM4anxEw9mUkn2Tj84TzRvhkirYf+OHR9tvm+OgKK54cU2bFL2p3yIr3id5rxftFfm3FM8Ki7bKJ0TkA0FxKyrzKuPwrq40QiqqqqlR40KM9WzIU165xvbQlpV5l9vuXqqqqaHA21clhtGEKV5iDBicANDvfBqczwv+Yy21FvWH2Ay0s3P49rolw1pVdnki7MemMaqYGZ5hP3OXT4KxuWINTbp9MUXaD0xXtcy/RdtnCY+yGqDvWvvfoGJcVj420z43zKaeT5REAoNmdC1Pt4to5G93gbKi5c+fq9ddf1/bt2xUVFaXvfOc7+s1vfqNu3bpZeQYNGqS1a9f6nfeTn/xECxcutD7v3btXU6ZM0erVqxUbG6vx48dr7ty5CgurfzMy6BqcAAAAAHCu8RivPObs+U53bkOsXbtWeXl5uuKKK1RTU6Nf/OIXGjJkiL744gvFxNgjmCZPnqyHHnrI+hwdbY/Y8Xg8GjFihFJTU7VhwwYdOHBAP/rRjxQeHq5HHnmk3mWhwQkAAAAAAeaVkVeNa3E29LwVK1b4fV68eLGSk5O1ZcsWDRw40EqPjo5Wampqndd477339MUXX+j9999XSkqK+vbtq1/+8pe69957NXv2bEVERNR53qkY9wMAAAAAAeZt4v+aori4WJKUmJjol75kyRIlJSWpZ8+euv/++3Xs2DHrWEFBgXr16qWUlBQrLTc3VyUlJfr888/r/d30cAJAW1ZV7ffRUVJuxSN85ss4auwhNq5Ke05j2HH7vWVYuZ2/Otae6+iJ8om77Te03gift7U+rz+dPsnGd06mTx5vuE8m3zwuO9345HG47XmbkT7zM+N8FgrqEG0vFJQWVWLFUyOOWvEEl/33cfm8bfYd6uR08C4XABAYJSUlfp/dbrfcbvdpcp/g9Xo1ffp0XXXVVerZs6eVfuuttyojI0Pp6enatm2b7r33Xu3YsUOvv/66JKmwsNCvsSnJ+lxYWFjvMtPgBAAAAIAA8xgjj2nckNqT5526feSsWbM0e/bsM56bl5enzz77TOvXr/dLv+OOO6x4r169lJaWpsGDB2v37t3q2rVro8pZFxqcAAAAABBgzTGHc9++fYqLs7c0O1vv5tSpU/XOO+9o3bp1Z93HNCsrS5K0a9cude3aVampqdq8ebNfnqKiIkk67bzPujDuBwAAAAACzCsjTyPDyQZnXFycXzhdg9MYo6lTp+qNN97QBx98oMzMzLOWb+vWrZKktLQ0SVJ2drY+/fRTHTx40MqzcuVKxcXFqUePHvW+b3o4AQAAAOAckpeXp6VLl+rNN99Uu3btrDmX8fHxioqK0u7du7V06VINHz5c7du317Zt23T33Xdr4MCB6t27tyRpyJAh6tGjh2677TbNmzdPhYWFeuCBB5SXl3fWnlVfNDgBAAAAIMBacluUp59+WpI0aNAgv/RFixZpwoQJioiI0Pvvv6/58+ervLxcnTp10ujRo/XAAw9YeV0ul9555x1NmTJF2dnZiomJ0fjx4/327awPGpwAAAAAEGDNsWhQfZmz5O/UqZPWrl171utkZGTo3XffbdB3n4oGJwC0Ycbj8fvsqKi042H2IyLcZ4sUZ7W9BUjYcXuLlIhSe/uTqlifLVJi7HhNlE882o57fUbm+G2d4q57mxNvuF0GR5id7gy37yfcXWPFY6Ps+0qKtrc2SY60t0I5P+qoFU/z2QqlU/hhK97BZedv57SXQXCxFQoAAHWiwQkAAAAAAeb9v9DYc0MVDU4AAAAACLCTK8429txQRYMTAAAAAALMY06Exp4bqph0AgAAAAAICHo4AQAAACDAmMMJAGhzTHWN32dvmb2Cq6PGPuY4XmHFw8oirbir1I5HREdYcXesvXptVbswn7g9sKbaZyXbqjifMvmsiOuJ9BlD5LZXoI2IqbbiMdH2CrQJkcetePuoY1a8g7vUiqe6S6x4x4gjdp4wO0+C85hP3L5mvNP+m7hl36OTAUMAgLPwyiGPHGfPeJpzQxUNTgAAAAAIMK85ERp7bqjilSwAAAAAICDo4QQAAACAAPM0YUhtY88LBjQ4AQAAACDAaHACAAAAAALCaxzymkYuGtTI84IBDU4AaMOcUZF+nx3nxVtxExdjxWti7XzVcT4r0Mb5rkBrPwx9V6Ctibav7/H5Oo/bjnvD7dUQjMunPD6LJJjj9oHqKnsJgqPldnlKIqKs+IFIe+nb2KjzrLjvSrbJUSlWPCnCXqE31V1sxdPCj9rpPvGLwu0VbsMd1T5xu5ysXgsAaOtocAIAAABAgDGkFgAAAAAQEB455WnkyBfP2bMELRqcAAAAABBgpglzOE0Iz+FkcgkAAAAAICDo4QQAAACAAGMOJwAAAAAgIDzGKY9p5BxOc/Y8wYoGJwC0Yaay0j+hzN4axOHxWvGwyhor7qy09zMJO27Hw8vsR0p1rM8WJr5bpET5xu2v9UTa6b7bpfhto+IT93te+8Rd4XaZo9z2ViVx7gornhR5zIonu0utuO9WKB3CSn3iJXbcVWbFfXaBkdPnzTNboQAA6uKVQ95GPiO8Ct0WJ09FAAAAAEBANLjBuW7dOt1www1KT0+Xw+HQ8uXL/Y4bYzRz5kylpaUpKipKOTk52rlzZ3OVFwAAAABCzsk5nI0NoarBDc7y8nL16dNHCxYsqPP4vHnz9Pjjj2vhwoXatGmTYmJilJubq4qKijrzAwAAAMC57uQczsaGUNXgOZzDhg3TsGHD6jxmjNH8+fP1wAMP6MYbb5QkvfDCC0pJSdHy5cs1duzYppUWAAAAABAymrWpvGfPHhUWFionJ8dKi4+PV1ZWlgoKCuo8p7KyUiUlJX4BAAAAAM4lJxYNanwIVc26Sm1hYaEkKSUlxS89JSXFOnaquXPnas6cOc1ZDABAPRnvKaveVVTWmc/htVd/dVZV2fFjdtwVGWHFI2LseHVs3avXVrWz33lWxdsPUt9RQ74r2ZoIu6zOOPt7Y2PtKRuJ0fYKtB2i7BV3UyPtl5m+q9GmhNe9Mm2C075OouuYT7rHirdz2vfocoTuUCcAQMvwyikPq9S2vPvvv1/FxcVW2LdvX2sXCQAAAACaVVudw9msJU9NTZUkFRUV+aUXFRVZx07ldrsVFxfnFwAAAAAAoa9ZG5yZmZlKTU3VqlWrrLSSkhJt2rRJ2dnZzflVAAAAABAyvHI2KYSqBs/hLCsr065du6zPe/bs0datW5WYmKjOnTtr+vTpevjhh3XRRRcpMzNTDz74oNLT0zVy5MjmLDcAAAAAhAyPcchjGrf4T2PPCwYNbnB+9NFHuvbaa63P+fn5kqTx48dr8eLFmjFjhsrLy3XHHXfo6NGjuvrqq7VixQpFRkY2X6kBAAAAIIR4mrBokCeEFw1qcINz0KBBMub0N+xwOPTQQw/poYcealLBAAAAAAChrVm3RQEABKnTbNthPB7/hCqfuMfrk15txyPC7cv6pDsr3XZ6TY0d99gjXBxeeysRX95we7uUGp8BMQ6vzxAip/2yM9xtXz8h+rgVPz/W3uakU9S3VrxjxBEr7rsVSrLL3grFd/uTGIf9d4l2OHzi9r2HyS6zM4Tn1gAAWobXOOVt5Gqz3jN0+AU7GpwAAAAAEGAMqQUAAAAABIRXjV/8x3v2LEGLMUAAAAAAgICghxMAAAAAAqwp+2m2qX04AQAAAAAN4zFOeRq5aFBjzwsGNDgBoC0wPrM/fFasdcVE+2VztIu1P0TZy8Uat726rImyV2qtibbjnqgwn3R7Bdeqdvb3VUfbc1eqY+ST3yfuk+6JtsttfFapra60v+ubUvuEqho7/WhllBU/EBlvxTu4y6x4cniJFU8Ms9MTXXY8wWf12gSnvSJup7BKKx4te1Vb39VrXT5/a1ayBYC2zSuHvGrsHM7GnRcMePoBAAAAAAKCHk4AAAAACDCG1AIAAAAAAqJp+3DS4AQAAAAAnIbXOORt7D6cjTwvGIRuUxkAAAAAENTo4QSANsxUVfknHLNXYXXU1Njxyoi648ftuMtn9VrXcd+4/agJj/FZvbbCfudZVWW/uXXaXyvf96LVPi93jdteFdbls3ptZFi1FY+LqLDiiRHlVrx9eKkVTwqz4wmucp943SvTJjjt64f7PEJZgRYAcDbeJgypZR9OAAAAAMBpeY1T3kYu/tPY84JB6JYcAAAAABDU6OEEAAAAgADzyCGPGrf4T2PPCwY0OAEAAAAgwNrqkFoanAAAAAAQYB41vqfSc/YsQSt0m8oAAAAAgKBGDycAnEscdb9HdDjrfqNqvMY/4dRtUk6e73eSfY7D6xv32nk8Pum+cZ+v893D2hNhb5dSHe2Tx/d2Iuzru6Pt7UmSYsuseOfYo3Y86ogVT4uw09u77PyJPvE4p72NSjun/XeIdtjfG+O0C+R2+G6LErpzawAALYMhtQAAAACAgPAYpzyNbDg29rxgQIMTAAAAAALMyCFvI0fEmBAeSRO6TWUAAAAAQFCjhxMAAAAAAowhtQAAAACAgPAah7ymcUNjG3teMAjdpjIAoFGM11hBxusXTHWNHaqq7FBRaQVVVvmESjtU2MFZWW2HKo8dKu3gqjZWcPqGGlnB4bGDjB2cTq8VIlweK0S5qqwQ7aq0QqSj2grRzkor+KZHOmqsEO4wVoh0OKwQLqcVnHJYweVw1hkAADjJI2eTQkPMnTtXV1xxhdq1a6fk5GSNHDlSO3bs8MtTUVGhvLw8tW/fXrGxsRo9erSKior88uzdu1cjRoxQdHS0kpOTdc8996impqZBZeFpCAAAAADnkLVr1yovL08bN27UypUrVV1drSFDhqi8vNzKc/fdd+vtt9/Wq6++qrVr12r//v266aabrOMej0cjRoxQVVWVNmzYoOeff16LFy/WzJkzG1QWhtQCAAAAQIC15JDaFStW+H1evHixkpOTtWXLFg0cOFDFxcV69tlntXTpUn3ve9+TJC1atEiXXHKJNm7cqCuvvFLvvfeevvjiC73//vtKSUlR37599ctf/lL33nuvZs+erYiIiHqVhR5OAAAAAAgwr5xNCk1RXFwsSUpMTJQkbdmyRdXV1crJybHydO/eXZ07d1ZBQYEkqaCgQL169VJKSoqVJzc3VyUlJfr888/r/d30cAIAAABAgHmMQ55G9nCePK+kpMQv3e12y+12n/Fcr9er6dOn66qrrlLPnj0lSYWFhYqIiFBCQoJf3pSUFBUWFlp5fBubJ4+fPFZf9HACAAAAQAjo1KmT4uPjrTB37tyznpOXl6fPPvtML7/8cguUsDZ6OAHgXGK8dSd76s7ucPnPv3BERdnxSJ83pm6ffD5vUk2Une6JtuM1seFWvCrOZcWrY+33nFWx9lveGvtrVRPjU+4wY5enyj73WLF9wp4a+/qHymOt+M6oDlY8Pdp+I5wWWWzFkyPs9JQwn/QwO72ds8KKJzgr7Wu6qq242+dx6pR9X6xUCwA4qTnmcO7bt09xcXFW+tl6N6dOnap33nlH69atU8eOHa301NRUVVVV6ejRo369nEVFRUpNTbXybN682e96J1exPZmnPngSAgAAAECAGeOUt5HBmBPNtri4OL9wuganMUZTp07VG2+8oQ8++ECZmZl+x/v166fw8HCtWrXKStuxY4f27t2r7OxsSVJ2drY+/fRTHTx40MqzcuVKxcXFqUePHvW+b3o4AQAAAOAckpeXp6VLl+rNN99Uu3btrDmX8fHxioqKUnx8vCZNmqT8/HwlJiYqLi5O06ZNU3Z2tq688kpJ0pAhQ9SjRw/ddtttmjdvngoLC/XAAw8oLy/vrD2rvmhwAgAAAECAeeSQR41cNKiB5z399NOSpEGDBvmlL1q0SBMmTJAk/e53v5PT6dTo0aNVWVmp3NxcPfXUU1Zel8uld955R1OmTFF2drZiYmI0fvx4PfTQQw0qCw1OAAAAAAgwr2n4fpq+5zaEMWc/ITIyUgsWLNCCBQtOmycjI0Pvvvtuw778FDQ4AQAAACDATs7HbOy5oSp0Sw4AAAAACGr0cALAucpnSw6H0x7CY84wLsdU21t9yOVzvm8mn/N9012+eXy/7zSvNo3vliEOn/w+F/KG2enecJ90j09+n+FJDoddtkhXjRWP8tnCJNZlb22S4DpWd9x53Cdu52/nU+Tw02x54pVdBpdfur1ljZP3vQDQ5njlkLeRczgbe14woMEJAAAAAAHmMQ55GjmHs7HnBQManAAAAAAQYMzhBAAAAACgGdHDCQAAAAAB5pWj8duiMIcTAAAAAHA6pgmLBhkanACAFnWaFVL9srjsNVId4T4/99U1deT+P74bRXvsVVXl8p4mj6fOuKPKjrsq7bIal++qs3XHPT6r0Tp9Lu+z+KscTvtDWJidKSrcZzXa8CorHhNmrzQb7bNKrdth53c5fFaR9Vnt1mfBXb95KB7fv4PPub6qfbKEO+x/D98Va32xei0AnLu8pgk9nCG8aBBPNgAAAABAQNDDCQAAAAAB1lZXqaXBCQAAAAAB1laH1NLgBAAAAIAA8zZh0aBQXqU2dPtmAQAAAABBjR5OAAAAAAgwhtQCAIJPfbY/8d23wye/X7rX1JlufNIlyeGoe8sT4/G5rtdbZx6Hx9SZx+GzvYrD67NVi8+WJw7f8vk+VP2LZ/P5s4T5bNnidtlbvoT57Knidtrp4T5fHOETD5fPVi4+25a4/AoRug98AEDraqsNzoANqV2wYIG6dOmiyMhIZWVlafPmzYH6KgAAAAAIaicbnI0NoSogDc5ly5YpPz9fs2bN0scff6w+ffooNzdXBw8eDMTXAQAAAACCUEAanI899pgmT56siRMnqkePHlq4cKGio6P13HPPBeLrAAAAACCo0cPZTKqqqrRlyxbl5OTYX+J0KicnRwUFBc39dQAAAAAQ9IzsrVEaGk63pEEoaPZFg7755ht5PB6lpKT4paekpGj79u218ldWVqqystL6XFxcLEmqUfXpF4sAgDajHosG+b31dJ4m3XchHuMTPWXRIOOzCJDxWRzId1Efr+9iRL4LCNnpXp8FhDw19jVrfOPV9gJCnir7XE+lb9znqyrsa3qPV9t5IuxMNU47Xm2qrHilx85fEWEvIHTM5bOwkF/cZ9Egpx33OOyy1Th88jjqfvPs+68Xfpo8/vl58AGAr5KyE7+1pz6vEDpafZXauXPnas6cObXS1+vdVigNAASZ+jxfPWfPUm81PvHK0+YKWl+2dgEAAAFRWlqq+Pj41i5Gk7TVVWqbvcGZlJQkl8uloqIiv/SioiKlpqbWyn///fcrPz/f+nz06FFlZGRo7969IV+pEHxKSkrUqVMn7du3T3Fxca1dHJxDqFsIFOoWAon6hUBprrpljFFpaanS09ObsXStgwZnM4mIiFC/fv20atUqjRw5UpLk9Xq1atUqTZ06tVZ+t9stt9tdKz0+Pp4fPgRMXFwc9QsBQd1CoFC3EEjULwRKc9Stc6UTigZnM8rPz9f48ePVv39/DRgwQPPnz1d5ebkmTpwYiK8DAAAAAAShgDQ4x4wZo0OHDmnmzJkqLCxU3759tWLFiloLCQEAAABAW0APZzObOnVqnUNoz8btdmvWrFl1DrMFmor6hUChbiFQqFsIJOoXAoW6VZsxDplGNhwbe14wcBjWGAYAAACAgCgpKVF8fLyy35ymsJjGNcBryitVcOMTKi4uDrn51mff4A0AAAAAgEZo9X04AQAAAOBcxxxOAAAAAEBAtNU5nDQ4AQAAACDA2moPZ9DN4VywYIG6dOmiyMhIZWVlafPmza1dJISY2bNny+Fw+IXu3btbxysqKpSXl6f27dsrNjZWo0ePVlFRUSuWGMFq3bp1uuGGG5Seni6Hw6Hly5f7HTfGaObMmUpLS1NUVJRycnK0c+dOvzxHjhzRuHHjFBcXp4SEBE2aNEllZWUteBcIVmerXxMmTKj1WzZ06FC/PNQv1GXu3Lm64oor1K5dOyUnJ2vkyJHasWOHX576PAv37t2rESNGKDo6WsnJybrnnntUU1PTkreCIFOfujVo0KBav1133nmnXx7qVtsSVA3OZcuWKT8/X7NmzdLHH3+sPn36KDc3VwcPHmztoiHEXHrppTpw4IAV1q9fbx27++679fbbb+vVV1/V2rVrtX//ft10002tWFoEq/LycvXp00cLFiyo8/i8efP0+OOPa+HChdq0aZNiYmKUm5uriooKK8+4ceP0+eefa+XKlXrnnXe0bt063XHHHS11CwhiZ6tfkjR06FC/37KXXnrJ7zj1C3VZu3at8vLytHHjRq1cuVLV1dUaMmSIysvLrTxnexZ6PB6NGDFCVVVV2rBhg55//nktXrxYM2fObI1bQpCoT92SpMmTJ/v9ds2bN8861pbr1skhtY0NoSqotkXJysrSFVdcoSeffFKS5PV61alTJ02bNk333XdfK5cOoWL27Nlavny5tm7dWutYcXGxOnTooKVLl+rmm2+WJG3fvl2XXHKJCgoKdOWVV7ZwaREqHA6H3njjDY0cOVLSid7N9PR0/exnP9PPf/5zSSfqV0pKihYvXqyxY8fqyy+/VI8ePfThhx+qf//+kqQVK1Zo+PDh+vrrr5Went5at4Mgc2r9kk70cB49erRWz+dJ1C/U16FDh5ScnKy1a9dq4MCB9XoW/vnPf9b111+v/fv3KyUlRZK0cOFC3XvvvTp06JAiIiJa85YQJE6tW9KJHs6+fftq/vz5dZ7TFuvWyW1RLn8tX65GboviKa/Uxzc/xrYoTVFVVaUtW7YoJyfHSnM6ncrJyVFBQUErlgyhaOfOnUpPT9cFF1ygcePGae/evZKkLVu2qLq62q+ede/eXZ07d6aeoUH27NmjwsJCv7oUHx+vrKwsqy4VFBQoISHBagxIUk5OjpxOpzZt2tTiZUboWbNmjZKTk9WtWzdNmTJFhw8fto5Rv1BfxcXFkqTExERJ9XsWFhQUqFevXlaDQJJyc3NVUlKizz//vAVLj2B2at06acmSJUpKSlLPnj11//3369ixY9axtly3jCRjGhlau/BNEDSLBn3zzTfyeDx+lU+SUlJStH379lYqFUJRVlaWFi9erG7duunAgQOaM2eOrrnmGn322WcqLCxURESEEhIS/M5JSUlRYWFh6xQYIelkfanrN+vkscLCQiUnJ/sdDwsLU2JiIvUNZzV06FDddNNNyszM1O7du/WLX/xCw4YNU0FBgVwuF/UL9eL1ejV9+nRdddVV6tmzpyTV61lYWFhY5+/byWNAXXVLkm699VZlZGQoPT1d27Zt07333qsdO3bo9ddfl0TdaouCpsEJNJdhw4ZZ8d69eysrK0sZGRl65ZVXFBUV1YolA4D6Gzt2rBXv1auXevfura5du2rNmjUaPHhwK5YMoSQvL0+fffaZ31oGQHM4Xd3ynUfeq1cvpaWlafDgwdq9e7e6du3a0sUMKl455FAjV6lt5HnBIGiG1CYlJcnlctVaIa2oqEipqamtVCqcCxISEnTxxRdr165dSk1NVVVVlY4ePeqXh3qGhjpZX870m5Wamlpr0bOamhodOXKE+oYGu+CCC5SUlKRdu3ZJon7h7KZOnap33nlHq1evVseOHa30+jwLU1NT6/x9O3kMbdvp6lZdsrKyJMnvt6ut1q22umhQ0DQ4IyIi1K9fP61atcpK83q9WrVqlbKzs1uxZAh1ZWVl2r17t9LS0tSvXz+Fh4f71bMdO3Zo79691DM0SGZmplJTU/3qUklJiTZt2mTVpezsbB09elRbtmyx8nzwwQfyer3WAxior6+//lqHDx9WWlqaJOoXTs8Yo6lTp+qNN97QBx98oMzMTL/j9XkWZmdn69NPP/V7qbFy5UrFxcWpR48eLXMjCDpnq1t1ObmIo+9vV1utWyf34WxsCFVBNaQ2Pz9f48ePV//+/TVgwADNnz9f5eXlmjhxYmsXDSHk5z//uW644QZlZGRo//79mjVrllwul2655RbFx8dr0qRJys/PV2JiouLi4jRt2jRlZ2ezQi1qKSsrs97ISicWCtq6dasSExPVuXNnTZ8+XQ8//LAuuugiZWZm6sEHH1R6erq10ugll1yioUOHavLkyVq4cKGqq6s1depUjR07lhVEccb6lZiYqDlz5mj06NFKTU3V7t27NWPGDF144YXKzc2VRP3C6eXl5Wnp0qV688031a5dO2teXHx8vKKiour1LBwyZIh69Oih2267TfPmzVNhYaEeeOAB5eXlye1u3CqbCH1nq1u7d+/W0qVLNXz4cLVv317btm3T3XffrYEDB6p3796SqFttkgkyTzzxhOncubOJiIgwAwYMMBs3bmztIiHEjBkzxqSlpZmIiAhz/vnnmzFjxphdu3ZZx48fP27uuusuc95555no6GgzatQoc+DAgVYsMYLV6tWrjf5vUTnfMH78eGOMMV6v1zz44IMmJSXFuN1uM3jwYLNjxw6/axw+fNjccsstJjY21sTFxZmJEyea0tLSVrgbBJsz1a9jx46ZIUOGmA4dOpjw8HCTkZFhJk+ebAoLC/2uQf1CXeqqV5LMokWLrDz1eRZ+9dVXZtiwYSYqKsokJSWZn/3sZ6a6urqF7wbB5Gx1a+/evWbgwIEmMTHRuN1uc+GFF5p77rnHFBcX+12nrdWt4uJiI8lcuuwe0/vtBxoVLl12j5FU628ZCoJqH04AAAAAOJec3Iezx8sz5Ipu5D6cxyr1xdh57MMJAAAAAMBJQTWHEwAAAADORU1ZbTaUV6mlwQkAAAAAAeY1Djka2XBklVoAAAAAwGkZcyI09txQxRxOAEDArVmzRg6Ho86wcePGBl+vS5cudV7rzjvvDEDpAQBAY9HDCQBoMT/96U91xRVX+KVdeOGFjbpW37599bOf/cwv7eKLL2502QAACKQTPZyNncPZzIVpQTQ4AQAt5pprrtHNN9/cLNc6//zz9R//8R/Nci0AAAKtrS4axJBaAECLKi0tVU1NTa30RYsWyeFw6LnnnvNLf+SRR+RwOPTuu+/WOqeqqkrl5eUBKysAAM3FNDGEKhqcAIAWM3HiRMXFxSkyMlLXXnutPvroI79j119/vfLz87Vv3z5J0qeffqo5c+Zo0qRJGj58uN+1PvjgA0VHRys2NlZdunTRf//3f7fovQAAgLNjSC0AIOAiIiI0evRoDR8+XElJSfriiy/06KOP6pprrtGGDRt02WWXSZL+8Ic/6NJLL9WkSZP0zjvvaPz48UpNTdVjjz3md73evXvr6quvVrdu3XT48GEtXrxY06dP1/79+/Wb3/ymNW4RAIAzaqtDah3GhPIUVABAqNq1a5d69+6tgQMHasWKFVb6yy+/rFtuuUUDBgzQhx9+qJUrV2rw4MFnvJYxRsOGDdOqVau0Z88edezYMdDFBwCgXkpKShQfH68Lnv+FXNGRjbqG51iF/jn+ERUXFysuLq6ZSxhYDKkFALSKCy+8UDfeeKNWr14tj8djpY8dO1YjRozQ5s2bNXny5LM2NiXJ4XDo7rvvVk1NjdasWRPAUgMA0Ej/18PZmKAQ7uGkwQkAaDWdOnWqtfDP4cOHrbmdX3zxhbxeb72vJUlHjhxp/oICAIBGocEJAGg1//znPxUZGanY2FgrLS8vT6WlpZo7d67Wr1+v+fPn1/taktShQ4dAFBUAgCY5sQ9n40OoosEJAAi4Q4cO1Ur7+9//rrfeektDhgyR03nicfTaa69p2bJl+vWvf6377rtPY8eO1QMPPKB//OMf1nlHjhzxG4IrSdXV1fr1r3+tiIgIXXvttYG9GQAAGqGxw2kbs9jQunXrdMMNNyg9PV0Oh0PLly/3Oz5hwgQ5HA6/MHToUL88R44c0bhx4xQXF6eEhARNmjRJZWVlDb5vVqkFAATcmDFjFBUVpe985ztKTk7WF198oWeeeUbR0dH69a9/LUk6ePCgpkyZomuvvVZTp06VJD355JNavXq1JkyYoPXr18vpdOqtt97Sww8/rJtvvlmZmZk6cuSIli5dqs8++0yPPPKIUlNTW/NWAQCoW1PmYjbwvPLycvXp00e33367brrppjrzDB06VIsWLbI+u91uv+Pjxo3TgQMHtHLlSlVXV2vixIm64447tHTp0gaVhQYnACDgRo4cqSVLluixxx5TSUmJOnTooJtuukmzZs3ShRdeKEmaMmWKKisrtWjRIjkcJx6s7du31zPPPKMbb7xRjz76qGbMmKFevXqpR48eevHFF3Xo0CFFRESob9++euWVV/SDH/ygNW8TAICgMGzYMA0bNuyMedxu92lf0n755ZdasWKFPvzwQ/Xv31+S9MQTT2j48OF69NFHlZ6eXu+y0OAEAATcT3/6U/30pz89Y54//elPdaZ///vfl+8OXv369dNbb73VrOUDACDQmjIXMxBzONesWaPk5GSdd955+t73vqeHH35Y7du3lyQVFBQoISHBamxKUk5OjpxOpzZt2qRRo0bV+3tocAIAAABAoJn/C409Vyf29PTldrtrDYWtj6FDh+qmm25SZmamdu/erV/84hcaNmyYCgoK5HK5VFhYqOTkZL9zwsLClJiYqMLCwgZ9Fw1OAAAAAAiwxiz+43uuZG8BdtKsWbM0e/bsBl9v7NixVrxXr17q3bu3unbtqjVr1tRr/+uGoMEJAAAAACFg3759iouLsz43pnezLhdccIGSkpK0a9cuDR48WKmpqTp48KBfnpqaGh05cqTBi/OxLQoAAAAAtATTyPB/4uLi/EJzNTi//vprHT58WGlpaZKk7OxsHT16VFu2bLHyfPDBB/J6vcrKymrQtQPW4FywYIG6dOmiyMhIZWVlafPmzYH6KgAAAAAIai25D2dZWZm2bt2qrVu3SpL27NmjrVu3au/evSorK9M999yjjRs36quvvtKqVat044036sILL1Rubq4k6ZJLLtHQoUM1efJkbd68WX/72980depUjR07tkEr1EoBanAuW7ZM+fn5mjVrlj7++GP16dNHubm5tbplAQAAAADN66OPPtJll12myy67TJKUn5+vyy67TDNnzpTL5dK2bdv0/e9/XxdffLEmTZqkfv366a9//atfj+mSJUvUvXt3DR48WMOHD9fVV1+tZ555psFlcRjT/IvsZmVl6YorrtCTTz4pSfJ6verUqZOmTZum++6774zner1e7d+/X+3atbP2YQMAAADQ9hhjVFpaqvT0dDmdoTkbsKSkRPHx8eq0cJacUZGNuob3eIX23TlHxcXFfnM4Q0GzLxpUVVWlLVu26P7777fSnE6ncnJyVFBQcNbz9+/fX2v1JQAAAABt1759+9SxY8fWLkYTOf4vNPbc0NTsDc5vvvlGHo9HKSkpfukpKSnavn17rfyVlZWqrKy0Pp/scL1awxWm8OYuHgAgwBw+w3GcUXbcERNjxb3t46348dRoK17Sxf7dL7nI43fdjhfZ0zJy076w4j3d+6x4RnixFU9y2g/nGKddjnCHqx53AQAIBiVlXmVc/pXatWvX2kVpumbYhzMUtfq2KHPnztWcOXNqpYcpXGEOGpwAEGpckbFW3BFrx028Hfe0t+Pe9hH2ye3s4VKuCK/fdY+aRCu+w5tpxSPD7UdZVOTXdjzsWyseH1ZjxWN8GpwuR2gOzwKAtoapdqGr2Z+0SUlJcrlcKioq8ksvKiqqc8+W+++/X8XFxVbYt29frTwAAAAAENIauyVKU3pGg0CzNzgjIiLUr18/rVq1ykrzer1atWqVsrOza+V3u9219pMBAAAAgHOKcTQthKiADKnNz8/X+PHj1b9/fw0YMEDz589XeXm5Jk6cGIivAwC0Np+hTr6Lnzs8nrpy+6194PWZUml8n0qnvM2tqrIzHqm0531+U23P6zkabqd3cJVa8WpTXed3AwDQUow5ERp7bqgKSINzzJgxOnTokGbOnKnCwkL17dtXK1asqLWQEAAAAADg3BWwRYOmTp2qqVOnBuryAAAAABA6WKUWAIBG8lnt1eHyWR4g3F5t3Btlx6tj7MdPVZzDJ24/Ub3R/sNxoyLsz06Hna/Ga39fudfe/qTa2ENwvbKH1LIyLQCgVTRlLiZzOAEAAAAAp+MwJ0Jjzw1VvOYFAAAAAAQEPZwAgKbz2sNdTUWlnR5mP2Zc39rxyHCf4a7hUVbc47bTq+P934lGu6us+CVxhVa8X8xXVvyiCHsP6BSXnT/WEXHWWwAAIKCYwwkAAAAACAjmcAIAAAAAAoIeTgAAGslhv3l1xMbY6YkJVrQ6KdaKVyTbq8keT7KHzlb7nHrqw7WkPNKKf1mSasV9V6z1+CxN4Imwh91GOOzhtdFieC0AAC2FBicAAAAABBo9nAAAAACAgKDBCQBAIzlOs8uWz1BbE+473NWO10Taeby+o11PWSChutJ+ZB0st4fnJkQkWPGk8FIrnhp21IpXGHvlXI/xWnHX6coNAEBza6OLBvGkBQAAAAAEBD2cAAAAABBgDnMiNPbcUEWDEwDQvFwuO+70GVLrO7zWZ3yN8XkSed32E9VEevwuGxlVbcXbue0hsnHhFVY83OF/Tp3FYxgtAKA1tNE5nDx1AQAAAAABQYMTAAAAABAQDKkFADSd1x7Kao4dt+LOMPsxE+H0ecfps9ie12UvTesN81nJNtJnaK4kp9MeT9Q+styKXxh10Ir3cP/bincKK7Hi8U7/awEA0NIcasIczmYtScuiwQkAAAAAgca2KAAAAAAANB96OAEAAAAg0NroKrUNbnCuW7dO//Vf/6UtW7bowIEDeuONNzRy5EjruDFGs2bN0h/+8AcdPXpUV111lZ5++mlddNFFzVluAEAw8dnyxBEdZcW958VZ8crUGCt+LCXcih9PtgfbVLfz2RbF6f90rThuz/X8qjjRike6qlUXl8NrxaMdxVY8nrE9AIDW0EYbnA1+7JaXl6tPnz5asGBBncfnzZunxx9/XAsXLtSmTZsUExOj3NxcVVRU1JkfAAAAAM51DtO0EKoa3MM5bNgwDRs2rM5jxhjNnz9fDzzwgG688UZJ0gsvvKCUlBQtX75cY8eObVppAQAAAAAho1nncO7Zs0eFhYXKycmx0uLj45WVlaWCggIanABwjnK47G1HHOH2cFlvlB2vibXzVMfYQ3Cro+3r1NijcWXC/F/nGnuErCqr7cdXSZV90pEae9huqddOrzb2kFqPz4VcDsbXAgBaSBsdUtusDc7CwkJJUkpKil96SkqKdexUlZWVqqystD6XlJTUmQ8AAAAAQlYbbXC2+qvduXPnKj4+3gqdOnVq7SIBAAAAQLNqq3M4m7XBmZqaKkkqKirySy8qKrKOner+++9XcXGxFfbt29ecRQIAtDSHww5erxWc1cYKripZwVljBz9hxi+ERXisEBtZaYW4iONWiHRWW8EprxW8khVcDqcVAABAYDXr0zYzM1OpqalatWqVlVZSUqJNmzYpOzu7znPcbrfi4uL8AgAAAACcU4yjaSFENXgOZ1lZmXbt2mV93rNnj7Zu3arExER17txZ06dP18MPP6yLLrpImZmZevDBB5Wenu63VycAAAAAtCltdA5ngxucH330ka699lrrc35+viRp/PjxWrx4sWbMmKHy8nLdcccdOnr0qK6++mqtWLFCkZGRzVdqAEBQMR6PHS8rt+KucPsx43bZg2qMw15B1uuzwq1x2m9wK3zSJcn4DICJDa+y4mmR9mJzme5DVvz8sKNWPN4Zum+GAQDnhqbMxQzlOZwNbnAOGjRIxpz+jh0Ohx566CE99NBDTSoYAAAAACC0Neu2KAAAAACAOjCkFgCARvJZ8dURE23Fa5LaWfHjafYw2mNJ9nDZyvb2cNea6NM/UauPh1vx/SX2+NpwV5oVd8lrxSMd1VY8wbnfiif5j9QFAKBlNGV7ExqcAAAAAIDTaqM9nGxCBgAAAAAICHo4AQBN5vBdBdbhE/dJNy7fuJ3F6/Mk8tqjZmXCTnmd67MHmcdjvy+t9NgXOOaNsOLVPl/ikc+5xh5263Lw3hUA0ELaaA8nDU4AAAAACLC2ui0Kr3YBAAAAAAFBDycAoOlOMzTV4bFfyTqr7LiryjdP3Zc0Ef6vc8Mia6x4XHSFFW8fWW7Fzws7ZsXDT3dhAADQYmhwAgAAAECgMYczOBhz4q9Zo+qQ/sMCQFvi8FnQx3grrbjHY/dE1lT7LNxT5bOgT6Wd7q2wf/i9x/17KL1hdreoJ9z+jmqf9ErZe28eq7HPL6uyFwoqCfNdNKjO2wEABImSshO/2SfbCKGsrc7hDLoGZ2lpqSRpvd5t5ZIAAOqt2if+9Wnizegrn/jHgfkKAEAQKS0tVXx8fGsXA40QdA3O9PR07du3T8YYde7cWfv27VNcXFxrFwvnkJKSEnXq1Im6hYCgfiFQqFsIFOoWAqmp9csYo9LSUqWnpwegdK0ghHsqGyvoGpxOp1MdO3ZUSUmJJCkuLo4fPwQEdQuBRP1CoFC3ECjULQRSU+rXOdOzyRxOAAAAAEAgtNU5nOzDCQAAAAAIiKDt4XS73Zo1a5bcbndrFwXnGOoWAon6hUChbiFQqFsIJOqXjzY6pNZhzoU1hgEAAAAgCJWUlCg+Pl4X//wRudyRjbqGp7JC/3j0FyouLg65udZB28MJAAAAAOeMNtrDyRxOAAAAAEBA0OAEAAAAgEAzTQwNsG7dOt1www1KT0+Xw+HQ8uXL/YtijGbOnKm0tDRFRUUpJydHO3fu9Mtz5MgRjRs3TnFxcUpISNCkSZNUVlbW0LumwQkAAAAAgXZyW5TGhoYoLy9Xnz59tGDBgjqPz5s3T48//rgWLlyoTZs2KSYmRrm5uaqoqLDyjBs3Tp9//rlWrlypd955R+vWrdMdd9zR4PsOygbnggUL1KVLF0VGRiorK0ubN29u7SIhBM2ePVsOh8MvdO/e3TpeUVGhvLw8tW/fXrGxsRo9erSKiopascQIVsH0lhDnlrPVrQkTJtT6HRs6dKhfHuoW6jJ37lxdccUVateunZKTkzVy5Ejt2LHDL099noN79+7ViBEjFB0dreTkZN1zzz2qqalpyVtBEKpP/Ro0aFCt368777zTL0+bq18t2MM5bNgwPfzwwxo1alTtYhij+fPn64EHHtCNN96o3r1764UXXtD+/fut59CXX36pFStW6H/+53+UlZWlq6++Wk888YRefvll7d+/v0FlCboG57Jly5Sfn69Zs2bp448/Vp8+fZSbm6uDBw+2dtEQgi699FIdOHDACuvXr7eO3X333Xr77bf16quvau3atdq/f79uuummViwtglUwvSXEueVsdUuShg4d6vc79tJLL/kdp26hLmvXrlVeXp42btyolStXqrq6WkOGDFF5ebmV52zPQY/HoxEjRqiqqkobNmzQ888/r8WLF2vmzJmtcUsIIvWpX5I0efJkv9+vefPmWceoX61nz549KiwsVE5OjpUWHx+vrKwsFRQUSJIKCgqUkJCg/v37W3lycnLkdDq1adOmBn1f0K1S+9hjj2ny5MmaOHGiJGnhwoX63//9Xz333HO67777Wrl0CDVhYWFKTU2tlV5cXKxnn31WS5cu1fe+9z1J0qJFi3TJJZdo48aNuvLKK1u6qAhiw4YN07Bhw+o8dupbQkl64YUXlJKSouXLl2vs2LHWW8IPP/zQ+uF+4oknNHz4cD366KNKT09vsXtBcDlT3TrJ7XbX+TsmibqF01qxYoXf58WLFys5OVlbtmzRwIED6/UcfO+99/TFF1/o/fffV0pKivr27atf/vKXuvfeezV79mxFRES0xq0hCJytfp0UHR192t+vNlm/mmGV2pKSEr9kt9vd4D1OCwsLJUkpKSl+6SkpKdaxwsJCJScn+x0PCwtTYmKilae+gqqHs6qqSlu2bPFrbTudTuXk5FitbaAhdu7cqfT0dF1wwQUaN26c9u7dK0nasmWLqqur/epa9+7d1blzZ+oaGqSl3xKi7VmzZo2Sk5PVrVs3TZkyRYcPH7aOUbdQX8XFxZKkxMRESfV7DhYUFKhXr15+/1Gam5urkpISff755y1YegS7U+vXSUuWLFFSUpJ69uyp+++/X8eOHbOOtcX61RxzODt16qT4+HgrzJ07t3Vvqh6Cqofzm2++kcfjqbO1vX379lYqFUJVVlaWFi9erG7duunAgQOaM2eOrrnmGn322WcqLCxURESEEhIS/M7xfbMD1EdLvyVE2zJ06FDddNNNyszM1O7du/WLX/xCw4YNU0FBgVwuF3UL9eL1ejV9+nRdddVV6tmzpyTV6zlYWFhY52/byWOAVHf9kqRbb71VGRkZSk9P17Zt23Tvvfdqx44dev311yVRvxpr3759iouLsz43tHdTktXrXFRUpLS0NCu9qKhIffv2tfKcOqWxpqZGR44cOW2v9ekEVYMTaE6+w9R69+6trKwsZWRk6JVXXlFUVFQrlgwA6mfs2LFWvFevXurdu7e6du2qNWvWaPDgwa1YMoSSvLw8ffbZZ37rGADN5XT1y3cuea9evZSWlqbBgwdr9+7d6tq1a0sXMzg0w5DauLg4vwZnY2RmZio1NVWrVq2yGpglJSXatGmTpkyZIknKzs7W0aNHtWXLFvXr10+S9MEHH8jr9SorK6tB3xdUQ2qTkpLkcrlqrZBWVFTU4JY0cKqEhARdfPHF2rVrl1JTU1VVVaWjR4/65aGuoaF83xL68q1LzfmWEG3bBRdcoKSkJO3atUsSdQtnN3XqVL3zzjtavXq1OnbsaKXX5zmYmppa52/byWPA6epXXU42Unx/v9pa/WrJbVHKysq0detWbd26VdKJKUBbt27V3r175XA4NH36dD388MN666239Omnn+pHP/qR0tPTNXLkSEnSJZdcoqFDh2ry5MnavHmz/va3v2nq1KkaO3Zsg9cHCKoGZ0REhPr166dVq1ZZaV6vV6tWrVJ2dnYrlgzngrKyMu3evVtpaWnq16+fwsPD/erajh07tHfvXuoaGsT3LeFJJ98SnqxLvm8JT2rsW0K0bV9//bUOHz5sDYGibuF0jDGaOnWq3njjDX3wwQfKzMz0O16f52B2drY+/fRTv5caK1euVFxcnHr06NEyN4KgdLb6VZeTDR/f3682V79acFuUjz76SJdddpkuu+wySVJ+fr4uu+wyaxXgGTNmaNq0abrjjjt0xRVXqKysTCtWrFBkZKR1jSVLlqh79+4aPHiwhg8frquvvlrPPPNMg2/bYYxpbMduQCxbtkzjx4/X73//ew0YMEDz58/XK6+8ou3bt9ca5w2cyc9//nPdcMMNysjI0P79+zVr1ixt3bpVX3zxhTp06KApU6bo3Xff1eLFixUXF6dp06ZJkjZs2NDKJUewKSsrs97IXnbZZXrsscd07bXXKjExUZ07d9ZvfvMb/frXv9bzzz+vzMxMPfjgg9q2bZu++OIL64d72LBhKioq0sKFC1VdXa2JEyeqf//+Wrp0aWveGlrZmepWYmKi5syZo9GjRys1NVW7d+/WjBkzVFpaqk8//dSat0PdQl3uuusuLV26VG+++aa6detmpcfHx1vTSs72HPR4POrbt6/S09M1b948FRYW6rbbbtOPf/xjPfLIIy1/UwgaZ6tfu3fv1tKlSzV8+HC1b99e27Zt0913362OHTtq7dq1ktpW/SopKVF8fLwuyXtELnfk2U+og6eyQl8u+IWKi4ubPKS2xZkg9MQTT5jOnTubiIgIM2DAALNx48bWLhJC0JgxY0xaWpqJiIgw559/vhkzZozZtWuXdfz48ePmrrvuMuedd56Jjo42o0aNMgcOHGjFEiNYrV69us53jePHjzfGGOP1es2DDz5oUlJSjNvtNoMHDzY7duzwu8bhw4fNLbfcYmJjY01cXJyZOHGiKS0tbYW7QTA5U906duyYGTJkiOnQoYMJDw83GRkZZvLkyaawsNDvGtQt1KWueiXJLFq0yMpTn+fgV199ZYYNG2aioqJMUlKS+dnPfmaqq6tb+G4QbM5Wv/bu3WsGDhxoEhMTjdvtNhdeeKG55557THFxsd912kr9Ki4uNpLMJXc9Ynre/VijwiV3PWIk1fobhoKg6+EEAAAAgHPFyR7OHnc1rYfzi6dCs4eTVWoBAAAAINCaYZXaUBRUiwYBAAAAAM4d9HACAAAAQIA1ZnsT33NDFQ1OAAAAAAi0NjqklgYnAAAAALSEEG44NhZzOAEAAAAAAUEPJwAAAAAEGHM4AQAAAACBwRxOAAAAAEAgtNUeTuZwAgAAAAACgh5OAAAAAAg0htQCAAAAAAKhrQ6ppcEJAAAAAIHWRns4mcMJAAAAAAgIejgBAAAAINDaaA8nDU4AAAAACLC2OoeTIbUAAAAAgICghxMAAAAAAo0htQAAAACAQHAYI4dpXMuxsecFAxqcAAAAABBobbSHkzmcAAAAAICAoIcTAAAAAAKsra5SS4MTAAAAAAKtjQ6ppcEJAAAAAAHWVns4mcMJAAAAAAgIejgBAAAAINAYUgsAAAAACIS2OqSWBicAAAAABFob7eFkDicAAAAAICDo4QQAAACAFhDKQ2MbiwYnAAAAAASaMSdCY88NUQypBQAE3IQJE+RwOE4b/v3vf9f7WmvWrDnjtX71q18F8E4AAGick4sGNTaEKno4AQAB95Of/EQ5OTl+acYY3XnnnerSpYvOP//8el/rkksu0R//+Mda6X/84x/13nvvaciQIU0uLwAAaB40OAEAAZedna3s7Gy/tPXr1+vYsWMaN25cg66VkpKi//iP/6iVPmfOHF100UW64oormlRWAAACglVqAQBoOUuXLpXD4dCtt94qSVq0aJEcDoeee+45v3yPPPKIHA6H3n333dNea/Pmzdq1a1eDG68AALQUh7dpIVTR4AQAtLjq6mq98sor+s53vqMuXbpIkiZOnKjrr79e+fn52rdvnyTp008/1Zw5czRp0iQNHz78tNdbsmSJJNHgBAAEL9PEEKJocAIAWtxf/vIXHT58uFYD8Q9/+INcLpcmTZqkqqoqjR8/XqmpqXrsscdOey2Px6Nly5ZpwIABuvDCCwNddAAA0AA0OAEALW7p0qUKDw/XD3/4Q7/01NRULViwQCtXrtQ111yjrVu36rnnnlNcXNxpr7Vq1SoVFRXRuwkACGptdZVaGpwAgBZVVlamN998U7m5uWrfvn2t42PHjtWIESO0efNmTZ48WYMHDz7j9ZYsWSKXy6UxY8YEqsgAADTdyX04GxtCFA1OAECLWr58+RlXpz18+LA++ugjSdIXX3whr/f0KyUcP35cb7zxhnJycpSSkhKQ8gIAgMajwQkAaFFLlixRbGysvv/979d5PC8vT6WlpZo7d67Wr1+v+fPnn/Zab731lkpLSxlOCwAIegypBQAgwA4dOqT3339fo0aNUnR0dK3jr732mpYtW6Zf//rXuu+++zR27Fg98MAD+sc//lHn9ZYuXaro6GiNGjUq0EUHAKBpWKUWAIDAWrZsmWpqaurskTx48KCmTJmia6+9VlOnTpUkPfnkk4qLi9OECRNqDa09cuSI/vznP+v73/++YmNjW6T8AAA0Fj2cAAAE2JIlS5ScnKycnJxax6ZMmaLKykotWrRIDodDktS+fXs988wzKigo0KOPPuqX/9VXX1V1dbVuvfXWFik7AABoOIcxIbzkEQAAAAAEsZKSEsXHx+vK4Q8pLDyyUdeoqa7Qxndnqri4+IxbhQWjsNYuAAAAAACc65oyNDaUh9TS4AQAAACAQGvK4j8h3OBkDicAAAAAICDo4QQAAACAAGurQ2oD1sO5YMECdenSRZGRkcrKytLmzZsD9VUAAAAAENy8pmkhRAWkwbls2TLl5+dr1qxZ+vjjj9WnTx/l5ubq4MGDgfg6AAAAAAhupokhRAVkSO1jjz2myZMna+LEiZKkhQsX6n//93/13HPP6b777jvjuV6vV/v371e7du2sfdgAAAAAtD3GGJWWlio9PV1OJ8vPhKJmb3BWVVVpy5Ytuv/++600p9OpnJwcFRQUnPX8/fv3q1OnTs1dLAAAAAAhat++ferYsWNrF6NJHGrCHM5mLUnLavYG5zfffCOPx6OUlBS/9JSUFG3fvr1W/srKSlVWVlqfjTnxr3C1hitM4c1dPABAS/IZqeKMsje7dibEW/HqTklW/HDPaCt+tE+N36Uu7/6VFR+RtM1Od39txdNd9nPD7aj7Eedy8IYcAEJFSZlXGZd/pXbt2rV2UZrOmBOhseeGqFZfpXbu3LmaM2dOrfQwhSvMQYMTAEKab4PTEWHHnW4rbsLshqgrwqdRGuXf4AyPsc+PirUfX7GRdgMyzmXH3adpWNLgBIDQcy5MtWOV2maSlJQkl8uloqIiv/SioiKlpqbWyn///feruLjYCvv27WvuIgEAWovDaQVHWJgVTJTbCjXRYVbwRDqsIJfxCzVepxUqvOFWqDZOK/hyOZx1BgAAznWzZ8+Ww+HwC927d7eOV1RUKC8vT+3bt1dsbKxGjx5dq/3WXJr9yRsREaF+/fpp1apVVprX69WqVauUnZ1dK7/b7VZcXJxfAAAAAIBzSguvUnvppZfqwIEDVli/fr117O6779bbb7+tV199VWvXrtX+/ft10003NeXuTisgQ2rz8/M1fvx49e/fXwMGDND8+fNVXl5urVoLAAAAAG2Jwxg5GjkXszHnhYWF1TnCtLi4WM8++6yWLl2q733ve5KkRYsW6ZJLLtHGjRt15ZVXNqqMpy1Hs17t/4wZM0aHDh3SzJkzVVhYqL59+2rFihW1FhICAJzbHE6fOTfhYXXGvW57sI3X96nk9Z+vU+Gx5/Uf89pzQCuMy4pXy9OE0gIAEEDe/wuNPbeBdu7cqfT0dEVGRio7O1tz585V586dtWXLFlVXVysnJ8fK2717d3Xu3FkFBQWh0eCUpKlTp2rq1KmBujwAAAAAtCklJSV+n91ut9xud618WVlZWrx4sbp166YDBw5ozpw5uuaaa/TZZ5+psLBQERERSkhI8DsnJSVFhYWFzV7mVl+lFgAAAADOdc0xpLZTp05+6bNmzdLs2bNr5R82bJgV7927t7KyspSRkaFXXnlFUVFRjSpDY9HgBAC0DKfLJ173mnUO3yFDHv8htcdrfIfU2lukeEJ6O2wAQJvRyMV/rHMl7du3z2+R1bp6N+uSkJCgiy++WLt27dJ1112nqqoqHT161K+X83S7ijQV68MDAAAAQAg4dXeP+jY4y8rKtHv3bqWlpalfv34KDw/321Vkx44d2rt3b527ijQVPZwAAAAAEGjGnAiNPbcBfv7zn+uGG25QRkaG9u/fr1mzZsnlcumWW25RfHy8Jk2apPz8fCUmJiouLk7Tpk1TdnZ2sy8YJNHgBAC0lMpKK+o4VmHFXRWxdrrv8zTcf0m+DlFlVjwt/Fsr3s5RbZ/CYw0AEKQc5pTnXAPPbYivv/5at9xyiw4fPqwOHTro6quv1saNG9WhQwdJ0u9+9zs5nU6NHj1alZWVys3N1VNPPdW4wp0FT2YAAAAACLQW7OF8+eWXz3g8MjJSCxYs0IIFCxpXngZgDicAAAAAICDo4QQABI7D572mz8IG3hh7SfaaaHv1Wq+9EK3k9V99trjSPudA9XlW/FDEN1Y81Ryz4tGyV7IFAKC1ObynrMbewHNDFQ1OAAAAAAi0FhxSG0xocAIAAABAoDXDPpyhiAYnACBgHC57SK0jOtKKe2Lt4a41UXYe4zOK1lHlv8zAtxU+Q2qr4q34kUh7lduKsDIBAIDgQYMTAAAAAALMYYwcjRwa29jzggENTgAAAAAINOZwAgAQQC57NVrjOs0wWt9V+Dz+p1dU24+s4x57OdsqY1/3lFMAAAgeRlJjV5sN3fYm+3ACAAAAAAKDHk4AAAAACDDmcAIA0MxMTY0dLy6x4mFue0hs+Hn2irXG6TPUNtp/gGx6nH1+t+giK94l/Bsr3s7pEgAAQcmoCXM4m7UkLYoGJwAAAAAEWhtdNIg5nAAAAACAgKCHEwAAAAACzSvJcdZcpz83RDW4h3PdunW64YYblJ6eLofDoeXLl/sdN8Zo5syZSktLU1RUlHJycrRz587mKi8AIJS4XFZwREdboSbBDpXxTit4ImWFU5VWua2wtzLRCvtrzrNCqddjBQAAgsnJRYMaG0JVgxuc5eXl6tOnjxYsWFDn8Xnz5unxxx/XwoULtWnTJsXExCg3N1cVFRVNLiwAAAAAhKSTczgbG0JUg4fUDhs2TMOGDavzmDFG8+fP1wMPPKAbb7xRkvTCCy8oJSVFy5cv19ixY5tWWgAAAABAyGjWOZx79uxRYWGhcnJyrLT4+HhlZWWpoKCgzgZnZWWlKisrrc8lJSW18gAAQpMjzH7MmCi3Fa9pZ2+LUhPpM6HFd25Ljf8gnLIK+/xvKmOt+MGaOCteGVHYlOICABA4rFLbdIWFJx70KSkpfukpKSnWsVPNnTtX8fHxVujUqVNzFgkAAAAAWl8bHVLb6tui3H///SouLrbCvn37WrtIAAAAAIBm0KxDalNTUyVJRUVFSktLs9KLiorUt2/fOs9xu91yu911HgMAhDjfN7IOe7ysw2Onu6rtLM5Kn+yV/u9EK6vsR1aV11Xn17X6W1QAAE6HbVGaLjMzU6mpqVq1apWVVlJSok2bNik7O7s5vwoAAAAAQkZb3RalwT2cZWVl2rVrl/V5z5492rp1qxITE9W5c2dNnz5dDz/8sC666CJlZmbqwQcfVHp6ukaOHNmc5QYAAACA0NFGFw1qcIPzo48+0rXXXmt9zs/PlySNHz9eixcv1owZM1ReXq477rhDR48e1dVXX60VK1YoMrKOXbwBAOc04/FYcWdJmRUPP2pPpQhrb69Y6zvs1rj9xw/Fxdj7OXeK+taKdw4/bMXbORs7VgkAAARCgxucgwYNkjlDC9vhcOihhx7SQw891KSCAQAAAMA5w2skRyN7Kr1tqIcTAAAAANBADKkFAKB5OXyHyMZGW/Gq9lFWvCLBzlMT5buqrf/DtbwiworvO36eFf8qKsmKd/MZXptU90K2AAC0kqbspxm6DU5WkAcAAAAABAQ9nAAAAAAQaAypBQCgmbl8xrVG2KvReiLsATbeMJ+VZX2H0Xr8V5ytrrIfWSVV9srnpV47Xt3oHbUBAAgwr1Gjh8ayaBAAAAAA4LSM90Ro7LkhijmcAAAAAICAoIcTANAyfOafOHyGBrmq7bizyuET938n6vHYnz3Gjld7w3zSGVILAAhSzOEEAAAAAAQEcziDg/m/1nuNqkN5uxkAgCSnqbLiDk+lFa+prrDiHp/FgDyVdg+lt+KU+SrHfM4vt+MVUdVWvMxhn1MSEbrzXQAAJ5SUnfgtNyHcw2ehhzM4lJaWSpLW691WLgkAoMnKfeLbTxNvhL0+8XU+8V817bIAgCBVWlqq+Pj41i4GGiHoGpzp6enat2+fjDHq3Lmz9u3bp7i4uNYuFs4hJSUl6tSpE3ULAUH9QqBQtxAo1C0EUlPrlzFGpaWlSk9PD0DpWphRE3o4m7UkLSroGpxOp1MdO3ZUSUmJJCkuLo4fPwQEdQuBRP1CoFC3ECjULQRSU+rXOdOzyZBaAAAAAEBAeL2SGrm+gDd01yVgH04AAAAAQEAEbQ+n2+3WrFmz5Ha7W7soOMdQtxBI1C8ECnULgULdQiBRv3y00SG1DnNOrDEMAAAAAMGnpKRE8fHxykm6XWHOiEZdo8Zbpfe/eU7FxcUhN9eaIbUAAAAAgIAI2iG1AAAAAHDO8Bo1en8Tb+gOSqXBCQAAAAABZoxXxjRutdnGnhcMgnJI7YIFC9SlSxdFRkYqKytLmzdvbu0iIQTNnj1bDofDL3Tv3t06XlFRoby8PLVv316xsbEaPXq0ioqKWrHECFbr1q3TDTfcoPT0dDkcDi1fvtzvuDFGM2fOVFpamqKiopSTk6OdO3f65Tly5IjGjRunuLg4JSQkaNKkSSorK2vBu0AwOlvdmjBhQq3fsaFDh/rloW6hLnPnztUVV1yhdu3aKTk5WSNHjtSOHTv88tTnObh3716NGDFC0dHRSk5O1j333KOampqWvBUEofrUr0GDBtX6/brzzjv98rS5+mXMiZ7KxoQQXnYn6Bqcy5YtU35+vmbNmqWPP/5Yffr0UW5urg4ePNjaRUMIuvTSS3XgwAErrF+/3jp299136+2339arr76qtWvXav/+/brppptasbQIVuXl5erTp48WLFhQ5/F58+bp8ccf18KFC7Vp0ybFxMQoNzdXFRUVVp5x48bp888/18qVK/XOO+9o3bp1uuOOO1rqFhCkzla3JGno0KF+v2MvvfSS33HqFuqydu1a5eXlaePGjVq5cqWqq6s1ZMgQlZeXW3nO9hz0eDwaMWKEqqqqtGHDBj3//PNavHixZs6c2Rq3hCBSn/olSZMnT/b7/Zo3b551jPrVhpggM2DAAJOXl2d99ng8Jj093cydO7cVS4VQNGvWLNOnT586jx09etSEh4ebV1991Ur78ssvjSRTUFDQQiVEKJJk3njjDeuz1+s1qamp5r/+67+stKNHjxq3221eeuklY4wxX3zxhZFkPvzwQyvPn//8Z+NwOMy///3vFis7gtupdcsYY8aPH29uvPHG055D3UJ9HTx40Egya9euNcbU7zn47rvvGqfTaQoLC608Tz/9tImLizOVlZUtewMIaqfWL2OM+e53v2v+8z//87TntKX6VVxcbCSZwfG3mdyESY0Kg+NvM5JMcXFxa99OgwVVD2dVVZW2bNminJwcK83pdConJ0cFBQWtWDKEqp07dyo9PV0XXHCBxo0bp71790qStmzZourqar+61r17d3Xu3Jm6hgbZs2ePCgsL/epSfHy8srKyrLpUUFCghIQE9e/f38qTk5Mjp9OpTZs2tXiZEVrWrFmj5ORkdevWTVOmTNHhw4etY9Qt1FdxcbEkKTExUVL9noMFBQXq1auXUlJSrDy5ubkqKSnR559/3oKlR7A7tX6dtGTJEiUlJalnz566//77dezYMetYm6xfXm/TQogKqkWDvvnmG3k8Hr+KJ0kpKSnavn17K5UKoSorK0uLFy9Wt27ddODAAc2ZM0fXXHONPvvsMxUWFioiIkIJCQl+56SkpKiwsLB1CoyQdLK+1PW7dfJYYWGhkpOT/Y6HhYUpMTGR+oYzGjp0qG666SZlZmZq9+7d+sUvfqFhw4apoKBALpeLuoV68Xq9mj59uq666ir17NlTkur1HCwsLKzzt+3kMUCqu35J0q233qqMjAylp6dr27Ztuvfee7Vjxw69/vrrktpo/TJNWKU2hOdwBlWDE2hOw4YNs+K9e/dWVlaWMjIy9MorrygqKqoVSwYA9TN27Fgr3qtXL/Xu3Vtdu3bVmjVrNHjw4FYsGUJJXl6ePvvsM791DIDmcrr65TuXvFevXkpLS9PgwYO1e/dude3ataWLiVYUVENqk5KS5HK5aq2QVlRUpNTU1FYqFc4VCQkJuvjii7Vr1y6lpqaqqqpKR48e9ctDXUNDnawvZ/rdSk1NrbXwWU1NjY4cOUJ9Q4NccMEFSkpK0q5duyRRt3B2U6dO1TvvvKPVq1erY8eOVnp9noOpqal1/radPAacrn7VJSsrS5L8fr/aWv0yXm+TQqgKqgZnRESE+vXrp1WrVllpXq9Xq1atUnZ2diuWDOeCsrIy7d69W2lpaerXr5/Cw8P96tqOHTu0d+9e6hoaJDMzU6mpqX51qaSkRJs2bbLqUnZ2to4ePaotW7ZYeT744AN5vV7rAQzUx9dff63Dhw8rLS1NEnULp2eM0dSpU/XGG2/ogw8+UGZmpt/x+jwHs7Oz9emnn/q91Fi5cqXi4uLUo0ePlrkRBKWz1a+6bN26VZL8fr/aXP0ypmkhRAXdkNr8/HyNHz9e/fv314ABAzR//nyVl5dr4sSJrV00hJif//znuuGGG5SRkaH9+/dr1qxZcrlcuuWWWxQfH69JkyYpPz9fiYmJiouL07Rp05Sdna0rr7yytYuOIFNWVma9kZVOLBS0detWJSYmqnPnzpo+fboefvhhXXTRRcrMzNSDDz6o9PR0jRw5UpJ0ySWXaOjQoZo8ebIWLlyo6upqTZ06VWPHjlV6enor3RWCwZnqVmJioubMmaPRo0crNTVVu3fv1owZM3ThhRcqNzdXEnULp5eXl6elS5fqzTffVLt27aw5cfHx8YqKiqrXc3DIkCHq0aOHbrvtNs2bN0+FhYV64IEHlJeXJ7fb3Zq3h1Z2tvq1e/duLV26VMOHD1f79u21bds23X333Ro4cKB69+4tqY3WL6+RHG1vDmfQbYtijDFPPPGE6dy5s4mIiDADBgwwGzdubO0iIQSNGTPGpKWlmYiICHP++eebMWPGmF27dlnHjx8/bu666y5z3nnnmejoaDNq1Chz4MCBViwxgtXq1atPzvL3C+PHjzfGnNga5cEHHzQpKSnG7XabwYMHmx07dvhd4/Dhw+aWW24xsbGxJi4uzkycONGUlpa2wt0gmJypbh07dswMGTLEdOjQwYSHh5uMjAwzefJkvy0EjKFuoW511StJZtGiRVae+jwHv/rqKzNs2DATFRVlkpKSzM9+9jNTXV3dwneDYHO2+rV3714zcOBAk5iYaNxut7nwwgvNPffcU2tLj7ZSv05ui/I99w/NkMj/aFT4nvuHIbstisOYUG4uAwAAAEDwKikpUXx8vL4X8QOFOcIbdY0aU60Pql5VcXGx4uLimrmEgRV0Q2oBAAAA4FxjvEamkUNqQ7mPMKgWDQIAAACAc5LxNi00woIFC9SlSxdFRkYqKytLmzdvbuabOjsanAAAAABwjlm2bJny8/M1a9Ysffzxx+rTp49yc3NrbacVaDQ4AQAAACDAjNc0KTTUY489psmTJ2vixInq0aOHFi5cqOjoaD333HMBuLvTo8EJAAAAAIHWgkNqq6qqtGXLFuXk5FhpTqdTOTk5KigoaO47OyMWDQIAAACAAKtR9YkNZBp7rk6seOvL7XbXuW/pN998I4/Ho5SUFL/0lJQUbd++vXGFaCQanAAAAAAQIBEREUpNTdX6wnebdJ3Y2Fh16tTJL23WrFmaPXt2k64baDQ4AQAAACBAIiMjtWfPHlVVVTXpOsYYORwOv7S6ejclKSkpSS6XS0VFRX7pRUVFSk1NbVI5GooGJwAAAAAEUGRkpCIjI1vs+yIiItSvXz+tWrVKI0eOlCR5vV6tWrVKU6dObbFySDQ4AQAAAOCck5+fr/Hjx6t///4aMGCA5s+fr/Lyck2cOLFFy0GDEwAAAADOMWPGjNGhQ4c0c+ZMFRYWqm/fvlqxYkWthYQCzWGMaeRaSQAAAAAAnB77cAIAAAAAAoIGJwAAAAAgIGhwAgAAAAACggYnAAAAACAgaHACAAAAAAKCBicAAAAAICBocAIAAAAAAoIGJwAAAAAgIGhwAgAAAAACggYnAAAAACAgaHACAAAAAAKCBicAAAAAICD+P9M07/hHrMu+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(3,1, figsize=(25/2, 9/2))\n", "lut1 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage2_3x3_dense_upscale_lut.npy\"))\n", "lut2 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage2_5x5_dense_upscale_lut.npy\"))\n", "lut3 = np.transpose(np.load(\"LUT_x4_8.0bit_int8_stage2_7x7_dense_upscale_lut.npy\"))\n", "a[1].imshow(lut2)\n", "a[2].imshow(lut3)\n", "pcm = a[0].pcolormesh(lut1)\n", "f.colorbar(pcm, ax=a, location='right')\n", "f.suptitle(\"Stage 2, dense_upscale_lut\")\n", "a[0].set_title(\"3x3\")\n", "a[1].set_title(\"5x5\")\n", "a[2].set_title(\"7x7\")\n", "# lut1[:, 100:150]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([3, 1, 126, 126])\n", "torch.uint8 torch.Size([3, 1, 128, 128])\n", "float64 (3, 1, 128, 128)\n", "tensor(116.4444) tensor(138.5556)\n", "tensor(116.) tensor(139.)\n", "torch.float32 torch.Size([3, 1, 128, 128])\n" ] }, { "ename": "RuntimeError", "evalue": "The size of tensor a (126) must match the size of tensor b (128) at non-singleton dimension 3", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m/wd/luts/models/RCNetx2TMP/explore.ipynb Cell 10\u001b[0m line \u001b[0;36m1\n\u001b[1;32m 11\u001b[0m image \u001b[39m=\u001b[39m cv2\u001b[39m.\u001b[39mimread(\u001b[39m\"\u001b[39m\u001b[39m/wd/luts/data/Set5/LR_bicubic/X4/baby.png\u001b[39m\u001b[39m\"\u001b[39m)[:,:,::\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n\u001b[1;32m 12\u001b[0m \u001b[39m# Image.fromarray(image)\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m m(torch\u001b[39m.\u001b[39;49mtensor(image\u001b[39m.\u001b[39;49mcopy())\u001b[39m.\u001b[39;49mpermute(\u001b[39m2\u001b[39;49m,\u001b[39m0\u001b[39;49m,\u001b[39m1\u001b[39;49m)[\u001b[39mNone\u001b[39;49;00m,\u001b[39m.\u001b[39;49m\u001b[39m.\u001b[39;49m\u001b[39m.\u001b[39;49m])\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1511\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1509\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compiled_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs) \u001b[39m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1510\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 1511\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_impl(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1520\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1515\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1516\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1518\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1519\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1520\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1522\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 1523\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n", "File \u001b[0;32m/wd/luts/src/rclut/model.py:265\u001b[0m, in \u001b[0;36mRCLutx2.forward\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 263\u001b[0m \u001b[39mfor\u001b[39;00m rotations_count \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(\u001b[39m1\u001b[39m,\u001b[39m4\u001b[39m\u001b[39m+\u001b[39m\u001b[39m1\u001b[39m):\n\u001b[1;32m 264\u001b[0m rotated \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mrot90(x, k\u001b[39m=\u001b[39mrotations_count, dims\u001b[39m=\u001b[39m[\u001b[39m2\u001b[39m, \u001b[39m3\u001b[39m])\n\u001b[0;32m--> 265\u001b[0m output_1 \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mrot90(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstage1_3x3_block_lut(rotated), k\u001b[39m=\u001b[39m\u001b[39m-\u001b[39mrotations_count, dims\u001b[39m=\u001b[39m[\u001b[39m2\u001b[39m, \u001b[39m3\u001b[39m])\n\u001b[1;32m 266\u001b[0m output_1 \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mrot90(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstage1_5x5_block_lut(rotated), k\u001b[39m=\u001b[39m\u001b[39m-\u001b[39mrotations_count, dims\u001b[39m=\u001b[39m[\u001b[39m2\u001b[39m, \u001b[39m3\u001b[39m])\n\u001b[1;32m 267\u001b[0m output_1 \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mrot90(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstage1_7x7_block_lut(rotated), k\u001b[39m=\u001b[39m\u001b[39m-\u001b[39mrotations_count, dims\u001b[39m=\u001b[39m[\u001b[39m2\u001b[39m, \u001b[39m3\u001b[39m])\n", "\u001b[0;31mRuntimeError\u001b[0m: The size of tensor a (126) must match the size of tensor b (128) at non-singleton dimension 3" ] } ], "source": [ "import sys\n", "sys.path.insert(0, \"/wd/luts/src/\")\n", "from rclut.model import LoadRCLutCheckpoint, AVAILABLE_LUT_MODELS, RCLutx2, RCLutx1\n", "from pathlib import Path\n", "import torch\n", "import numpy as np\n", "import cv2\n", "from PIL import Image\n", "\n", "m = LoadRCLutCheckpoint(\"/wd/luts/models/RCNetx2TMP/RCLutx2_000000_x4_8.0bit_int8.npz\")\n", "image = cv2.imread(\"/wd/luts/data/Set5/LR_bicubic/X4/baby.png\")[:,:,::-1]\n", "# Image.fromarray(image)\n", "m(torch.tensor(image.copy()).permute(2,0,1)[None,...])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Object `repeat` not found.\n" ] } ], "source": [ "torch.tensor().repeat?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(torch.Size([3, 9, 255]), torch.Size([3, 9, 1]))" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import torch\n", "weights = torch.tensor(np.tile(np.arange(255), 9*3).reshape(3, 9, 255)) +100\n", "x = torch.rand((3,9,1))*255\n", "x = x.round().type(torch.int64)\n", "\n", "weights.shape, x.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[[121],\n", " [212],\n", " [156],\n", " [227],\n", " [235],\n", " [201],\n", " [322],\n", " [208],\n", " [274]],\n", " \n", " [[119],\n", " [117],\n", " [232],\n", " [318],\n", " [183],\n", " [234],\n", " [324],\n", " [117],\n", " [166]],\n", " \n", " [[259],\n", " [179],\n", " [193],\n", " [176],\n", " [237],\n", " [131],\n", " [168],\n", " [233],\n", " [182]]]),\n", " tensor([[[ 21],\n", " [112],\n", " [ 56],\n", " [127],\n", " [135],\n", " [101],\n", " [222],\n", " [108],\n", " [174]],\n", " \n", " [[ 19],\n", " [ 17],\n", " [132],\n", " [218],\n", " [ 83],\n", " [134],\n", " [224],\n", " [ 17],\n", " [ 66]],\n", " \n", " [[159],\n", " [ 79],\n", " [ 93],\n", " [ 76],\n", " [137],\n", " [ 31],\n", " [ 68],\n", " [133],\n", " [ 82]]]))" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.gather(input=weights, dim=-1, index=x), x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[-0.3433, -1.7434, 0.6454],\n", " [ 0.2597, 0.9045, -1.9901],\n", " [-1.0239, -1.8547, 0.1800]]),\n", " tensor([[-0.3433, 0.6454, -1.7434, -0.4747],\n", " [ 0.2597, -1.9901, 0.9045, 0.8336],\n", " [-1.0239, 0.1800, -1.8547, -0.5057]]))" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "\n", "# Create a matrix\n", "matrix = torch.randn(3, 4)\n", "\n", "# Create a vector of indices\n", "indices = torch.tensor([0, 2, 1])\n", "\n", "# Extract elements from each row based on the indices\n", "selected_elements = matrix[torch.arange(3)[:, None], indices]\n", "selected_elements, matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([3]) torch.Size([255])\n" ] }, { "data": { "text/plain": [ "(tensor([[148, 257, 270],\n", " [286, 350, 119],\n", " [122, 153, 327],\n", " [256, 172, 198],\n", " [178, 218, 290],\n", " [295, 119, 218],\n", " [102, 289, 128],\n", " [296, 143, 327],\n", " [232, 295, 233]]),\n", " tensor([[ 48, 157, 170],\n", " [186, 250, 19],\n", " [ 22, 53, 227],\n", " [156, 72, 98],\n", " [ 78, 118, 190],\n", " [195, 19, 118],\n", " [ 2, 189, 28],\n", " [196, 43, 227],\n", " [132, 195, 133]]),\n", " tensor([[100, 101, 102, ..., 352, 353, 354],\n", " [100, 101, 102, ..., 352, 353, 354],\n", " [100, 101, 102, ..., 352, 353, 354],\n", " ...,\n", " [100, 101, 102, ..., 352, 353, 354],\n", " [100, 101, 102, ..., 352, 353, 354],\n", " [100, 101, 102, ..., 352, 353, 354]]))" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def f(x, w):\n", " print(x.shape, w.shape)\n", " return torch.index_select(w, 0, x)\n", "\n", "bv = torch.vmap(f)\n", "weights = torch.tensor(np.tile(np.arange(255), 9).reshape(9, 255))+100\n", "x = torch.rand((9,3))*255\n", "x = x.round().type(torch.int64)\n", "bv(x, weights), x, weights" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(9, 126, 126, 3)" ] }, "execution_count": 210, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rc_conv_3x3 = np.load(\"LUT_x4_8.0bit_int8_stage1_3x3_rc_conv.npy\")\n", "rc_conv_3x3[:,image].shape\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAB+AH4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3vNMZqQnFY/iTUjpWgXl2pAdUIUn1PAqZOyuCV3Y474l+IoG0z+yrcs8055K9AoPP54xXn+i6a8cT30rBZIwUUFc7Xbpj3A5qve3UlzPJNM4aVuC+eMDBx7CpreSZxDFJJtUbpCFbBLMSM49fTNefK8tWd8aiiuSJJqt79oKJudzDGVJDbiT1P6n9KoLczmyitWnMcQuAVG7BDY68Unko8XyliWRSAw3HBY+lOjiicjkIv2orlm2cAcYHX8apJJWMtW7jvtEl7e21w7/MxfcQu7dg8nNaumaxb6bbeRDbt5k6j97liVJPT/OKxraSIx2wkeJXImyNxPOfUcU1J4Fiikfyi62pYgk/e9d3rUyinoVFtao6T/hLrtpkhluG/ebiiIoOTnALZHNM1XXLjV9PWwlkgjYyZDtk+YyYxgDoDXKMTJdJIkio0duJF2uTuP16E04yXCTFOCttHjopwX78d+f5UezV9C1VkiaewkeaGZQHLOT8o6DHNUUWRLuQuePLGO3NTxTywz4y/mwr5YJJ79eDxU0VxHOsnnxgxiQbSFAICjp9OlaWaRpHEu/vEVncBo1cp912TJP4V0/hvxTqWkTqVuXMQBGx2yOO2K5do4oApIZYZCGMYOSPU5q6wigu0W0mWY8O+B65yPw9aT3Oh2qQsfQeg+IrTW4cRsFnAy0ZPP1FbNeCaRrE+n3NveREKykHjv7Gvd4pVlhSRejqGH411Up8y1PHqR5WQDLGvM/izripBBo0TAkkSTfT+EfzNeoLhRnsK+ePF2opqWrXU7uQ80m0d9o9vyqK0npFdTSglzcz6GQ942x9wIXacgtjGeKjlv5ygXmRRgBQRg8+v41IYJFt8AEgAZG/BNVkE1+Yre1g33TdFi9O5J9KyVirNvQtxBQ/3lCvEQYSMc+2Pzoa5h2ytCJGZ23AghQGB6DNdRovw/uHQPqE4j3dUh4OPTNdhZ+EdGtQMWiSMO8nzfzrF1Y30OiNB21PH2xcOBCsSMuC6x7gF9TnHOcVPMtv5hCCCOLb8ykMAT9D1r22LStPjXalpCo9AgqRtOsWAzbRED1QUva3KVFI8MnurRp0YwB4Qu0hHIQ/4YP86ZFFbTb3/wBItkD5V0G4Y68nuM4r2q40DSbn/W2EDfVBXPaj4A0q53Pbb7d+2xvl/KhVEgdFvZnnEEa/Z/PV43UI0jhsu2/JAOD0psJCwtYMoSYDazA7cZOSSPatbVfC2oaExmKm6tyCCY1wce4rME6TOZHUrHIuHY4Vu4GD/StotPYwlBx3L11HCVkCPGvlKcH7x2AYHNZ9lcxjeJoSGjwA3c+tSGMxLnAO/wCQoGJBUj/6wqrdTrLcQtEoB27yFGATn0/KnymtOTa5TdiYDbEv3SwIPqCK908KzmfwzYNuLERBST144r5/tXeJlEn3jksD/CK9r+Hs/neGFwcqJWx9ODV0tJWOevquY6x4w8TIejAg/jXy9fWU1r4gurKWM/uJCjHPHBr6izXzr4yfyvE+puDybth05PP/ANaqq9DOk90c1qZk3ARyZLDAAJ49a9Q8G6FBo2mqzKGvJQGlb09h9K4nwrpQ1fWhO6kw2xzk9C3avUDcQ2cWTgAD1rz69S3uI9PD0vtMvG4MYyUpoviW+6BXNXni2KJC4UKqdWc4Bp1p4msryRVDJubkAHnHrjv+Fc1pWudVop2Z1aXG49anDAjrWPC+WGDkda04QWWiMm9CZxSHu1U5Zwp4OTU82QKyriVYlZ35Hb60pthBIsm6SUbWUc9jXK+IfCEVwkl7pq+XMPmaIfdk/wADV9fENlkRxyQNJ3USAmrdlrUM/wAjYQt0BINaRcoO4SgpLQ8rjXy51ZrZmMZIw5wUPofammG1l3rCf3ijKAjgE4zzXU+NNNSzv4tRi/1M+UkA/vY4P4/0rmdsbRyNkAOcrgE5wOhFehGXMrnnSTpy0HGVJpTEMpLgAnJ/Kvbvh0hTwwMjGZWxj6CvE0j23kU2F398Dr/9evcfh+D/AMIpECeRI4/WtKfxGNVrkSOod1hieVzhEUsx9hXzF4qvZL7Ubqddu+eV2AJ6AnrX0Z4knFt4Y1OZjgLbPz+GK+ab0/a3x5bYd1j+U5PTn6DmnVfvIikr3PR/BOlf2f4bgGMySr5jH69P0xWjeaXdXSE4x6A8/pWlpyrFbxxr0VQBWomCK8h+9K7Pai+RWRwmq+GpJNGhWGPzp0m3yK3BcYI4z6ZqvaeHtcv720/tM5ggl3xkoieWnHyjByen616KYElHP86fFaRQ8gDNdUKslHlOecIuXNfUzoLDyreJX++oxn8eP0rSgUKlNldQwB/KpEUleKxikmaSbcSrcJuyBXLeLtIvL+wWO1V2RcM6J1fnkflXWySDzNp6054Vkj2sOKcEua4m2lY8listWu7iGxntIUEUi/ZjHblGQDj5ifzrq9Q0Zor4PZsBG3Lp2J9R6GujNkQ2PMfb7nNS+QiDgCtqk3UVmiaaVN3TOO1uykv9CuLVgTIq5XIxyOleZ2UjKW85S8gHCljn0Ne8TwoyMSo6Yrx3V7GO11m6hERYmXcGHBUdcZ96qg7JxZniUpe8hhAjDjJK7SwY54OBXuHw9bd4RgJAB3vnH1rxGS3dUaPIG0cfN69vevVvhVdM2iXdq2f3M2Rn0Yf/AFq6qe5wVNjovGq58F6rxnEBOPoQa+dGka2JZXGS2+T65r6T8ULv8K6qOf8Aj1kPA9BXy/MFkjZRGzNgNgepzgfniiqryCk7I9009t0QOeorUiGSDXPaLcF9Ntnbq0Sk/XAregmGMYNeRsz3Grq5ejHWpGOBUSNwKV2zW62OZrU5rXfEJ0W1a5W1kuW3Y2J1xRaeITd2UdyI5YVcbikgwy/Wto2FuzlsHnqO1K+m2vykxD8qyUJNHTz010Ob0nxfZ6zezWaQXMbxfxyx7QT7V1VtJvhUmqM2lws+6PEZ77QMmr0EQiiCg8CtIJqWplUcGvdJep6UxwM0u4A0M3HtWrsYpMpXBwpryjxQ83/CRSGMII9u1gTyxxXq9yflryDxM+7xBdOqsXQ/IV7cAYP1opayFVVoFIyyDCSMeQc7TgV6n8KXLWmp5HO+Pvnsa8nmRmaMHOQckkdu9et/CWNjo1/Mf4pwgPrgf/XrtgtTz57HoN5bi7sLi3PSWJk/MYr5eMf2WaWFgUERZH9Rjt9a+qBXi3xN8Jvpd7PrNpFutLli0iqP9XJ3z7HrTqxurk0pWdiXwzciXQ7JgpX90Bg9Rjj+ldHFMFPevN/BGsGSO5sZn/ewv5i5/ut/gf513EM4LAE141ZOM2fQUmpwTRuJcjABzmmT6gkY5OBVZWUpnvVO60ldQUiV3CY6K2KjmeyGoxvdktz4lhhJSNgxHU54qsfFJKZ82PrwKxrnQYLY4Ee8f7eTVc2Nmox5ER4xtwafN5nZGlSaOstvEMM7LGzAMehzwa1I7wMODmvP4tDWdswsYSf7jGtqxt7rT0CyzNKuep6iq9oznq0Ka+FnU+dkcUNNxVGKbKjNK0uBVczOfkQ66mwhJNeR3d01y+pSIfkkuW3EHk7TjgV3XibWI9L0a5uXYDYhIHqewry3Tbn/AEVJJCfPZMqO2W5rqoJu8jlxL5UomlcEqWYDK8flXvPgrSf7I8LWcDJtmdPNl4/ibn+WB+FeZeEfDY8Q6zHNID9jgw8w9Tnhf89q9sUADFd1NaXPNm+hItUNc02LV9EvLGUHbNEV4HIPYj8avbgASTgDqTXF658TtD0tHW1dr2dTjbGCFH/Ajx+VXJpLUySb2Pn24vX0S/S5t0bMB2y54zzgg16HpmtQX8KyI2OORnke1cL4ruE1R7u/kVUNxNv8uPpk5zXJ6VrlzZsfKk2yKcA9mHoa450VVj5no0cS6Ts9mfQtpc7jjPFbMEgIHevGdO8cqgAuUdMHG9Blfy6iuv0rxbbXWDHcI49VbNcEqE4dD0lVhU+FnoDW0U6/MuT6GozploF5gX8qzLfWotoO8H8atf2vEeNwpc0eqFyz6EpsIo87AFqCdAoOaa+pxtyGFY+pa7BCDmQe/NS9di4p9S8JxESMiq93qiRIWZgABnrXDal46sYCyrL5r9ki+Y/4VxGteJb7WFeEsbe3I5UHlvqa6KWGnLfQyq4inBd2S+O/Fx1y7FnayZtImyzDo7f4CrtjDNLo0YjDlNgIcDPzYB4ri2tYUQMJCx613GkyoumQI7sE2rhF9P8AHNei4KEUonjyqOcnKR6b8L9Y+z6obCXIFyuM/wC2P8eRXsPavnbS737JqMV1FKyyI6MpYYJxz0+lfQsMglhSRSCrqGGPQ06TumjKorO54R4t+IepauXhjD2VmMhRG5+f/e9a4c3e9uW7HlRwa0JoJYiDNIsioCxyO3tVOBWkQyyMdmA2wdwe1c976s1tbYo6lOwtW8uI7vJJ+g5FcZbAtLxXX6xqVuyNHEsqRqxJXjn2+lcvaR/OZDjGc/1rpp7GU3qWEllVMgZz1FM+2kKkkYKOOjDIP5irESDykOM1HawK0Clu7Y/WrJUjSsfFWpwsUS7YqBkLIN361of8J1qMSkukRAPBBIrlZIFFxGo7rSPbYjOG4x/SodOD3RvHEVUtJHTyeOtUmCrHLEgPBABJH51kXuqXFzua4u5ZRjBRjgZ+grKgh3KTnoalaBd4X1/xpqnCOyCVapJe8xsdw5yOMZyOKV7gtgEnaKmkgWONz3AqAoPKB9FFWjK43zSy8cCu98NPGdG8m4UHOcycbkx0xXEtBwCOiHOPWun8OK5t2lUgxqygqw6gnFRU1iOL1NxRJDO6JOZJH75zjj/DvXcad8Vb7RLKCzuLBblEjAVt+0jHGPeuFmx9oYbiZHBXJ4A9vpiqmpyyPbQsrDIYrzWUXqE9j//Z", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH4AAAB+CAIAAABtQTLfAAB+1ElEQVR4AV3957MsaXrYiaV3leXN8df3bT89PQYzcAOQxGKXIKXdFaUIReibvujfUex+3FBIit0QFaK4QYogSJADAoMZjsGYNjPdt6+/x5/yNit95v6erNs9WFXfPqdOmcz3fbx/1azISlVXikJRlFLV1JInpaKq/ChVeSr/Vy8WRVGW8rc8eC1XkuXp9PF/fPyDn/z4+5/UbXOV8zWjbmqTSMvK6OFd/xu//53U0hzTbTXVX72c/fiXn+/t751OboqYKxppmnznzcH3vvFGUqj//Pu/CubBH33w4L23Bj97enV2EwyHy/VkXms3j/e9JNcmy2Wcm65RvtWtvbnfunv/rlrkpWl0jt4IZ8M4ilqH91l9tr1cXE+LdNscHCr1gyIYFaptuN7nP/jJ//w//+TBXsuv1V68HPl2mSjqy2UWJ8lbg0bdMtdpYRvqNtefTxZ9173dddlMqmiLIK3Z2qBhLNbJKCksw77XdAK+7Wnf/tM/cvZqeVl78MH3rPbAMht6qRVlXhhAsTQ0XVW019Aqga9AWFW1UtGAoqqWBjDkAaQroPKjAvYOE9V71TuvX99dSHCgKHkeJ9Har/efPB9v4sw2rShNjTINFP1mGX344d3f/ZP3f366uJiO9+3aNz+49ejJaVYap9czs1ZTtWy92maqOg+izTZ4erb4za9Pa5b7g18+1m3r5mpjmKrpOLpXDwt1Had7rfbjF+N0vbl1y6/lcbfRNk1zNLy6mC5vsfUs92uelq1uLq82i5f9zkFmuNsobjeL6/Gi3mhbjWacqVGumrrS8Mpu22MH0TZU89S2bUMHQGVellEcZ4VhanquqEGcOIa6jpIkUzXFjBKNDzZ1hc9ASEpQLCbRX/xPf3nrrf2ibl5dXhy+9bX7D7/bbHSBdlEYFVABaaHx7QrimqIKOKFiAbCiKqohgAchQF8oXTAjb6gq8JUnO1RUL8oHFa4r3yhUNS02lmVdnF2PX93st+uLIMsVrWYZnmm2asXJSX8UZZ89ux7suZanmWruG+WmbsziIo3zdBXGYZ4Yyvl49f2PTufb5PigP5ps5rr10yevXE076HWvZ9EmK4LNVjO8o07xzr2WWRoPeubXP/ig0z9Winj14ottYVyNhjen52/duz169sWnn5zfdotjfxbY+jDJ/sEf2UkQ1wbOcj6eDq+angVsy80G2hyv1+1ardsyRqttAfdoZZbllq6FSTILNzVNq2t+rhWmYUZljljIMlPTcldNLc/QTKXu6euwhGOmZ1PN0pL5ah2sg83m1v339g/vak6r5JpIDcAnpCy/gHUFRREou4dRPQGSr19//fKXv3bgrn5WcC9VsIRYUrJcjVMl3U7Oz13T5OtAXi1K23UM32j7Sqhk07OhUiRlYh0/7MzW21Uceba/jreKrnkNZ2tkyyJdxmo6jto1s+W6ZUfJTH2dlYi/6XC5XfLZ2ChyL8+Xi43n6aZpbdP0k9886h8sDjtduH+9WsSl9mqUnY0vMiNpeLW7b+zbpTu8OrueZ//5F798o9N9fPryL3/+aX65iovsxSYtSmudKDXHanvWTFOLVcHCnZqqhGWY5Kso3yZl4KXsUEFw5LljGkL6qdnw9bQwkqJYrLYatItI0XUrL8pNsUkDb3/5q5/9eDwavv/h7x7f+7phO4WCwOFRAPSd5KmefAlppTR480s07OD8JdTBF9Qtsuj1+/InCyoLLdWKaK1vbuYvP3/16LlhaPNtukzCvlvTGrZ7t2sbee+gzUejUknD9XazfXo62mRGnia2afeB+2wV61rbr63m6zTKV1m+GgWH/Zrm6WfDYJWq7X5yvN9wlHAVb958cKAqxSe/Pnv3nWN3z3/6Yvqzz4Z3j2xFsy3PvbyazddRr6t1XUNbp3Ew3xr5RilqNfvF2fDyYlqaXprnhyctv+5/Np3dtJpNTTfXm0XbiSI9meoTrTxyHBfAaqpjaRncXuippqZZCgbCKDtfRHlLN207yfIozZ1ChdqQJEXBFkUhxtsc9nKa5sunj1zHSuLN/vE73cEdroSk+ArYO8hW8kae8v2vHsD2tw/e40P8Xf2Q16vP6WqpJsEoXb+4fvyTv/wf/9+nj84M3UhLtem4tYZj3+2lZnGw3zsZ9INl4FqOrlmX4+02KlzLmgVRnGan56NffnY9XayDRaBkerthvXmn0ew4iyh48163UbOXSWw7zl7bzcutqVvz0cLQ7EwzXdseL9KXZxunWVvH9svhehND9IZi5gf7LbXUrzfpDz6++YsfP4o0rd9pXdysb9apZahdTXtwf/8f/9Ovf/PNk9LVOsd+/+FBUHPhVt02pm3nytESVVdtT3dr+22vX7PqrpGU+SKEylNQG0ShpWlbRExWhlEiQKn+ZXkOhvK0WM/XSKZwE7568vT8i08+/dlfzcdnZZkidn5L29VXBLPVP5H1QLnCzJfULygRoCP7sRmE1qs/Ef4lAm87Ofvk33dq5fjp56OrSZAp8LDd8X0DEeedT5Zfv3/w8Kh/cTl+fj7CnGh2/cl4tVhuuwc9dbUEWA3XHPQapm9GKWST9bp10yjGmxA5vJhGjmvlBsZLfno9Px9nPd/cJsX5eLqNI15ZxWlqup8/OouLvNFsdhtOEGWupc1ns4+/mMS5Um/4ShKnYWq1FMvyer3WYb959iL619//7PZJv9nz7Ki4nq49227Zuuoat06aWrcRp3nsp5bvJkGRB4vIyIJEcU37sKnMN7FlGoquR0VZs8w4w37Lmr6qIswhOk1r1Dy7VG/CeDsPkzCLw+jy8tJ2ltgy99/5nYPbbxUqoqVEzQoTvIYtAJdXd4//Fdx3L0HmwH2ncncIggtHrz7eDB8bTfvJ56/SUi86jnu8N99ump3mCgLYrI732rplPh/OvVa7ZpeT+ebpy7Fpui/Oplxuf7/mm2W6iGoNOwuhiTBYRzcvF8tZ5Hf80TK8Hq6Hw9V33j70DMsxNn69vHNv/2Y+81xNNTQ117uN4qhzGATxNFb9VvP86Uvf81aJatXqQ6RVmPzO+7ddV3tyepVrpalEF+fpLx9deb6vzZbeoBanerSOT94auDbKNk7U/MO7/avxbBh4ma1kSdJt9+pKsVxtkS2eZy3SsNQ1UzcspJ5pJnnuGkoUBg206zbOLQ/KLJJYN631FgWXZ1kWBNv1JpivJtPJ7Hf/WD+49WaBdBEAy/8VJAXA2Jjy2EFZXnhN4GLHfPWnPOFbqprMXoY3nzcbtY9/8eLFk1VSlt2j3jyJt2Vm1KybxaqJ0DTLi/H8bDj3LXWVRM8mYaro9bYTwDCatVhmV8P1eJ1cjtdBlLPVKExrvdoRkt02Nc/uDlrNuud55noR+J6tadpisd6skl67iXW1Xm+W8/jl1TKOijRLxrNpDaFu+bNNmGTx0VG/1aol6drz7dFsPZ8HrVqt0aln1fr39tvnF5PZPK+1amlePHpy9eTlJNVqvucYihZso4Zr9VtuzVebnpYY2ShJjEJ1TCtJkhINW6TYQWA/TNLJJlE0LE4VM2yOiZSpTd1ybdOtOVEcQayapqdxMr25/OxXP13NRhiWIjqqBwJmJ/1f2/x8mtdLsW75J7Ko+inQr3CAhEdjJturT/Vo/uzTF6evJmWrrvXamaU+u5qYpr0Q+yq9c9AJsvTf/uDR5XA7mYfjdRFsU8Q9WixDWpdJ17eipGg1nVt7dafM89JI1TREaqR5mRSXV0t0cafpjqah4xq2rc/mIU7AZhM/fTaKtum33zg4GTTPrhaHR943HnYWs/XV5SLPtn3XDtbh5fnN1cXk82ezi5s5EDi51W936leTxfHtfqvtdNu1VCnH8+XVdPHRq4vHF9PRIrxYrs8uZlFcDg6aRweNKIm6dwe3f+ee4XsDz2p4DoAaNFxV15Zpmat6ga1jWoah53kOylxLd201QeAvlrcc07cVHYvbNJo1s+7V0jR+/vTTJ7/+aZLEmPuqkvNzhwDg+pXAef3Kjti/+rl7gtWIp6Ali/EXv3nx2ZPT6TZBghy4kziLMqXfb+m6drnY+jWoJPm7R+c3s9Wdk77uFOvhtlhtV2GWD5xksX3nvYFva2evyqavHzTscJvlSdZwbd+1zi6e3znZx4o4u14ladbvaPut+s1srmt2t90oVG252HY7RqdrXY3n904Ge516r2NNJxtlkt8/6l4tVrbtBlbhe0an1/ni5Wx0s3nTM//uN6fPL+b4EH7N7o5rqyBHb6qG7fuOv2+2vdjs1s5Gy2AV3Nrvff50dHoRKMby8MB19hqrIEsGNX/fc8ry8tGFMjU9N2OHtm16SH3bUraxY7uei77ZzlehdjVzBo1IK5MUsy51/TpAi7abR5/85/2TByf338fR3dG7wFog+vceO0DvXqhEUKWfhfDRtspm/OIXP/joV5+NA7e+UpVYydv1Zo6+T8JZpCxnSZapZ7PkZq3tHfax9XFU7tze//o7R/fvDfb3fc9Ns1g7PcN0VJPCWAXRZLbB7nxwq9tueo7fKLPobq/mmMpe0zcz45KAw1Xgmv70ehFtIhu7T9EuXq2mizgOti9fDK+uNxjetw8b42X0/GoTpvFB3+76qL4i1/LDo47mWjeRWIxlplk1BxE0HG50XYmj/Hq8ma0jy0VIaHFhjubb5+MlRmSc5cNJcIajZZmtdw+9+021pjcHvU4XEajlcdRv+Q1Tefu9+1bTFQ1gG8tg41gGfDM6nWrbLA3ixWIVBNlstlqtuJ22WQ0ff/xTZCswBJIiXqrHa6r//wP67j0RPJileDiapm6n11/8KMtTrd/E0hpPtpZX1NsGYrBUXJQen00NM9gm49GmbSvLDAfdORooj24ASmbZvX6nqRbZ7aOWYWxdqxgMWmfzuNftLVerLz6Dvtf7rYP5Ynk+nM5X0VHr/l7P9jw7U+LBfvfjz25+8eicwMs79w+7bT/Lg4NBbziKPvl8iqNeb3mOXb+5Ok0b9Q+/djCcLG1VG7T9m0kQB5FVFM2+D98kheY7dqnLI45QObODO5YyY09Jt981LMMKi8JzbdgxyIMgHQwa15MNAZ9uR6yp/bqy3a6nYYCjVx8NnYb77h++7da7v/irn3qK6tiOqSpbTL5SVzu1Zt9JCyUMUtc2wrh88fTzb00nfv+wkvnZDvq/BT3i/u/LmQpFggK1wOLNotX1aHiZOoatFrbl+n7i+H5eaLi27Ybr57GhWinaxrWVgeaoam+/puXK5fni+cvJ4X7v1bNRkev1hmXjredpmRWr2Ro59uLFabd28Ob9o7S4ePvOANPIeDxqqerJna5nqvXmwvUI+fgnt7snN8nRfr/X9q7H27rn1lx1m2n1jp1HytfeOYnL6Ga53/HtB3c6Ndf+6UeneR4edP3rOP382fWD+7eE2Eql1WqWRr7GbU3jbrvebtSiJL+cjHWjvgqDYEWIo1AjLXIcKBeRAn/4mrtebr2OH2YFln+Zwkf66HT84P07D945fvx4FG+SfrtZdxRAX1PUHF8fSkBzp0WSKVEUY4JuNpv5Ylwb7IkGrYx5APtbWb+DO9oDHPAQgwbVim4uS+JccR7Po/xyua23/Zg4TJHXbWt0vTANzUrTFH7js0Z+ctSffna1LYnYtBebVbNbq3edg8NmmaVXy/Fyrc+TcnQzObx39OJ6Nh4phubeuX2g5pF77V1er++etN+5d4hpMrxaJFF2cbHsttwn+hAUd6wSxfDsfPzx50OiXK6S1dhuqROLM/P46avpdBoUUbKa+a6iQPJvPui069p0vewc9t94o9dyrF/+6uxmEfYPDV3RRuOl50DyG0xMDCrDULPcyAmO5dlJu70OI9N1wySKEsXO8u5+0+/Xbs6u9ThLDX0UrQ3VC66Xv/qbj1+cQdl5sFnVTVcnzMNlSiiL8IlmaEQTjO12W/O8vEjDbQBQsWJURQeqEIKAfgf0nXDHb9Kw/sUA4mWRTKhYyHMzGy7ORnmQRm6y2a6zVE2iAIUeA1TU+2J7b7+JupyOVtDL4X7n6Yuhh5cVWYtVfnoxvHuyhzm42KR3TzqWoRgWwcTuJolcPV/crBeQxGQ1HkVqGl9ez19gMgFTz5htQ8vFR03i1XY4XUPOmqU32rpRmGD65Yv5i7OJppW2kh/0exe1TVYmL19OXdOwEX9hfLbMXo2WmlHbBsn9tqMQ+2267z4YPH81afuO2647prYNoobvF5aqLghkZo2Gb2k6DkrXJkCWzIOkoVpHLZNNDQtb8TDpM7fTjhbRdBaszseK4U7WW88kKJ50uw1LdxbzDZjTsJSdwtatUNPwIj3Xvbl6/uC9b2mqLgJfyYXqBcC7BzCWgAR/CMHzZEf2xMqUPJq+fDx8dpXEFsvsNBw3VQENOxnPN+12PcxSIlC2rvPl9+/vO43Gs5fDMk4vn9zMZiGqRr2YFBlQQttZpwSKL9f37nVsPQ+2m7Mbfa9t3TppXY3Det83b5ZoyevZ8n6922rVMVsDhACWphOcDceWV+v5FjIFQXS1mDmOg8lkOG6v53dahttuxttkeL7ChMPnX2W42lmrZlxfjtwsJGZyr+dNpsuLyUqxjLZ44MUnpzfRJq7v+eM5Eb70Vgs6DXpt/3a3/vRmasQE9KNeuwEalpu1r2k9v75nmHE4TYqSPERupDW+i+Wgal6CfIr1QsVrKPGtCOSqOcFtxAHXHJ0/Cdcrt95RVXEzAJQBseO0ViDfvSJYyRHh0D7+DPjQzWx9uR6jcsLAsJuWvk6wta1MsabjyHed7SYajwNNsbpueXS3N3w1s8ON79QuJsNazfnau4MsK+JCzUwYKL44HRoqkS/WpEdbOFrFEz4Y7NmFuQ2Di0lw76T7xr39y8lquQ1NvYgDnHO88PL9B4cE0ldJdnU9y4iZJMbBUd0nEtDz4iS+uJmsNtom3PSbnt8gfaGsiayoxoNbA9u2zs+CJy+C1Sr4QjfGiL7Lect3MSj7/fqDo+aDhyfzjKUotpG+9+ZgvVqfXk7DNVFh/epq1sdH2+bYlx/e3vf0YvXspm7aum0u4tTWFb9n2TX/ZhHz5TBRzcIkqJARmqrnRsPCkt1u40aznoThxavLyej6uNkSy6WS5gT1Eec8F7iLC1sSp5FoJ3ILtAEuJND45S9PP3/asX1iT6laJCIUo9km2qy2D+/t42q06g4e02yd+JP1p09PW80e4dQgKwb4mqV2NZ8QcpjNN9uVWrs3eP/N3vOX83bH6zWVWaBi3q02mygrW741Bpd36vdu97ZJNo+Nvb6XBNHL4aLfbLxxu68oGYYKHgsyfTpb9Q/aCIdOp65mdcPaGqb12aMzV7M+/J3jtNRGi+3FzTQPeWr02/75y9UmDmZxu9b07h0Y3/ja0fOz4Wg4HzSbhL3OTlcb0lR5jJli+d6ild0/7Ly6WriO/a13jzOimYaBp7waTYlvmoYKEW6CuNFr1dzmLE3qHddreflEgn1OlGGuxuukNmiscODDTFOCpu9DYdPZ5YnyDlCuAgoIHIk8i9KV/wUbkleBf3iIOgAN+frzn/3w4sllrnpQK+6JoMfUTAw11ZgFmW0V3Y4fxOZ6nb4ar91Ww/IdskAo+8kyHs63+4NWrmU4mMsVGac8CDez6YaoJH5pO1PZxJ1bfYKChbpcohiuViYhquHqYrF0NLXve716ndTd6eX1Ngh1wxxP12z+aL8ehfl4G71UcmQ24a/9Vi06xp9g9aWpl8f7PiL11UVQZMXXv3a7256r+sHZiJsnx516s6atVxtIImjFB3kzXqez6RS36/x82XT0212vU7ceBWHPr9056J6PFrPpum5Zw9Had5zRNoQoWckiTspFtMqiwYP9KC8LR9VqbrYKa2VKSiwfrdRmzavV0ji0TLPnmNFmg3kNnLFzgLMhEr4CegV3AC5wh+T5k7Clqpnrm+eXj54Zau0qjFIctCDOcI0cc5sTKiJTQ/gx3a4iu+5L8sxr2koJznVbWSyDm9Fiv9FxXZ2Q4c1iu9fpoMWePZ9qPja0Ml0Vt+/0Hgfp87O5jtAr7fFsxsfWo6jT1O8fd8pUu3g5w4PUW2aRNxtNCRVOt+mry3mSpCKry4KYKC79Yr7NsghqAp5RsMW6YAfzOJsFyptHXpaHnY7z1t3OweXi55/fLIJgMsU0qi2CsLNfv/vweLx51WzVB4PmepNeXIz2Bv0X55vRLLx3csT+SJ/V3I5hmv4AZVTfXo9hyfVovgnKyxV2Vdo6GSR6sSXpEiWsqiRvFG2L4VKFQzUdfxffAYMKvYFwh5x3pC652S8hvyN2sWoqsYO0N8jC/eaH/4Jwl4V55zjTXAvCVRKXRl0N49QjCmkS+NXdpu8S8rKVMExIupIdM+wSTc+lorJ4fjG5b+63mm1TSQ72u4t1bTJddNpNoi7nz26W8/Ax7OlYuDaLyQotfXTs4I4RTljhc/WMVr3Wrtc8lzXjmpq32rWDpjfomEmKuYCtRnBEgyq+eDrx6xZiZ7wtbaNM4ngVZ8tNtqxbUbgIUStp1GjVXUeDOweDvtOom7XpnZPu5ZAIX0H60CakijuroJbMWCkJVhwf1DVLMV0sdcixxJtIDL1+qztJpuTafV19PF4UWjG+mJr77etpaCqhfkj4x8xXuDlmrmnxamM3asRwJJnN1Us8LkLxQuBi4UDmr2FdpXB35F9RfX72xd9+8Yuf5dtU0+2U0GiUDNC6hCGJYbgEYMkZY+elUYgda7iGjmZvdD18XuEYxazVSW5bKabhaKHYZhRmT1+MMZAWy83p9XJTkGTcduu123tOr+7lUZENvEw1nn+xGm+v0yQ9HnT6LdNUMsKVq8hfLFfzaaTbeqdfV8ilgptNgIOzCViO1x/4MD1huDAvyFVq6D/TC7PVZB3WHJtE3hdfjDwHg6vIsyKN0PHx3YMumubmehVuw4f39lYYhpmKdl2HISIOybtYh45T7HW7F9eLONShtnotySztarom2ofzCxceN8g8ZPEi1BWLLPcyjLWmY7nWNliXxM/iWFEl4lOk+Bw3cAO5fsgd6L+264E+jx3QUbNYNmqJL3d18+JlOMFB005nG0LSNp62bqwAMKI6Khp+TS8UFNo2hMC1VRQ60H4dtRkrpkE5hMT4tLK518PrQC/Nw9hIRRacHOzHp7Novbp3tI+tDFKfPR/qptfwvDBeQJ94wm3NuOUafQ8+LWLiQ8G6oWv7bdS2Hq6i5TRbE8nMSJCRalRMP697bMCIFY07pWGim4bXsN5/2IPMEdNI15vr7WSxDbcJiZhHT6bni/XDo567X+80Out4enIymBna848v5xs+UB7sN3VNX2zjzdnaN+35OsAkJ+7Y7dSAJiHquw8Pt7N1M1rt2cg2NUQZeDZ2MaFwnFmPwonlNk0SAWVWOHUnV43VAq9ntOc3JWmOcbmTNsAdQq34gOugqXK9VFcXj8fXZxjlcVrUiMSnFEcoq7zIPHKihmqorSamebFO/WaH6Km1KhLPKNfrtarZNUf1DBzCbHw1bzbWCdIvLW4fNkl/k/MJFrOuU+7X20oWmamKxjhxrP2Gh/unGl1DN+uu2W/WCEtoEsNG4xs5SULyntib4WpLWIhaFLSZYmH25Dm5pGA0WS+DpHCUlaKTrVNIk2wTDOLSdsCWwUqzIjJ0j6ip+E9ZkhXT8bJho/WIkySr+dzzJV5PXPigQ7DHIos1wRnDAHCAnua4dhEGNcedBmGIIV/GRPn9FgE4lYQCETpbVfx2TbO1EHe/4PYllRiROOEJUUIMk224Xs5u9o4eAHMBvVC7wF2sydcPkZ7Eo9ezi9+M8c+Xcc2RYMD08dV8GcyNuNHq1xRidTG2r6GrxBGwgg8OBoNefb9fJzJ1dr5ItlFWFID7uNPVHT00op6S1FUtXkdXAd51fNSs95yi4VndenPQbRwM+nWnrtoqYRyTGgzbViw7B+0CX2DF4jC4ZJEwsUJRA4ElAAL5qGgTHRs+z6JgNY63W4pNkkgNVsur0c3z0fZ8nt6slrlp1XrEp3VBlI7hpncsN1hnC6xPwzg56Fm5NlutD3uNO/32wXHvbLLAgLy5Wu/16iB4cj3qHijBdHVzPTYcu9/1282aiiE3W0yHizQXQzGKsppp4e/fzKM6KRrwvQ48qi0cu6DgRyVJXARLGAPdJOYlBQ0VtVeOLH8TtoF/UB3xehovrherLFTNvcP2osiuiTppluuR9lBKbPtctVRrvV5ZRba/3+aLBMHX623bIdbkffHynHza4XEvitaTSUjRF9mD6SJyFPWOa9693b13tEdKpNasW77v1n3TcUsNa5UQlasblYu3s2yFE6lYEeBDKUDfrvLzyBYC7/IKVrR452y+8Hp7EvfAXCa6kQRvzEYfjhfT+Wa8Xp1eLV5OA2pBEPoR6EKoSh2MTs7LrqV+w1miiDQzS6QGRcWd0RUIH4r0XKvpGPdud6BSV+tvtqmZlm++iaelT2fR0e39yeUc5bIMVUfLHZhRIdJDPKiwHbeLOCaZ67qZrkMlSZJvFkueINKJdED1Qv74rULysjXULlF8dT05Hd/coIUOb7UzPZ2N47zua8QlYDlSroAiiiy9aFp13UYoJOSsbx20cqX8/GJ4PGh/44MHv3l8QfRGt8h46gRaHUt9a79+3GvcPhr09gc2slnXXK9GwpPbkvphu6Q5ubkuxVuSm2FFgFfTK3tXFip4UJCFSiRgo4YOiKu5eCIsGrZgfbxW5JJFRUA4LnnxbpY+SLMP5+vLs6tnp9dnk+3pmEwGMtTU7MLw7WbbN5R8i5y0Gt39bqIsnryY1FvN3/vm3d5eZ3g1na7i9l4T6eQ7pNgSUmPw8aMX8x6C1k9wYDEJjTSvwZYhVUZmEgfdbg0CwBAIpwuTgGfDJ5+f4+duVlVqjp1WAgd4VyAXLuAfYlJPtJtnH5+dTi3bUct8symXBL5bCB58KHLuhWUJXHCR4FnFMOI0Hi/WZAjuHbT3Ox0k5LUEy2Oh1bw89PXv3Rq8e2uvN/Cb3Y7bapeWo1o6oBfdBY1JYRUSHQX8egmQQmUFEInVCGtA8Qq+ktCFyBwUAh9HRAPxkpSpgF7EURWQFeMYeSJYI8FIchdzMVNQfM2u9+DeAG/jarp8cTE/vVpexcp0RsEZ21EbkLdiLhdrbhVhmkznF2e10ipJqqiFuUzGjqY7UPoiUix3FSk6gap2a4ybZ+sRRThsQ7PDeRBD0pZSc422kqdXsUHNxTaifooavBxhiRknHoyEEETWi53PA9xVMOB3liaji1Ms60TRNyTaEQSlGmzD0nB55uoqwSmc4xNiTM8pfimozTu5VdvEkWaRW6U2KrlaRg3Tudc2Pzzpf/jgoH/QIe5O7oPoB0JcuJ10EalOiLsScSLKceAAstwM8iYMk4hUEdqXhcEPEDSYQZ5AT3CobACgsmY+L4KGz2E1V9vhLRQfnyAbCBrR1kTTTV3H1OiqncPw/r3Z08cXnzwaPplvL4ebTUZOw/KtwHTLeJM/vHeo5dlotvI89+DkwMzQyUm3Wa/57qfPLnt7e3kREn6dzMaGay9ClELyoEEMQltEqdnGYcCJpDiIEIYWogZUPQxCKtbqLQsiwbwnjAjTioUD9HnwREQsEpZ6yhznsCwtm7LH2TKAjDZBtqHMRVE7TZ9y0SBC85OVMt643Vltg+VGuZgtW77Yd+N1SuiqbRR/fKf57fdP7p30vXpbt228e8M2sdhEbFTwFKhL4AhzHAMZKbMT3txYqJsIn6ACEpI/K4Uqi4PEd3+/jv+xct7lQtWD34I8+b6CfkYJC19QdwFChMNIWVFGRkmr673j+u2633708otxeL7QKKLRbbfpUay5gX+77S6RJa/h193SUsmcUMuMD1E2Wk0yIAQYr19O7t3uonjUTTxw/I5JTWDu+KbWkmAx0VCyg8466XRaFMpuAok34HmmWS41a0JC2muX6vXKd79wDpfz0XA8WidE2HHUa54SppFGDsywmjWL4mCkO/bC05cXe92mBHPCFNrHZFuUuDlxx9H/yYf3fv+Du/W++FSm4ZIToZoFeSxGFbmKHfnmhJYqpOeUCkDIplRCS3kKNggKgHJp6lAhfz4OuYgGIoCWE5atHjutKwIS2hfSEf0LVoWEBB0ZolIXA1ougQbjJd4Sq4Lr6GTL/Ftv3m0O2rdfnH3xcvxkuFwoYU2tPzySUOtwSEZfeXF5PVh5nW6LguRwQ70IDhzGqkmBUaoGjUSJVksKJzKoOiN5bHTrtrvf2SjpfLwkE6nVa4YBtJM4pCyLzK6DNVgtUhb92q7/CvTVpqDx0XMpoSarqm1JxFEX4FoJgEml7oH8Ee6iESmUnGsgpcjOx/MkVwmsUJXb95T//Tfv/OH7b9sDqYWC3XkAOQ17XgAoalCQrqD0RYgLje8gV2bAXeAs4BTap9aNCmChY7z4gkuAs0okyZeQfFJ1Kp/la7vYCJVGoJDr4vJhepZcROR/hYYK24Ih+bjUdaNtFKNpee8hOY/nd59d/PjXr0ZjZE6GJ9jDUCuUxbacb1KffEReknxfLsfUg9w9cZU8LnTSR5uaox+37M/Xq5sgaJTNmh4rwYq6RNI3YaY3aiZpL8po3ZyiOdL1gBvFBrlLQdRrgSMb/pKUkDgY3sttYlkOoQ/KrBHLCATcMuqB8jzBLAq26gy9OifVEUBYEagFSyRCyvyfvvPgD772pj/okCoWEL9+VDIAiuMh0pyco2jSSnoIsEW2iAISF4rFiEDEAhO2EBSIDFHgAcJ+hCMr/PEhwYLwg+BAUMBfvI+RBXVjpKrwNq8B+xKvktsZVHII9sE3L4rmRtVjR5vUTXlfa9W7vcFPfvU5YZkg8fIwQ7QfNZsrfbOYrYyGr3muusnwIFAD/b3OZlYE44mkZwydjzXNDA+BqBJdB8acDVrbaDsi2FdoLsjLisO7LUldYciJ0GSplDdWhMBPoc1KR0FSve6Ba9epyWOX8A0Gg5JnbdeoqgG2UvAUrYtQxZCnTvHifAgdkzDCX/yTd/e/9+0Hbq9TYFIJ+wvouSBPoUPxqhG20GgOLQvUSC4KpMlgCdxQSOZrGkA0QciSSePbVPApOpRSYaAQwhFU8C2+g4QqVOpW5c0iw+iUWhe+RzoUC39nQIjBU/2B+Qq38W7FJJJT47LskPI46gxPvHqz7Q4+efzxq/n1thwn4b5tGXp6Oon2vcbtA3bvt13Nw4BpmN3jZt7Qhi8mntfG+jpsUbWYTfK8V2/lRFVr9n6zEarlbBUmFPSEGVqG+J0YW7JRiZuJ/pd1Vw9e5YEFUW8eHrY7k8shkflezY2JJDhq3Xe2kSQUGhSs6uUijTv1xni6Qc7h+heb+A+Oun/23bcavbrhwFNAqBKwOPwgGhHLdsMQ6hMzCtFVhFhfYoMTR4Lm+Uf438TT0wAby8HXABWVLBLpwPOddhaZjfGAyABkbEIEu5A7Zg40zkt8DYIpIBZwJtJF8INnjRQqytTUN3wTU7DQUQSVbsAlIwqgQz2WdXzwPd/t7Z//7KNXZ6ES5MphXWr6Jsvw8mpMbNNsN5dwe7hMU/foeEARekI/UB0nWUlnszWibra6f9CPo5jkMD5PQXy3KPEx0ygtHRwhLDuxg3m8lvVsdfc3P4XKvMbg8Nj91WeEiuZizOStvQ4lN5RysHP2USck4llUOlDayT6g5gNX/4ffeaMnlWgme6qAIu0YXA8EI2CAMgXTABVoAQwEC1UhtGvg3CH9iHYBtMyigaEyafgEAolL6ViFABXyh2+km4C7Caak7EKWDCJEvYrUl9iCCHqRW6AJe4T7gwlcTCRcgsnMAlIJOxDPN/IqepsDAc3IVcJtJioANWo2u++8bXQ95/t/9+iT4fhy1TjZd42meTHdzOcaqge/pu5pLiVCWmL2/bMounPYaWoaOZ9yLk1BRAPnZ2MiIaXuoOHIy6Qkytm1BoaEd4EX+xPQQ/iyid1DAAPR2PfefueTv/mb5XyjJ2XdcujUwW+kRs9hnbnSa9To1TobTUFkt9UAyd+603njxFcwxgsJkJIWhs4R3fAUBAiE+MdmpbYyxc0QSoMqBc1sHtjRMYZVk8UICkI4gE68VFkj4kN+49l/SR+yZi7HR1iq2KZyI8wZoMyNUjCFVizoQctT/ALibMjDskgoVhX0J9y0BAYkfIGLaBgafAyrzBKsT6x17m75jZM3tD+muvbHv/6CcOswa3vaSdO/Itg6XSVKWW9Ae85oshoGqWd7m9ly5jkbTDkfopbwGfVPZRDVfatpGzUCfzVrYyg2oTabwDJgF99EZD1L2UFfnlBVgDxQs3vvfat2dJDcLIhJqh6RPBNrJZLcm47KBlx4xkToyDAQwTCy9Jt3+tIAlkSAocAt1RBCiGAsSfhLah/yLFUIa4EUQC8IESkAUFXdo9IHGHJbNKZwo9AGfT2EmyrZxBvQOvCiiwGShZNk0QAVCQWOACV4Qr4JinmLfSF2YCsiOcIPMFsCreNG8i2+xzeJu4EqbkcRF7Qubg+cCdsQmcLbA35A8e7do/8KZ+rvXpytogBsUOFW1/Hbj7p14hBnC2LkkVdzhsObjWHYx53Udu4f+tPJlNIKJKyZZ8YoTGGkptUceBHBB5PaEdxrpCj3+7K+/u9VPgkPgxan0ff2+kXzuV1z8SS7XWxzhaKBINMn9Ck4OIjsVkvSfLRZ/JOTg+OBj8rEaxIQk7w2pFQGjCIIcItQKPAykUj2CU1K+FDiL0Q5QJz4PsJ3UoabIiSgcOFKMR8xhACEWD+igrjiTrpVLhTyBsCyXPksMBfQgiqUOIn6TKUKAuYD9gJ39oTQ4V14VkzSirzEZUboiRWKrqU8SJZXaX9Wi67y3DfvDv4bRfkPf/dsmrDwbB8lq7lUE1okjsyiDMpwHSLDrLodY3bnVGEHjaZHlXOwWVABwlW6vmaV9maRKx3oxKjXOyQ5hWm/Mi5lV9UGWCpfgBlJi1Ha5/p2rebm2OsZwUC2ZatpUiMQoEDfGbIerj4yvG++swezEuylIFsnbmIaPOgGECxyXRw36FKQQKKFqIO4+1wRE0VHnGGVVrKETpJqPZAmkAeOrAUVQSyMP3W0AThAWhFRkfdFvVa2kwCS+AkMQeaKRqiUiCQ5BTCKwEHA7W5MUgsEil0pmNJYa6XuxJEzCPAZJlwJA4olVT0wxjAeFL9160T5zmr7/V+fkQynH4nyFlyc8XxFbE73vfUybDXsg+N2tAknaNkkvf+wbSMXKOu0iCKklt1MlKLZ9khiob48rylyRbgcSq6onM1Ud4R8kAW8Rv0aYkNxWCPvmcUEfY0Lrqu01BD9ZI2rJSolBTvfOe6cDFqY/KYFNQBxEoWUyAI5EdaKJoTMAykPRvgKgpt1ozFxy2AP6tjyMgbWSBwxMYEXoENeSVghJ4yJ6adKbxlyhtfgH1YqkoX/QSxmi/BWQRA/ExUKzYsHIOaOiBcxPfkY/cOoa6gcxtRJHFOgxrd48ImS/LJEccnk8UlaNolsIf7lblJ50mjcu3Nw53r26fWaL1IWdOi0MGqQG/Oc1h47mEfbZUpFJoX1qU7aJLX0/GCvvTXt5fV0pRX0iCo1PYzyBPFjSHBbOHoncNgKwN5RPb92f0BBcRxxOR5YSIpK011kQrX0S6T5pqR2z7g/IEadvHu/L5rAtYgoqEDekECNsDTaTQQFMoWX9TKlE0PZbMhhsStgImAW6oaaxRCtvFA0JovBUoPYIUioQMCBKpL1iZiWC/Iui0VqQ0AgrxI6SiIy5KsHryLikUeVtcPNuAZY47aimi28h0qwQCJVYwsYpSSCz8OsrJf7oW7E8iQPYNr1XvPdh3e/OPtoy5JpymYjiuJQuVuV/vbqfZdSopl4oPSS40C3W02NCGXuzKNmXHMn0sxmUceRrzdf7YgrSAyHX/JS9eBPnvESHMc7kC1ShaWvVxQ95ApBcCSJS40b9VaUmWbUZN098EnsWcRJbYIw8Atkw6JZOFELmu1SDGhMO5TyYjbBgJjfjLPVzHVc4JmkicMXieVj7eU5+6zuiTyDV2RhOyXEc7GQvlxq9QTxY3IjIAo2iM2ATo3wA4ADjbhsuweLyJHw7EBiFHAem0PZ4NWDFTTNZrMgnYmLIEY/bi+C1iYISMyUC4sngQhyap0H99X3X1z/x8+u9m51kTnrDdVqUuQw31A5ru9125P5HM6jqrBBjzp1EOtlr7fXbOBObQ27tgkjQ5qxVIx1mtOFK3eg/xLu3Fpuv9Nb7MlyvBgLL1cGfZ+iQyT4mhkCCrpLlXL6rGxq5bt3mh6ZppoLtIXGxACH70U1YM+R4F3OFwCJ3t9kvaE6L0IkKNqL7ezW0SHG7WY1r9VoQKNssmE5ZlnXsEoIreJ5Iei5GkTK8mRNUD6XY4l4C5aJh0V4TKgEmmLkgrCShO/hEvQ8TiN/y6ch5upTRZngQ2TAC4G9TajWg8F4j7Y/Imm2a7JqUuYEJo0mb+TYsmT2SUWIt0W1i+9944P7v3xxRcH+Fo0DooGoYa/jVaor63V0a9DGFU/VBfqd/SISYA6kOaqVjCdqhM4M4SbRZ5Uu463X1CF7qB675fMXi01j+l6NAgEthL8ME2RDwyKfsGKEQNNQ333j8GCvI6IHNaUI1JAilKvBuux6vVjQapZuwznhnhWdbkqtd5REZZBl620Rn17duX9o9buUkyBAz85PD/c6XQItFpkm6FdoAPZHIe6EMuussAAi5IHwkE3I6gF35cNWuou3+Galr+QK7BTTSlPJjq6S7WJ8tQkS0271TG8AfOeLqdmkdCXb0PZ1PaKOKKVvMCT2W8OuA1rkvSSEKpkygx659984/sXTYUxqHvchKWt1r99zu73GdDbxOk3Uo29RrqW2qDJudKjAINNZrxP1yvKtVffE+hVb5cvHa9BXUK82Uv1gPwg+7D5WTSA9jZLlijR80eR5hh5iJRZm0zffOGrQYkwjl6i0ijghQin3kXtgWqyn7G41nm8pMba92ny+RMDh2mBxX2yy08VLUsUo6CNGIrT3k2C9GE67ewOiPOgkwCnhIwArDxEX0DgSAELkXmKlsDMR58IbBA1whkV9sGCoDMCIHyWqnogVrla8mS0ma9Nu9/o+zVrj69M8BjSFkVoU1dPLSLCX9kM+NboaNUgDwcpUkuJgwzTkDECvXrz74OijL67XmwTdRgkbZG4qJrMIFM29HCGCqAggoO8TusHEor0JsRduU4fCLMrdCRl79MNAC9VjR/Ws/0tMyG92Aukj5zxsXd4Tp0RPMq1NVlbP50vSYUnHc7520ujttQzTE/cIjIhdBsjFVKdtNMOlQ46OVyQQrWZXOgSTrW8bo03xHz+5mCUqZdqHt/Z8y/30/DL69WffuN34w68dl9hR00n94FDIPmGARYTaJc2C7YNGNQCBVCljNeGF4vkgj2FO9DGt3vjahOhQMaIkRAWIk5AyX4R4YUZd7iK23Rau6Ccff/74asnAEfJ5SrHte+6373Q6NZ0JE5+fj8nl9tuD8egqXG2alFQ2A7PVQfLqpovpf9Rr3en7j4drDDnE0Wyz6rcbFH5QTQ6IqYedb2GJstFwLqkVtJVW01tTJ5mmdcpaHB1fSIEMKoMPrn5N9SDit9AXxt6Z1THFfJsNvQwRpgBBvFfjKap84Hu1Mn/jzrFTr1VWqkSuELEUuqDBqDtkvEBAc9SaSmyr1euQr7GjpF5vq4M7P/nhr+MaMVfj3Xff+Qf/xZ/QRzYbD/+n/8f/698/HtKM+F9+eBIkaa1IUTPUJ0roWBQoXAZoFYx8XAfCXkxHQBCxSDgIFlKJyaBoEPfid7EW6A1PnuoGihtcojfb1RKc/eSjyx98dpkZ7Xd/5w8Obx2pmf7ki09/8/mTURr+t3/6nXpylgznwfUkOjjav/twNb3ZzGc1r48lLeaVIFh1HfXduwfPh6sgjGrdGgFLgXWaI1DbjSaxLYpNCLiQ5YiSmPKWbBM5NRO4LGabRtvF8IMFAbUw6k7N7p7toC8/hW3ROXQ8r3Bf80yncKbFJVJ6wZNtGK8M7XdO9k8OumIGiHsJCjEgUCFU1BVZENKRg67zBz09VUaXQ3rc2u1O7d7DUVHbxtrx/j4B5nv37iCaxuPRrYP+nfu3aYK8Wi0meW2/2OJt1WwH8YFVBPOJgQ5xI90BOvejjoCKKPQcZAugiWFi1AuVgyNkoSS3xCrEhRYvzEq3m2QV/fSTyz//ZNLeP3r73v3f/963HMezdearUN8ULjfp02n4vW98W3Ee66eXN1fnqnt4cP94dfZyNhy2aUGo1ySpiveQZoe9erduPR5uMBhok6W1rITUJO1LPX+exco6L/A1YdUoLLkztacoQpqHfdJ7lmeZNL2jbxGGXxqXgtcdI/BMfH5js6S7gFgFKSq933FJ20+mhN9UKiZRJl+7DadWYIdtUDq4iiJq6KrgMqUDMTsuJSubxQYjneLb3u2Hew/fv/zNbwgQ91otApSffvLJP/9X//b07OJPfu8byOWa423DtH3v7WT4JMMzsT3EC2Yf4hpJjnRhMxjTRLyQrBLeEd9E9IBm2iAc70Fi/UTKYAWkj4SUbfCAr0FrxHS2ebFkYIx/MthHbt2cTz5/+uj999+nZ4R+p45u31yN1d//oPvGB5ptJJ8//fSjL25ueu/cPgxmV/p0XmdcCHck44+h6TpHPe/ZmC7NVBH/tmi3/Ha3icjyUI0tfcywqigD6RY2KslEcUqtYBaqFiulQ6tWuShC3yJwoHQh9uoJP/nN2/PJdRJtCeNR1URJ8GqNFSvuOY+HXftu1V4sAbJK3EJlWh7qOSF4QCXZV0rdtsuVZ1CCoPntTu/2oelYnudg/YC/ZJsyVeb8/BKluAmLTsuPNxE11oeH+5titt5MDmtN9FSpbSthLq1AUDngrqx4SLyiQQkkoMokA1MtWT4k6TeiFBRxEQEzXfJQo9kyKrxaI2/SpaLrpJz/3Q9/+MXFxclf/fhPvvtN1/WJo3IV4iBOvaGqD8tt4Jn2aLKgQ7ff70ZMNVltKGIUdmMQg+UcdSG/+YJAUUEIC3s177Wp82Xd2xaF6HWHURbbgKp6BHVKhTddA5TyGJjiBRb9a4cDgEvksgL3b3+wD7JcL5//OqHrLRafXOLdqr0IZlxyr999+6BNt5EIVfmqWHKEf4nEl6WJYMDBocrXbzu43V6rL9adZUkMJsvv33vQ6X42Wa8xiga9wX/9X/wDkg+27jL1g96XDz58y6Vvz7HKGJHpZpgORsaGCaLhWmF2imkvdA6IESgS5eR2ldcjf4NznCwCoyL00fgwDTFRNcUqaA0O7+jhzeIVlNNs1Nvt9lFSHPT3CTmQWqNLZe+gi25Ec6i1WtweMFPDO+jgmlDrtrc3wB3HJFOptpbglNZv06hr06iOg4MUQjBsNxvN1ZPcOD29uXuvd9Bv3WQrwjvzIPUZnWObnXYb8Y65SexFxMJO1n9F77u/+ZO9LUY3o8vPbd0IKWZjkI1uzC9XGD1v3z2iDP2tWwd0SQuzSBAEgcMTZC8hRseipMsxmSoTbiNFmxVqWmdYFTVsZWRmG/ymf/y99//9f/p5giL1vW2w0XDR1JD5CW/u1b754ICRaF1Ht1u3CzqIEVWSwBLgcgNxGLB7YDIYAfeJmwoqEmELxDG1dgTjRPATq8Fggx90uITnXrPL/LJ3ureePL+M422/U/+DD75OWSbpZEp9bMPaBIuHb97RvHoWLSEf13fMkxOqhWlJzbdLiker2BVCkTh0Ci91W94dGhaZ/6Cknf6A3RF33Ra0TWVcM9zGrVbPrqFENJPuH6pgNGbyaJ26tyHG6TivafwrgcPfAvSKA2DYq/OP1+MFLE4kCqMtomMhpgO4TmdAEW5pHZaMANEcfhLeIslIPBiWZBVMDsAEpxzTdhTaugn3xTHq14gDskFaGfzRu7373e8xHESkOSKI0XIOwxzqPpWiJtSlGvvHXBcqZkG4VFyrognRtSLKkJE8Y6HY8aKe+F/yMNCAABxVW9lDQg/yISST1Tm+i69HTdGf/qNvffb4kmqKDek9+qYiCk6Jdk3ffPPO/bsnWhwx5QlHwaj54hlAHDErI9EaZ9s1ZebMw6PvENZyHfPeQfPRmTNPMXWV+XJLiGowoLlDcd0Waa/r4WTLPApxY0lPlAjs6+t5683bHvG1am6IyArohf95CNSxD9g6Hjw9dq8+T7c0VhSuYcynCwIAOE5dz5hMFu8MGq0GYQM+KESGxsNMMvU6Uh/TT2qqSBcx2s9BGlAZXYdM8aCQBkimNN4i5ntOfvJ2t3QazBhQMsq48Eq2aRBFUCC6yvRoqwWQAmG+XOEAPIhIQaiIByUWldyFX+I3gQt5xg14V/TXTm9JrRXSFd+1rycEPsq337379lt3N+uE3sR1AMtl682GoviH948bapDTIpCEhClgNvoHRN0hKTCuaUNOvGS5zpIcwxAPO9fs44F3d68Vj1fEWyUWS7MNHba+hd6RWKumUI4OFWhmjeIZj4aqOtIr6zUawXIOIYqlgIUDDF+zwJeEX8RUQC25Of0rIVomKdvtrqXSGxLPVtvb794hTS82HjQjEke+JjViYhjxjNIiiFOMD2KuohWJg1cuPvEpCSbj5hD6pb1wuaDPBtgxWMug6LTWto0GlMKGS3RDthG4ATBgDWQFohKrqBAhZR68VX0gYwPiZMF5iGqsBn6DG1xPkdzoIUu+i0+6XufhDYtxLbLYdsZkowNchA5rCRc3SSHBo3izMDwKzZm10qgiQlhDiDh0Fi4xhsAGmSPRGc1oNINbA+/VdENNlOTGkmg1l2SZZpu0yB50GnXHRksmIjPE90CHr2l2GY5no0sSX4rh8NnXLlUFQkEBmGDSx3q9gJ4QCTJgwakN2tbpxXhC9XOa7nVckahQN2kqdkf2lYvwkw5uYMMFRP+KyQHFSXgXaUQcBPWbI5clIQQkqYQnDauXpup0LIrmam2hcNAEvcMKtK9xlWo1XARyZlVCIKCW39iRYs/iUEBXklmSMinqjyu3SuQ/aW5WhhwS75b4n1kYnlGDY5JstYq3l0TABZEkAohfgh3MRKae0YSj+4XkeRgChddGQ4hAA35SkSs16s8sMEfLgs0eatJJ0HhFB6MyaDROTtpXN7ST0pOPw1rM5gwAbGIKrtfM88IoxRAqVyWizhhdndG/KzYI4nQnbWSfu0dVW0eQE4ihXRHA2DcEOWViZ912POOgVxd6EhgAI6w48rwAG+IHyIAPsSUXghQJ8ctbknQTwiThQlKizCiYzS23jUEucfNKNouDIIlLMf6qpCCkLgEMov68VZGtIJq0VgULsJITVAPkpKaIcBI3AqksBk2BkAPffFJqTfGBMY2EUqwqdUDdYqvcjin9xVkj7o8DiKGETJZUIeUPjpNruA5iIVUlKlItjogRLcNuhLGgClhacWp+r+PjZp6vozsHvX7TqtX6H/3mxaDewFD+/NmFctAlHt6suipZtAm/AxdTh6zjcFvrQjp/L3L5elcslqQjJZZpom9zFEu6oVND2e93sOwpSaGKFnih3NQScQ51ClDhadgNGAgGoDUIlYg/9aqCElAh4gfns3KL5KNVMxb4Y7+IenxOB1qthDVaATYSrhGjVXRlxdFYhRiv8iFAQ2MU7oFkUojri9CXuDEeIrwNDo1MitRYmshaAZnQPuYOOMT5yp16T/OpXaT0QRBM/AOhTjxHzCH8X5SNuJlsELlJ3gpgI9IEu1IDA0qkaoBaTq1W8457zcejrV3m42tq3bdvHA80t040HoiTyiMfVqPqsu1eDJeU3dfaPlbfzWi9XMyax0ew/muBAzQEXqJvIamMiA1roxnueoRlgomso6eGy/h4QEuVdCrDE/JxvgPAAbYoDenSEPhVem8HR6gYnuFDVfkXdCrKkF1JvFu0NOSFwCVFxaviayCQgJXQI+pO6J60BnTHt3AP5KaAG3av1lnpVvSLsIJwHIQvkVzQgyOhgwD0BIJHCl5hOliPLCFdjkVMLU1IkqnSV3yV5YEkySWDXAwDKS+ErrhQISllcImnUmGJi0H3hCWBPK0i3n67cUBhYFFSB8Vw247nno/mDas86NeX4KI0aTFkJ1jWFGmS6aMXbLpa3dyMbr3H2qD6SjiLGpMlSnJqOjpfSKtdFjC2KWIKD7NPFCKQuLMU8ENXsA52NIAACMSopGwAkCPw0bQoVfmE8KzQLkKjivfyE7LhNeAraKOpS+DIbvlkJdhBC1KVAhzYDvcM+hIkZmTaqM4VRNGRVCEBOIrRCUTkK2T9BUlAWTIk+L94YRLiJ7Sl4RFJOogFCLpgG+hD5rAJc5T0cIInIqA8WA9Q5o5yKVw3wScYkZXzxYoqdgsWExD0CHuhaOo1l6JuxlLTA0+ZFVkrsnR+zaX0FNeOSoVmvY4MdWhr7Ghxki+oglGy8Zg6SVi6EjiCycqQ2yFgPr2mXY0XifcUdvzwpHs6nFyON0ygahKyJHEqi6Z9W8QNpSsVnWJ+C5MjCys/CHlJmyZwFmFDLAVjR9gVOENn4oaJrBGJw0N61xHKXAtIiU8s0gr/BUuAiFQK6RAUYEYA8leCx0wuozpBomMFYzhKEmZ8i6yOAJ5xNYhsLpulqGsR2cR0RF2KOcGtquVU1SUWXxIeglgIc/KzoDMMY0HsVyFD0WMskx2JQkfoyYO7CX+ySzZCxo+YDCM2JfEV0sDCBLBes37rsBeXOo24uCwE9qAAio23W2xOk7+42Hhyg6FJbkkEDpcHILJjubAypqiBCzNaIVgzvitNezSZ37vVGNQYIVOXdbFs4CF74QkFHVwftx5GBMKUbgNqNkD0QZaLkqsoDnVHbzf7ki0BHNbFb/EQBdqV3BfRXq2AW2AOIbtpPE0LHQ9Qx0aS7cu2ATXkKBWyEBFKmEw0E5f4gUxn4ptQFuPPQRFqDQaEJliDKArWJCVm3B0dzwV5U6idlbJxqJyV86OyIQTKMKloCdlFRRWsvpIN1WrFrKYFiPIwxkbcv3dAaZRZMpBa3y62ZH4lYUdcL2WyycqyXHoMuDTzJGerSCyX6qJ4QEKYXE74C4gA+vEY/qW36GpIYieiow6v+uGRk4hpysb4iJAB25dNQFbwAX6GCBohVn6zBbYlbC82KFjBUmCjPMfvE7Bxx+rDIEkEj/CFXA8c8FUi5KkEEbA+mS9NeobGK3AlEpcMGaklcgLUXsh3wA5aFsKlmZ0LoAzJ9kmCjOpGooc0y1bLFcjBVECam/FFsAFbEvoXoiDRxAq5OoEqFkXyD+HBCkERnguQgagQltX9KxHE/cAhH6D4lZk0MgCBItSGq8QF7mdM3YVFT4NfFVHjF1NXW5LZ9m3bYX4AK2QBrARrTCizeogshOMggSJlgKnQmK7v77cgzXXEBCTKPLOtJc0LKEPeFHGPrmIJQoIJdirAkEVLsAXpyTugkpvxWyoBZTNiDYk1KKAUghJtS4oFUmaLKGQojBnruI9QPS/ApHQ/YR0JAGiHRT1C6ZAvpQfMCBBsCQkiqRHFEi9z/UJZUgnF8EDM9uo9ERkAj5vLBytMy/X4NvCHu/ifdcKaEE+BF81tIa+KIAX6Qk3VfQRGFf4rFIvg1JBpDO+yMvV8uhkU9HgSrXIcSjOvrvsgTWXWH5WBBHGj8SjRWhh5krhHJbAwLiDebEWj/CmSB0ANBl1KLGniIjxDa/eGeRaYfBrKBHd6I3sAELJgMU4rWudNETjcDgXICvlTfEsBsbwl5CP7BzXwNxpCXGGhL96q9g+18x0+I9YIgiDZKEw7ApQUfccBKAFi+E0cySBN2CQhxVYiEyg2FSgnNM8tkGhYKdQJ4NtLlpI6LToquZHkDsV8ENgh1HcuGffjAYOyZVEBVaqUxYkElIQLaBJY8IrgSMwsOIffsDzCTUDA1xBqGkOMad2OtTSrH0k9JVPVGK9OoxlUiK4l2ksBTd2lEoQvFS4Oao3hdFwL+0muIQpX1iLkyFB+ht3GMI7Yi5TlQSAMembQRpKd0H2bh0C4VGCDiiT4qnyXiC5YlIwGrAnkq1VzVawgtod0Fh8A/Mgmd5Z2VQjDnWEhSfkhbOFE3sVjjANgABip11LSDTXmIlINYn6SjUEtY/vhVmqGK+KGexmxEVMPCNUiAxyNbUYRPdcZRjpBPaiBPVZszvYwgpDgwgGEF+AzkUHiKwFh0U98TEwckQnIPiEuEY68gsUpf/MVrDYYV8RcKUMbx7MVHYTROqOdhzq6JT3jjsO8OhZWclhIQSOnSug4S2S6BTkdahRlmxWuubZgRPAq91EJp26k3Kxk/G2zXWdUJk71YrXSbY8xRAhZsnPSdc5H4VdJG7FsKWfFOoCIWSxEiRbF/sMCkz0iQITKqvZBFBq0JJqdfXBTphyI2q5+AHqsahE43IBAWx4ypuHqhz97qnn+77z34PZxmxZAsdqI8GEr6CG3wtAwYrKWEiBtN5uF7zNemdANAkojOF6DzIWGK+IVXwvEy8LBswhxmEysFWiZO7N9VsBacADkBewyRChL29k7fFYWXbFF9SKEwHxaOjvEEtMY9CCCGG8V1QhCEZphGLcdh6whT5iNE6y3CAkqhiEezKYKgiyM9QjYeWjUMkfA0mScl4aPMl8z34qgaJ/5s0vmQqSKJ+3GEkDh0yJnxJ1BvqRIXBiosgKFIypiEigTchIXER1V8TYviA0C7ORD1f4RKQIf2beUwVIjT1UTJQ3Xw5/89IuPny3Ot5f/8ke/+WffeeN/84+/AW+SdAZ/hoXutH/x68d/+8nL8XzWULQ/++6b3/ree2ULN4YwDoVBjNaOUfWgXyISsjsxgoEl/8tWKykE0IXwxHjifV6DsiFtmFfgwe/qbfmGPJGFCy9U5dLlOmaUr31w/3A0X3ADCH1vv1d3vYypL1HOpOyACzKrFs84jojb0eMgloQ8RFzKHXgqlAGaiWnZgFphMAe2DfM+LBx3tSB8FDFJR8ZWQBYoIklJC6nu5AXkynKxo5GTkrwWq5E8BmGcCqOwPJcX/FSaVjhXZBG7gytEwMI1/EV0mSRKXCRY9IgdCtZS32QClMY0cyi1Xqbb4dDrdVgtNcXIsJuXL774xZPPn8xixTtx9Re/fnnrwOm9qyhuE0SL8qfaW1hJFA7rhbpZBWgDDbIw9i8xBvSL+Ha8JYAWcEBNfJJ1EhnFPuMPPg4uJDNDRy6GShXalO0fHNYKN2/mDNQghoi/TAAZgEO4ou7UQk6iQYh4BBV4ixoNBBybrbw4QYGsgj+5r1426y0YBr6iWdlhsE6h0IybRFT1pzOaWai4kZIPbCFZm6yRxYgO4woSu2U7Ql9CQ+BAagIgGyGviswqzUYvjTCvkL+AgJuK6YOoFdAQayWrJOV9Gs1lb7818BvechvvN6hwcHkfW47v4XfoWeFZxbfeO6z7PsmJg6b94HZDlGi4xtMVQWc3ZWMi68RGkhUIjlmtWFlyX1k475FjE0HPAuUz/GNQt4hzKIh3UEJyNXZZ0Tw4hBRZKhKLs1WoStYYBhxG6tFBPeVgm5jem/qWkT5azmBO9s/cNMwyes0pzMJOJO1amcN0wgsaBfOv2YseNs/pdzh2YUiHPoObmckOoa/podimhPqok0FdimgUs43lQ7PiF8qWKpoB4qKqxFxnraYY6sC4gj37ExDD/fInVhzv7LwqQQ/CFYSwV/xSLQ1KzXH6vUGnu3eflPsac4uDi/J4LWa1wAwvMa33D1v79vHDKNysKbTAo3N9l3iNtDOgvJnvIIt6DWXxmGTVAt+KUAT0bF84sHpUtCG0X/lW8hHBGpwpCOGBpcDOme9K/F2mI0mVAE2LoTEZU4PslnuK4yEmlNUKB4gCCHwLJtOoSOlGFzO/RMH6vqSUxHWWjIqgWh4iyoQ2JEgMT0V5SrUMvWL0IpFRZEoDIoQx+2EomRgsQ6x3Ua0EbPmQaFS6/1RCiNAlQXdJ8wvPCknzWvUBW2xm1DTGjCT6sBMEc0ARtgTxCErRcravOn4Wb8qCKVia7nGqFO3w1Bu5ZFW4eJlgBGxxhRjoJr3/ZInzGDeIzzOIG7AlSSAtXVKM4UnkHi4RN4MuEJFvbBCQVUJGUCCky0sEqysGZvdiz4CeLKfhgeWBLtywKgZXyStJx0upMJSFuAFs64BOcNiJbnIqrotogRYwmXpIWwVKWKeIgfmOOM+UqrB4GmP3O9RvIf3FDN+BXuhDAKGwm9VmC4qgPVH2VEngsikM5WnkcbrcRKQlqs8KkeOu8kX8TPFLRLwgUQCs0GVFbBWPQitiV/Kce0mbQZV9RcoI30CIsAaBFFSrRHm8uj04ZkCe1JEL6VKk6yo2SpRSOyob8H1owdyCItpBkKQIBMbxMr0kIWUkAW6K0ROOKjCbLU1aOCgyFRrh67Ii7lgJd7hU2J3lyLrhPYG+YEEoWRxyPocQhAoFwtVz8VKEsCrtK18RaGHEQlb33jhkRgq9g6uNdJqbDNbG7mQilW3j+SVU0dC/gZDWOYEprfktDlUCB6+9WaBewUoWU6u3TbsBkwtHuC5LoWGqy9jQuvP5i4vpKhCzC4wzVBRKhwZEUGNpS/5TOs3wfXhRglbwEbyFaEzwdkSR4VVLnAf/Q2KE7IrLsAgxJQX4tEyxIk4lwDGsiwziLVFAcBd0CMdTCM8xbUxlcqT3UUKj1DBmKuMYZVqsW4KhmDkmRCfraq1NMQUJUuYMS5ugGKOwl8gO/gn+QEJFdhCOaB0UU0UIks6EjSWCx4cxiITihYF5xpIETnxRoEW4Ejls1Gu5Hnf7rWBGgjdiegjufggfpiVccL1aoCxMg9mX2C84QyZ1pNxOBFcF8R09viZlWqY5CIKTadotJ845vSxlEkWKR+Vomyi/WbE35hzJhCT8NXJZEi8TrxYCFiUoEgtaE36hrRvQo2h9NoGMkQogLAZekTib4A+LCrSJfwR1Q9TyOXhCJj2xGt4TKYFOE44B0uKwAkNSFVSvCw+RfhHDkQYtVzGbFFtZhAF4SfxbhCAgggKEXpEb8nFhbDI4oqCEDVgy+OclaaaFjgEtr5OtYB0YL8hM0ajyA5Ej8SuwAfDFyBPoy7rFzVsstU6DoHW63qZMgcQJ3zBDgZovGYhEyXTu1cxylQab0HaNOvOjWC/Baa4gCP3qgeWb55wLSONEv2+jU1fLzGeuXllysgfvMXmLsxulAlnckl3BuDQfQbaIHShGRCW0YgpA4QJEhBQlASfZv9AwGwQuEuQSZhbRJCQo8pWXgQr+EruVvclGEQcyz1HwUF1HVAwAlcvxReAlv1F81RUw5zivjO3I24g+dieXAeYVGoQJBagVD3FtGBqE8hZMACikh0jUsMgfAmsiUNgln5E1AiWWLpBipbvn8K7t1zfU9gapQ2Orgr+aAbo2E4MRFDnHWoUgmkFeVKJBa7T0cNIDE4xk/QQSuGi1+tcI4LYcSMMfdbJcDDXPqa6iLTFigihny90+2qOtEOhLDhUQCDnIelgu9qBYzCKLZVOo2WoT6F5SC/K6uCzcSxgdBEFQFeNX36/gIaqXd7iaCCWxiUWUgTwIbgdAFAug5o0KNK8xwHPQgyCtRLbIOCn3ZmsCfwnj8auS84J1ZIdcSihNli2/sP1RMCJZEALk6SuwCmHLOuWT8qnqt7wgN624nJ8oPnjalJIypg6EFJr5nV6XzIgMlKMgiyhqklDbDT+DffxNUpA02HY6h8KLlcCRS++gv/vJoQy9XufmbBwRvkE+k2wwrP6gzvy+kz034TQpWRDgovZYaj9EXQqbitInUA5BygW5o2R/ROUaOQ2CaAVITlxfEjegARIWs4N9AxHK6lgd3hnSGHHBOgRvks8V6cz9uC6RI7FXJTAqNpjAij/l4xAAcBeLsODoT5CJRBGII2QFVFwNOoWbRbOCAJFImWgMPoT3ILIEyVYFepBuciVuyTfkilwMswqdXNCCKdcA7dCGqO1CDhrYSM2i+vU3ThbU9SyDo71eqTEHHwWrU4vWcDxKZmgU42SHuIjIFNJbwpxa5jlibAnV//0H16UalulIm03IPDVmSR3t9wi+UAl067Afxpv5dEXFSmk6eK+AmqgSxQ4sqlqmlCUKtckvMd8lAAsHQJEQi0CKe4pdKq4cjqSk1ytbWy4lrqxEsnAIeFRetmxSpI4IYSQmp8tAjmIL5TmZjoxqpJJOI/CK6S3RAtHv8pUKL0ICfIuHaErAXClMllPRe7UYlsNvYLlTB0Lk7AS6ENwLkfNPFJMwgXxNrlWxqbyuqIwfnzIv6rD79Tdao7Xz+SNGEm1R8Ih4pp9CZK5nMbkLhKPjWI1pFQ0GmrZarJA1SuSyupH8lFeY0EMduF+nCdb3GLlic2yvHChBnD5XOTiQOZIJUU2aeL4kKWIGUGXlQgmFcj1kqaSs+ErVJw6roZC5MiQqmID7JPsBCYmUgOyq+7Ip5rQiXoTo5VhL6SkULFXXBGM4I4jlnRMtq4X4JbDKcBhCHUBNEmTi3wkDgUnOKZV4MhTPbZEffAX4QQPyVbIEfExClChYXoICdkwkBC7LERALOYma4iff5A9e2KFEcFKUVECtwuitXi2mQ4syM06gWG1vdXqQD+4L65eoDPFxaLDKUlHB8/UPv+3WaqyPFf6W6vmL9XFTTKF6B0uygNJp2KQ4MYbosU/jeA/tzAE2UtIkc3e4h6xBlo5jLX4g5FuN9mVePWyPsCFTS9F/TBoL2IkQEsCQwo6EkZFIpK4lyUOwhYxkSikEmyWzw6eQwsIkUmJDwiAi94ffhNuguHUYLSNzyHsYqeyv3mX0g+SE4Qle4Og0okzMcxZnIpeCEEAvEoSLCksCV5J5FUTZrcg9SRXwKhCVmA9gARRwCkQCyKmElG0SbZBAFfQi/TMUVYbUDnBuHJ4XNU+zNTMCI4pIxTuXo0mlw4moYUhXUJY3XebXr/baB1/77h/zOiuX/qSK4oQSdk8APmL6PgdVHnaXM47ZoETODUTTFq6qMIVttIi3UU4joUgY7AKhmYouITswIUQFLpDMBGZ2xqE0RwiL8DqiVbAtwoiPC6pZYUbHBPQLriLcJimegZTxkIlIA3rmrEUJDTJQIz8r0THJLJ1+arxiciPMTbbYXq2pOI6UnEmRnzATdSjAkhsglgWQCC5xNXBQgaNwyI4VIHY+JuVVFSgqQuIzAg12J98SaoQrKjkm1Ck+KYTHcXiUifo+JcUJ5yQwd9lnHKPKmVDCQogY6u9FgNAtLzsRWrh152GbsRNgEQrcUb3g+UvQV/cx93p3CaRLWEs8b8CJxCg6XZ/KoevpcjhdPOyJ4cza8J+ksor7CYtyFWFriA+jl33LC6xd4qMiQHku4JDPAEkC7AWciQtDPQGvaKLKYA4RDlTGFoza4cRCjsvg4AuZuijqmCvoBAgQPGCR+RP4VQaF+It8PkOd6bU6jdQML4HkoTWcB1k8H2GnMnATnhQWhfdINbFO1oT8E2jKb0EUOKukJzQkEqYSX7xZERd/SeEfigFdQrtYydESlDDPOW44iclNYjLUmdHOQSChsA53YbeYbTgg0C65w4fvfCCtVqg+kYKyCT7BE7lZJXhFVnJ0rELZk0S3EAMMmmPukKSE8NWH883pcP5Hbx8gBTBdKh62YFfsR+QGJ59WVCEwF2KXXSNJMoWcH7YS7ZZQAMxQRfZlL7xFKo90IDIA6UFBP+F1hA2HuHPcBX2LBePUGF/ABWFUhprgqhr5iga3jHHdwAQPOaeqrMjDZOb4C3uvU5IWMiWpiAksMBU00+IM0kxIXFhNzHfWKxtnijjoESRBEeJyI2aoUsUlFGYWiwbUVSavfE9UAqsmY8ShQeubFRA39x2vuccx0kyjzEfTJafSYImh49A0MkK7KGZBACD2j05uv/se6+U6mALsB4HDT/mbJ0IirIOzR7r9N956dzz8CZTnWVqNdi1DD+KUk1q5s5z5QpISKkcOQn7VxSSexnLZKRdgiRCxxCglVSVzhsRuqNQWgS0FSYsSkU4EERHVLCjClSiVlA4IFF0QrW+WwJ3eijKT+l7uBO2KuEC6c6QlVbyAiKIDzE92mjgSmYijcD5JoqV7fEA3sdwP5IuDRHOBxArYrlg8XI4Fs3FR5vIRWBHSY0kScJZViriRl8SPlRzOTp6y30oGQRe4g8V0vWXoXsPwWq0WCp0TljZbTgPkmPSY2gMuwQVwhmCMJqG1NHvnnQ/29o9EEQjFy7u/VbMAvUKAYMD2mnDHX//V3wJJEEO1OG9t5bDH5P6dnuUQoBBTWkxHKUIQy0mWKOwsZCUQ5zJsg33Izbgk2pJAbs5OJQ1CLXHFzoI/5kDSesQsenJ8ZIUZMDNb0wlGv2uQRDnHyPFJYhOljbyAkpiyAPD4D7pHznMn4sksgCCOOG6XiyzMG0d9xguVJnE3OvjgMwaRAE+qHMSxgChEuIN1YlBofXHTWCEhcQGJxHKgILZC7Fp2wVPxCJA2hDPFpIJqkuRqsiFm2es3wPHlaNqrNdlas1OHhGQ0omNSU0HdHLlMFkI2/He++4c05lGsheUtuN3lZncQF+OjeogNUip37n/o1RvbcMxEVkxyKjEQ6/udRrtRJ+lOp36rUXWBVOE9iQsLlvBgUa/CSZX5JeaOiM7qD6Av5IYBDjalvElqVLkqnfxM7gkp+BkzwGedc9wFQKNhnNPIiWNk+B8SqtPLANWDlLCooxZIcaI3JtwG8sHmpBaJsI3f9BnXEVxOsvVabzM22bY53KDZ1F34nBBbQeM4XcyUmZHhgjwosQLKKAbmOrwmPFie/cOmED0Lh3+xdMACv8A8aohMDdGUKDyfBfie+/3GaL5+cbG2b3Fqgsb0enqnMIBsTBzN2JA0RazrOi3w+7fuwKeQqPAfF0cBCpCEZkUGcnsBPvWRanZ0+853fvd3f/qXfwEkqzdLxikCM0ZIM5/9yfXiO5h08sAelCUiOMRPgoiJqbE1hDzvQTQigPBguYeGUhKjqDKEIGQ+DetS/cCxqJxrcfVqOV8nBKtbLk1h9EE4rW4bsubzYJbaSw4XB8qkQSSsa9gSJsLYwsKIpZuXEwTDaIk7QFszRwkYHB/WtGv9LWeciKiReQfS9cFwJ6SMLBwfVna+2zWyp5IC2NPidAMDll9hGIqC7NletXhiyiCMZuyL6bLeoAiC8zaCKZH0tEnBPYcakNlON2uAuGaOcYpZyVke5vvf+i4HSAIl2XuFUe4PXGUZu/uIEBIwgnaZj/KP/sv/5tnHH80nI52juClxTEsmJdCQOw2Wv/jixXff6NKRhBYFoBXHis1A6Z3ExGHpnXkEXrCU6dPdVeBUjAsqEP8gW/rIhI+xZjKbUwO7HZL4ecDwd4CFFiilvZACbNGHfEevtRu0ZCTzeckk91aLESoq0+GJpTCQkwlJpKFpa+d8PsZKJkU0XFD2enAr3ZN+YoigJrkZ8I45YFiSHkEXVGEMfDvIT0xQpN+XrC933BmUoAYXXNw3UTmUXgGB8TzA3MDvv55vtJZ/3DrC1ochJGOsMPKew6nYtpzYwgltJ/fv/f4/+FORM3IXgfbuIQ57BXzhgh09Anshk1I5efj+t/74H/7Nv/7/YpDTgijnyaLMBF7qJy+vuHev2RBiwJoFeZKOwl6SHARcVnGVWNIIGRAjxjS+WpUiEL2KzMEyYadlxjEVdn3PsuriB+FeBbEi8bo8XceUA0NiBF0qmCkxxyOwahJ0abAdbYCSLJjlZhhgHPGhMQGjprktki50whL3Y6+UU60WuouUInLFx8VigwnJRRFGwgqpSF1ixMCKjwvKJazAE16S8+1gAviT2wJ2zCrRCHHx+GZ2Np4fH1lRmXH+xl7D7ukcjLDAv+3UGG3hkl/262oarGtO44/+9J/1B/vYCij9iskE3kDotZoVUq8skIrwZUui2RT1H/3Z/3E0HD766IeAlEgcBxuS9UQHXC7HP3t2+U++7hItE6sZNhR7DTkpVi/wrrhJxIvEV8QIJrHKMHLMIchLEMX24BENbjI4Wa5GIhUJiypmXlIRBUYtMT0jhZYXAUJW7LUqjMUThAQeI1Fyer6EGsT4kwUbjmlyhhGmLFCV+cHixXDKLABLcPHiENtRItsyao1BowTFsJakUn5nwrB9sXb4VmXgC8lA6dVnxNwR4IjKgbAXYfLr05tFlO3R5M4oYXxjmAEYaBYhNGY20YNGFR6FoZQBfu3bv//u17/FVtk1V2H7ci0QWWWpAHr1l7wiL+2gL4RbJM3e/v/u//R/+R9G51evXrB57FQipSTKFd/5z78++5O3jzGrhVv4lpgQ8KVwnISN2UlFVGJ+VLcVm0HUityfbdBiKmFUp04lsXQ3cEit5pQxYVGIDvsJi1jVmKBtSIKNq4n4Rd/jLvFGZUphO2PWACIiH0RQKYWiPoj1UL9SwF6oU7aA5kf4MeOGOSMpJzhhBUHFEAwolCgxi0Xksx6uLvJCBA0AgOh5S9wqIR8x3KqgFCGRMHx1M+MMb7ku57SADA4fNUvsqiilZdgMQ1qoonqHCIPdGxz9wZ/8GZ3bfF/WUulMLis3wFjb4YFnu5f4yUMQwE9Mzzw7OLrzT//Z//lf/N//++VyaXo4i8CuoGT/i/Hys/M5wxKQCCKhJDEuuprFy3fZE6knVic8DP+LoyoiAq3N7rg9QQw6FPC5KMwl4Az/kTuWSlyCTQT0gRnVJyHD40VrCCtRScn8BwnwAiKG+WPUE/tE/uA6YVkzCJCEpWV7ds2jd1RoQPhL2EshUU9FEOICM5gaDA0rk/ophBWOCWuRcBa7RZ4IvIm1VxAHx9A+O2FVYEXi75y/uY7/7uk5EZYaR2/7LmHJDab8MqYQCjnRb3MKSLGOmIRicJrV7/7J/7ZzcFtSYnKDiua/BC+/xRAEqZCtyM3/9aPCB7Ik/+Db35tdn/2nf/cviZFKWy+0HSEFzH/78ydv7A+ExZExiHqCaDgo4rRASDIphT498YcwFkULsC/ZQ8W7mNQM6CEOAPWh99ifNEEV2C0uHgByBQhvRWDrJHikrpjCACmbpr5FWBbJwU4EwVwV7DGJCuVBKLu0PPxdoIX5D/2yK+4skhAPviJddIKwPuoJFKBaq6rv3+5bPiQPgb7YYMIFYliifaiGWYdPh4sfPzsX08UxPM9axmHTdfEFt9WZgH7m9LrWbMn4y/jozuD+wze5MjfjRjwqgtxZknLDnawXZHOX6m15dfeAXGRrIky0b/zeH33085/YV9OUtC7DZWrW3Xr9Ig5/9erqd+8K4ZNQwYJkxVg35H7AI9oX5wlLHKYsOdTUJCksYAPTlYEpmhzYiDiqWA/5LX+ZyArkJkcfiAC3YhonqD6B5HKZKOhUGQ8+D+DgD2qV+DZIJIDDuEoMRzl1FLHEhViIYAgY8pwTjTKwAOmi3PlHXQQGo8SZMbshGkn68mANUgzL9UXCSGkLX6cXkHG8lCRxONsPf8OJ3UuQQpnKmoJay7x/p88pYpc3c76zpVgslxg9foFEuSsXRygFsMtDgMmugDNP5IYwHj/BLyuUu3754EPVn6A9a/SP3/rg649+8xlVb0ihB8d9TiTLVvmff/TsHgdoeiUDJqB5dDhdqtAtdCk9UDiHMAK7kWgkgQChUFwg/mb4BEJIxA9w5mMimKo4KCdSIn1liJdt+E7p1g0feQXxEfFHwHDIm8TyRJCICYNWZEFcAbFjUoYphAxsEVJcWK4tETOuTwBnN8wAiS8UJiYM+0VRoZhEEAIzSF2AVD2pnD2+q7NuKjw59nazzj46n/3osxf4IpS+bDh4dbq8fWuPdh6Irdm0Ly/H1ChwbDaeHbNYhteX4+uLk3sPgGGV4WeLv32wchEE/Kp+Cip4/tXjqz+JxZM1fu8bv/f9v/hzzOam0/B8+3rBySf6NEn+za9e/R++c09KIBCaOBkSuao4lv1VrKYomNzQA4RJUSJ6l9tJbI21cC9Zl0gF/hAO4Bvyw6qJusNQAUGVyUwOio+ASKxyVgl0CXGKVhTrT2gZwSB+KATMK4IPZIngGf7D/hWWgrYEwdRFYKdL6wQLwMQknkSNoMg9SJIrk+dFmVQP5pXwj/mhQRAj4P/Nzx9drAPWTVxR6FS2oFDjDXhcjO+4XGyCXsNqt2sMHMqD5WJ0dvv+A3iMq7LTCsivocuuhcx56cufog947CCy+xR/CUbKYv/o3je/83t/O/9XnXYjSTm6HUWl+03nl+fTo4b9jx4ecnwj6UI+j9UD/cAA/AAEMAAQQkYTBRDVxrJRiQQRBRBwLiDnOUvgs4IJaZYmUCPsQLccNQ7YgITgMUBFcwo+oGWkCBNbJKRCdJhZn5ydhRoQAPMckOBQoyKEBlgEpPxazgmPSwqkTHC4FDKdVQoBHkV2ABwJukgmRGQSEh7lSr47lANb4u9/+vSjs2uwhM6HuIiL9QYNdppxFk8cQBI132IAzHwdHXFA42pd85zzp796+P43bL/DqndQ/QoBUMRr0FdQRgh/KZMqSHwFelYKMTBF6bt/+A8//cXfLDlwnlEbpr5g8ICqLdPsLx+dMefh/UE95w0qI3Ox7IAK6lJoHG5g91IbLChBNmBgk3NCskj3Pn8LLGRVwvIilBzktIQKRDAakuypgresT+Q/QlwK1LEpIQhkOdUmklWQpUuTKgzB6tmp2I44CpjjfI4vClah/4q1kDYFZwuLgSDMhmThisI48CwKSkKWVGNILJXzDjnM8q+/uPrzj5+TYRCWlGlUnIHkDVr0x24ZEmTpZauu93s1Oe+00NCxdP+TP3j57PGrp795+1t/zHq4NOsXo+5L0SKynj9YKa/IVatH9bHXz+V1qILPQJNMyElKLFhiLBygOKc8KtdobI2j8t8/uTDz47u9Jt0TFkFmPorpwygg9CG7ww7hEjK/VeYSoHi5pth6ED+QqsJAAkiJZyJhMHH4En9yXxHaoECWQFSXhKpobskNCEJYOKEclew2DXsML6iYBmwTYwWWXG4XhOCpsLvgVy5UERZkjX5A+AAX9osfwUblCSAX5aRi0oTbPAjyn57e/Muf/YbmWMDDDem6hynwGRnIt9pKiykDphG2mGt0+nX2W+yNEVxWLDNLn3zy8cP3vk0ihXtVQBYS2z12Fo485w1+foWTHT52r8iqWS6H/LkNFOicDhZNJbj+xu39VZQ9f3mJzqTJ8m+vLpHbd1p0U4Ylc0m4tkldrnQc4V8RwhTaFOUKrNgo+o3IBAviGTuCHFkdGT+Aw80RJCS1kc5V14rwI69XJFfRh+ABKpLEieTLifeS75U9cBWBIU94VhE0SkFkCDKd+6AHZLOIkuoeQg68gMECzIVRyD9gJmIzJDmDK7FUfv5i/P/80UdjuqWQT8KXGDwZMT5OxBtz8rtSfO3te4Qxzl+dI/upa6XikwxOWqpMq9jv1ofjs8vzV3fe+oAvCnArKpcV7IxL1rn7gyc8eJs/4evdk6/egiL2D06+83t//Bf/+l+tt1HDtfY7fj4NNcOOw3WSRAvD+sHl1SpqvddvSSMxTpaBXFII3kFZYvcjb6r6KlaJ5AeXJLckB8l2GZVEVYlQAKAjS86SACrfodMVzIlFUxlpXIIPyLwzsV5E+Iu2ZVcyOUKATphzZ6uI4uBTGLqQPwjnXTJu/IkOQIyLzqkEDFeBnjAluTmBCSAnDSEc4JkVPzsd/fMffTJcb8G8+COVHpZbcBKBHHOs3rtLt75RZ+7fcZeauX36iFJtOl73+23qcODo2XR4dfby7pvvVUB9DWdACmxfWzi7P3ZQ3v38Cu4gY/euYMVy/ugf/tnzR5/95vFjetQRkcvlutpBeTHb3La6V1l0+fTVLDz+1lGHnlIStDLoKi5ppkY0664E6pGlCiPHoDTCzMxVEjIXIShErFMuLWIeOYCmxSIU6MIRojdZLvgE9OAD4sDGpcdDCv5E7ksODzaiuE7yG7stiqrkanJLATMSS0wXaXWWDABo4iL8JnFOeQWrek3vMYZyGaT5T55e/JtfPLoJyFkyZUDQC73AOKgvfHIUF9XFZdkPGRVNvbytXr6atTtOu93kyDAEIy1t5Glh6dXimoQ+U7y4wleUzb1fg57N7EC8g/tXP3cIQFKzGaxrJEaf6Zy3jp6/eslJmYTSJssAsvVbjclqywk3rZZJ/fWPh3R5LL95dLjXqnMEOFOsOSzXpCiIfkspISCuFxANk3gw01AJ5WDPkMlgMDOHcuCIoKqwt5mniZurk2wjJCqEX5XtYA+xKHmwYLGfaEHBc8C4EtQBZBDARwSwUk6C3QkTQMlMHSfnSj8CiKrAzNXwrAUXPAo1Ilya6dB7WGajIP7Rk8sfPHpG+A5DiHipOIiikUTlidcgmohD6jz07nCynhVZo1kDEcR4fFeKnmdLJvalWsfj09enj6aji73jN9BjLGoHZ36+VrNfwfrvP2F7X/1Z2QH4Q0UWcwTtkqmx+YbYbFnjvBimrGMQhvHZ9UjR+8QMTNf7Yhk/H794/6j77n6n52E/IGPQseJ0mUSxpHxNcGCaCa4O3bBAhboVSJ5wAqTL5A4Ilggk4k/MMMCKLsAUFiiJ4JcNYN1w3LlQPC9I0k44ASIWfwoiEfNGQC+GO4Y+A+SR5yLlSa4Q90TL8j4zZOkfIjeOR4ji3mTKZ6PFjx49f7IgNCCagw+ydzFVRRRL3yxuGzKQg+br9dp0NiNBRtUEma5m16Y2JNqSupaDfSlJR10wFPTy/PL0yWeDw/s7YO6IhuevbZ0dKr4C9O5tdrcDPlwvmYtoeXn97Od/+x8uz69gAbzroz0/sFo318vlgiES9Prkr66mx/ttO0zWzBeL89npzaPR4mvHvTf6zZ5jULch8Uwm48iJ99RCE0guTSux3YJZL5KLYviL2BrYEGTxCEQgehBMEDcrFVuIJg0oENqRoCOGZKUtQAWxfuR49Q5fRyzLA3iTW4fWoHfMREz2kogHYQEOFoEDmDqSK6ybYiquTA/Oq0Xw64vxry/pjIK2RcrBhDKlXIq3kH9SdyWXhfwq3oqJLYTxrVsHtb7FQNaj/TaB7mwdkGWSeiAccqYPaRy5sLx6/jj7fTrYSHEjX6tl7gIJ1Trlx2syx6cDwyJjKpbG/Yg2jz/90ecf/fjm7NXZ2SWpKkQDranNpqUtVngTMlGwKr6h6HY2XUklhHTWc6a8Y/r1/3R6/fOXF+/uD94ctLu+7SVKImUaxMoJq+UQvRcZHIhi2wlHP8DgxAZMOQgP0xBXinOvEEwW6MAQ4YhkqedAt7JA0REAXXSlLF7MQ9YMDcAZlWQg3EbOneIhOkGp9aEFEuUIOiIED/xAXAjUqZukGK6iX95Mn41mE1rFyoyR25A2nMYtcLFq0t8hLIAjLa4zg4wi6dQFBAqTtJChzA/t1InZw7+DfmMd5YtZ0G3U0V8cHdDvdYJgHq5WVoujpaTMFrjy47VxuQN6Zbvxhugr7NCUI+9Xw8ns8vOf/+iTn//kcjhJQuakMg4Yky/36i6gWK/SxZSeIWEMLoco22yT2XzVbvqtemO9WZcpJyopZ4vNxTb62fnlseW8f3Ky1/U7FAnQAhLq5sZgzGHcyCkO9TLmFVItSi0MCkLWhlBVVZ6bDIOQdTFxg1ep2RXLSBRVJbmReDxgAnlF0sNVcQGyhTN6yP3SdhPSNcz0DiBL7lAsUVKRxSxMz+fBF9eTFxTtpYRNbULWcBjKkalcSDwUNKlRSTAaKidQgE/RC8SjuQ2lAnFW7/lBGDAdABY5ux7vb73Et9YSeJPzILocTIcBISdV0XC19vSuUDc7Ekj9PYEj4oUXYAnsBq08ffbz//jn/+PZq1eTyTxkSpzCUZDiijoYFegdQw7bYQYeyV8MgIrhK5MBI4xDgSVis3A8l4oUKpYxCKi9YnIXJvrPR5NPF8uubZ90G2/02rdavq8XnHYQxQUNWzWPvA99OIBdzpQRSwKZDSIwpggLizVDbQ9l8JLo4PRvYFEZNrIwSAadC+SgAcnESDqPzCg5aplTGdJJT24vU2iDXITZ5Wbz5Gp6tYjmfIQog/QHU1niYGbiAOzELFAG+jLjE/BT5YnSoH5SNIY8hS62adT0WoQa+AhLw8Y6HS60icnZ8KTPFpwkwKElqjKdTFA3DPLvHL2FswWMhSUBfUU4AnPhL1CJuaDmZ88++v/83/6vz54/g7whsLpdj1PqqTG6Sk5sgCzwV3MjhMVwPulSJGbw2lcBc8hYyqRwmxjH43lwA94HsARDzIHvRjLHfR7Hp68wIc7v9VvvHHQOG95hk94njn+mdZAmNPS0RMoYfFkFtfC7kDcSPuFRmfFwA2sNeUVIE0cO9IuQrII4pGbwjKKCQbZS/45jFGt0Ua6S8HQZPBsunt0sOT0A6pUWDY7gqTeqr8NOAISCEZlzztmj2KboB7GQMJETEmASBGd/YrBKuAQJaCW06RfZ6IYZFARGzQaBG5vO+vbZ6U29418O16TpD9pkqZSzl5/eeevbkjiV3LywrqhZeSAnpUgvW41fnD/7/K+///87Pb1ISkZvofqTGr17lmkTbKIjjVuhgsxyuWaGLO1tDeZQPX12Jdh7/UAjyz8Kw6AbbAMqhyHCIAxts0ZkAySQjdVrSmIVs7T4z2fTKLpmnu57R507nfpBo9FhJDKOAINkGJeOXSSBQkQtxfsCYKnJRKgzzUU6smQP/A0g+Aj0yl9oV2qTOY0bYkS5blNluMXcmn9+MzmbrajNEV2m6d1OC/jPaZbcbiERgE4w2LFrIAAyFqBXSVqklsjSKviBGuFdNA2/ITZ68dOY3eQnB22GndFD2Gk7zYbDzLiAEq4wsh0fZ45k1jaOXz179uFy0ui2d9IG7O4sHEgIhbL98d/8yx/84C8W4zU9Evg0nm0R3aZhZU4JMPPykFvC5gTGoZV8ShmyrrsNB8EZyLiU18CX35LTI/YCsUhwHABB9ZwngUbmCTPjgRRgQwK5jOKkGkQvZln2o7Obn5wOu5637/t3O/5xt97hBBkpJJBUEl2GuBYAmv2zei6EK8yNIH5M7CpqIBITKkLC09O0jNXT+fLpaP4KuzsKsTfJ3rpM8eVsLEx6+SjnDVEH4WNbigFK/a3M88CAlpIABAtQ5gmmFz5clkdwGJQncgxjVkfaxKvtupF69w9733zvGIvuJ798NRyGN8wMVlWqxNppbdAtBx1yzsXNZEIP6vmrx19r/y5uCl40ZogUNCP3N4vrj//ur/76P/yry/E4rs6yoZAI2vX4mK0zxAgrF+3EkE3sWaQNtEw5IGUcW04fTxivU9BU+JrouRx2ICcC00JYlWJBJ5zUAfiZaOvSVYrNTv8l59kwyNbVHY42JCWIcanq2A3zvBiNxx9fXBEBP6jV+w29U7f6daeNflc5TRUqw75CuMQYKRXVi43I7cI0X0XpKonm6/BytuVQjBATvsjXkqMpj/baoIdxhxy4gPeEsEEMokElpCGzI4Sh4Xz5BsKKyxFyQJ9IIEIKBgEW8QhBEOU2oFrIK79arJuMTbeN7XKGt/3w3v6Pf/mCMbpMsuRlMvWUBbU9axiE00XW8MLPPvprdNb+8Z1OvyPuexqvXz75xQ//8l8Pz58BtP2aO0wWk4iiMONqvh00OevLYCZIv9NqeMaKahDCLXQOY7FaFqtnNlO8xYr5iuhFXlYMgLAG/cL1VBzC5hjTUBaFm5tQ5i/XyOfRchdKnRCJCMgKLkaicA46JuZ2G18xIl5Tn2wg7bLGvCWMYnJAptH2HZ/R4NQIAw3i5hS/ptpK4J6MVyupy8X2kbxV2e64HdN2uR9OVJKitmMRImg5UuzEyBIaimE76J+FYiGiXcDpRlwuWouQ3RSqaHxF4hAmM+Cxd1A0og8lyo19TITbUDhv6eYmxTPv7g/ef/t4uQimQqhJzWvBNdMlvQlSzkxi9cXjL+aTAE/hjTffObz1pvHv/sV/95Mf/vjyesLFIIYOLbL0gkk/CqUCDDs0g3XeqHstlzM5YGzOfqAIiiJGfRsEmDeW7S5XK4Tea5Kv4I7fIN2ecVqryXwxxCYvwyhwMdSB4pLjCIyoxfQXnHdUOT0uzD6KGH2apDNOqnJc1WAWCdgadOpgFQWzpDW7yOaThb00W4x6oNosIeJmARdGVQFxjvNGJsI3TBRueDWiD1j/yCjXIzRBFRhyRexC6PZ1gBDLVcafieDmVSqyAKlUFcYpXTgAmGp/aRGRujMm9NC0VTJTG8Knu4Y0BCIY3KCQiOGsl2qjYdU7ccvXo2U64HAr11xLjZBkSxkF0rFqo2UExQXa8PL8+gc/+Wm93TV+/cufrBczyJ98Y7CKFjISQGM0PuaPFMsrVICl1LVM1wxywcShlQIUoDkd8SsACSVWRYJ9JhT+lbgnzmaTyEBAi0bDFMVWZ/N8JswzTpAz0zRAHucM0cDxk69BkjLGl7O+xFfYMNUEOuRPyjMYSxhFG46doJgV8xBBBHFiOFPRhMji+uhBzlRAOjB9Y0UFLDPBEdClukWxQ8iCAWIbDsfeEw1GoDDYFSh7vIVLK0F/DCQEK8eGgx2SYlWlqPjH1KOjEbgS5C56BZWGYIAdENWkR6hB5Uo0XiypOMxiDr/eRhnnxTCCcbVk2jFCWFlutp06ZqTESZgMHoXBaILlFbjbrUEVHiekIbo9KmyaLnJwEcT5ImpyLkwWY2FhEo4YVboIbu1R3mlhdLic+2tpMn8kSZqe0+u1OHuVU2q+InxIRvqhVAJJFKvgUAAmdAclChgeISOxOEuaIXZQEFwOEUUoXknfABEkL/rQltlsDINU0clRgyPzmDFGnEDMGUa3aoRjsNrIhUjoGKm/DrABeYbMl7lD2LWE1A2T2CFz98Ef20MsEegmDox5CEA5hAZkoV4F45XvBlUJU4oZIWoWUSbaEMsPoS6ODmQjcT6IHYbGtLdcGe3FaCYgSt1iyshzWDnJ6nt7m2gzWmz4DgcHhJvEbTlex7JWDIpKqfFGhGCusHhjE2177RrnSse4ugmhOyIhepAE2wQZTSAFOHg08iCFi9LBgJIydqXouIR99WOOnug2xrMNFUYV3IVKWCObAfrSSCQWh5gcklODdvAKXYe6EUQnQoC3IFU232j42D/wPhQIcCFgMAVKlqSIVAcjFTcJGiSqIPKYkQPEFaxsCqnRYljlFcJVICKY29gobA6hk2ImAskYUmXMKeacfB6zKtIFABEi5B+YZ6nih3FTxAs1l5UlhjVTLZtSXvrmYAkEF4ut4qtYyUQf4sSSSpUq26Ubk/mKAbh+3ZtvoWgsQzrCi8WSCXFKZG+7PafNeQ18RUif0Et7vFwbGYESQGF6lHxRk1VFxktGptGGcmuvTYEdNgmCYB1yLITnuRwshp6jHg0JAglu3zputtru85sAJwsLjFEwCCBBgESAFAakJIrZ8j2EuEyABXNIWvrNsL7BrZjtBmWt+Ca8zsgeFCej8+h4Czjf00CnVcyOgKKVJV3hiEChZkyETbV12u8ka8h90HpIb+4JwiHmnd0vYUiMEu4F8VLlIVY+t1XRIyyMWgHp5YW4QaT4iyIQIXl0ANBxDBXBiorm5cpkkwgNtIY769pingfxFqpxTBuOx4YhELLY4Niq1NWvsZGZ72bSiYb+29xMmUOhN5iPmhdPXk6PDtscIMPpIXXf4egimagOs3KGQXfgMTt+nq44V69jqz3PQjKQd+ToJhJ94+mSCAvSo2bojY7HER/IiEGjeTVbD0d4VmG97jBfFtALW4oQEMKv3GMyQlJSiqGMtEDiI7LxQ1gfn0G+IJSxf0imECfhyAS6FdFrlBxg+AOpypQmzWJjUaAmcfJx/EhqQIl8njtVghowCcELAQNPcavEp+c14pOcgivPZIKlhN0REZin4AS/jhgxd8fyBLIyTgdBx6NaPV9h/dA3eTbWXIX5pCgRWwqFDMKq2BoT0dHCjJRjAIXqrHQW//CoBVW+uhxyrcF+YzxdsPHr6ZZ7QEymWWeMNxVJCBB8BGOyWq9QQDPRJyi2Gl6rHHvI+erq5bRcbUY9StxMk3M8GbT44Fan2+s8enIVkJ9J168mDKJD9XMYJ+JBSJ71IQjZLH0Q0uAHiIVq+CEoQYWzWHHBJSVCAyYZLLQ7RU28qTFHi+PSMVzwxdk8UBBpTl2J2CS4tRoFvJW1TQ6PLKnU7oh5golXPfDjpeIDPxeTQXp9uKhqG+JICy1QPBNSqk4+nSUKDghjimRHQyAPJSTPa+h5ZtmInwAy+b64XeSf8N3YmvyDtUiL41bzArpQcuiSckkKJncXSDVPqnHnww2DF+pdTGIXtsw5o4uxLWE5y0KWTCG6vkmoSTYIf1YGN3SkLjbby5vR/T3G3xOrYl5k2Wp5Um6nlB1H9zkclK2m6dFeyzzsooKH4ZAhjIxVxtdR9ZWEfxDU5CvANfzL8VoUYqeMJKkhYUhFIMFMMSSk1kUASoCQ8wOw+Zl7ykwwcmrsBlImOM7hCZC1tLlyuhyhBHqp8O3AQwppxFKRAFrQmQRtBCiskH/kx4EEoOUbNc8kdCSxBY1eBAoJsRAcnxO5mB2H5MFbxIT1sF9ZbMLRFrAhJALKga8QAoQvY9fx3HEgqGXmKRPBdGQTo6cIZEA8SB5omb4YpmnCEFDDNuBwLkm17R0MNknI2dOkC8+my+U86jZsjByOCydhEWwjvEvj3nEHViZmwUKkUsY224M2c7GvxlO2gmRG++x3mr2mtZxuFvOQHnuk5cVkPb1BpZcdv8FY9ovhlGgschGikGO4OBQrxJGrE10jMETAQNwldB4TYxjjDgIQt4wwxSo3JQiHEcJZPfiMXMpLGGIs7pamkWLL5BBajndDYxM3si0ioggVvBnoF8OOLAcoYveVbYoI5hxp5oyKSACiXKLKb5Q1qbwS453vVlFUCYXgweJwiKUDnDFAc64p96rIX4iIwxNAMOPMOWQIbPnEqtB4kjqHL/DHOTvLEga2rP3DfhBuVpu1scc5j/regcw4ixZr+vKuh9RGKz05ZQSyJOqkIMmph5a79LrMtWcwVDEP4AXz9p4XhatX1+Fym96+1eVIUybjEFuivQ+PhIHSF7MrspHLKMGRwXSj1nSxGhIlZm/IBP7juK9KaBJ3tOdzYhdIAapUKDwD5NW0y8oSl2nTGDmFUm82CKsja6W4tFIV8CgAkHMsSOQhOrCT8ZyLiAFJVFfB65yzh7EIE2IWIU+IyGGnIvzRddAs5f9UJyJwRPggp+krzymMoJGKlI7E8sjnSCSusmfwTJAdSCFkEvfF1AFH0D24ZA0YOOhcHBHwRMsWp+DhTKHYUW/UHSPy8P449a/fcB7e2v/kky846t7ydU4DDlYBeeiAPG+Z1Zp227MnGyh1S489bZ50/Pg1738BA6G1lEL12IMAAAAASUVORK5CYII=", "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "m(image)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(83521, 16)" ] }, "execution_count": 201, "metadata": {}, "output_type": "execute_result" } ], "source": [ "srlut = np.load(\"/wd/SR-LUT/2_Transfer_to_LUT/Model_S_x4_4bit_int8.npy\").reshape(17**4, 4*4).astype(np.int16) \n", "# srlut = np.load(\"/wd/SR-LUT/3_Test_using_LUT/Model_F_x4_4bit_int8.npy\").astype(np.int16).reshape(-1, 4*4)\n", "srlut = (srlut+128).astype(np.uint8)\n", "srlut.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 187, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAALrCAYAAADTH2DPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO9klEQVR4nO3dfVxVZbr/8e8GxBRE0UoO4hNYpuZDvQxh1GYiz2SZ41OOOh0fskxzdBDrTJx+4oyjJeZDVmamY046WppOD2NGU05tfyln+uVJGpvGUJQUhjQ0YQMisNfvD4d9YvCBvdybtVx+3r149dr3Wqz7cotweXnd9+0yDMMQAAAAAL+EWB0AAAAAcCUikQYAAABMIJEGAAAATCCRBgAAAEwgkQYAAABMIJEGAAAATCCRBgAAAEwgkQYAAABMIJEGAAAATAjz9xPy8/O1du1a5eTkKDc3V/Hx8dq+fXu9+0pKSvTcc88pKytLp0+fVtu2bfWzn/1MkydPDkjgAAAAuHo0JAddtGiRdu3apcLCQrlcLnXu3FmTJ0/WkCFD6txXUFCgpUuX6pNPPlFZWZni4+P18MMP66677vIrJr8T6dzcXLndbvXu3Vter1fnO2G8vLxc48ePV2hoqJ544gm1adNGR44ckcfj8Xc6AAAAoEE5aFlZmUaPHq34+Hi5XC699957mj17trxer4YOHSpJOnv2rB566CFJ0hNPPKGWLVvqrbfeUmpqqtasWaOBAwc2OCaXcb4oLsLr9Sok5FxHSHp6uvbv31/vbwPLly/X9u3b9fbbb6t58+b+PB4AAACopyE56PmMHTtWzZs318svvyxJ2rdvn8aMGaP169erX79+vmcPGjRISUlJeuqppxock9890rW/gIvZunWrRo0aRRINAACAgGhIDno+rVq1UlVVle91dXW1JKlFixZ1nh0REXHeKvdFYzIV0UUcO3ZMJ06cUHR0tKZNm6abb75ZiYmJmjNnjsrKygI9HQAAAOBjGIaqq6tVUlKiN998U7t379b999/vu96nTx/dcMMNeuaZZ3T06FGVlJRow4YNOnLkiH7605/6NZffPdKX8u2330o61+z94x//WGvWrNGRI0e0dOlSlZeXa9myZYGeEgAAAFeAnJwczZ49+4LXd+7cedlzZGdn64EHHpAkhYWFKSMjQ4MHD/ZdDwsL0yuvvKJHHnlEgwYNkiRdc801euaZZ3TLLbf4NVfAE2mv1ytJ6ty5sxYtWiRJSk5OVlhYmObMmaO0tDS1b9/e1LONqmqdLfw2YLFeiUJC/fsnh2Dw1risDgHwqRFfjzgnVNZ/f8Q5dvhZZbWwmOvkCgt4mmWKYRiSt9rqMKSQMF133XVBn6ZXr17aunWrPB6Pdu3apQULFig0NFSjR4+WJJ05c0a/+MUvZBiGXnjhBUVERCgrK0uPPvqo1qxZo8TExAbPFfDf4ZYtW0qSr3m7VlJSkqRzKy7NJtJnC7/VX/tPu7wAr3Cto8utDkEnT9H7Dvv4pqqZ1SHAJto2qbA6BPyTHX5WWa39u6+oSdy/WR3GOd5qVZ86anUUCotur9jY2IBUnS8mMjJSPXv2lHSumFtTU6PMzEyNHDlSoaGh2rp1qz7//HO53W61bt3ad9/XX3+tZcuW6bXXXmvwXAHvkW7fvr3Cw8MveL2ysjLQUwIAAADn1aNHD3k8Hp08eVKSdPDgQbVt29aXRNfq1q2bvv76a7+eHfCKdHh4uPr376/s7Ow643v27JF07hcDAACARuStsToCy+zdu1eRkZGKjo6WJMXGxqqoqEgnT56sk0x/8cUXateunV/P9juRrqiokNvtlnTuVBiPx6OsrCxJUmJiolq3bq0ZM2Zo7NixevTRRzVixAjl5+dr6dKlGjp0qDp06ODvlAAAALjKXSoHPX78uJYsWaLBgwerXbt2Ki8v10cffaTXX39ds2fPVtg/e9aHDh2ql156SVOmTNHDDz/s65H+7//+bz399NN+xeT3gSzHjh3TnXfeed5r39/YOjs7W0uWLNFXX32lli1baujQoUpLS7to28elVOYX0SNtg74zeqRhJ/RIoxY90vZhh59VVrNTj7RRfVbVxYetDkNhbTrLFWY+D7xUDpqQkKCnnnpK+/bt04kTJ9SiRQvFx8dr0qRJvt05an3xxRdavny5vvjiC505c0adOnXSxIkTNWzYML9i8juRthKJtD2+OZFIw05IpFGLRNo+7PCzymok0vVdbiJtRwFfbAgAAABcDeyxwSEAAACC55/nfCCwqEgDAAAAJpBIAwAAACbQ2gEAAOBwhkFrRzBQkQYAAABMoCINAADgdCw2DAoq0gAAAIAJJNIAAACACbR2AAAAOJoh2WKx4RVzmHaDUZEGAAAATCCRBgAAAEygtQMAAMDJDEneGqujcGJnBxVpAAAAwAwq0gAAAE5ni8WGzkNFGgAAADCBRBoAAAAwgdYOAAAARzNsckS481YbUpEGAAAATCCRBgAAAEygtQMAAMDhDHbtCAoq0gAAAIAJJNIAAACACbR2AAAAOJ0tdu1wHirSAAAAgAlUpAEAAJzMkD2OCHfeNtJUpAEAAAAzSKQBAAAAE2jtAAAAcDRD8tZYHYSc2NtBRRoAAAAwgUQaAAAAMIHWDgAAAKezw64dDkRFGgAAADCBijQAAIDTcbJhUFCRBgAAAEwgkQYAAABMoLUDfmsdXW51CDp5qrnVIdjifYDUWvw+SPb4MwHU4utRalfjsjqE7zFsstiQfaQBAAAAiEQaAAAAMIXWDgAAACczZI9dO5zX2UFFGgAAADCDRBoAAAAwgdYOAAAABzMkGUaN1WHIkGSnvUwCgYo0AAAAYAIVaQAAAEdjH+lgoSINAAAAmEAiDQAAAJhAawcAAIDT2WEfaQeiIg0AAACYQCINAAAAmEBrBwAAgNPZYtcO56EiDQAAAJhARRoAAMDJDEle6082dOA20lSkAQAAADNIpAEAAAATaO0AAABwNI4IDxYq0gAAAIAJJNIAAACACbR2AAAAOB1HhAcFFWkAAADABCrSAAAATmeLxYbOQ0UaAAAAMIFEGgAAADCB1g4AAABHM2yy2NB5+0iTSAMAAMD28vPztXbtWuXk5Cg3N1fx8fHavn17nXsWLVqkXbt2qbCwUC6XS507d9bkyZM1ZMiQes87dOiQli1bpk8++URVVVXq1KmT/vM//1P9+/dvcEwk0gAAALC93Nxcud1u9e7dW16vV4ZRv8JdVlam0aNHKz4+Xi6XS++9955mz54tr9eroUOH1nnWuHHjNGDAAC1evFhNmjTRF198oYqKCr9ichnni8KmKvOL9Nf+06wOw1Kto8utDsEWTp5qbnUI/F7AVuzwZwLA/+q5e5WadoyxOgxJkreiVGc/fdPqMBTed7hCmrUw/fler1chIeeW96Wnp2v//v31KtLnM3bsWDVv3lwvv/yyb+xnP/uZrr/+ei1fvtx0PBKLDQEAAHAFqE2i/dWqVStVVVX5Xh86dEh79+7V+PHjLz+my34CAAAAYBOGYai6ulolJSV68803tXv3bt1///2+6zk5OZKk8vJyjRgxQt27d9ePfvQjrV271u+56JEGAABwOMOosToESVJhYeFFK8E7d+687Dmys7P1wAMPSJLCwsKUkZGhwYMH+65/++23kqTHHntMkyZN0uOPP66PP/5YixcvVkREhMaOHdvguUikAQAA4Bi9evXS1q1b5fF4tGvXLi1YsEChoaEaPXq0pHO91pI0fPhwPfLII5KkpKQkFRUVadWqVSTSAAAA+B5b7CMtxcbGBqTqfDGRkZHq2bOnJCk5OVk1NTXKzMzUyJEjFRoaqqioKEnnkufvS05O1h//+Ed5PB5FRkY2aC56pAEAAOBYPXr0kMfj0cmTJyVJN9xww0XvP3v2bIOfTSINAAAAx9q7d68iIyMVHR0tSerTp49atWqlPXv21Llvz549io2NVevWrRv8bL9bOxpyqsz3ffDBB/r5z3+uG264oUF7/QEAACCQDMmwQ2vH5R1dUlFRIbfbLUkqKCiQx+NRVlaWJCkxMVHHjx/XkiVLNHjwYLVr107l5eX66KOP9Prrr2v27NkKCzuX9jZp0kQzZ87UwoUL1bJlS9166636v//3/+qdd97R/Pnz/YrJ70S6IafK1Dpz5oyeeuopXXvttf5OAwAAAPgUFxcrNTW1zljt6/Xr1yshIUFRUVFauXKlTpw4oRYtWig+Pl4rVqzQoEGD6nzef/zHf8gwDL3yyitatWqV2rVrp/nz5/sWJDaU34l0SkqKL5jaU2Uu5KWXXlJsbKzi4uIueh8AAABwMXFxcTpw4MBF71m2bFmDnzd+/PjLPpTF7x7php4q8/XXX2vdunWaM2eO30EBAAAggLxe6z8cKGiLDZ988kkNGzZMN910U7CmAAAAACwTlH2k//znP+uzzz7zNYAHSqnLpfVhTQP6zCtOqfW//raGDbYfD7U6AEklEVZHYLmYGpfVIQD4F0Whl7egyym+cVVbOv9cl0vW/8T+J0P2WGzowC/NgFekKysr9dRTT2nmzJl+bR8CAAAAXEkCXlp85ZVXFBISoiFDhqikpESSVFVVJa/Xq5KSEl1zzTUKDw8P9LQAAABAowp4Ip2Xl6f8/HwlJyfXu3bbbbfp17/+tcaNGxfoaQEAAHBehk0W+zmvtyPgifSUKVM0YsSIOmOrV6/W4cOHtXDhQnXq1CnQUwIAAACNzu9E+lKnyiQkJCghIaHO57zxxhv65ptv1K9fvwCEDAAAAFjP70T6UqfKkCwDAADYjB127XAgvxPphpwq868yMzP9nQYAAACwtaAdyAIAAAA4mQ1O1gAAAEBQ2WLXDuehIg0AAACYQEUaAADA6ahIBwUVaQAAAMAEEmkAAADABFo7AAAAnMww7LGPtOG8I8KpSAMAAAAmkEgDAAAAJtDaAQAA4HTs2hEUVKQBAAAAE6hIAwAAOJ0dFhs6EBVpAAAAwAQSaQAAAMAEWjsAAACcjsWGQUFFGgAAADCBRBoAAAAwgdYOAAAAR7PJEeHiiHAAAAAAIpEGAAAATKG1AwAAwMkM2WPXDud1dlCRBgAAAMygIg0AAOB0dqhIOxAVaQAAAMAEEmkAAADABFo7AAAAnM5w4Eo/G6AiDQAAAJhAIg0AAACYQGsHAACAoxk22bXDee0lVKQBAAAAE6hIAwAAOBknGwYNFWkAAADABBJpAAAAwARaOwAAAJzOsEFrhwNRkQYAAABMIJEGAAAATKC14wrT1uC3TJJialxWh2ALMVU1VodgubZNKqwOwRZaR5dbHYLlWsRUWh2CLYTHNbE6BEhqcY3NWinssGuHA1GRBgAAAEygvAkAAOBohmTYYRNnO8QQWFSkAQAAABNIpAEAAAATaO0AAABwOhYbBgUVaQAAAMAEEmkAAADABFo7AAAAnMyQPVo7nLdpBxVpAAAAwAwSaQAAAMAEWjsAAACczrBBa4cDUZEGAAAATKAiDQAA4HCG14Er/WyAijQAAABgAok0AAAAYAKtHQAAAI5m2GMfaQduJE1FGgAAADCBRBoAAAC2l5+fr7lz52rYsGHq3r277r333nr3LFq0SEOGDNEtt9yiW2+9VaNGjdI777xz0ec++eST6tq1q37zm9/4HROtHQAAAE7ngH2kc3Nz5Xa71bt3b3m9XhlG/VaRsrIyjR49WvHx8XK5XHrvvfc0e/Zseb1eDR06tN79Bw4c0LZt2xQZGWkqJhJpAAAA2F5KSooGDRokSUpPT9f+/fvr3fOvVeWBAwfq4MGDeuONN86bSM+fP1+TJk3Sm2++aSomWjsAAACczJDkNaz/uMy1hiEh5tLWVq1aqaqqqt7422+/rWPHjmnKlCnmYzL9mQAAAIDNGIah6upqlZSU6M0339Tu3bt1//3317nH4/Ho6aef1i9/+Us1a9bM9Fy0dgAAAKBRFBYWavz48Re8vnPnzsueIzs7Ww888IAkKSwsTBkZGRo8eHCde1asWKGOHTvqnnvuuay5SKQBAACczhb7SDeOXr16aevWrfJ4PNq1a5cWLFig0NBQjR49WtK5RYsbN27Uli1bLnsuEmkAAAA0itjY2IBUnS8mMjJSPXv2lCQlJyerpqZGmZmZGjlypEJDQ5WZmanBgwerXbt2KikpkSR5vV5VVVWppKREkZGRDe7HpkcaAAAAjtWjRw95PB6dPHlSknT48GG9/fbbuu2223wf//jHP7RlyxbddtttOnz4cIOfTUUaAADA0a7uI8L37t2ryMhIRUdHS5KWLVumysrKOvfMnj1bffr00YQJExQbG9vgZ5NIAwAAwPYqKirkdrslSQUFBfJ4PMrKypIkJSYm6vjx41qyZImvbaO8vFwfffSRXn/9dc2ePVthYefS3j59+tR7dtOmTdW2bVv169fPr5hIpAEAAGB7xcXFSk1NrTNW+3r9+vVKSEhQVFSUVq5cqRMnTqhFixaKj4/XihUrfAe5BBqJNAAAgNOd5zjtK01cXJwOHDhw0XuWLVtm6tl//vOfTX0eiw0BAAAAE6hIAwAAOJkheyw2vPKL4vVQkQYAAABMIJEGAAAATKC1AwAAwOm8DuyrsAEq0gAAAIAJflek8/PztXbtWuXk5Cg3N1fx8fHavn2777rH49G6devkdrt15MgRhYeHq1evXkpLS1PXrl0DGjwAAABgFb8r0rm5uXK73erYsaMSEhLqXS8sLNTmzZvVv39/LV++XPPnz1dpaanGjBmjQ4cOBSRoAAAA+MHwWv/hQH5XpFNSUnynw6Snp2v//v11rsfFxen9999Xs2bNfGNJSUlKSUnRpk2blJGRcZkhAwAAANbzO5EOCbl4Ebt58+b1xiIiItShQwcdP37c3+kAAABwWQybLDa0QwyB1SiLDUtKSnz91AAAAIATNEoivXjxYrlcLo0bN64xpgMAAACCLuj7SG/btk1btmxRZmamYmJiLutZNTL0D+NMgCLz37+5rrFs7lrfuKqtDsEWvrHBDuhWfi36hFo7/YmaMmsDsIkTVaVWhyDROcd78E/ffvKN1SHYQnGFtX8uv8o4q/jrLQ3hfxmSwRHhQRHUirTb7dbcuXM1ffp0jRgxIphTAQAAAI0qaIn0vn37lJqaquHDhys1NTVY0wAAAACWCMo/kB88eFBTp05VUlKS5s2bF4wpAAAA0FC22LXDefxOpCsqKuR2uyVJBQUF8ng8ysrKkiQlJibKMAw9+OCDatq0qSZOnFhnn+nIyEh16dIlQKEDAAAA1vE7kS4uLq7XqlH7ev369ZKkoqIiSdKkSZPq3JeYmKgNGzaYiRMAAABmOfRkQav5nUjHxcXpwIEDF73nUtcBAACAK12j7CMNAAAAOI0NduMFAABAULHYMCioSAMAAAAmkEgDAAAAJtDaAQAA4GiGZIcjwh14RjgVaQAAAMAEEmkAAADABFo7AAAAnMyQPXbtsEEIgUZFGgAAADCBijQAAIDTcUR4UFCRBgAAAEwgkQYAAABMoLUDAADA6eyw2NCBqEgDAAAAJpBIAwAAACbQ2gEAAOBwhi2OCHceKtIAAACACVSkAQAAnMww7LHY0LBBDAFGRRoAAAAwgUQaAAAAMIHWDgAAAKezQ2uHA1GRBgAAAEwgkQYAAABMoLUDAADA6Qz2kQ4GKtIAAACACSTSAAAAgAm0dgAAADgdu3YEBRVpAAAAwAQq0gAAAE5mSIYdKtI2CCHQqEgDAAAAJpBIAwAAACbQ2gEAAOB0dmjtcCAq0gAAAIAJJNIAAACACbR2AAAAOJohee1wRLjz2kuoSAMAAAAmXFEV6RaGS5PONLc6DOCf+FrkPah1ndUBwCbaNqmwOgSpyb9ZHYE9tLB2+nahTa0N4F+x2DAoqEgDAAAAJpBIAwAAACZcUa0dAAAA8JMhe7R22CCEQKMiDQAAAJhAIg0AAACYQGsHAACAwxmGA/sqbICKNAAAAGACFWkAAACns8NiQwcikQYAAIDt5efna+3atcrJyVFubq7i4+O1ffv2OvcsWrRIu3btUmFhoVwulzp37qzJkydryJAhvnvy8vL0+9//Xv/93/+tgoICtWnTRgMHDlRqaqpat27tV0wk0gAAALC93Nxcud1u9e7dW16v97x932VlZRo9erTi4+Plcrn03nvvafbs2fJ6vRo6dKgkac+ePfr00081ZswY3XTTTSosLNRzzz2nTz75RG+99ZbCw8MbHBOJNAAAgNM5oLUjJSVFgwYNkiSlp6dr//799e75zW9+U+f1wIEDdfDgQb3xxhu+RHrIkCG6//775XK5fPd17NhR48aN04cffqi77rqrwTGx2BAAAAC2FxJiLm1t1aqVqqqqfK+jo6PrJNGS1L17d0nS8ePH/YvJVEQAAACADRmGoerqapWUlOjNN9/U7t27df/991/0c/bu3StJSkhI8GsuWjsAAACczJAMO7R2GFJhYaHGjx9/wVt27tx52dNkZ2frgQcekCSFhYUpIyNDgwcPvuD9lZWVWrRokbp3767k5GS/5iKRBgAAgGP06tVLW7dulcfj0a5du7RgwQKFhoZq9OjR573/V7/6lY4dO6bXXnutXsvHpZBIAwAAoFHExsYGpOp8MZGRkerZs6ckKTk5WTU1NcrMzNTIkSMVGhpa595nnnlGf/zjH7Vq1SrdeOONfs9FjzQAAICjGed27bD6Q9a0l/To0UMej0cnT56sM75hwwa99NJLevLJJzVw4EBTzyaRBgAAgGPt3btXkZGRio6O9o1t375dTz75pGbPnq3hw4ebfjatHQAAAE7ntTqAy1dRUSG32y1JKigokMfjUVZWliQpMTFRx48f15IlSzR48GC1a9dO5eXl+uijj/T6669r9uzZCgs7l/Z+8sknSk9PV1JSkhITE7Vv3z7fHDExMYqJiWlwTCTSAAAAsL3i4mKlpqbWGat9vX79eiUkJCgqKkorV67UiRMn1KJFC8XHx2vFihW+g1wk6S9/+YuqqqqUnZ2t7OzsOs+bMWOGZs6c2eCYXMb5zle0qfL8b/Rh4iyrwwAA4LzaNqmwOgTYRM/dq9S0Y8Mrm8HkPV6o0kcvvOVcY2mxdINCro+1OoyAoiINAADgYIbssY+09REEHosNAQAAABNIpAEAAAATaO0AAABwMkP/3MfZYjYIIdCoSAMAAAAmUJEGAABwOgfsI21HVKQBAAAAE0ikAQAAABNo7QAAAHA4O+wj7URUpAEAAAATSKQBAAAAE2jtAAAAcDp27QgKKtIAAACACSTSAAAAgAm0dgAAADiZYZNdO2wQQqBRkQYAAABM8DuRzs/P19y5czVs2DB1795d995773nve/3113XXXXepZ8+e+slPfqIPP/zwsoMFAACACV4bfDiQ34l0bm6u3G63OnbsqISEhPPe88477ygjI0N333231qxZoz59+mjGjBnat2/f5cYLAAAA2ILfPdIpKSkaNGiQJCk9PV379++vd89zzz2nIUOGaNasWZKkpKQkffXVV3rhhRe0Zs2ay4sYAAAAsAG/K9IhIRf/lKNHj+rIkSO6++6764zfc889ys7O1tmzZ/2dEgAAAJfB8Fr/4UQBX2yYl5cnSercuXOd8YSEBFVVVeno0aOBnhIAAABodAFPpE+fPi1JioqKqjNe+7r2OgAAAHAlu6L2kS51GfrdNeWWzf9vrmssmxsA7O4fxhmrQ4BNnKgpszoEy22SoVirg/g+h7ZWWC3gFemWLVtKkkpLS+uMl5SU1LkOAAAAXMkCnkjHx8dL+t9e6Vp5eXlq0qSJ2rdvH+gpAQAAcCGG9QsNDa842bAh2rdvr06dOikrK6vO+I4dO5ScnKzw8PBATwkAAAA0Or97pCsqKuR2uyVJBQUF8ng8vqQ5MTFRrVu31syZM/XYY4+pQ4cO6tevn3bs2KHPP/9cv//97wMbPQAAAGARvxPp4uJipaam1hmrfb1+/Xr169dP9957ryoqKrRmzRqtXr1anTt31ooVK3TLLbcEJmoAAAA0HIsNg8LvRDouLk4HDhy45H2jR4/W6NGjTQUFAAAA2F3Ae6QBAACAq8EVtY80AAAA/OfUI7qtRkUaAAAAMIFEGgAAADCB1g4AAAAnM2zS2sGBLAAAAAAkKtIAAACOZsgeFWkHFqSpSAMAAABmkEgDAAAAJtDaAQAA4HSGy+oIHImKNAAAAGACiTQAAABgAq0dAAAADmeHXTuciIo0AAAAYAIVaQAAAIczvCw2DAYq0gAAAIAJJNIAAACACbR2AAAAOJlhk8WGDjwjnIo0AAAAYAKJNAAAAGACrR0AAAAOZ3BEeFBQkQYAAABMoCINAADgcLZYbOhAVKQBAAAAE0ikAQAAABNo7QAAAHA4jggPDirSAAAAgAkk0gAAAIAJtHYAAAA4mSEZdjie2w4xBBgVaQAAAMAEEmkAAADABFo7AAAAHMyQyxa7dhiyPoZAoyINAAAAmEBFGgAAwOHsUJF2IirSAAAAgAlUpAEAAGB7+fn5Wrt2rXJycpSbm6v4+Hht3769zj2LFi3Srl27VFhYKJfLpc6dO2vy5MkaMmRInfvOnj2rZ555Rm+//bbKysp0yy23KCMjQ/Hx8X7FdEUl0mXVlXrjH59aNn+bZi0smxsAcHHXXtPS6hBgI9c14Wf299liH+nLlJubK7fbrd69e8vr9co4zy+qrKxMo0ePVnx8vFwul9577z3Nnj1bXq9XQ4cO9d23YMEC7dixQ+np6Wrbtq1WrVqlSZMm6Z133lGLFg3/2rmiEmkAAABcnVJSUjRo0CBJUnp6uvbv31/vnt/85jd1Xg8cOFAHDx7UG2+84Uuki4qKtHXrVv3qV7/SfffdJ0nq2bOn7rjjDr322muaMmVKg2OiRxoAAAC2FxJiLm1t1aqVqqqqfK8//vhjeb1eDR48uM49/fv3165du/yLyVREAAAAuGIYXpflH432azUMVVdXq6SkRG+++aZ2796t+++/33c9Ly9Pbdq0UcuWddvBEhISlJeX59dctHYAAACgURQWFmr8+PEXvL5z587LniM7O1sPPPCAJCksLEwZGRl1qs8lJSXn7YOOiorS6dOn/ZqLRBoAAMDJDMkwbLCPdCMteOzVq5e2bt0qj8ejXbt2acGCBQoNDdXo0aMDPheJNAAAABpFbGxsQKrOFxMZGamePXtKkpKTk1VTU6PMzEyNHDlSoaGhioqKksfjqfd5JSUl9do9LoUeaQAAADhWjx495PF4dPLkSUlSfHy8vv3223ptHHl5eX7vI00iDQAA4HCG1/oPq+zdu1eRkZGKjo6WJA0YMEAhISH605/+5Lvn9OnT+vjjj3X77bf79WxaOwAAAGB7FRUVcrvdkqSCggJ5PB5lZWVJkhITE3X8+HEtWbJEgwcPVrt27VReXq6PPvpIr7/+umbPnq2wsHNpb0xMjO677z49/fTTCgkJUdu2bfXSSy+pRYsWGjt2rF8xkUgDAADA9oqLi5WamlpnrPb1+vXrlZCQoKioKK1cuVInTpxQixYtFB8frxUrVvgOcqk1Z84cRUREaOnSpSorK9Ott96qdevW+XWqoSS5jPOdr2hTeXn5uvGmH1g2P0eEA4B9cUQ4vs/qI8I37d6g2I7/ZmkMtc4e/YeO/PgBq8NQpz+tU3h7e7wngUKPNAAAAGACiTQAAABgAj3SAAAADmeLA1kciIo0AAAAYAIVaQAAAIczvFSkg4GKNAAAAGACiTQAAABgAq0dAAAADnflnBpyZaEiDQAAAJhAIg0AAACYQGsHAACAkxkue+za4cC9rKlIAwAAACZQkQYAAHA4rwOrwXZARRoAAAAwgUQaAAAAMIHWDgAAAIczaO0ICirSAAAAgAkk0gAAAIAJtHYAAAA4mCF7HBFugxACjoo0AAAAYAIVaQAAAIdjH+ngoCINAAAAmEAiDQAAAJhAawcAAIDDsY90cFCRBgAAAEwIWiK9c+dOjR49WrfccosGDBig1NRUHT16NFjTAQAAAI0qKIn0X/7yF82YMUNdunTRCy+8oCeeeEJ///vfNXnyZJ05cyYYUwIAAOB8jHP7SFv94cSNpIPSI/3OO+8oNjZWTz31lFyucz05rVu31sSJE7V//3717ds3GNMCAAAAjSYoFenq6mpFRET4kmhJatGihSTJsMPROgAAAMBlCkoiPXLkSB06dEgbN25UaWmpjh49qmXLlql79+669dZbgzElAAAALsBruCz/cKKgJNJ9+/bVihUrtHTpUvXt21eDBg1ScXGx1qxZo9DQ0GBMCQAAADSqoPRI/8///I9++ctf6qc//al+9KMf6bvvvtPKlSv18MMPa9OmTbrmmmtMPffa0GZ66fo7Ahwt/FUUSnsOAPv5xlVtdQj4p38YbCwQ6rJPBdaQPfaRdmL2EJREesGCBUpKSlJ6erpvrE+fPvrRj36kt956S2PGjAnGtAAAAECjCUprx6FDh3TTTTfVGYuJiVF0dLS+/vrrYEwJAAAANKqgVKRjY2P1t7/9rc5YQUGBTp06pXbt2gVjSgAAAFyAUxf7WS0oFemxY8fqgw8+0IIFC7Rnzx7t2LFD06ZNU5s2bXT33XcHY0oAAACgUQWlIj1hwgSFh4fr1Vdf1bZt2xQREaE+ffpo+fLlio6ODsaUAAAAQKMKSiLtcrk0btw4jRs3LhiPBwAAgB+cuGOGHQSltQMAAABwuqBUpAEAAGAXdjlZ0A4xBBYVaQAAAMAEEmkAAADABFo7AAAAHM4OR4Q7ERVpAAAAwAQSaQAAAMAEWjsAAAAczJDktToIOXMvayrSAAAAgAkk0gAAAIAJtHYAAAA4nOHAw1DsgIo0AAAAYAIVaQAAAIfzOnGlnw1QkQYAAABMIJEGAAAATKC1AwAAwOG8LDYMCirSAAAAgAkk0gAAAIAJtHYAAAA4HPtIBwcVaQAAAMAEKtIAAAAOZkjyWh2EzsXhNFSkAQAAABNIpAEAAAATaO0AAABwOBYbBgcVaQAAAMAEEmkAAADABFo7AAAAHM4Ou3Zcrvz8fK1du1Y5OTnKzc1VfHy8tm/f7rvu8Xi0bt06ud1uHTlyROHh4erVq5fS0tLUtWvXOs/66quvtHTpUuXk5Ki6ulpdu3bVzJkzlZSU5FdMVKQBAABge7m5uXK73erYsaMSEhLqXS8sLNTmzZvVv39/LV++XPPnz1dpaanGjBmjQ4cO+e47efKkJk2apO+++05PPvmkli1bpubNm2vKlCk6cOCAXzFRkQYAAHA4J1SkU1JSNGjQIElSenq69u/fX+d6XFyc3n//fTVr1sw3lpSUpJSUFG3atEkZGRmSpOzsbBUXF2vLli2Ki4uTJCUmJioxMVEffPBBver1xZBIAwAAwPZCQi7eSNG8efN6YxEREerQoYOOHz/uG6uqqpIktWjRwjfWtGlTNWnSRIbh37ExtHYAAADAkUpKSnz91LXuuOMOXXvttcrMzNTx48d18uRJLV26VC6XS8OGDfPr+VSkAQAAHM4u+0gXFhZq/PjxF7y+c+fOgM63ePFiuVwujRs3zjfWsmVLbdy4UVOnTtXAgQMlSa1atdKaNWvUvn17v55PRRoAAACOs23bNm3ZskVz585VTEyMb7y4uFgzZsxQhw4dtHr1aq1du1b9+vXTI488UmdRYkNQkQYAAECjiI2NDXjV+Xzcbrfmzp2r6dOna8SIEXWu/fa3v9Xp06f1hz/8QeHh4ZKk5ORkDRkyRCtXrtTSpUsbPA+JNAAAgIMZkrw26Ozwbxmfefv27VNqaqqGDx+u1NTUetcPHjyo+Ph4XxItSaGhoeratau+/vprv+aitQMAAACOcPDgQU2dOlVJSUmaN2/eee+JjY3VoUOHVFlZ6RurqanR3//+d7Vr186v+ahIAwAAwPYqKirkdrslSQUFBfJ4PMrKypJ0bh9owzD04IMPqmnTppo4cWKdfaYjIyPVpUsXSdLo0aO1detWTZ8+Xffff79CQ0O1efNm5efna8GCBX7FdEUl0mddhnLCqqwOAzbQ1rD+Szemxgb/TmaxmKoaq0PAP7VtUmF1CJZrHV1udQhqEVN56ZuCLDyuidUhKCw22uoQLNcs0k4/I1zy2mLXjsuLobi4uF6rRu3r9evXS5KKiookSZMmTapzX2JiojZs2CBJuvnmm/Xb3/5WK1eu1H/913/J6/WqS5cuWr16tW677Ta/YrI+GwEAAAAuIS4u7pJHeDf0iO/k5GQlJydfdkwk0gAAAA7XWAv9rjYsNgQAAABMIJEGAAAATKC1AwAAwOG8VgfgUFSkAQAAABNIpAEAAAATaO0AAABwsHNHhFu/j7QTdw6hIg0AAACYQEUaAADA4ZxYDbYDKtIAAACACSTSAAAAgAm0dgAAADgc+0gHBxVpAAAAwAQSaQAAAMAEWjsAAAAczmv9NtKOREUaAAAAMIFEGgAAADCB1g4AAAAHMyR5ZX1vhxMPhaEiDQAAAJhARRoAAMDhnFgNtgMq0gAAAIAJJNIAAACACbR2AAAAOBz7SAcHFWkAAADABBJpAAAAwARaOwAAABzOa3UADkVFGgAAADCBijQAAIDDsY90cFCRBgAAAEwgkQYAAABMoLUDAADAwQzZYx9pJ7aXUJEGAAAATCCRBgAAAEygtQMAAMDh2Ec6OKhIAwAAACYENZF+4403NHz4cPXs2VP9+vXTQw89pDNnzgRzSgAAAKBRBK2148UXX9SaNWs0bdo09enTR6dOnVJ2drZqamqCNSUAAADOg9aO4AhKIp2Xl6cVK1Zo5cqV+uEPf+gbv+uuu4IxHQAAANDogpJI/+EPf1BcXFydJBoAAADWMGywj7QTBaVHOicnRzfeeKNWrlyp5ORk3XzzzRo7dqxycnKCMR0AAADQ6IKSSJ84cUIff/yx3nrrLf3qV7/SCy+8IJfLpcmTJ6u4uDgYUwIAAACNKiitHYZhqLy8XM8++6xuuukmSVLv3r2VkpKi3//+90pNTTX13OgmNcq4oSiQoV5xSouaWh2CWsRUWh0CbCI8ronVIdhCWGy01SFI4vdCaml1AHLFtrU6BFtwtY2xOgTp+jhr52/W3Nr5v8eQPRYbckR4A0VFRalVq1a+JFqSWrVqpe7du+vgwYPBmBIAAABoVEFJpLt06XLBa5WVVDMBAABw5QtKIn3HHXfou+++05dffukbO3XqlL744gv16NEjGFMCAADgArw2+HCioPRIDxo0SD179tQvfvELpaWlqWnTplq9erXCw8P1s5/9LBhTAgAAAI0qKIl0SEiIVq9erYULF2ru3LmqqqpS3759tXHjRl133XXBmBIAAAAX4MSFfnYQtCPCW7durcWLFwfr8QAAAIClgtIjDQAAADhd0CrSAAAAsAGX5LXDEeF2iCHAqEgDAAAAJpBIAwAAACbQ2gEAAOBwTt3H2WpUpAEAAAATqEgDAAA4mCF7VKSduJc1FWkAAADABBJpAAAAwARaOwAAABzOiW0VdkBFGgAAADCBRBoAAAAwgdYOAAAAh7PFEeEOREUaAAAAMIFEGgAAADCB1g4AAACHs8OBLE5EIg0AAADby8/P19q1a5WTk6Pc3FzFx8dr+/btvusej0fr1q2T2+3WkSNHFB4erl69eiktLU1du3at97x9+/Zp+fLlysnJkcvlUpcuXTRv3jx169atwTGRSAMAADiYIXvsI325MeTm5srtdqt3797yer0yjLpPLCws1ObNmzVq1CjNmjVLlZWVevnllzVmzBht27ZNCQkJvnuzs7P18MMPa9SoUZoyZYqqq6v1+eefq6Kiwq+YSKQBAABgeykpKRo0aJAkKT09Xfv3769zPS4uTu+//76aNWvmG0tKSlJKSoo2bdqkjIwMSVJ1dbX+z//5P5owYYL+8z//03fvD3/4Q79jIpEGAACA7YWEXHyPjObNm9cbi4iIUIcOHXT8+HHf2J49e1RQUKAJEyZcfkyX/QQAAADYmleG5R9WKCkp8fVT18rJyVGrVq3017/+VXfddZe6d++uu+66S2+++abfz6ciDQAAgEZRWFio8ePHX/D6zp07Azrf4sWL5XK5NG7cON/YiRMnVFFRoSeeeEK/+MUvlJCQoO3bt+vxxx9XmzZtNHDgwAY/n0QaAAAAjrNt2zZt2bJFmZmZiomJ8Y0bhqHKyko99thj+o//+A9JUnJysvLy8rRq1SoSaQAAAPwvu+wjHRsbG/Cq8/m43W7NnTtX06dP14gRI+pci4qKknRuIeL3JScna+PGjX7NQ480AAAAHGPfvn1KTU3V8OHDlZqaWu/6DTfccMHPrays9GsuEmkAAACHM2zw0RgOHjyoqVOnKikpSfPmzTvvPQMGDFCTJk20Z8+eOuN79uxRjx49/JqP1g4AAADYXkVFhdxutySpoKBAHo9HWVlZkqTExEQZhqEHH3xQTZs21cSJE+vsMx0ZGakuXbpIkq699lqNHz9ezz77rFwulxISEvTOO+9o3759+u1vf+tXTCTSAAAAsL3i4uJ6rRq1r9evXy9JKioqkiRNmjSpzn2JiYnasGGD7/Wjjz6q5s2ba+3atTp58qQSEhL0wgsvaMCAAX7FRCINAADgcHZZbHg54uLidODAgYvec6nrtcLCwjRz5kzNnDnzsmKiRxoAAAAwgUQaAAAAMIHWDgAAAAczJHldVkfReDt3NCYq0gAAAIAJJNIAAACACbR2AAAAOJzXkY0V1qMiDQAAAJhwRVWkS6rCtPqrOMvmj6mxvlO/KNT6v1HGnOJ9wD99ZXUAqGWH70+QpO+sDsAWYqqKrQ5B0heWzn7HJ3ereccWlsbwffzUDA4q0gAAAIAJJNIAAACACVdUawcAAAD854Qjwu2IijQAAABgAok0AAAAYAKtHQAAAA5myLDFPtKGDWIINCrSAAAAgAlUpAEAABzOebVge6AiDQAAAJhAIg0AAACYQGsHAACAw7GPdHBQkQYAAABMIJEGAAAATKC1AwAAwOHssI+0E1GRBgAAAEygIg0AAOBw1KODg4o0AAAAYAKJNAAAAGACrR0AAAAOZsge+0g7sb2EijQAAABgAok0AAAAYAKtHQAAAA5nOLKxwnpUpAEAAAATSKQBAAAAE2jtAAAAcDg77NrhRFSkAQAAABOoSAMAADicl8WGQUFFGgAAADCBRBoAAAAwgdYOAAAAh6OxIzioSAMAAAAmkEgDAAAAJtDaAQAA4GCG7LFrh/URBB4VaQAAAMAEKtIAAAAOx8mGwUFFGgAAADCBRBoAAAAwIeiJdFlZmW6//XZ17dpVf/3rX4M9HQAAAP6FYYP/nCjoifTKlStVU1MT7GkAAACARhXURPrQoUPatGmTZs6cGcxpAAAAgEYX1F07FixYoLFjx6pz587BnAYAAAAXwa4dwRG0inRWVpa++uor/fznPw/WFAAAAIBlgpJIV1RUKDMzU2lpaYqMjAzGFAAAAIClgtLa8eKLL6pNmzYaNWpUQJ8bakgxNa6APvNKY4dff1Go9Stv7fA+2EFMlbULeds2qbB0fklqHV1udQhqEVNpdQi2EB7XxOoQLBcWG211CHLFtrU6BEi6plWo1SH4GJItds2wPoLAC3giXVBQoJdfflkvvPCCSktLJUnl5eW+/5eVlSkiIiLQ0wIAAACNKuCJ9LFjx1RVVaWHH3643rUJEyaod+/e2rJlS6CnBQAAwAWw2DA4Ap5Id+vWTevXr68z9uWXX2rhwoWaN2+eevbsGegpAQAAgEYX8EQ6KipK/fr1O++1Hj16qEePHoGeEgAAAGh0Qd1HGgAAAFYz5DXssNTPDjEEVqMk0v369dOBAwcaYyoAAACgUQT1iHAAAADAqWjtAAAAcDjnNVXYAxVpAAAAwAQq0gAAAA7npSYdFFSkAQAAABNIpAEAAAATSKQBAAAczJBk2OK/y5Ofn6+5c+dq2LBh6t69u+6999461z0ej55//nndd9996tu3r37wgx9o2rRpl9yCefr06eratavWrl3rd0wk0gAAALC93Nxcud1udezYUQkJCfWuFxYWavPmzerfv7+WL1+u+fPnq7S0VGPGjNGhQ4fO+0y3262cnBzTMZFIAwAAwPZSUlLkdrv13HPPqUePHvWux8XF6f3331daWpoGDBigO++8U6tXr1bTpk21adOmevefPXtWTz75pGbPnm06JhJpAAAAh/Pa4ONyhYRcPG1t3ry5mjVrVmcsIiJCHTp00PHjx+vdv3btWkVFRWnkyJGmY2L7OwAAADhSSUmJcnNz9YMf/KDOeGFhoVavXq1169bJ5XKZfj6JNAAAABpFYWGhxo8ff8HrO3fuDOh8ixcvlsvl0rhx4+qML1y4UP/+7/+uPn36XNbzSaQBAAAc7mo8kGXbtm3asmWLMjMzFRMT4xv/+OOP9fHHHysrK+uy5yCRBgAAQKOIjY0NeNX5fNxut+bOnavp06drxIgRda4tWLBAEyZMULNmzVRSUuIbr6ysVElJiaKioho8D4sNAQAAHM7qHaQvfxfphtu3b59SU1M1fPhwpaam1rt++PBhrVq1SrfddpvvQ5KeffZZ3XbbbaqsrGzwXFSkAQAA4AgHDx7U1KlTlZSUpHnz5p33nvXr19cbmzBhgsaOHat77rlHTZo0afB8JNIAAACwvYqKCrndbklSQUGBPB6Pr885MTFRhmHowQcfVNOmTTVx4kTt37/f97mRkZHq0qWLJKlfv37nfX6HDh0ueO1CSKQBAAAczFBg9nG+XJfb3FFcXFyvVaP2dW2VuaioSJI0adKkOvclJiZqw4YNlxlBfSTSAAAAsL24uDgdOHDgovdc6nqgP4/FhgAAAIAJVKQBAAAczjCuvn2kGwMVaQAAAMAEKtIAAAAOdzWebNgYqEgDAAAAJpBIAwAAACbQ2gEAAOBwdthH2omoSAMAAAAmkEgDAAAAJtDaAQAA4HAGu3YEBRVpAAAAwAQq0gAAAA5myLDFPtJOrIpTkQYAAABMIJEGAAAATKC1AwAAwMkMyTBs0FZhgxACjYo0AAAAYAKJNAAAAGDCFdXaEdmsRvf9e5HVYQC2ERYbbXEETSyeX5JaWh2AXLFtrQ7BFlxtY6wOwXrXx1kdgS2EXNfR6hAsj8EVaf33pu/jiPDgoCINAAAAmEAiDQAAAJhwRbV2AAAAwH9OPAzFDqhIAwAAACZQkQYAAHA4OxwR7kRUpAEAAAATSKQBAAAAE2jtAAAAcDBD9jgi3PoIAo+KNAAAAGACiTQAAABgAq0dAAAADseuHcFBRRoAAAAwgYo0AACAw3GyYXBQkQYAAABMIJEGAAAATKC1AwAAwNEMeW2wj7QTd5KmIg0AAACYQCINAAAAmEBrBwAAgMM5r6nCHqhIAwAAACaQSAMAAAAm0NoBAADgYIbscUS49REEHhVpAAAAwAQq0gAAAA5nh4q0E1GRBgAAAEwgkQYAAABMoLUDAADA4QxbHBHuPFSkAQAAABNIpAEAAAATaO0AAABwOHbtCA4q0gAAAIAJVKQBAAAczqAiHRRUpAEAAAATSKQBAAAAE2jtAAAAcDBD9thH2voIAo+KNAAAAGBCUCrS7777rt5++2198cUXKikpUceOHTV+/HiNGjVKLpcrGFMCAAAAjSooifTvfvc7tWvXTunp6YqOjtaePXuUkZGhoqIizZgxIxhTAgAA4ALYRzo4gpJIv/jii2rdurXvdXJysr777jutW7dO06dPV0gIHSUAAAC4sgUlo/1+El2rW7du8ng8Ki8vD8aUAAAAOC9DhmH9hxOXGzZaaXjv3r1q27atIiMjG2tKAAAAIGgaJZH+9NNPtWPHDk2ePLkxpgMAAACCLuj7SBcVFSktLU39+vXThAkTLutZRo2hs8eqAhSZ/8Ljmlg2dy0rf/2oq7SoqdUhSDptdQCQxO9Dra+sDgDwaRFTaen8rde/qtB/i7U0hu9jsWFwBLUiXVJSoilTpqhVq1Z6/vnnWWQIAAAAxwhaRfrMmTOaOnWqSktLtXnzZrVo0SJYUwEAAACNLiiJdHV1tWbNmqW8vDxt3LhRbdu2DcY0AAAAaACD1o6gCEoiPW/ePH344YdKT0+Xx+PRvn37fNe6d++u8PDwYEwLAAAAh8rPz9fatWuVk5Oj3NxcxcfHa/v27b7rHo9H69atk9vt1pEjRxQeHq5evXopLS1NXbt29d33+eef69VXX9Wnn36q48ePq23btrrrrrv0yCOPqHnz5n7FFJREevfu3ZKkzMzMetd27typuLi4YEwLAAAAh8rNzZXb7Vbv3r3l9Xr/uTf1/yosLNTmzZs1atQozZo1S5WVlXr55Zc1ZswYbdu2TQkJCZKkd999V/n5+XrooYfUqVMnHTx4UM8995xycnK0fv16v2IKSiL95z//ORiPBQAAgJ8MSV7D+taOy40gJSVFgwYNkiSlp6dr//79da7HxcXp/fffV7NmzXxjSUlJSklJ0aZNm5SRkSFJmjJlSp3DA/v166eoqCg99thj2r9/v26++eYGxxT07e8AAACAy3Wp3d/O15YRERGhDh066Pjx476x853A3b17d0mqc1+DYvLrbgAAAFxxDBv8Z4WSkhJfP/XF7N27V5Iued+/oiINAACARlFYWKjx48df8PrOnTsDOt/ixYvlcrk0bty4C95z8uRJPf/887rzzjvVqVMnv55PIg0AAADH2bZtm7Zs2aLMzEzFxMSc956qqirNnj1bkvTrX//a7zlIpAEAABzODosNJSk2NjbgVefzcbvdmjt3rqZPn64RI0ac9x7DMPTEE0/o888/16ZNm3T99df7PQ+JNAAAABxj3759Sk1N1fDhw5WamnrB+xYtWqR3331Xa9as0U033WRqLhJpAAAAOMLBgwc1depUJSUlad68eRe8b/Xq1frd736nJUuWKDk52fR8JNIAAAAO54QjwisqKuR2uyVJBQUF8ng8ysrKkiQlJibKMAw9+OCDatq0qSZOnFhnn+nIyEh16dJFkvTHP/5RS5cu1U9+8hPFxcXVOYG7Q4cO590e70JIpAEAAGB7xcXF9Vo1al/XnkhYVFQkSZo0aVKd+xITE7VhwwZJ/3sC99tvv6233367zn0LFy7UyJEjGxwTiTQAAICTGYY9FhteZgxxcXE6cODARe+51HVJyszMVGZm5mXFUosDWQAAAAATSKQBAAAAE2jtAAAAcDgnLDa0IyrSAAAAgAkk0gAAAIAJtHYAAAA4mCF7HBFufQSBR0UaAAAAMIFEGgAAADCB1g4AAACHY9eO4KAiDQAAAJhARRoAAMDhDMNrdQiOREUaAAAAMIFEGgAAADCB1g4AAACH87LYMCioSAMAAAAmkEgDAAAAJtDaAQAA4HCGDY4IdyIq0gAAAIAJVKQBAAAczJBhi8WGTjxdkYo0AAAAYAKJNAAAAGACrR0AAAAOx2LD4KAiDQAAAJhAIg0AAACYQGsHAACAw3lp7QgKKtIAAACACVdURbrsbJje/rK9dQF8ad3UwPkUhVJhAGp946q2OgTYSam108+tCtW11oZQhxP3cLYDKtIAAACACSTSAAAAgAlXVGsHAAAA/Mc+0sFBRRoAAAAwgUQaAAAAMIHWDgAAAAczJHltsGuH9REEHhVpAAAAwAQSaQAAAMAEWjsAAACczLDJrh02CCHQqEgDAAAAJlCRBgAAcDivHSrSDkRFGgAAADCBRBoAAAAwgdYOAAAARzPssdjQgasNqUgDAAAAJpBIAwAAACbQ2gEAAOBwdjgi3ImoSAMAAAAmUJEGAABwMEP2ONnQ+ggCj4o0AAAAYAKJNAAAAGACrR0AAAAOxxHhwUFFGgAAADCBRBoAAAAwgdYOAAAAhzMcuWeG9ahIAwAAACaQSAMAAAAm0NoBAADgcOzaERxUpAEAAAATqEgDAAA4nB2OCHciKtIAAACACSTSAAAAgAm0dgAAADiaYZN9pO0QQ2BRkQYAAABMIJEGAAAATKC1AwAAwMEM2WPXDusjCDwq0gAAAIAJQatIHzp0SAsWLNBnn32miIgIDRs2TLNmzVJ4eHiwpgQAAMC/MuxRkb7cknR+fr7Wrl2rnJwc5ebmKj4+Xtu3b/dd93g8Wrdundxut44cOaLw8HD16tVLaWlp6tq1a51nlZaWauHChfrggw9UVVWlgQMHas6cObr++uv9iikoFenTp09r4sSJqqqq0vPPP6+0tDRt2bJFmZmZwZgOAAAADpebmyu3262OHTsqISGh3vXCwkJt3rxZ/fv31/LlyzV//nyVlpZqzJgxOnToUJ17Z82apd27d+vXv/61lixZosOHD2vKlCmqrq72K6agVKRfe+01lZWVacWKFWrVqpUkqaamRvPmzdPUqVPVtm3bYEwLAAAAh0pJSdGgQYMkSenp6dq/f3+d63FxcXr//ffVrFkz31hSUpJSUlK0adMmZWRkSJI+++wzffzxx1q7dq0GDBggSercubPuuece/elPf9I999zT4JiCUpHetWuXkpOTfUm0JN19993yer3avXt3MKYEAADABRg2+LhcISEXT1ubN29eJ4mWpIiICHXo0EHHjx/3je3atUtRUVHq37+/byw+Pl7dunXTrl27/IvJr7sbKC8vT/Hx8XXGoqKidN111ykvLy8YUwIAAAB1lJSU+Pqpa+Xl5alz585yuVx17o2Pj/c7Tw1Ka0dJSYmioqLqjbds2VKnT582/dzI2DYavXvZ5YQGOEqN69L3AFeLGkduroUrVXRsG6tD8OnQoZ2++vseq8NQhw7tVFhYqPHjx1/wnp07dwZ0zsWLF8vlcmncuHG+sZKSErVo0aLevS1btqzXLnIpV9Q+0iFNQhXV0b/VlAAAAFezsLAwxcd3tDoMSdKJEycaba5t27b5NruIiYkJyhxBSaSjoqJUWlpab/z06dNq2bJlMKYEAACAzfXu3TvgVefzcbvdmjt3rqZPn64RI0bUuRYVFaWioqJ6n2MmTw1Kj/T5ekxKS0t14sSJer3TAAAAQKDs27dPqampGj58uFJTU+tdj4+P1+HDh+vtrX348GG/89SgJNK333679uzZo5KSEt9YVlaWQkJC6qyQBAAAAALl4MGDmjp1qpKSkjRv3rzz3nP77bfr9OnTys7O9o0dPnxYf/vb33T77bf7NZ/LCMJRN6dPn9aQIUPUuXNnTZ06Vd98840yMzM1dOhQzZ07N9DTAQAAwOEqKirkdrslSRs3btTRo0eVnp4uSUpMTJRhGBo5cqQMw9CiRYvqbIUXGRmpLl26+F4/+OCDOnTokB5//HE1bdpUzzzzjEJCQrRt2zaFhTW88zkoibR07ojw+fPn1zkiPC0tjSPCAQAA4Ldjx47pzjvvPO+19evXS5ImTJhw3uuJiYnasGGD73XtEeHvv/++qqurNWDAAM2ZM8fvQwODlkgDAAAAThaUHmkAAADA6UikAQAAABNIpAEAAAATSKQBAAAAE0ikAQAAABNIpAEAAAATbJ9IHzp0SA888ID69Omj/v376+mnn9bZs2etDqtRvfvuu3rkkUd0++23q0+fPho2bJi2bt1a72jLq0lZWZluv/12de3aVX/961+tDqfRvfHGGxo+fLh69uypfv366aGHHtKZM2esDqvR7Ny5U6NHj9Ytt9yiAQMGKDU1VUePHrU6rKDKz8/X3LlzNWzYMHXv3l333nvvee97/fXXddddd6lnz576yU9+og8//LCRIw2uS70PHo9Hzz//vO677z717dtXP/jBDzRt2jQdOHDAoogDr6FfC7U++OADde3a9ZL3XWka+j6UlJRowYIFGjBggHr27KlBgwbp5ZdfbuRo4VQNP7rFAqdPn9bEiRPVqVMnPf/8874TEs+cOXNVnZD4u9/9Tu3atVN6erqio6O1Z88eZWRkqKioSDNmzLA6PEusXLlSNTU1VodhiRdffFFr1qzRtGnT1KdPH506dUrZ2dlXzfvxl7/8RTNmzNDw4cOVlpam7777Ts8++6wmT56sP/7xj7rmmmusDjEocnNz5Xa71bt3b3m93vP+Rfqdd95RRkaGpk2bpqSkJO3YsUMzZszQxo0b1adPn8YPOggu9T4UFhZq8+bNGjVqlGbNmqXKykq9/PLLGjNmjLZt26aEhASLIg+chnwt1Dpz5oyeeuopXXvttY0YYeNoyPtQXl6u8ePHKzQ0VE888YTatGmjI0eOyOPxWBAxHMmwsVWrVhl9+vQxTp065Rt77bXXjG7duhlFRUXWBdbIiouL643NmTPHuPXWW42amhoLIrLWwYMHjT59+hivvvqqceONNxqff/651SE1mkOHDhndu3c3PvroI6tDsUxGRoaRkpJieL1e31h2drZx4403Gv/v//0/CyMLru//WX/88ceNIUOG1Lvnxz/+sTF79uw6Y2PGjDEeeuihoMfXWC71PpSVlRnl5eV1xjwej5GYmGj85je/aZQYg60hXwu1li9fbtx///2XvO9K1JD34ZlnnjHuvPNOo6ysrDFDw1XE1q0du3btUnJyslq1auUbu/vuu+X1erV7927rAmtkrVu3rjfWrVs3eTwelZeXWxCRtRYsWKCxY8eqc+fOVofS6P7whz8oLi5OP/zhD60OxTLV1dWKiIiQy+XyjbVo0UKSHN3uFBJy8W/XR48e1ZEjR3T33XfXGb/nnnuUnZ3tmJa4S70PzZs3V7NmzeqMRUREqEOHDjp+/HgwQ2s0l3oPan399ddat26d5syZE+SIrNGQ92Hr1q0aNWqUmjdv3ggR4Wpk60Q6Ly9P8fHxdcaioqJ03XXXKS8vz6Ko7GHv3r1q27atIiMjrQ6lUWVlZemrr77Sz3/+c6tDsUROTo5uvPFGrVy5UsnJybr55ps1duxY5eTkWB1aoxk5cqQOHTqkjRs3qrS0VEePHtWyZcvUvXt33XrrrVaHZ5na74n/+hfMhIQEVVVVOb6H/GJKSkqUm5tb7+eJ0z355JMaNmyYbrrpJqtDscSxY8d04sQJRUdHa9q0abr55puVmJioOXPmqKyszOrw4BC2TqRLSkoUFRVVb7xly5Y6ffq0BRHZw6effqodO3Zo8uTJVofSqCoqKpSZmam0tLSr7i8QtU6cOKGPP/5Yb731ln71q1/phRdekMvl0uTJk1VcXGx1eI2ib9++WrFihZYuXaq+fftq0KBBKi4u1po1axQaGmp1eJap/Z74r98za19fzd8zFy9eLJfLpXHjxlkdSqP585//rM8++0ypqalWh2KZb7/9VpK0aNEitWzZUmvWrFFaWpqysrKUkZFhcXRwClsn0qivqKhIaWlp6tevnyZMmGB1OI3qxRdfVJs2bTRq1CirQ7GMYRgqLy/Xs88+q8GDB+uHP/yhXnzxRRmGod///vdWh9co/ud//ke//OUv9dOf/lSvvPKKnn32WXm9Xj388MNX1c4laJht27Zpy5Ytmjt3rmJiYqwOp1FUVlbqqaee0syZM8/bGni18Hq9ks79K82iRYuUnJyscePG6fHHH9c777xzVf8rDQLH1rt2REVFqbS0tN746dOn1bJlSwsislZJSYmmTJmiVq1a6fnnn29wn5wTFBQU6OWXX9YLL7zg+5qo7Q8vLy9XWVmZIiIirAyxUURFRalVq1Z1/qm2VatW6t69uw4ePGhhZI1nwYIFSkpKUnp6um+sT58++tGPfqS33npLY8aMsTA669R+TywtLdV1113nGy8pKalz/Wridrs1d+5cTZ8+XSNGjLA6nEbzyiuvKCQkREOGDPH9/ldVVcnr9aqkpETXXHONwsPDLY4y+Gq/5vv161dnPCkpSdK5XT/at2/f6HHBWWydSMfHx9frhS4tLdWJEyeuul63M2fOaOrUqSotLdXmzZt9i6uuFseOHVNVVZUefvjhetcmTJig3r17a8uWLRZE1ri6dOmir7/++rzXKisrGzkaaxw6dEh33nlnnbGYmBhFR0df8L25GtR+T/zXtSV5eXlq0qTJVZcw7Nu3T6mpqRo+fPhV196Ql5en/Px8JScn17t222236de//vVV0ebSvn37i/6F4Wr5nongsnUiffvtt2vVqlV1eqWzsrIUEhKi/v37Wxxd46murtasWbOUl5enjRs3qm3btlaH1Oi6deum9evX1xn78ssvtXDhQs2bN089e/a0KLLGdccdd+gPf/iDvvzyS3Xr1k2SdOrUKX3xxReaNGmStcE1ktjYWP3tb3+rM1ZQUKBTp06pXbt2FkVlvfbt26tTp07KysrSoEGDfOM7duxQcnLyVVGBrHXw4EFNnTpVSUlJmjdvntXhNLopU6bUq8CvXr1ahw8f1sKFC9WpUydrAmtk4eHh6t+/v7Kzs+uM79mzR5LUo0cPK8KCw9g6kR47dqw2bNign//855o6daq++eYbPf300xo7duxVlUzOmzdPH374odLT0+XxeLRv3z7fte7du18VPyCjoqLq/fNcrR49elw13xAHDRqknj176he/+IXS0tLUtGlTrV69WuHh4frZz35mdXiNYuzYsXrqqae0YMECpaSk6LvvvvP1z//r1m9OUlFRIbfbLencXxw8Ho+ysrIkSYmJiWrdurVmzpypxx57TB06dFC/fv20Y8cOff75547qn7/U+2AYhh588EE1bdpUEydO1P79+32fGxkZqS5dulgSdyBd6j1ISEiod/DMG2+8oW+++eaC30evRA35MzFjxgyNHTtWjz76qEaMGKH8/HwtXbpUQ4cOVYcOHawMHw7hMmy+8eqhQ4c0f/58ffbZZ4qIiNCwYcOUlpZ2VSSPtVJSUlRQUHDeazt37lRcXFwjR2QPf/nLXzRhwgRt3br1qqlIS9LJkye1cOFCffjhh6qqqlLfvn31X//1X45IEBrCMAy99tprevXVV3X06FFFRESoT58+SktLc8SpdRdy7Nixei0ttdavX+9LkF5//XWtWbNGhYWF6ty5s2bPnq077rijMUMNqku9D5IuuBA7MTFRGzZsCFpsjaWhXwvfl56erv3792v79u3BDq/RNPR9yM7O1pIlS/TVV1+pZcuWGjp06FWXRyB4bJ9IAwAAAHZ09Wz7AAAAAAQQiTQAAABgAok0AAAAYAKJNAAAAGACiTQAAABgAok0AAAAYAKJNAAAAGACiTQAAABgAok0AAAAYAKJNAAAAGACiTQAAABgAok0AAAAYML/B/mwG0ldfqw7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, a = plt.subplots(1,1, figsize=(9, 9))\n", "pcm = a.pcolormesh(np.transpose(srlut[:17]))\n", "f.colorbar(pcm, ax=a, location='right')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}" ] }, "execution_count": 192, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set([i//16 for i in range(256)])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192,\n", " 208, 224, 240]),\n", " 16)" ] }, "execution_count": 196, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.arange(0, 256, 2**4), len(np.arange(0, 256, 2**4))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 166, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAKyCAYAAADFDFiWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2C0lEQVR4nO3de3DV9Z34/1e4BCQQKBXYYihKRhALyK0CY4V6W8XapVNhtE4RwdXYSr2NO7pWu/DVcamdrha0CBjQ0taKHcetFqlMpTCr1S7eqHTUaCxGUUBdSCICITm/P/wlbRoub044HCKPxz+aT87nnJevfipPDp8cCzKZTCYAAIB9apfvAQAAoC0QzgAAkEA4AwBAAuEMAAAJhDMAACQQzgAAkEA4AwBAAuEMAAAJhDMAACTocChe5Kmnnoq77ror3nrrrejbt29cfvnlcf755+/znHfeeSfOOOOMFsdPOumkWLZsWa5GBQCAPcp5OK9duzZmzpwZkydPjptuuimeffbZ+P73vx9FRUVxzjnn7Pf86667LsaMGdP0dVFRUS7HBQCAPcp5OM+fPz+GDRsW/+///b+IiBg7dmxUVVXF3Llzk8K5f//+MXz48BxPCQAA+5bTe5x37doVzz33XItAPvfcc+PNN9+Md955J5cvDwAAB01Ow/ntt9+Ourq6GDBgQLPjpaWlERFRWVm53+eYNWtWDB48OMaNGxc333xzbN26NRejAgDAPuX0Vo1t27ZFRERxcXGz441fN35/TwoLC+Nb3/pWfOUrX4ni4uJ4+eWX4957741XXnklHn744ejYsWNWM2UymSgoKMjqXAAAjlwHHM41NTWxefPm/T6uX79+WQ3UqHfv3jFr1qymr08++eQ4/vjjo6ysLFauXBnnnntuVs9bUFAQDz30UGzZsqVV8x2JevXqFRdccIH9ZaFxd88++2zU1NTke5w2p1u3bjF27Fj7y0Lj7l555ZXYvn17vsdpc7p06RJDhgyxvyy1a9cuRo8eHWvXro3a2tp8j9OmdO3a1e5aYdy4cdGpU6eD/rwHHM4rVqyIm2++eb+PW758eXTv3j0iosUvdNXV1RERTd9PNWHChOjSpUusX78+63COiNiyZUts3Lgx6/OPdPaXvZqaGrcbtYL9ZW/79u1+8W0F+8tOu3af3hFaW1u7zz9lZu/sLjsNDQ05ed4DDucpU6bElClTkh67a9eu6NixY1RWVsapp57adLzx3uZ/vPcZAAAOVzn94cDCwsIYM2ZM/O53v2t2fPny5VFaWholJSUH9HyrVq2K7du3x9ChQw/mmAAAsF85/xzn73znO3HxxRfHrFmzYuLEifHcc8/F448/HnfeeWezx5144onxjW98I26//faIiJgzZ04UFBTE8OHDo7i4ONatWxcLFiyIIUOGxJlnnpnrsQEAoJmch/Po0aNj3rx5cdddd8Wvf/3r6Nu3b9x2220xceLEZo+rr69vdj9KaWlpPPjgg7Fs2bLYsWNH9OnTJyZPnhxXXXVVdOhwSP5L4QAA0OSQFOgZZ5wRZ5xxxj4f89prrzX7+kDupQYAgFzL6T3OAADwWSGcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEhySc33zzzZg+fXoMHz48TjnllLjjjjti165d+z0vk8nEwoUL46tf/WoMGzYsLrjggnjppZdyPzAAAPyDnIfztm3bYtq0aVFXVxfz5s2La6+9NpYtWxZz5szZ77mLFi2KuXPnxiWXXBILFiyIXr16xYwZM6KqqirXYwMAQDMdcv0Cv/rVr+Ljjz+Ou+++O3r06BEREfX19TF79uwoKyuLPn367PG8nTt3xoIFC2LGjBlxySWXRETEqFGj4pxzzony8vKYNWtWrkcHAIAmOX/Hec2aNTFu3LimaI6ImDhxYjQ0NMTTTz+91/NeeOGFqK2tjYkTJzYdKywsjLPOOivWrFmTy5EBAKCFnL/jXFlZGeeff36zY8XFxdGrV6+orKzc53kREQMGDGh2vLS0NB544IHYsWNHdO7cOauZevXqldV5R7rGvdnfgWvcWbdu3fI8SdvUuDf7O3CNO+vSpUueJ2mbGvdmf9lp1+7T9+e6du2a50nansad2V12Gq+9gy3n4VxdXR3FxcUtjnfv3j22bdu2z/MKCwujU6dOzY4XFxdHJpOJbdu2ZR3OF1xwQVbn8Sn7y97YsWPzPUKbZn/ZGzJkSL5HaNPsr3VGjx6d7xHaLLs7vOQ8nA9HDz30UGzZsiXfY7Q5vXr1igsuuMD+stC4u2effTZqamryPU6b061btxg7dqz9ZaFxd6+88kps37493+O0OV26dIkhQ4bYX5batWsXo0ePjrVr10ZtbW2+x2lTunbtanetMG7cuBZvvh4MOQ/n4uLiPf5Ct23btujevfs+z9u1a1fs3Lmz2T94dXV1FBQU7PPc/dmyZUts3Lgx6/OPdPaXvZqamti6dWu+x2iz7C9727dv94tvK9hfdhr/uLy2tnaff8rM3tlddhoaGnLyvDn/4cABAwa0uJe5pqYmtmzZ0uL+5X88LyLirbfeana8srIy+vbtm/VtGgAAkI2ch/P48ePjmWeeierq6qZjK1asiHbt2sUpp5yy1/NGjhwZXbt2jSeeeKLpWF1dXTz55JMxfvz4nM4MAAD/KOe3alx44YWxdOnSuPLKK6OsrCw2bdoUd9xxR1x44YXNPsN52rRpsXHjxli5cmVERHTq1CnKyspi3rx50bNnzxg4cGA8+OCDsXXr1rj00ktzPTYAADST83Du3r17PPDAA3HrrbfGlVdeGUVFRTF58uS49tprmz2uoaEh6uvrmx277LLLIpPJxOLFi+Ojjz6KwYMHR3l5efTr1y/XYwMAQDOH5FM1SktL4/7779/nY5YuXdriWEFBQZSVlUVZWVmOJgMAgDQ5v8cZAAA+C4QzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAk6HAoXuTNN9+M2267LV588cUoKiqKSZMmxTXXXBOFhYX7PO/000+Pd999t8XxdevWRadOnXI1LgAAtJDzcN62bVtMmzYtjj322Jg3b15s2rQp5syZEzt27Igf/OAH+z3/7LPPjhkzZjQ7tr/gBgCAgy3n4fyrX/0qPv7447j77rujR48eERFRX18fs2fPjrKysujTp88+zz/66KNj+PDhuR4TAAD2Kef3OK9ZsybGjRvXFM0RERMnToyGhoZ4+umnc/3yAABwUOT8HefKyso4//zzmx0rLi6OXr16RWVl5X7Pf+yxx2LZsmXRsWPHGD16dFx//fUxaNCgVs3Uq1evVp1/pGrcm/0duMaddevWLc+TtE2Ne7O/A9e4sy5duuR5krapcW/2l5127T59f65r1655nqTtadyZ3WWn8do72AoymUwmJ8/8//vSl74UV199dVx++eXNjp933nkxYsSIuPXWW/d67m233RbDhg2Lvn37RlVVVdx7773xwQcfxKOPPhr9+vXL5dgAANDMIflUjWzdfPPNTX8/evToOOWUU2LixIlRXl4es2bNyvp5X3zxxfj4448PwoRHlqKiohgxYoT9ZaFxdxUVFbFjx458j9PmdO7cOY4//nj7y0Lj7mbNmhUbNmzI9zhtTv/+/WPWrFn2l6Uf/ehHcfTRR8cHH3wQu3fvzvc4bUqHDh3srhV69eoV7du3P+jPm/NwLi4ujpqamhbHt23bFt27dz+g5+rdu3eMGjUq1q9f36qZPv7446iurm7VcxzJ7C97O3bsiO3bt+d7jDbL/rK3YcOGeP311/M9Rptlf9lpDL7du3dHXV1dnqdpm+wuO7m6oSLnPxw4YMCAFvcy19TUxJYtW2LAgAG5fnkAADgoch7O48ePj2eeeabZO5QrVqyIdu3axSmnnHJAz7Vp06Z4/vnnY+jQoQd7TAAA2Kec36px4YUXxtKlS+PKK6+MsrKy2LRpU9xxxx1x4YUXNvsM52nTpsXGjRtj5cqVERHx+OOPx6pVq2LChAnRu3fvqKqqioULF0b79u1j+vTpuR4bAACayXk4d+/ePR544IG49dZb48orr4yioqKYPHlyXHvttc0e19DQEPX19U1fl5SUxObNm+P222+Pmpqa6NatW4wdOzauuuoqn6gBAMAhd0g+VaO0tDTuv//+fT5m6dKlzb4ePnx4i2MAAJAvOb/HGQAAPguEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQQDgDAEAC4QwAAAmEMwAAJBDOAACQIOfhvGHDhvjBD34QkyZNihNPPDHOO++8pPMymUwsXLgwvvrVr8awYcPiggsuiJdeeim3wwIAwF7kPJwrKipi9erV0b9//ygtLU0+b9GiRTF37ty45JJLYsGCBdGrV6+YMWNGVFVV5XBaAADYs5yH8+mnnx6rV6+OuXPnxpe+9KWkc3bu3BkLFiyIGTNmxCWXXBLjxo2L//qv/4oePXpEeXl5jicGAICWch7O7dod+Eu88MILUVtbGxMnTmw6VlhYGGeddVasWbPmYI4HAABJOuR7gD2prKyMiIgBAwY0O15aWhoPPPBA7NixIzp37pz18xcVFbVqviNV497s78A17qw11+2RrHFv9nfgGnfWv3//PE/SNjXuzf6y06FDh2Z/JZ3dtU5BQUFOnvew/F+juro6CgsLo1OnTs2OFxcXRyaTiW3btrXqF9ARI0a0dsQjmv1l7/jjj8/3CG2a/WVv1qxZ+R6hTbO/1jn66KPzPUKbZXeHl8MynHPtxRdfjI8//jjfY7Q5RUVFMWLECPvLQuPuKioqYseOHfkep83p3LlzHH/88faXhcbdzZo1KzZs2JDvcdqc/v37x6xZs+wvSz/60Y/i6KOPjg8++CB2796d73HalA4dOthdK/Tq1Svat29/0J/3sAzn4uLi2LVrV+zcubPZu87V1dVRUFAQ3bt3b9Xzf/zxx1FdXd3aMY9Y9pe9HTt2xPbt2/M9Rptlf9nbsGFDvP766/keo82yv+w0Bt/u3bujrq4uz9O0TXaXnUwmk5PnPSz/AyiN9za/9dZbzY5XVlZG37593ecIAMAhd1iG88iRI6Nr167xxBNPNB2rq6uLJ598MsaPH5/HyQAAOFLl/FaNTz75JFavXh0REe+++27U1tbGihUrIiLi5JNPjp49e8a0adNi48aNsXLlyoiI6NSpU5SVlcW8efOiZ8+eMXDgwHjwwQdj69atcemll+Z6ZAAAaCHn4fzhhx/G1Vdf3exY49c/+9nPYsyYMdHQ0BD19fXNHnPZZZdFJpOJxYsXx0cffRSDBw+O8vLy6NevX65HBgCAFnIeziUlJfHaa6/t8zFLly5tcaygoCDKysqirKwsV6MBAECyw/IeZwAAONwIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASNAh1y+wYcOGKC8vj5dffjkqKipiwIAB8fjjj+/3vNNPPz3efffdFsfXrVsXnTp1ysWoAACwVzkP54qKili9enWcdNJJ0dDQEJlMJvncs88+O2bMmNHsWGFh4cEeEQAA9ivn4Xz66afHmWeeGRERN954Y7zyyivJ5x599NExfPjwHE0GAADpcn6Pc7t2bqMGAKDty/k7zq3x2GOPxbJly6Jjx44xevTouP7662PQoEGtft6ioqKDMN2Rp3Fv9nfgGnfWuXPnPE/SNjXuzf4OXOPO+vfvn+dJ2qbGvdlfdjp06NDsr6Szu9YpKCjIzfNmDuSm41ZqvFUj5YcDb7vtthg2bFj07ds3qqqq4t57740PPvggHn300ejXr98hmBYAAP7msP1tzM0339z096NHj45TTjklJk6cGOXl5TFr1qxWPffll18eFRUVrZzwyHP88cfHwoUL7S8Ljbu76KKL4tVXX833OG3OCSecEL/85S/tLwuNu4N8eOSRR+Kb3/xmPPLII/Hhhx/me5w25fOf/7zdtcJFF12Ukz8hP2zD+R/17t07Ro0aFevXr2/1c1VUVMS6desOwlRHJvvL3quvvhovvvhivsdos+wP2pbG4Pvwww/j/fffz/M0bZPdZae+vj4nz+sn9wAAIEGbCedNmzbF888/H0OHDs33KAAAHIFyfqvGJ598EqtXr46IiHfffTdqa2tjxYoVERFx8sknR8+ePWPatGmxcePGWLlyZUREPP7447Fq1aqYMGFC9O7dO6qqqmLhwoXRvn37mD59eq5HBgCAFnIezh9++GFcffXVzY41fv2zn/0sxowZEw0NDc3uRSkpKYnNmzfH7bffHjU1NdGtW7cYO3ZsXHXVVT5RAwCAvMh5OJeUlMRrr722z8csXbq02dfDhw9vcQwAAPKpzdzjDAAA+SScAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEOQ/nJ554Ir7zne/E+PHjY/jw4TFp0qT49a9/HZlMZp/nZTKZWLhwYXz1q1+NYcOGxQUXXBAvvfRSrscFAIA9ynk433///XHUUUfFjTfeGPPnz4/x48fHLbfcEvfcc88+z1u0aFHMnTs3LrnkkliwYEH06tUrZsyYEVVVVbkeGQAAWuiQ6xeYP39+9OzZs+nrcePGxdatW2PJkiXx3e9+N9q1a9nuO3fujAULFsSMGTPikksuiYiIUaNGxTnnnBPl5eUxa9asXI8NAADN5Pwd57+P5kaDBw+O2tra2L59+x7PeeGFF6K2tjYmTpzYdKywsDDOOuusWLNmTc5mBQCAvcn5O8578vzzz0efPn2ia9eue/x+ZWVlREQMGDCg2fHS0tJ44IEHYseOHdG5c+esX//444/P+twjWePe7O/ANe7shBNOyPMkbVPj3uzvwNkZ+fT5z3++2V9JZ3et0759+5w8b0Fmfz+ld5CtXbs2pk6dGjfccEPTbRj/aP78+fHTn/40/vznPzc7vmLFirj66qtjzZo10adPn0MwLQAAfOqQvuP8/vvvx7XXXhtjxoyJiy+++FC+dDOXX355VFRU5O3126rjjz8+Fi5caH9ZaNzdRRddFK+++mq+x2lzTjjhhPjlL39pf1lo3B3kwyOPPBLf/OY345FHHokPP/ww3+O0KZ///OftrhUuuuiiKCoqOujPe8jCubq6Oi677LLo0aNHzJs3b48/FNiouLg4du3aFTt37oxOnTo1e46CgoLo3r17q2apqKiIdevWteo5jmT2l71XX301XnzxxXyP0WbZH7QtjcH34Ycfxvvvv5/nadomu8tOfX19Tp73kPwHUHbs2BFlZWVRU1MT9913X3Tr1m2fj2+8t/mtt95qdryysjL69u3bqvubAQAgGzkP5927d8c111wTlZWVcd999yXdmzxy5Mjo2rVrPPHEE03H6urq4sknn4zx48fnclwAANijnN+qMXv27Fi1alXceOONUVtb2+y//nfiiSdGYWFhTJs2LTZu3BgrV66MiIhOnTpFWVlZzJs3L3r27BkDBw6MBx98MLZu3RqXXnpprkcGAIAWch7OTz/9dEREzJkzp8X3fv/730dJSUk0NDS0uBflsssui0wmE4sXL46PPvooBg8eHOXl5dGvX79cjwwAAC3kPJyfeuqp/T5m6dKlLY4VFBREWVlZlJWV5WIsAAA4IIfkhwMBAKCtE84AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQALhDAAACYQzAAAkEM4AAJBAOAMAQIIOuX6BJ554In7zm9/E+vXro7q6Ovr37x9Tp06N888/PwoKCvZ63umnnx7vvvtui+Pr1q2LTp065XJkAABoIefhfP/998cxxxwTN954Y3zuc5+LZ555Jm655ZZ4//33Y+bMmfs89+yzz44ZM2Y0O1ZYWJjLcQEAYI9yHs7z58+Pnj17Nn09bty42Lp1ayxZsiS++93vRrt2e79b5Oijj47hw4fnekQAANivnN/j/PfR3Gjw4MFRW1sb27dvz/XLAwDAQZHzd5z35Pnnn48+ffpE165d9/m4xx57LJYtWxYdO3aM0aNHx/XXXx+DBg1q9eufc845MWTIkFY/z5GmpKQkIuwvG427O+mkk+Koo47K8zRtz8CBAyPC/rLRuLsFCxbEe++9l+dp2p4vfOELUVZWZn9ZGjVqVERE/NM//ZNbLQ9Q4xuPdped9u3b5+R5CzKZTCYnz7wXa9eujalTp8YNN9wQl1xyyV4fd9ttt8WwYcOib9++UVVVFffee2988MEH8eijj0a/fv0O3cAAABCHOJzff//9mDJlSpSWlsbixYv3eX/zP9q8eXNMnDgxvv71r8esWbNaNccPf/jDeOedd1r1HEeikpKSuOGGG+wvC427mz59erz++uv5HqfNGThwYCxZssT+stC4O++YZsc7zq0zatSo+PrXvx6PPfZYfPTRR/kep03p2bOn3bXC5MmTo6io6KA/7yG7VaO6ujouu+yy6NGjR8ybN++Aojkionfv3jFq1KhYv359q2d555134s0332z18xyp7C97r7/+erz00kv5HqPNsr/svffee7Fhw4Z8j9Fm2V92jjvuuIiI+Oijj2Lz5s15nqZtsrvsNDQ05OR5D0k479ixI8rKyqKmpiYeeuih6Nat26F4WQAAOGhy/qkau3fvjmuuuSYqKyvjvvvuiz59+mT1PJs2bYrnn38+hg4depAnBACA/cv5O86zZ8+OVatWxY033hi1tbXN/pj1xBNPjMLCwpg2bVps3LgxVq5cGRERjz/+eKxatSomTJgQvXv3jqqqqli4cGG0b98+pk+fnuuRAQCghZyH89NPPx0REXPmzGnxvd///vdRUlISDQ0NUV9f33S8pKQkNm/eHLfffnvU1NREt27dYuzYsXHVVVf5RA0AAPIi5+H81FNP7fcxS5cubfb18OHDWxwDAIB8yvk9zgAA8FkgnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEggnAEAIEHOw3n16tXx7W9/O8aOHRtDhgyJM844I/7zP/8zampq9nvuww8/HGeffXYMHTo0/uVf/iVWrVqV63EBAGCPOuT6BbZu3RrDhg2LqVOnRo8ePaKioiLmzZsXFRUVsXjx4r2e99vf/jZuueWWuOKKK2Ls2LGxfPnymDlzZvziF7+I4cOH53psAABoJufhPGnSpGZfjxkzJgoLC+OWW26JTZs2RZ8+ffZ43ty5c+NrX/taXHPNNRERMXbs2Hj99dfjnnvuiUWLFuV6bAAAaCYv9zj36NEjIiLq6ur2+P2qqqr461//GhMnTmx2/Nxzz40//vGPsWvXrlyPCAAAzeT8HedG9fX1sXv37njjjTfinnvuidNPPz1KSkr2+NjKysqIiDjuuOOaHS8tLY26urqoqqqK0tLSrGfZ2+uyb417s78D17izgQMH5nmStqlxb/Z34Bp39oUvfCHPk7RNjXuzv+z07Nmz2V9JZ3et065dbt4bLshkMpmcPPM/GD9+fGzatCkiIk499dSYO3dudOnSZY+P/c1vfhP/9m//Fv/zP/8TvXr1ajr+5z//OSZPnhwPPvhgjBw58lCMDQAAEXEI33FeuHBhfPLJJ/HGG2/E/Pnz44orroglS5ZE+/btD9UITX74wx/GO++8c8hft60rKSmJG264wf6y0Li76dOnx+uvv57vcdqcgQMHxpIlS+wvC427W7BgQbz33nv5HqfN+cIXvhBlZWX2l6VRo0bF17/+9Xjsscfio48+yvc4bUrPnj3trhUmT54cRUVFB/15D1k4n3DCCRERMWLEiBg6dGhMmjQpVq5cGeecc06Lx3bv3j0iImpqapq941xdXd3s+9l655134s0332zVcxzJ7C97r7/+erz00kv5HqPNsr/svffee7Fhw4Z8j9Fm2V92Gm+5/Oijj2Lz5s15nqZtsrvsNDQ05OR58/LDgYMGDYqOHTvG22+/vcfvDxgwICL+dq9zo8rKyujYsWP069cv5zMCAMDfy0s4v/zyy1FXV7fXHzLr169fHHvssbFixYpmx5cvXx7jxo2LwsLCQzEmAAA0yfmtGjNnzowhQ4bEoEGDonPnzvHqq69GeXl5DBo0KM4888yIiLjpppvi0Ucfjb/85S9N533ve9+L66+/Pr74xS/GmDFjYvny5bFu3br4+c9/nuuRAQCghZyH87Bhw2L58uWxcOHCyGQyccwxx8SUKVPi0ksvbXrnuKGhIerr65udd95558Unn3wSixYtioULF8Zxxx0Xd999d4wYMSLXIwMAQAs5D+fLL788Lr/88n0+Zs6cOTFnzpwWx6dMmRJTpkzJ1WgAAJAsL/c4AwBAWyOcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEHXL9AqtXr45FixbFG2+8EbW1tdGnT58488wzY+bMmdGtW7e9njd16tT405/+1OL48uXLo7S0NJcjAwBACzkP561bt8awYcNi6tSp0aNHj6ioqIh58+ZFRUVFLF68eJ/njhw5Mm644YZmx0pKSnI5LgAA7FHOw3nSpEnNvh4zZkwUFhbGLbfcEps2bYo+ffrs9dzi4uIYPnx4jicEAID9y8s9zj169IiIiLq6uny8PAAAHLCCTCaTORQvVF9fH7t374433ngjbrrppujbt2/Mnz9/r4+fOnVqvPLKK5HJZKK+vj5OOumkuPrqq+PLX/5yq2fZunVr7N69u9XPc6Tp0KFD9OjRw/6y0Li7zZs3+w1jFjp27Bi9e/e2vyw07q66ujrq6+vzPU6b0759+yguLra/LBUWFkZRUVF8/PHH0dDQkO9x2pR27drZXSsUFRVFu3YH//3hQxbO48ePj02bNkVExKmnnhpz586NLl267PXxc+fOjb59+8axxx4bmzdvjvLy8njttddi6dKlMWLEiEMxMgAANDlk4fzqq6/GJ598Em+88UbMnz8/SkpKYsmSJdG+ffuk87dv3x7nnXdelJaWxqJFi3I8LQAANJfzHw5sdMIJJ0RExIgRI2Lo0KExadKkWLlyZZxzzjlJ53fp0iUmTJgQv/vd73I5JgAA7FFefjhw0KBB0bFjx3j77bfz8fIAAHDA8hLOL7/8ctTV1R3QZzJv3749/vCHP8TQoUNzOBkAAOxZzm/VmDlzZgwZMiQGDRoUnTt3jldffTXKy8tj0KBBceaZZ0ZExE033RSPPvpo/OUvf4mIiLVr18Z9990XZ511VhxzzDGxefPmWLJkSWzZsiV+8pOf5HpkAABoIefhPGzYsFi+fHksXLgwMplMHHPMMTFlypS49NJLo7CwMCIiGhoamn3MT69evaKuri7uvPPO2Lp1axx11FExYsSImD17dgwbNizXIwMAQAuH7FM1AACgLcvLPc4AANDWCGcAAEggnAEAIIFwBgCABMIZAAASCGcAAEiQ889xzrennnoq7rrrrnjrrbeib9++cfnll8f555+/z3PeeeedOOOMM1ocP+mkk2LZsmW5GjWv3nzzzbjtttvixRdfjKKiopg0aVJcc801TZ+1vTeZTCYWLVoUv/zlL+Ojjz6KwYMHx7//+7/H8OHDD83gh4Fsd3f66afHu+++2+L4unXrolOnTrka97CyYcOGKC8vj5dffjkqKipiwIAB8fjjj+/3PNfdp7Ldn2sv4oknnojf/OY3sX79+qiuro7+/fvH1KlT4/zzz4+CgoK9nufa+1S2+3PtRaxevToWLVoUb7zxRtTW1kafPn3izDPPjJkzZ0a3bt32ee7DDz8c9913X2zcuDGOO+64uPbaa+O00047RJMfHrLd39SpU+NPf/pTi+PLly+P0tLS5Nf/TIfz2rVrY+bMmTF58uS46aab4tlnn43vf//7UVRUFOecc85+z7/uuutizJgxTV8XFRXlcty82bZtW0ybNi2OPfbYmDdvXmzatCnmzJkTO3bsiB/84Af7PHfRokUxd+7cuP7662PQoEHxi1/8ImbMmBH//d//Hf369TtE/wT505rdRUScffbZMWPGjGbH9hfcnyUVFRWxevXqOOmkk6KhoSFSP1b+SL/uGmW7vwjX3v333x/HHHNM3HjjjfG5z30unnnmmbjlllvi/fffj5kzZ+71PNfep7LdX4Rrb+vWrTFs2LCYOnVq9OjRIyoqKmLevHlRUVERixcv3ut5v/3tb+OWW26JK664IsaOHRvLly+PmTNnxi9+8Ysj6jdu2e4vImLkyJFxww03NDtWUlJyYANkPsNmzJiRueCCC5odu+666zITJ07c53lVVVWZgQMHZp544olcjnfYuPfeezPDhw/P/N///V/TsV/96leZwYMHZ95///29nrdjx47MyJEjMz/+8Y+bju3cuTNz2mmnZf7jP/4jhxMfPrLdXSaTyZx22mmZ2bNn53jCw1t9fX3T399www2Zr33ta/s9x3X3N9nsL5Nx7WUymcyHH37Y4tjNN9+cGTlyZLO9/j3X3t9ks79MxrW3Nw899FBm4MCB+/x145//+Z8z1113XbNjF1xwQeZf//Vfcz3eYS9lf9/+9rczl19+eatf6zN7j/OuXbviueeea/HO8rnnnhtvvvlmvPPOO3ma7PCzZs2aGDduXPTo0aPp2MSJE6OhoSGefvrpvZ73wgsvRG1tbUycOLHpWGFhYZx11lmxZs2aXI582Mh2d3yqXbsD/1eQ6+5vstkfn+rZs2eLY4MHD47a2trYvn37Hs9x7f1NNvtj7xp/Damrq9vj96uqquKvf/1rs2sv4tOm+eMf/xi7du3K9YiHtf3t72D6zP5b9+233466uroYMGBAs+ON97FUVlbu9zlmzZoVgwcPjnHjxsXNN98cW7duzcWoeVdZWdliT8XFxdGrV6997qnxe3va8caNG2PHjh0Hf9jDTLa7a/TYY4/FkCFDYsSIEXHZZZfFa6+9lqtRPzNcdweHa6+l559/Pvr06RNdu3bd4/dde/u2v/01cu19qr6+Pnbu3Bnr16+Pe+65J04//fS93jbQeO0dd9xxzY6XlpZGXV1dVFVV5Xzew82B7K/Rn/70pxg+fHgMHTo0vv3tb8f//u//HvDrfmbvcd62bVtEfBoxf6/x68bv70lhYWF861vfiq985StRXFwcL7/8ctx7773xyiuvxMMPPxwdO3bM3eB5UF1d3WJPERHdu3ff556qq6ujsLCwxQ90FBcXRyaTiW3btkXnzp0P+ryHk2x3F/HpD8kMGzYs+vbtG1VVVXHvvffGRRddFI8++ugRda/kgXLdtZ5rr6W1a9fG8uXLW9z/+Pdce3uXsr8I197fO+2002LTpk0REXHqqafGj3/8470+tjVN81l1IPuLiPjyl78ckyZNimOPPTY2b94c5eXlMX369Fi6dGmMGDEi+XXbVDjX1NTE5s2b9/u41v6fr3fv3jFr1qymr08++eQ4/vjjo6ysLFauXBnnnntuq54fIiJuvvnmpr8fPXp0nHLKKTFx4sQoLy9vdv3Bwebaa+7999+Pa6+9NsaMGRMXX3xxvsdpcw5kf669v1m4cGF88skn8cYbb8T8+fPjiiuuiCVLlkT79u3zPVqbcKD7u+qqq5p9/dWvfjXOO++8+OlPfxqLFi1Kft02Fc4rVqxo9n+6vVm+fHl07949Ij6N7b9XXV0dEdH0/VQTJkyILl26xPr16z9z4VxcXNxiTxGf/g52X3sqLi6OXbt2xc6dO5u9A1NdXR0FBQUHvOO2KNvd7Unv3r1j1KhRsX79+oM13meS6+7gO5Kvverq6rjsssuiR48eMW/evH3eN+7aa+lA9rcnR/K1d8IJJ0RExIgRI2Lo0KExadKkWLly5R4/9evvm6ZXr15Nx7Ntms+CA9nfnnTp0iUmTJgQv/vd7w7oddtUOE+ZMiWmTJmS9Nhdu3ZFx44do7KyMk499dSm43u7R+1INmDAgBb349bU1MSWLVv2uafG77311ltNF3DEpzvu27fvEfFHltnujuy57jhYduzYEWVlZVFTUxMPPfTQfj9D17XX3IHuj70bNGhQdOzYMd5+++09fr/x2vvHn6uprKyMjh07HnG3ufyj/e3vYPrM/nBgYWFhjBkzpsXvJBo/6PpAP7dv1apVsX379hg6dOjBHPOwMH78+HjmmWeafuca8em7++3atYtTTjllr+eNHDkyunbtGk888UTTsbq6unjyySdj/PjxOZ35cJHt7vZk06ZN8fzzz38mr7GDyXV38B2J197u3bvjmmuuicrKyrjvvvuiT58++z3Htfc32exvT47Ea29PXn755airq9trm/Tr1y+OPfbYWLFiRbPjy5cvj3Hjxh1Rn4O9J/vb355s3749/vCHPxzwtdem3nE+UN/5znfi4osvjlmzZsXEiRPjueeei8cffzzuvPPOZo878cQT4xvf+EbcfvvtERExZ86cKCgoiOHDh0dxcXGsW7cuFixYEEOGDIkzzzwzH/8oOXXhhRfG0qVL48orr4yysrLYtGlT3HHHHXHhhRc2+5fhtGnTYuPGjbFy5cqIiOjUqVOUlZXFvHnzomfPnjFw4MB48MEHY+vWrXHppZfm6x/nkMp2d48//nisWrUqJkyYEL17946qqqpYuHBhtG/fPqZPn56vf5xD7pNPPonVq1dHRMS7774btbW1Tb8wnHzyydGzZ0/X3T5ksz/X3qdmz54dq1atihtvvDFqa2vjpZdeavreiSeeGIWFha69fchmf669T82cOTOGDBkSgwYNis6dO8err74a5eXlMWjQoKbGuOmmm+LRRx+Nv/zlL03nfe9734vrr78+vvjFL8aYMWNi+fLlsW7duvj5z3+er3+UvMhmf2vXro377rsvzjrrrDjmmGNi8+bNsWTJktiyZUv85Cc/OaDX/0yH8+jRo2PevHlx1113xa9//evo27dv3HbbbS0+B7G+vj4aGhqavi4tLY0HH3wwli1bFjt27Ig+ffrE5MmT46qrrooOHT57K+vevXs88MADceutt8aVV14ZRUVFMXny5Lj22mubPa6hoSHq6+ubHbvssssik8nE4sWLm/7zs+Xl5UfMHxtlu7uSkpLYvHlz3H777VFTUxPdunWLsWPHxlVXXXXE7C4i4sMPP4yrr7662bHGr3/2s5/FmDFjXHf7kM3+XHufavyc9Tlz5rT43u9///soKSlx7e1DNvtz7X1q2LBhsXz58li4cGFkMpk45phjYsqUKXHppZc2vXO8p2vvvPPOi08++SQWLVoUCxcujOOOOy7uvvvuA/pEiM+CbPbXq1evqKurizvvvDO2bt0aRx11VIwYMSJmz54dw4YNO6DXL8hkDuC/0QoAAEeoz+w9zgAAcDAJZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAggXAGAIAEwhkAABIIZwAASCCcAQAgwf8HhkGyjHmmOXYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a,b,c,d = 127,127,127,12,7\n", "plt.imshow(srlut.reshape(17,17,17,17,4,4)[a//16,12//16,12//16,12//16], cmap='gray')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(112.49999999999999, 0.5, 'output pixel')" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAALVCAYAAAC/Ra41AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wT9ePH8ddljzbdg5ZN2VBAWbKn7ClLZKjI1y2Kfl0/98It7vlVRMWJgsh0sDey9ygbulfaNPt+f6S0hKSD0JZWP8/Hg4fm7pPLu3e5JJ/7jJNkWZYRBEEQBEEQBEEQhMukuNoBBEEQBEEQBEEQhJpJVCgFQRAEQRAEQRCEgIgKpSAIgiAIgiAIghAQUaEUBEEQBEEQBEEQAiIqlIIgCIIgCIIgCEJARIVSEARBEARBEARBCIioUAqCIAiCIAiCIAgBERVKQRAEQRAEQRAEISCqqx3gapkTP+lqRyiXDOXVTlB+NenNpHNf7QTlE1RDcgLEu2xXO0K5KSX5akcoF5csXe0IwlVUU96nULPeqxpFzfhg1amcVztCuek0NSirwXG1I5SLQllzzv/6O3+/2hEumyM96aq+vjqy4VV9/YomWigFQRAEQRAEQRCEgIgKpSAIgiAIgiAIghCQmtRLURAEQRAEQRAE4cq4XVc7wT+KaKEUBEEQBEEQBEEQAiJaKAVBEARBEARB+PeQa8bkXDWFaKEUBEEQBEEQBEEQAiIqlIIgCIIgCIIgCEJARJdXQRAEQRAEQRD+Pdyiy2tFEi2UgiAIgiAIgiAIQkBEC6UgCIIgCIIgCP8aspiUp0KJFkpBEARBEARBEAQhIKKFUhAEQRAEQRCEfw8xhrJCiQqlHyqDllZ3DiGqXQKRbRuiDQti3QMfc/SHtV7lur31HxLG9fB5fs7Rc/zS8+Gix21njqbtg6NLfL0lI54ldduRgLKqDVo63DGE2LYJxLZtiD40iGUzP2bfT95ZB7zxH1qN9c2aefQcX/QpzhreqBatxvekXvfWhNaLxm6xkbrnBBvemk/K7uMBZbyQ89o7hhBTmFMXGsSKmR9z4JKc/d/4Dy1KyPnVRTmNMaF0e+xGYto0xBgTiuxyk3U8md1z//DZ5uVSGbS0vXMI0e0SiCrMuvKBjzn8o/d2e735H5r6Of5ZR8/xQ6/irEG1I7lp02y/r/XHXe9x7NdNV5S1+V1DiGyXQEThe3Xj/R+TdMl7tfNb/6HReP/v1d96POy1TBcdSuJDo6nVoxW6qFAKUrI4s3w7e99ZiD0rL+CsSoOOOncPx3RNY4LbJaAOC+Lgfe+T/P0q38KSRNyU/sRN6Y++URzuAht5+09y9Mk55O8/6clZJ4rO2z7w+1r7b3+L1AUbAsqpMOioffdwgttdyBnMoRnvkVpCzlpT+hM7+UJOO/n7T5D0VHHOC3T1Yqj3yARCeySiNOqwn88k7dcNnHz524ByQs3ZpzUpa03JCeK9Wlnnf/xdIwi6pjFBbT379MiM90j7YaXfnDGTryd2cn90hfvUsv8Ex5/+AkthzjoPjqPOQ+NLfL09wx/HvPVQwFlj7hiFoV0TjG0bowoN5sTMt8n88S+/WSMnDSDypgHoGsXjLrBRsP8EZ579HwUHThQV09aPJe7RqQR3TUShVWPZc4xzr88jb+OegDICSAYdkdNvQN+2KfrEJihDgzn78FvkzP/Dq1yLY4tL3Ebeuh2cmvoEAJqGtQkd25+gbtegrhuL22LFuu8YaW9/jXXP0YBzAkh6HaG3jEXbuhna1k1RhphIfeI18hb+7lWu4Z4VJW7DsnE7yf95FABVXAx1l3/lt1zKf18if9mqK8oacvM4tK2aoWnlyZr+1Gvk/eqdrf7O30vYAhRs+puUOx71WqaqXYvQu29G36kdksGAKzWd/BWryX7vi4CzCv98okLphy48mLYzR5N3Jp3MA6eo1aVFiWVdVjvr//s/r2V2s8Xr8cmlW8k9keLz3GseHYvaoCN9V1LAWfXhwVx3/2hyz6STtv8UdUvJ6rTaWfGId1bbJVlbT+hFqwm9OLJkKzu/+gNtsIHEm/owccEzzJ/yKqfW7Qsopy48mE4X5axTRs4/Hil9n+rDggmqFc6RJVswn8tAoVJSt3srrn/zdsIa1mLDqz8ElPNC1msfGI35TDoZ+08RX0bWNQ9fkjXX4rfskQUbOP3XLq9lKX8HdiHhAm14MIkzR5N/Jp2s/aeI7Vr6e3XTQ95ZHZfsV5VBy4BFT6MyaDn85R9YzmUS1qIuTW7pT0zX5iwd8CTIckBZ1RHB1H9oLNbTaeTtP0FY11Yllm02+y6ib+hGyo9rOPv5UhQGHcGtGqCJDCH/krIpP68j84/tXstyth0OKOOFnPUeHIf1TBr5+08SWkrOJrPvImp0d1J/XM25z5ehNGgJat0AdWSIVzljy/ok/vwstuRMzn60CEemGV3tSDRxEQHnvJC1JuzTmpS1puS8kFW8Vyv4+IcHU+fBcdjOpGHZf5KQUnImvHU3kaO7k/bjas5/sRSlQYexlfc+zViymYITyT7PrffYRBQGHXk7jwWcVRVuotYDE7CdSaVg/wmCu7QusWy9N+4lfGRPMuavJG3OEhQGLYZWDVFdlFVdK5ImC14Fl5uUj3/BbbESMa4vjb95hiM3Pkne5v2B5QwzEXXfROxnU7EePI6xc6Lfcmdnvu6zTNc6gYhbRpK/rvgYh40fQOjY68ldtp7MbxajDDYQduMgGvz0JqdueYr8DTsDygmgDAsh7M7JOM6lYD+UhL5jW7/lUh97xWeZtkVjQiaPpmDD3z7r8pb8hWXtVq9ltl2B7c+Ls4bePhnnuRTsh5PQd/CfNe3xl32ztmyC6abRFGz0zqpp2ojYz17HmZpOztz5uHNyUcVGo4yNuqKswj+fqFD6YUnN5vu2d1OQlkNEYgOGLX2+xLJul5ukn9eXur2sA6fJOnDaa5khLhxjrXAOz1uF2+EKOGt+ajYfXns3lrQcYhIbMOm30rMe+KX0rAd+3ciGt37GYbEVLdv7/Wpu+esVujwwOuAKpSU1m08Lc0YnNuDGMnIeKiNn+sHTzB//otey3V/+zrDPZ9LmluvZ+PqPyO7AKj6W1GzmtvMc/8jEBtywpOSsssvNkTKOf1HmPSfKXba8ClKzmd/mbqxpOYQnNmDQstL364kyXr/2gGsIqhPFysmvc+7PnUXLbdl5JM4cTVjLumTtPVnyBkphS8liQ6vp2NOyCW7TkGtX+H4hA0QNv47YCb3Ye/NrpC/dUuZ283YnkTL/ylqlL2ZPyWJT69twpGUT1KYR7Zb7zxk5/Dpixvdm/y2vklFaTkmi6Xv3Yjl6lj03PIPbaq+wrDVln9akrDUlJ4j3KlTC+Z+axdbEaTjSsjG2aUSbZa/6LRcxrAvR43tz8NZXyCwlp+XASSwHvD8zNXERaGpFkDLvT2SHM+CsjtRMdl8zFWdaNobEBJotfsNvudChXYkY25dj02eRs6zkHjGxd9+AymRkf7/7sCWdBSB93gparvqA2k9N4+CQBwPK6UzL5FCnSbjSs9C1TqDhgrf9lstZ6NsKbOjUGtntJmfR6uJyi1aT+vY3yBZr0bLsH3+n0YqPiJox8YoqlM60TE72Go8rIwtNi8bU/v59v+XyfvvTZ5mufSKy203eUt+/w7b/qN/nXAlnWian+44rzNoE/Tz/WfOX+MvaBtntJv/irJJE5AuP4Dh+muTpDyHbKu78r5bEpDwVSkzK44fb7qQgLafc5SWFhDpIf1mv0XDEdUgKBUm/BN7dCcBld2K5zKyaUrKm7jnhVZkEsGbncWbLIcIT4qpNzpLknk5HrdegUAd+raQyj79Kr0WhVgYazYfb7sR6mVlVpWS98Hdcuk1rSjbgaeUMlGx3Yk/LLrNcnTuGkrv9iOfHpCShMGjLfI7CoEW6gmN+MdnuxFGOnPG3DyN3+xHPD/RScob1aoOxeT1OvfEjbqsdhV4Dior56K0p+xRqTtaakhPEe/WCq3H+x90+DPP2w57KpCSh0Jed84LIkd2QFArSf15zBUk9WZ3lyBozfQT5Ow57KpOlZA3q2ALLvqSiyiSAbLWT/fsWDIkJaOvXCjinKz3rsp8naVSYBnbFsmUvzuSMouXWvUe9KpMArmwzlq370DSqE1DGIg4HrozLz4pajbF/N6zbduNKSfdbRNLrQFWB7ThXkNXQrxvWv3fjSi3Oqr/uWjSNG5D98VfINjuSTlth57/wzydaKK+QSq9h4qFPURt02LLySFq4kb9f/A7nJZWySzUc3YW8s+mkbDpYRUlBrddw735P1oLsPA4t3MiaWd/5VCD9MUaHUpAZ+Pi5y6HWa7izMKe1MOf6EnIqtWrUBi1qo47anZvTYlwPzm8/isvmqJKsKr2GWw4WZz22YCObXvJ//K99YBTXPTkR2e0mbfcJtr76A2fW7K2SnBeyjjv8KarC9+rJhRvZ8YJ31pRNB3G73LR/fjJ/P/sNlvNZhDWvQ8sZIzi9dBu5R89XakZlkJ7gdgmc+2IFDR6/kfhpg1AF6Sk4mULSC9+Q9utGn+fUe2gsjZ6Zgux2Y96VxPFZ35K1eneV5Dw/Zzn1HptI3EU5T7z4NekX5Qzt4ene5bY5aLv8FYLbNMJtc5CxdAtHH/0UZ3blnlc1ZZ/WpKw1JefFWcV7tWJzBrVLIHnOcuo+NpFatw5GGaTHejKFky9+Tcai0i8UR43uge1sGrkbr6zLY3kogvQY2jYmbe5S4h6ZRNTNQ1EG6bGdTObsy3PJ/q2414qkUePO8T3GcoHnO8KQmIDtROV+B1wsqFcHlCFBflsu/VFFheHKyq3kVP4ZundEaQomb7Gf8atA2J2TiHjoP8huN7b9R8h6Z45Pd9OqYujmyZq/xDurrtM1AMh2B7W+eR9tyybIdjuWv9aT8dK7uHPNVyNu5XEH3jtQ8CUqlFfAkpLN3g8Wk7H3BJIkEd87keY39ye8RV2WjXkR2eW/OT20STzhLeqx5/1FVZY1PzWbrR8tJqUwa/1eibSd2p+oFnX5flzJWQHiOzYl7poENr2zsEpy/v3RYlILc9brlUibwpw/+cnZbtpAuj5aPOHBqXV7+f3BTyo9J3i6xu78cDHpe04gKSTq9EqkZeHxXzT2oqxumdOrdnN82TYsyVkE14smcfogBn31MMtveZNTf+2s9KzW1Gz2f7CYzMKstXol0uTm/oS2qMsfNxRnzT1yji0P/492T05k4G/PFj3/2Pdr2PzQZ5WeU18/BkmhIHpkF2SXm6TnvsZptlB7+mBafHw/e8wFZK7cCYDslslcuZP0JVuwJWeiqxdDnduHkvjt/7Fnyis+46oqkq5+LJJCQdSIrsguFyee/wpnroW46UNo9tED7DMXkFWYU9/Ac1W/+SczyVq5k9Pv/ExQy/rUvncUmrgIdg9/otJyQs3ZpzUpa03JCeK9Whku7NPIkV2RnZ596jLnU+u2ITT56AEO5FnILszp8zc2qYOxZX3OvvdLpeW7mLaeJ2v48O7IThdnX5qDy2wh+tZhNHj/IY7lWchdtQMAa9JZgjq0QGHU484vKNqGsYNnbL46NrxKMl8QMrwXbpud3KVlDxUxtG+Jvl0z0t//vgqS+Qoa0ge3zU7+797dr2W3G8v6beT/uR5Xagaq2rGETLmB2A9fIPnepylYW3a37opmHNwH2WbH8od3C7m6bjwAUa8+QcGGreR8/i2aJo0IuXUCythokm++v8qzCjVHtatQpqWlsX79epKSksjOzgYgNDSUhg0b0rVrV6Kiqs/A4O0ve0/8cvzXTeQkJXPto+OoP6Qjx0uYvbPh6K4AV9zd9XKse8U766FFm8hKSqb7I+NoMrgjhxb5z6qPMDHknbvIOZ3G1o9+q/ScGy7JeXjRJrKTkunyyDgaD+7I4UtyHlq4gZTdSejDTTTo2xZDVAgqnabScwJsueT4Hys8/h0fHUfDIR2LZm/NO5fBkkne43COzF/HuL9eofNTE6ukQrlzlnfWkws3YU5Kpu1j46g7tCMnFxbvV8v5LDJ2HuPcn7vIP5tOdMemNJ12PbYsMzueC3yWx/JQGnUAqCNM/D3oMczbPTP2ZSzbRqet71PvgRuKflDazqaze4L3ONqUH9fQce1bJDwzhS2V+IPy4pw7Bz2GeYdncqWM5dvouPV96tx/Q9GP9AtlzbuOceiedzzlFm/GZbHR4IlJhHZvTfbawGdQvJys1Xmf1qSsNSXnpVnFe7ViKC7kDDexe/Cj5BXu08zl27h2ywfUvn9MiRXKqBu6A5D2c8WOpy05q2cYgyrcxMFh/8Wy0zNhUc6KLbTc8Amx944rqlCmz11KaP+ONPjgIc69+jVui42oKYMwJDbybKuKvlvB07Ia1LsDeau24TZfOhWTN2VECPGz/4vjdArpn/xURQmLSUYDhh4dKVi7xSerKzmN5Dse91qWt+hPai/8lIj/3s6ZKq5QSkYD+u6dsKzzzSoZPO8V275DpP+fZ4yz5c91yFYrYTNuQ9epHdbNO6o0r1BzVJvO0Q6HgxdeeIHevXvz2GOPsWDBAnbs2MGOHTtYsGABjz32GL179+aFF17A6Qx8EHtl2//pUtwuN7W6lzwzXMOR1/mdqKeqbf/Mk7VeN/9ZVXoto754ELVRx4Jpb5Wra2xluJCzjp+c5rMZnF63j8O/bmT5jA/JOZXK6HmPotSqr0JS2F2YNb6U4w9gy87n0A9rCEuIw1iraq/6XnCw8L0ae1HWqA6N6TX3QXa9/COH/recM8v+Zvtz89j79kKa/2cQpsaBj6MtjwuTgBScTCn6MQngsljJ+H0bwe0SkJQlf2w5s/M4/91KDI3j0VbifvXKuaN4pl63xUrGir8JbpcAhTkvjDtN+2Wd1zYuPDZ1aFppOX2yVuN9WpOy1pScPlnFe7VCc1pPphRVJsGzTzNXbCOobfE+vVTkqO7k+5mop7LIhVltJ5OLKpMXsub8sRVD28ZFWXNXbef0Ex8T1KklzZfNpuWaDzH1bc+5V78BwJVv9X2BShI8oCsKnbbM7q6SXkvdT59GYdRz+o7nfcZWVgVj/24odNoSu7teyp1rxrxgBZoGdVDGRFZyOm/Gft1R6LR+J+qRbZ7fePnLvPd53lLP36Vt07LyA1Yl2X11//3DVJsK5ezZs1m4cCFPPfUUW7ZsYc2aNSxatIhFixaxZs0atm7dytNPP82vv/7K7Nmzr3bcErmsDmxZZrShRr/rozs0IahOVJW2TpbEaXNgzTKj85NVoVYy4pMZRDWrw8Lb3iLj8JmrkNDDVUrOSx1dvIXg+EjiOzWrgmS+Lhz/8mTNO5cJUOJ7pbK5rA7sWWY0F71+wqQ+WNNyyLzknqNnVmz3dJvr0KRSM9mSPRMM2P1MNORIz0WhUaEw6ErfxlnPJAOqsKCKD1jInuw5dv4m73Ck56DQqFEW5rxQ9tIJSezpnr9RFVJ5OaHm7FOoOVlrSk4Q79XKUPo+zfXapxcL7tgMXZ1o0quodRLAkVKYNT3bZ52z8PhfvE/TvlzCnnZTOTTiYQ4Mnsn+XnfjKmzJsiWdq5LMACEjeuPKzSNvZSkteGoVdT74P7TNGnD69uexHa6aSvqlgob0wZWbR/7qzeV+jis5DQBlSHBlxfLLOKgPbnMeljW+WV1pnomPXBnZXsvdmZ7HClPlnv9CzVZturwuXLiQxx57jNGjR/tdHxQUxNixY1EoFLz11ls89NBDVZywfFRGHbrwYKyZ/gcvNxzdBdntrhYVSrVRhz48GMulWSWJQW/dQd2uLVl017uc2Vx1Ewf5cyFnQQn79GIXurtqTYbKjuWXuvD4F2SUndVU19N921qOspVBZdShDQ/GdtHr66JC/LYAKFSemWkVpbQOVAR7Sha2lCy0fsbqaGLCcBXYceUV+HlmMX29GMDzw66y2FOysKdkofGXMzYcV4GtKGfebs99ZrW1vO/jp40J8+TMqNxJJGrKPoWak7Wm5ATxXq0Mjgv71E8rqCY2zGufXixqdA/PpGy/VG2F0pGSiSbW9z6i6phw3FYb7kuyugts5G8/VPTY1K0N7gIbedsOVHpe8EyuY+zcmuz5fyLbS+iRJknEvz4TY5e2nLn3ZSxbqm6Cu4spI8PRd2iDeeHv4Cj/ZICq2rEAuDLLP0v7lVJGhqPr0Ia8X1f4zWrbf4TgG0AV7f1eUUZ5Hruzqi5rlXD/81oJr6Zq00KZn59PbGxsmeViY2PJzy+9P31VUGrVqIy+VyDb3D8SSaHg7ErfWeYklZL6QzuRsuUw+ecyfNZXFqVWjdpP1utmeLKeWOWdte9zU2g2/Dr+eGIOR5dtq6qYJebsWJjz5EU59eH+r+q1nNAL2e0mdc+JyooJlJz1msLjf/qirDo/WQ2xYTSd0JOM/SexpGZXZlQUJbxXWz/gyXruoveqOSkZfXQo0dc19ypbb+R1AGQGeA/Ky5G2cAO62pGE9Si++bU6PJjIgR3IXrcXZM/9RdURJp/namLDib2xD3n7TmCv5P2atnA9utpRRTNjAqjCg4kY0J6c9cU5M5ZtxW21EzO+N0hSUdmYm/oBkLVmV6Xm9GStGfu0JmWtKTk9WcV7taKl/7oebXwUIZfs0/ABHci9aJ9eIKmURAy7jtwtB7Gf9X9bicqStWgdmvgogru3KVqmDAsm9PqOmNfv8cl6MeO1zQgddB3p3/2O22ypiriYhvZEUirJ+bXk7q6xT99ByNCenH/6A8wrrt4F+qBBvZCUyhK7uyrCQnyWKaMjCB41ANuhY7jSMys7YhHjQE/WS2d3vaBg1QZkm52gEQO8zv+g0YM96zddnVlpBV9Lly7lzjvvpEePHrRt25YRI0bw008/IReey3l5ebz77ruMGTOG9u3b06VLF+644w4OHTrksy2z2czjjz9Ox44dadeuHffddx+pqamXnanatFC2bduWjz76iNatWxMc7L+ykJeXx0cffUS7du0qPU+zm/ujCTFgKLwyW7tfOwyFVyMPfL4CbYiRYctf5PjCjeQc9XQDieuVSJ2+bTnz1y5OLfc98eJ7tUYXHlzhrZNtp/ZHazIQVJi1Yb92BBVm3TFnBboQI5OXvsjBhRvJPObJWr9HIg37tuX4yl0cXVGc9ZppA2g7tT/nth3GWWCn+aiuXq91ZNk2nAWBjaVMLCXnrjmefTpx6YscvihnvR6JNOjblhMrd3Hsopwd7h1BXPsmnFi1G/O5dHShQSQM6kBs20bs/GI5OSdTAsp4Qcub+6MxGTAWZq3Xv13RWMd9X6xAE2JkzLIXObpwI9mFWWv3TKRe37acWrmLExcd/87/dyOmetGcXb+P/JQsgmtH0XxSH9R6Leuf/vqKcgI0ucWTVV+YNb5/8Xv10OeerINWvMjJBRvJLcxaq2ci8f3acu6vXZy5KOuhL36n4fge9PpyJoc+/538M+nEXNeM+qO6cH71HjJ2HLuirPG3DkQVYkAT48kXcf21aOM8/3/ms2W4zBZOvvMLUcOvo+XnD3Lmo99wmi3ETbkeSaUk6aV5Rdtq+OQk9PVjyFq7B3tKFro60cRN7ofSoOXoE19cUc5atw5EZTKiifXs04j+7Ytabc79bykus4XT7/xC5PAuNP/fQ5z9+DecuRZqTemPpFJx4qKcjrRsTr39M/UfmUCrb58gY9kWjC3qETupH6k/ryVv579jn9akrDUlJ4j3amXs19hbBnnlDL++fVHO84X79Ow7PxM5rAtNP/sv5z9ehNNsIXby9UhqFSdnfeOzzdBebVGHm6743pOXipo6GGWIEXVh1pB+HdAUHv/ULxbjNltIfv8nQod1o+HHj5L66UJcZguRkwYiqVWce+Wrom1p4qNo8OHD5Py+BUdqFrqmdYmaNJCCAyc498qVfVeFTR6K0mQsav0K7tMRdWGraeaXi3DnFVdWQ0b0wpGcjmWT/wmgwm8eQfjkoVi2H0AusBEyorfX+twVG4pudRII043DUQQHFbXMGXt2RhXj6VGUM28B8kVZg4b0wZmSjnWr/4stETNvQ1UnjoJNO3ClZaCKi8E0dggKvY6Mlz8MOOMFweNHoAg2oizcr/oenVFGe8Zl5n7nndU4qC/O1HSs2/xndWVkkf3ZPMLuvpmYD2ZhWbkeTZOGBI0eTN7Sv7DvO+z3eULVmzNnDvHx8Tz66KOEhYWxYcMGnnzySZKTk7nnnns4d+4c33//PTfccAP3338/NpuNzz//nPHjxzN//nwaNWpUtK3777+fo0eP8swzz6DVapk9ezbTp09n/vz5qC7jvqmSLJdyaaoKJSUlMXXqVPLz8+nSpQsNGzYsqljm5eWRlJTEhg0bMBqNzJkzh4YNG17R682Jn1Tq+jGb3iKojv8ZZX/qdD/2XAudXphC1DUJ6GNCUSgU5J5IIemXDez9aAmy0/f+Nj3ev5t6gzvwfbu7sWeXr5U1Q1l2mdvWv0VICVk/7XI/tlwLfZ6bQq12CQTFhCIpFGSfTOHAgg1s+3gJ7ouyDnjjP7Qa26PE1/q0y/3knvF/dbWst90t69/CVELOzwtz9irMabwo56EFG9h+Sc663VvR5pbriW5VH324CafNQcbBU+z9dhUHfiq7O5GujJ4OEze+RXAJWb/p7Dn+XZ+fQsw1CRgKs+aeSOHILxvYfUnWRiOuo8XkPoQlxKEJMWLPtZC85RDb315I+t4TpeYIKkePjBGbS36vLujoydrhhSlEXJOAIdaT1XwihRM/b2C/n/dqcKNatHl4DJHXNEIXFUpBShanftvC7tfn4yqwl5gj3lX2F3jnre+jqxvtd92m9ndhPe0ZV6KrF02jp6cQ1r01kkpJ7t+HSXrhG8wX/aCNHtWVuCnXY2gSjyrEiDPHQs7mA5x8az55e477fY0LlFLpH3sdtn6Aro7/nFs63IntQs660TR4eiqh3VshqVSY/z7M8Re/9vvDu9atA4m7dRC6utHYU7NJ/WE1p9780e9nxQUuWSpx3QXVZZ+WR03JWl1ylvU+BfFeDWS/ahSlf7Bes+XDEvfp3x3uwHbGk1NbN4b6T08hpFtrJLUK87ZDnHrxa/J2+e7Txh88QMSQTmxrc1u57+epU5U9AWHLDZ+grRPjd93e66ZjP+NpadDUjaH2E7cQ3DURSa0i7++DnHt5LpZdxZMfKUOM1HvjPoxtm6AMDcaRnEHWb+tJfvdHr9uI+M2qKT1rwurP0dT2n/NIj1twnC3M2SCehD8+IeOzn0mZ9T+/5eNefYDQG/qV+FoXb89vVkPpXVPrLJuLOt5/j7lTAybjPOe5YK2uX5s6iz4n+8ufyHzd/+3KjIN6YRo3FE2DuihMQbjNeVi37yXrk3nYDxz1+5wLFMqyz//aS75CFec/65nBk4qyqurVpvbCL8iZ+xNZb35c6jaDx4/AdOMIVPGxuNKzyFu0guxPvoZSzv/6O38vM2t1Yzvm/+4GVUXbqHPAz83MzCQ83LvL/ZNPPsmSJUvYunUrVqsVSZLQ6/VF6/Pz8+nTpw9Dhw7lySefBGDHjh1MmDCB//3vf3Tr1g3w1McGDx7Mm2++yeDBg8udqdpUKAFyc3P59ttvWbt2LUlJSeTmesZAmEwmGjZsSI8ePZgwYQImk29Xl8tVVoWyuihPhbK6qDbN3eVQVoWyuihPhbK6KE+Fsroozw/16qA8P9KFf66a8j6FmvVeLatCWV2Up0JZXZRVoaxOyqpQVhflqVBWF6JCefmupELpz7x583j22Wf5+++/CQryP4HS2LFjiY2N5d133wXg7bff5uuvv2bLli1IF3VzHjVqFE2bNuXll18u9+tXqzqAyWTi9ttv5/bbb7/aUQRBEARBEARB+Ce6ypPy9O3bt9T1f/7pe2uX0vz999/ExMSUWJnMzc3lyJEjdOnSpWhZUlISDRo08KpMAjRs2JCkpKTLev1qMymPIAiCIAiCIAiCUH7btm1jyZIl3HrrrSWWee2115AkiRtvvLFoWW5urt95a0JCQsjJubxZfatVC6UgCIIgCIIgCMI/2eW2QJYkOTmZBx54gE6dOjFlyhS/ZebPn88PP/zAyy+/XK47agRCVCgFQRAEQRAEQfj3kGvGWOrS5ObmMn36dEJDQ3n33XdRKHw7nq5evZqnnnqKu+66i1GjRnmtM5lMJCcn+zwnJyeHkBDfW96URnR5FQRBEARBEARBqCGsViu33347ZrOZzz77zG/X1Z07dzJjxgxGjhzJjBkzfNY3bNiQ48ePc+n8rMePH7/su2mICqUgCIIgCIIgCP8ebtfV/XcFnE4n999/P0lJSXz22WfExPjekufo0aPcfvvtdO7cmWeffdbvdnr06EFOTg4bN24sWnb8+HH2799Pjx4l30LQH9HlVRAEQRAEQRAEoQZ49tlnWblyJY8++ih5eXns3LmzaF2LFi0wm81MmzYNrVbL1KlT2bt3b9H6oKAgEhISAGjXrh3dunXj8ccf55FHHkGr1fLWW2/RtGlTrr/++svKJCqUgiAIgiAIgiAINcD69esB/N4n8s8//+Ts2bNFYyNvvvlmr/UdO3bkq6++Kno8e/ZsZs2axVNPPYXT6aRbt2488cQTqFSXV0WU5Es7zv5LzImfdLUjlEuG8monKL+adHVCV0PGYgfVkJwA8S7b1Y5QbjXlhvE16WbxQsWrKe9TqFnvVY2iZnyw6lTOqx2h3HSaGpTV4LjaEcpFoaw553/9nb9f7QiXzXZg5VV9fW3z3lf19SuaGEMpCIIgCIIgCIIgBKQmNSoJgiAIgiAIgiBcGXfN6KlQU4gWSkEQBEEQBEEQBCEgokIpCIIgCIIgCIIgBORf2+W1kct6tSOUS7yz5szKo5Ou7L46VcmorhmD8o0m+9WOUG6htSxXO0K5KWrIJ5+75sxzUaModVc7QfkoDTVnohtJVXOyKkzqqx2hXCSj9mpHKDdFeOjVjlBuUkTY1Y5QLlJQ0NWO8M8miy6vFUm0UAqCIAiCIAiCIAgBqSHX6QVBEARBEARBECqAmJSnQokWSkEQBEEQBEEQBCEgokIpCIIgCIIgCIIgBER0eRUEQRAEQRAE4V9DlmvORJI1gWihFARBEARBEARBEAIiWigFQRAEQRAEQfj3ELcNqVCihVIQBEEQBEEQBEEIiKhQCoIgCIIgCIIgCAERXV4FQRAEQRAEQfj3EPehrFCihVIQBEEQBEEQBEEIiGihFARBEARBEATh30NMylOhRIXSD4VBR+27hxPcrjHB7RJQhwVzaMZ7pH6/yrewJFFrSn9iJ/dH3ygOd4Gd/P0nSHpqDvn7T3oV1dWLod4jEwjtkYjSqMN+PpO0Xzdw8uVvA86qNGipd/dwQq5JIKRdAuqwIPbe9wHnv1/tN2vtKf2oPaUfhkZxuAps5O0/yaEn55J3SdYLYm/oRusP7sWZb2Vlw6kB56xJ+1Rh0BFzxygM7ZpgbNsYVWgwJ2a+TeaPf/nNGjlpAJE3DUDXKB53gY2C/Sc48+z/KDhwoqiYtn4scY9OJbhrIgqtGsueY5x7fR55G/cEnBNAMugInzYGfWJTdK2bogwN5vxjb5D7yx9e5ZoeXFriNvLXb+fMtP8DQBkdTvRD09C1boIqOhzZ5cZ+4izZ834jd8EfJW6jXFl1egwTJqBu3hx1s+YoTCZyXp6Fdfkyn7LaXr0xjB2Lqm5dcLlxnjhO/nffYt+06ZKNShjGT8AwfASKiHCcp89gmfcN1r/+DDyoTo9h3ATUzZqjaurJmfvaLGwr/OTs0Rv9mLEo69QFtydnwfffYt/indMwcRKqZi08f3dYOPlzv8Dy1ZzAMxaqMfu0JmXV6TGMmYCqaeHxDzZhfmMWtj98c2q690Y/eizK2p7j7zp5HMuP3+LYWpxTWbsu2usHo7mmPYpa8WAtwHn0MJavv8B55FDgOQuz6kaMR9W4BcqEZiiCTeS/9zL2lb5Z1V16oRs2DkV8XXC7cJ06jnXBdzi3b/Kz4Qt/Xz+M9z+BXFBA9qRBV5ZVq0M3fALKhOaerEEmLB+8jH31ct+snXuhHToWZVxdZLcL9+kTWH/9DueO4qyKqBhM733n96Xy334Ox4aVAefUDhiLskEzlA2aIhlNFHzxGo4Nv/sUVbXvgab/DShj6yC73bjPnsC+/Aece7Z4lZNCwtEOn4KqxTVIpjDk7AwcuzZiXzwPOd8cWE4AjQ5Nn9Eo6zVBWbcJkjGYgnmzcW7xff+ruw1B3X0IiohY5LxcnDvXYlvyNdht3pvsPw5lvSYo6jVBERyGbdk87MsC/z4tDqBF3WUoivhGKOMbIemDsC38GOeuNT5FVR36o27fHyksGtlixrV/E/aVP4GjOKsUEolhxtt+X8o6/11c+0p+X5dmX0oOiw6cZ+uZTM7lFhCq09A6NoS7r2tEvTCjV9mkzDzeWHOYHeezUSskutePYmb3JoQbNF7l3LLM3O0n+XHPadLz7dQLNXBL+/oMaloroIwAe89lsWjPKbaeTONcjoVQvYbWceHc07M59SKCvXOm5/L6H3vYcToDtVJB94RYHuzbmnCjtqhMqrmA2X/tY9/5LNLyrCgkiXrhQYy/tgHDWtdFkqSAswr/DqJC6Yc6Iph6D47DeiaN/P0nCe3aqsSyTWbfRdTo7qT+uJpzny9DadAS1LoB6sgQr3LGlvVJ/PlZbMmZnP1oEY5MM7rakWjiIq4wq4lGD42h4HQa5v0nCe/assSyLWffQewN3Tj/4xpOf74chUGLqVV9NJEmv+WVBi2Nn7wJZ771ijJ6ctacfaoKN1HrgQnYzqRSsP8EwV1al1i23hv3Ej6yJxnzV5I2ZwkKgxZDq4aoLsqqrhVJkwWvgstNyse/4LZYiRjXl8bfPMORG58kb/P+gLMqw0xE3n0TjrMp2A4lYejUxm+58/991WeZtlUTwqeOJH/99uK/PdSEKjYS8/J1OM6nIqlUGLq0o9bLD6JpEE/6W18GnFUKCSFo6s24kpNxHjuGpl07v+X0o0Zjum8Gto0byPvkEySNBt3AgYTNeoXsp57AtnZtUdmgabdhvGkSlt8W4Tx4EG3XroQ8+RSyLGNb6ecCQDkoQkIwTr4ZV0oyzqRjaNr6z6kbMZrge2Zg27QB64pPkNQadAMGEvLiK+Q8+wT2dcU5jbdMx5WRgfPoETQdOgWUy5+ask9rUlaFKQTDTRcd/zYlHP/howm6cwb2zRuw/P4JaDTo+g0k5LlXyH3+CewbPDm1A4egu34I9vWrcSxeiMJgRDd4GCFvfUDuEw/j2Pl3QDkBFMEh6MfdjCstGdfJYyha+c+qHTQKw20zsG/biG2l572q6T2Q4P97mbxXn8Sxea3vk3R69JNvRy4oCDifV1ZTCLoxU3FfyNrSf1bNwFEYbrkPx98bKVjlOf6angMJenQW+W88hWOLd1b7uj9x7PCuPDgPB/6ZKgWFoB02GXdGCq7TSaiatfVbTt1nBPob78axexPWn1cgqTSou16P4b4XsHzwLM4d6z0FtTqMj84GrQ7HqkW4M9NQ1mmIpvdwVE3bkP/C3SDLAWY1oR14I+7MVFznjqNqnOi3nGbYVLR9x+DYuQ7H6l9RxNZF3X0oiti6FHz0tFdZ7ZDJuHMycZ9JQtH82oBy+c1qCEbTczTu7HTcKadQ1m/ht5y67wQ0XYfh3L8Z15blKCLjUXW4HimqNrZvXvEp79yzAefRnV7L3GeOBpzzi20n2HU+m36NY2gcEUSGxc73u09z43ebmTuuIwkRQQCkmK1M+2kbwVoV91yXQIHDxdztJziSYebr8Z1QK4tHlL234Shf/H2C0S3jaRljYlVSGo8v34skSQxsEhtQzjkbD7PzTAb9m8fTODqEjDwr3/2dxITPV/LV1F4kRHt+16XkFjDtq7UE6dTc26slFruTuZuPcCQ1l29u6VWUM7vAToq5gH7N4qhlMuB0u9l0PJWnftvOicw87utV8m9LQQBRofTLnpLFpta34UjLJqhNI9ot9/0QA4gcfh0x43uz/5ZXyVi6xW8ZACSJpu/di+XoWfbc8Axuq73CstpSsljd6j/Y03IwtWlIpxWz/JaLGd6ZuAm92Hnz66Qt3VqubTeYORpXXgFZ6/cRNajDFeWsSfvUkZrJ7mum4kzLxpCYQLPFb/gtFzq0KxFj+3Js+ixylpV8NTT27htQmYzs73cftqSzAKTPW0HLVR9Q+6lpHBzyYMBZXalZHO02EVd6FtpWjan/0zt+y+Uu8r1aH9MxEdntxry4uDXbdvgEp6c84lUu+5tFxH/4DGGTRpD+9lcBD2R3Z2aQNnoU7qxMVE2aEvHxJ37LGUaNxnHgANmPP1a0rGDpEiJ/nI9uwMCiCoUiMhLDuPFYfvkZ8zueK9UFi38jbPY7BN9xJ7bVqwLK6s7MIH3cKOTCnJr3/efUjxyN4+ABcp8szmldvoTwb+ej6z/Qq0KZMWk87pRkJFMIkfN/vexMpWWtCfu0JmV1Z2WQMbHw+DduiuadEo7/sNE4Dh0g95ninLYVSwj7aj7afgOLKpS2VX9i+XoOWIsrZtYVSwj7ZC6GSTeTcwUVSndWBtnTRiNnZ6Js1BT1qx/7LacdPBrnkQPkz7oo619LCP30JzS9BvitUOrHTEa2FuDYuxNNx24BZyzOmknOf0Yj52ShbNgE9awSsg4YhfPoAfJffbw468qlhHz4I5oeA3wqlK7jh3Gsu7LeExeTczIxPzgeOTcLRb3GBD3xvt9ymj4jcB0/SMG7TxUts69fTvBr81B36V9UoVS1uQ5FZCyWd54oarl0AHK+Ge2wyShqN8R9+ljAWfOenIxszkZRJwHVg2/5lJFMYWh6jcSx9S+s3xSvd6eeRTfmDpQtO+DaV/ybIO+5aciZqUhGE0EvfhNQLr9Z87KxvHEXcn4OiloN0E9/wTdrUCjqzoNw7FqLfeFHxVkzz6MddDPOJu1wHd7h9RxX8nFce9ZXWM5J19RjVnRrrwrh9U1iGPfNJr7YdpwXB3guMP9v23GsThfzbuxErWA9AC1jTNy5YDu/HjjHDa1qA5CaZ+WrHScZn1iHR3s1A2BUy3imzd/G7HWH6Z8Qg1Jx+a1/kzolMGtkB++cLWoz9tM/+XzjYV4a0R6AzzYcosDhYt6tvakVYgCgVVwYd3y7noW7TzKmXQMAmkSH8L9J3b1eY0L7Rtz3w0a+3XqMu3u0CChnteZ2Xe0E/yhiUh4/ZLsTR1p2meXibx9G7vYjnoqPJKEwaP2WC+vVBmPzepx640fcVjsKvQYUFbPrZbsTe1pOmeXq3jGUnO1HPJXJUrJeYGgQS73/DOHw03ORnVd+0tW0feosR9aY6SPI33HYU5mUJBR6/1mDOrbAsi+pqDIJIFvtZP++BUNiAtr6gXd7kR0OXOlZl/08Sa0m+PquFGzdgzMlvczyjrMpSHotkvoKrkE5HLizMsvOZjTgzvb+m2SLxdNSYivu8qTt2g1JrcaycIFX2YJfF6KMjkbdIsArqg4HcjlyKgwl55Rt3t3I3CnJgWUpS03ZpzUpazmPv2QwIPvJibXAqxuh6+hhr8okgGzOxbF3N8o69QLLeIHTgZxdjqx6I+6cbO+FBRZkawHYfS/GKWrFox06Bsuc9yvuR5fTgZxT9meVZDAil5BVdtj8PgetDpQVdH3c6UDOLUdOnQG3Odt7odV3n0p6z4949yXbdOcUHjfHFVwMdTmRL81wCWX9ZkhKFY7t3l1LnTs8FXN1ux5ey+XM1MDzlMblRM4v/beKonYCklKFa99Gr+XOvZ7HqpbX+X+iWgsKZYXEbFsr1KuSBlAv1EijcCPHM/OLlv15NJXu9aOKKpMAnetGUC/UwIojKUXLViWl4XTLjG1du2iZJEmMbV2blDwbu5OzA8tZO8I3Z3gQjaJMHM8o7kb958FzdE+ILapMAnRuEE298CB+P3CWssSFGLA6XDhcYryhUDpRoQyQMkhPcLsE8nYepd5jE7nuyFy6Jn1D+83vEznc+0MvtIenG4rb5qDt8lfoenweXY9/Q7OPHkAVGlQlWUPaNSJnxzESHp9A76Nf0Pf4XLpueYeY4Z39PqfJ81PJXL+P9D93Vnq+i3PWlH2qCNJjaNuY/F1HiHtkEm32f0vbwz/Qct3HhA7t6lVW0qj9tqDKBZ4fR4bEhErPeyljzw4oQ4L9tlwCSFoNylATqvhoTCP7ETKqP9adB5BtFdcSXBLHzp1oOnZEP2o0iphYlHXqEjzjfhRGI5b584vKqRIa4y6w4DrpPa7WcfCAZ33jxpWa075rJ5oOHdGNKM4ZdK8nZ8Ev88veQBWqKfu0JmV17NmJun1HdMNHo4iORVm7Lsa77kcyGClYUPbxV4SF484t+2JgRXDu24m6XUe0g0ahiIpFEV8X/W0zkAxGrIt/8ilvuOUenHt34ty+uUryeWXdvxNV245oBo5CERWDIq4O+ls9WW1LfPerbsxUQucuJeTr5QS99CGqxPZVktN1aDeqlh1Q9xmBFBGDIrYOuon3IOmN2P/8pbjc4T3Ibhe6CXehbNgMKSwSVasOaAdPxLFjPe7k05UbVKX2/PeSiqtceNFDUafqv39KpPRklZ0O7+WF2RW1Gvg8RdNjNMbHPsfwf3PQTXsOZcOSh6gESpZlMix2QvWesZGpeVYyC+y0iPEdLtQqJoRDacUVuoNpZvRqJQ3DjT7lLqyv0Jz51qKcKeYCMi02WtQK9c0ZF8bBlGyf5VaHiyyLjbPZ+fy6+yQLd58ksXY4OnXFVNirFdl9df/9w4gurwHS1Y9FUiiIGtEV2eXixPNf4cy1EDd9CM0+eoB95gKyVu4EQN/A0wLV/JOZZK3cyel3fiaoZX1q3zsKTVwEu4c/UalZDfVjkBQKYkd2QXa5OfLcNzjNFupOH0Trj2fgNBeQsXJXUfnIfu2I6JXIpj4PV2quS9Wkfaqt58kaPrw7stPF2Zfm4DJbiL51GA3ef4hjeRZyV3m65liTzhLUoQUKox53fnFLhbGDZwyJOja8UrP6YxrWG7fNjnn5Or/rw6aMIOrBW4se52/YQfLjb1ZJttx33yEkJATTfTPgvhkAuLOzyXpwJo79+4rKKSPCcWf6tiS4MjIK11/ZWNqy5H3wDoqQEILvmQH3FOfMfngmzgP7ynh21aop+7QmZc378B2CTSEE3TkD7izMmZNNzmMzcR4s/firWiaiat6Sgu++qtSMF1j+9w5GUwiG22bAbcVZzc/MxHXJeEPVNZ1RtelA7oPTqiTbpQq+eBcpOATDLffBLfcB4M7NJu/5B3EdKc4qu2Ucu7bi2LIWd2Y6ipg4dEPGYHzsZfJffcJrAp/KYP3uA/RBJvQ33g033u3Jac7G8uYjuJIOFJVznz+F9au30Y2ZjvGx4iEJ9g0rsH5Z+Z+p7lRPK5SyQXNcR4sngVM28nz/KEKq/vunJHLGeQCUdZrgPlF8rJX1mgIgBYddVFjGeWw3roPbkM2ZSKHRqDsPRjvxYWzfv4HryM4Ky7XkUDKp+Tbu7NwIgLR8T2U88pLJdwAijRpyrA7sTjcalYL0fBsReo3PpDaRhRPipOWV0OoeSM59p0k1W7mrR3MA0vM8819EBel8cwbpyClwYHe60KiKK4vzth7lnVXF+75T/SieHXpNhWUU/rlqXIUyKyuLo0eP0qHDlY3pu1JKo+cEVUeY2DnoMcw7jgCQsXwbHbe+T537byiq/Fwoa951jEP3eL5QMhZvxmWx0eCJSYR2b0322iub7bM8WTURJjYP+j9yt3sGrKct20a3re/R4IHRRRVKSa2kyXNTODP3D/IPl90dojJy1oR9qjB6urmowk0cHPZfLDsPA5CzYgstN3xC7L3jiiqU6XOXEtq/Iw0+eIhzr36N22IjasogDImeLyeFzvdLqTIpjAaMPTuQv3orbnO+3zK5i1dj3XsEZXgIQb06oYwIRdKV3k26wlhtuE6fpiAtDdvGjUgGA4YxYwl57nmy7rsX17nC96VWCw6H7/MvdDfTVm5e2WrDdeY01vQ0bJsKc44ei+np58meeS/uc1V7/pSqhuzTmpRVthUff/uWjUh6A/pRYzE9+TzZD92L+7z/4y+FhBL8yJO4U85j+bECZs8sT1a7DdfZU7gz0nBs24ik16MdNpagh5/H/MR9uJMLs6pUGG65G9uKX3Gf8T/zd6VntVlxnzuNPSMNx3bPftUOHoPxwefIe/o+3CnnPOUyUsl/yfuip2PNCoLfnIN+8p2YK7lCKdutuFPOYM9Ox7lrM5JOj6b/aPR3PkX+qw8ip50rKuvOSsd14hDOPVtwZ6SibNwKTZ+RyOYcbD99Wqk53WeO4TpxEE3fG3DnZOA6ugdFTB10Y+/0tASqq+hzvRzcySdwnTmKustQ5NxMXCf2o4iKRzP4FmSXE9TF35VybobPJD3O3evQ3/Uqmv43UVBBFcrjmfm8vOogibEhDGseB4DN6Wld0ih9O/lpVJ5lNpcLjUqBzen26ZoKoC0qVzEtVcfTzcxavovE+HCGtfZ0pbc5PN3V/b5+4TLrJRXKgS3r0KJWGFkWG2uOJpOZbyvajiCUpsZ1ed2yZQtTpky52jGKujAWnEwpqvgAuC1WMlb8TXC7BCg8YV2FZdN+8W4NuvDY1KFplWS1nEwpqkwCuCw20n7/m5B2CUiFWevdPgRNuIljr/5QqZlKy1kT9qlc+Pq2k8lFlckLWXP+2IqhbeOirLmrtnP6iY8J6tSS5stm03LNh5j6tufcq54JD1wVMIvu5Qga0BWFTkvubyVPq+88l4pl407Mi1dz/r+v4jiTTJ3PX0LSVn7lN+SZZ1FGx5D7ysvY1qzGumwpWQ/MQFKpCLrttuKCNhuo1b4b0GiK11dmziefRREVg/m1l7GvXY1t+VKyH5qBpFZhvOW2sjdQhWrKPq1JWU2Pe3Lmvfky9nWrsf2+lJyHZ4BKhXFqCcdfq8P07MtIej25z/6fz9jKyhL04DMoomKwvPcyjk2rsa9cRt5T94NKhX5icUukduhYpOAQrN9/USW5/DE+8AyKyGgsH76CY/Ma7KuWkffsA6BSoZtQ+nkl55uxr1qKMr4uUnhkpeY03P4kUng01i9ex7l9LY4NK8h/7b+gUqMbdXNROWWjFhjufR7rL19g/3MBzp0bsP34CbYl89D0vwFFrbqVmhOg4ItZuM6dQD/xfoKe+h/6257EuWMd7rNJYK+a92B52X6cjTvlFNoRt2OY8TbaCQ/i3L8Zd/IJsJfxXWnNx7lzDYrIOKTgK295Tc+3cd+vOwjSqHhtcGLRpDQXKoN2P5VBe2FlU6tUFpX1N/7QVlTuyn+Gp+dZufeHjQRp1bw+umNxzsJuqn5fv3CZTuXdlTUuxEDnBtEMalmHWSM6EB9q5PZv12P9J1Yq3e6r++8fpsZVKKsLe7JnQL2/iWYc6TkoNGqUBp1XWfslZe3pnvEzqpDKHfNnS84qfH3f8Tr29BwUGhVKgxZVsJ4GD4zmzNd/ogo2oKsTha5OFEqjDkkCXZ0o1CXcYqQi1KR96kgpzJqe7bPOWZhVYSjuZpL25RL2tJvKoREPc2DwTPb3uhtXYeugLemczzYqk2lob1y5eeSvLGUW3UuYl69DHReNvkPJt3upCMpatdB26oRtg/esfbLZjH3vHtStil/flZGJMtz3R8OFro4Xuj5WBkVsLTQdO2Hf6JvTsXcP6paVu58uR03ZpzUpqyK2FpoOnbBtuiRnnhnHvj2o/B1/lQrTk8+jatCQ3Of+D9fJ45WWzytrTC3U13TCsdU3q/PAHlTNCsecGYzox0zG/sdvSHqjZ6xlVCySTg8Snv83hVZu1uhaqNt1wrFtg3fWfDOug3tRNS37vHJnpAGeW2pUFikyFlXrDjh3eU8eg8WM6+helAnFE0Kpew5Bzs3CffKIV1Hnzo1ICkVR19PKJOdkUvDOI+S98B8s7zxC/jM3Y1s0Byk0Endq1X7/lEU2Z2Gd8xyW92ZSMOc5Ct66F8cf3yKZInBnlD25mZxbeN7rjaUXLIPZ5uCehTsw2528N6Id0Rd1G40q7K6abvGdUyA9306ITl3UUhlp1JJusSFfcmuY9MJus1FBV9ZCbLY6uPv7DZhtdt4f34XoiyYJiizMnJbnWxFPz7MSold7tU76069ZHMm5BWw/XfbkfcK/W7Xp8jps2LBylcvP999Fr6rZU7Kwp2Sh8TP+TRMbjqvAhivPc+Uvb3cSANpa3mN6tDGe8QCOjNxKzWpLycKWkoXWT1ZtTDiuAjvOPCu62pGogvQ0uHcEDe4d4VO2+7b3SF26lV03v14pOWvSPnWkZOJIyUQT6ztOSx0Tjttqw53nfeXXXWAjf3vxjcxN3drgLrCRt+3ApZuoNMqoMAydEsn55Q9kf90FS6AobJlUBl3Zl3SZrxNWeOz9zNgrKVWgLP7ycx47gjR0KMp69bwmZlE39/xAcx4N/F5k5c7p7+qySoWkrD4TGNSUfVqTsipCPTklfzlVKqRLZ5yUJIIfehx122swv/QMzj27fJ5XWaSQwnFnfmbBlFSqouUKYzCS3oBu1ER0oyb6lA356DvsW9aR/0rljU8vzurvvFJ6Hf+SKKI94+vl3OwKTHbJa5hKyalUee1rhSms5HJQrr+posjp53Gle8YpKmLqoAiJwLblzyp7/cshZ6YgZ3pmS5Ui41EEh2HftaaMZ4EiLNrzP5bAJ7uxOV3MWLSTk9n5fDTqWhpFeF+gjg7SEaZXsz/F93fG3pQcmkYGFz1uGhnML/vOkpSZ77WdvSk5ReuvKOePGzmZmcfHN3alUZT3RZSYYD1hBg37z2f75jyXRdPo0HK9Bngqrv84/8CJca6matNCmZSUhEKhoFWrVqX+q127dtkbqyJpC9ejqx1VNOMogCo8mIgB7clZv7foZsUZy7bittqJGd8bLhqYHXNTPwCy1lT+j4vkhRvR144kvEfxDGjq8GCiBrYnc50nqz09h503v+bzL3PdXlwFdnbe/BrH31lQqTlr0j7NWrQOTXwUwd3bFC1ThgUTen1HzOv3lHqzauO1zQgddB3p3/2O22yp9KwXmAb3RFIqMZcwu6syLMTv8pAxA5Ddbqz7K7dC4Tx7BtnlQte7j9dyRWQU6sREnEeKX9+2bj2yw4FhxEivsvphw3GlpeLYt7fScrrOeXJqe/rJ2Sqx0itel6Om7NOalNV13pNT08M3p6plIs5j3sffeOcMtD37kvf+7KL7U1YVd/JZT9auvb2WS+FRqJon4jruaTlz52SR98oTPv8ce7Yj22zkvfIE1p8r7r6EJWZ1u1B3uTRrJKpmxVkBpGDfzyopLBJN70G4Th4r1+1UAs6Zes6Ts31Pn9dXNW6F+1TxfSXdKWdQhISjbJLoVVbd0fM3Xly2ykgS2uG3INusONYvq/rXvywSmn43ItutOLddVPk1+FbEpOAwVG174ko+iZyXHdCrudwyjyzdw57kHF4dnEgbPzOkAvRNiGHtiTSSzcWtf5tPZ3Ay20K/xtFFy3o1jEKlkPhxz5miZbIs8+OeM0QbtSVuv1w5f9nC7rOZvDaqI21q+5+ErF/TeNYeTSY5t/h3xubjqZzMzKN/8/iiZZn5/ocILNh1EgloHhtYTuHfo9q0UDZu3Jh69eoxa9asUsstX76crVu3llqmItS6dSAqkxFNrOdKZET/9kWtYef+txSX2cLpd34hcngXmv/vIc5+/BvOXAu1pvRHUqk48dK8om050rI59fbP1H9kAq2+fYKMZVswtqhH7KR+pP68lrydV/aFUufWAahCjEWtc1HXX4suzpP19GdLcZoLOPHOAmKHd6bN5zM5+dFinGYLtaf0R6FScvSl7wBwF9hJW7rNZ/vRAztgapfgd93lqEn7NGrqYJQhRtQxnpaIkH4d0BRmTf1iMW6zheT3fyJ0WDcafvwoqZ8uxGW2EDlpIJJaxblXimdv1MRH0eDDh8n5fQuO1Cx0TesSNWkgBQdOcO6Vr68oJ0DoTcNQBBtRRXvyBfXuhCrGM34o++tfcecVf5GYhvXGkZKOZctuv9sKv2MC+mtakL92G87zaShDggm6viv6xKZkfbUQx6nzV5RVP3IUiqAgFJGefNouXVBGRQFg+eVn5JwcCpYuxTB0KGFvvIV17RrPpCwjRiJpNeTPK95f7vQ0LPN/wjjhRlCpcB48iLZbNzRt2pDzwvNXNEZBN2IUCmMQiojCnJ27oIz05CxY4MlpXb4U/eChhLz6Frb1azyTsgzz5LR8531ctf2uRxkdg6QrnHiqdRsMEycDYP1jBe7UFAJVU/ZpTcqqGzYK6aLjr+nUBUXh8bf+6slpW7EU3aChmGa9hX2D5/jrhhYe/x+Kc+pGjkE/bBSO/XvBakXbu7/Xa9k2rAVb4OOotYNGIRmCkMI957+6/XUowguzLv0ZOTcH+19L0fYfStAzb+LYvBZJp0c7cCRotFh/Kawk2m04tvjO+qzu2A0Smvtdd7k0A0Z69muYZ7+qru2CFOHJalv6C7I5B/vKpWj7DsX45Bs4tqz1TMrTf4Qn68Li7wDdpNtRxsTh2LsdOTMDRVQsmn7DkLQ6LHPevaKc6t7DkQxBKEI8+1SV2BkpzJPT/tcC5LwcHOuWo+kxGMODr+LYvg5JZ0DTaxiotdiWfle0Lftfv6LuMgDDvc9h/2sh7oxUVE1ao+7UB+e+v3EdP3hlWbsNQdIbkS5kbdmxKLd97W9gtaAdNR3UGs+YSaUK9TU9UNRtgnXebOTsNK/tqdr3RhEWBRpPV0xlw5Zo+o8DwLFtJXKWd/nLoerQH0lnRAoK9Wy7STskk+c71rFlOdgK0AyYDCo17uSToFShatUFRXxD7As+Lu7OCmj63YgiLAbX8X3I5iyk0EjU1/YFtRb78sBnT35z3WFWH0+jR4NIcq1OFh/0/s4b0szTAj6tfQP+OJLCf37exo1t62Kxu5i7/QSNI4IYcVFFLSZYx01t6/Ll9pM43W5aRJtYlZTGjnPZvDSgVdF4x8v1xp97WHUkmZ6NY8m12lm895R3zlaesbnTujbh94Nnmf7NOia2b4TF4eTLTUdoHGViRGLx+N3PNhxi55kMujaMIdakJ9fq4I+D59h3Posb2zekbnjl345NqNkk+dKO3VfJU089xdq1a1m5suSJQsBToZwxYwYHD17Zh/Da2DGlru+w9QN0daL9rtvS4U5spz0fqrq60TR4eiqh3VshqVSY/z7M8Re/9luhqXXrQOJuHYSubjT21GxSf1jNqTd/RHaWPNjZKpfdHabb1nfR1/WfdW37e7AWZtXXi6bx05MJ794KhUpJ9t+HOfrCt+SWUflq+fadRA/rzMqGU0stp5NKH7RdXfYpgFFdeveNlhs+QVsnxu+6vddNx37Gc/NnTd0Yaj9xC8FdE5HUKvL+Psi5l+di2VXcQqEMMVLvjfswtm2CMjQYR3IGWb+tJ/ndH71uI+I3p7Hs+z42/HMO6nj/WY/1nYrzrCerukE8DZd+RuYX80l75TO/5Q1d2hE2eQTaFo1QhYXgtjuwHTpOzk/LyP3lj1JzhNYqu6U18tvvUMbW8rsubcJ43CnJoFCiHz4c/eAhKOM9X8zOgwfJ+2oujp07vJ8kSRhunIhh2DAU4RG4zp4hf943WP8oPauijEtp4V+VnDNjUnFO3bDh6AYOQRlXmPPQQSzfzMWxyztnyOuz0bRp53d72Q/OwLF7p991bmfpOaH67NPyqC5Zlb6z6HsJm/Mdyhj/OTOnjsedWnj8hwxHN2AIilqFOQ8fpODbuTh2F+cMmvkouv6DSnytou35y2ko+8em6cPvUEbH+l2Xc8cE3GmerNoBw9H0GYzyQtajB7H+NBfn3p2lbt9wz6NoOvcke1LJfwOApCpH1ne/RVFC1tx7JuBOSwGFAk3/4Wh6D0YZW5j12EFsP3+Fc19xVnWXPmj7D0cRXxfJGIxsycN5cDe2n7/2asn0R2HyM5nTRYJmzUUR6T+n+dHJyBmenOqeQ9F0G4gi2jP7p+vEYWy/fYPrkHcPGUVMbbQjb0bZoBlSSBhydgaOv9di+3Uu2EuePEoylj2+zvjUZyjC/X/+5z03DTkzFVXHvmh6DkcRWQtkGdfJw9h//8HrNiIX6O95CVWC/3s5Wt57DNdR/y3/ivCyx6zq75uNIjTK/7bfnoGck46qTQ9UnQZ6/iZZxn32GPZ1C71uIwKgbHkd6vZ9UUTGgc4IVguuU4dwrF3gmcCnFFJEWInrbpu/jb/P+t6O6IId9xVfEDqWkccbaw+z41wWaqWC7vUjmdm9CREG7+PmlmW+2HaC+XvPkJ5vo26ogVvbN2BwM/+fMUU5g0quxE37ei1/nyp5XOPOx0cV/f/RtFze+GMPO85keHI2iuXBvq2IuGhc6MbjqXy79RgHkrPJstjQqpQ0jjYxqm19hreu63Pbk0vpp75c6vrqyLq+cntclEXX9aar+voVrdpUKE+dOsWRI0fo27dvqeWsVisZGRnEx8eXWq4sZVUoq4vyVCiri7IqlNVJWRXK6qI8FcrqojwVyuqirApldVGeCqVw+cqqUFYX5alQVhflqVBWF2VVKKuL8lQoq4vyVCiri9IqlNVJaRXK6kZUKC/fP61CWW1+VtWtW5e6dcuePlun011xZVIQBEEQBEEQhH+pf+CtO66majMpjyAIgiAIgiAIglCziAqlIAiCIAiCIAiCEJBq0+VVEARBEARBEAShsslyzZn3oyYQLZSCIAiCIAiCIAhCQEQLpSAIgiAIgiAI/x5iUp4KJVooBUEQBEEQBEEQhICICqUgCIIgCIIgCIIQENHlVRAEQRAEQRCEfw9ZdHmtSKKFUhAEQRAEQRAEQQiIaKEUBEEQBEEQBOHfQ0zKU6FEC6UgCIIgCIIgCIIQEFGhFARBEARBEARBEALyr+3yWic252pHKBeLWXO1I5SbUl1zug+o1a6rHaFctEHOqx2h3BT/2k+TyiP2aeWQxH6tcJKu5lyflozaqx2hXBTB+qsdofyUyqudoPwKrFc7QbnIzprz/V8jiUl5KlTN+QYQBEEQBEEQBEEQqhVxnVYQBEEQBEEQhH8PMSlPhRItlIIgCIIgCIIgCEJARIVSEARBEARBEARBCIjo8ioIgiAIgiAIwr+HmJSnQokWSkEQBEEQBEEQBCEgooVSEARBEARBEIR/DzEpT4USLZSCIAiCIAiCIAhCQESFUhAEQRAEQRAEQQiI6PIqCIIgCIIgCMK/h+jyWqFEC6UgCIIgCIIgCIIQENFC6Yek1xFy8zi0rZqhadUUZYiJ9KdeI+/XFV7l6u/8vcRtFGz6m5Q7HvVapqpdi9C7b0bfqR2SwYArNZ38FavJfu+LwLMadEROvwF926boE5ugDA3m7MNvkTP/D69yLY4tLnEbeet2cGrqEwBoGtYmdGx/grpdg7puLG6LFeu+Y6S9/TXWPUevKGf4tDHoE5uia90UZWgw5x97g9xfvHM2Pbi0xG3kr9/OmWn/B4AyOpzoh6aha90EVXQ4ssuN/cRZsuf9Ru6CP0rcRrmy6nWE3jIWbetmaFt7jn/qE6+Rt9D7eDfcs6KELYBl43aS/+M5/qq4GOou/8pvuZT/vkT+slVXlDXopvFoWjZH06IZCpOJrOdfwbJkuVe5+I1/lbgN65ZtZMx4uOixIiIc0203o+14LcqIcFxpGVjXrsc85xvcubmBBdXpMYybgLpZc1RNm6Mwmch9bRa2Fct8imp79EY/ZizKOnXB7cZ54jgF33+Lfcsmr3KGiZNQNWuBullzFGHh5M/9AstXcwLLJ7JWbtaakrMwq370BFRNmqNq0hxFsIm82bOw/embVdOtN7oRY1HW9mR1nTpOwfxvcWwrziqFR2C8+Q5UjZuhCI9EdrtwnzuDdfEv2P5a7rPNy82qGzEeVeMWKBOaoQg2kf/ey9hX+mZVd+mFbtg4FPF1we3Cdeo41gXf4dy+yc+GC/++7v0w3v8EckEB2ZMGXVlWrQ7t4PEoGzZD2bAZiiATlk9fxbHOdx+oO/ZEM2AMylp1kWU37jPHsS35HueuzcWbGzkF3aipJb5c3gv34Tqy7/JzanRo+oxGWa8JyrpNkIzBFMybjXPLn745uw1B3X0IiohY5LxcnDvXYlvyNdht3pvsPw5lvSYo6jVBERyGbdk87Mu+vfxsPlm1qLsNR1G7Mcr4BCRDELaf38e5Y7VPUVWnAag7DUAKi0G2mHHt2YD9z+/BYfOzYQ9lYjd0Y+9DtlmxvDDlyrKqtaivG4wirhHKuIZI+iBsiz7BuXudb9b2/VBf2w8pNAq5wIxr/xbsq38Ch92nrBQajabnDSgbtASNDtmcifPAFhyrfgo8Z4cBKGo1RBHbAElvxLb0c1z7NvjmbNcbVds+SCGRyAV5uA5txbF+gW9OYwiaLsNR1G+BZAhBzs/GdXQnjk2LwZofWM4LWa/tjyKmAYrY+kg6I7YVX+I6sNE3a2IvVG16Ipkika35uA5vw7HxV3B6Z5VColB3HYWyTlNQqnGnncKx8VfcZw4HnrO6ErcNqVCiQumHMiyE0Nsn4zyXgv1wEvoObf2WS3v8ZZ9l2pZNMN00moKNf3st1zRtROxnr+NMTSdn7nzcObmoYqNRxkZdUVZVmImo+yZiP5uK9eBxjJ0T/ZY7O/N1n2W61glE3DKS/HXbi5aFjR9A6NjryV22nsxvFqMMNhB24yAa/PQmp255ivwNOwPKqQwzEXn3TTjOpmA7lIShUxu/5c7/91WfZdpWTQifOpL89cU5VaEmVLGRmJevw3E+FUmlwtClHbVefhBNg3jS3/oyoJyerCGE3TkZx7kU7IeS0Hds67dc6mOv+GZt0ZiQyaMp2PC3z7q8JX9hWbvVa5lt1/6AcwIoQkIwTZuK83wKjiPH0F7bzm+5zGde8lmmad6UoPE3YNtSnFXS64j69D0knY78nxfiSklD3bgRxjEj0VzblrSb7wBZDiincfLNuFKScSYdQ9PWf07diNEE3zMD26YNWFd8gqTWoBswkJAXXyHn2Sewr1tbVNZ4y3RcGRk4jx5B06HTZWcSWasua03JCaAwhWC48WZcqcm4jh9DkVhC1qGjMd4+A/vWDVi+/ARJo0HbdyCmp1/B/NIT2DeuLdqeIjIK24bVuNNSkJQq1G3bE/TA4yji61Lw1aeBZw0OQT/uZlxpybhOHkPRyn9W7aBRGG6bgX3bRmwrPftV03sgwf/3MnmvPolj81rfJ+n06CffjlxQEHC+i0nBIehGTsGdnoL7dBKK5m39ltP0G4l+8r04dm7C+uOnoNag6TYA48yXyH/naZx/eyogjr/X4U495xt7zK2g1eNKOhRYziAT2oE34s5MxXXuOKrG/r9TNcOmou07BsfOdThW/4oiti7q7kNRxNal4KOnvcpqh0zGnZOJ+0wSiubXBpTLb1aDCU3vsbiz03Ann0DZsJXfcurrb0LTfQTOvRtxbVyKIqo2qs4DkaJrY5vr+93g+QO1aAZMQrZZKyhrMJruo3DnpONOOYWyfgv/WXuPQ9NlKM4DW3BtXY4iMh5V+35IkfHYvnvNq6wipi66SY8hm7NwbF6KXJCHZIpAMoUHnlMfhLrLcNy5GbjTTqOs28x/zh43oO44COehbbi3/4EUEYeqXR8UEXHY5s++qKAW3cTHkNRanDtX4jZnefZ/uz4o6zTD+tXzwOV/pwJIuiDUnYYWZj3jqQT6y9p1FOr2A3Ae+Rv3zr+QwmuhatMbRUQtbAveLd5eUBi6cQ+D7Max/Xdw2FG1uA7tyBnYfn4L97nAGxWEfz5RofTDmZbJ6b7jcGVkoWnRBP289/2Wy1/ie8VS174NsttN/tKVxQslicgXHsFx/DTJ0x9CtvleZbuSrIc6TcKVnoWudQINF7ztt1zOwpU+ywydWiO73eQsKr6ambNoNalvf4NsKf4Syf7xdxqt+IioGRMDrlC6UrM42m0irvQstK0aU/+nd/yWy13kmzOmYyKy2415cXFO2+ETnJ7yiFe57G8WEf/hM4RNGkH6218F3D/emZbJyV7jC49/Y2p/7//45/3m7/h7suYt9f07bPuP+n3OlXBlZHJ+yA24M7NQN2tC9Bcf+S1XsNy31VZ7jee9allRnEnXvQuqWrGkP/gYtg3FrQHu3FxM06aibtwIx+HL/1JxZ2aQPm4UclYmqiZN0bz/id9y+pGjcRw8QO6TjxUtsy5fQvi389H1H+hVociYNB53SjKSKYTI+b9ediaRteqy1pScF7JmTh6FnJ2JMqEpoW/5z6obOhrn4QOYnyvOavt9CWFz5qPtM7CoQuk6kUTu4/d7Pde6+BeCn5yFfthoCr75X8CfVe6sDLKnjfZkbdQU9asf+y2nHTwa55ED5M+6KOtfSwj99Cc0vQb4rVDqx0xGthbg2LsTTcduAeW7mJydSe59Y5BzslDWb0LQsx/6LafpPwpn0kEsb/1f0TL7mmWYZn+Pptv1RRVK9+kk3KeTvJ4rhUchhUXhWLMEXM7AcuZkkvfkZGRzNoo6CagefMunjGQKQ9NrJI6tf2H9pni9O/UsujF3oGzZAde+4ouHec9NQ85MRTKaCHrxm4By+c1qzsLyynTkvBwUcQ3R3+l7kVsKCkXdZQiOnauxzy/+LnNnnEM7dBrOptfiOuR7AVTd8wawFeA6vg9lsw5XnjUvG8vse5Hzc1DUaoD+1mf9ZA1B3Wkgjt3rsC8qPu/cmcloB0zB2bgtriM7L5RGO/x23BnnsX49C5yOK84IIOfnYPlgJlhyUcTUQzn5Sd9CxhBU1/bHuW8D9qWfFz83KxlN35tQNmyDK2kXAMpGbVCERGL9+W3cSXsAcAFY81F3GY4UXRs59XRgWS05WD592JM1ui7KGx/3LWQwoWrXD+eBTdhXzLkoayqa3hNQNmiN67gnl6r9ANAasH79HHJ2CgDOvWvRTXkWTY+xWL+bFVBO4d9BjKH0x+HAlZF1+c9TqzH064b17924UtOLFuuvuxZN4wZkf/wVss2OpNOComJ2vWx34kq//KySRoVpYFcsW/biTM4oWm7de9SrMgngyjZj2boPTaM6ged0OALLqVYTfH1XCrbuwZmSXmZ5x9kUJL0WSX0F10qu4Pgb+3fDum03rhKySnodqCrwOo7DgTszsKz6Xj2w79iFO604q2Q0Avhs05WRCYBsK7l7VFk55azMMospDAbc2d6vLVssyAUFPq/tTkkOLEtZRNYKjQjUnJwATgdydtlZJYMBd84lWQssyNYCZHvZ54krJRm0V/h5UN6seiPunGzvhYVZsfte4FTUikc7dAyWOe+D2xV4vkuz5pT9WSXpDMi5l2S1WpBtBch+sl5M3bkPkkKBfcMVXLhzOZHN2aUWUdZvhqRU4di+xmu5c4enYq5u18NruZyZGnie0ricyHk5pRZR1G2CpFTh2u3dZdO5x/NY1bqLz3Ok8FjUXYZgXzoX2VVBx9/lRM4vI2t8Y0/W/d7dsJ37PI9VLToXLVM2bIUiug6OtQs8lUmVBiSpQnJiKX1ohzKuEZJShfOgd4+jC48vroBLWr3nf/K9t1m0L66kIlyerLUaIimVOA9v8856uDBrk+KsyvgE3GmniyqTF/K5knajiKmHFBodeNbqyO2+uv/+YUQLZQUydOuI0hRM/hLv8Wq6TtcAINsd1PrmfbQtmyDb7Vj+Wk/GS+/izjVXedagXh1QhgT5bbn0RxUVhisrwPFzV8DYswPKkGC/LZcAklaDQq9DMuowdEgkZFR/rDsPVGgrcHkZunuOf95i/+MVw+6cRMRD/0F2u7HtP0LWO3N8ukZXFV2XTihMwViWe//wsu/YjexyEfLAPeS88yGu1DTUCY0InnoTBavX4TwZ2JXU8rLv2om2R090I0Zj37QBSaNBP3I0CqORgl/mV+prXy6RteLVlJwAjj070XTtiW7oaOxbNoBGg37oaCSjEeuvfrJqNEg6PZJOj7pVG3T9BuI8uM9vha6iOfftRH1dT7SDRuHYthE0GrSDRiEZjFgX+441M9xyD869O3Fu34ymS+9Kz+eV9eAu1B16oOk3EsfOjZ7uuf1GIemN2Ff8XOpzNdf1xZ2RguvQ7soNqVJ7/nvJWLkLFxIUdRIq9/Uvh9KTVb5krNyFsZOKuIY+T9EMvhnX8X24juxA2eq6So9YROn5SSpfWskq3M+K2PrFRRu0LCqru/VZlLUaIDsduA79jW3Zl1c2NrGcOS8df1iUM6Ze0SLXmcPIbjfqPjfiWPUDsjkLKao2qk5DcB7ZjpxZSRfGyspa+FgRXde7rNXiuw1HcVlXdiVdHBFqPFGhrEDGwX2QbXYsf3hftVTXjQcg6tUnKNiwlZzPv0XTpBEht05AGRtN8s33V3nWkOG9cNvs5C5dX2ZZQ/uW6Ns1I/3976sgmTfTsN64bXbMy30H7gOETRlB1IO3Fj3O37CD5MffrKp4XoKG9MFts5P/u3f3MdntxrJ+G/l/rseVmoGqdiwhU24g9sMXSL73aQrWbqnyrIbr+yLb7BSs9J68wXniJNmvvEnIPXcQ/Vlx96j8xcvInuU7Drei5X3wDoqQEILvmQH3zADAnZ1N9sMzcR4IYIKNSiSyVryakhMg/5N3kEwhGG+fgfH2wqw52eT+30ych3yz6oaPwTj19qLH9p3byH/bt4tiZbD87x2MphAMt82A24qzmp+Zieuw9zhu1TWdUbXpQO6D06ok26WsX7+HItiEfvK96CffC4A7N5v8V/6L61jJY84V8fVQ1m2EbfF3lZ7RnXoWAGWD5riO7ilarmzkGReoCAl8DF9Fk9M940yVdZviPl78vlTWaw7gM95Q2aQdyoRECt7/b9WFLCRnnvdkqN0Y98kDxZnqesYGSsFhRcuk8FgAdKPvwXVsN9b1i1DE1EXdZSg6UzjWuS9UWk53YSVQEZ+A+3TxWF1F7cY+OeWM89hXzEXTayy6m4q7pDr3rse+PPC5HsqdNcvT2qio1chrYh1FXGHWoFCvssq4BFBrvSZrUsQ18pQ1Fpf9RxCT8lSoalmhtFgsGAwGv+scDgdpaWnExcVVcarSSUYD+u6dsKzbgtvsfWVMMni6PNj2HSL9/zwTuVj+XIdstRI24zZ0ndph3byjyrIqgvQE9e5A3qptPlkvpYwIIX72f3GcTiH9kwBnTQuQwmjA2LMD+au3lpgzd/FqrHuPoAwPIahXJ5QRoZ4uxVVMMhow9OhIwVrf4+9KTiP5Du+xDXmL/qT2wk+J+O/tnKniCqVkMKDr2hnrxs3Ieb771ZWWjn3/QawbN+NKTkHTpjVB40bjzskl913/YzQrimy14TpzGmt6GrZNG5EMBgyjx2J6+nmyZ96L+9zZSn39yyGyVryakhM83b/dZ09jzUjDsWUjkt6AbsRYgh9/npxH78V93jurffWfuI4cQgoJRdPhOqTQMNBUzWeVbLfhOnsKd0Yajm0bkfR6tMPGEvTw85ifuA93cmFWlQrDLXdjW/Er7jMnqySbb1YrrvNncGem49i5yZN1wBgM9z1D/ov3+52IB0B9XT8A7Bsrdpy6P+4zx3CdOIim7w24czJwHd2DIqYOurF3elrX1FX/HVQS9/njuE4fRt19BHJuJq7j+1BExaMZdhuy0+npKnqBUolm0FScW39HTqv6c82dfBLX2aOorxuCbM7CdfIAisg4NAOnIrucoC7OKhXuY9f5JGy/esYOuw5tA4cdTZ9xKOq3xH2ici5CyamncJ07hrrjIOS8bNynDiJF1ELTb5In54UW7Avl87I8x+H4HuTcDBS1m6Bq1wd1QR6O1T9WSsai1047jet8Eur2A5Dzs3GfPowUHoumz0SfrM7da1A1bIN28HTsGxaCw4YqsWdxi+slf5cgXKxaVSjff/995syZQ15eHjExMUybNo3Jkyd7ldm/fz8TJkzgwIEDJWzl6jD2645Cp/U7Uc+FsT/5y7y7beYt/YuwGbehbdOySiuUwQO6otBpy+zuKum11P30aRRGPSdufdhnbGVlCyrMmftbyTmd51JxnvN0wTAvXk3Mc/dR5/OXOD5oepV2ezX274ZCpy2xu+ul3LlmzAtWEHbbBJQxkSWOuawM+t49kLRaLH4m6tEktiTitZdIm343joOeq5nWNeuR8y0ET5uCZdFSnCcq74dmyJPPIrtc5D5VPHmIfcM6wud8g/GW2zC/6DuRw9Uisla8mpITIPjRZ8Hlwvz8RVk3ryP0428wTL6NvFe9s7rTUnCneVoL7Gv+xHj3Q5heeJPsOyZVerfXoAefQXa7yJ9VfGHLsXU9pve+Rj9xGvlvPgeAduhYpOAQrN8HfiurK2W452lwubDMfqJomXP7BoJenYt2zK0UfOC/5UnTuQ8uPxP1VJaCL2ahm/oI+on3AyC7XDhWLUCZ0ApFdHyVZCgv27dvoB3/ANrRdwGFWTf8hrJ+CxSRxRfn1V2GIhlM2P/64WpFxTb/XbSj7kY7bDoAstuFY/MylHWboYiILSp3oVusa9+l4y03oukzDmXthEqrUALYf/0QzdDb0Q68pSinc9vvKOo0QRFWnFMRl4B29H3YvnkJd4rnu9N1dCeyrQB1l2E4965DzjhfaTkB7Is/QTP4NrT9pxZn3f4nitqNUYTFFJVzn9yHfeV3qLuORD/RMymWOzsVx4aFaLrfUOotZgSh2lQo58+fz/vvv8+YMWNo3rw527ZtY9asWaxatYq3336boKCgqx2xVMZBfXCb87Cs2eyzzpXmmfTGlZHttdyd6XmsMFXt3xYyojeu3DzyVpbSMqZWUeeD/0PbrAGnbn4S2+Gqv1ptGurJmV9azkuYl68jdNwg9B1aYbnodiiVLWhIH0/W1b7HvySu5DQAlCHBVVuhHNAXtzkP63rf+88ZRw7DnZVVVJm8wLpuA6bpN6Np3bLSKpSK2FpoOnbC/Kb31PCy2Yxj7x7ULf1PiX81iKwVr6bkBFDE1EJzbSfy3r0ka54Z5/49qJqXndW+YRW6gcNQt2yDY8fWMssHShFTC/U1ncj/0E/WA3tQNWvtWWAwoh8zGduyBUh6I5LeM0GXpNODBIqoWGSb1XfCnAokRdVCndgRy+dveGfNN+M6vAdVY//7Vdm4FYqoWKw/BH4Llssl52RS8M4jSJG1UJjCcKedQzZnY3x2TomtqFeLbM7C+tlTSOGxSMGhyBnnkfNyUP33I9wXKjNaPeqeo3FsWYGkNYDW00tM0upAwnNPSIfNZ3KZSsk69wWksBikoBDkzBTk/BxU971d1NUUPK1+ALLPZDeex5LOWLk587KxffcKUmg0kjHE07XUkovujteLupkCqNr0QM7PLapMXuA6thNN1xEo4hJwVXKFUs7Pxvbj656sBhPu7FRP1mkv487yHhPp3L0K5/4NKCLjkd0u5LTTKFt2BTyVy3+Uf+DEOFdTtalQfvXVV0yfPp0HHngAgBtvvJEbb7yRmTNnMmnSJD799FOioq7sno2VRRkZjq5DG/J+XQEO3xm7bPuPEHwDqKIjvJ8X5Xnszip95rOKpIoKw9i5Ndnz/0S2lzCtuiQR//pMjF3acubel7Fs2Vtl+S5QRoVh6JRIzi9/IPvZpyVRaD1dYpRBlftlcjFlZDj6Dm0wL/zd7/Eviaq25yqmK7Pqjr8iIhztNW2xLFnuN6siLMz/DMQXZqJUKSsvW1jhWB6l/9eXlJX32pdLZK14NSUngCK0MGsJ50q5shZ2d5WMlXtBUQopHM+l8M0kqVRFyxXGYE+33VET0Y2a6FM25KPvsG9ZR/4rT/isqygKkyer5G+/KlV+/wYAdZe+yG439o3l6yFSkeT087jSPRUCRUwdFCER2LZUfrfbQMiZyUWTwEhR8ShM4dh3eMbRS/ogJK0eTfcRaLqP8Hmu4cH3cR7Yim3eaz7rKiVrVgpyYcVMioxDERyGfXfx/ATu8yegnfd4RQApONTzfEvVTHYoZ6ciF1a0pIhaKIJCcewtnptCMpj8vp8lharwv1V3swWvrOGFWQ9s9C3otONOPl70UFmnObLDLu5DKZSq2tw25OTJk3Tp4j19dfv27fnhhx9wuVyMHz+epKSq6cpyuYwDeyEplT6zu15QsGoDss1O0IgBXtNaB40e7Fm/qepm+jQN7YmkVJLza8ndSGOfvoOQoT05//QHmFdsKLFcZTIN9uQ0lzC7qzIsxO/ykDEDkN1urPur7oMvaJDn+JfU3VXhJ6syOoLgUQOwHTqGK73saf8rir5/HySl0md21wucp8+gjAhH066N13JD/z4AOA4dqbRsrnNnkF0utD37eC1XREahbpWI82j1+TITWSteTckJ4DpfmLX7JVkjolC3SMSZVJxVMvn/rNL1H4LsduM8dtjv+oriTj6L7HKh6eo9W6sUHoWqeSKu455z2p2TRd4rT/j8c+zZjmyzkffKE1h/rrh7KPrNmnoW2e1C3emSrGGRqJq0xnXKz3tAqUTdoSeuI3sr7/Yc5SFJaIffgmyz4li/7OrlKA9JQjNgErLdinPrCsBzGwvrvNd8/rmS9iI77FjnvYZjzS9XIyyaPhOQ7Tac24t/D7gOb0d22lEldgeKf1ep2vb0rD9e1RfCJTQ9xiA7bDh3FU92585KQTKGoKjT1Ku0sllHz/qUU1Wa0kNC022UJ+ueNaWWVNRqiDKhLc5968FetcOeKp3svrr//mGqTQulyWQiM9P3h3VsbCzz5s3jP//5DxMnTuSOO+6okjzB40egCDaiLGxV1PfojDI6EoDc7xYg5xVPrWwc1BdnajrWbbv8bsuVkUX2Z/MIu/tmYj6YhWXlejRNGhI0ejB5S//Cvu/KflCETR6K0mQsagEN7tMRdazn/zO/XIT7oqwhI3rhSE7HsmmP322F3zyC8MlDsWw/gFxgI2SE9xd77ooNyAWB9aMPvWkYiuDinEG9O6GK8ezT7K9/9cppGtYbR0o6li3+p38Pv2MC+mtakL92G87zaShDggm6viv6xKZkfbUQx6kr60JiunE4iuCgolZkY8/OqGI8LeQ587yPf9CQPjhT0rFu9X/8I2behqpOHAWbduBKy0AVF4Np7BAUeh0ZL/u/ufflMI4ZiSIoCEWkJ6uu23Uooz1Z8378BTm/eOIdw/V9PZPubN/pd1v5Py3AMGQgEa+9SP5Pv+BMTkHbrg2G6/ti3bwNx/6DAefUjRiFwhiEIsJzzLWdu6CM9OQsWPAzck4O1uVL0Q8eSsirb2FbvwZJb0A/bCSSVoPlu6+9tqftdz3K6BgknQ4Ades2GCZ6xlxb/1iBOzWFQImsFZ+1puQE0A0ZhXRRVnXHLigiPFmtv/2MnJuD7Y+l6AYMxfTCW9g3rgG9Ad3gkaDVUPBjcVb9uMmoW7TG/vdm3GmpSMHBaLv0RNWkOQWL5vtM3nO5PLf/CEIK95z/6vbXoQgvzLrUk9X+11K0/YcS9MybODavRdLp0Q4cCRot1l8KK4l2G44tvrNpqzt2g4TmftddLk2/EZ6soYVZ23ZGEe7Zx7bfFyCbc3CsWYam1xCMj7yO4++1SDoDmj7DQaPF9ts8n22qWnVAERyC7UruPXkJdbchnm6/IZ6cqpYdURT+v33tb2C1oB01HdQa3GeTQKlCfU0PFHWbYJ03Gzk7zTtj+94owqKKWqWVDVui6T8OAMe2lchZ3uUvh6rTACSdsailTtm0PZLJk9WxaSnYCtAMvhlUak+rnlKFKrErivgE7D+/j5xTeB9qhx3XAd+u18pmHVDEJ/hdd9lZ2/dD0hqKszZuhxTsae13bPvdk7X/TZ6sKadAoUTV6joUcQ2x//oJcm7xPbPl/Bwc6xeh6XkDuhsfwnl4O4roOqja9cK5dyPu88f9RShfzna9QWsomgFV2ahNUWbn9r/AXoC69wRQqZFTT4NCibJ5RxS1GmBf+jmyufi3rHPHX6hadUU76l6c2//0TMpTpymq5p1wndjn1RIYUNbEXqDVF2dt2Lro/527VoLdirrHOFCpkNPOeLI27YAitj72FV8im4vvDSsFh6MZPB1X0m5kSw6K8DhUrXsgp5/FsWHBFeUU/vkkWZblqx0C4K677kKv1/PGG2/4XW+z2ZgxYwarVq1CkqQrnpTnRNv+pa6vveQrVHGxftedGTwJ5znPjxVVvdrUXvgFOXN/IuvNj0vdZvD4EZhuHIEqPhZXehZ5i1aQ/cnX4Cz5xsEWs6bEdRckrP4cTe0Yv+uO9LgFx1nPVVtNg3gS/viEjM9+JmXW//yWj3v1AUJv6Ffia128vUsp1aVfcWn45xzU8f5zHus7FWfhdtUN4mm49DMyv5hP2iuf+S1v6NKOsMkj0LZohCosBLfdge3QcXJ+WkbuL76TzVxKrS79Zs11ls1FHe//+J8aMLno+Kvr16bOos/J/vInMl//xG9546BemMYNRdOgLgpTkGf84va9ZH0yD/uB0ltdtEEldEu+SMzP81DV8p81edSNuJIL36t16xDz/ZeY5/1Q6mytqrp1MN1+K+oWzVBGhONKz6Dgr9WYP53jc3P5i2mCSt+n4V99hzK2lt91GZPGe25Ur1CiGzYc3cAhKOM8E1s4Dx3E8s1cHLu8J64KeX02mjbt/G4v+8EZOHbvLDWPyFq1WatTToWu9Kyhn32HMsZ/1qxp43GnFmYdNBxt/yEoaxVmPXIQy/dzce4pzqpu2x7dsBtQNWqMZApFdthxnTiGbcVibH+W3pKl0JR9o3bTh9+hjPZ//ufcMQF3mierdsBwNH0GF2c9ehDrT3Nx7t1Z6vYN9zyKpnNPsicNKj1rUNndfINf/wZFlP+suQ9ORE5PAYUCTZ9haHoMKprcxnX8ENaFX+M66JtVf+f/oW7fHfN9Y5Hzy9fNURHmfxb5C4xPfYYi3P93Vd5z05AzU1F17Ium53AUkbVAlnGdPIz99x+8biNSlPGel1AltPa7Pct7j+E66r81TRGsL+MvAf3M91CE+b/hvOWNu5Gz01C164nquiEowmNBduM+exT76l+8biNSEs2ou1C17IzlhSmlF9SVcVIB+rvfQBHqf+iS5b2ZyDnpqBK7oeo4wDNZjCzjPpeEff2vXrcRuZiqfT/U7ft7xnjm5eDcsw7H2gXgLvn7SNKW/rtKN/1lFCGRftcVfPIIcm4GypZdUF/bDyk02pMz+TiOTYu9biNS9HphMai7jUJRqwGSMQQ5LxvX4W041v/qe3/Ii6nLbvPR3fIiClOE33UFn/8fsjkDZfPrULfrgxQS5cmacgLH1qVetxEBQGtA038KytgGoDUg52fjOvI3ji1Ly5yQxzCjcmeArwwFP790VV9fP/rxsgvVINWmQrl06VK+/PJLPvroI0JDQ/2WcblcPPPMM6xfv56//rqysRJlVSiri/JUKKuLsiqU1UlZFcrqojwVyuqirAqlIFQXZVUoq4vyVCiri/JUKKuLsiqU1UV5KpTVRjkqlNVFWRXKaqMcFcrqokZWKH+qvHuVlod+TOWNR78aqs27ddCgQQwaVPoVUKVSyfPPP19FiQRBEARBEARBEITSVJsKpSAIgiAIgiAIQqUTtw2pUNVmlldBEARBEARBEAShZhEVSkEQBEEQBEEQBCEgosurIAiCIAiCIAj/HtVjTtJ/DNFCKQiCIAiCIAiCIAREtFAKgiAIgiAIgvDvISblqVCihVIQBEEQBEEQBEEIiGihFARBEARBEATh30O0UFYo0UIpCIIgCIIgCIIgBERUKAVBEARBEARBEISAiC6vgiAIgiAIgiD8e8iiy2tFEi2UgiAIgiAIgiAIQkD+tS2Uxij71Y5QLm6XdLUjlJvIWvEKctRXO0K5ZSYbr3aEcnO5a8bxr0ncNWifWp0146vPJdecfapR1Jyr/Vq182pHKCfr1Q5Qbha762pHKDe7u+BqRygXK8qrHaHcBs642gkCICblqVCihVIQBEEQBEEQBEEIiKhQCoIgCIIgCIIgCAGpGf1+BEEQBEEQBEEQKoIsX+0E/yiihVIQBEEQBEEQBEEIiGihFARBEARBEATh30NMylOhRAulIAiCIAiCIAiCEBBRoRQEQRAEQRAEQRACIrq8CoIgCIIgCILw7yG6vFYo0UIpCIIgCIIgCIIgBES0UAqCIAiCIAiC8O8hixbKiiRaKAVBEARBEARBEISAiAqlIAiCIAiCIAiCEBDR5dUfnR7DuAmomzVH1bQ5CpOJ3NdmYVuxzKeotkdv9GPGoqxTF9xunCeOU/D9t9i3bPIqZ5g4CVWzFqibNUcRFk7+3C+wfDXniqNKeh2ht4xF27oZ2tZNUYaYSH3iNfIW/u5VruGeFSVuw7JxO8n/eRQAVVwMdZd/5bdcyn9fIn/ZqsByGnSE3erJqUtsijIkmJTHX8e8wDtnwv7lJefcsJ1ztz3md13Q0N7EvvoobksBSe1HBpRRZK28rAqDjsj/jMbQtgn6Nk1QhQZz+qHZZM//06tc6+OLStyGed0OTkx+quhx1N3jPNtr2wR1ZBgps+eR+va3AWe8OGv07aMwtG2KoW1jVKHBnHpwNpk//eVVru3JX0vOunYnxyYVZ0WSiP7PKCImD0IdFYbt+DlSPviJ7F/X/KuyxtwxCkO7JhgLs56Y+TaZP/7lW1iSiJw0gMibBqBrFI+7wEbB/hOcefZ/FBw4UVRMWz+WuEenEtw1EYVWjWXPMc69Po+8jXuuKGf8XSMIuqYxQW0TUIcFc2TGe6T9sNJvzpjJ1xM7uT+6RnG4C+xY9p/g+NNfYNl/EoA6D46jzkPjS3y9PcMfx7z1UMBZa989nOB2jQlu58l6aMZ7pH6/ym/WWlP6Ezu5P/rCrPn7T5D01BzyC7NeoKsXQ71HJhDaIxGlUYf9fCZpv27g5MuBn18Kg45ad40gqF0TgtomoAoL5tj975Jewn6Nnnw90ZOvR98wDlfhfj31zBdY9p8oKqaODqP2Q+Mx9WiDJioUe0oWWcu3cO6dn3Bm5QWcsyadUzUpa004r5QGHXXuHo7pmgvnVBAH73uf5BLOqbgp/YmbcuGcspG3/yRHnyw+p3R1oui87QO/r7X/9rdIXbDhsjMWZ9XS4O5hhFyTQEi7BDRhQey570POfr/ab9Y6U/pRZ0pfjI3icBXYMO8/ycEn52LefwoAbUwYTZ+aSEjbRmhjw5BdbvKTznPq8xWc++HKjn91JLvlqx3hH0VUKP1QhIRgnHwzrpRknEnH0LRt57ecbsRogu+ZgW3TBqwrPkFSa9ANGEjIi6+Q8+wT2NetLSprvGU6rowMnEePoOnQqcKyKsNCCLtzMo5zKdgPJaHv2NZvudTHXvFZpm3RmJDJoynY8LfPurwlf2FZu9VrmW3X/sBzhoYQftckHOdSsB1MwtCpjd9yyY/45tS1bELolFFY/OQET6Uq8sHbcFsKAs4nslZuVmWYiZgZN2I/m4r1wHGCrkv0W+70A2/4LNO3TiDy1hHkrd3htTz2ock4UjOx7ktC3fPaK854gSrcROz9N2I/k0rBgeMEl5D15P1v+iwztE4gatpwci/JWuu/k4m5ewzp85Zj2XWEkOs7Uf/dhzghy2QvWuuznX9q1loPTMB2JpWC/ScI7tK6xLL13riX8JE9yZi/krQ5S1AYtBhaNUQVGVJURl0rkiYLXgWXm5SPf8FtsRIxri+Nv3mGIzc+Sd7mwD6v1OHB1HlwHLYzaVj2nySka6sSyya8dTeRo7uT9uNqzn+xFKVBh7FVA9QX5cxYspmCE8m+f+NjE1EYdOTtPBZQTgB1RDD1HhyH9Uwa+ftPElpK1iaz7yJqdHdSf1zNuc+XoTRoCWrtnRXA2LI+iT8/iy05k7MfLcKRaUZXOxJNXETAOQFU4cHUnjm+cL+ewNS15OPf8M27iRjdg/SfVpHyxVIUei3GVg28jr/CoKPlolkoDFpSvlyG/VwGhhb1ibllEKaurdg74L8gX/4Pxpp2TtWUrDXlvFJHBFP/obFYT6eRt/8EYaXkbDb7LqJv6EbKj2s4+/lSFAYdwa0aoIkMIf+Ssik/ryPzj+1ey3K2HQ4o4wWaCBMJD42h4HQa5v0niejassSyrWffQa0bunLux7Wc+nw5SoMOU6v6aC7+TI0IRlcrguTfNmM9k46kVhHRszWJ796FMSGOIy99d0V5hX82UaH0w52ZQfq4UchZmaiaNEXz/id+y+lHjsZx8AC5Txa37liXLyH82/no+g/0qlBmTBqPOyUZyRRC5PySrxZeLmdaJid7jceVkYWmRWNqf/++33J5v/3ps0zXPhHZ7SZvqe8VQtv+o36fcyU5j/eYgCs9C23Lxhh+fM9/zkW+rRX6Dp6c5sWr/D4n/PaJuPMLKNiyC2PfLiJrNczqTMvkQIfJONOz0bdOIOHXt/yWy17gm8XYuTWy2+1zhfxgt2k4zqaiDDPRYvs3V5TvYo7UTPa2n4IzzZO16W++P8YAsn7xzRrUuZUn68LirOqYcKKmjyDty8WcfepjADK/W0HCD7OIe/xmshevD3j68pqWdfc1U3GmZWNITKDZYt+LBwChQ7sSMbYvx6bPImfZJr9lAGLvvgGVycj+fvdhSzoLQPq8FbRc9QG1n5rGwSEPBpTTnprF1sRpONKyMbZpRJtlr/otFzGsC9Hje3Pw1lfIXLqlxO1ZDpzEcsC7BVATF4GmVgQp8/5EdjgDyglgT8liU+vbcKRlE9SmEe2W+144Aogcfh0x43uz/5ZXySglK5JE0/fuxXL0LHtueAa31R5wtks5UrPY3uZWz35NbESrZa/5LRc+rAtR4/tw+NZXyFq2ucTthQ3ogLZONIcmv0j2n8UXxZzZZmrPHI+hZX0se48HkLNmnVM1JWtNOa9sKVlsaDUde1o2wW0acu0K/+dU1PDriJ3Qi703v0Z6aedUobzdSaTMD7xC7o81JYu/Wt2OPS0HU5uGdFnxkt9yscM7Ez+hJ9tvfoPUpVv9lgHI23+KLaOf81p26vPlXPPVf6l320COvPw9/JNa9cRtQyqUGEPpj8OBnJVZZjGFwYA7O8trmWyxIBcUINtsXsvdKb5X0iqEw4ErI6vscpdSqzH274Z1225cKel+i0h6Hagq6JqDw4ErPbCcQf27UbB1j9+c6npxhE4dRfqrHyM7XRUQFJGVis8q250407Mv+3mSRkXIwC7kb96LMznDa53jbOoV5/JHtjtxpmVf9vMkjYqQQV3I27wXx0VZTdd3QqFRk/7VEq/y6V8vRRMXhfGapiLrRWKmjyB/x2FPZVKSUOi1fssFdWyBZV9SUWUSQLbayf59C4bEBLT1awWc01GOnHG3D8O8/bDnR28pOf2JHNkNSaEg/ecr60ZW3qzxtw8jd/sRT2VSklAY/GcN69UGY/N6nHrjR9xWOwq9BhQV8zOhvFlr/Wc4edsPeyqTpexXZZAewGebjhTP52GgleF/4jlVXbLWhPNKtjuxlyNnnTuGkrv9iKcyWco5dTGFQYukrrh2HE/WnDLL1b9jCNnbj3oqk5KEshxZL1ZwOg2lXoNCI9qghJKJCuUVsO/aiaZDR3QjRqOIiUVZpy5B996Pwmik4Jf5VzteqQzdO6I0BZO32M/4JSDszkk02PIrDf7+jbhv30V/XcV1Kbwcxh4dUIYEk/eb/5yRj96BZfNuLGtKvupWVUTWihfcqz3KkCCyF/oZE1LNmHq3RxUSRNYC76yGlg1x5RdgO3Laa7llp6e7k75VwyrLeEF1zaoI0mNo25j8XUeIe2QSbfZ/S9vDP9By3ceEDu3qVVbSqP1WGuQCz8U8Q2JCpeVUBukJapdA3s5j1H1sIp0Of0XnpHlcs+kDIoaV3ZofNboHtrNp5G4MfBjB5WQNbpdA3s6j1HtsItcdmUvXpG9ov/l9Iodf51U2tIeny6Tb5qDt8lfoenweXY9/Q7OPHkAVGlQlWY3tEsjbdZTaj95E+0Nf0+HYt7TZ+AHhl+xX86b9yC4X9Z6fRtA1TdDUiiCkzzXEzRhD5tLNWI+eLeFVKkd1Paf8qa5Za8p5deGcMu84RoPHb6Tb0S/pcfxrOm15j6hLzqkL6j00lh7Hv6bHqW+4Ztkswnr6755cGVlD2jUiZ8cxGj8+gX5HP6f/8S/pseVtYod39vschU6NOjwYfZ0o4sb1IH5CL7K3HcFtdVRJZqFsS5cu5c4776RHjx60bduWESNG8NNPPyFf0s3/xx9/ZMCAAbRu3Zrhw4ezcqVvj0Sz2czjjz9Ox44dadeuHffddx+pqZd/wV5cbrgCeR+8gyIkhOB7ZsA9MwBwZ2eT/fBMnAf2XeV0pQsa0ge3zU7+795dMGS3G8v6beT/uR5Xagaq2rGETLmB2A9fIPnepylYW3bXjooUPNSTM2+Fb1cRQ4+OGLpcy6nRd1ZpppKIrBUvdGQv3DY7OUvWX+0oZQob2RO31U7OEu9JFlTR4X5bZx2pnl4Q6ugrG5sWiOqaVVsvFkmhIHx4d2Sni7MvzcFlthB96zAavP8Qx/Is5K7yjPmyJp0lqEMLFEY97vzicb7GDi08WWPDKy2nrr4nZ+TIrshOFyee/wqXOZ9atw2hyUcPcCDPQvbKnX6fq29SB2PL+px975dKy+cva9SIrsguT1ZnroW46UNo9tED7DMXkFWYVd/A06rb/JOZZK3cyel3fiaoZX1q3zsKTVwEu4c/UalZtYVZI0Z0Q3a6OPXCXFxmC7HThpDw4UwOmQvIKTz+BUfOcPzhj6j75FRa/vZy0TbSvv+LpIf8T4JSmarrOeVPdc1aU84rff0YJIWC6JFdkF1ukp77GqfZQu3pg2nx8f3sMReQWZhTdstkrtxJ+pIt2JIz0dWLoc7tQ0n89v/YM+UVn3GVFc1QmLXWyOuQXW4OPTcPp9lCvemDaPPxfTjNBaSv3OX1nHrTB9H0iYlFj9PX7GHvjI8qNedVUYPvQzlnzhzi4+N59NFHCQsLY8OGDTz55JMkJydzzz33ALB48WKefPJJ7rjjDjp37sySJUu45557+Oabb2jbtm3Rtu6//36OHj3KM888g1arZfbs2UyfPp358+ejuoxeitWuQpmWlobD4SAuLg4AWZb5/fffOXnyJHXr1qVv376X9QdWJtlqw3XmNNb0NGybNiIZDBhGj8X09PNkz7wX97mqvUJaXpLRgKFHRwrWbsFt9h467kpOI/mOx72W5S36k9oLPyXiv7dzpgorlJLRgKFnRyxrfHOiVhH56O3k/LAYx7FTVZapJCJrxVME6Qnu3R7zym2+OasZRZAeU5/25K76G1eud1aFToNs972yK9scReurUnXOqjB6ujGqwk0cHPbfopaRnBVbaLnhE2LvHVdUoUyfu5TQ/h1p8MFDnHv1a9wWG1FTBmFIbFTpWRVGHQDqcBO7Bz9K3o4jAGQu38a1Wz6g9v1jSvzhG3VDdwDSfq7Y8VQlUV7IGmFi56DHMBdmzVi+jY5b36fO/TcUVSgvlDXvOsahe97xlFu8GZfFRoMnJhHavTXZawOfQbfMrIbi/bp3yCPkF2bNWr6Vtps/JP7+MUUVSgD7+Uzydh4h+8/t2M+mEdyxBTHTBuPMMnPquS8rLeelqvM5danqnLWmnFcXn1N/D3oM8/ajAGQs20anre9T74EbiiqUtrPp7J7wotfzU35cQ8e1b5HwzBS2VHKFUlWYVRNhYuOgJ8gpzJq6bBs9t75LowdG+VQoz/+ygdxdSWgiTET1v4b/Z++8w5us2gd8Z6dpujctlNWy9957bxBEVFDBhQzXp/783Au3uMUBiqCgIiBThuy9yt6jUEr3Sptm5/dHSkpIWiBtof0893X10rzved/cvFnvc85znqMMC7jt71NB6Xz99dcEBxd3mnbo0IGcnBzmzJnD5MmTkUqlfPbZZwwaNIgnn3wSgPbt23Pq1Cm+/PJLvvvuOwAOHDjA1q1b+eGHH+jcuTMAtWrVYuDAgaxZs4aBAwfetFOlSXnNz89n4sSJdO3alV69ejFlyhQMBgMPPPAA06ZN49NPP2X69OmMHj2agoLKcXMZ8PLrSMMi0H3wLqYtmzD+vYqcZ6cjUcjxfXDSndYrEd8+nZGqVSWmu16PLU+HbskalLWqI4sIrWC7YrR9HZ665e5D9IHjRyILCiDrC89LnNxuhGv5E9C/I1K1qkqkuwYOcLhmeygqZDOYkCgVbtslKoVz/+2kMrvai85vTExxBpMANr2B3HV70DSPA5njZytv434uvTQLbbtGNFg9k0abv8a/V2uS33cUaLIWGCrM8+p1MCSmOm96r3pmrdmLtnldp+f1hI7oQoGHgiIV7VqYmOoMJq+6Zq7Zh1+LYldrUdv0xVtdznH1sX8b7+fQ3YqrITHFGUxedc1euxffa66rtk196s19kaR3fyH1hxVkr97NxTd+JPnTP4h8ZAg+cTEV6notlfkzdT2V2bWqfK5cPlNFARqAVW8gc+1e/FrURVKCJ4AlJ58rCzagiYtGFVVxmRRQ/JnWJ6Y6g0mHq5G0tfsI8OBqSMogc/MRrizezqHJX1CYmEab3/+LVO3+3qjS2Ox39q8MXBtMXqVBgwbk5+ej1+u5dOkSFy5cYMCAAS5tBg4cyI4dOzCZHO+LzZs34+/vT6dOxVNKateuTYMGDdi8+dbmIleagPKLL77g6NGjvPHGG3z66ackJSUxbdo0Ll26xJIlSzhy5AgLFiwgPT2dOXPm3GldpJFRKNu2w7TDNRXPrtNhPnIYRaOSS03fabSDemLNy6dgU8kV9K7HmpIOgCzAr6K03PAbXOS50dVTqtUQ/Ng95P2+CqmvBnm1COTVIpBqfAAJ8moRyIIDPJ9UuFYZ18Bh3bHm5aP75/amWXtD0PBuWHPzyVvvPufUkpaFPCzIbbsi3PGDYE7LdNtXkVRmV3OqI7XO7CHtzpKRi1SpQFo0igWQ/tNKDreYwMlhz3F84NMc6/4E1qLRbOO55ArzNKUUeXoo3mHOyEOqVDhH267Fr2191NXDybhNo5NwI9dcF9erba8vSmLKcBT+kAdU7DxK09XX30OhEct1ruH39cWcnkPBIdflIbLX7EEilaJtU79CXa+lMn+mrqcyu1aVz5UxxVH4yVNBHIen3OV7yuM5LjuK4cmDKvYzVZqrqcj1RkV6UpbtwicmlOD2DSrE8d9Kr169Sv27Vfbt20dERARarZZz584BjtHGa6lTpw5ms5lLlxzzpM+dO0etWrWQSCQu7WrXru08x81SOXJHgXXr1jF16lRGjx4NQHR0NKNGjeKtt96ifn3HD0Pz5s2ZOHEif/75pzNH+E4hDSrqHfDUCyWXI5HJbq/QTSILDcanTTN0S9eC+eYnWMtjIgGwZt24olh5IAsNxqdtU3RL3D2l/n5IfTUETRpD0KQxbsfWXDeX/PXbSZn6unCtoq7ysCB8OzQh+4/12E3eL6twO5CHB6Ht0ISsP/7x6Fp47Dwh9/RDFVfdpdiFpkW8Y//RW1/a4H/V1ZyahTk1C2Wk+1wtRUQwNoMRW77ruqi2QiMF+4sXMPfv3MyxwPje4xXomY0pNRulh9EFZWQQ1kIj1nz39VvDRnbFbrORvvg2BpRXXT3MKVVGBru45h9y3ECoolyvvyrCEWSYM/Mq1LW066qICMZ2jasiLMDj769E7vjtLW2EqDyp7J+pquRaVT5XptRsjKnZqDx9piKCsBaaPHpei09sBOAIQCsSY2o2hhJcVUWulvzSszlkPo6RSbm/pkIcBWVn7969rFy5kueffx6A3FzHvbq/v79Lu6uPr+7Py8vDz899oCggIIAjR47ckkOlGaFMTU0lPj7e+TguLs7lv1epX78+ly/f+bmJ1uQk7FYrqm49XbZLQ8NQNG6K5cyZEo68s2gHdEcik5WY7ioNch+BkoWH4DeiH8aTZ7Fm3Hg5lfJAO7AbEpkMnYcqpNasHK5Mfc3tT78zAZvByJWpr5H93e1bgFe4lj8BQ7oikcmqRLpr0JAuSGQyt4qJV8ldswubyUzo/a5zEULvHYDpSgYF+07cDk2garhmL9uKMjoMvy7NnNtkQX4E9m2LbtvhUher921Vn8ABHchYsBabTl+hnhl/bUMVHUZA1+JqjfJgP4L7tSFv2xE3T4lcRsiQDuTtPoHpsuelmiqK9KXbUMeEOau4XnUN6dea3GtcM1fvwWYwEXF3D7imxzri3t4AZG92nWtVEWQWXVf/rsWvvzzYj6B+bVxcDeeuoAwPwq+D62LuIcMdc+kKvFiD0huqwmfqKlXBtap8rtKXbkcdE0rQNZ6KYD9C+7chZ2uxpyLE3+1YZWQwkff0JP/oBUxpORXumrJ0Bz4xoYR0beLiGt6/NZkurp4z0GLG9cBus5F36PZ1ftwWbLY7+rd+/fpS/26WlJQUnnrqKdq1a8f48eMr8IKVTqUZodRqteTk5Dgfy+VyIiIi8PHxcWlnNBqRltO6WKWhHjYCqa8WaYhjzqCqfUdkoWEAFC75E3tuLoa/V+EzcDAB73+CcdtmJD4afIYMR6JSol8wz+V8qt59kYVHIFEXTeZu0gzNuPsBMKxbgy0t1WtX/3uGIvXTIgtz9Cr7dmuPPMLhmvvLEuz5xTdW2kE9saRmYNjj+cYg5OlJyKtXo3DnAazpmcirReA/ehBSHzWZ737ttSNAwLihSP18kRdVivPt3h550ZzM3PlLsV3j6TfY4Vm4+5DbeewGIwXrd7ht9+3ZEZrW87hPuN5515Dxg5D6+zorBfr3aouiaCQk86flLgFA4LBumFMyKdhZcgGQwBE9UESHIVU70nV82zYibIpjZDVn8QbMl9O9dg2dMAiZvy+KCEevrn/vtiiiHNc0/UdX16Dh3TClZJK/w7OrOSWT9NnLiHhsJBK5DP2h0wT0bY+2XSMuTPuwzIsrVyXXsAkDkQUUuwb0boOy6D2QNmcFNp2elC//IHBIZ2rPeoG075Zi1ekJva8/EoWc5PeK5/Yqo8Oo9fVz5K7djTktG3W9GoTd15/C4xdIfm+ex+e/WSIfHIA8QIOyyDO4b2tU1Rz/f+WHVVh1ei5/9iehQzpS7/v/cGXWMiw6PZH390WikJM4Y77bOQO7N0cR7F/mtSevJ+qh/sj9fVFGOkYRQ/q0do4wJhe5XvpsMaFDO9Lgh2e5PGs5ljw9UeP7IJHLufDOL85zmdNzuPjpn9R8fiyNf32JzNW78W0YS+R9vUn7cwv5CWc9OtwsEQ8OQObv67yuQX1aO1//1Nkrser0JH++iJAhHYn/7j9c+XYZ1rwCwsf3Q6KQk/Ru8XVNnbOSsLt7UO+nF0mZvRJTUjp+HRoSOqIruZsSXOZg3ipV6TNVlVyryucq+qH+Lp4hfVs5PZO+X41Vpyfxs8WEDe1Ao9nPkPTNciw6PdXG90Uil3Hums9U7Zfvw6dmBNlbDmNKzUZdPZxq9/dGplFx5qWyT9+q8VA/5AEa1EVZBGF9WzpdL36/GouukHOfLSVyaHtazH6KC9+sxKzTU2N8b6RyGaffKe4krvPkCILa1CN9w0EMlzNQBGqJGNyWwBZ1Sfx+FfoL3t+nCiqGvLw8Hn74YQIDA/n888+d8VFAgGNwSKfTERYW5tL+2v3+/v6kpKS4nTc3N9fZ5mapNAFl3bp1OXjwIH369AFAKpWyaZN7L9rJkyepUaNGhfto7robWWTxwtiqLt1QdekGgGH9Wuz6AvI//RjLuTOo+w/C96FHALCcPIHu/XcwH3a9YVf3H4iyWQvnY2WLlihbtATAfORwmQLKgAl3oYiOdD727dMF3z6OXtr85euxFAUUipoxqBrFk/PTHyX28uu378N/TBQBY4ci9ddi0+Vj2HeY7G9/wXS8bKOugQ+OcvHU9u2Mtq+jqpRu2T/OwEdRMwZ143iyf1xU6mhERSJcy5/Qh0egjIlwPg4Y0JGAAY61xXIWb3Te+ChrR6NpGkf694tL9Qwa0wdt++IeV23HZmg7OkY19HuOlSmgDH94OMrqxa6BAzoSWOSavXgjpiJXVZFr2ndLSnW98u5PWHPzCR3Xj+C7emG8kEzi9I/IWVr2m6Aq5frocFTXuAYN7EjQQIdr1p+bMOn0WDJyOTXyBWJeepDwSUORKOTk7zvBhekfU3j8gvNYa74ec1qWI0gN9MOckkna7OWkfP67yzIi3lDt8aGoq4c7H4cMak/IIMeabel/bMaq02POyOXwsJeo+ep4oh4ZjEQhR7f3JKenfIr+mHthkNCRXbGZzGQuK3sn0rXEXOcaOrg9oYMdrmmLil0PDX2JWq9OIPqRQUjkcnT7TnFyymcUXOd66ZM/sOTmU+2hAdR+4wFMaTlcmvknFz/+vcyuUY8NQ3WNa/CgDgQPcqzbl7FoE9ai1//Y8P9S45UJRD7suK75e09ydsqn6I9dcB5rOJvMkf7/Iea5cYSO6ooiLBBzajbJXy/h8odly6SoUp+pKuRaVT5X1R8fgrpGsWfY4PaEFX2mUv/Y4vBMz+XA0Jep8+p4Yh4djEQuI2/fKY4/4fqZyt50EJ/YvkVBqi+WXD05O4+T+Mki8g+XfcSv1uOD8alRHDBEDm5H5OB2AFz5YysWXSGm9Fx2DX2Neq/eR+yjA5HKZeTsO83BJ75Ad6y4mnv62gNoakYQc093lCH+2IwmdMcucnja11xeWPmzhW6ZMnaQ3GkMBgOPPvooOp2OhQsXuqSu1q7tWDP23Llzzv+/+lihUFC9enVnux07dmC3213mUZ4/f94la/RmkNivXwXzDrFp0yZyc3MZOnRoqe2mTp1K06ZNefjhh8v0fOl9upXp+NuFLqX0ydKVCZtVcuNGgv9ZCgurTllxq028V8sbWxW6pgZLpelLLRWrvepcU6W06tycqRSVe152VURvqjoVQE22SjPbq1QMVM5aHJ7on3r7pu6UF/pPH7ujz68pw9qeFouFKVOmcODAAebPn0/dunXd2vTr148mTZrw4YcfOrfdc889aLVal2VDxo4dy5w5c+jY0dERdf78eQYMGMDHH398S8uGVJpf1W7dbi7A+/zzzyvYRCAQCAQCgUAgEAgqH6+//jobNmzghRdeID8/n4SEBOe+hg0bolQqmTp1Ks8++yw1atSgXbt2rFy5kkOHDjFvXvGUkBYtWtC5c2defPFFnn/+eVQqFZ988gn16tWjb9++t+RUaQJKgUAgEAgEAoFAIKhwKkeCplds2+ZYsvDdd99127d+/XpiYmIYPHgwhYWFfPfdd3z77bfUqlWLL774ghYtWri0nzlzJjNmzOCVV17BYrHQuXNnXnrpJeTyWwsRK03K6+1GpLyWPyLl9d+NSHn9dyNSXssfkfJaMYiU1/JHpLyWPyLltWLRz3z0jj6/5slZd/T5y5uq8asqEAgEAoFAIBAIBOVBFS/KU9moGt00AoFAIBAIBAKBQCCodIiAUiAQCAQCgUAgEAgEXiFSXgUCgUAgEAgEAsG/B9u/soRMhSFGKAUCgUAgEAgEAoFA4BVihFIgEAgEAoFAIBD8e7CLojzliRihFAgEAoFAIBAIBAKBV4iAUiAQCAQCgUAgEAgEXiFSXgUCgUAgEAgEAsG/B1GUp1wRI5QCgUAgEAgEAoFAIPCKf+0I5dFD4Xda4aYwV6GYXy2x3mmFm0YprRqTsf18jHda4aYJjc6/0wo3jVRRNV5/m7nqfP6rElXl9VcGS+60wk0j1crutMJNIw3S3GmFm0Ia7H+nFW4aSUjQnVa4aSQBAXda4eZQqu60wf80dlvV+B2oKoi7FYFAIBAIBAKBQCAQeIUIKAUCgUAgEAgEAoFA4BX/2pRXgUAgEAgEAoFA8C9EFOUpV8QIpUAgEAgEAoFAIBAIvEKMUAoEAoFAIBAIBIJ/D3ZRlKc8ESOUAoFAIBAIBAKBQCDwChFQCgQCgUAgEAgEAoHAK0TKq0AgEAgEAoFAIPj3IIrylCtihFIgEAgEAoFAIBAIBF4hRigFAoFAIBAIBALBvwebKMpTnogRSoFAIBAIBAKBQCAQeIUIKAUCgUAgEAgEAoFA4BUi5dUDMo2a6k8Mxb9lHH4t6qII0nJi2pekLNzo3lgiodr4PlQb3wefOtWwFRrJP5bImZd/pOBYIgDq6mG03/uVx+c69ugnpC3ZXgZXFbFPDCWgZV0CilyPTPuKKws3eXSNGd+bmPG90dSphrXI9eTLc8kvcr2eyFGdafLVVCwFBjbUnuC1p1SjJuaJofi1uHpN/Tg5/QvSSrimUeP7EHn/1WtqouDYBc69UnxNr6KOjSD2+bEEdm2KzFeN6UoW6X9tJ/HdX8vkGjV5GNoW8Wib10Ue5MfZJz8n47cNHl3D7+9L+P198aldDWuhCf2xC1x8bQ76YxeczRThQcQ8ezf+XZuhDAvElJpN9t+7Sf7sDyzZ+V67SjRqQh8ehU/zevg0jUcW6Mfl5z4hd9E6l3YNz64o8Rz5Ww9wccJLAChrxxA4ug/azi1R1IjEpjdgOHqW9E/nYTh8xmtPAImPGt97xqJo1ABlg/pI/f3JeftdClf97dIuaquH61yEcc9esp76j/OxLLoafo89gqp1SyQKBeZTp9F9NxvTgQTvPdU+aMaORdGgAYr6DZD6+5P77gwMf692a6vq3gPN6NHIa9QAqw3LhfMULPgV086d151UgubusWiGDkMaEozlUhL6X+Zj+Ge9155Qda5pVXKtSq8/ah/Uw+5GHtcQWd36SP38KfjiXUwb3F0VHbujHjIGaXQNsFmxXjyPYckCLPt3ejixA2WX3vg++RL2wkJy7htQNleVGtXAu5HVro+sdn2kWn/0372Peevfbk0Vbbuh7HcXsqga2O02bEnnMa5ciOXgruLTDR+PekTJv0n5b03DevrorXsq1Sh7jkQWG4+sRjwSXz8Kf5mJZbf7a6XoPAhFl0FIQyKx5+dhSdiCceU8MBldT9lnDLLYeKSx8Uj9gjCu/gXTau9/o4oFVCg6DkYaXQdZdB0kPlqMS2dhObjZram8TR8UrfsgCQrHrtdhPbYT04Y/wFzsKgkIRTP9U49PZVj0OdajJb9XSuNoai7Ljl9hT1IWyXmFBKqVNIkM4IkOdYgN8nVpey4rn482n+LAlRwUUgldaobxdJd4gjVKl3Y2u525+xP5/fAlMgpMxAZqeLB1TQbUi/LK8SpHkrNYdjCRPRfSSc4tINBHSZPoEKb0aERsiJ+ra3oeH649yIGLGShkUrrERfFMn2YE+6pKPP+Kwxf575Ld+Chk7HhhhPeeSZksSzjHnnOpJOfkE6hR0SQmlCm9mxEb6u/qmZbLh6v2ceBiusMzvhrPDGhFsK/a7byXsnR8ue4gu86loDdaCPfX0LdxDab2ae61a6VFFOUpV0RA6QFFiB81nx2N4VI6+ccuENSpcYlt68+cTPiozqT+vpnLs1ch1ajxa1wLZWgABde1Tf1zK1nr9rtsy917qoyu/tR59i4KL6WjO5ZIcKdGJbZtNPMxIkd15srvm7k0+2+kGhX+jWuivO7L5yoyjYq4l+/FUmAok6PD04/YZ8ZgSEqn4FgigaVc0/iZkwkb2YW03zeRPHs1Mo0KbZNaKEIDXNr5NqpJ0z9fx5iSxeVvlmHO0qGOCUVZLaRMrvJgP2KevhtjUjr6Yxfw79SkxLa1P36CkJFdyfhjI6lzViH1UeHbuBbya1ylGjWNls1AqlGR+tNqTMmZaBrWJOLBAfh3asyRfv8Bu3dfbPIgf8KmjcN0OQ3DifP4tm/qsd3lpz9026ZuUpeQB4dTsLX4PRl0dz8CR/clb/U2suavQOanIeieAdT642MuPvgKBdsTvPIEkAYE4PfQBCwpKZjPnEXVsoXHdjlvvO22TVG/Hr5j7sK4e2/x+cLDCPnmS7DZyP9lIXaDAc3A/gR/8gFZ05/BdPCQV56SgAC0Ex7AmpKC5exZlC08e/qMGIn/tOkYd2wn/9tvkSiVqPv3J2jGe+S88hLGLVucbbUTJ+F7733oly/DcuIEqk6dCHj5Fex2O8YN/3jlCVXnmlYl1yr1+vsF4DPmAazpKVgTzyJt7NlVNWAEmknTMe3dgXHDt0gUSpQ9+uP333fJf/9lzLu2uB+k9sHn/kexFxZ67XctEr8A1MPHY8tIxXbpHNIGzT22U/Yejs/9UzEn7MTw+3egUKLs3A/fp9+h4LNXsezbCoB531Zsacnu2nc9BCofrOdOeuep9UfV/x5sWWlYk88jj/P8naocMgFVr7swJ2zFvOkvpJE1UHQZjDSyBoXfvOrSVjXofmy5WdiSziFt0MorL4+uGj+U3UZiy8nAlnoRWc2GHtspeo1F2WkIlmO7sO7+G2loNPI2fZGExWCc/55be8vh7VjOJLhssyV536E4Z+8FDl7JoXdcBHEhWjL1JhYeusQ9C3Yxd0xb6oZoAUjVGZj4x178VHKmdKhLodnK3P0XOJ2pY97d7VDIipPqvth+hjn7LjCyUTSNIvzZeC6dF/8+gkQioX98pNeuP247SUJSJn0axBAXEUBmvoEFe84w9rt1/PxQT+qGO37bU/P0TJy7Ea1KwdSejdGbLMzdcYrTabnMn9jLxfUqepOFmesP4aOQee3n9NxylISL6fRpHEtcRCCZ+YUs2HWKsV+v4udH+lE3ItDhmatn4g9r0aoVTO3dzOG57TinU3OZ/2g/FPJilxNXspg0ex3hfhrGd2xAgEZFSm4BKbn6MvsK/vcRAaUHjKnZbG/8MKb0HPya1abVGvcvXICwoR2IHNudIw98QMaq3Tc8b/6hc6Qu8vDDXUbXTY0fwZSei3+z2rRbM8Nju4ih7ak2tjsJD3xI+qo9N3XuWk+PxJpfSPa2o4QNaFMmT1NqNjubTMKcnoO2WR1a/O35moYO7UDE3T049uD7ZJZ2TSUS6n0xFf2Zyxwe9Ro2g6lMftdiTstmf7OHMKfn4Nu0Do1Xf+CxXfCQjoTd3ZNTD71H9updHtsABPVrg6p6OCfvf5uc9fuc2y05OmKevhtNo5roj5z3ytWSnsXJdvdhzchG3aQutZd47l3OXeo+6qNp1wS7zUbusuLR7Nxlm0j7dD52fXEnQs7va6mz5hvCpo8rU0BpzcwidehIbFnZKOrFo/phlsd2hWvWuW1TtmiO3WajcF3xKIH2vnFI/bSk3/8Q1kuXAND/tZzwX37Cf9oTZEx81CtPW1Ym6SNHYMvOQh5fj5BZ33pspxkxEvPx4+S8+H/F7qtWEvr7ItT9+jsDCmloKJoxd6Nf/Ce6zxyvT+GK5QTN/Ay/xx7HuGmj18UBqso1rUquVen1t2VnkjNxJPacLGR16qF43/M1VQ0cieX0cQpmFLsa/1lJ4Hd/oOzez2NA6XPX/dgNhZiPJKBs29krv2ux52SRN+0u7LnZyGrGo339a4/tlH1GYDl3Av0n/3VuM21ejf/MhSg793UGlLZL57BdOudyrCQ4DElQGObNK8Fq8c4zN4v8l+/HrstBWr0u8mc+cWsj8Q9C2X045j3/YJhfvN+Wdhn1XY8ha9QG69Hi39n8NyZiz0pD4uuP9u35Xnl5dM3PQf/RZOwFuUijauHz8FvurtpAFO0HYD64BdPSb4pds66gGvAAlvgWWE8dcDnGmnIe6+Ft5eZ5X8tYZoQ3cQmy+sZHMGb+TubsPc/b/Rydtj/sPY/BYuWXe9oR5ecDQKMIfx5fsp+/jiczqnEMAGn5Bn4+kMjdTavzQvf6AIxoFM3ERXuZufUUfepGIJNKvHNtH8eMaq7Ba9+GMYyetZbZ207yzoi2AHy/9QSFJiu/TOpNVIAGgMbVgnls/haWHrzAXS1ru537uy3H8VUqaBMbzoaTl73yc3p2asCM0Z1cAsK+TWIZ/cUKZm8+yjujOzk8Nx+h0Gzhl8cHEBXoGA1uHBPCYz/+w9ID57irTRwANpudl/7YTq1Qf757qDdqxb8gPLCLojzliZhD6QG7yYIpPeeG7ao/Npi8/acdwaREglRTcprDVaQaFZJy/KA6XHNv2K7GY4PJ3X/aEUzehKumViSxjwzi1KtzsVus5eJpvolrGv3oEPL2n3YEk6V4BnVvhm+DWC5+9Ds2gwmpjxKk5fN2vlnXqEeGkr//lCOYlEiQ+nh2lWkdP4zXn9Ocmg1QpmDYbrJgzci+5eMkSjn+/Tuh330ES0qmc7vhyBmXYBLAmqNDv+coyjrVvfYEwGzGlnXrrigUqLt3xZRwEFt6hnOzsmkTzKdOO4MJAIxGDFu3o6gXjywm2nvP7KwbNpP4arDluP577Hq9Y0THWJxGpurUGYlCgX7pEpe2hX8tRRYejqJhyVkFN+VaFa5pVXKtSq+/xYw95yZcfXyx5ea4bizUYzcUgsn9+0caFY1q8F3of/wSbGX//ne65t749ZeoNdjzrnM16LEbC7F7cL0WRfueSKRSTNvLkEpstWDX5ZTaRFazPhKZHPN+19RSywFHYK5o0dVluz0rzXuf0rBasBeU/vsvjamLRCbHenSHy3bLEcdjeaMOng9UqEBa9pE0gOZRgW4jdrGBvtQJ9uV8VnEu1/ozaXSpGeYMJgHa1wghNlDDmtOpzm0bz6VjsdkZ3STGuU0ikTC6SQyp+UYOpeR471o91N01xI86Yf6cz8grdj1xmS5xUc5gEqB97Qhig7WsPZbkdt7ETB3zdp3mmT5NvQ52XTxrhLkEkw5Pf+qEB7p6Hr1El/hoZzAJ0L5OFLEhfqw9ctG5bcfZK5xJy+XRHk1QK+QUmixYRRVUwS0gAkovkWl98GtRF92Bs9R68R46n/mJrufn0W73F4QN9fwFHfvsaLqen0fXi/NpuXoGQd08p9JUhGtAizrkHjhL3RfH0uPMHHqdn0un3Z8RMbS9x2Pi35xA1rajZKxPuC2OVz39WtQlP+EMsf83jg6n59Lp3Hxa7/qS0OuuaWBXx7WzGc00//s9Op3/hU7n51P/m6eQB2pvi6tvi7rkHzxDzAv30vrkPNqc/ZVmO74ieEhHl7a6ncewW63EvjkRbct4lFEhBPRsSbXpd5G1aheGM2XrqfQGbfc2yAK0HkcuPSEPC8KanXfjhhWAqkM7pH5+biNXEqUCu9H9BtNucNzMK+rFV6iXOSEBZdu2+IwYiTQiEln1GvhNfxKpry/6RYuc7eR147AV6rEmus7/NZ847tgfF1ehnp6orNfUE5XVtSq9/pajCShatEU1YATSsEik0TXwmTQdicYXw4o/3NprHpyC5UgClv0lZ15UmOuJg8ibtEHZeziS0AikUdVR3z8NiY8vpjV/lnqsskMvbJmpWE96n5p9U8gVjv+aXd9/9qK5k9LqdSv2+W8FmcPVbjG7bi9yl0bVcjtE2XUkvv83G81/f0Q98Q1ktUue9uEtdrudTL2JQB/H3Mi0fANZhSYaRrhPwWkcEcDJdJ3z8Yl0HT4KGbWDfd3aXd1f7q4FRgKLOrhT8wrJKjDSsFqQu2t0MCc8BLQfrDlIm5phdIkr2xzPG3rmF17jqSerwEDD6GB3z5gQTlwp7ozadTYFAKVcxrivV9HhzYW0f2Mhzy/cSq7e6Ha8QHA9lX5MW6/X89BDD/Hqq6/SoEGDO63jxKdmBBKplPDhHbFbbZx7Yx4WnZ6YhwfScNaTHNYVkrUhAQC7zU7WhgQyVu7GmJKFOjaC6o8Opumv/+Xw+Pfc5lWWN5oi18gi19NvzMei01Pj4QE0mTUdi66QzA0Hne1De7cgpHtTdvZ8rkK9rkddMxKJVErYsE7YrVYuvPkzljw91R4eRP1vnuKorpDsomvqU8vxpdzg26fJ3pDApc/+RNuoJjFTR6CsFsKhoS9VqKuqyDVkWGfsFisX35qLVacncuIg6n79NCd1heRudKQRFZ5O4vxz31Dj5Qk0Wv6u8xzpC//h3LOeizVVNAFDu2MzmshbdeO0Jk3rRvi0qE/Glwtvg5k7Pn16YzeaMGx0LTRluXgJZbOmSHx8XOZ5KZs65ufKwkIr1Cvv888ICAjAf9p0mDYdAFtODtnPPI35WHExEFlIsMeROWtmZtH+ss359YbKek09UVldq9Lrr//hM3z9A9BMmg6Tilxzc9C99jTWU8dc2spbtkferA15z0yscC9PGOZ9gdTPH5/7p+Jz/1QAbHk5FLz3H6xnj5V4nDQ6FlmNOhhXLKhwR1uaoxNQVqsB1jOHndtldRxzGKUB7jfwdwp75hUAZNXjsV0ovn6y2HoASPyuCYrsdixnD2E9sRe7LgtJYDiK9gNRjXsO48KPsJ5OKDevlSdTSCsw8nj7OgCkFziCltDriu8AhPoqyTWYMVlsKOVSMgqMhPgokUgk17VzBFLp+eUbAK08fJE0XSGTuzte34x8x/dNmNa9qE2oVk1uoQmTxYqyaARx8+kr7DyXysJH+pSrl5vnwQuk5RUyuWczh6euyPOaEV+np5+Pi+fFTEcQ/tzCrXSsG8VDXRtxKiWb2ZuPkpJXwI+T+rpd7yqPKMpTrlSKgPLo0ZIrsen1ehISEjhy5Ai2ouH3Ro3KkCJUTsiKqmMpQvzZN+D/0O13TFjPXL2Xdnu+JPapUc6A0ng5g0NjXQtNpP6+mbZbPqHua+PZXcEB5VVXZYg/uwb8l7wi1/TVe+m85wtqPTXSGVBKFDLi3xhP0tx1FJy6vSNn117ThAH/h+7AaQAy/95L2z1fUv3JUc6A8mpb3cGznJzymaPdil1Y9UZqvXQfgV2akLPlsPuTlJerpsg12J8jg56noMg1++89NN/1NdFP3uUMKAFMV7LITzhNzvr9mC6n49e2IRETB2LJ1nHxjZ8qzNMTUq0P2h5tyN+4F5vu+tJRrshCAoie+R/Ml1LJ+NZ9JKOikWg0qDu2x7hzJ/Z8V1f9kr9Qd+5E4BuvoPv2B+wGA74jhqGoX3SjpLpxCnqZMBixXrpEYXo6xh07kGg0aO4aTcAbb5I9bSrW5KLPj0oFZrP78VfT9yra8zoq9TWtSq5V6PW3m4xYL1/ElpmOee8OJD4+qIaMRvvcm+hemoYtpchVLkfz4BMY1/yFLclz5e+KdzVgvZKELSsDc8JOh2u/u9BMe42Ct5/0WIgHQNGhNwCmHWWsnHsT2JLOYr1wAmWvUdhyM7GeOYw0ojrq0Y87RgIVt/dzUhq2lAtYk86g6DgYe14W1gvHkIZFoxz4IHarBRTFAZw9L9OtSI/l0FZ8Jr+Pss+9FJZTQHk+q4B3N56gaWQAQxpUA8BocdzfKT0Us1HKHduMVitKuRSjxeax6I3K2a78UjXPZ+QxY/UBmsYEM6RpzSJXRxq4ZwdHEGkoCtTMVhsfrjnIXa1qUyfMcwHEcvFMz2XG8j00rR7KkBaOUWej+aqne+qy09Ps8NSbHN9RjaKDnfMvezeqgVoh57O1Cew6l0L7OhU3uiqo+lSKgHLUqFHOng+73e6xF+SVV15x7jt+/PjtVnTj6ry3wsRUZzAJYNUbyFy7l4hRXZHIpNhL+GKz5ORzZcEGYqeNQBUVjPHKjefBlNVVn5jqDCYdrkbS1+4jalQXp2vso4NQBvtz9v3fKsznRp6FianOYBLApjeQuWYf4aO6gEwKVhvWorbpi7e6nCN98VZqvXQf/m3qVWhAedXVkJjiDCavumav3UvoyK5OV22b+tSb+yJHB79AwaGzAGSv3o01X0/002NI/3U9hafd51xUFH79OiFVq26Y7irxUVHju1eR+vpw4aHn3OZW3g7U3bsiUakoXON+k2jcuZvcjz/F77FHCJvzHQCWS0novv0B/ycew6Yvn+qUJRHw2utgtZLz32sKnWzbSujP89FOmkTuG68XbTSCQuF+AqWyeP9tpDJf06rkWpVef+0zr2G3WSmY8aJzm3nPNvy/mIfPuIkUfPwGAKrBo5H4BWBYOKfCnUpCM+VVsFrRzyzOMrHs3472/bmo7nqIwq/cC88AKNv3xOqhUE9FUThnBuoJz+Mz7kkA7FYr5o1LkNVtjDS8DHONKwDj7zNRjZqKapijUJXdZsW8cxWy2PpIQ24QJBgKsCRsRtl5KBK/YOy6st2rZBQYmfbXAbRKOR8MLJ5PeDUYNHm4ZzIVBZuqosBIJZdi9tDO6GxXPrO5MvINTF2wDa1KwYd3dbjG1eHh2cERxKmL2szbeYocvZHHu1XcQEiGrpCpP29Eq1bw4dguyIrqSagUVz3d50E7PRVXr6njv/2b1HRpN6BpTT5bm8DBixn/cwGlXcwRLVcqRUAZHh6OzWZj2rRp1KxZ02VfQUEBjz/+OC+88EKlSnk1pjhSmDwVxDFn5CFVypFq1Fh1JZdbNl52FJiQB2krNKAszdWUkYtUKUdWlHNf66mRXJqzBrmfBrmfY7K5zFeNROJYT9NaaMScUTFz6UwpjmvgqSCOOSMXqVKBrOiaXm17ffEkU4bj3ygPqNh5lKbUq67u19RynWv4fX0xp+c4g8mrZK/ZQ8yzY9G2qX9bA8qAYT2w5uWTv6GUKroKOdW/+i+q+rW4+MDLGE/dmdEKn769senyMWzf4XG//s8lFK5cjbxObewWC5bTZ/AZPBAA66WKu6ayqChU7dqR96FrBWC7TofpyGEUjYuXxbFmZqFs7r6cw9VUx6upj7eLynpNPVFZXavS6y+NiELRsh0FX1/nmq/Dcvww8vpF8+M0vvjcdT/G1UuQ+Pgi8XHMT5OofUAC0rBI7EaDe8GcckQSFoWiaVv0sz9ydS3QYT11GHmc5+WmZHGNkYZFYvjtuwpzux57bhaFnz2PJDQKqX8QtvRk7LocfF//scRR1DuFXZeN4cc3kARHINEGYs9MwV6Qi/ypL7Blptz4+Lyi96iPL5QhoNQZzUxZegCdycIPo1oTfk3KaFhRumqG3n1edEaBiQC1wjlSGeqrYk9SltsAREZR2myYtuwjxDqDmSd+2YrOYGb2hO6EX5M2GlpUaC89372TNSPfQICPEqVchs5g5rutJxjTqjb5RjP5RscoYKHJgh24nFOAj0LmcT3Im/c08cTcDegMJmZP6ku4f3GRoNAi53Sde+dahq7Q6QkQVnRcyHVpvFfd8grLr5K+4H+TShFQrl69mi+//JIZM2Ywbtw4Jk+ejK+v48dMp3PkdTds2JA2bcq2dEV5YkrNxpiajSrSfa6EMiIIa6EJa37pPeQ+sREAFRagXcVYiqsqIhhroQlLvgF1TChyrQ+1pg6j1tRhbm277P2CtFV7OPiA+5qG5YEpNRtTajZKT9c0MhhrodF5TfMPOXqhVVGu849UEY75IObMir2m5quuUe6uiohgbNe4KsICHKOV1yEp+iKXlFNv6s0gDwvCt30Tchatx24qoay+REL0h0/j27E5SVPfRb/7yG3zuxZpSDDKFs0dC997Shkswm4wYD5aPDdI1boVdoMB0+GK85YGFb3uHioLS2RyuCbFyHL2NJLBg5HFxroUZlE0cMzHsZzxfn23W6UyX9PrqcyuVen1lwQUzZHzULFTIpc7t0t9/ZD4aFCPGId6xDi3tgHfLMC0eysF71Xc/HSpv8NV4qlit0xeYtVRRcde2G02TDu8X9PTW+wZV7BmOOYpSiOqIw0Iwbi74tNuvcGelYo9y1EtVRIajdQvCNPBzTc4CqRB4Y7/0Xtf7MZosTJ9WQKJOQV8M6IVdUJcO33DtWqCfBQcS3X/7T6Smku9UD/n43qhfiw+eplzWQUu5zmSmuvcXxaMFivTF24jMUvHrPu6uqWqRvj7EKRRcSzZfW70kctZ1CsqDpRnMKE3Wfhxxyl+3OG+5vigz1fRPb4aM+/u6LbvpjzNVqbP20hiZh6zHuhFnXDXtboj/DUE+ao4dtm9E+BIUib1oornzzasFsyfQFqe631retGgSJBv5UnjFlROKkWVV41Gw3/+8x/++OMPjh8/Tr9+/Vi8ePGd1roh6Uu3o44JJahrcbVWRbAfof3bkLP1iHOxekWIe968MjKYyHt6kn/0Aqa0nAp3TVm6A5+YUIK7FldrUwT7Eda/NVlFrqaMXBIe+MDtL2vrEayFJhIe+IDzny2pUM/0pdtQx4Q5q7gCyIP9COnXmtxtxdc0c/UebAYTEXf3gGt6KCPudcyjyd58kIom869tqKLD8O/azMU1qF8bF1fDuSsow4Pw6+Ca8hIyvAsABV6uQekN/oO7IZHJyP2r5HTXyFcfI2BwN668+hW6Ndtvm9v1+PTqiUQm87guYUkoGjdC3bUL+uUrsReUPj+0LFguJ2G3WlH36OmyXRoahqJpUyyni4ME49Zt2M1mNMOGu7T1GTIUa3oa5qO3L0irzNf0eiqza1V6/W0pl7FbrSg79XDZLgkOQ96gKdbzjpR9W242+e+95PZnPrwfu9FI/nsvYfiz/NZQ9Oiadhm7zYqi3XWuQaHI45tgvegh+JbJULTphvX0kYpbnuNmkEhQDX0Qu9GAedvqO+dxU0hQ9r4Hu8mAZe81wa/GPRCT+AUhb94Na0oi9vwcr57NarPz/KrDHE7J5f2BTWkWFeixXa+6EWy5kE6Krnjkb9elTBJz9PSOC3du6147DLlUwu+Hi7MQ7HY7vx9OItxXVeL5b9p10U4OJWXywaj2NIvxXDSrd4Notpy+QkpucRbarvOpJGbl06ehYzmTYF8VH4/u4PbXpmYYKrmUj0d3YGLnel562nj+t60cupTBB2O70KxGmGfPhjXYcuoyKbnF34e7zqaQmKmjT6Mazm3d68eglEtZeuAstmuK1fy5z5FZ9b+W7go4ivLcyb//MSrFCOVV6tSpw+zZs1m9ejXvvfcev/zyC1OnTr0jlaWiH+qPPECDMsLREx3StxWqao7/T/p+NVadnsTPFhM2tAONZj9D0jfLsej0VBvfF4lcxrl3fnGeq/bL9+FTM4LsLYcxpWajrh5Otft7I9OoOPNS2eeqVH+oH/IAX+foXFjfVqirOb4EL32/CouukAufLSFyaHuazX6axG9WOCrSju+DVC7jzDuOqni2QhPpq/a6nT+8fxv8W9T1uO9WiHqoP3J/X5SRDs+QPq2dI4zJP6zCqtNz6bPFhA7tSIMfnuXyrOVY8vREje+DRC7nwjXX1Jyew8VP/6Tm82Np/OtLZK7ejW/DWCLv603an1vITzjr0eFmiXhwADJ/X+frH9SnNcoi19TZK7Hq9CR/voiQIR2J/+4/XPl2Gda8AsLH90OikJP0bvGNV+qclYTd3YN6P71IyuyVmJLS8evQkNARXcndlOAyB9Mbgu4fjMzfF3m4w8+vZ1sUkY7/z/ppGbb84h+8gGHdMadkoN/peX5p8APDCL5/MPr9x7EXGgkY5npjl7dmO/ZC7+d8aUYOR+qnRRrqqMCp6tQRWbjjh7Dgj8UuQYC6b2+s6emYDiR4PJcsIoLAN1/FuHUb1sxs5LVq4jt8CJazZ9HN+t5rRwCf4SOQaq/x7NgRWZjDU7/4T+y5uRSuWoVm8GCCPvoEw5bNjqIsw4YjUSkp+GWe81y2jHT0i/7Ad+w9IJdjOXECVefOKJs1I/etN71e1P4qVeWaViXXqvT6qwaMQKLRIgl2fOYVrTsgDXa4Glb9iT0vF9M/q1D1GYz2tY8x79qCRO2Dqv9wUKowLC76rjIZMe/e6nZ+RdvOULeBx323irL3MIdrYJFr8/ZIgx3X2Lh2CXZdLubNq1F2H4Tv8x9i3rcFiVqDsudQUKowLv/F7Zzyxm2Q+gVgLMvak9eh6DzIkfYb4PCUN2qLtOj/TVuWg0GPasTDoFBiu3wOZHIULbsirRGP4ZeZ2HPSXR1b90AaFAZKxyiPrHYjlH3GAGDeuwF7tmv7W0Hepg8StS8SbaDj3PEtkPg7frfMu/8GYyHKfveDXIEtJRFkcuSNOyKNro1pyazidFZA2fsepEERWM8fxa7LRhIYiqJVL1CoMP39s9eOH289xabz6XStFUqewcKKE1dc9g+q7whWJrauxbrTqTzy517uaV4DvcnK3P0XiAvRMqxB8bzUCD819zavwU/7E7HYbDQM92fjuXQOJOfwTr/GZVrn8aO1B9l46grd4qLIKzSx4pDrdI9BTWMdrp3qs/ZYEg//vIlxbePQmyz8tOMkceEBDGtWEwAfhZye9d3n0244mcwRSZbHfTftuXo/G08k0a1eNHl6EysSXDumBzV3FOaZ2K0Ra49e5OHZ6xjXoT56o5mfth0nLiKQYS3rONuH+vkwqWtjvvrnEJPn/kOPBtU5lZLNn/vO0L9JLI1LCKwFgqtI7HZ7pQyTDQYDX331FXPmzMFisTB37txyTXndGDG61P3t93yJuka4x307W0/GcMnxA6CODafOq+MJ6tIEiVxG3r5TnHtrPrprAprwEZ2oNr4vmvho5AG+WHL15O46TuIni8g/XProlPkmBpE77/kcnxJct7Se4nT1iQ0n7tX7Ce7SGKlcRs6+U5x561fybhB8Nfr0ccKHtGdD7QmltlNLSl8Au82er1BX9+y5u83jGK9e0xrh1Hp1AoFdGiORy9HtO8X5t+d5DBKjHupPtYcGoK4Rjikth7TfNnHx49+xW0p3UUpLv4lrvusbVCW4Hmj7KKYkh6uqRgQ1XpmAf+cmSBRy8vee5NI78yg46NqTrq5TjZjnxqFtGYciLBBzajaZy7dz+cMF2EqZm+Dnc+Pgre6m2ShjIjzuO931QcyXHb32ylrR1F33LZnf/0nqjB88tq/2/lMEjupd4nNde77rCYoqeb7wVcJ+/xV5VKTHfWl3jcWa4kjHklWvTvivc8lf8Bu6L7722F7ipyXw/55H0bABUn8/rBkZGP7ZSP5P81yWkfCEVFH66x/66wJkkZ57ZNPH3o0tNQWkMnyGDsVn4CBk0Y4bA8uJE+T/PBdzwgHXgyQSNPeMQzNkCNLgEKyXkyj4ZT6GdaWPvtnMN/78V5ZrejNUFteq8vorg298Y+z/9QJk4Z6vae5jY7GlO1xV/Yai7DkQWVSR65kTGP6Yi+VIQqnn10x5AWX7buTcN6DUdlKt53TUa/H7cD7SMM+uec+Mw56RClIpyp5DUHYd4CxuYz1/EsPSeVhPuLv6PP5fFK27oJs2GnvBzaVkSoM0pe73feV7pMGev1Pz35iIPSsNedteKLsNRRoaBXY71sRTmNb+5rKMiNNxyjvI63pey1H/xf9hPeN5lFoafOOqoD7TZiIN9Dw6pf90OvbcDOTNuiJv19/xb7LbsV0+i2nrUpdlRABkjTqgaN0LaWg1UPuCQY/14knMW5ZgS7lQqockxH1NxqtMWrSXfZfd00OvcmBa8XIaZzPz+WjLKQ4kZ6OQSelSM5Snu8QTonFNubTZ7czZe4FFR5LIKDBSI1DDQ61rMbD+jUfSJAEBJe6bOHcj+xIzStyf8PJdzv8/k5bLR2sPceBShsO1bhTP9GnqNg/xel5euod1x5PY8cKI0kWVJaeZTvxhLfsulDwin/DmvcWeqTl8tHo/BxLTUMhkdImvxjMDWhKidV1OxG63s3DXKX7deZLLOQWEatUMaV6bR3o08VjR9lp8xrxS+r+lEpL/nxtc/wpG+0Hlz8S8FSptQHmV5ORkkpKSaNiwIVpt+RVauVFAWVm4mYCysnCjgLIycaOAsrJwMwFlZeFmAsrKwo0CisrCzQSUglunqrz+NxNQVhZuJqCsLNwooKws3ExAWVkoLaCsbJQWUFYqSgkoKxsioLx1/tcCykqV8uqJatWqUa1atTutIRAIBAKBQCAQCASC66j0AaVAIBAIBAKBQCAQlBv2qpGpUlUQ+VQCgUAgEAgEAoFAIPAKMUIpEAgEAoFAIBAI/j38Dy7dcScRI5QCgUAgEAgEAoFAIPAKEVAKBAKBQCAQCAQCgcArRMqrQCAQCAQCgUAg+NdgFymv5YoYoRQIBAKBQCAQCAQCgVeIEUqBQCAQCAQCgUDw70GMUJYrYoRSIBAIBAKBQCAQCAReIQJKgUAgEAgEAoFAIBB4hUh5FQgEAoFAIBAIBP8ebLY7bfA/hRihFAgEAoFAIBAIBAKBV/xrRyijgvLvtMJNIZNWnR4UubLquPoEme60wk2hCq86fT6yKO2dVrhpJIp/7VefAJD4ae60wk0hCQm60wo3jSQg4E4r3Dy+fnfa4ObwD77TBjeNJDTmTivcNNLg6DutcFNIfKrI+7SqIorylCtV525VIBAIBAKBQCAQCASVChFQCgQCgUAgEAgEAoHAK0Tel0AgEAgEAoFAIPj3IFJeyxUxQikQCAQCgUAgEAgEAq8QI5QCgUAgEAgEAoHgX4PdLkYoyxMxQikQCAQCgUAgEAgEAq8QAaVAIBAIBAKBQCAQCLxCpLwKBAKBQCAQCASCfw+iKE+5IkYoBQKBQCAQCAQCgUDgFWKEUiAQCAQCgUAgEPx7ECOU5YoYoRQIBAKBQCAQCAQCgVeIEUqBQCAQCAQCgUDwr8EuRijLFRFQekCiURM88S58mtZD3aQeskA/rvzfR+QtXufSrt6JVSWeo2DbfpIm/hcAWXgw4c9ORN0kHnl4MHarDdOFy+T8spy8JetKPMfNugY9NBpVk/qom9ZDFuBH6osfoluy1qVd3WN/l3gO/fb9JE/6P4/7tIN7EPn+C9j0hZxrPdx7Tx81AQ+MQdW4PsrG9ZAF+JPxygfk/7XGpV3NhLUlnAEKd+4j9bEXXLbJY6IIfOIBfNq1QKLRYE3LoGDNJnK+mOO9q9oHzdixKBo0QFG/AVJ/f3LfnYHh79VubVXde6AZPRp5jRpgtWG5cJ6CBb9i2rnzupNK0Nw9Fs3QYUhDgrFcSkL/y3wM/6z32tMhoEY9dCyyug2Q1a2PVOuP/qt3MW1yf70V7bujGjwaWbUa2G1WbJcuYPhrAZYDxa7SsAj8v1jg8akKPn0D8/YN3nkq1Sh7jkQWG4+sRjwSXz8Kf5mJZbf7v1/ReRCKLoOQhkRiz8/DkrAF48p5YDK6nrLPGGSx8Uhj45H6BWFc/Qum1b9653e9a/fhSGvEIaseh0Tjh2HhZ1j2uv/bFR0HoOg4EElIBPaCPCwHt2Fa/QuYi10lYdEo2vZCFt8caXAkdlMhtsvnMK1ZgC3p7L/Dtap4AihUKDoORhpdB1l0HSQ+WoxLZ2E5uNmtqbxNHxSt+yAJCseu12E9thPThj9cXQNC0Uz/1ONTGRZ9jvXoTo/7bsTR1FyWHb/CnqQskvMKCVQraRIZwBMd6hAb5OvS9lxWPh9tPsWBKzkopBK61Azj6S7xBGuULu1sdjtz9yfy++FLZBSYiA3U8GDrmgyoF+WV41WOJGex7GAiey6kk5xbQKCPkibRIUzp0YjYED9X1/Q8Plx7kAMXM1DIpHSJi+KZPs0I9lWVeP4Vhy/y3yW78VHI2PHCiLK5Xkpn2f4z7DmbQnJ2PoEaFU1qhDGlb0tiwwJcXdNy+HD5bg5cSHW41q/OM4PaEqxVO9t8vfYAs9YnlPh8cx4bSIuaEbfueSGFZbuOsufUJZIzcwn09aFJrSimDOlEbESws93hC1f4a8dRjly4wunLGVhsNhK+esbjOX/bnMDuk5c4cuEKKdk6hrRvxJvj+9+ym5vrmYv8tWkPe46eJjk9m0CthqZxsTwxdiA1q4UXu55J5K+Nezh8OpHTF5OxWG0c/O0Tt/Mt3bibV74q+bv+nan3MahLq1v3PHGGpWs3sSfhKMmp6QT4aWnaII6pD42lZkw1AGw2G3+t3cz6rbs4fuYCebp8oiPD6d+9Iw+MGYJKWfyZSknLYPHqDWzetZ/EyynIpFLq1qzOI/eOpEOrprfsdy2Hj5/kr5Xr2b3/IMkpqQQE+NOsUX2mPjyemjViil1XrWfdpm0cP32WvDwd0VGRDOjdjQfuGYVK5fr5b9xpgMfnevKxB5l0/5gy+Qr+9xEBpQdkQf6EPnEv5supGE+eQ9Oumcd2V/7zvts2VeN4gicMp2Dbfuc2eaA/8shQdH9vxXwlDYlcjqZjC6LefQZlrWgyPvnJe9fAAIIn34c5ORXjiZJdU55/z22bulE8geNHoN++z+MxEo2a0GcmYdMXeu3n9AwKIPDR+7Ekp2I6dQ6fNs09tkt/8V23bapG8fjfO5LCHa6eynp1iPz+QyxpGeTOXYQtNw95ZDiyyLAyuUoCAtBOeABrSgqWs2dRtmjhsZ3PiJH4T5uOccd28r/9FolSibp/f4JmvEfOKy9h3LLF2VY7cRK+996HfvkyLCdOoOrUiYCXX8Fut2Pc8I/XrlL/ANR3TcCWnoI18SzSRp5dlf1HoHlwGuZ9Oyjc6HBVduuP9oUZFHz0CubdW1zam7aux3zA9UbXcuqY154SrT+q/vdgy0rDmnweeZznH1PlkAmoet2FOWEr5k1/IY2sgaLLYKSRNSj85lWXtqpB92PLzcKWdA5pg1u/eSjR1dcPZZ+7sWWnYU2+gLxuE8+uA+9H2WMkloPbsWxdjjQiBkWngUgjqmP4/g1nO0W73ija9MZyeAfm7auQqH1RtO+Lz5T3MPzwBtbTh/7nXauKJ4BE44ey20hsORnYUi8iq9nQYztFr7EoOw3BcmwX1t1/Iw2NRt6mL5KwGIzz3b9vLYe3YzmT4LLNlnTGa885ey9w8EoOveMiiAvRkqk3sfDQJe5ZsIu5Y9pSN0QLQKrOwMQ/9uKnkjOlQ10KzVbm7r/A6Uwd8+5uh0JWPPPli+1nmLPvAiMbRdMowp+N59J58e8jSCQS+sdHeu3647aTJCRl0qdBDHERAWTmG1iw5wxjv1vHzw/1pG64I1BLzdMzce5GtCoFU3s2Rm+yMHfHKU6n5TJ/Yi8X16voTRZmrj+Ej0LmtZ+L66bDJCSm0adJTeIig8nU6Vmw4wRjP/+LnycPpm5kkMM1t4CJs1aiVSuZ2q8VepOZuZuPcDolm/lPDEYhd/j0ahxLjVB/t+f5fPU+9CYzjWNCvfNcu5uEs8n0aRlPXHQomXl6Fmw6wNh35/Hzf8ZRt5rjvFuPnGfx9sPER4cRHRpAYlp2ieecs2YPeqOJxrGRZOQWeOXl8bxL15Nw8jx92jcnPrYaGTl5LFi9lbHPf8TPbz9JXA1Hh8XW/cf5c/1O4mOjiA4PIfFKusfztWpQm7en3Ou2fd6KTZxKTKZdkzivPGcvXMqBoyfp27U98bVjycjK4delqxnz2PPM//xt4mrVwGA08fIHX9G0QRxjBvchONCfg8dO8dXc39h14Ag/fPgKEokEgH+272X2wqX06NiGoX27YbXa+GvtJh55/i3eePZxRvTv4ZUnwOx5v3Pg8DH69uhCfJ1aZGZl88uiZYx+aCq/fPsJcbVrYjAYeemdj2nWqD5jhg8kJCiQhCPH+fKHeezcm8Dsz991ul6lQ5sWDB3Q22Vbg7g6XnsK/j2IgNID1rRsznQehzUjG1XjOGr+8ZnHdnnL3HvXI9o2xW6zoVuxybnNeOoCl8Y/79IuZ/4yor9+jaD7hpHx6c9gs3nlaknP4nzXsQ7XRnFofv/CY7v8Ze5Bi0+bq64bPR4T/Og4bAWFFO4+iG+vjl75Xet5qdcYrJnZKBvG4/PLlx7bFax0H7FSt26G3WajYNU111siIfSt5zGfv0TKw89iN5rK5HcttqxM0keOwJadhTy+HiGzvvXYTjNiJObjx8l5sXh0t3DVSkJ/X4S6X39nQCkNDUUz5m70i/9E95ljpKJwxXKCZn6G32OPY9y00evX35adRe4jI7HnZiOrHY9ixiyP7VT9RmA5c5yC9190bjNuWEXA17+j7NrPLaC0nj+FeWvZRs+vxZ6bRf7L92PX5SCtXhf5M+69zhL/IJTdh2Pe8w+G+cX7bWmXUd/1GLJGbbAe3ePcnv/GROxZaUh8/dG+Pb/8XPOyKXjjQYdrTB3k0z90d/ULQtF1KOZ9GzAuKP5+sKcnoxrxCLIGrbEe3wuA5cAWTGsWgsngbGfesx7Nfz5H2WcshWUIfqqKa1XxBLDn56D/aDL2glykUbXwefgtd1dtIIr2AzAf3IJp6TfO7basK6gGPIAlvgXWUwdcjrGmnMd6eJvXXtdzX8tYZoQ3cQmy+sZHMGb+TubsPc/b/RxB+w97z2OwWPnlnnZE+fkA0CjCn8eX7Oev48mMauwYzUjLN/DzgUTublqdF7rXB2BEo2gmLtrLzK2n6FM3AplUgjfc1z6OGdVcg9e+DWMYPWsts7ed5J0RbQH4fusJCk1WfpnUm6gADQCNqwXz2PwtLD14gbta1nY793dbjuOrVNAmNpwNJy975efi2qURM8Z2cwaEAH2b1WL0zKXM3niId8Z2c7huOEShycIvU4cSFegI3hvHhPHYD3+zdN8Z7mpXD4D4qGDio4JdniMlJ5/UvAJGtIl3eZ5b8uzZihkPDnL1bFWP0W/9xOy/d/POgwMBGNO1GQ/2bYNaqWDGwvWlBpQ/PHU3UcF+SCQSOjzl+b7HG+4f3J13p9+PQl58y9mvYwvuevZ9Zi9Zz4xp9zlc+3biweE9USuVvPPDohIDypiIUGIiXANxg8nEOz/8QZvGdQkNdA/gb4bxdw3mvReno1AUe/bv3pGRDz/LDwuW8O7/TUMhl/Pzp2/SvFE9Z5u7BvWmWmQ4X/30Gzv3H3aOPrZt3og1v3xFUECxz5jBfbjrsef48qffyhRQjh87kvdfex6FQlHs2qsrI8Y/zvc//8Z7rz6HQiHn528+okWT4k6xu4YOIDoywhlUdmjj2glds3oMQ/r19NqrSiFSXssVUZTHA3azGWtGyV+6JSFRKPDr24nCPYexpGbcsL35cioSHxUSRRniei9dUSjQ9ulM4Z7DWD24KmKrEThhBBnvz8JusXrvd61npneemt6dMew7hDWt2NOnQyuUcbXImfUzdqMJiVoF0nJ6O5vN2LKzbthM4qvBluP6b7Lr9dgLC8FYnPKm6tQZiUKBfukSl7aFfy1FFh6OomEj710tZuy5N76uEo0v9twc142FeuyGQuxmo8djUKlBVk59TlYLdl1OqU1kNesjkckx73dNLbQccAS7ihZdXbbbs9LKx+16bsJVGlsPiUyOJWGry3Zz0WN5887ObbbL51wCHwD0OmznjyENj/l3uFYVz6uuBbmlu8bURSKTYz26w2W75YjjsbxRB88HKlQgLZ+RtOZRgW4jdrGBvtQJ9uV8VvHo0vozaXSpGeYMJgHa1wghNlDDmtOpzm0bz6VjsdkZ3aT4+kkkEkY3iSE138ihlBzvXauHuruG+FEnzJ/zGXnFricu0yUuyhlMArSvHUFssJa1x5LczpuYqWPertM806ep18Gum2tshFuQFxsaQJ2IQM6nF78v1h+5QJf61Z3BJED7uGrEhvqz9vD5Up9j1cHz2O0wsLn3Iz/N60S7e4YHUScqhPMpmc5tIf6+qJWK6w/3SLUQf7cRq/Kgeb1aLsEkQGxUGHViIjl/ufg9GBLoh1qpvP7wm2LT3qMUFBoZ1Nn7bJXmjeq5BJMAsTFR1KkZw7mLjs4KhULuEkxepVcnR6fI1XYAdWtWdwkmAZRKBV3atiA1PZOCMmR/tWjS0CWYBIitHk3dWrGcT7xU5KpwCSadrt0cAwTnLlz0eG6D0YixHDvpBf8OREBZjvh2a4MswM/jyCWARKVEFuiPPDoc/+G9CRjRB0PC8XIdXbtZfLs6XPOXe063DH3hMfS7DqHfvMfj/tuFpnNbZP5+FKx09VS3awmA3WQmav6XxO5cTuzOZYS9+yJSfz9Ppyp3zAkJKNu2xWfESKQRkciq18Bv+pNIfX3RL1rkbCevG4etUI81MdH1+BPHHfvjvEvPuRUsxxKQN2+Lsv8IpGERSKtVx+eh6Ug0vhhXLnJrr75rAoFzVxEw72+073yNvGnrCndEXvTjaHb9PNiL5k5Kq9eteIebRHL15ug616tz52QxN75RlPgFYi/Iu2G7slJVXKuKp0PG8V61W8yu24vcpVG13A5Rdh2J7//NRvPfH1FPfANZbc9pv2XBbreTqTcR6OO4KU/LN5BVaKJhhPuITeOIAE6m65yPT6Tr8FHIqB3s69bu6v5ydy0wEqhxzI1MzSskq8BIw2pB7q7RwZzwENB+sOYgbWqG0SWubHM8b8pVV1jsmltAVr6Bhh7SVRtXD+NEcukdkqsOnCUywJdWtW597uSNPfUEan1u3PgOY7fbyczVEejve+PGN8HKrftRKxX0ale2uYnXY7fbyczOJci/9FHPjOwcAIICbnz/kZGVg49ahVpV8rxgb7Db7WRmZRMYcAPXos79oMAAt31LVq2lTa8RtOo5jKH3PsKKNV7WTagK2O7w3/8YIuW1HPEf0gOb0YTu760e9weNH0bYMw85HxdsP0DKix/fLj0X/Ab3xGY0kb9mi9s+Tde2aDq24uLIx++AmSu+A3tiN5rQr3MdtVLUiAYg7P2XKNy+h9zZv6KMr0PAQ2ORRYaT8sCTFe6W9/lnBAQE4D9tOkybDoAtJ4fsZ57GfOyos50sJBhblvsoojUzs2h/SIW7Fs75HIlfAJoHp8GD0xyueTnkv/kM1tPFcyPtNjvmg3sw796CLSsDaUQ11IPuwvf/3qXg/ZdcCviUN7Y0R8+urFYDrGcOO7fL6jh6WKUBwR6PuxPY0pMBkNasj/XsEed2WS2Hq8S/9NdUWqsB0hr1MK//o+Iki6gqrlXFE8CeecXhVj0e24Xiz48s1jFyIfG7Jiiy27GcPYT1xF7suiwkgeEo2g9ENe45jAs/wno6ody8Vp5MIa3AyOPtHcF3eoEjGA/VuI/6hPoqyTWYMVlsKOVSMgqMhPgo3UaoQouK4aTnl5DJ4K3r4Yuk6QqZ3N3x+mbkO0Zrwq4paON00KrJLTRhslhRFo3KbT59hZ3nUln4SJ9y9fLomnCOtDw9k/s40gMzdEWufu6BW6ifD7l6o4vrtZxJzeZUSjYPdGtc7qOBK3cfJy0nn8mDyzZF5XawYss+0rJymTzGcyGYWyE3v4BtCcfp0aYJvj7u75+ysHz9FtIyspgyofSiNHMWLkWr8aFzW891DK5y8XIK67fuom/XDsg8zAkuC8vXbCA1PZMnJt1farvZ8/9A66uhc3vXjuLmTRrSr2cXYqIiScvIZMGfy3n+9ffRFRQwdsTgcnUV/O9R6QPKjIwMjh93jOQ0bNiQkNtw8+0NUl8Nvt3aULBpDzad58nseSs2YThyGllwANru7ZCFBDpSNW8zEl8Nmm5t0W/e7e6qkBP6wqPk/rYC81nP6RC3C4mvBp8u7dBvdfeUaBw/5MajJ8n4r6MAhn79VuwGA0HTJ6Fu1wLDrgNu5yxXDEasly5RmJ6OcccOJBoNmrtGE/DGm2RPm4o1uSj1RaUCs9n9eJOpeH8FYzcasCVfwpSZjnn/DiQ+GlQD78L3mTfIf3UatlTHzbw9M42Cd55zOda8eQ1+H/+Iz/2Po6vIgDLpLNYLJ1D2GoUtNxPrmcNII6qjHv24YyRIcfs/KyVhu3wOa+JJlN1HYs/Nwnr2MNLw6qhGPlrkWnLalsQ3APW4p7Fnp2HauFi4VjFPAFvKBaxJZ1B0HIw9LwvrhWNIw6JRDnwQu9Xi4mrPy3Qr0mM5tBWfye+j7HMvheUUUJ7PKuDdjSdoGhnAkAaOipRGi6MbXOnhxlUpd2wzWq0o5VKMFpvHojcqZ7vy61I/n5HHjNUHaBoTzJCmNYtcHVMrPDs4AjNDUZBmttr4cM1B7mpVmzph3s2Xu2nXtBxmLNlB0xphDGnlyJIwmi0OVw8Bo9PVbPEYUK48cA4oW7qrR8+UTGYsXE/TWlEMaV+GaRS3gfOXU5nxwyKaxddkaPc2ZT7f2p0HMVusXlV2LY1zFy/zzmc/0KxhPEP7di+x3Xe//MnO/Yd5adok/LUlj7gWGow888bHqFRKnpw0rnxdEy/x9kdf0qxxA4ZdV1TnWr79aQE79x7gpWefwN9P67Jv3jcfuTweObgvYx6axmezfmL4wD7lPqIq+N+i0gSUH3/8Mffeey8REY4UEJvNxjvvvMOCBQuwWq3Y7Xbkcjn3338/zz///A3OdvvR9uuEVK0ib3nJ6QGW5DQsyY55X7oVm4h4YxrVZ7/D+QEP39a0V23fzkjVKnQeXAPHj0QWFEDWFz/fNp+S8O3dBala5bFQj71ojmLBatd/Q/6qfwiaPglVs0YVHlAGvPY6WK3k/Le4KI9x21ZCf56PdtIkct94vWijERQe5rBcnStiLN+ef0/4PvUa2KwUvP9f5zbznm34ffoz6rGT0H/6RonH2gt0mDauQj38XiTBodizbjw/2FsK58xAPeF5fMY96XhuqxXzxiXI6jZGGh5dYc/rDYa576O+71nUd08Fily3/IWsdiOkYSW4KlSoH/ovEpUPhV++6D4P8F/uWlU8AYy/z0Q1aiqqYY86XG1WzDtXIYutjzTkBimYhgIsCZtRdh6KxC8Yu+7Gc7ZLI6PAyLS/DqBVyvlgYPF8wqvBoMlDMGgqCjZVMpmzrdlDO6OzXfmMpmTkG5i6YBtalYIP7+pwjavDw7ODI9hUF7WZt/MUOXojj3er2MApQ6dn6o/r0KqVfHhfT2RF8/RVRfPszB7qCzhdPdRGsNvtrEo4R92IQLdCPWXyzC1g6leL0fqo+PDhoU7PykhGTh5T3v0OrUbNh08/UC6uK7fsJ0CroVPzBuVg6CAjK4cn/vsuWl8NH7/ydImjias3bOfzOQsZOaAndw/tW+L5rFYbz709k7MXk/j6nRcJDy3H1z8zi8nPvoJW68snb/0XmczzPO1V6zbx+XdzGTm4302NOCoUCu4ZNYQ3PvicYydO07JZ43JzrgyIdSjLl0oTUH733Xf07t3bGVB+//33/PLLLzzwwAMMGOBIiVixYgU//fQTMTEx3Huve8noO4n/4B5Y8/Ip2LD7po/R/b2VwDED8GnTGP3W/Tc+oJzwG9zT4bpxl8t2qVZD8GP3kPvrcqS+GqS+jsIIUo0PIEFeLQK7wYA1q/SCFeWF74Ce2HT56DfvcttnTXeki1ozc1y227Icj6X+WioSWVQUqnbtyPvwA5ftdp0O05HDKBoXf/FaM7NQNndPg7ma6no19bWikIZHoWjRDv0s18qa9gId1hNHkNe78Y+ELdNRbU+i9a/QgNKem0XhZ88jCY1C6h+ELT0Zuy4H39d/xJaWXGHP6w32vCwKv3oRSWiUY+5exhXsuhw0L/3gTN90QSZHPeF5pFGxFH7/BrbU25cBUFVcq4ongF2XjeHHN5AERyDRBmLPTMFekIv8qS+wZabc+Pi8os+9jy+UIaDUGc1MWXoAncnCD6NaE35NymhYUbpqht69wzKjwESAWuEcqQz1VbEnKQu73e6SiplRlDYbpi376ITOYOaJX7aiM5iZPaE74dekjIYWzftLz3fvEMjINxDgo0Qpl6EzmPlu6wnGtKpNvtFMvtGR/VFosmAHLucU4KOQEexbttRHncHEE7PXojOYmP3oQML9iwsFhRZ5p+vci6pk6AoJ0Kg8jk4mJKZxJSefaf3LbyRNV2jkiS8XoSs0MvvpsYQHVuxvX1nQ6QuZ/M636AoKmfPGVMKD3efw3SpXMrLZf+Ico3q197pi7vXo8vU8/n/voMsv4KeZb5QY/G3fd4gX3/+Cru1a8PKTD5d6ztc+/oZNO/fz7v9NpV2L8gvMdPkFPPbMy+jyC5j71QeEh3nO4tu+ez8vvvUhXTu24ZX/TL3p80eGO+YJ5+bll4uv4H+XShNQ2u2uPQW//fYb48aN47nnitPvmjRpgl6v57fffqtUAaUsLAhNu6bkLl6H3VNqYwlIixaVlZWSIlHeyEKD8WnbFN2StW5pmFJ/P6S+GoImjSFokvt8gZrr5pK/fjspU1+/LZ7qNs3I/2uNx3RR47HT+I0Cebjrl6es6MvUll2xQa80qOgHxkPvqkQmh2t6CC1nTyMZPBhZbKxLYR5FA8fcIcsZ79eiuxkkAUEluiKXubiWhDTcMeJiz8spR7OSsWdcwZrhmKcmjaiONCAE4273kerKgD3jCvYiV0l4DNKAYEx7ryt2JZGgGjsNWd2mGOZ9iO3cUQ9nqniqimtV8QSwZ6Viz3JUqpSERiP1C8J0cPMNjgJpUNGC7nrvi90YLVamL0sgMaeAb0a0ok6IazARrlUT5KPgWKp7oaIjqbnUCy0uIFIv1I/FRy9zLqvA5TxHUnOd+8uC0WJl+sJtJGbpmHVfV7dU1Qh/H4I0Ko4lu883P3I5i3pFxYHyDCb0Jgs/7jjFjztOubUd9PkqusdXY+bd3s8jNJotTP9xHYkZecya1I86EYGurgG+BPmqOZbk3rl25FI69UoYfVx54CwSCQxo7r78ideeXy8mMS2bWdNGUyeqck4JAjCazEx773sSr6Tz7cuPUyfG+3VNr2XV1v3Y7fZyS3c1mkxMefk9Ei9f4dv3X6ZOrOeq0YeOn+bJVz+gUXwdPnz5aeSl/I5+NOtnlvy9kecnP8DAnp1LbHfLrkYTU557jcRLl/nu0xnUqRXr2fXoCaa/+CaN6sfz0ZsvIr+FwDsp2dE5FhRU9uC/0iFGKMuVSpsXkZycTM+e7mvh9OrViwsXLtx+oVLwH9gNiUyGroTqrrISPogBd/XDbrNhOFaxAcW1aK+6eqjuas3K4crU19z+9DsTsBmMXJn6GtnfLbgtnr79uyORydyqu16lcON27EYT2mH94JredO1Ix9pbhTv3Vaif5XISdqsVdQ/X96g0NAxF06ZYThe/psat27CbzWiGDXdp6zNkKNb0NMxHj1CR2FIuY7dZUXR0XfNKEhyKvH5TrOdPF2/zc3+vSoJCUfYYgDXxLPacsqXm3TISCaqhD2I3GjBvW317n/tWkUhQDZqA3WTAvPNvl13K4Q+jaN4F4+JZWI9U3DzUm6aquFYVTwAkKHvfg91kwLL3ms4PjXsgJvELQt68G9aUROz5OV49m9Vm5/lVhzmcksv7A5vSLCrQY7tedSPYciGdFF3xyN+uS5kk5ujpHRfu3Na9dhhyqYTfDxcvz2G32/n9cBLhvqoSz3/Trot2cigpkw9GtadZjOfAp3eDaLacvkJKrr7Y9XwqiVn59GnouLEP9lXx8egObn9taoahkkv5eHQHJnZ2X9bh5l1tPP/LRg5dTOODe7vTLDbcY7vejWPZcuISKTnFIze7ziSTmJFHnyY13dqbrTbWHr5Ai9gIl6VGyuT5w3IOnbvCB5OG0Kx2tTKfs6Kw2mw8N3Muh05d4MOnJtAsvma5nXvVtv1EhQbRon7Zg3Sr1cazb87k0LFTfPjyUzRvGO+x3bnEJJ7477tER4bzxVvPo1aVPL97zsK/+PH3ZTw8bgT3Fd2flAdWq5VnX5nBwSPH+ejNF2ne2HO679kLF5n8n1cda0++/1qJ8yCziqrUXktBgZ6ff1tCUKA/jepVnirrgspJpRmhBMjPzycnJweAoKAgt1HLq0hvw/yAwHuHIPXzdY6AaXu0Q160kG7OvL+w5Rf/4PkP6YE5NQP9bs+LaQc/Nhaflg0p2LIXy5V0ZAF+aPt2wqdpPbJ/Xor54pUyuQaMG+ri6tu9vdM1d/5SF1e/wT2xpGZQ6MHVbjBSsH6H23bfnh2haT2P+24Fv7uHIfXzRVbk6dO1PbKidIq8BUuwX+PpO6AXlrQMDHsPejyXNTObnO9/IeiJB4j4agb6DdtQxtdGO3Ig+av+wXTUvef6VvAZPgKpVos01OGn6tgRWVgYAPrFf2LPzaVw1So0gwcT9NEnGLZsdhTlGTYciUpJwS/znOeyZaSjX/QHvmPvAbkcy4kTqDp3RtmsGblvvQm2shW7UPYbjsRXizTI4Spv1RFJiMPVuGoxdl0upg2rUPUajO/LH2HevcVRlKfPMFCqMCz9xXku9X2PIouohvnIfuxZmUjDIlH2HoJEpUb/4+dl8lR0HoTExxdJgOP1lzdqi7To/01bloNBj2rEw6BQOtYZlMlRtOyKtEY8hl9mYs9xXeRa3roH0qAwUDp+IGW1G6Hs4xhZN+/dgD3b86LYN+XacQD4+CL1d4w0yBu2cXqbt60Egx7l0IlIFAqsyeeRSOXIW3RBWj0O48LPsOcUj1woOg9G2XEA1gsnwGxC3rKby3NZDu90Lo3xv+xaVTwB5G36IFH7ItEGAiCLb4GkyNu8+28wFqLsdz/IFdhSEkEmR964I9Lo2piWzCpOZwWUve9BGhSB9fxR7LpsJIGhKFr1AoUK09/ez1X/eOspNp1Pp2utUPIMFlaccP0dGVTfkVUwsXUt1p1O5ZE/93JP8xroTVbm7r9AXIiWYQ2K56VG+Km5t3kNftqfiMVmo2G4PxvPpXMgOYd3+jUu0zqPH609yMZTV+gWF0VeoYkVh1yXUBrU1DGyMrFTfdYeS+Lhnzcxrm0cepOFn3acJC48gGHNagLgo5DTs777fNoNJ5M5IsnyuO+WXFfsYePxS3RrUN3heuCsq2sLRzGdiT2asvbwBR7+bjXjOjZ0uG4+TFxkEMNauy8FtePUZXL0Rga2KJ/RyY8WbWLjobN0a1KbvAIDK3Ydc9k/qJ0jAyY5M48Vux37jiU6RtK/W+XogIkK9mdwu+J1CjcdOsupy47vTYvVxunL6c623ZrUIT4mzDvXuUvZuPcI3Vo1Ijdfz/LNe132D+7qqDaanJ7l3HfsnGMtxW8XrXG4hgUxpKtrAZ/TF69wKjGZh4b3KpeKuR/OmsvGHXvp3qEVubp8ll1XXX5I764U6At59IW3ycvP54ExQ9i8y3W6UvVqkc5AdP3W3Xz83Txio6OoVSPa7XwdWjUlNCjQK9cPPv+ODVt30r1TO4fr366d70P69aSgQM+jT79Eni6fB8eNYvMO12XgqkdHOQPRX/9czj+bd9C9UzuiIsNIz8hi8Yo1XElNZ8bLz7qteSkQXE+lCignTpzo/H+73c7Bgwfp1KmTS5tTp04551lWJMEPjUIRXfw8fn0749fXkaqQt+wfZ5CmqBWNunE8WXMWQQkBcMGm3ShrRBEwqi/yoABsJjPGk+e58n8fkbd4XZldAx8chSK6OH1E27cz2iJX3bWuNWNQN44n+8eSXSuSgAl3Ia9W7Onbuwu+vbsAULByPZYiT3lsDKpG8eTO/aNUz9zv5mPLy8f/nmEE/+dxrBnZ5H7/CznfzivxmJvF9+67kUUWF9ZQd+0GXR03rYVr12IvKED3ycdYzp7BZ+AgtA8/AoDlxAlyZ7yD+ZBrwJ7/7SxsOh2aIUPw6dcf6+Ukct9+E8P6sr/+6sF3Iw0vvq7Kdl2hXVcAzFvWYissoPD7T7AmnkXZYyA+9zjmeljOnsD41Qysx4tdLQf3IuszFFXf4Uh8/bDr87GcOIjxz3kuI5neoOw5Amlw8WdK0awjNHOkpZn3bcRu0GO9fA5lt6EoWnUDux1r4ikKv3rJZRkR5/Ht+yCvW7yWnzy+GfL4ZgBYzx/DWpaAsttwpMHFIxPyJh2QN3EsVm/Zvwm7QY8t+RyKLkOQt+jqcL10GsO3r7oseQEgjXasSSirWR9Zzfpuz1Vw/pGyBb9VxLWqeAIoOgxCGlh88yxv0BYaOBYutxzait1YiC0lEXm7/sibdAK7Hdvlsxh+nuGyjAjgqFbbOhxFm96g9gWDHmviCcxblmBLueC149U1JDefz2DzeffUy6sBZaSfmu9HteajLaf4bNtpFDIpXWqG8nSXeOf8yatM6xSHn0rBoiNJ/HUsmRqBGt7u25gB9cq2zuPJ1BwANp2+wqbT7h2oVwPKyAAN34/vxkdrD/HpP4cdrnWjeKZPU49zEiuCk0VrSG46folNxy+5uxYFlJGBWr5/dAAfLd/Np6v3OVzrx/DMoLaeq7smnEUuk9KnifsapV55JjkK/G06fI5Nh8+5exYFipczc/ly2TaXfVcft4qLcQko1yWcZtnO4tTxE5fSOHHJ8TzhgVqvA8qTFxwVzzftO8qmfe6p6VcDystpWXy5cJWra9Hj1g3ruAWUK7c6MpEGdm7pldf1nDhzAYCNO/axcYd7ltOQ3l3JydORUlTDYeb3v7i1Gdq3mzOgPHnWcb7Ey1d48d0v3NrO/vBVrwPKE2ccr/nGbbvYuM29zsSQfj0drqmO78FPvp7j1mbYgN7OgLJFk4YkHD7GouWrycnVofFR07hBPG+++BTtWjX3yrHS8z+4FuSdRGIvaRjwNrN4sXup97CwMDp3ds03nzhxInXq1OHFF18s0/OdrF/2tY9uBzJp1XnHy5VVx9Un6PZV1S0LqvBKm5Xuhiyq8haDuB6JhwqMgn8PEj/NjRtVAiQhQTduVEmQBFShOVa+ZZsPetvwrzxr794ISajnuYaVEWlw5aoYXhISnyryPgUUoeUz8n47ybm7x40bVSCBC0teFaIqUmnuqkaMGHFT7X744YcKNhEIBAKBQCAQCAT/q4hlQ8qXqjP8IRAIBAKBQCAQCASCSoUIKAUCgUAgEAgEAoFA4BWVJuVVIBAIBAKBQCAQCCqcqlP2o0ogRigFAoFAIBAIBAKBQOAVYoRSIBAIBAKBQCAQ/GsQRXnKFzFCKRAIBAKBQCAQCAQCrxABpUAgEAgEAoFAIBAIvEKkvAoEAoFAIBAIBIJ/D6IoT7kiRigFAoFAIBAIBAKBQOAVYoRSIBAIBAKBQCAQ/GuwixHKckWMUAoEAoFAIBAIBAKBwCtEQCkQCAQCgUAgEAgEAq/416a8/l+h4k4r3BTWKjQmr5FUnbeTb07AnVa4KXzPV51rqkZypxVuGnkVchWUP6oqsvyYrz3nTivcND5VyFVWRV5/QcWgrSK3VSp71Xmj3nVl/p1WuHWqyPugqiBGKAUCgUAgEAgEAoFA4BVVZ/hDIBAIBAKBQCAQCMpIFUoArBKIEUqBQCAQCAQCgUAgEHiFCCgFAoFAIBAIBAKBQOAVIuVVIBAIBAKBQCAQ/HsQKa/lihihFAgEAoFAIBAIBAKBV4gRSoFAIBAIBAKBQPCvQRTlKV/ECKVAIBAIBAKBQCAQCLxCBJQCgUAgEAgEAoFAIPAKkfIqEAgEAoFAIBAI/jVU5ZTXxMREfvjhBw4ePMjp06epXbs2y5cvd2lTWFjIV199xcqVK8nIyCAyMpIRI0YwadIk5PLi8E+n0zFjxgzWrVuH2WymS5cuvPTSS4SHh9+SkwgoBQKBQCAQCAQCgaAKcPr0aTZt2kSzZs2w2WzY7Xa3Nm+88QZr1qzh6aefpk6dOiQkJPDZZ59RWFjIU0895Wz35JNPcubMGV577TVUKhUzZ87k4YcfZtGiRS6B540QAaVAIBAIBAKBQCD411CVRyh79uxJ7969AXjhhRc4cuSIy36bzcaqVauYOHEi9957LwDt27fn/PnzrFixwhlQHjhwgK1bt/LDDz/QuXNnAGrVqsXAgQNZs2YNAwcOvGknEVB6QK1RM+zREcQ3r0fd5nH4Bfrx+TMz2fDHPy7teo/tS7cR3YmuE4Ovvy9ZaVkc3XGYhZ8uID0pze28AaGB3PP0OFr1aoNfoB856dkc2n6Ir577vEyuIx4bSXzzesQ1j8cv0I9Pn/6Ef/5Y79Kuzz396D6iOzF1YvD115KVmsmRnYdZMPNX0q5zXXrRddj8KnPf/ZFFX/3hladKo2bIo8Op2zyeOs3j0Ab68fUzn7H5umvac2wfOo/oRrU6MWj8fclOy+LYjiMs+nQhGdd5+vhpGDFlNK37tSMkKoTcjFyObDvEopkLyEzO8Mrzqmu/R4dSu3kctZrVxTfQj9nPfsH2PzaWeIxMLuPVVR9SLa46v709lzXf/eWyf9ATI6nVPI7azePwDwvkr5m/8dfM37x2vIpSo6LXo0OIbV6XGs3q4huoZf6zX7P7j00lHiOVy3h+1XtExsWw5O15bPjO8+sN0GpYJ8Z/OhVjgYHnGj1QZtdujw6hevO6VG9WB02glt+e/Zp9f2wu1fXJVe8SERfDirfnsfm7FW5tgmuE0/eZMcR1aoxK60PulUwOrdjJ3x96d32VGhVdHh1MTPO6xBR5/vHsNxy4gefUVTMIj4th1dvz2XqNZ88nR9HryVElHjtr1Gtc3HdKuFYSV4VGRcdHBxPdvA7RzevgE6hl6TOzOHgDz0dXzyAsLpq1b89nx7crXfYHxUbQ64Wx1OrUCLlSzpUjF9j40R9c2HHslv2ud23z2CAim9clsnltfAK1rH56Fkf/2OLSrt9Hj9B4dFe347POJDOn53POx8F1omh8dzdiuzQhMDYck95I2uELbP9kEamHzpfJVa5R0eKxQUS0qEt489qoA7Wsf3oWJ393de358SPU9+CafSaZX3s857b9KnHDO9Ln88mYCwx8V39SmTybPz6I8BZ1CSvy3PDULE5d59n940eoN8az52/diz21MaHcu3Omx+daN/kLzv61U7hWIle5RkWDyYMIbVGXkOa1UQVp2fHkLM795urZ/pNHqHO3u2fumWSWd3V9n6rDA2n67EiiujZGHRZIYWo2SX/v58hnSzFl53vlCSDTqKg3eTDBLesQ3LwOyiAte6bPIvE3D99VEgm17+9J7ft74VcnCkuhkdxjFzn46jxyj110aRf/+CDqTOiFOjwQ3bkUTn7+F5eW7PDaU1D+SKWll8Cx2+1YLBb8/Pxctvv5+bmMZm7evBl/f386derk3Fa7dm0aNGjA5s2bRUBZVvyC/bn7yXtIT0rjwvHzNOnQ1GO72o1rk3oplT3rdpOfm09E9Qh6j+1Lq15teLr/dLLTspxtQ6JCeWfRewCsmb+azJRMgiOCiWsWVyZX/2B/xj45jrSkNC4cO0+TjiW4NnK47l5b7Nr3nn607tWWJ/tPJSs1y6X9gc372bDINdg7d/Sc155+wf6MenIs6UlpJB6/QKMOTTy2q9m4NmmX0ti3bg8FufmEVY+g59g+tOzVmhf6P0l2WjYAEomEF+e9Rkxcddb+vJor5y8TERtFn/sH0LRrc57tNQVDgcErV22wH0OnjyEzKZ1LxxOp36HxDY/pOWEAwdVCS9w/4j/jyEnL5uKx8zTu1sIrL8+u/vSffhdZSekkH08krkOjGx7TdUI/gkpxvYpSo2Lo/92L0cvreD2+wX70nj6K7KR0rhxPpM5NuHaa0I/AUlyjGsby6IKXyUvJZvP3K9Bn5xNYLYTAaiFee2qC/ehZ5JlyPJHaN+HZYUI/AkrwPLp6N5kXUty29/3P3Sh91Vw+dFa4ViJXTbAf3Z4cSU5SBqnHL1KzQ8MbHtP2gb4ElPCe848K5qHFr2G32tgxazkmvZHmo7tx78/P8/O4GVzcfcIrTwCfYD86PDmSvKQM0o9dpEbHkl0tBhNrnv/BZZtRp3d53GRsdxqP7c7plXtI+HkdKj8NTe/tybglr7Fo/Ptc3Hq0TK5tnhqJLimDzGMXib6B68bnSne9FrlGRYf/jsVcDt9V6mA/Wt2C5+brPE15nj1PL9nOpX8OumxL3XdauFYyV1WwH02fHklBUgbZxy4S2alkT6vBxM5nXT3N171P5RoV/Za9ilyj4tRP69AnZxHUsAbxD/YholMDVvV7GTykK96sa8NnHK45xy4SXopr608eocbIjiT+vpUzc9Yg16gIbFwTVai/S7vG/zeG+lOHcm7eP2QnnKNav1a0+3oKdrudpKXedygI3OnVq1ep+9evX1/q/tKQyWSMHDmSefPm0bJlS+rUqcPBgwdZunQpkydPdrY7d+4ctWrVQiKRuBxfu3Ztzp27tXt+EVB6IDsti4dajycnPYc6TerywfKPPbb79qVv3Lbt+nsnH674hO6jerD460XO7Y/NmIzVauW5Ic+Qn6MrN9estCwmtLqPnPQc6jaty0fLZ3psN+ulr91d1+zg4xWf0mNUT7eRx+RzyWxavLHcPHPSsnis9QPkpudQu0kd3l7+kcd2s1+a5bZt79+7eGfFR3QZ1YO/vv4TgLot46nbPJ7ZL89i7dxVzrZXzl3msQ+n0bhzM/b+vcsr19y0bJ5uM4m89Bxim9Th5WXvldreL8SfIdNHs/qbpQx/ZqzHNs93fpzMpHS0QX7MPDDHK6+SXF9q8yi69FyqN6nNs8veKbW9NsSfftNHse6bvxj0zJhS2/abOhJjQSFndhylSd82ZXbNS8vhzTaPkZ+eS3ST2kxb9nap7X1D/Ok1fSSbvvmLvh5cJRIJd388mfSzycwa+yYWo7nMjgC6tBxmtHm8yLMWk2/Cs8f0EWz5Zhm9nxnttj/1xCVST1xy2RYQFYx/VDD7FmzEarYK10rkmp+Ww0etJ1OQnktUk1o8vPytUttrQvzpOm0E275ZRg8Pnp0mD0Xtr+Gbvi+Qee4KAPt/3cAT/3xA31fu4/vBL3nlCVCQlsPXrZ5An55LRNNa3Lf8zRLb2qw2ji/eVur5jv+1g+2f/IlZb3RuO7JwEw/+8x4dnxpZpoCyIC2HOS2foDA9l7CmtRi9omRXu9XGqRu4XkvracMx5xtI3n6cWv1aee0IoE/LYW4Lh2do01qMWlm65+k/b84z4/CFm257swjX8nctTMthUbMnMKTnEty0FgNWl/6ZunCD547p1xJt9TA23P8hyesTnNuNOfk0fXokQY1qkH0k0StXQ1oOy5pOxpieS1CzWvRa7fm7KmZIO2re3ZXtD31C8qq9JZ5PHRlE/KMDOTN7DQn//QmA8/M30G3xyzR9eRxJy3aBzbvgt1Jil9y4TRXm1Vdf5dVXX2X06OLfpUcffZQHH3zQ+TgvL89tFBMgICDALY32RohlQzxgMVnISc/x6tir6aO+/r7ObdF1omnVozVLZy0mP0eHQqVAJpeVh2rZXC+5u16LUqVEoVJ4q+aCxWQh10vPq+nDmms8NVoNALkZrufMKRrBNBtMXj0XOFzzbsF11PP3kXIumZ2LS06Jy0xK99qnNKwmC7r03JtuP+T5e0g7d4W9i7eU2i6sZiTdHxrIkjd/xmotn4kGVpOF/FtwHfD8PaSfu8L+xVs97o/r2pSo+jVY9+kiLEYzCrUSibTsPxC36tnv+bFknLtCQgmenmg6tCNSqZSEpTd/jCeEqyvl4Wo1WSi4Bc9eL9xN5rkrHC4hAKrRph4pRxOdwSQ4RmBOrttPtSa1CK4ZUSZX/S24SqQSlFqfEvenHb7gEkwCGHLySdp9kuC61bz2BLCZLBTeoquiFNerBNSMoNmk/mx7Yz42q/cdHlepKE8AuY8KqaJ8fvtBuF6lPF1tJguGW/SUl+J59d9w/TkNqTmAY5TTW2wmC8abcI17dCBZ+884gkmJBJmPymO7av1aIVXKOfvTOpft535ahyY6hJDWZcuoE7iyfv36Uv/KyocffsjGjRt56623mDdvHs8++yxz587l+++/Lwd7d8QIZTmgDfRDJpMSWi2MMdPvBuDwtkPO/U07NwcgJyOH1355k6admmG1WDm4NYFZ//3a43zLisIv0A+pTEpYdBh3T78HgIPbDrq16zm6FwPGD0QqlXLp9EV++2whm5eWPC+vvNEWeYZWC2Vk0TU9es01PXfoDIaCQsY8M46CnHySz14msmYU4/5vAmcSTnF4q/u/qSKo1awuHUd1493RL2Oncvfc1WhWh7ajuvHp6Fdv2HbEK+M5vfMoxzYm0Hxwh9tg50pMszq0GtWVr0e/BiVc17hOjlRki9HC1L/eJqZpbSxGM0fX7GHxS7MpzC24LZ4tRnXl29Gv39Lr32x4J3IuZ3Bhl/fpjreKcC1/qjWrTbNRXfnxrtc9VtkDkCnlGDy8Fy2FjhvJqCa1yLqQWqGeAAofJVOPfYdCo6YwJ5+TS3ewecYCtwDSE77hgRRmeT/X61aR+yiZdNzhasjJ5/TSHex4ZwEWD66dX7ufyzuOc3HDQeoOaXfbHK96Pnii2PPskh3sLMGz1VMj6PDyOOw2G+mHLrDn/d9I2nxrIwDCtXK5yn2UjDn1HXKNGmN2PolLd3DgLVfP1J0nsFlttH7zfva9Ph/9lWyCGlSn0fRhXFq1l7wzV0p5hnJw1PoQ3KI2Z39cR+P/G0Odh/qi0PqQn5jGkbcXOEYdiwhsUhNLgQHdqcsu58g64Jg+ENi4Jpm7vZtDXxmpykV5bsSpU6eYPXs2X3/9NT179gSgTZs2WCwWPv30U8aOHYtWq8Xf35+UFPepI7m5uQQEBNzSc4qAshz4ftcclGolAHlZeXz/6iwObk1w7o+qGQXA4zOe4Myh03w4+T3CosMYM30sr81/k6f6TcVUhl6qW2H27p+ucc3l21e+4eCWBJc2x/ceY+vyraRdSiE4IoQB4wfxzOf/QeOnYfW8VR7OWv58uesHp6cuK48fX/3OJUjUZev4bMqHPPzuE7z0a3FKysGN+/nk8fexldOo2o245/WJ7Fm+nXP7TxESE3ZbntNbRr3+IAeW7+DC/tMEl+LasEcL6ndpynsDnr+Ndq4Me/0BDi7fwcX9pwmK8TyHLqRWJAD3fjmdk5sOsuGrpUQ1qEGPycMIiArh67teq3DPwa9P4PDyHVzaf5rAEjyvJzwumqgGsWz+5q8bNy5HhGv5M+D1CRxdvpOk/WcIKMEz89wVarStj9JXjemaOX7V28QD4BcZXOGeBWk57PlmBalHLiCRSKjZvSnNJ/QhrGENFo55G3sp35fRbetRrWVddn62tMI9AfSpORz4egXpRy4gkUqo0b0pTSb0IbRBDZZc5xrbszkxXRvzW78Xb4ubi2daDglfryDjsMOzevemNHqgD8ENa7Bs9DWeNjuXNh7i/Oq96FOy8YsNp+nDAxjw83P8/eDHXPwnQbhWQVdDWg7HvlpBVpFnVPemxD/Qh8CGNVg3qtgz73Qyu5/7gRYvj6P/8tedx59duJldz1bMSNG1aGuGI5FKqT68A3aLlcNv/opZV0jcpH60+2YK5vxCUjc4Out9wgM9js4a0nIc+yODKtxXUD6cOXMGgAYNGrhsb9iwISaTidTUVLRaLbVr12bHjh3Y7XaXeZTnz58nPj7+lp6z0gSUJpMJq9WKj09x6kBWVhbz58/n9OnTmEwmGjduzD333ENIiPcFNyqCtx54HYVKQUzd6nQb0R2Vj9plv9rX8W/KSc/m7QfecPZkZ1zJ5Jkv/kPX4d1Yt2DtbXF9Y8KrKFRKYupWp/uI7qg1arc2L4x0rVC2buFaPloxk/ufn8A/v6/HZKz44Pe9B95AoVISXTeGziO6ofKQopGXmceFo+f4+6eVJJ26SM2GtRj82Age+3Aqn07+oMIdO43uQXS9Gnz9+IcV/lxlpd3oblSrV505j39SajuZQsaIl8ezbf46Us9cLrVtRdF6dDci61Vn3g1cVUXv3aRDZ1n41JcAHFm9G7PBxIDn76Fup8ac2VZxPdUtR3cjol51fn185i0d12y4ozR3wpLynaNUGsK1/Gk2uivh9avz++Ofltpu37z11OvTilFfTmXDB79h0htpfX9vqjWpDYCiqOOsItn6nmvF45PLdpJ9LoUuz48hfmBbTi7zXGzDJ8SfQZ9NJvdSOnu+KbkadHmy8zrXM3/tJOdcCu2fH0OdQW05U1S9U6qQ0enVezk67x+yTyffFrdr2f2uq+fZv3aSey6Fti+Mofagts4qo/nJmay8732XtqcXbWXMP+/R/pVxtyVIE67lT8IMV8/EpTvRnUuh+f+NocbgtiReU8BGfyWbzISzJK8/SMHlDMLb1qPexL4Ys3UceOPXCvWU+zp+J1XBfvwz8BXnaGPy3/sYuHsmDZ4c7gwoZWoFNpPF7RxWg9m5X1A1iI6OBuDo0aNERUU5tx85cgSJREK1ao4pDF27duWrr75ix44ddOzYEXAEk8eOHWPSpFurll1p5lBOmTKFDz4oDgIOHTpEv379+PHHH8nOzqagmll4DQABAABJREFUoIDZs2czePBgzp71vtJgRXBkx2EObNzPsu+X8sHj7zHmybEMmDDIuf/q6OO25Vtd0qJ2rNiGxWyhXqsGbuesKA7vOMz+jfv46/slvD/5Xe5+8h4GThhc6jEWs4WVPy1HG6ClTtO6t8Xz2I4jHNy4n5Xf/8XMxz9g1JN303dCcfni8OoRvLTgTTb+tp6lX/7BvrW7WfTpQua8NIv2gzrRrHvLCvVTa30Y+dw4/v52KdlXMiv0ucqKSuvD4Ofu4Z9vl5FzA9fuEwfhG+zHqk9+v012rqi0PvR/biybv11O7pWsUttenSeb8Nd2l+0JSx0BRWyrW+tduxVUWh/6Pnc3W2/C83qaDetIyomLbgVlKgrhWv4otT70eu5uts9aQd4NPM9sPMiqV34ktm19Hln5DlM2fkRczxb8U7SsjamcqijfKvu/X4XNaiO2s+cq1nIfFSPmPIPCV82SiZ/cVGpsRXGwyDXmGtdmkwagDvZjz8eLSjny9nKoyDO6S+mVwY05BZz8bTNBdavhG1XxI9SeEK7lz4nvHJ6R13iGtYmj+9xnOPju75z84W+SVu9j/xu/cOTTpTR4ZAD+cWWbm3wjrs7RzE9McwaTAFa9keQ1+wluXgeJTFrU1oxU6T7OdDWQvBpY/q9gt0nu6F9ZKCwsZPXq1axevZrLly+Tn5/vfJyVlUXjxo1p3Lgxr776KgsXLmTHjh3MmjWLb7/9llGjRjkH71q0aEHnzp158cUXWbVqFf/88w/Tpk2jXr169O3b95acKk1AeejQITp0KJ6rNWPGDOLi4vjnn3/4+eef+fnnn1m/fj01atTg3XffvYOmpZN6MYXzR8/RdXg357bsoiU5ri8gY7PZ0GXr0JZQFKeiSUlM4fyRc3Qb3v2GbTOK1nX0C9RWsJU7aRdTuHD0PJ2GF6/51HV0T5QqBfvX73Fpu2/tbgDqta5foU79Hh6KXCFnz7LthMSEERITRlCkY+TcN8CXkJgwZIrKkQDQ8+HByBRy9i/bQXBMGMExYQQWpdlpAnwJjglDppCh9vOh75QR7FjwD2o/jbOtSqMGCQTHhKEN8b/Bs5WNrg8PQqaQc3DZDoJiQgmKCSWg6Lr6BPgSFBOKrKj4Ql6qowBTfoZrik5+Zp6zfUXRucjz0LKdBMaEEnidZ+A1ntcS27oeQTFhHFx6+0b8hGv50/GRgciUco4u30lATCgBMaH4F32m1AG+BMSEuhQJ2fPTWj5qNZnZI17lu0H/5auez2IsWgYh83zFzqEqCYvRjCFbhzrQ/XMiVcgY9u10wupXZ+mkT8g8lXQHDIuxGlxdlX4+tJo2jGO/bECp9cEvJhS/mFAURd9VfjGh+FTwd1VJnsYSrun15Cc77gtUN9G2IhCu5Y/VYMaUrUN5zXPXva8nhvRcsq5bxzVpzX4kUilhbSqu4xOgMMXxO+mpeI8xIw+pUo5M48gAK0zLQR3uPm9OHR7oci7BnSczM5Pp06czffp0du/ezZUrV5yPT58+jUwm45tvvqFHjx7MmjWLxx57jD///JNJkybx8ssvu5xr5syZdOzYkVdeeYVnnnmGmjVr8u233yKX39o9bOW44wX0ej1BQcX52YcPH+arr75ymRQaFBTEI488wrPPPnsnFG8apVqF4ppenrOHHbnMwZGuqbpyhRz/YH9ys/Juq9+1KNU3V8k1ooZjvlpu5p1xVaqVyJXFngGhgSCRuC3uejWIk8rKrzqdJ4KjQ/EN9OPNdTPd9g2aMopBU0bx+sBnuXTsQoV63AxB0aH4Bmp5cZ37Ui19p4yg75QRvD/weQrz9Ki1PvR+bCi9Hxvq1vbVrZ9zaM0efnjE85Iv5UFgdCiaQC3PrHNPI+45ZQQ9p4xg5sAXuHIskctHHD/Q/hGuPdH+4Y7vkYIKfK8GRoegCdTy5Dr31OruU4bTfcpwvhj4f1w55loOvtnwTthsNg4u3e52XEUhXMsf/2qh+ARqmbzufbd9XaYMp8uU4cwa8CKp13iaC40k7T/jfFyrc2PMhUYu7b0zRS4Uvmp8gv3QZ123jJVEwoBPHqNGp0Ysm/w5SbexGFNJXHUtzHS4qgJ8UWp9aDl5CC0nD3Frf/+OmZz7ey+rJ8287Z7qazxLw7+GYx674SbaVgTCtfyR+6pRBfthvOa51WEBzhHAa5EWVfqXethXnhhScyhMzcYnyn3+o09kENZCE5Z8R5ZE7pFE5Pf2wC8+2qUwT3BLR2Za7lHvljeprFTlojwxMTGcPHmy1DZhYWG89Vbpy14B+Pn58c477/DOO6UvO3cjKk1AWadOHRISEmjdujUA/v7+GI3uKTZGoxGF4s7ncUtlUnx8fSjIc63eV7dZHLH1YtlyTUXUIzsPk5OeQ9fh3Vj05e+Yi9bL63FXL2RymVtRnApx1fpQcF2lwbhm8cTWr+lSvdU/2J+86wJcH18fhk4cSm5mrjM4rjBPD9e0TrM4qteLZdvS4mU5Us4nI5VKaT+4M5v/+Me5vePQLgBcOHprC7LeKuvnrOTAmt0u2/xDAhg/4zG2/f4PB9buIePS7aveWxqb56zi8BrXkVxtSABjZzzMrt83cnjtXjIvpWE1W/n+EfdArusD/anZMp650z4jr2hyfkWxbc5qjq5xXSdLG+LPqBkPs/f3jRxdu4/sout6dO1ehrw6ntaju7Hvj03OdPI2Y3sAcHrr4Qrz3DHnb46t2efmOXzGJPb9vonja/eRdd3rL5XLaDywHYl7TpKbfPvSpIVr+bP7x785ed371DfEn8HvTiLht02cXLuPnFI+/zGt4mjQvw17563DqCusUFeZSoFULsN8XWpth+nDkUilXNh4yGV7rzfGU39oB9a88ANnVpe8Zl1FUJJr6yLXi5scroUZeaya5D7HusmDfYlsFcfaKV9SULQsw+30bPmkw/PSNddUHeyH4bqgXRMZRL2x3cg8loi+gr9ThWv5Iy3ytFzn2eQph2fyhmJP3bkUqnVvSniHBqTtOO7cHjvckZGX5eUalLdC0l87iXt4AOFdG5NWVAFXGaylWr9WpG07CkW/ncl/76PZ6/dRZ0Jv5zqUALXH90KfnEXGnv+dCq+C8qfSBJTjx4/n7bffpn79+nTu3Jn777+fjz76iJo1axIX51j75sSJE3z66af06NGjwn0GTBiEr78vwUWjH617tyUkylHFb+WPy0Ei4duds9m2fCuXTl3EqDdQo35Neo7uhV5XwO+fLXSey2KyMPedOUz75Cne+m0GmxZvILRaGIMeHMLRXUfZtXpHmVwHThjs4trmGtcVPy5DIpHww84f2bpsCxdPXcRYaCC2Xk16jelNga6AhZ8ucDlXu77t2bNuN+nJ6QSHB9FrTB/CosOY+eTHWMzuE7Zvlr4TBuLr70tQkWfL3m0IiXKM2q7+cQUSiYQvdn7PjuXbSCq6ptXrx9Kt6Jou/qx4Evym3/9h0CPDmPTO49RsVIukU5eo1bg2Pcb24dLJRPb8vcujw83SY3x/NP6+BEY4evWa9WrtTGn956dVXDx6notHXVNYrlZ5vXwqiYTrArj2I7oSEh2Gsqi4UFzbBgyaMgqAHYs3kXU5w2vXLuP74eOvIaDItXGvls6U1s0/rSbp6AWSjl5wOeZqldcrp5I4fM2N8eE17jeQTfq2IbaZzeO+W6XD+L74+PviX+TaoFdLZ0rj9p9Wk3z0AsnXuV6t8pp6Kolj1zjkp+ey4Ysl9H1mDA/99AJH1+ylWsMatBnbkwNLt5F0yPtOhfbj+6L21zg96/dqSUDRNd3x098ePa9WI007lcRxD9cqrmtTfIP9yj0tU7iWv2ubCX1Q+/uijQgEIL53C/yL5mTt/vFvUo5cIOWIq+fVKq/pp5M4eU1QHBAdyl1fTuXkuv3kp+cQHh9Dq3t7kXriIv+871rYwxuaT+iDyl+Dtuia1u7dAm2R64Ef16AO8OX+VW9zYukOss46itfU7NqU2r2ac37DQc5c49pyYj+aT+hD8t5TWApNNBjRyeW5Tq/ei6XQ+7mUjSf0QRWgwbfIteY1rofnrEEV4MvoVW9z5q8dZJ9xuNbo1pTYXs1J/H/2zjo8iuttoGclm81uXAgSgiR4gODu7u5aihUpFCu0tLS/FqlQpFCkpTjF3Z0CCRDcHSJA3F023x8bkizZhLARkn73PE+esjN3Zk7v7MzOO/fe9565xYtjWtfE2PjUf6enTLtaJLs66V33IVQZ3gaFeZpnqTY1Usfk3Vt7HIWFmt5H5/J0nzuhKXXqkOLpdeYWL9Mdv/7XAzAvVYRXF+8R5ReCmYMdlQa3xMjEmItzNuXIU7jmjWv5T7SeJimeJdrUQJXi+ehvrWeH43Px3OtOeIpnsWbVKNHaldenb+GTzvPR2hOU7deU5uun8OjvE0T5BGLfoCKlezTkzbk7BN3IWU4Qp0/aYGShxiTlXlWsbQ1Mimtdn645RmJEDA+X7sehS30a/DWZJ6sOkxARTdkhrZAYybibLrlQzJtgnvx5lArjOyM1khF88zkl2tfGrn5FLo9bDpqCPTWa4ONSYALKHj164Ovry9ixY3FwcKB8+fL4+/vTtWtXLC0tAQgNDcXFxYVZs2bluU+3Ud0pUjJtwukGHRrSoIM2A9K5PWcJ8Qvm1NYTuDSoSoMODVEoFYT4BXNh/7/s+H17hrklz+4+Q0JCIj0/68XQWZ8QFR7FiS3H2PTzRjSanLW7dx/dA/t0rg07NqJhx0YprmcI9gvmxNbjVG1QjYYdG6FQKgj2C+b8vnNs/30b/ulcH1y9T8VaFWkzoC1mlmbExcTx5OZjfp++hDtutzMc+0PoPKo7diWLpH6u16EB9Tpo39Kd33OOEL9gzmw9SeUGLtTr0CClTkNw23+ePb/vIDCdZ2RoBF93nkafqQOp2boOrQe1JzI0grPbT7Ht540k5SDwBWg3uiu2DmmutTrUp1aH+gBc2vsvMRHRH7S/Jv1aUaF+ldTPlRpWpVLDqgA8vfowRwFli9GddaYsqd6hHtU7aOdju7r3ArF53ALyITQd3VlnypKqHepRNcX1xt7zH+x66vc9RIdF0WhYO7p8O5TIgFDOLNvLyaW7c+TZeHQnrNJ5unSoi0uHugDc3HvBoFal6t0bkRifyN1DOXvZ8S7CNfddG4zqhGXJNM9KHepSKcXz9p4P84yLiCbCP5Q6w9pgYmFKhF8IV9Ye4/yyfbmSkKf26I5YpHMt37Eu5TtqXR/suUhceDTPT92gVBMXqvRujEQqJdTTj/M/bePqqsOprRMAdpVLAVC8dnmK1844tuvPhpMJ9zE8oHQd0xHzdK5OHevilOL6eLfW1fPUDRyauFAhxTXM049LC7Zx8x3XvKT6mI6YpfMs27EuZVM8n+y+SPxbz6YulO+j9Qx/6cfl+du4/Y6n9793qDykJVWGtUZhoSY+PBrfyw+5vmQfge+8lBCuBcO10tiOmKbzdOxUF8dOWs8Xu7Ser0/eoGhTF8r21XpGvPTj5rxt3F+p6xnx7A1H2n9D9Rm9KdOrIUo7S2L8Qri/4hC3f815Qqnyn3VCnc7VoVNdHFJcvXZeIDEihrjAcM52+55qcwZRbnQHJEYygq8+4cqEFYTd99LZ3525W4kPi6LskJaU6tuUyBe+XB6/HO89+Tf0Ib9ITs5ZYhyBLpLkzGZj/kg8f/6c3bt3c+vWLQIDA9FoNFhYWODs7EyLFi1o3bq1zlwphtKzVMYxYgWRpELUyVslKTDvJ96LupC4qgvOO5/3oqTw3JzlhchVkPsYF5IHCXUh8QQwKVBPElkjK0SugtzHtJA8VhkXrMfzLOn9ZvPHVvhgXjVo+VGPX8L99PsLFSIK3NNq2bJlC3zSHYFAIBAIBAKBQFA4KUTtNYWCAjNtiEAgEAgEAoFAIBAIChcioBQIBAKBQCAQCAQCgUEUuC6vAoFAIBAIBAKBQJBXJGsKzxj1woBooRQIBAKBQCAQCAQCgUGIFkqBQCAQCAQCgUDw/4ZClES3UJCtgHLo0KEfvGOJRML69es/eDuBQCAQCAQCgUAgEBQOshVQGjJVZQGb3lIgEAgEAoFAIBAIBLlMtgLKjRs35rWHQCAQCAQCgUAgEOQ5IilP7iKS8ggEAoFAIBAIBAKBwCAMTsqTlJTE0aNHuXz5MkFBQXz++edUqFCBiIgI3N3dqVmzJra2trnpKhAIBAKBQCAQCAQ5QrRQ5i4GBZTh4eGMHDmS27dvo1KpiImJYfDgwQCoVCp+/PFHunfvzpQpU3JVViAQCAQCgUAgEAgEBQeDurz++uuvPHnyhDVr1nDy5EmdBDwymYx27dpx7ty5XJMUCAQCgUAgEAgEAkHBw6AWylOnTjFkyBAaNWpESEhIhvWlS5dmz549OZbLS/5uHPmxFbJFcqzmYytkG0184cnsK1UUjq4OSdGFp07jQmUfWyHbaBILx/mXygvP+S9MJMQUju9qdITiYytkm9j4wjOtdYKmcJz/eE3hSXMRnmz0sRWyTaS0cNRrpLRw/E4VVsRkFLmLQVdVREQEDg4Oma5PTEwkKSnJYCmBQCAQCAQCgUAgEBR8DHql6OjoyL179zJdf/HiRZycnAyWEggEAoFAIBAIBIK8QCTlyV0MaqHs3bs3u3bt4vDhw6njJyUSCfHx8SxatIjz58/Tr1+/XBUVCAQCgUAgEAgEAkHBwqAWymHDhvH06VOmTJmCubk5ANOmTSM0NJTExET69etHnz59clVUIBAIBAKBQCAQCAQFC4MCSolEkjo1yLFjx/D09ESj0eDo6EiHDh2oU6dObnsKBAKBQCAQCAQCQY5JThZdXnMTgwLK5ORkJBIJtWvXpnbt2nrLREZGYmpqmiM5gUAgEAgEAoFAIBAUXAwaQzlw4EC8vLwyXX/u3Dk6depksJRAIBAIBAKBQCAQ5AXJmo/791/DoIDS29ubbt26sWnTJp3lkZGRfP3114wZM4YiRYrkiqBAIBAIBAKBQCAQCAomBgWUhw4dokWLFvz4448MGzaMV69e4ebmRteuXdm/fz+TJ09m27Ztue0qEAgEAoFAIBAIBIIChEFjKC0sLPjtt99o27Yt//vf/+jUqRNxcXFUqlSJFStWUKFChdz2FAgEAoFAIBAIBIIcoxFJeXIVg1oo32JnZ4dKpSI2Npbk5GQqVapEyZIlc8tNIBAIBAKBQCAQCAQFGINaKOPj41m0aBEbNmzA2dmZnTt3cv78ef744w+uXLnCvHnzCvfUIcZKlJ37IXOqhMypIlJTc6JX/UT8v8cyFDWq1wzjjn2QFXMkWZOExuclsQe3knjzcoay0iLFUfb5BHmVmkhMVGiCA0i4dJbYHX8b7qo0QdmtH/JylZE5V0RqZk7UsgXEnzma0bVhc5Rd+iIt4QiaJJK8XhC7dyuJ1y9luntFk9aoJ88mOSaG0MEdcuRp0rM/8vKVkJevhNTMnMjF84k7ldFT0bgFym59kDk4gkZDktcLYnb9Q8LVNE+JtQ3q4WORl6uI1NpWW/evfYg9tIe40xnP04e6Foo6TXFV9e6PvEIl5BW09RqxcD5xJ/XUa5MWmPRMV6+eL4je8Q8JHmmuMgdHjNt2RFGzNtJiJSA2hsSnj4netJbEJ49ypCoxUWI6qB+KKpVQVK6I1NyckB9+Ivqw7vkq4X46033EXrlK0KQZqZ+lNtaYjxyOcd1ayGysSQoIIvb8RSLWbUYTHm6wp9mQfihcKqKoXBGZhTlB3/9M9EFdz5IepzL3vHyNgAlaT/NRQ7EYPSzTsn6ffk787XsGuxaGOi1MrhITJRbD+2LsUhGFSwVkFuYEfvsLkfuP65QrffNEpvuIuXQNv7EzdZbJHYphOX44JvVqIFGpSPIPJOr4OUKXrTXIE0CiUmI7qhcmrhUwqVYemaUZr2YsImzXSZ1ylZ8dynQfkRdu4DVsNgCKsg5Y9mmDaeOaGDkWRRMdS+y9ZwQs2UTsnacGewJIVUrsx/ZAVaM8atdyyC3NeDllCcE79JxviQTbwe2wHdQOpVMJNDFxxNx/ic/3a4h58DK1mHHpohSfOQyzRtWQGhsRfecZr3/dQqT7nRx5FhvXDdMa5TF1dUZuZcazyb8TuP2MXs8iQ9pSZEhbTMoWJykmnuj7L/H6bi3R99M8jYpY4TCtH+ZNq6OwsyTeL4SQY1d4vXQniSGROXJ1GN8VsxrlMKvhjJGVGY8mLcN/21m9rsWGtqHokDaYOBVHExNP1P2XPP92HVH3PXWKKkvZU+rL/lg2rYZMrST+TTAB+93wXPCPQZ4ylTFlx3fBsqYzljWcUFiZcuvzFfhs+1evp+PQVjgObYWpU3GSYuIIv+/F/W82EHFfmwxS7VyckgOaY9u8KurS9iRGxRJ++yWPf9lJ2K3nBjm+Ra4ypsK4ztjUdMLa1QljK1MuT1rFy+26rnUXj6FMv6YZtg9/+pojTabrLDMtbU+1r/tj37gKUmM5IXdecvennfi73c+xq8tnnbCr4Yyta1mMrUy58MUqnm4/r1Ou8aLROPfN6Br29DV7mqXdT12n9MR1as9Mj3e42/f4X32SI+eChJg2JHcxKKDs1q0bXl5ejBw5kgkTJmBkZISLiwstWrRg1qxZDBs2jMGDB/PVV1/ltm++IDWzQNlzGJpAP5K8niGtXENvOUXbHqiGTSThhjsx//6JxEiBomk7TKfPJ2rRHBKupl3UslJOmH69CE1IIHGHd5AcGY7UpggSm5wlL5KaWWDSdzhJAb4keT5D6qLf1bhDD1QjJxF/1Z24M6u1ri3aY/b1AiJ//oaEy+czbqQ0wWTIGJJjYnLkCCA1t0A1YDhJ/r4kvXiGtJp+T2XnnqjHTCLew43o9auRKBQYt2qP+ZyfiJg3m3j386n7k9raEed2Dk2AHxKZHCPX2ph+8RXSEo7EbPzTcNdCUqeQUq+DhpPk50vi82coqmdSr117YvrZJOIvuxF9YjUoFChbt8fifz8R/sNs4t20rsbtO6Fs24n4i+dIOLQPqUqNsmMXLBb9QfjsGSTcvGa4q4UF5p8OI/GNHwlPnmFcS79r8HfzMixTVKqAab9exF1JO77ERIndn8uQKJVE7d5Hkl8ARuWcUPfujqKWKwHDx0Jy8od7WlpgMWpoiudzZLVd9ZYL+na+Hs/ymA3oReylq6nLYs5cINHndYayFuNGIDExIf6+4YF6YanTwuQqs7LAcswQEl/7Ef/4OSZ1XPWWC/hqQYZlxlXKYz6oJzHuuteJooITRf/6lUT/QMI27EITFo68aBFkRe0+2C89citz7D4fSPwrf2IfvkBdv5recq+m/JphmbKqMzafdCfqwvXUZVb92mHZpy3hRy8SvPkQMjMVVgM6UGbnb3h98i1RbjcNd7U2p9gX/Ynz8Sfm/kvMGlbNtGyphROx7t6MoF1nCFh3GKnKGJVLWeS2FqlljIrZUn7vz5CkwW/VHjTRsdj0bUW5zd/xZMA3RF427GFdbm2Gw5R+xPkEEH3/JeaNMvcs+9t4bHo2JXDnWfzWHkFqYozapYyOp1SlpMqB+UhVxvitP0r86yBUlUtj/0kHzBu5cLfddIOvKSMbM0pN7UusTwBR9z2xbOSSadnyi8dh17MJ/jvO8frvo8hUxphWLYNROlcAdZXSVNv9PXG+wbxaeYCE4AiUDrYoitsY5AigsDGj/LReRHsHEHHfE5tGVTItW23xGEr0asSrHefx/Ps4MpUx5i6lMba1ICKljOOgFpQc2Jw3h67gue4ERmYqHIe2ouHh/3FlwAKC/r1ruKu1GS5TexLlE0jofS/sG1XOtGxSbDwe0/7SWZYQHq3z2aS4Na0OfkdykoaHKw6SGB1HmX7NaLb1S872nU/ApYcGuyqtzXCd0pNIn0CCH3hRrGHWrhenr9FZFh+h6+p5xIPwl34Ztq05sw9GKiWBOQzWBf9tDAooAf755x+qVdP98apYsSI7duzgjz/+YPXq1YU2oNSEBhM2rhfJYSHIypTH6MeVessZt+1O4rOHRP36deqyuHNHsPh9O4qmbdMCSokE1WezSHrjReSPUyAhPvdcQ4II/bQnyaHByJwqYPTzKv2uHXuS+OQBUfNnpbmePozlnztRNG+nN/gx6T2E5NgYEu7eRFG3cc48g4MIHtJD6+lcActFq/WWU3buSeLjB0T8L53nicNYrduFccv2qQFl0svnhH81WWfb2EN7MPtmPiZdehKzeQ1oDMvLXFjq9K1r0MAeJIcEIy9XAcVS/fVq0qUnCY8eEP5dOtfjh7HauAvj1u1TA8q4s6eI3rQOYtMC3tjjh7FavQHV4OGE5SCgTAoK5k2nXmiCQzCqWJ4ia/VfVzHHTmZYZlyzOskaDdHH01oFlU0aIi9WlMCps4hzS+sRoAkPx/zTYRiVcyLh8Ye3qiQFBvOqfW80QSEYVSpP0Q0r9JaLPpKVZ1qrS8LT5yQ81f0hltnbIStiR9S+w5CY+MGOqa6FpE4Lk2tiQDDerfqSFBSConJ5TLYs11su6nDGFmplba1n1JF0rVkSCbY/fknCC298R00jOS737v+JAcE8qjeYpMAQlFWdKbt3id5yYfsytq6p6lUlWaMh7MC5tHIHzuG/ZDPJ0bGpy0J3nMDp+ErsJg3MUUCZ4B/M7ZrDSAwIRVXNmYqHFuotZ9m5ETZ9WvFs1HzCjmbe06Po+F7IzdXcb/05cc9fARC45ThVzv6Bw7ef8rDTVAM9Q7hefQQJAaGoqznhcvQXveWsuzTErl9LHo/4iZCjGXskvcWqXR2MSxbh0ZC5hJ5Ku38mhkbgMKUfqiqlib77wiDXeL8QLlUdSUJAKKbVnahx7Ce95Wy7NsC+Xwvuf/IzQUeuZL5DiYQKyyYS/fQVd3p9hyY2d76rcX6hnHQZS1xAGBbVy9L4+Fy95Yp1rU/J/s24Onwhfkeu6i0D8GqPG49/2UlSdFzqMu9/ztLswq+Un9YL9xwElLH+oeyrNo7YgDCsqpeh7dEfMy2rSdLguetilvurNKErCnMVR1vMJOLZGwCebz5Dh/O/4Pr9YE60m22wa7R/KNtcxxMTEIZNtTJ0OfJDlq7Pd2ftGvLAm5AH3jrLVMWtURez5vGWs2gSkgx2Ffz3MWgM5d69ezMEk2+Ry+V8/vnnbN++PUdiH5XEBJLDQt5bTGKiJjn8nXIx0STHxpAcn3ajk1etjaxkWWJ3b9AGkwpjkORo+Kqua2hwtlw1YaF6XYnP+KMhLVYC4869iV63HDS5cBPJrqdKheaduk/WU6eZkeTnC8ZKkBv8rqTw1ClAQgLJIdmr1+TQd+o1OlobOKar16Snj3WCSYDkiHAS7t5GVrJUjl01we+/rjJgZIRJ86bE37iFJiAwdbFErQbIsM+kIG19JMe9//uSqWeQYZ6qlk2Iu36bJP/ALIuq2rZEIpUSfTTzbrPZorDUaWFyTUggydDz37oxsdd0z79Jg1ooypUhdNVGkuPikSiNQZo79//k+ESSAj/cVaKQY96+EdFX7pLoG5S6PPbuU51gEiApNIJoj3sonHKWHyE5PpHEgND3lrMf1Y2oG4+1waREgtTEWG8507qVib73PDWYBEiOjSf0xBVU1ZwxLl3MYM+EbHgWG92VyOuPtcFkFp4yUxOADPtM8NOet5wEbdl1LTGmC+HXn2iDSYkEqUq/q1Xz6qgrlcJr4Q40sfFITRS58l3VxCcSFxD23nJlxnYk5PpTbTApkSDLxDP89gudYBIgISSS4EsPMS1XIseusdlwfYtEKkGeco71YVevAiF3PVODSYCkmHheH7uOdbUymJaxz5FrzAe6GmXhqo+y3RogkUp5vsftQ/UKPMkayUf9+69h0FO3sbH+izw9lStn3vT+XyHxwU2M6jZD0bYHidfdwEiBcbseSFRq4o7uTi0nd6ml/UdCAqY/rEBetgLJCfEkXL1AzNolJEdFZHKEXHS9dxOjBs0w7tCDhKvuoFBg3EHrGntoZ4byqk8mkHj3JonXL6No2CLP/d6ScOcmikbNUHbuSfwVN1AoMOncE4laTez+XRk3UCiQKE2QKE0wcqmOsnV7Eh/e0xvQ5TaFpU4hpV4bN0PZtSfxl9yQKBQou/ZEolITs1dPvb6D1MoaTXj2f7hyE2XDekjNzYg+pht8xd+4TXJSEhZfTCBs6QqS/AMwcnbCbNggYs5dINHTO5M95g0mjepqPbMRJKratyLR14+467fzwSwjhaVOC5OrqnFdZOZmRB3WHROorFcTgOT4BIptXo5xlfIkx8cTffoiQfN+RxOe9/f/dzFtXgeZhanelkt9yO2sSAoxfPxsdpGamqByLUfAhiMU/3IwdsM7IzM1Ic7Tl1cLNhB6MK2FRaIwQhOWcfxhcow20FBVcybu5ZsM63MDmakJ6hrO+K0/isPMQRQd0RGZqQmxnr54z9tE8IG0h++IS/dJTkqi1A+f4vX9OuLfBGFSqRTFJ/Um+MhlYp++yuJIueNqVsOZN+uOUWrWQIp/2gG5qQkxnn68nLuJwP3uqWUtm2obCjRxCbge+wmz6k5o4hIIOnKFpzP/JDHU8PGe70NuaoJlDSc8156gwlf9KP1pO+SmJkR7+vHwx6282Z95a/VbjItYEh+cf9eT3ERBzyd/IVcpiQuJxGuvO7d//IfEdMGuVCEnPiwqw7aJMdpnFKtqZYh8kbGbaV64Dnz0J0Yprs/3uXNt7lYdV32U7dmQyFeB+OWga67g/wfZCiiXLVuGRCLhs88+QyqVsmzZsvduI5FIGD9+fI4FCzIxG5YhMbNANWwiDJsIgCY8lMh500h6mjZ+Q1ZU+8ZM9fm3JN66QtT+LcgcnTDuOhCpTREiv/88z12j1yxFbW6BauQkGDlJ6xoWSsR3U0h6rDvWRF6zPvLqdQif+mmee71L1OqlSMwtUI+ZhHpMmmf411NIfJQxcYmya2/Uw8akfo6/eZWoJRnHNuUFhaVOASJXLMXM3ALTzybBZ2muYbOmaAPwLJBXqYa8UhVitm7MD9UMqNq2Ijkunpgz53SWJ770JPSn37CYMJYif6V1S4w6dJTQ+RnHjOU1qvatSY6LJ/rUuSzLycuWQlHeifD1W/PJLCOFpU6h8LiqO7bUnv+Tusk7jBy193+7n2cT4+ZB2N//oCjvhMWI/siKFsF3+OR8d7Xo2hxNXDzhR7LuAgegql0FkxoVCVye93NLG5cqikQqxbprE5ITk3g1bx1JEdEUGdGFMsun8SwymvCzNwCIff4K0zqVkapN0ESl9apQ19G+zDYqap13nqW1njbdGpOcmITXjxtIioim6KedcF4xhUcRMYSleMY88eHFjJU4fjOMKgfTfpsCtp3m+bQ/8szxLcoUV7tujUhOSuLlDxtJDI+m+KhOVFz5BfciYgg5cxMAkzLaVt1Kq6cQcuYm3kt3Y1qlNA4Te6AobsPtroZ3z3wfqtL2SKRSindviCYpiQf/20JiRDSlR3WgxqqJJEbEEHDmVqbbW9WrgFXtcjxdtCfPHNMT4x/Kw+UHCbnzEqQSirWoTrlP2mBZxZEzPX8kOUk75Cbi2Rvs6lVErlaSGJXW+m9XtzwAqjz8nr4l2i+Uu38cIujuSyQSCSVaVKPS8DZYV3bkaO+5qa7vYlm+BNaVS3Fn+YE8d/wYGDh0WZAJHxRQjho1CoVCkScB5eHDh2nYsCGWlpbZ3uZjkxwXi+aNN/HBASTcuIREqcK4Qy/Uk78n8odJaPxSEnEYa7sYJD1/SPQKbSKPBI/zJMfHYdJ/FPIqNUm8dz2zw+SOa3wcSa+80AQFkHDVHYmJCcZd+mA64wciZn+OxjflLalcjuqT8cQd34/GxzPrneaFZ1wcmlfexAYFkHDFHYmJCmW3Pph99QNhMyeieaP7Njf+3CmSnjxCYmGJok4DJJZW2i7F+eFaSOoUtPWa5ONNbGAA8Sn1atKjD+bf/EDotIz1+haJhSVmX36Dxu8N0TsMy/CXEyQqFcpG9Yl1v0xyZMa3vEkBgcTff0is+2WSfP1QVK+Kad+eaMLCCf9d/xi9PPFUq1A2qkeMm37P9KjbtwbIeXdXAyksdVqYXCVqFSZN6hF94QqaCF1PiUp7/4+794jAr7Vj3KJPXSA5NharSSNR1qtB7OUb+eYqNTXBtEUdIs9ezeD6LjIbC0osnk6Ctx+BqzP2ush1N7W2ruTW5jzsMp3om48BCDt+hSpuqyk6sW9qQBm44QiWbepS5o9pvP55E5roOOyGdkBVzUm7L6UizzxlKiUARtbm3O30JVE3tJkvQ4554Hp5BSUm904NKAHi3wQTefMJoaeuE/8qALO6lbH/tCOJIRF4/W99nnkCyNQprjbm3Owwi4gU16BjV6nrsZySk3ulBpRvy0bcesajCUu15Q5dJik6jjKzB2PZpCqh5w3PoJu1p/Z3W2FjxsUOswm9/gwAv6PXaOGxFOcvumcaUCpszamxYiLRXgE8W5Y/wc+debovWLz3XSLi+RuqzeqHQ+e6eO/Ttqg+3XCKEu1q0WDVRO4s2E5idBzlhrfGqnpZAGQmefc9fcv1BbpD0F7sv0TYc19qzexL6U51eZFJ62/Zno0A/pPdXQW5T7YCyocPH2b5OTeYMmUKcrmcxo0b07VrV1q2bIlSqcz14+Qm6klzIElD1MK0pDwJ1y5itnADyr6fEv17ygDpBG2Xgng33a5Q8W6nMOk/Cln5KnkeUJpO/Y5kTRJR89MSJSV4XMR82SZMBn5K1G//A8C4cx8kZhbEbjM8lX1OMJv5PSQlEfFDWvKY+MsXsFy1GdWQkUT+/L1OeU2AH5oAbXeR+H9PoR4/DfMffyN07OA87/ZaWOoUwPyr70GTpJOUJ979AlZrNqMeNpKIBd9n3MhYifn3C5CYmBA2bUaGsZX5gUmLpkiMjYnWk6hFUa0KNr/MI2DUeBIeah88Y/+9SHJUNGafDiX6wBESX+ZPAK9q2QSp0pjoI9no7tquJfF6EvXkF4WlTguTq7q19vzrS9Tzdixn1FHd7qWRR05jNWkkxtWr5GtAadauEVKl8Xu7u0pMjHH8cw5StQkvR8zIMLYyL0hOGU8Y5+mbGkwCaKJjCTvpgXWPZiCTQpKG8LPX8Z69iuKzhlLp6GIAYl+85vXPm3GYPZykqLzzfTvuMdbTNzWYfOsZcuIqtj2bpnqa1qlIhQ1fca/zTKJua4OkkKNXSIqMpsSUvgT8c4qYJz557hrj6ZcaTL51DTp+jSK9mqS6JqWUDdhzQWcfAXsuUGb2YMzrVMizgFITmwBAtKdfajAJkBQdh/+J65To1RiJTJqhNU2mMqbOpunITZW4df0uw9jK/OTx6iO4zOhD0SYuqQGl7+lbXPtqHdW+7k+7E9oM1hHPfbmzYDuu3w7UabXMT+7/eYQa03tTrIlL5gFl9wZ6E/UIBPrIpcwwuUPbtm15+vQpU6ZMoWHDhkyfPp1z586RlFTwMktJ7YphVL0eCdd139wkR0WQ9Pgu8vJp6bs1IdqkB+8m+nmb0EeiNstbV/tiGNWsR4KHbvem5MgIEh/cQV4xJS26So1J7yHEnzyIxESN1K4oUruiSJQmIEH7b3PLPPVU1KpH/GU9nvfvIK+UeUr0t8S7nUVmZ49Rlep5pQkUnjoFkBYthqJOPeIuZXRNuHcHeRU99SqXY/7ND8jLlCX8f1+T5GlYFsKcYtKuFZqISGIvZvzBU3fvgiYkJDWYeEvsBTckUimKqpmnps9tVO21njEXsh7no6jugrx40Y/WOgmFp06h8LiqO7REExFJ9L8Zs30mBWjv/0lBoTrLNcHaz1Jz07zW08GiWwuSwiOJPJNFtk8jOSX/+BrjimXwHvMDcY/zJzBP8NMmVEoIDM2wLjEwDKnCCKkq7UVzwPrD3KkxjEfdZvCg4xTuNx9PUkqra9zzjFP15Bbxbz31JER56/m2FbPI4LYkBISmBpNvCTnugUQqxbROxTzzBIj3fesammFdwjuub8vGv1M2PlD7/ym3yLvvaqyv9nlIX/KeuMAwpAp5hiQ9EiMZtf7+ArNKjlwdtpDIh3kXmGeHpNgE4kMiUFjp1tPTtSfYV3UcJzvP4Xi7rznSZBoJKVN2pE/Wk58kxSYQFxKBsaVa7/oidcpjWtLuP906KZLy5C45SIUJoaGhuLm58eqVtrtciRIlaNCgAVZWVgbtb/jw4VSrVo3r169z8OBBjh49yoEDB7CysqJDhw507tyZmjVr5kQ515BYpPw/6suAJpODVJb6MemF9oFHam2rU0xqqf2cHB6aJ45vSXOVZVwnT3OVqs20XUx7DETZY2CGshYrtxJ/5QJRP+XNOAqpZcpYAn11KpcjkWX0z0BKd1eJOm8f0gpLnUJavUr01KtELkfy7v+DRILZtK8wcq1JxLzvSLyT+biVvERqY41xTVftxPcJCRnXW1ll+l3R/jcb35dcQGpjjXEtV6IOHtfrmR51+1ba6S+O6pnMPR8oLHUKhcdVZmuNsk51IvfrP/9x959g1gvkRXTn8ZPZaT9rQvIv2ZXczgp1/aqE7jpFcnwm09VIJJT4dQrqhq74TFxA9BXDp2D4UBL8gknwC0ZRNOOch0b21mhi49BE6vaU0MTEEXU9bS5X88bV0cTEEXn1QR56hhDvF4KiWMbxb0b21mhi4khK8TSys9C2AL6DJOX7KdGzLjeJf+uqZ6yeoqg1SelcI29re00YF9Otf2N77e9dQlDeJWaK8wsh1i8EpR5Ppb0VSTHxJEama82TSHBdNg6bJi7cGLWEYPe8O9/ZRa5WYmxtRpyeekqKiSPoWto0RvZNXEiMiSPQ43GGsvmBXK1EaW1GbCZJjMr2bEiyRvOfDigFuYvBd7Lff/+dpk2bMnXqVBYuXMjChQuZMmUKTZs2ZckS/XNhZZeaNWvy7bffcv78eVatWkXjxo3Zu3cvgwYNomXLlvz222852n9uoPF7RbImCaP6zXWWS6xtkVeoSpJnWteShGsXSY6PR9G0PUjS3kooWnQEIPGu4XP7ZcvV9xXJSUkoGulmFpVY2yGvVI2kF1pXTVgIkT/NzvCXcOc6yXFxRP40m9jdm/PMM+mND8lJSRg3aamzXGpjh1HlaiQ+T7sZS8wt3t0cAGWbTiRrNCQ+y9ubdGGpU0irV0XTd+rV1g55lWokPtOdq0/92SSMm7Uicvni1PkpPwYmbVoikckyZPd8S6K3DzIbaxQ1dFujVW20/58Jj57o2yzXUbVtofU8mrFbpg4yGSatmxF38y5Jfv754vYuhaVOofC4qts3RyKTZcju+paYs24kx8Vj2q2dzv3ftKf2/h9zKW/v/+kx79wMiUxG2P7Mu7sWnTMWi87NeDPnDyKO5//DZMiBCyhK2GHWJO28yqzMsGxbl4iLd7LMpKGuVRHLDg0I3HoCzTuTtuc2QfsvYlzCDvOmaZ5yazOs2tUh7OLdVM/Y529QFLHCrIFui7lN9yYARBk4B+WHELDvIkoHu9Qsrm9dbdrV1nENOuqBJjYe+34tdL6r9oO0475D/s3bl4tv9l3CxMEW26ZVU5cZWZth3742QRfu6Zz7KvOGU7x7Q+7O/Bvfwx556vUuUmMj5OqMQ7Iqf9EDiVTKmzNZZ++2qV0Oh451eLHlLAkReTuURJaJa/XJ3ZFIpbzS4yqRyyjduR5+Vx4T9Toow/r/CppkyUf9+69hUAvl8uXLWb58Oc2bN2fQoEGULl0agBcvXrB582ZWrlyJXC7PcZZXmUxGs2bNaNasGXFxcZw6dYoDBw6wbt06pkyZkqN9vw9Fm+5I1KZILbVv6uQ1GiCxtgMg7tgekiPCiD93FOMWnVB/tZAEj/PapCytu4HCmNj9aQlMksNCiN23CZM+I1B/+RMJVy8gc3RC0aIT8W6nSHr+SK9DdtFOVWGKxFrralS7AdIU19gju0kODyP+9BGM23TG9LvfSLh8HonSBOP23bWue1ICmvg4Eq5cyLB/o7qNwbmS3nUfgrJTD22d2tim7LchUpsUz4Naz7iTR1C264z5j4uId/8XTFQoO3YHYwUxOzal7suk7xCMKlcl/tplNAH+SMzMMG7YDHn5SsQc2JVpkpnsUljqFEDZRbdeFfUaIrVNcd2/m+SwMOKOH0HZoTPm8xcR7/avttW0c3ckxgqit6fVq7J7b0y69CDh/l2IjcW4RRudY8W5nYc4w8d8qHt3R2pqitRWW6/Kxg2QFdG6Ru7YQ3JUWpIQVdtW2qQr12/q3VfUzr2oOrXH5pe5RO3cQ6KvH8Y1qqNq24rYy1dJuG/4WG/TPt2QmpmmtiKZNKmPvIi2fiO27dXxVLdvRaJ/IHHXsn7YUjaog8zSgrBc7u5aWOq0MLma9euG1EyNLKVV0aRpfWQp5z98616SI9OCFXUH7fmPvar//CcFhRD61xasxg/H/o/5RJ+5iKJ8WUx7diTyyGni7+Xs5ZfVkM7IzNWpLaBmLetilNLCF7z+AJp0rhbdmpPgG0j0Jf3j4KyHd8N6SGeirz8gOSYOi266L8zCj7ulTsthCHbDOiKzUGNkr22FsmhdB0VKa5j/2kNoIqLxXb4Tyy6NKbtqJv5/7iMpIhrbwe2RGMl5/VNapmlFCTvKrJhB2IkrJPiHoKzgiN3g9sQ8eMnrnzbpPX52sf+kAzJzNYoUT6s2tVM9/f4+TFJENK9/34VNl4aU/3M6b1YfICk8iiJD2yExkuOzIO0lod/aw9j1a0GF9V/h+/dh4n0CMGtQGdseTQk7d1NnDKYhFBvRHrm5GkVRbSuiTZvaqS2Mr9ccISkiGu+le7Dt2pBKa6bxatVBEsOjKTa0DRK5nJfztqTuKyEgFK8luyn9ZX9c/plN0NErqCuXoujg1vjvPk/kzWd6HbJDqRFtMbJQo0xp7SzStibK4lrPl38dJTEihqdL91Gsa31q/j2ZFysPkxgRjePQ1kjlMh7OS8uKXXp0B0qPaEuIx2M00fGU6NVY51i+RzxyNJbS+ZM2KCzUmNhbAlC8bQ1UxbXfhSdrjmFkoabdiXl47XUj/Km2y2rR5lUp3roGb07f4tXRtJdEKgdbGq6ayKvj14n1D8WiggNOQ1sR9sCL2/NzPl97xeFtUFioUKXUq0PrGqhSWs4f/H0cYws1XY7N5cU+d8KearuBF29ejZKtXPE5fQuvYxlfaJVoXhWltZlonRR8EJLk5A9PnNukSRNcXFxYsWKF3vVjx47l7t27XLiQ/YflihUrsn37dqpVq/besuHh4Zibm2d73/oIHdQyy/Xmi7cgtSuq//iTBqAJ9AOpFEWrriiad0Bmr00Nn/j8EXF7N5J4/2aG7RRtumPctgfSIkVJDg0m/vxxYvdsgCzGiCbH6k/nrOO6YiuyIvpdw8b2RxPgC1IZxu26omjZEVmxFNenD4nduYHEuxld06OaMBNF/WaEDu6QZTlNfNZfJcu/tiKz1z/ZdMin/dD4az2VHbpi3KZTmueTh0Rv20DinbTEFUautVF26YXcqRwSc0uSE+JJevmMuOOHiDt1NEsPAKki67dDBaVOk6Lff3larcu8XoOHpavXTl1RtuuE9K3r44fE/LOBhNtp9Wo6ZSbKNpk7pe5PD3Gh7+9iaL97C/Ji+uvVt8cAkny1CZbkjiWx37aeiC3bs8zWKXcsifmYERhVrojMxpqkwCBiTp8j4s91WU5sr0nM+vwX27cZeXH9nq+7DiTpTYpnKQeK7VxPxOYdhC7OOquo9Y9fo2rZhNft+2R77kGp/P3nv6DUaXYoKK4JMVl/Vx0Ob8z0/Pt0HEzi67Tz77BvLWEbdhLy26os92nWrxvmA7ohL1GUpMAQIg8cJ3T1JkjM/P4fHfH+DJDO5/5G4aB/cvQnTT8h4ZW2NVxRpgTOJ1cT9Ndu/Oav0Vu++M9fYNmrdabHSr+/d4mNf//76SpuqzEuqd/1boNRxPukuDra4zD7E8waVUNiJCfy2kNeL9hA9K203hQyCzWlFn6O2rU8MkszEnyDCDl4Ed/fd+hMI6KPhKSsz7/r5ZUYlyyid92NumOI9wkAwNjRHsdvh2HeuKrW8+ojvOdtIuqWbq8PpVNxHGYMxLRmOYzsLEnwCyHooBuvft2KJibz5HHxmvd3Iqvj8QfKTFyv1PmMOG+tq9KxCGXmDMOyiQsSuZyIa495MXeT3iCx2Ij2FB/RAaVjEeL9Q/Hffg6v33aQnMV3NTzZKEvPFh5LUTna6V13uvZEYrwDATApVYTKcwZh08QFqVxGyLUnPPzxH8JupiUxq7ZkLCX7N8v0WOn3p49IfV3l09H5ymLUJfW7HqgziYTwaGrOHYZNTWdMiloikUqJfOmH5243Hq44pFNPRhYq6i4eg00NJxSWpsT4huC9/xL3l+x7b0KeGOn7W7F6X1qEaSauO+tNJj48mno/DsWupjMm9pZIpVLCX/rxfI8bd1ce1ntOmy4fT6mOddhWYzzxoVlngn7L8Fc5e4nzMbhbtvNHPb7L84Mf9fi5jUEBZY0aNZg+fToDB2YcEwawZcsWfvnlF27cyH7muiFDhvDdd9/h5OT0oToG8b6AsqCQnYCyoPC+gLIg8b6AsqCQnYCyoJCdgLKg8L6AsqCQnYBS8OG8L6AsKGQnoCwoZCegLCi8L6AsKGQnoCwovC+gLEi8L6AsKGQnoCwoFMaA8k6ZLh/1+FVf/Lfm9zToqqpZsya3b2feR/z27dsfnDxn48aN+RZMCgQCgUAgEAgEAoEg5xgUUH733XfcuHGDefPm4enpiUajQaPR4Onpydy5c7l58ybff69nXjuBQCAQCAQCgUAg+IgkJ3/cv/8aBvVR6dq1K8nJyWzcuJGNGzciTek+oNFou2cqFAq6du2qs41EIuHatfzLZicQCAQCgUAgEAgEgrzFoICyXbt2SCSFp2+3QCAQCAQCgUAgEAhyH4MCygULFuS2h0AgEAgEAoFAIBDkOf/FuSA/JoUj1ZVAIBAIBAKBQCAQCAochSfPt0AgEAgEAoFAIBDkkGTRQpmriBZKgUAgEAgEAoFAIBAYhGihFAgEAoFAIBAIBP9v+C9O3fExES2UAoFAIBAIBAKBQCAwCIMCSg8PD4KDgzNdHxwcjIeHh8FSAoFAIBAIBAKBQCAo+BgUUA4dOpSLFy9muv7SpUsMHTrUYCmBQCAQCAQCgUAgyAs0yZKP+vdfw6CAMvk9HY/j4+ORyWQGCQkEAoFAIBAIBAKBoHCQ7aQ8r1+/5tWrV6mfnz9/rrdba3h4OFu3bqV48eK5Y5hHtD2T9LEVsoVMUniGucopPC8RjKWFIx+VWmL0sRWyjUpSOOq0MJFI4ckaIKfwvHGVF5L0ARaF6PovUkjuqQBqSeH4rpoUnssfm8TCI6ssJNlYLBILx3NqYUVMG5K7ZPsXYPfu3SxbtgyJRIJEImHlypWsXLkyQ7nk5GRkMhnff/99rooKBAKBQCAQCAQCgaBgke2AskOHDpQrV47k5GQmT57MkCFDqF27tk4ZiUSCiYkJlSpVwtbWNtdlBQKBQCAQCAQCgUBQcMh2QOnk5ISTkxMA8+fPp3bt2pQsWTLPxAQCgUAgEAgEAoEgt/kvJsb5mBg06KFHjx657SEQCAQCgUAgEAgEgkKGQQHlrFmz3ltGIpEwb948Q3YvEAgEAoFAIBAIBHlC4UjNVHgwKKC8fPlyhmUajYaAgACSkpKwtrbGxMQkx3ICgUAgEAgEAoFAICi4GBRQnj59Wu/yhIQEtm3bxvr16/n7779zJCYQCAQCgUAgEAgEgoJNrk7GZWRkxODBg2nUqBE//PBDbu5aIBAIBAKBQCAQCHKMJlnyUf/+a+TJ7M4VK1bEw8MjL3YtEAgEAoFAIBAIBIICgkFdXt+Hm5ubGEMpEAgEAoFAIBAIChzJ/8FWwo+JQQHlsmXL9C6PiIjAw8OD+/fvM3r06ByJCQQCgUAgEAgEAoGgYJOrAaWFhQUlS5bk+++/p2/fvjkSEwgEAoFAIBAIBAJBwcaggPLhw4e57VGgMFGZMHhcf1xqVKKyayUsrMz5fvJ8Dm0/mlpGIpHQsU87WnRsSgWXcphbmvHa6w0n9p1m08ptxMfF6+xTbaZmxKQhNGvfhCLF7AgJCsHj/DX+/G0dfq/8c+CqZNBn/alSoxKVXStibmXOD18s4PD2YzquHfq0pXmHJpRPdfXl5P7TbFm5jfi4BJ19WtlaMe6rUTRsVR+1WsXLp55sWLaF0wfP5chzwGf9qFyjIpVSPOd98TNH0nkCdBnYkbY9W+Po7IipuZpAvyBuut9i7W8b8PXxy7DfTv070H9sH4qVLIb/G392rdnDrrV7DfYEUKqU9B3bh0o1KlLBtQLmlmb8POVXju84oVOu44AOtOrZEkenkqjN1QT5BXPr0m02LtqEXzpXu2J2tO/Xlnqt6lGidHE0Gg0vH71k89J/uH7hRo5de4ztSXnXCpRzLY+ZpRlLpizi9M5TOuXaDGhH8x7NcXByQG1uSrBfEHcv3WHr4n/w99H9/u3zOqj3WBsWrGPXHzsN8jRWKekypjvOruVxci2HqaUZK6Yu5d+duhmjW/ZvQ+MezSju5IDKXE2IfzD33e+ya8k2At/xNDFT0WNCH2q3q4dNMRvCAsO4e/E2uxZvJeh1oEGehc1VqVLSdUwPyrmWxznFdfnUJZx9x7VV/zY07dGc4k4OqFNc77nfZceSrQSkc23euyXjF07K9HhLJv3Ghb0ffh8oTHVqrFLSaUw3nFzLU9bVGVNLM1ZP/Z3zO8/olGvevzWNejSjmFMJVOZqQv2DeeB+jz1LthHoE6BT1tzWgn5fDsG1ZS2UpkpeP33FgeW7uHLY3WBPAIXKmNZjulLa1ZlS1Z1RW5qycdofXN6Z+TmSymXMOvIzxco5sGfuRk79mXa9WxSxotusQZSq5oSFvRUajQb/5284v/EYl3f9myNXI5UxDcd0poSrEyVcnTCxNGXf1FXc2pn5fqVyGWOOzseuXAlOzN2M++rDOuutStnTamZ/yjSqglwh583dl5xduJOX7vdz5FlnbCeKujpT1LUsJpamHJ2yins7z+uUa7dwNC59mmbYPvjpa9a2nJH62dqpGC79mlGqSVUsSxUhPjoO/zsvcVu0C7/bLwz2BJCrjKkxthP2NZwp4loWpaUpp6as4tEOXdeWv42moh7XkKev+afFjAzL31Kue0Pa/D6OhKhY/qw4MseuFcZ1xqamE9auThhbmXJ50ipebtc9/3UXj6FMv4yu4U9fc6TJdJ1lpqXtqfZ1f+wbV0FqLCfkzkvu/rQTfzfDz79MZYzz+M5Y1XDGqoYTCitTrk9aifc2Pd9TiYTSQ1tRekhLTJ2KkxQTR9h9L+5+u5Hw+16pxcpP6oZlTWesajqjtLPg4a+7ePTrLoMd07uWGd8Fi5rOWNRwRmFlyp3PV/Bqm57rXyKh5NDWlBzaCnWKa8R9Tx5+s4GIFFdjeysqfDsQC1cnjItakZykIer5G7z+Ps7r7Tm7/gsimo8t8B8jT8ZQFnYsrS0YNWU4b3x8eXL/GbUb1chQRmmiZM7iWdy5eo/dG/YRHBhK1dpVGDXtE2o3rsW4PpNTy0okEpZtXUiZ8qXYtX4fXs+9cShdgl7DulOvWR36NRtKdFSMQa4W1hZ8OmWY1vXBM2o11OdqzDeLZnLn2j32bNxPSGAoVWtVYeTU4dRuXJMJfaakllWZqli1dynWtlZsX7OLIP8QWnVpztxV3zFn/I8c33sqw/6z6/nJlKH4+vjx9MFzajZ01VuunIszb7x9uXDCnYjQCIo5FqXLwE40bF2f4W1GE+QXlFq26+DOTP/pC84e+pftq3dSrV5VJv84EWMTJVv+2GqQ51vXoV8Mxs/Hj+f3n+PasLrecs4uTvh6++J+4hKRYREULVmUjgM6UL9VXca0+4wgv2AAGrZtQL9xfXE75s7xnSeQyWS06dWan/9ZwC9TF3Js+3GDXc2tzek/eSD+Pv68vP+Cqg2r6S1XtkpZ/Lz9uHLiCpFhkdiXtKftgHbUblWXye0nEpzi+pYb/17nzC7dh/3n954b7GlmbU6vyf0J8PHH88FLqjSoqrdcaZey+Hv7c+2kB1FhkdiVtKdl/zbUbFWbme0nE+IfAmivqa82fYdDuZKc2HiUNy9eYV+qGG2GdKBaU1emtZpAbFTs/wvXPimuLx+8xCUT1zIuZfH39sPj5BWiwiIpUtKe1v3bUqtVbaa1n0yIv/b83798j6WTf8uwfedPu1KqUhnuXrxlsGfhqVMzekzuR6BPAF4PXlI5E9dSLmUJ8PbjejrX5v1b49qqFl+3n0JoiqvS1IRvds7FwtaSY2sPERYQQr1OjZi4Yjp/fL4I933n9e4/O5ham9NxUm+CfQJ49cCT8g2qvHeb5sPaY13cVu86tbUZVsWsuXnkEsGvg5DJZVRsUpUhC8dTpGxxDvxi+H1VZW1Gs8k9CfUJxO+BF6UbVH7vNnWHt8WiuI3edebFrBmx5zuSkzS4rzpIfHQcrn2aMWjjl2wcOB+vK4a9+DaxNqPB5J6E+wQScN8Lx4aZeybGxnP8yzU6y+IionU+V+3fHJf+zXly2IObG09ibKai2qCWDNz7HbuG/ozXhXsGeb51rfNFTyJ8Agm670WJ97ienZG1a3rkKmMafN2fBAOvo3dRWJvhMrUnUT6BhN73wr5R5q5JsfF4TPtLZ1lCuK6rSXFrWh3Unv+HKw6SGB1HmX7NaLb1S872nU/AJcPOv8LGjIpTexHtE0DYfU/sGmV+TdVYPBqHno3w3nGe538fR65SYlG1FMa25jrlKs3qR6xfCGF3XqJsqf95wjBXc5yn9SbGO4CI+57YZOFadfFYivVqxOsd5/H6+xgylRJzl9IobC1SyxjZmKEsZoPvwcvE+gQiMZJj06wq1X4fh9q5OE/mGX79C/775CigPHPmDOfOnePVq1cAlChRgmbNmtGiRYtckftYBPoH0aF6D4ICgqlUrQLrj67OUCYhIYFPu47jztW0H4N9Ww7yxtuXMdNHUKdJLTzOXwPApVZlqtSoxM9fLWLnur2p5T2fefPtopnUbVKbs0cNe6gI8g+mk2tPggNCqFitPGuPrNLjmsjobhN0XPdvOcQbb19GTf+EOk1q4nH+OgA9BnehZBkHJvSdwrWL2taz3Rv28deB5Uz89jNOHzpHYkKiQZ7dXHsTHBBChWrl+evICr3lfvtqaYZl549eZM3RlbTv3YbNy7U3NIVSwagvR+B28hLfjP4egANbDiOVSBk2eTD7Nx8kMizygz0Bgv2D6VOzPyEBIZSvVo4/Dunv4r3064zLLx5zY8Xh5bTp1Zqtf2wH4Kb7LQbWG0J4SHhquYObDrHy6B8Mmzo0RwFlsH8ww2oNJjQgFOdqziw8uFhvuVWzM9b35ePu/HZoCS16tczQ8vj6+WvO7TlrsNe7hPoHM7b2cMICQilb1Ym5BxfqLff37Izf36vHLjPv0EKa9GrB/hW7AXCuWR5n1/L8/c0qTmw4klr2zfNXjP31c1waV+fqscv/edcQ/2BG1R5GaEAoZas681Mmrn/pcfU4dpmfDv1Gs14t2LtC+7bc39sPf2/dngAKYwUjfxjLXbfbhAaEGuRZmOo01D+ECbVHEBYQSpmqTvzv4C96y62fnfF34dqxy/xw6Fca92rOwRV7AGg5qC1FyxRn/oBvue92F4BTG48xZ+8CBs4ezpXD7iQZcE8FCPcPYVad0UQEhOFYtSwzDszPsrypjTntJ/XixMp9dJ7aL8P61w+9WNL/fzrL/t1wjDF/zaD58A4cXLiNZE2yQa6R/qEsrD2OqIAwilUtw6iDP2ZZXmVjTtPPe3Bx5QFaTO2TYX2jcV1RmqtY2XYmQc/fAHD9nzOMP/0Lbb8dzF+dZxvkGeUfyopa44kOCMO+WhkGH8x8CjRNkoYHey5mub8H+91xW7SbhOi41GV3t53jk9M/0fCLnjkKKKP8Q1lbczwxAWHYVStDn0OZuyYnaXj8Htf01P68OwmRsbx2e0CZdrUMdnxLrH8o+6qNIzYgDKvqZWh7NPPzr0nS4Lkra9dKE7qiMFdxtMVMIp5pz//zzWfocP4XXL8fzIl2hp3/OL9Qjlb9jLiAMCyrl6HZsbl6yxXvWg/Hfs248slvvDlyNct9Hq/zOTHegSiszehwP+M9zlBi/UI47TKG+IAwzKuXpeHxeXrLFe1anxL9m3F9+EL8j2Q+A0PkfS+u9NS9/r3+PkbNjdMpNbI9TxZsAwOv/4JIMiIpT25i0LQh4eHhDBkyhHHjxrFz506ePn3K06dP2blzJ+PGjWPIkCGEh4e/f0cFlIT4BIICgrMsk5iQqBOgveXsEW1gWKZcqdRlalM1AMEBITplA1Na22Jj4zCUhPiEDPvNruu5lCC2lHOaa/V6VQkODEkNJgGSk5M5deAstvY21Khv2Nu17HhmxtuurqbmpqnLajZ0xdLagj3r9+mU3b1+Hyq1CQ1b1TfoWG9dQwx09fPO6Or52FMnmHx7jCtnPChS3A4TteEZkRPjEw1+yPf31nYhVJur9a5XGCswMjYyVE2HxPhEwgz0fNslU5XOU2WqAiAsUHefb1uFEmJ1u5x/CIXN1eDz75P1+X9LrdZ1UJmpOG9AV9e3FLY6NdQ1UI9rhTqVCQ8MSw0mQXtPvXLIDcsiVlSq9/5WxaxcIwLCsl2+25cD8X/+Go89H/YCM9gnACMTBXIjw99BJ8UnEvUBrq1m9iPo+RvuZBIEOdapgO89z9RgErStcI9OXqd41TJYl7Y32DP6AzwlUgkK08zv4f53XuoEkwCxoZH4XHmEtXNxgxzfoolPJOYDXY2ycH2LRWl7qo9sz8X/bUaTlJQTxVQ08YnEfqCrPAtXu3oVCLnrmRpMAiTFxPP62HWsq5XBtIxh518Tn0hcNjydxnQk5PpTbTApkSBTGWdaNsbb8C74WZEcn0h8NlxLj+1E6PWn2mDyPa76iPEOQGaiQKoQnRoFmWPQt2Pu3Llcu3aNadOmMWDAAFQq7Y97dHQ0W7Zs4bfffmPu3Ln89NNPuSpbGLApYg1AaHDaRf7g9iOio6IZM+NTwkPD8Xym7fI6cfZY7t14kNqSmd9Y22ldw9K5GikUxOkJcN8GvRWrlc8XX3Mrc6RSKfYlijD8iyEAXEs33rCcizMAD2891tnu0e3HJCUlUc7FmeO7T+a5J4C5pRlSmZQiJYowePIgAK5fvPne7aztrIiJjiUuxvAXCh+KWYqrXQk7+k0aAMAtPd0YW/ZpRYehHZFKpXg/8WL70m38u8/wgOJDMU3xtC1uS89J2paUexdvp65/fvspsVEx9J06kKjQSF4/e0XR0sUYOGsYT28+5s4Fw7pm/v9xtaNPiuud93RjbdK9GXExcVw+eik/FIHCVqemSGUybIrb0n2SNhnd/Yt3UtfLFXLi9QS4b6/70lXLcjcffEtVd6Jer2Ys6vMt72tjMDI2QqFSYqxWUq5eJer3ac6L609IeGe8fV5RvHpZqvdqyrre35OcrN9WppATGxaVYXlijLaui1UtQ/DLjOPucxMjEwUT7/+JkUpJTGgkj/a58+/8rRkCSH2oi1gSE2xYLxpDkJsoGPlA6xobGsmTfe64z9tKoh7Xxt8N4ZX7A7zO3MK5S718c0zv2vPJX8hVSuJCIvHa687tH//RcZUq5MRncf6tqpUh8kXenH+5qQlWNZx4se4klWb1o+ynbZGbmhDl6c/9uf/wer9hvSPyApmpCRY1nPBae4JyX/Wn1KftkJuaEO3px+Mf/8F3f8b7ulRphEylRK5WYtWgEiX6Nyf06hM0sflz/QsKJwYFlCdPnmTgwIF8+umnOstVKhUjR47kzZs37N27Nzf8Ch1Dxg0gMjwSt9NpN5Sw4DC+Hvs9X/0ynT92LE5d7n7mMjNHzSEpl94AfiiDx/UnMjwS9zNprl7PvKnTpCZFS9jj+yrtZly9rnYckV1R/WNvcpvdV7dhrFQA2uB88ezfuZoukLUpYkNiYhKhQaE62yUmJBIeEo6tvf5xN3nBVo8tKFJcw4LDWPbNcq6ndCHOjOKli9O4QyP+PXgejSb/hob/fWV9qmt4cBirv13JrfM3dco8uHqfCwcv4O/ti7W9DR2GdmLq79NRmak4uumInr3mPssvr0n1jAgOZ92cP3WChIiQCJZO+JVRC8Yz+5+0bl63zl5n0Wc/o0nKvzotTK6rLv+d7vyHs2bOam5nEcyYWpji2qwmHscvE2vgOG9DKEx1uuTyXzquG+b8pRMg+j5/jUvjatiUsCPoVVqyngp1KgFgVTR/7lV9vv+E6wfdeHH9CdYOdlmWbT6iI92+HJj6+eGFO2yarn+YQl7Q4fth3Dt4CZ/rT7Fw0P+bE/T8DY51K6JQK4lPN86vZJ3yAJgVtc5Txyj/UDxWHsLv7kskEgmlm1fDdVgb7Co7sq3vXJKz+A6WqFuB4jWdubR0X6ZlcpNov1BurDhEwN2XSKQSHJtXo+qwNthWcmTvO66lWrri0NSF7e2+yhe3d4nxD+Xh8oOE3HkJUgnFWlSn3CdtsKziyJmeP6a6Rjx7g129isjVShLTnX+7utrzr8rD868uXQSJVEqJbg1ITkri3g//kBAejdOo9tReOZFLETH4n7n9/h3lA6rS9kikUop1b0BykoZH/9tCYkQ0pUZ1oPqqz0mMiCHwjO5vQKlRHagwO+36D/z3Dncnrcxv9TznP9R7t0BgUEApl8spU6ZMpuvLli2LXP7hu46Pj+fOnTskJydTq1YtJBIJ8fHx7Nu3Dy8vLxwcHGjfvj0WFhbv39lHYPjEwdRrWpufZv5GZLjum8eQoFAe3X3CjrV7eP74BeWrODNk3AC+XTSTWWPm5LvrsImDqNu0Nj/PWkRkeNpbvv3/HKLHkC78uHIOS75fTnCANilPs/ZNADBWflhXCUOZPmQWCmMFpcs50rZna5Qqpc56Y6UxiQn635bFx8XnmyfArKGzURgb4VjOkdY9WmZwfRdjpTHfrviauNh4/lqwJsuyuc3/hs3ByFiBg3NJmvdortd1Zk/drH8nt51g4aHFDPlyGKd3nMqQwTgv+Gn4/zAyVlDC2YHGPZphbJLxfIYHhfPy3nOOrT+Mz2MvSlcuQ+exPRj760SWjNM/7u3/u+u84f/DyNgIB2cHmvRojtIk6+9q/Y4NMTI2ylF3V0MoTHX66/AfMTI2orizA430uJ7depKWg9oycflUNv+wlrCAUOp1bkStdtqWn7fBaF5Sv09zildw5K/PFmWr/NX9F/G6/RxTGzNcWtbCzNYiXzwBqvdpSpGKJdnx2ZIsy13bdIoKbWrRa/lEzvyynfjoOGoPaU3xqmUBMMpj3ws/bdf5/OjAJUKe+9Lky76U71iXRwf0t+ib2JjTaek4wrwD8FipP6N2bnPpHden+y8R+tyX+l/2xalTXZ6mtFJJjWQ0mjOIe5tOE/Lkdb64vcudedt0Pnvvu0TE8zdUm9UPh8518d6ndX264RQl2tWiwaqJ3FmwncToOMoNb41Vde35l5nk3fmXqbX3TWMbM/7t8A0hN54B4HvsGm08llB+co8CE1DKU1wVNua4d5hN2PWnAPgfvUozj99x+qJHhoDyzR43wm89R2Fjjl2bmijsLJDm0/UvKLwYFFC2a9eOo0eP0r9/f2Qymc66xMREjhw5Qvv27T9on97e3owcORIvLy+Sk5OpUqUKf/75J6NGjeL+/ftYWVkREhLCsmXL2LBhQ5YB7cegddcWjP3yU/ZtOciuDbpvHYs7FmPFzsV89/k8zhzWpl7+99hF3nj7MmfJVzTYWk+nlTCvadW1BaNnjGD/lkPs2bBfZ92zB8+ZM+FHZiyYwup92qQzgX5BLPluGTMWTCEmOn9aKW643QTg8pkrnD92kQ2n1hATFcPuddq6jYuNQ26kf3yfwlh/t9284pa79mbscfYqbsfd+evkKmKiYtm3fn+GslKplK//mIVjOUe+Gjo7NRNsfnHHXdsV7/rZa1w5cYmlJ5YTExXL4fWZP9gkJiRyeP1Bxs2fgFM1Zx54GJ6SPbvcd9eON7t19jpXj1/hlxNLiI2O5fh67bQBRUraM3vrD6yYsoQrR7RTL1w7cYUAH38++20SZ5uf4tbZrFuJ/z+63ks5/zfPXsfj+BV+O7GU2OgYjq4/rLd8k+7NiAgJ58bZ/O2WX5jq9EGK6+2zN7h+/ArzTywmNjqWk+u1rfneDz35Y9JiPpk7hm93a5PmhPqHsPl/f/PJvLEGZ6PNLkpTE7rOGMDJ1QcIfRP0/g2AkFeBhLzSjvu6tt+NAfNGMWHTbH5oOTlPu70qTE1oNaMfbqsOEf4m63vj07O3OPLtOlp92Z/Rh7XJSIJe+HL61+20+WqgTqtlfnH9ryM0mtabUo1d9AaUchNjeqydipFaya5eP2Sra2xeceuvI9Sd1huHxi6pAWX1kR1QWpvh8VvOp7TITR6vPoLLjD4UbeKSGlD6nr7Fta/WUe3r/rQ7oT3/Ec99ubNgO67fDtRptcxtNCld2KM8/VODSYCk6Dh8j1+nZK/GSGTSLFup84ukFNdoT7/UYBK0rv4nrlG8V5MMrrE+gcT6aK//N3vcqPLrKOrs+Jrzjb74T3V71YikPLmKQUl5unbtSlhYGP3792fHjh1cuXKFK1eusGPHDvr3709ERARdunTh3r17On9ZsXDhQiQSCevWrWPXrl1YWVkxcuRIkpKSOHv2LG5ubpw8eRJLS0sWLcreW9b8om7T2ny35CsunrrEgi/1pNzv1wGFsYILJ3XnHPv3uDbZQPU6LvniCVCnSS2+XTwTt1OX+HlmRleAM4f+pUvN3ozoOJaRXcbRo15/XnlqB757PffJN9e3vPZ8w+N7T2nTs3XqsiD/IORyGZY2ljpl5UZyzK3MUxMe5TdvPN/w9O4zWvXQn+l4ys+Tqd+qHr9MXchNt/wb56UPX09fXtx9TrPuzd9bNjBlXj8zS9P3lMx9/L18eXnvBY26p81N1rRPSxTGRlw/pZux7tqJKwBUqF0xXx3fUphc/bx8eXHvBU26N9O73ra4LRXrVsb9kBtJiR+nWz4Urjr19/LD894LGqZzBfA47M7EuiP5tssMvus+k8kNx+DvpR1S4Psib1uCWo3qjMxIzvUDblg72GHtYIdlSndAlYUaawc7ZEayLPdx48hlrEvY4lzv/VN95ISGozsiU8i5d/ASFg62WDjYYp7iqrRQY+FgizSdq8f6EyysNY6/e8zhz05f80fLacSlTC8R9OKN3mPkJYlxCcSGRKC0zJjoSmoko9vqSdhVLMm+kYsIepz/v6XpSYrVdVWYmVDr827c33IGhakJZg62mDnYYqRSggTMHGwxsTF/z17zzjU+JAKFle7vz9O1J9hXdRwnO8/heLuvOdJkGgkpU6GkT9aT28T6apN/6UveEx8YjlQh/+DEN3lFXIqrvuQ92XX1PXAZEwdbrOtXyhNHwX8Dg1ooBw8enPrvO3fuIJFoo/z0g+eHDBmS+u/k5GQkEgkPHjzIdJ9Xr17l66+/pl49bTegOXPm0KZNG5YuXYq9vTZbV4kSJfjss8+YPz/r1Oj5SZUalfh5zQ88uP2Ir8boHw9pbWuFRCJBKtON3992C5bJs/4xzy0q16jEgjU/8PD2Y2aP/Z6kLN6eJSYk8uDWo9TPdZpo04Z/rARCxkoFCkVal4un97RvBStWL8+l01dSl1esXh6ZTMbTe08z7CO/MFYqMFJkbD0d/fVI2vdrx/I5Kziz72z+i+lBocxeJld7x6IAhAV9nOzNCqUCebo6tbC1BIkEqVT3mpKlZKGUyvLnmtJHYXPV910FaNS1KVKpNN+7u+qjMNWpUSZ1mpSQyIvbafcll8baOWPv5XFCHqsStqgtTZl9MuMLxHYTetJuQk/md5zBq/ueme7jbfdRpZnhGamzg3lxW0wsTRl38ucM65pM6E6TCd1Z1eEr/NK5JsTE4ZOu5aVMYxcSYuLwvvo4wz7yGiO1EhNrM6KDI3RXSCR0WDQWx0ZVODDud3wuGzZHYm7y1jUmSOtqbKFGYWpCzXFdqDmuS4byQ9wX8/zYVY6OXJzPptpum8bWZsTp+f1Jiokj6Fra+bdv4kJiTByBHnl3/mP9Qon1C0FZ1CrDOmVRK5Ji4kmMzP8Wcn3E+YUQ6xeCsZ4xpcb22XOVmWjvZ3JzVZ44Cv4bGBRQzps3LzWIzC2io6OxtLRM/Wxlpb1Q0y97uzwqKmNmr49BaedSLNq4gDfevkwZOpO4TFLVez33RiqV0rpLCw5tP5q6vG33VgA8uvskz11LOTuycMN83nj7Mm3YrExd9eFQpgQ9hnThwgk3vPOwhVImk2Jiqsowf2Ql1wqUrViWk3tPpS67dvEGYSHhdB/aVSeg7D60KzHRMbidytsuxFKZFJUe1wquFShTsQyn957RWd53TG/6ju3D5t//Yc/fe/PU7V2kMikmpiZEvZMRr1z18pSqWFone6u5tTnhwbo/2iZqE7p+2pWwoDCe3cm7QF0qk2KiNiEqXNfTqXo5SlYoxcV9/6Yu833xGqlUSv3Ojfl35+nU5Q27asf6vrz3PM88/yuuztXL4VihFBfSuaancbemBPj48zAfujhD4atTpdqE6Hdcy1Z3pmSFUrjvy3paDvvSxWg5qB03Tnrgm8ctaWfXHuX2cd2WXDMbCwbMH82lHWe5fcKDoJQphEytzYh8NxgCGvZtgUajwfvuizx1vbLuGI+O687pp7Yxp/OCkdzcfo5HJ64RmuKqD4da5ajUvg5XN50kLiLvhmfIjI2QymUkvNOtssGk7kikUl6e1R0/1+p/Q6nYtQHHZ67h6dGs5yzMbTJzrZ3i6nVO6xoTGM6RkRl7f1X9pC1Fa5XjxITlRPmF5qmrNMX13e6qlb/ogUQq5c17xiXa1C6HQ8c6PFt/koQ8PP8Ar/Zdwml0B+yauhDwr7bbu8LajKLtahFw8R5kkp34Y+C7z53Sozti07QqQf9qhz0YWZtRpH1tgi7cTXU1sjEjISjj9e8wsAXJGg3ht/P2+s9vxDyUuYtBAWXPnj1z2wNnZ2cOHjxIgwYNADhw4ABqtZqzZ89St27d1HKnT5/G0dEx14//Ln0+6YGZuSm29toMc03aNMS+mDYz3ra/d5Os0bD0n18wszBj04qtNGrVQGf7V56vuXNN28330PajDB7bn1k/TaWCSzmeP3pJxarl6DqwE88ePk+du9JQeg/vjqlFmmvj1g0pkuK64+89JGs0LN7yM2YWpmxesTXDHI2vPF9z91raQ+OWM2s5ffAcfq/8KeZYlJ5DuxIeGsHPM3PW1bjn8G4pntqshg1b18eumNZ51997kUhgl8dWTu8/y8vHL4mJjqVsxTJ07NeOqIgo1i/elLqv+Nh4/vplLVPnTeJ/q77lytmrVKtXlXa92rB6wRoiQjPeFD+EbsO6YmqhxibFtUE6171r94FEwj+XN3H2wDlePvYkNjqWMhXL0K5vW6Iioti0ZHPqvhq1b8jo2aPwee6D1xMvWvVoqXOsa+evE/rOfHofQsdhnVGbq7G2176BrNO6LjYprofWHUAikbDm0jouHDiP12Mv4mJiKVWhNK36tiYqIoptS7bq7Kte2/p4nLxCwOsArItY0apvG+xK2LF48m8kGjgBO0DbYR1Rm6uxSvGs2boONsW09Xt03SEkEgnLLv2F+8GL+Dz2Ii46lpIVS9GsTyuiI6LYszQtscS5HafpNLobI+d9RukqZfB57E0Zl7K06N8G70eeeBg4qX1hdG0/rCOqdOe/Vus6WKdzRSJh5aU1uB28gPdjL2Kj4yhVsRTNU1x3Lt2WYZ8lyztSunIZ9izfmSO39BSmOm09rANqczWWKa41WtdOrdPj6w4jkcCSS6u5fPAiPo+9iYuOo2RFR5r2aUl0RDR7l+7Q2d+Ck0u4csiNoNeB2JUsQsvB7YkMjWTtVzmf5Lzp0HaYmKuxsNe+hK3aqhaWKZljz60/gs+9F/jc030QfJvl9c1jb26nC+DaTehJ2VoVuH/uJiGvA1FZmuLavh6lXZ05u/YIgZ45m4ahzrA2KM3VmNpbAlC+dQ3Mi2nr+Mq6Y/jefYnv3Zc627zN8hrwxIdHx9N6yFiUsKX38ok8OnmdyIBQipR3oNagVvg99OL0z7pJaD4U12FtMDZXYZpSp2Vb18A0xfPGuuMoLdQMOTKXh/vcCX6m7bJcumk1yrZy5cWZWzxN51nz03a4DmvD66uPSYyJp1KPRjrHenL0Kok5mDrKZVgbjC1UqFNcS6dzvbP2OMYWavocmcvT/e6EPNW6OjarRqlWrnieucWLY1rXxNj41H+np0y7WiS7Ould96E4f9IGhYUak5TzX7xtDVTFta5P1hzDyEJNuxPz8NrrRvhT7YuWos2rUrx1Dd6cvsWro2kOKgdbGq6ayKvj14n1D8WiggNOQ1sR9sCL2/Nzdv7LjGiLkbkqtQWyaJuamKTU6fM1x0iMiOHJ0n2U6FqfOmsm82zVERLCoykztBUSuYwH7yQWcujdGJWDLbKUhF029StSfnJ3ALx3XiDGx/B5Kh1HtENuoUKZcv7t2tbEOKVOvf46SmJEDM+X7qNo1/rU+PsLXq48TEJENI5DWyOVy3gyL+3332lyD6zqVCDgzC1iXwViZGmKfee6WNZwxvOvI0Tn8TQ8gsKNJDmzSZ6yYOjQoXz22Wepwd+7XLp0iT/++IMNGzZke5+nTp1i4sSJlChRArVazdOnT1m2bBkzZsygfv36VKpUifv373Py5Em+++47+vXr96HaOtQtrn/c0Fv2Xt5K8ZLF9K7rVld77H1XMj6IveXgtiP874sFqZ/titoyZvoIajWsgV1RW8JCwrlw0p0/FvypMw/ku8gk7x/muvvSPxQrWVTvuh71+gOw5/JWvetBG/D++EXanKHfL59NtTouWNtaERYcxvkTbvz16zpC3pmi413k7xmSu/3S5kw9+9QbSKBfEJ/NHk3Nhq4UdbDHWGlMoF8Q185fZ/2STfj6ZLyZdRnYkX5j+lCsZFH8Xwewe91edvy1O0sPAGNp1u9SNrmtp2gmroMaDCXIL4hRX43EtWF1ijrYo1AqCPIL4vqFG2xe+g9+6VyHfjGYoVOG6N0XwNQ+07l1Sf+bV7Xk/d1RV19cg31J/ZM4j2o4gmC/YIZ99QlVG1SjiEMRFEoFwX7B3L5wk+2/b0ud4B6gehNXeozpSamKpTGzNCMuJo4nNx+za8VO7rhl/XZYJcm6TpdeWI1dySJ6101sNJoQv2AGzRpG5QYu2KV4hviFcOfiLfb8viN10vi3WNlb02fqQCo3cMHa3obI0Aiun7rKtp83EhGSsxcKBcU18b0zBsLyC6spksn5H9doFCF+wQyeNYwqDarqnP87F2+z6/ftBPhkbPEZOGMIPcb3Zmrbz/F6lHlXyPTI3/O2t6DUqdY163vVbxdWZur6RaMxhPiF0H/WUCo3cMHWwS7V9d7F2+z7fQeBPgE624xb+gXlalfEwtZSm+TohAe7F20jPCjrScktsnH9f3/hd2wc9Lt+23gCwe+4gDag/N+FZeyZu5FTf6Yl5KrYuCrNhnegpEsZTK3NSYiL5/VDL9y2nebyzqy7PhdJfv/76c8vLMaypP4pS5Y0mkSYngdrCwdbJl1cwom5m3FfnZY8SmmuouuvYyhRwwkTC1Mi/EK4f/AS55fte29CHnVy1t/VkRcXYZGJ558NJxMXHk3L/w2lWA1nTO0tkUilhHr68WCvG1dXHUaTbsxxu4WjcenTVO++3u4vPJOAwiQbT2eD3RZhnonrxgZa1yb/G4p9TWfUKa5hnn482ePGzXdc9dHyt9E4dazLnxVHZlnOJvH9sp2vLEadieuBOpNICI+m5txh2NR0xqSo1jXypR+eu914uOIQyelcjSxU1F08BpsaTigsTYnxDcF7/yXuL9n33oQ8yvc89rbxWIIqE8/jdT4nxlt7vlSORagyZyB2TVyQyGWEXHvC/blbCb2p20Oi0e7Z2DbUP/74Qs8fCHLTPxzMOPn9SX2aefyOiaN+13O1JxLjrb3+TUoVocKcwdg0cUEqlxF67QmPftxCeDpXm6ZVKTWqPeZVy6CwMUcTF0/EfS98Np/h1basr//2fpk/YxZUTtjnLI7IKW38Mo8hCiMGBZQVK1bkl19+oUuXjP3sAQ4fPszUqVOzHDOpj8uXL3P48GESExPp0aMHtWvX5vr168ydO5dnz55RvHhx+vfvz9ChQz9UOQPvCygLCtkJKAsK73tIK0i8L6AsKGQnoCwovC+gFHw42QkoCwrvCygLEoXlXpWdgLKgkJ2AsqDwvoCyoJCdgLKgkJ2AsqDwvoCyoJCdgLKgIALKD+e/FlAa/AuQ1RhKT09P1OqMWc7eR7169VKT8rylZs2a7NpVsFJYCwQCgUAgEAgEAoHgAwLKPXv2sGfPntTPK1asYPv2jP3UIyIiePToEU2bZt7FQyAQCAQCgUAgEAg+BiIpT+6S7YAyJiaGkJCQ1M9RUVEZUrYDqFQq+vfvz/jx43PHUCAQCAQCgUAgEAgEBZJsB5QDBw5k4MCBALRs2ZKvv/6aVq1a5ZmYQCAQCAQCgUAgEOQ2hWeEauHAoDGUp0+ffn8hgUAgEAgEAoFAIBD8pzEooHz9+nW2yhUvXtyQ3QsEAoFAIBAIBAKBoBBgUEDZsmXLLLO8vuVDpw0RCAQCgUAgEAgEgrxEdHnNXQwKKOfNm5choExKSuLVq1fs27cPa2trBg0alCuCAoFAIBAIBAKBQCAomBgUUPbs2TPTdaNGjaJv375EREQYLCUQCAQCgUAgEAgEeYGYNiR3yTjvRw5RqVT07NmTdevW5fauBQKBQCAQCAQCgUBQgMj1gBJAo9EQGBiYF7sWCAQCgUAgEAgEAkEBwaAur5kRGRmJh4cHa9asoXLlyrm5a4FAIBAIBAKBQCDIMRrR4zVXMSigrFixYqZZXpOTkylevDhz5szJkZhAIBAIBAKBQCAQCAo2BgWU48eP1xtQWlhY4OjoSKNGjZDLc7XxM9fxiwv52ArZQiE1+tgK2ca4ELnKJHnS2zvXiZIZf2yFbCPPmx70eYKxtGDfnwojskJ0/tWF5V6V/LEFsk+sJOljK2SfQtIyISssooBSJvvYCtmmsJgaFaLz3/5jCxiAphDVb2HAoKeqiRMn5raHQCAQCAQCgUAgEAgKGTl+TR8VFYWvry8ARYsWRa1W51hKIBAIBAKBQCAQCAQFH4MDytu3b/PLL79w/fp1NBoNAFKplFq1ajF9+nSqVq2aa5ICgUAgEAgEAoFAkBsUohEFGfD09GTNmjXcunWLJ0+eULZsWQ4ePJihXHh4OEuXLuXo0aOEhYVhb2/PwIEDGTFiRGqZ+Ph4Fi1axP79+4mKiqJGjRp88803lC1b9oOcDAoob926xZAhQzAyMqJ37944OTkB8OzZMw4dOsTgwYPZuHEj1apVM2T3AoFAIBAIBAKBQCB4hydPnnDu3DmqV6+ORqMhOTljeBwdHc2QIUOQyWR89dVX2NjY8PLlSyIjI3XK/fjjjxw+fJiZM2dib2/PypUrGT58OIcOHcLMzCzbTgYFlIsWLcLe3p4tW7ZgZ2ens27ixIkMGDCARYsWsXbtWkN2LxAIBAKBQCAQCAR5guZjC+SAli1b0rp1awBmzpzJ3bt3M5RZvXo1UVFR7N+/H5VKBUC9evV0yvj6+rJz507mzJlD7969AahatSotWrRg69atjBo1KttOBqXlu3XrFv369csQTALY2trSt29fbt68aciuBQKBQCAQCAQCgUCgB6n0/eHbzp076dWrV2owqY8LFy6g0Who3z4tT6+lpSWNGjXi33///SAng1oopVIpSUmZpwjXaDTZ+p8VCAQCgUAgEAgEgv9PtGrVKsv1p06dMnjfPj4+BAQEYGVlxdixY7lw4QIqlYq2bdsya9as1ASqz58/x8bGBgsLC53tnZyc2Llz5wcd06Cor0aNGmzevJlXr15lWPf69Wu2bNlCzZo1Ddm1QCAQCAQCgUAgEOQZGonko/7lJYGBgQD89NNPWFhY8Oeff/LFF19w9OhRvvnmm9Ry4eHhesdJmpubExYW9kHHNKiFcsqUKQwaNIgOHTrQpk0bSpcuDcCLFy84deoUMpmMqVOnGrJrgUAgEAgEAoFAIPjPkpMWyPfxdvaNMmXK8NNPPwHQoEED5HI5s2fP5osvvqBkyZK5ekyDAsrKlSuzY8cOFi1axOnTp4mJiQHAxMSEJk2aMHnyZJydnXNVVCAQCAQCgUAgEAhySmGeNuR9vO3C+m4Snvr16wPaLLElS5bE3Nw8Q9ZX0LZcvtsN9n0YPA+ls7Mzy5cvR6PREBwcDIC1tbUYOykQCAQCgUAgEAgEH4GSJUuiUCgyXR8XFwdA2bJlCQwMJCwsTCeAfP78+QfPQ5nj6E8qlWJra4utra0IJgUCgUAgEAgEAoHgI6FQKGjUqBHu7u46y93c3ACoUqUKAI0bN0YqlXL8+PHUMmFhYVy4cIGmTZt+0DENbqH8L6NSmzBmwie41qqKa00XLK0smDphNjv/2Z9aRiKR0Kt/F9p3ak2VahWxtLTA2+sVB/YcYfWy9cTFxevsc/AnfWnYpC6utapSwqEYO/7Zx7QJ37x7aINcR44fSvVaLlSrUQVLKwu+nPgdu7ce0HHt0a8zbTu1oHLVClhYWuDj9YpDe4/z1/KNxKdzNVYaM2fBDKrXdKFYiaJIZVK8Xviw65/9bP57B4mJiQZ5mqhMGDF+EFVrVqFqjcpYWFnw9ec/sG/bIR3Prn070rpTcyq5lMfcypxXXq85svck6/7YrOMJcNfvkt5jLfpxOWt+32iQ51vX4eMHUrVGFVxqVMbCypxvJv3I/m2HdVy79O1Aq47NqOhSHgsrc155veHo3pOsX7ElgyuAta0V42eMommbRlhYmRMYEMyV81f5bsr8HLgqGfRZf6rUqERl14qYW5nzwxcLOLz9mI5rhz5tad6hCeVdymFuacZrL19O7j/NlpXbiI9L0Nmnla0V474aRcNW9VGrVbx86smGZVs4ffBcjjwHfNaPyjUqUinFc94XP3MknSdAl4EdaduzNY7Ojpiaqwn0C+Km+y3W/rYBXx+/DPvt1L8D/cf2oVjJYvi/8WfXmj3sWrvXYE8ApUpJ37F9qFSjIhVcK2BuacbPU37l+I4TOuU6DuhAq54tcXQqidpcTZBfMLcu3Wbjok34pXO1K2ZH+35tqdeqHiVKF0ej0fDy0Us2L/2H6xdu/L9wVaqU9Bnbm4o1KlDBtQJmlmb8OmUhJ3ac1CnXYUB7WvZsSUknB9TmpgT7BXH70m02LdqMn49/ajmFUsH4H8ZRsUYF7IrZIZVJeeP5hmPbjnNgw0GSEjPPQp4d125jelDetQLOruUwszTj96mLObPztE651v3b0qxHc0o4OaA2VxPsH8w99ztsW7KVgHSub7GwtWTAlIHUalUHM0szQgNCuO12mz9m/G6wq7FKSacx3XByLU9ZV2dMLc1YPfV3zu88o1Ouef/WNOrRjGJOJVCZqwn1D+aB+z32LNlGoE+ATllzWwv6fTkE15a1UJoqef30FQeW7+LKYd0Hkw/1bDemK2Vdy1GmujNqSzP+nrYMt51nM91GJpcx58ivFC9Xku1zN3D8z/066zuN70kZ13KUdS2HuZ0l+xdvZ//i7QY7FlbXtmO6Usa1HKWrO6O2NGXdtOW4Z+Eqlcv45sivFC/nwM65GzjxZ9qzgr1TcRr1aUnlptWxc7QnLjoWr7svOLBoG553nufIVaEyptWYLpRydcYxxXXztBVc2Zn574pULuPLIz9RtJwDe+du4syfBzMtW6tbI4YumUhcVCwzqgzPkWeLdJ4qS1P+mbYCj/d4Tkvx3D93E2fTeVo52PHNBf3X+IaJS7h5wPDrSqEyptmYLpR0daZkdSdUlqZsn7aCazszn+5BKpcx+cgC7Ms5cGjuJv7981CGMtaORWg7tS/lGrlgbGpC2Jsgbh+6xLFfc/6dLUgU5nkoY2JiOHdO+5189eoVkZGRHD16FIC6detibW3NhAkT6N+/P1OnTqVHjx54enqycOFCunTpgqOjIwBFixald+/e/Pzzz0ilUuzt7Vm1ahVmZmb079//g5xEQKkHa2srJs8Yi4/3ax7cfUSDJnUzlDFRKVm47Eeue9xi87odBAYEU6tONb74chyNmtSjf/eROuXHfv4JpqZqbl2/SxF721xztbK2ZOL00bzyfsPDe0+o37i2Xteffv+OGx63+Wf9LoICQqhRpyqfzxhDgyZ1GdJjTGpZpdKYchWcOHfyIj7eb0jWaKhRpxpf/TCF6jVdmDL2a8M8bSz5bNpIXnu/4dH9p9RtVCtDGaWJkrlLv+Hm1Tts37CHoMAQXGu7MH76SOo3qc2InuMzbON29jL7tx/RWfbg7iODHNNcLRg79VNe+/jy+P4T6mTi+sOS2dy6epcdG/YSHBhC9doufDb9U+o1qcXIXhN1ytsXL8L6/SsB2LFhD/6+AdjZ2+FSo1KOXC2sLfh0yjDe+Pjy5MEzajWsocfVmG8WzeTOtXvs2bifkMBQqtaqwsipw6nduCYT+kxJLasyVbFq71Ksba3YvmYXQf4htOrSnLmrvmPO+B85vtewQeQW1hZ8MmUovj5+PH3wnJoNXfWWK+fizBtvXy6ccCciNIJijkXpMrATDVvXZ3ib0QT5BaWW7Tq4M9N/+oKzh/5l++qdVKtXlck/TsTYRMmWP7Ya5PnWdegXg/Hz8eP5/ee4Nqyut5yzixO+3r64n7hEZFgERUsWpeOADtRvVZcx7T4jyE87FKBh2wb0G9cXt2PuHN95AplMRpterfn5nwX8MnUhx7Yf17v//5KrhbU5g78YlOpZPRNPpxTPSycuEREWSdGS9nQY0J66rerxWbtxBKd4GisVlCpfiiunPfDz8SNZk0zlWpUYM2c0FWtUYMHEnw3yBDCzNqff5AEE+Pjz8sELqjaoprdcWZey+Hn74XHyCpFhkdiXtKd1/7bUalWHKe0nEeIfnFrWppgt83ZpEyMc33yUIN8grO2tKVe9nMGeWlczekzuR6BPAF4PXlK5QVW95Uq5lCXA24/rJz2ICovErqQ9zfu3xrVVLb5uP4VQ/xAAlKYmfLNzLha2lhxbe4iwgBDqdWrExBXT+ePzRbjvO2+Qp6m1GV0n9SXIJwDvB55UbODy3m1aDuuAdfHMfyt7TB9IqH8IXvdf4NIs433PUAqba+dJfQjyCcDnwUsq5NC1cb9WNOrXkhtHLnNu4zFMzFQ0GdiGL/fMY+mwuTy8eCcHrua0n9SbYJ8AXj/wpFyDKu/dpumwdlhlUa9vUaiM6TprEHFRsQb7vUVtbU67dJ7O2fBskg3P6/su8uCM7ks5z+tPcuhqRutJvQjxCeDNA0+csuHaaFg7LLNwLVa5FGO2fkO4bwj//nWI6JBILIvbYFncJkeugtwlKCiISZMm6Sx7+3nDhg3Uq1cPFxcX/vzzT3799Vc+++wzLCws6NevH1988YXOdrNnz0atVrNw4UKioqKoWbMma9eu1Zv9NStEQKkHf78AaldqQYB/EFVdK3PwVMaH04T4BHq2H8I1j1upy7Zu3IW312umzhpPo2b1uHjucuq6fl1G8MrnDQD3PfW3rBlCgF8gDaq0JdA/CJfqldhzcpNe174dP+GGx+3UZds37eGV1xsmzRxLw6Z1cfv3CgBhoeH06TBcZ/t/1u8iIiKSoSP7M+/b3wj0D+JDCfALpJlLR4ICgqlSvSLbjq/L6JmQwOBOo7h5Ne1Ha9emfbzyesOEL0dTv2kdLv3robPNy2deHNx19IN9snYNomXVzgQFBFO5ekX+Ofa3XtehnUdz6+rd1GW7N+/ntfcbxs0YRb0mtbl8/mrqum9+mUFSUhID239KWEh4rrkG+QfTybUnwQEhVKxWnrVHVulxTWR0twncuXovddn+LYd44+3LqOmfUKdJTTzOXwegx+AulCzjwIS+U7h2Ufvjt3vDPv46sJyJ337G6UPnSEz48FbqIP9gurn2JjgghArVyvPXkRV6y/321dIMy84fvciaoytp37sNm5drr0WFUsGoL0fgdvIS34z+HoADWw4jlUgZNnkw+zcfJDIs40Dz7BDsH0yfmv0JCQihfLVy/HFomd5yS7/OuPziMTdWHF5Om16t2fqH9m3uTfdbDKw3hPB05/3gpkOsPPoHw6YOzVFAWVhcg/1D6F9zICEBIZSrVo5lhzKeZ4BlXy/PsMztmDvLD/9O616t2P7HDgAiQiOZ3E33R/HQpsNERUTT7ZOurPrfn4QEhBjkGuIfzIjaQwkNCMWpqjO/HPxNb7nVs1dmWHb52CV+PbSI5r1asGfFrtTlY+ePIykpiRldphIZGmGQlz5C/UOYUHsEYQGhlKnqxP8O/qK33PrZqzMsu3bsMj8c+pXGvZpzcMUeAFoOakvRMsWZP+Bb7rtp722nNh5jzt4FDJw9nCuH3Uky4PoP8w9hSp2RhAeEUqqqE98c+CnL8mY25nSZ1IejK/fRfar+t+RfNv6MIJ8ATK3MWHxj7Qc7/Vdcp9cZleJalq+y4dppUm+OrdxLNz2uHvsvcnDxDuKi0wKzi9tP893JxXSZ3DdHAWWYfwiz64whIiCMklXLMu3AvCzLm9qY025SL06u3E+nqX2zLNtuYk/iomJ46n6Pqm3rGOwIEO4fwpwUT4eqZZmSDc+2k3pxeuV+OmTh6XP3Bdf2XsiRW0bXUH6oM5bIgDBKVC3L5wfmZllebWNOq0k9ObdyP231uEokEvr9No6AZ69Z1f8HEt/pvfRfQ5O3M3fkKQ4ODjx69P7GkwYNGrBr164syygUCr788ku+/PLLHDmJQY96iI9PIOA9QVNCQqJOMPmWY4e03aLKldcdzPo2mMxt4uMT3hvgJSQk6gSTbzl+WNstyql8mfce55WX1t/c/MPeWKQ6xCcQFBCcZZnEhESdYPItp45om/XLliutdztjpTEK48wHH38o2XVNH0y+5dThFNfypVOXlXYuRZNWDVn3xxbCQsJRGCuQy2W55hr8ngfnxIREnWDyLeeOalsbSjmXSl1WvV5VggNDUoNJgOTkZE4dOIutvQ016utvWcoNz8x429XV1Nw0dVnNhq5YWluwZ/0+nbK71+9DpTahYav6Bh3rrauhwYifd0ZXz8eeOgHa22NcOeNBkeJ2mKhN/vOuue2ZadnU74raoGMBJMYnEhoQatC2/ildXdXpjl/CqQS1WtRm36o9RIZGYGRshCyXrv/E+ETCDHQNTHFVpXOtUKcy4YFhqcEkaK//K4fcsCxiRaV6728Bycwz/AM8e305GN/nr7m0J/Oue0HvdNXNLf7Lrj2+HITf89dc3qO/pdnr7nOdYBIgKjSSpx4PKOpcIieqJMUnEhGQ/Xntunw5AP/nb7iaietb7EoXpfmIjuz9YSNJSTnvxPihnp1SPK+9xxNAYWKMzCh3rn3QukZ+gGuHLwcQ8PwN1/foD2zLNa1GsYqOnFyyi8S4BIyUCiTSQhx1CfIV0UKZy9jZa7sFBAeFflyRbGBXROsaosfVyEiOqZkpxkpjqrpW5tPxQ/Dxeo3nC+98tgRbuxTP4NAM67r370T/T3ohlUp59ugFqxav5fBuw1t8coptap2m3eTrN9V2Qw4OCGb1jqXUa1KbxMRELv3rwdwvf+G1t+9HcbW2swYgLDjN1UihIC42LkPZ2JRlFauVx+P8tTx3M7cy1/bnL1GE4V8MAeBaujF85Vy00xI9vPVYZ7tHtx+TlJREORdnju/WHZ+XZ66WZkhlUoqUKMLgyYMAuH7x5nu3s7azIiY6lriYjPWdVxQWV7N0noMmDwTgph5PuZEclakKY6WCctXL02t0L3y9/Xj18nW+eAKYWpohk0mxLW5H30n9ALhzMe0FXrXGrgCEBoby3ZYfqNaoOkmJSdy6cJNVX6/QO94y71xNkcpk2BS3pfskbQvF/XStTnKFnPjYjOO/35730lXLcvdCxhepuUmZ6s407NWMBX2+IbmAJ/YvTK6lqzvToFdzfunzDR86YYK5nSWRwbnXsv4+HKs7UbdXM5b0mfPesj2+HcqTS/e4f/Ymrp0b5INdGo7VnajTqxm/95nz3hptO6kXXb8ejEajwefOCw7/uo3H5zO+6M8rHKo7UatXU1b0+Y7Mzn+5Rtou04lxiUzcPxeHamVJjEvg3nEP9sz+m5iwqHzzFRQ+RECZy4yd+Anh4RGcPZm7XRvyglEThhIRHsm5UxczrGvbqSWL/0xLFnP7xj1mTfofSUmGJ7swlBETBhMRHsmFU7qD129cuc2x/Sfx8XpDEXtb+o/oxc8r/oeZmSnb1u/Od0+A4eMHEREeycXTaa6OZbSTx37zy5fcu/WA6aNnU7SEPWOnjmDV9qX0aTmE2HwMKt4yeFx/IsMjcT+T1jXb65k3dZrUpGgJe3xfpSVrqV5XOzbLrmjujf/Nit1Xt2Gs1LY6hwaHsXj271xNF8jaFLEhMTGJ0HdehiQmJBIeEo6tff6N99jqsQVFimtYcBjLvlnO9ZQuxJlRvHRxGndoxL8Hz6dOQJwfFBbXLR6bdDyXf7OC6+czJgVq1KERXy2fmfr50a3H/DZtEZpcaKnILn9dXpvqGh4czl9zVnHrws3U9cVKFwPgs/njeXr7Cb+O+wm7Enb0ndSf7zb/wBftJuoN4vKCJZf/SnWNCA5nw5y/dAJE3+evcWlcDZsSdgS9SmtVq1BHO9bbqmjeX1cDvv8Uj4NuPL/+GBsHuzw/Xk4oTK79vx/BVQNcnetUpGzN8hz+Pf9+U3t9/wk3Drrz8voTrLNwrdyiBhWbVOOnDjnrqmcoPb7/hJsH3fG8/gSrTDyTNRoe/nuLO8c8CPMNxsbRnmafdmT0upmsGflLhnGVeUW374dz66A7XtefYOWg/3fcpkxRAAYtn8Sjc7c488c+ilVypMW4blgUs2FF7+/yxTW/0CBaX3OTAhdQBgcHc/78eZ4/f05oaCgSiQQ7Oztq1KhBgwYNkEgK7hdg/BcjadK8AV9P+5Hw8Px7m2cIYyd/QqPm9ZkzfT4R4RnHml26eJVhvT7D3MKMBk3qUrFKOVQqZb57jpo0jAbN6vLDjJ8zeA7pMlrn8+5/DrD9xDo+/2ose7cd0tvSlpd8+vlQGjSry49f/qLjqkrpJhgUEMyEQdNITta+HfR/HcBPq/5Hhx5t2bPlgN595hXDJg6ibtPa/DxrEZHhaW8d9/9ziB5DuvDjyjks+X45wQHapDzN2jcBtN2L84PpQ2ahMFZQupwjbXu2RvnOd89YaUxigv7xHfFx8fnmCTBr6GwUxkY4lnOkdY+WGVzfxVhpzLcrviYuNp6/FqzJJ0sthcV19tBvMDJW4FiuJC17tESp0n8+b7ndYuaAWajNTanR2JWylcqgNMnf+9SPw7/HyNgIB+eSNOvRHON3jq9Muf5DA0KYO/x/qdd/4Jsgpi6bTtPuzTi59cS7u80Tfh3+I0bGRhR3dqBRj2YYm+jW69mtJ2k5qC0Tl09l8w9rCQsIpV7nRtRqp50c+20wmlc06tOCEhUcWfHZr3l6nNygMLk27NOcEhUcWfXZwg/azszGnE+XTCLI25/jq/a9f4NcoF6fZhSvUJK1ny3KspzMSEaPb4ZycfNJ/J6+yhe39NTp04xiFUqy/j2eoa+DWD1UN5P7td3/MuPkQrrOHpwvAWXtPs0oWqEkm97japzye+Bz+xnbvtCOZ7979AoJsfF0+HIAzo1ceHox41AfgQAKUECp0Wj49ddf2bhxIwnpHhTlcjnm5ub8/vvvlCxZkrlz51K3bsasqx+bzt3bMe2rCWzduJtNawt2auWO3dvwxaxxbN+0ly3rduotExQQjFuANlHP0QOnGDv5E9bu/IM29XoYlJTHENp3a83EmWPYtXl/tlocExMS+WfNTub8OpPK1Spy40reds1KT7turZgwczS7N+9nx/o9OuveBrbH959KfZgEOH7gND8u+xbXOlXzNaBs1bUFo2eMYP+WQ+zZoJve/tmD58yZ8CMzFkxh9T5tIpdAvyCWfLeMGQumEBMdky+ON9xuAnD5zBXOH7vIhlNriImKYfc67UNNXGwcciMjvdsqjPV3280rbrlrv2ceZ6/idtydv06uIiYqln3r92coK5VK+fqPWTiWc+SrobNTs6sK13c9tV3Brp69ivvxS6w6uYLYqFj2r9e9TkIDQ7mR0hp44fAF+k/ox/wtcxnRdKTBYzY/lLvu2i6jN85e58rxyyw+8Tux0bEcWa9Nx/+29fHiwQs617/7oYskLvqCCrUq5VtA+cBd+zB4++wNrh+/wvwTi4mNjuXkem2mbO+HnvwxaTGfzB3Dt7u1D8Gh/iFs/t/ffDJvLLG5kEUzM5SmJvScMZBjq/cR8iZ/fmMMpbC5dp8xiOOr93+Qq8LEmPFrZqE0NeGX3t9kGFuZFxibmtB5xgBOrz5A6Htcm3/aCbW1GUcW7chzr3cxNjWh04wBnMmGpz6iw6Lw2HGWVuO6Y1HUmjDfvLu3Gpua0H5Gf/5dfZCwN1kfJyHlXnVzv5vO8pv7LtLhywGUqlX+PxVQFuxO6oWPApOUZ/ny5WzZsoUpU6Zw4MABjh07xoIFC7Czs2P48OG4ubnRuXNnRo4cye3b+dfvPDs0bl6f3/6Yy+nj5/lq6g8fWydLGjWrxy/L/sfZExf4dlrW2cvSc3T/KUxN1bRu3ywP7dJo0LQu837/ln9PuvG/6VlnrkuP72ttN00LK/O8UstA/aZ1+HHpN5w/6caPMzJmWfT3DQTIkOhHo9EQFhKGuYVhiY4MoU6TWny7eCZupy7x80z92SvPHPqXLjV7M6LjWEZ2GUePev155alNyuT13CffXN/y2vMNj+89pU3P1qnLgvyDkMtlWNpY6pSVG8kxtzIn0O/jPOS98XzD07vPaNWjhd71U36eTP1W9fhl6kJuuuXfCw99FBbXN55veHb3GS0y8UzP+UMXUJmqaNDW8KRMOcHPy5cX957TtHvafTIkJRAPCwzVKavRaIgIichRAqGc4O/lh+e9FzTsrjt5tcdhdybWHcm3XWbwXfeZTG44Bn8v7X3V90XejU1tN6orciM5HgfcsHGww8bBLrWLrdpCjY2DHTKjgvEOvDC5tklxvZrO1TLFVWVhqtdVZiRn7KppOFRy5I9RP/P6cf7kTmg5qjMyIznXD7hj7WCHtYMdlkWtU1zVWDvYITOSoTQzoe2EHrhvPY3STJVa1lilBAlYO9hhapN3zwAtRnVGbiTn5gF3rBzssErnaWKhxirFMytCXmt/o1SW7082lhOajuqEzEjOrQPuWDnYYuVgi0XK+de62qa6hvtpX8JFBuom+okMCk8tLxBkRsG44wG7du1i8uTJDB8+PHVZqVKlcHBwYMSIEQwcOJBJkybh7+/P4sWL+fvvjFM5fAxca1Vl9frF3Ll5j3GfTvsoYwyzS/WaLixf/yt3bt3n85EzP8hVmdI1yiwbmRZzStWaVViybgH3bj1k6qivP8jToZQ2E11IUP60TlStUZlFa+dz79ZDpo+erdf1wW1taucixXTHWMiN5FhaW+RbAqfKNSqxYM0PPLz9mNljv88yI15iQiIPbqWlpK7TRDsXZ34k5NGHsVKBQpHW3e7pvWcAVKxenkunr6Qur1i9PDKZjKf3nua741uMlQqMFBlbT0d/PZL2/dqxfM4Kzuw7m/9ieigsrgqlsV7Pd3k77lZt9vEefLSuaT+tz+5ov4vW74w/lBvJMbc2Jyw496YR+lCMMjn/SQmJvLiddg25NNbOxXkvDxPyWJewRW1pxg8nF2dY12lCLzpN6MX3Hafhff9lnjlkl8Lnasp3JzN2d+w4oScdJ/Tkh47T8UlxlUgkfPLbBCo2rMqf43/jyeX7+eZqleL61cmMXXPbTuhB2wk9+Lnjl8SER6M0NaH12K60Hts1Q9k5F37n9nEP1oz+sC6+2cWyhC0qS1O+1OPZZkIP2kzowa8dv+T1fc9M92HjaA+kBWt5xVvXqSczds1uOaEHLSf0YHHHmby578mruy8AMLe31ilnXsQKgKg8dhUUbgpMQBkUFES5chkneS5Xrhzx8fG8fv2a8uXL06pVK6ZPn/4RDDPiXL4Ma/9Zho/3az4ZMCHfx+x9CE7lSrN6yxJeeb1m9MDJmbpaWVvqzabaZ3B3AO7cfJCHltqpQf7YtJBX3m8YP3hq5p42lhmy06rUKoaM7kdwYAj3bj3MU0+AMuVK8fumX3nt7cvEIdOJyySxhofbdYICgunYsx1/LdlAfJy2XLd+nZDL5Vz694re7XKTUs6OLNwwnzfevkwbNitTV304lClBjyFduHDCDe88bKGUyaSYmKoyzB9ZybUCZSuW5eTeU6nLrl28QVhION2HdtUJKLsP7UpMdAxupy6Tl0hlUlR6XCu4VqBMxTKc3ntGZ3nfMb3pO7YPm3//hz1/781Tt3cpLK6Ze5anTMXSnEnnaW5lnmF6E4D2A9oD8Ph2ziYMz46ridqEqHDdrIfO1ctRqkIpzu87l7rs7qU7hAaE0rR7M3Yt30FCytxuLXq3QiaXcev8zTx3VapNiH7HtWx1Z0pWKIX7vqynO7AvXYyWg9px46QHvi/yZvorgFNrD3PjuO690NzGgqHzx3Jxx2lunPAg0Dv/MuJmRWFyPb32MDf1uA6ePwa3HWe4+Y5r/+9HUKdLIzbNWsWNY3n/25Sef9ce4c5x3bmmTW0s6D9/FJd3nOXOiasEefuTlJDEX6MzBkhNh7endM3ybPh8KeH+oXnmeX7tEe7q8ew7fxRXdpzl7omrBKfUqdrajKh3MuRa2FtRr29zXj/wJMLAaX+yy8W1R7l3/KrOMlMbc3rNH8XVHWe5d+IaISmu905cpcucodTu04xrO8+ldtGv01/bO+TJBcPnIS2IFOZ5KAsiBSagLFeuHPv376dRo0Y6y/ft24dcLqd48eIAKJX5k3Bh2Mj+mFuYYV+0CACt2zWnWHHtG6V1q/9Bk6xhw46VWFias2rZOlq11e025PnCm+tX07rmtmrXjMou5QHtm+lKlcszceooAE4cOcvD+4Y/AA3+tC/mFmYUsde2gLVs14SixbXeG/7cRrJGw9/bl2Nhacaa5Rto3qaxzvZeL31S53/s1qcD/Yf15uSRs3i/9EFtqqZJiwY0blGfU0fPcemC7k30QxgwojdmFmYUsddmGGvetjH2KZ5b/tqORpPMqq2LMbc0Y+0fm2naWve74O3pkzr344BPetOyQ1POHr/Am1d+2BWxoceALhRzsGfWhO9JNGDy7fT0H9ELM3Oz1Kymzdo0wr6Y1vWfNTvQaJJZ8c8izC3NWL9iC01bN9R1ffmK29e0rgnxCfz2v2XM/f1b1u79g4M7j1K0hD2DRvblmvtNTh06R07oPbw7pham2KbUa+PWDVNbQ3f8vYdkjYbFW37GzMKUzSu2Zpij8ZXna+5eS3sLveXMWk4fPIffK3+KORal59CuhIdG8PPMrAf0v4+ew7uleGpbahq2ro9dMa3zrr/3IpHALo+tnN5/lpePXxITHUvZimXo2K8dURFRrF+8KXVf8bHx/PXLWqbOm8T/Vn3LlbNXqVavKu16tWH1gjVE5HDy+G7DumJqocYmxbVBOte9a/eBRMI/lzdx9sA5Xj72JDY6ljIVy9Cub1uiIqLYtGRz6r4atW/I6Nmj8Hnug9cTL1r1aKlzrGvnrxP6TnfI/6Jr12FdtN0BUzzrt66HbYrnvrX7kUgkbLq8gXMH/sUz1bM0bVM8Ny/5J3VfrXq2pNPgjrgdc+eNly8qUxNqNatFraY1cT9xiVs57KLbYVgn1OZqrFPe1NduXRebFNfD6w6CRMLqS39z8eAFvB97ERcdi2PF0rTs04roiCh2LN2Wuq/E+EQ2zFvL54u+4Mft8zm35wy2xe3o9EkX7l2+x+Wj7nodskvrYR1Qm6uxTHGt0bo21sW0dXx83WEkElhyaTWXD17E57E3cdFxlKzoSNM+LYmOiGbvUt0xaAtOLuHKITeCXgdiV7IILQe3JzI0krVfrfo/9u47LIqrb+P4d3fZpVfFimABe8HeRcUGdo3daIoliRpNNJpieoxPqomJSUwzRo0xmth7r9gL9oYNUUBAQJC6+/yxiKwsRfro7/Neud5nZ87s3g47s3PmnDknXzk7jOiGjYMtTmWNrR0NfJukdxPdNn89109f4frpKybbPBiN9OaFYI4/cgHfom87SlV0RZfWe8arWS26j+8PQMDynUTevPNUZG0/ohs2DjY4pv396/s2xjmt++W2+Ru4cfoKN7LIGnLhBicyZPV9wZ/2I7px+ch5ku4n0rxPW5Ptjm08SFI+RiRvO6Ir1g42OKbt17q+jdK7iu6av4Hg01cJPn3VZJsHo7zeuhDMyQwVo5OPVJIA6nVpikcDvdl1j6PNiK5YZchZx7cRjmk598zfwM3TV7n5SM4Ho7zevhDMqQyf3/OtYZRyL8vFfaeICY3C2c2VlkN90VlbsvzD+fnKCdByRBesHWxxSMtay7dRepfWffM3EHL6KiGZshrPZaEXgjmTIeu98Gi2f7+CLpMH8sL8Nzm96TAVarvTdHBHjq3cS3BgUL7ziidXialQTpgwgXHjxnHp0iXatGmDVqvl5MmT7Nq1i5EjR2JnZ+xqefbsWTw9PQs9z+hxI6nk/nAiX7+enfDraXyGa/k/xsEWKroZh4N/6/3XMm2/dPFKkwqlX89ODBjSO/113Qa1qNvAOBT7rZDQfFUoX3zlWdzcK6S/7trDl649fAFYuXQdABXcjMNBv/Heq5m2/+/v1ekVysP7j9OwaQN69O1KaVcXUlJTuXLpGjOmf8WCX5dk2vZxPPfyMCq6l09/3blHBzr3MN75WrNsAwDl03K+/u64TNuv+HtteoXy2MFAvJvWo/+wXjg5OxIff59Tx87w7mufcHBP/rtljnh5KBUrPczaqUcHOqVlXfuvadZJ01/JtP3KJWvTK5QAa5ZuICUphecnDOe1d8cRG3OPZQtWMPvTufmeimHoS4MoX6lc+usO3dvRobvxBseGf42DfZSraLwZMu6dsZm2X/vPBpMK5cUzl+k+qBsupZ2Jjoxm6+od/PrlH2bnK30cg18aaJKzffd2tE/LuenfLdwJjWDN4nU0auVN++5tsbSy5E5oBFtXbGf+twu5HRxq8n4r5q8iNTmFQWMH0LpzS8JCwpn9/hyW/pr/4e0HjO1PuQxZ2/q3oa2/8UbMlv+2EREawbrFG/Bu1YB2/m3RWemICI1g+8rtLJq9mNAMWavVqgqAW1U33pqdeXj7yQPeyFeFUilZ+4/tT7lKZdNft/FvQ5u0nNv+20ZEaCQbFm+kQav6tPVvk5Yzku0rd7B49mJCM8zXeOrQaWo3rkX73j44l3YmNTWV4MvB/PThXFbOyzzA0OPqPboPZTJkbenXipZ+xptGO5fvICo0kq1/b6Zuy3q09GuFzkpHVGgke1btYul3/2SaW3LHf9tJTk6h38v9GfHW88TFxLH5r40s/HxBvo9//9G9ca1UJv11U7+WNPUzzse3d/lOokKj2PH3Vmq3rEtTv5ZpWaMIWLWHld8t5U5wuMn7XT9zlbYDOuJY2onYqBgOrtnLf7OWEBNh+lzV4+o6phel3R7mbOzXgsZ+xptb+1fs4n5s/GO9X9tBvtRoUSf9da1W9ajVyji90aXD5/JVSVNS1s5jeppkbeTXgkZpWQ+s2E3CY2R1q10FgGqNa1CtcY1M699u8woRj3xfHkeHMT1Mpixp4NecBn7GEYQPr9hDQmzRDPqWk/ZjephMV1Lfrzn103Ieecyc53cH0mpYJ1o/2wUbR1vux8QTdPAcm7/7L1OlNC/aPZK1nl9z6qVlPbZi92Pv063fLSc+Oo7WI7vS870R3Au/y/bvV7BldvFMxVaYim5yqaeDypBx2Llidvz4cb777jvOnTtHYmIiHh4eDB06lH79+qVPFxIYGIhOp6NmzZr5+iyPUvULInKh06lzfm6opLBUUFaNqsSMR5UtG03RTX+RXxYlZ4yvHFmqS8y9tCeGRkF/f1uFnKtsS8493xxZKuScqiQaBc2TZ0X2g9CUJEpJqlXQ3/+zq4tzLlTC/FFxeLF+/nM3F+ZcSEFK1K+Vt7c3v/2W/Vxn9esroyIohBBCCCGEEE+6ElWhFEIIIYQQQojCVGK6Zz4hpI+KEEIIIYQQQog8kRZKIYQQQgghxFNDpg0pWNJCKYQQQgghhBAiT6RCKYQQQgghhBAiT6TLqxBCCCGEEOKpIfNQFixpoRRCCCGEEEIIkSfSQimEEEIIIYR4akgLZcGSFkohhBBCCCGEEHkiFUohhBBCCCGEEHkiXV6FEEIIIYQQTw2DzENZoKSFUgghhBBCCCFEnjy1LZSHGzkXd4Rc0VVQzp9IpdMUd4RcUzvZFneEJ44hOaW4I+SaSquQ48pCOff8VBbKOf7Raos7Qe5oFLRPU1OLO0GuGe4nFHeE3ElR0j6NK+4IuZciw7EIGZSnoCnnakUIIYQQQgghRIkiFUohhBBCCCGEEHmikH5fQgghhBBCCJF/0uW1YEkLpRBCCCGEEEKIPJEWSiGEEEIIIcRTw1DcAZ4w0kIphBBCCCGEECJPpEIphBBCCCGEECJPpMurEEIIIYQQ4qmhVxV3gieLtFAKIYQQQgghhMgTaaEUQgghhBBCPDVk2pCCJS2UQgghhBBCCCHyRFoohRBCCCGEEE8NaaEsWFKhNMfKGpuBg9HWrIVFjVqoHRyI+WImiZs2ZCpq2a4D1s8MQFPJHfR6Uq5e4f6SxSQd3G9SzmbocCxq1kZbsxZqZxfi/pxH/II/8p/V0gpL/0FoqtZEU7UmajsH4n/5nOQ9GzMV1TbzQdf1GTTl3TEY9OiDr5C4bgkpJw48fLs+I7DqOzLLj7v3yaukXjydt5xdB6CpUhNNlRqobB24P+8LkvdtzlTUokk7dJ37oylXCYNej/7mVZI2/kPKyYMm5VSOLlj2GoFF7UaoHJwx3I0g+UQASWv/whAX+/gZH9BZoWvfB7W7F5pKXqhs7ElYMpuUw9szFdW28kPbyh9VqbIY4mJIObGXpA1/QXLiw5yuFdE280VT3Ru1SzkMSffR3wwiadPf6IMv5z2nkrLqrNB17IfGozoa9+qobO25/9c3pBzcmjlnm+5o23ZHXaochnsxpBzfTeK6hZCUaPqWnQei8aiO2qM6antnEjf8RdKGxXnPmDGrEvbpg6zteqOu5IXGzdOYden3pBw1k7WlH9oW3VC5pGU9uY+kTYtNs9o7o/N71vheDi6g16O/E0Ly/g2kHN2Rz6yWaNv0Qu3mhaaiJyobOxL/m0PKsZ2Zilo074q2eVdUzmUxxMeSenIfSVuXmGR9lKZ+G6wGvIohMYH4T0bkPafWEm2rHqgrVkNTsRoqazsSV84l5cSuzDmbdkbbpDMq5zLGnGf2k7R9mek+dSyNzcRvzX5Uwr/fkXp6v9l1uc7a0h91hWpoKlQ1Zl39MymBezJnbdIJbeNOqJxcMdyPJfXMQZJ2LoPkpExlVU5l0Pn0R1OlDuisMMRGknL2IMk7luUvqxL2q6KOKYWdqzr1R1O5BhqPGsbfgAVfk3JgS+as7XqgbdcDdanyGOKiSTm6m8Q1f2b6DUClQufbH20bf1SOLujDbpK06R9SjmQ+p+SapRW6zs8Yr1Uqp+Wc/xUpAWauVRq3RefbD3W5SqDXkxpylaRNy0g99ci1imt5LPu+gEUNb9BqSb1+maRV80m9EJj3nErLKp540uXVDLWjI7bPPofG3YOUoKxPola9++Hw7gfoo6OJ++1n4hf+idrWFscZn6Fr09akrO3zo7GoXpOUSxcLNKvK3hGrPiPQVPBAfyMoy3K6Tn2wGfcehnsxJCz9hcSVC1BZ22L7+qdYNG6TXi75yB7i587M9J8+IhT9vRhSg87nLaedI5Y9n0Vd3p3UbHJqO/bGZux0DPeiSfjvN5LWLEJlY4vNq59g0bD1w4KWVti++Q0WDVuRHLCZhMVzSDl1EF2HXti8/hmo8j58l8rWHl3nQajLuJEacjXLcjr/Z7HsOwb97eskrvyNlJMBaFv7YzVymum/qXkntM06o79xicQ180jetRq1a0Wsx3+Gxqt+nnMqKavKzgHLbkNQl61EasiVrHP2HInVMy+hv3WNxP9+JiVwH9q2PbB+4e1MZS27P4u6khf64Ky/T3nKqpB9CqCysUfnOxC1qxupt65lnbXbcCx7jUIfep3E1b+Tcno/2pZ+WA2f+si/3QG1YylSTu0ncd18kjYvxhAbhdWACei6DM1nVgd0HQagdq2I/vbVLMtpuwzDsseL6ENvkLTuD1JPH8CiRTcsh0zO+s11lui6DseQmJCvjMac9uh8+qEuXRF96PWsc/oOxtLvOfThwSRtXEDq2UNYNO2C5cBJZsunnNxHwvIfTP7TB1/Kf9a2fVGXrpB91g4Dsew6wph180JSzx3GokknLPtPzFRWXdYd6xc/RF22EskH1pO0aQEpp/ejsnPKf1YF7FdFHVNKOlfZOWDpPwx1OXdSb2ZzrdL7eawGvoI+5BqJ/84l5fhetD49sR49PXPZniOx7PMCKeePkbj0RwxR4Vg/Pw2Lxu3ykdMRyx7DUZerRGo2vy3a9r2wHv0OhnsxJC7/ncR1f6GytsVm/EdYeD+8VlE5l8Zm6iw01eqQtHkZiSvmobK0wnrip2g86+Y5p9KyiidfiWyhTE5OJjg4mOjoaAAcHR2pVKkSFhZFE1cfGcGdgX0xREViUb0Gujk/my1n3acfyefOEvPuW+nLEjauw2Xxv1h17kbSnt3pyyOGD0IfehuVgyOl/11VYFkNdyOJefUZDNFRaCpXx+7DH82W03XuS0rQOeJnvZO+LGnXBhy+WYKuTRdSjhjvaOtvBGWqmKpcXFE5u5K8ax2kpuQtZ3QksZMHYYiJQu3hhd30OeZzduxN6pVz3P/uvYc5927E/ou/0LbqTMqxvQBYNGiJunQ54mdPT2+5TAYMcbHGiqtbVfQ38nZH1RATRdxHz2OIvYvarRoWE7/MVEZl74y2XS+Sj2wn8e/ZD7cND8Gy7xg0tZqQevYwACnHdpO0aQkkPbzYTT60FZs3vkPXeTD3L+b9zp9SshqiI7n37rPGnJU8sZg8K3NOB2d07fuQfGgbCYserteH3cTqmZfQ1GlK6ulD6cvvffQihsgwVLYO2M1YlKdcZrMqZJ8CGGKjiJvxIoZ7d1FXrIbF+M/NZHVC26YnyUd3kLj0u4fb3rmFZa9RaGo2IfWcMav+9jXu//K+yfbJAeuxGvEW2lb+JG3+Gwx56yhkiI0i/rPRGO5Fo65QFeuX/5c5q50T2lbdST6+k6R/H54j9BEhWPZ4kZQajUk9fyTTdlqf/pB4n9Qrp9HUbJqnfOk5790l/qtXMMRFoy5fBevRn5jP2cKP5BO7SVr508Ockbew9HuOlOoNSb1wzGSb1NtXSD25N1/ZzGb9ZsLDrC98aCarI9rm3UgO3EPS6oe/ZfrI21h2HUGKlzepF48/KI1lr7HoI26RsHAmpCQXbFYF7FdFHVNKOlfFRHLvrWEYYqNQu3thMTVz67LKwRldx74kH9hKwoKv0pfrw25iNfAVNHWbpbeoqRxLoevYl6Sdq0lcarzuSd63EetJn2PZ50VSju7J0341REdyb+oQ47WKuxcWb39ntpyuQy9Sr57n/g8P/7bJ+zZh97+FWLTsRMpx43dS13UQKhs74j56CUNosLHc7g3YfvgLlgPGEj9zwmNnVGLWkshQ3AGeMCWqhTIwMJCxY8fSuHFj/P39GTx4MEOGDMHf359GjRrx0ksvERhYBM3uyckYoiJzLKa2sUF/N8pkmSE+HsP9+xgSTbtm6ENvF2jEdCnJGKKjciymsrLBEHPXdGFCPIbE+xiSMnd5ykjboiMqtZqkfZm7Jz5Wzpjc5dTHmsmZcB8y5FRZ2wCgf+Q99dFpfzcz3bhyLTUFw6MZHqH2qIFKY0HKcdOuZclpry28H7b66m8GmfxAAxAfi/7KGdRl3PKeU0lZc5FTU7kmKo0FyUdNu8ClHDPemNE2NL3rbIgMy3ue7Chlnz7Iei+HrO5pWQNNL7qTT6RlbdDa3GYm9FFhoLUETT5u6qWmYLgXnUPW6qg0FqQG7jNZnnLS+NqiXqtM26hcyqFt1Z2k9X9iSE3Ne76MOeNyyOnmacx5OsA05ynja4s6Lc1vqLUEtSb/GR/ITdaKXsasZ0y7gKakdQm1qN0ifZmmal3UZSqRvHuFsTJpoctXb4/HzloS9qvSjimlnKtSUjDEZn8NoKlSy/gb8EiX1ZQjxt8EbWOf9GUW9VugstCSvHuNSdnk3WtRO7uiqVIzjzlzd61CltdUCSZdczWeddHfuJxeQTOGTCQlcD8aDy9UZSrkLafSsoonXolpodyxYwfjx4+nbt26vPHGG1SrVg0HBwcAYmJiuHz5MuvXr2fo0KHMmTMHHx+fHN6x8CWdOI5lOx+sevcjaf8+VDod1n36oba15f7yf4s7nomUcyfQNm2HrlMfko8HoNLq0HXqi8ralqRN/2W7ra6lL/qIUFLPF35lPvV8IBaN26Lt2JuUE/uNOTv2NubcuvxhuQsnMehTsRr8ColL56KPuoOmYhUs/YeSfGwv+ts3CjWn6kFr+aMV17TnUTRu1XJ+D3snDHExBR0t8+coJauF1vj/H8lpSPvBU1fyLNzPfwyK2aeAKov9mp61gpmsFjrQWaLSWaGpWgdt4w7or1+AlHzcqMkNjTGr4dHPScuqrlA10yY6/+dIvXKa1IvH0NTNosJR0NJzPtKCl7aP1eWrZNpE164flp2HGZ9fD7lC8valpAadLPSoDyosWWYtV/lh0Sp10stavfAhmvJVMKQkk3r+CIkb5kNCXCFnVcZ+VdIxpaRz1eP8BqjdqmFIvJ/ptz712vm0stVIDTpTaFFTLwRi0agt2va9SDl5AJWFFm2H3qisbUjatjK9nMpCiz7ezJgOaf8mjbsXKWEhhZZTaVmLkr6A7pUJoxJToZw1axbPPPMMH3zwgdn1rVq14tlnn+X999/n66+/LhEVyns/zEbt6Ij9+Ikw3vgsiv7uXe5OfZ2Us3kYuKYQJSz8HrW9A9bPTsD6WWO3BX3MXeI+e4PUy1mfdNUVPdC4VyNx7d9Fk/PvH7C2c8B6yDgYMs6YM/Yu8V9PIzXobHo5/a3rJCz4FqtnRmP71sNuPEn7NpEw/+tCz6kPN55U1ZVrknr5VPpyTZXaAKgcSmW7vbpKLdTuNUjemo9BLnJJKVn1YTfTctUi9dLDC0JNNWNOtaNLoX7+41DKPgXQhxv3q9qjBqlBGbJWTstqZr9qW3fHstvw9NcplwJJXPZ9IScFwx3jftW410B/5eE5VONRC8A4qEkGmuoN0XjW5/6cNwo9W0aGiFvGz69UHf3Vh+dPjUcNwNjN8GFhAymXA0k9dxhDbCQqpzJoW/hjOXQqiUu+ytDdtJCyRqZldfNCf+3hOVTjnjmryqUcAFb9xpN6OZCEvatRl3VH26oHVg4uJPyZuZtqgWZVyH5V0jGlqHNVWsuYpmptUjN0r9V4Gm90qJ0eZlU7umRudYP0Hlsqx+z/XfmV+M+PqOwcsRr8Cgx+BUi7Vpn1FvorGa5VQoON+S2tIfF++nJNNeO/SeVUuDmVllUoV4mpUF65coV33nknx3Ldu3dn+fLlOZYrCoaERFKDb5BwJ5zE/QGobGyw6TcAh/c/5u7rE9CH3CzuiOkMSQmk3gpGH3mH5OP7UVlbY9n1GWxe/YC4GZPQZ3HXSduyEwBJAfno7vqYOfWhwSTdvUPKiQOorKzRde6H9cvvEff5ZAzhD3Pqo+6QevU8KScPoo8IQ+NVF13HPhhio0lc9kuh5tTfDCL12nl07fthiI4k9fJJ1GUqYdlvrPHuulaX5bYqW0eshr6OISqMpB2F/11WSlZ98GVSr55D59sffXQEqZdOoi5bCasBL6fltCzUz38cStmnAPqQK6Rev4DOpy+GmEhSL59CXcYNyz5jjFktMmdNObEHffBlVHYOaGo2Ng7Iks2/qcCy3rpC6o0LaNv2Nma9chq1a0V0PUdhSEkxzarRoPMbScqhzRjCi/Zcq799ldTgS2hb9TDmvHrGmNP/eQypKSb7yhATQeKiz0y2Twncg/Urn6PrPIz7hVyh1N++RurNS2hbdscQG0XqtbOoS1dA121kpqyqtGMs9VYQiavmGv/3+cOQnISu40DUleugv1p4N0uVsl8VdUwp6VwVfJnUK+fQdX7G+Btw4QTqcu5YDRqX+TdAq8vckg3pLb6qQt63hqRE9KHBJN+9Q8rJA2Bpjc63H9YvvUv8l5MxhBtvjiTtWoNNgxZYj36LxJXzMSQmoPPpgdrDKy1n4f+uKSmrUK4SU6EsX748Bw4coFmzZtmWO3DgAOXLly+iVNlzfPdDDKmpxLz3cFCepH17cPljEbbPjyJ2RuYBEoqLzfj3ITWV+G8ejpSWcnQfdp//ieUzL3D/B/N3nnUtOpJqZqCeQss59l0M+lTuf/9wUJ7k4wHYzZiHVd/nuP/zp4Cx1cpmwsfEzXwV/TXjyLkpx/dhSIjHssdwkvduRH8r65EEC0LCn59jNXwKVoOMLb6G1FSSd69CU7UOateK5jfSWmL1wjuoLK25P+ftzM+rPOVZ78+bidXIaVgPnfQw544VaDzroi6TRc5iopR9CpCw6AushryO1TPjH2bdsxpN1dqoS2fOargbTurdcMB4IWzZ9yWsX3yf+K9eLfQueomLv8Jy0GtY9nvlYdZ9a9BUro269MNneLSteqCycSBp2z+FmifLnEu/wbL/BCx7jzXm1KeSvH89Go+aqEvl8BuVEEfK8V3o2vRCZe+CITbnZ/bzlfXf77DsOw7LnqMfZj2wAY17TdSlyqWXe3CB/uiUGymnA9B1HIjGzbNQK5SgnP2qpGNKSeeq+7/OwOqFN7Ee/trDrNuWo/GqZ/obkJz0sOtxRmmVeUN+xlHIBevR74A+lfs/fJC+LOVEAHYf/Y5l7+dI+HUmAKmnD5Pw9xws+7yA7TvGgcb0YTdJXDkfq/6jMGRoCZSsRUvmoSxYJaZCOWrUKN577z2uX79Ot27dqFq1avozlLGxsQQFBbFhwwbWrFnDxx9/XMxpQV2uPLpmzYn9+guT5YbYWJJPnURbp+QMsaxyLY+2fjPif//KZLkhLpbUCyex8DKfVeNVF7VrORL+KdzWvgdUpcthUa8p9/98ZATQ+FhSL51K7/YCoPXpjiEmKr0y+UDK8QCseo1AU612oVcoDTGR3P/hbVSlyxufMblzC0PsXWym/5bezciExgKrkdNQl/fg/q8fZTt0/tOa1RAdyf3Z01CVLo/awRl9eAiG2LvYfvhHlq3oxUUp+zQ969zpqEplyHrvLjZv/YL+Ts77NeVUANpmndFUqV34XTRjo0j49T1ULuWMWSNuYbgXjcUbP6FP6xKJpTVan34kH9yEytIGLI2DdKksrUCFca7F5EQoxOe+DLFRJPzxESqXsqjsnDBE3MYQF43Fa9+jj8h5EDZDTITxf1jbQiFXKA2xUST8+Qkq57Ko7BwxRIYas776LfrIh1kN94zdBR99Xu7Ba5WVbaHmTM+qgP2qqGNKSeeq6Ajuz3oDlWsF429AWAiG2ChsZyxIfywCjAPwmZvKROXonP4+hUVVuhwWdZuSsPAb0xXx90i5fDr9MY0HknesJnnfJtQVq0JqMvobQWhbdwUw+Tc97VmFspWYCuWAAQOwsbHhu+++Y/Xq1ageGVnOYDBQuXJlvvjiC7p3715MKR9SO6c9I6ExM1CuhQUqTQGO5JdPagfjCValNpNVY5Hl6HjaVr4Y9HqSArYVZrx0D3KSi5xqB+esywEU4f433LmF4Y7xQldVxg21owtJhx/ZZyoVloNfReNZn4SFX6IPKp5nbJWS1XDnFqlpOdVlK6F2LEXiwaLpdv24lLJPwfiM2oPn1FRl3FA7uJB0JPMk6Jmk3fVXWdkUZjwThsjbGNIqOyrXisasx4yjP6qs7VBZWqNr2xtd296ZtrWZPIeUs4dI/OuLTOsKPmcohshQY67SFVHbO5N0YlcOW4HauYzxf5gbBKOQGKJCMUQ9yFrBmDXw4fRW+ltXoeEjzypiHJQFwFCUWRWyXxV1TCnpXBUeQuqD5z/Lpf0G7N+Svl5/MwhV626oy1UyGZhHU9k4umtBz0+cUfrxocp8DaLSaMxfUyUlmjyvqKnV0Pgo0qXC3b9KylrUZNqQglViKpRgfD6ye/fu3Lhxg6CgIGJijHdFHRwcqFq1KpUqVSrmhA+lhgRjSE3F0qcjCWseziupLu2Ktm59Uk4Vweh9uaQPu4lBn4q2eQeStj8cYlvlXBqL6vVIuXgq80YaDdqmPqRePFV40zNkyhlizNnEh+Sda01zetUl9eLDk5k+NBiLOk3QVK9P6oWHD+9rm3Uwrr+etzko80WlwrL7SAxJCSTv32iyStdnNFrvtiQs+4HUU/uzeIMipJSsKhWWvZ7HkJhA8t4NxZslJ0rZp2DM6vesMeuBTQ+X2zqYbdXTNjHeXEoNKZqu7yZUKnRdh2NISiDlkDGrIS6aBDOVRW0LP9SVqpO49NscpygohKDoOg0x5jyc4eaHjX2myo3K3hkLbx9Sb1/LcYqKwqFC13EwhqREUo4+rPykXjiKocswLOq3JeXEbh5ccll4GwfBS71i5reiKLIqYb8q7JhS1Lmqz4vG34A969IXpwQGYOg3Gm3bHunzUAJo2/gbx1fIMIhfQTOEG69VLJr4kLz7YSaVU2k0nnVzrHipq9bCwrs1ybvWQEJ8oeVUWlahbCWqQvlApUqVsqw8RkVFcenSJZo2zd/k1Tmx6t0Xta0d6lKlAbBs0QpNaVcA7q/4D0N0NAkb12Pt3wPHz2eRuHcXKmsbrHv2QWWpI/7vhSbvZ9mpC5oyZVFZWQGgrdcAm6HPApCwZRP6sNA8Z9V16o3Kxi59BC6tdwvULsbciZtXYIiNJnnXBnTtu2M77UuSj+xGZWWDrmMv0FmSuOavTO9pUbcpantHEvMz9+QjtB16obKxQ502+ppF/RaonI37NGnbCgz3oknesxFdO39sJn9O8tE9xpzte4LWksT1D0eaTdq2Cm2rrthM+IikbSvRR4RhUb0e2uYdSTl9hNQr5/KXtZUfWNuiThtV0qJ20/RR45L3roOEeHS9XkSl1ZIacgWV2gKLhm1RV/IicclsDHfvPHyvNj3QtfIj9eo5SE7CopHpCMUpJ/enD+H+JGfVtumOyto2PZtFnWbp34Wk3cYfK8u+o0GrM86HprFA26gdavfqJPz1DYa0548esGjSAbWzK+iMAwVoqtZB13mg8d99eDuGKNPyj5VVIfsUQNvSD6xsHmat1SR9lMnkfeshMR5djxdQWWhJvXUVlUaDRYO2qN08SVz2PYboh1l1Hfqj8ahJ6oVj6O/eQWVth0XdFmgqeZG0by2GXHQ5zI5F866orGzT75prajRJH2Uyef96SLyPzv85sNAaW8s0FljUb426oidJ/8152I0tOYnUs4cyvb+mZlPUFT3NrnusnE07G3PaORnft3rD9BFmkw9uNObs+qwx5+1rxpx1W6GuWJWkFXMfdrsEdJ2GoHYuS+qV0xhio1A5lUbb2Be0liRtXJCvnAAWTTqhsrR5uE+9GqKyT8t6eLMxa+dhxqyh10GtwaJuS9QVqpK06meTrIa4aJL3rkbn0x+rIVNIuXAUdZlKWDRsT8qpAPS3ruQvq0L2q5KOKUWdq9r1MPYuSNuXFvWao3YyXqsk7Vxl/A3oPxa0WmMLo8YCbZP2qD2qk7Dga5NzuuFuBMnbV6Lr/AxoNOivXcSiQUssPOty/4/PwZD3J+S07XsaczqZybl9pfFaZd8mdG38sJ70P1KO70VlaYPWp4fx+7dhSfp7qVzKYD36bVIC92OIjkJdwQNtO3/0N6+QuOKPPGdUYlbxZFMZDAZFtfpu3LiRSZMmcfZs/u4+hXfOftoRlwV/oylnfgCAiOGD0IfeBrUGq569sOrWHU0F48PiKefPEb/oT5JPHDPZxvHLb9A1aGj2/e5Onkhy4HGz63QVcq7z23+5CLVrObPrYiYPxXAnFNRqdB17omvnl/5ge+qV8ySsXEjqucyfbf3yO2ibtCX21QEY4nLXdUily76bqd3MP1GXNp8z9s1nMUQYc2p9eqBr0w112iS6qVcvkLhmEannT5hsoy7rhmWf59BUqYnK0dn4A3NkN4mr/jSZrNcctVP2zwLZvDUXtUsZs+viPh2DISociyYd0LbtaRzUwmAg9cZFkrcuMxmaHcBy0AS0TTpm+VkP3i+vSkpWQ3JKtjlt3/sVtUtZs+vuffQihsgwLJr5ovPphbp0eWPOaxdI2vyPyTQiD1iP/xQLz3pm3y/++7dIvZR1a4pKm/1xVVL2KRZmunU/mnXqjw+7+T363p+9hOFuOBaNOqBt3f1h1uBLJG//12TKAwCNZ320rbqjrlAFla0DpCSjv32N5ENbTVqyzFFZ5NzN3Pr177PMGv/VOGPWhj5YtOyO2qUcGPTob14iaedyk2lEsqLr+woWdVoQ/8mI7AtqzQzmkTHnq9+gdnI1n/PbiRii72DRoB0WzbsZv9MGA/qbl0nas9JkugsATZ2WaJv4GgcUsrKFhHhSr58nefcK9LevZp8zF133rcd9lXXW7183Zq3fBotmXVE7p2UNCSJp7yqTaUQysmjSCW2TzsZnUe9Fk3JyD8m7V4A+Nesgqdmse5C1hOxXw/3sB5gpKccUKTlXikrKucpwP+eKpu2H81CXyuI34L3njL8BzTuh69AbtWsF0BtIvXaepI1LTKYRSadSoes8AG1rP1QOLujDb5K06R9SDu/IPkgO+9V2xvysc74z8uG1SrvuaFt1NblWSVr3l0mvKWzssBrxuvE6xcYu7TplF0nr/zaZmiOvSkpW+59KeA8iM2Z4DCvWz3/n2qJi/fyCJhXKEi43FcqSIqcKZUmSU4VSPL6cKpQlSU4VyhIjFxXKkiI3FcoSI4cKZYlRgp7Fz1EuKpQlRU4VyhIjFxXKkiI3FcoSQ0H7VSmkQvn4nrQKZYm5qurZs2euysXFxRVyEiGEEEIIIcSTSm4rFKwSU6EMCgrC09OT2rVrZ1vu5s2b3Lp1q4hSCSGEEEIIIYTISompUHp5eeHh4cHMmTOzLbdx40YOHcrfgAtCCCGEEEIIIfKvxDygU79+fQIDzTx0bYbCHvsUQgghhBBClBCGYv7vSVNiWihHjRqFj0/OA+X4+PiwdWvJnOBcCCGEEEIIIZ4mJaZC6e7ujru7e47lrKysqFixYhEkEkIIIYQQQjxpZFCeglViurwKIYQQQgghhFAWqVAKIYQQQgghhMiTEtPlVQghhBBCCCEKm15V3AmeLNJCKYQQQgghhBAiT6SFUgghhBBCCPHU0D+Rk3cUH2mhFEIIIYQQQgiRJ1KhFEIIIYQQQgiRJ09tl9cfL7gVd4RccTwvTw0XhpTiDpBLSQr6899TyaxOBc3SoKAvgChwiSqlnKngvoJmdUtSyKVPnGJ+qeCeQVvcEXItRp9U3BFyJV4hOQF2/1TcCR6fdHgtWNJCKYQQQgghhBAiT5Rxm04IIYQQQgghCoBy+lQog7RQCiGEEEIIIYTIE6lQCiGEEEIIIYTIE+nyKoQQQgghhHhqyDyUBUtaKIUQQgghhBBC5Im0UAohhBBCCCGeGtI+WbCkhVIIIYQQQgghRJ5IhVIIIYQQQgghRJ5Il1chhBBCCCHEU0PmoSxY0kIphBBCCCGEECJPpIVSCCGEEEII8dSQaUMKllQozdDaWNJqbA8qelejonc1rJ3sWDl5LieW7cpyG7WFhrEbZuLqVZHNMxYR8PM6k/XOHmXxfXMwVVrXwUJnwa1TV9nx1TKuBpzJd9bGL3WnrLcn5byrYuVkx6bX53J22W6Tcp2/GkPtAe0ybR95KYQFHaemv7Yt60Sbt4ZQtkFVbMs6YUjVE3XlNoF/bsn0nk9izgdZm77UnXJpWa2d7Njw+lxOP/K+Xb8aQ90sss7LkNWlWnnqDvLBo209nDzKkBSfSNjJq+yb9S+hgVfynbXF2O5U8PakfFrWNZPncvKRrN2/HEN9M1kjLoXws+9U04UqFc3H+NPoWV/sXJ2IvHKbgB9Wc2ZVQL6y6mwsaTu2B27enrg1qIaNkx3LpvzEsRyOqwnrZ1LGy431Mxax55e16es6TuqP76T+WW47t/8HXD9y4YnNCco7Vykhq1JygrK+qzobSzqM7YmHtyfuDTyxcbJj8ZQfObRsZ7ZZp6z/jHJebqyasZAdv6xJX+fs5sq7e74zu92fE77l+Oq8na90NpZ0GtuLyt6eeDTwxNbJjgVTfuBADjnfWv855b3cWD5jAVsz5HQs40zvt4bhUb8ajmWd0ev1hAXdYveCjRz4N+u/U25Y2ljhN7Y3Vb29qNLAEzsne36d8j17l23PchuNhYYP139FRa9KLJkxnw2/rDJZr1Kp6DamFx2Gd8WpjDO3g26x9sf/OLBqT55zWtlY0WtsX7y8q+Pp7YWdkz1zJn/LjmXbTMr5Du5Mu77tqVDNDVsHW6LCIjkdcIql3/5NeHBYern2z3Rk3FcTs/y8byd+zZ4VWf+9cso64KVnqNmwBjW8a2DvZM+Xr3/F5qVbTMr5DelGx34dqVTNDVsHOyJDIwjcH8jCWYsIzZBVZ6Vj3MevULNhDVzLu6LWqLl17RYbl2xi9Z9rSE1JzVNOAGsbK4a8PIjaDWtSy7smDs4OfPra56z/Z6NJuZ5D/enSrxPunu7YOdhyJzSC4wEnmPf1n9wODs30vt0H+zH4pQGUr1SesFth/Pvbcv6dtyLPOcXTQSqUZti42OMzqR93g+8QevY6lVvWznGbZs91wbFCKbPrHMq78MLyDzCk6gmYu4ak+ES8B/gwbME0FgydyfWD5/Kc1crFnuaT+hETfIfwM9ep1CrrrCkJSWyZ9pvJsqTYeJPX1s722JV34eK6g8SGRKC20ODeti5dvh6Lc9Xy7Pv8nyc6J4C1iz0tM2R1zyHrpkeyJj6Std7g9tQd3J6L6w5xfMEWLO1tqD+sI0NXfMC/Iz7n+p7Tec5q42JPm0n9iA6+Q9jZ63hk811NSUhi3ZuPZI2Jz1TO540BtBrXi2N/bePWiSCqd2lM7+/GYTAYOLt6f76ydpzYn6jgcG6fvUbVlnVy3KblyK44Vihtdt3pDQeJuHo70/IubwxCZ2vFzcDLT3TOB1mVcq5SSlal5HyQVSnfVVsXB7pOfIbI4HBCzl7DMxdZ247sinMWWR84unIvZ7cfM1l27ejFPOe0c3HAPy3nzbPXqJ6LnO1HdsMli5y2LvY4l3fh+Pr9RIZEoLHQULNtPZ79ahxlqlZg9Rd/5yOrPb0nDuROcDg3zl6jVsu6OW7jO9KfUtns0/5vDKX7K/3Y8ddmrgReomHnprw0+zUMBgMHV+/NU057FwcGTBpMeHAYV89epW7LembLValblbAboRzacpC46HuUqVSWToO70Ni3CVO6TSIqLBKAMwdOM3vS15m27/FiLzxqVeHU3hN5ygng6OLA8NeGERocStCZIBq0amC2XLW61bh94zb7N+8nNvoe5SqVxW9IN5r5Nuflrq8QGWrMammlw6O6Bwe3HSI0OBSD3kDtxrUY+/4Yajaswf8mfJ6PrI48//oIbgeHculsEI1aeZst51XXk1s3brNncwCxd2Mp716OnkO706pTC57rPIaI0Ij0sr2G9+CNz15jx9pd/PPzMuo3r8ekTyZgaW3FXz/k/bsqnnyKq1Du2rWLDz/8kK1btxbaZ9wLu8tXTV4hLjya8vWqMHrNJ9mWtynlQLtX+7L3p9V0mDwg0/rWr/TCysGGn7q8SUTQLQCOLt7OuG1f0OW94fzaY3qes8aH3eWXxuOID4+mTP0qDFnzcZZl9al6zi/P/gfhzrkb/DtohsmywPmb6fn76zR4vgsBXy7FoH/8bgJKyQkQF3aXH9Oylq1fheE5ZD2bQ9azqwLYN+s/kuMT05edWrKT57d9RqvX+uWrQnkv7C6zm4wjLjyacvWq8HwOWU/nkNWurDPNR/tzZP4mNr33JwAn/t7BsH+m0/HtIZxbeyDP+zU27C4zm77MvfBoKtarwiurZ2Rb3raUAx0m9mX3T6vpZOa4Cj13g9BzN0yWOZZ3waG8C0f+3kFqct7u/ColJyjrXKWUrErJCcr6rsaERfF+07HEhkfjVq8qr6/+NNvydqUc6DKxP9t+WoXf5IFZlgs+dYUjK/LeemYu51tNxxAbHo17vapMXT0zx5zdJvZn808r6TF5UKb1Ieeu8+3gj0yW7fpzI2N/nUr75/xY89WSPJ9To8OimNj0RWLC71K5XjXeX5195cS+lAO9Jw5g3U8r6Dd5SKb1TmVd6DqqJ1vnr2fh+78as/69hTeXfMygt0ZwaG0ABv3jD2USFRbJ6CYjuRt+l6r1PPlszVdmy/06fW6mZYc2HuCztV/j078DK378F4CwG6GE3TBtWdNZ6hj18Uuc2hfI3fC7j53xgciwKAY3GkpUeBRe9b34fu1ss+W+f2dOpmX7NgYwZ913dOrvyz8/LAUg9u49JvV+zaTc2oXriIuNp/fzvZj70S9EhUflKWtEWCS9vZ8hMjyKGvWr8+v6H82W+/rtzP+G3Rv28tuGn+j2TGcWzTFWFHVWOkZPe4F9W/bz7pgPAVj91zrUKjUjJw1n1aI13Iu+l6esJZF0eC1YihuU5/79+4SEhBTqZ6QmpRAXHp3r8r5vDiIi6BYns7hYd29ag9unr6VfTICxtej8lqNUqFcFl8pl85U1/jGyqtQqdHbWj/05MTfuoLXWodbm7R6EUnJCwWcNO3nVpDIJkHD3HsEHz+PiWSHPOeHxv6s5Za3epTEanQVHFph27zm2cCsOFUpRsZFXvrLee4ysXacN5k7QLY4vz/3FYv1erVCr1RxfmfcLTKXkBOWdq5SQVSk5H2RV0nc19jGydp82hLCgWxxZnvMjDDprSzRaTX7ipUt5zJy9pw0lLCiEQ7nImVFkcDhaax0W+fitSklKIeYxKk8Dpg3nVtBNApab72rbsHNTLHRati3YYLJ8+6KNuFQojWej6nnOmddKXlha91FbB9tsyzXu1BQbext257Gr6wPJScl5ruCFplVy7Rzsci4b/KBs9v+u7CQnJROZx6y3gzNnbdTKGycXR5bPX2lS9r/5K7GxtaaVb4s8ZxVPvhLTQjlv3rxclTt//nwhJ3k8FRpUpUH/dvzxzIcYDObvd2h0FiREx2VannI/CYDy9aoQeTVzP/aCprXW8fKZX9DaWJFw9x7nVwawd+bfmSo7ABpLLVobS7S2Vri1qEXtge24dfQSqYnJkvORrBPSst5Py7ori6yPsi3jxP3Iorvbp7XW8frpX9ClZT2zKoDtj2QtW8eDpLgEIi6a3rQJOW7s6la2rgfBh/P2DNXjcGtQjYb92/HzgA8xPMZ9xAZ9WnP35h2uHsh7N8LHoZScoKxzlVKyKiUnKOu76t6gGk37+/DdgPdzTNplYn96vTMcvV5P8MkrrPtyCRd2BxZJTo8G1Wje34dZA97LMafWUovOxgpLWyu8mteixYD2XDl6keQi+q2q0sCT1v3b8+mA6Vn+/T3qVCEh7j4hl4JNlgcdN3Yhdq9ThYuHC/97YOdkj1qjpnQFVwZMNLb6nsyhG2vbPj4k3k/kwIa8P5aRF/ZpWctULMOwSUMBOL73eKZyFloLbOxssLTS4dWgOv3H9Of2jVBuXi3cBpKMHJwdUKvVlK1YhudeexaAI3sedhf3qusJwLkTpr/x5wMvkJqailddTzb9Z3qzWclk2pCCVWIqlJ999hkqlSrLH+WMVCpVESTKHb8PR3J6zX6Cj17C0c38cwkRQbdwb1YTna0VSXEJ6csrNTXe7bMv51LoOePC7nLkp7WEnbqKSqXCo319GozsjGttd5YNnIEh1fTQavhiN1q/+bD7zvU9p9g8+WfJ+UjWQz+tJTQta+X29fFOy7rETNaMKjarQYVGnuyfvTLLMgXpXthd9v+0ltunrqJSq6jqU5/GIzpTppY7iwY9zGpXxom4O5nvzt8Lu5u23rlI8vb4cCQn1wRw4+hFnLI4rh5Vxqsi5Wt5sOunVTkXLiBKyQnKOVcpKatScoKyvqt9P3ye42sCuHb0Is5urmbLGPR6zu06wcmNh4i+HUkp97L4vOjPmD/e5LdRX2R6rrIwDPjweY6u2ceVoxdxySLnA+1f8Kf3tKHpr8/tOcnCN8x3USwMwz58kYNr9nH56AVKZZHVsYwzMWbO/9FhxlYw57JF812de+B3dFY6AGIiY/jt/Z8J3JN1hdLO0Q5vn0Yc2nSAhLj7RZLxgb8OLUzPGh0ZzZx3f+To7szfvdZ+rXl7zpvpr8+fuMDXU2ahz+Y6oaD9d3gJlmlZ70ZG88307zi8+0j6+lJlSpGSksrdiLsm26UkpxATFUPpsuafExcCSlCFsmzZsnTo0IEPPvgg23IbNmzgtddey7ZMUWkwoB1lalZi6cvfZlvuyMKt1OjcmP5zJrD9i39Iik+kybOdqFCvKgDatAO8MO37zHSQmgur93M36Datpg3Ey78ZFx4ZbOX8yn2EBgZh7eJAFV9vbFwdsZCcJvY8kvX86v1EBd2m7bSBVPdvxvksBrCxLuVA99mvEH0jnEM/rTFbpqDtfGSQorOr9xN55Tbtpw6kpn+z9MF2LKx0pCalZNo+Je0uelF8VxsN8KFsjUosfvmbx9quQZ82ABxfkbeBIx6XUnKCss5VSsmqlJygrO9q0wE+lK9Rifkvz8q23N2QCH4eYfp845H/djF1y1f0mj680CuULQa0p0INd37NIecDh1ft5XpgEHal7KnbsTH2pR3TKyKFrc2ADrjV8OCHl7/MtpzOSkdyUuYW0+QiPP8DfPrcR2gttbh5utG2b3usrK2yLd/CvxVaS22+u7vmxfQR76K11OHuVYmOfTtiZWNpttyJfSd4c8hb2DrY0bCNN1VrVcnx31XQ3nj2LXSWOip7udOlXyesbEw/39LKkpRk8y3mSYlJWFqZ/7cJASXoGcoGDRoQGJhzN5WS0jqps7PGd+og9s1dS8ytyGzLXtpxgvXv/YFHs5qMWfcp43d8hVfHhmz70niRn/GudVE6+ut69Kl6KrXJPDJc7M0Ibuw5zYVVAWyc+CPR18Po99ebaCy1kjMbD7J6mMkKYGFtSd95k9HaWrHixVm56hpbWA6lZa2cIWtKQhIaXeb7TBZp+zM5IalQM1naWdNl6iD2/LyG6ByOq0c16N2K2+euZxpUpDAoJSco61yllKxKyQnK+q5a2lnTfeoQtv+8mru3InLe4BHx0XEcWrqDstUq4liILb9Wdtb0mjqELY+RM+rmHc7vPcmRVfuYP+k7Iq6HMn7hdLSF/FtlZWfNM1OHseHnlUTmkDUpIQmtLnMebRGd/x84HXCS4zuOsubXVXz98ucMmDSIbiP9syzfto8PsVExHNtxJMsyheVEQCCHdxzmv1+WM+PlTxn+2jB6jeyZqdzdO3c5tuc4e9bt4bu3v+fA1oPM/GsGzq5F0+sH4Ni+4xzYfpAlPy/j3bEf8vxrI+j3XO/09YkJiVhozX8fdZY6EhOK73qlMBiK+f+eNCWmQtmtWzcqVaqUYzlPT0/GjRtXBImy12qMPxqdBafX7MfRrTSObqVxSPsBs3K0xdGtNOoMgwQcmr+Zrxq/wu993+eX7u/wQ8cp6VM2RFy5ZfYzCltqYjIJUbFYOeX8UPiltQexr1iais1rFkEyU0rJCcaWvKyyqrUaev88EdealVg5ahYRF4LNvEPRSUlM5n5ULNYZst4Lu4utq2OmsnZlnNLW520AgNxqM7o7Gq0Fgav34+RWGie30jiWM3azsXa0xcmttNnBNzya1MDZzZUTK4umJUUpOUFZ5yqlZFVKTlDWd7XD6B5YaC04vjoAZzdXnN1ccUrbr9aOtji7ueY4+E5UiLHSZOOU88AoeeU7ugcarQVHV+/Dxc0Vlww5bRxtcclFzmPrD+BSsTSezXOeliY/uo3ujUZrwcHVeynl5kopN1dc0v7+No52lHJzRZM2MFB0WBSOrk6Z3sMx7VGHqNDHuyFREEKv3+bK6Su07eNjdn3pCqWp2aw2AWv35WtOx4Jw69otLp+6TIe+HXIsu3vtHmzsbGjZpXgGugm5dosLpy/RuV+n9GURYRFYWGhwKuVkUtZCa4GDswN3Qh//Jo94epSYLq/+/v74+2d9B+qBatWqMX78+CJIlD2HCqWxdrLjlS2Zh+luO74Pbcf3Ya7f24SeuZa+PPl+IsFHL6W/rtKmLsn3E7lRBIOcmKO1tcLaxZ77kbE5ln3QjdTSwaawY2WilJzwMGv8o1lVKvxmvYR76zqsfuU7gotwgIus6GytsHGxJz7iYdbQM9fwHtKBUl4VTAbmqdCwmnH96euFmsmpYilsnOyYtOWLTOvaj+9D+/F9+N7/LW5lOK7AOHCIXq/nxMp9hZpPaTlBWecqpWRVSk5Q1nfVqWJpbJzsmLYl87QSncf3pfP4vnzpP42QR7JmVMrdOGruvYiYQsvpXLE0tk52TN+SeS7EruP70XV8P2b6T+VmNjkfdB+1sn/80cwfR6mKpbFzsmfGlsxds3uO70/P8f15z38yN85c5fqZq/gM6UwFTzeTgXmqeRtH975+5mqhZs2KzkpntuUUoHWvdqjV6mLp7mqOzsoyy6wZPXiW0dY+76O85pellQ6d7mE35kunjYPv1WxQnf3bDqYvr9mgOhqNhkunL2V6DyWTQXkKVompUOZWVFQUly5domnTpsWa4+AfGzm/6bDJMttSDvT43yiO/7OT85uPcPdGWJbbuzX2ola3phxeuIXE2MJ9iFxjqUVtoSH5ka5VzSb2QaVWc23Hw67GWVXc6gxuj0GvJ+zk1ac+Z3ZZW6ZlvbrDtPu270cjqNmrJZve/I1LG0y/N4VNY6lFY6HJ1LWu9avGrEE7H2a9uOkond4dTuNnO6XPQwnQcJgvMbciuXmkcC9+A+Zt5Mwm025LdqUc6DNzFEeW7uTs5iNEPnJcqS001PVvzrVD54kOKZo7qErJCco6Vyklq1JygrK+q7vnrefUpkOPZHVk4MzRHFy6g1ObD6dntXWxJ+6R3wDHss40H9iekLPXiM3HXIQ52TFvA4GP5LQv5ciQmWPYv3QHgZsPEZGW087FnntmfqtaDeyAXq/nxqkrhZYTYMu8tRzddNBkmUMpR56b+RK7l27j2OZD3EnLemzzQYa8+xwdn+2WPg8lQPthXYm8FcGlI4U3yr5ao8ba1pq4GNMRkT0beOFew4M9K81PddKmdzvCg8M4d+hMoWV7lFqjxsbOJtOcjDW8q1OlZmW2r9ievszB2YGYqMw3N7oN6QbAhcCLhZpVo1FjbSZrLe8aVK1ZlS0rHs7pfmTvMaKjYugzopdJhbLPiF7cj7/Pvq0HCjWrUDbFVSgPHjzIpEmTOHv2bKF+TtORnbFysMWurBMA1Ts1xKG8sUvLwT82cvvUVW6fumqyzYNR/sIvBnM+ww+4Y8XSPDNnAue3HOVe+F3KVHej8TBfQs9dZ9sjg6XkRf2RnbF0sMGurLFbStVODbFLy3rij01YOtoydP0MLqwMIPKysdXJo119qvh6c3X7CS5nyNp0Qm8qNKnO1R2BxIbcwcrJDk+/ppTzrsbxeRuJvpb34e2VkhPAO5usx/7YhJWjLc+un8G5DFkrt6tPVV9vrmw/waUMWRu92BXvkZ0JOXyBlPtJ1Orb2uSzLm44TMr9vD+b0Dgtq31aVs9ODbFPy3okLevz62ZwdlUAEZeMWav41MezozeXd5zgQoassbcjOfT7Blq81AO1hQW3AoOo3qUx7s1rsvLVOXmegPuBFiO6YOVgg0Na1pq+jdKfdQqYv5GQ01cJOX3VZJsHI1KGXQjm7KbMlXGvdvWxdbEv0K55SskJyjpXKSWrUnKCsr6rbUZ0xcrBBse0rHUyZN0zfwM3T1/l5iNZH4zyevtCMKcyZO351jBKuZfl4r5TxIRG4ezmSsuhvuisLVn+4fx85Ww3oivWDrbpOev5NsYprZvozvnrCT59heDTphXBB6O83rpwg8AMObuO70fVxjU4s/M4USF3sHGyw7tbcyp7e7Jj3nru5PO3yneEHzYONjiljcDq7dsEl7R9umX+eq6dvsK1R7I+GOU15MINjmWobEbdjmTT72vxf6kPGq2GKycu0bBLM2o0r83cV2dh0Oe9TafbSH9sHGxxScvZuFNTXMob9+mGP9aCSsVP+39j35o93LhwnYT4RDxqetB+gC/xsXEsm70k03tWqu5O5dpVWD5nWZ5zmdNrZE9sHW0plTaqaYtOzSld3njMrJy3CpVKxcIDf7Jz9S6uXbhGQnwCVWpWpsvALsTFxrHo28Xp7+XbryPdh/uzb2MAt67fxsbOmsY+jWncrhEBm/dzYl/206HkpN9zvbFztEsfgbVVpxa4pmX99/cVqFTw76G/2bZqB1cvXOV+fAJVa1bBf1BX4mLjmP/NwvT3SkpI4tcv5jH504l8NPc9Du44TP3m9ejavzM//+83Yu/m3EtMPL0UV6EsKi1Hd8ep0sOhtWv5NaOWXzMAApfveay7yomx8cSG3aXpyM5YO9oRGxrFwXkb2f39ygIZkKHxGH8cMmT19G+Gp78x67nle0mMiefK1mO4t61LrWfaoFKruXstlL2fLeHo3HWQYaqWq9uO4+hRhjqD2mHt4kBKYjIR566z6fW5nF32eBM3KzUnQJMx/jhmyFrdvxnV07KeTcsatPUYHm3rUidD1t2fLeHwI1lda3sAUKFJdSo0yTwx9C+tJhETnPcKZbPR/ibf1Zp+zaiZ9l09vXwvCTHxXN56jMpt6lK3fxvUajVR10LZ8dkSDvxsmhVg+/+WkBAdh/fQjtR7pi1RV2+zauIPnFkZkOeMD7QZ091kGoC6fs2om5b1+IrHO64eaNCnNSlJKZxaW3B3T5WSE5R1rlJKVqXkBGV9V9uP6WEyvUZ9v+bU92sOwJEVe0h4jKzndwfSalgnWj/bBRtHW+7HxBN08Bybv/svU6X0cfmO6UEptzLpr739muOdlvPQit2PlfP0tqOUdi9Ly4EdsHNxIDkxiZBz11kw5QcOLMt/N81uY3pROkPWJn4taOJnfC5v34pd3I+Nf6z3W/bZQuJj7tF+aBda9+9A6NVbzJ34DftX7clXzp6j+1CmUtn01y38WtHCrxUAu5fvJCo0kq1/b6ZOy3q08GuFzkpHZGgke1ft5t/v/iE8OHOL/4PnKrNqvcyr/mP7Uy5D1jb+bWjjbxzxeNt/24gIjWTD4o00aFWftv5t0FnpiAiNZPvKHSyevZjQDFlPHTpN7ca1aN/bB+fSzqSmphJ8OZifPpzLynn5n45n8EsDKV+pXPrr9t3b0b57OwA2/buFO6ERrFm8jkatvGnfvS2WVpbcCY1g64rtzP92IbeDTW9orJi/itTkFAaNHUDrzi0JCwln9vtzWPrrf/nOWtLon8CBcYqTypCbiR+LQM+emUfFMicuLo5bt27lu4XyI49h+dq+qDgaSsaotk+azBNjlExJCvrz31PJEwkFzVKO/6daoqpE/Dznyn0FPZGUpJALyTjF/FLBPYNyssboi2a02vyKV0hOgN03t+ZcqIR5pfLAYv38H67mv4dKSVJiWiiDgoLw9PSkdu3sRzy7efMmt24Vz6ioQgghhBBCCGVTxm0l5SgxFUovLy88PDyYOXNmtuU2btzIoUOHsi0jhBBCCCGEEKLwlZh5KOvXr09gYGDOBYES0ktXCCGEEEIIIZ5qJaaFctSoUfj4mJ+4NiMfHx+2blVeX20hhBBCCCFE8ZNBeQpWialQuru74+7unmM5KysrKlasWASJhBBCCCGEEEJkp8RUKIUQQgghhBCisClnXGplKDHPUAohhBBCCCGEUBapUAohhBBCCCGEyBPp8iqEEEIIIYR4ahhkUJ4CJS2UQgghhBBCCKEA165d47333qN3797Url2bHj16ZFt+y5Yt1KhRw2y52NhY3n77bZo1a0bDhg159dVXCQsLe+xM0kIphBBCCCGEeGooeVCeixcvsnPnTho0aIBer8dgyLq1NSEhgU8//ZTSpUubXT9p0iQuXbrEBx98gKWlJd988w2jR4/m33//xcIi99VEqVAKIYQQQgghhAJ07NiRTp06AfDmm29y6tSpLMvOnTuXChUq4ObmlqncsWPH2LNnD7/99htt2rQBoEqVKvj7+7Np0yb8/f1znUm6vAohhBBCCCGEAqjVuau+Xb9+nXnz5jF9+nSz63ft2oWDgwOtW7dOX1a1alVq1arFrl27HivTU9tCWS1ZVdwRcuX2U/sXEgCa4g7whEpRyMP491XK6ZSTWtwBRLGyQhm/qQBahWTVoS3uCLlWRqUr7gi5FqexKu4IuZKgkbNqYSruQXl8fX2zXb9169Z8f8aMGTPo3bs3NWvWNLs+KCiIKlWqoFKZnhOrVq1KUFDQY32WVFeEEEIIIYQQ4gmxbds2jh07xoYNG7IsExMTg729fabljo6O2XajNUcqlEIIIYQQQoinRnH3/ymIFsisJCYm8umnnzJhwgRcXFwK7XMykmcohRBCCCGEEOIJMH/+fNRqNd27dycmJoaYmBiSk5PR6/XExMSQlJQEgIODA/fu3cu0fXR0NI6Ojo/1mdJCKYQQQgghhBBPgKCgIK5du0bLli0zrWvatCkffPABQ4YMoWrVqgQEBGAwGEyeo7xy5QrVq1d/rM+UCqUQQgghhBDiqaHPZu5GpRs9ejR9+/Y1Wfbzzz9z5coVZs6cSeXKlQFo164dP/zwAwEBAbRq1QowVibPnDnDqFGjHuszpUIphBBCCCGEEApw//59du7cCcDNmze5d+9e+uA7zZo1o1q1alSrVs1km+XLlxMaGkrz5s3TlzVs2JA2bdrw9ttvM23aNCwtLZk1axY1atSgS5cuj5VJKpRCCCGEEEKIp4aS2ycjIiKYOHGiybIHr//880+TSmNOvvnmG2bOnMl7771HSkoKbdq0Yfr06VhYPF4VUWUwPMFtvtlYVGF4cUfIFZmH8umWqozp0gCIVtCciUqZhzJZITlB5qF82ilpHkqlUNLxr5S5PQHiin18z9xJUNBZ9dery4o7wmMb7tGvWD9/4bX/ivXzC5qM8iqEEEIIIYQQIk+k/UsIIYQQQgjx1NArqAeAEkgLpRBCCCGEEEKIPJEWSjMsbCyp9Up3Sjf0pJR3VSyd7QiYNJegf3ablGsxawzVBrXLtH30pRDWtJtqssyqjBP1p/SjfLu6WLk6cT80iuCNRzk1eyVJUZknFc0trY0lTV/qTjlvT8p5V8XayY4Nr8/l9DLTrF2/GkPdAZmzRl4KYV7Hh1ldqpWn7iAfPNrWw8mjDEnxiYSdvMq+Wf8SGnjlic+pxKzNxnanvLcn5dOyrps8l1OPZPX7cgz1zGSNuBTCb76m39UW43tRwduT8t7VsHV1ZO+s/9j7Tf77+utsLGk7tgdu3p64NaiGjZMdy6b8xLFlu7LcRm2hYcL6mZTxcmP9jEXs+WVt+rqOk/rjO6l/ltvO7f8B149cyFNOn7E9qeTtSaW0nP9M+ZEjOeSctP5/lPVyY+2MhezKkPMBF/cydJk8EK/WdbG0syb6VgSBa/ez8ct/HjtjxqwdxvbEw9sT9wae2DjZsXjKjxxatjPbrFPWf0Y5LzdWzVjIjl/WpK9zdnPl3T3fmd3uzwnfcnx1QL6y+mbIautkx6IpP3Iwh6zT0rKumLGQ7RmyPqpx79aM+HYCiXEJTK3z3BOfU4lZlXBcKSXng6xKOv6VsF91NpZ0GtuLyt6eeKQdUwum/MCBHPbpW+s/p7yXG8tnLGBrhn3qWMaZ3m8Nw6N+NRzLOqPX6wkLusXuBRs58G/W//bcsLSxouvYXlT19qJKA09snez5fcr37Fu2I8ttNBYa3l//JRW8KvHPjD/Z9Msqk/Xdx/WjircXVb29cHB1YtU3/7Dqm7x/R0syg7RQFiipUJph6WJP/df7ERd8h6gz1ynXunaWZVMTktg/5TeTZcmx8SavLWws6br6fSxsLLkwfwvxIZE413an+vOdKdu6Fuu7vgt5HBvJ2sWelpP6ERN8h/Az13FvlXXWlIQkNk0zzZr4SNZ6g9tTd3B7Lq47xPEFW7C0t6H+sI4MXfEB/474nOt7Tj/ROZWYtfWkfkQH3yH87HXcW2afdcObj2SNic9Urt0bA7kXdpfQ09eo2r5+nrM9ysbFno4T+xMVHM7ts9eo2rJOjtu0HNkVxwqlza47veEgEVdvZ1re5Y1B6GytuBl4OU85bV3s6ZSW89bZa1TLRc7WI7vilEVOgPK1PRj797vE3I5i169riY+6h1OFUjhVKJWnjA+zOtB14jNEBocTcvYanrnI2nZkV5yzyQpwdOVezm4/ZrLs2tGL+cpq5+JAtwxZvXKRtV0usoLxIrDXW8NIjEvIV0Yl5QRlZVXKcaWUnMasyjn+lbJf7Vwc8E/bpzfPXqN6LnK2H9kNlyxy2rrY41zehePr9xMZEoHGQkPNtvV49qtxlKlagdVf/J2PrPb0mjiQiOBwbpy9Rs2WdXPcpuNIvyyzAvR9Yyh3w6K4fuYKdX0a5jmbePpIhdKM+2F3+bfBOBLCo3GpXwW/DR9nWVafqufqf3uzfT+3ro2wq+TK9me/JGTr8fTliXfvUf/1fjjXcSfq1LU8ZY0Lu8uPjccRHx5N2fpVGL4m+6xnl2ef9eyqAPbN+o/k+MT0ZaeW7OT5bZ/R6rV+ea78KCWnErPOaTKOuPBoytWrwogcsp7JISvAT60nERN8B2tnOyYc/ynP2R4VG3aXmU1f5l54NBXrVeGV1TOyLW9byoEOE/uy+6fVdJo8INP60HM3CD13w2SZY3kXHMq7cOTvHaQm522EvJiwu3zc9KW0nFV5NRc5fSf2Y+dPq+gyeWCm9SqVikFfv0L45RDmDv6YlMTkPOUynzWK95uOJTY8Grd6VXl99afZlrcr5UCXif3Z9tMq/MxkfSD41BWOrNhTYDkBosOimJ6WtVK9qkzJRdauE/uz5adVdM8mK0DXCf1IjLvPpYDT1OvS9KnIqbSsSjmulJLTmFU5x79S9mtMWBRvNR1DbHg07vWqMnX1zGzL25VyoNvE/mz+aSU9Jg/KtD7k3HW+HfyRybJdf25k7K9Taf+cH2u+WoJBn7cGheiwKF5vOoqY8Lt41KvGu6s/y7a8fSkHek4cwIafVtJn8mCzZaa1eZmI4HDsnO355ti8POUST6cS9QxlUFAQn3zyCa+++iqzZ88mNDQ0U5nLly8zYsSIQs2hT0ohITw61+VVahUWdtZZrtemrXv0PRNC7wLGVs68Sk1KIf4xs+qyyRp28qpJxQcg4e49gg+ex8WzwhOfE5SXNa4AswLEBN/JV6aspCalcO8xsnadNpg7Qbc4vjz3Fzb1e7VCrVZzfGXeL4YeN6fftCGEB93iaBY5vdrVp3xNd7Z8+y8piclorXSo1AUzxH5qUgqxj5G1+7QhhAXd4sjy3TmW1VlbotFq8hPPxONm7ZmW9XAOWV0rl6P9C/6s+HgBqan5nw5AKTlBeVmVcFwpJeeDrEo6/pWwX1Mec5/2njaUsKAQDuVin2YUGRyO1lqHhTbv7TopSSnEhN/Ndfn+04ZzOyiE/cuz7mobERye5zxKoy/m/540JaaF8sKFCwwaNAidToeHhwe7d+/mjz/+4P3336d3797p5e7du8ehQ4eKMakpC2sdAy/8goWNFYlR97i2MoBjn/xNSoYKROj+c+hT9TT5+FmOfLiI+FtRONeqRJ2Jvbmx/jAxl24VSVattY4JZ35Ba2PF/bv3OL8ygF0z/85U2THHtowT9yPz/qzn41BKTlBe1omnf0GXlvXsqgB25jJrUXNrUI2G/dvx84APH+s5hwZ9WnP35h2uHjhXiOkecmtQjcb92/HjgA/Iappkr9bGbkgpiSlMWDUDt/pVSUlM5vSmQyyf/jv3o+OKJKt7g2o07e/DdwPez3GPdpnYn17vDEev1xN88grrvlzChd2BRZITjFmb9ffh2wHv51i273sjuLj/NGd2HMe7R8siSPeQUnKCsrIq5bhSSk5Q1vGvlP3q0aAazfv7MGvAeznuU62lFp2NFZa2Vng1r0WLAe25cvQiyQXYYp2dKg08adXfh/8NeFeeHRSFosRUKL/++mvq1KnDzz//jI2NDbGxsXz++ee8+eab3Lhxg/Hjxxd3xEwSwu5y5oe1RJ68ikqtonz7+lR/rjNOtd3Z0n8GhrQ7uzEXQzg49TcavjuUbms+TN/+8pJdHJjya5FkjQu7y6Gf1hJ66ioqlYrK7evjPbIzrrXdWTLwYVZzKjarQYVGnuyfvVJyKjjrgQdZ1Sqq+NSn0YjOlKnlzuJB2WctDj0+HMnJNQHcOHoRJ7ecn/cCKONVkfK1PNj106qcCxeQ3h8+x4k1AVw/ehHnLHKWqlIOgGFzJnJ+5wm2/7CS8rXc6fBKbxzLl+LHZz4okqx9P3ye42sCuHb0Is5urmbLGPR6zu06wcmNh4i+HUkp97L4vOjPmD/e5LdRX2R6rqqw9P/weY6tCeDq0Yu4ZJEVoHaHhtRsW5/P/KYVSa5HKSUnKCurUo4rpeQEZR3/StmvAz58nqNr9nElh2MKoP0L/vSeNjT99bk9J1n4xo+FHTHdkA9f5NCafQQdvUCpHLI+LWTakIJVYiqUJ0+e5JNPPsHGxgYAe3t7Pv74Y7y9vXn//fcJCwvjgw8+KN6Qjzg+03Tkq2sr9xMbdBvvtwbi3qMZ11buT18XfyuKiOOXCdl6gribdyjTrAY1XuxCYlQsxz5aXOhZ93xmmvX86v1EBd2m7bSBVPdvxvnV+81uZ13Kge6zXyH6RjiHfsp6NMCnLScoK+uuz02znlu9n6grt2k3dSA1/JtxLousxaHRAB/K1qjE4pe/eaztGvRpA8DxFTk/J1oQmgzwoVyNSix8eVa25SxtrAAIDrzMktfmAHBqw0GSE5LwmzYEz9Z1ubT3VKFmbTrAh/I1KjE/h6x3QyL4eYTpM0NH/tvF1C1f0Wv68CK5oGw+wIcKNSoxL4esGq2Gvu+OYO+iLYReulnouR6llJygrKxKOa6UkhOUdfwrZb+2GNCeCjXc+TWHnA8cXrWX64FB2JWyp27HxtiXdkRnpSu0fBm1HtCBijXc+fHlL4vk88TTqcQ8Q5mUlISlpWWm5f3792fOnDmsXr2a8ePHk5BQMCPOFZZzv6xHn6qnXNuHo225NvWi/Z+TOfG/pZz/bSPBG45w9KO/OPXtSmqN8cPBK3/P0eXV0V+NWT3amB8ZzMLakr7zJqO1tWLFi7OKrWukUnKCsrIeTstaOYusxcHSzpouUwex5+c1RN+KfKxtG/Ruxe1z1zMN1FMYLO2s6TZ1MLtykTM57Rnp46v2mSw/vtJY8fVoXL1wQqaxtLOm+9QhbP95NXdvRTz29vHRcRxauoOy1SriWM6lEBI+ZGlnTY+pQ9iWi6ztX+yOrYs962ctLdRM5iglJygvqxKOK6XkBOUd/0rYr1Z21vSaOoQtj7FPo27e4fzekxxZtY/5k74j4noo4xdOR2upLbScD7L2mzqUjT+vJCoPf38hcqvEVCgrV67M4cOHza7z8fFh3rx5HDlyhGnTiq8bTm6kJiSTFBWLzsk2fZnn8I4khEcT+cicg8GbjqJSq3FtWrg/KFlJSUwmISoWqwxZH1BrNfT+eSKuNSuxctQsIi4EF0NCI6XkBOVlvZ9F1uLSZnR3NFoLAlfvx8mtNE5upXEsZxwC3trRFie30mYHivBoUgNnN1dOrCya1sl2aTlPrA7A2a00zo/kdM6QMyY0CoB7d0wHergXEZNevjB1GN0DC60Fx1cH4OzmirObK05pF4bGrK45Dr4RFWK8ELFxsivUrB1H90CjteDo6gBc3FxxyZDVxtEWl7SsVvbWdBnfl4C/t2Flb5Ne1tLGClTg4uaKXSmHpz6n0rIq5bhSSk5Q1vGvlP3qm35M7cv2mMrOsfUHcKlYGs/mWU/1VRC6ju6FhdaCQ6v3UcrNlVJurjin7VNbR1tKubmiycfAQEpmKOb/e9KUmG9Ru3bt+Oeffxg7dqzZlkpvb28WLVrEiy++WAzpcs/C1gpLF3sSI2LTl1m5OqLSZK67qy2MJxy1mXVFQWtrhbWLPfGRsaYrVCr8Zr2Ee+s6rH7lO4KLaICTrCglJygrq87WChsXe+IjYnMuXEScKpbCxsmOSVu+yLSu/fg+tB/fh+/93+LWGdNpdhr0aY1er+fEyn2ZtiucnKWxcbJj8pbMXYg6ju9Lx/F9+cb/TW6ducbNU8YbSQ5lTe/uO5RxBiAu7QKosLNO2/JVpnWdx/el8/i+fOk/jZBH9mlGpdzLAg8v1gqLc8XS2DrZ8baZrF3G96XL+L587j+N+zHxWNlZ0+mlXnR6qVemsu/v+Y7ATYf4bUzm93maciotq1KOK6XkzJhVCce/Uvbrg2Nq+pavM63rOr4fXcf3Y6b/VG5ms0+1ad1dreyzH3U9v1wqlsbWyZ6Pt3yTaV338f3pPr4/H/pP4caZq4WaQzz5SkyF8vnnn6dbt24YDFnX2j09PVm+fDmXLl0qwmTmqS21qC00pDwy6XO91/qgUqsJ2f5wRLTYoNtUaF+fMi1rERZwNn25Rx/j6HmReZyDMrc0aVmTH8nacqIx69UdpqO3+X40gpq9WrLpzd+4tMF8q/HTnBOUl1VjoSHp0ayvGrNe2Vl0o/flJGDeRs5sOmKyzK6UA31mjuLI0p2c3XyEyBthJuvVFhrq+jfn2qHzRIcUTZeevfM2cHqT6d/RrpQD/WeO5vDSHZzefISotJynNx+m5/sjaDLAhyPLdqaf45oO7gDAxT0nCzXr7nnrObXJdGRsu1KODJw5moNLd3Bq8+H0fWrrYk/cIzdDHMs603xge0LOXiP2MYaoz4td89Zz0kzWwTNHc2DpDk5uPkzEjTBSk1P5dUzmi852z3WjcqPq/PnqbGLCCi+rUnIqLatSjiul5ARlHf9K2a875m0g8JF9al/KkSEzx7B/6Q4CNx8iIi2nnYs99x69wQy0GtgBvV7PjVNXMq0rSFvnrePYpoMmyxxKOTJi5kvsXbqNY5sPceeR39SnRckailD5SkyF0s7ODi8vrxzLqVQqVKqCmcMpO9Wf74zOwQbrssa7XRU7N8SmvPFO2PnfN6FztMVv0wyurQgg5nIIAOV96lOxkzch204QvPHhRfH5eZupOqgd7ee/zvnfNxMXfIeyLWtSuW8rbu08ScSxy/nK6j2yM5YONtilZa3aqSF2aVmP/bEJK0dbnl0/g3MrA4hMy1q5XX2q+npzZfsJLmW4gG/0Yle8R3Ym5PAFUu4nUatva5PPurjhMCn38/bcn1JyKi1rw5GdscqQtVqnhtinZT2SlvW5dTM4uyqAiEvGrFV86lOtozdBO05w8ZEKXO2+rXF0K42FlbGngFvzGrScYJy65/R/e4i5mfdKW4sRXbBysMEhLWtN30bpz+UEzN9IyOmrhJy+arLNg1Fewy4Ec3ZT5sq4V7v62LrYF2h315YjumDtYJues5Zvo/SuV/vmbzCb88FohKEXgjmTIee98Gi2f7+CLpMH8sL8Nzm96TAVarvTdHBHjq3cS3BgUL6ythnRFSsHGxzTstbJsE/3zN/AzdNXuZkpq3GUv9sXgjmVIWvPt4ZRyr0sF/edIiY0Cmc3V1oO9UVnbcnyD+fnKydA2xFdsc6Qta5vo/SuYrvmbyD49FWCH8n6YPTEWxeCOZkh60kz34V6XZri0UBvdt2TmFNpWZVyXCklJyjr+FfKfm03oivWDrbp+7Seb2Oc0nLunL+e4NNXCD5tWhF8eEzdIDBDzq7j+1G1cQ3O7DxOVMgdbJzs8O7WnMrenuyYt5471zLPt/44Oozoho2DLU5pWRv4Nknv0rpt/nqun77C9UeyPhjl9eaFYI4/UjFu0bcdpSq6orM2/v57NatF9/H9AQhYvpPIm4UzT7VQvhJTocytgwcPMmnSJM6ePZtz4Xyo9ZI/dpUeDq3s3r0Z7t2bAXDl370kxcQTsuUY5drVperANqjUamKvhnL80yWc+WkdZGhpjb18i/Xd3qXB1Geo0r8VVq5O3A+N4syPawn88t98Z20yxh/HDFmr+zejur8x69nle0mMiSdo6zE82talzjPGrHevhbL7syUcnmua1bW2BwAVmlSnQpPMz3b+0moSMcF5q/woJafSsjYbbZq1hl8zavgZs55Oy3p56zEqt6lLnf5tUKvVRF0LZednSzj0s2lWgPqD2uPeslb6a49WdfBoVQeA4EMX8lWhbDOmu8mQ9XX9mlE3LevxFXtIjL3/2O/ZoE9rUpJSOLX2QJ5zPardmB4mw8DX82tOPb/mABxbsZuEx8y59bvlxEfH0XpkV3q+N4J74XfZ/v0Ktsz+L99Z2z+Stb5fc+qnZT2yYs9jZT2/O5BWwzrR+tku2Djacj8mnqCD59j83X+ZLkrzosOYHiZD1jfwa06DtKyHHzNrYVJKTlBWVqUcV0rJCco6/pWyX33H9KCUW5n0195+zfFOy3noMXOe3naU0u5laTmwA3YuDiQnJhFy7joLpvzAgWU785UToOuYXpTOkLWxXwsa+7UAYP+KXdyPjX+s92s7yJcaLeqkv67Vqh61WtUD4NLhc1KhFFlSGbLrY1oCbdy4sUAqlIsqDC+gRIXrtuKq/KIgpRZ+Y3yBiVYppwNJikIeiE9WSE6A1OIOIIqVFQo6WSmEko5/rYL+/nEK6eyYoKCz6q9XlxV3hMfW171nsX7+8uuri/XzC1qJqa707Jm7P2xcXFwhJxFCCCGEEEIIkRslpkIZFBSEp6cntWtnP4TyzZs3uXXrVhGlEkIIIYQQQjxJ9ArqAaAEJaZC6eXlhYeHBzNnzsy23MaNGzl06FC2ZYQQQgghhBBCFL7imQDRjPr16xMYmLvpCxT22KcQQgghhBBCPJFKTAvlqFGj8PHxybGcj48PW7duLYJEQgghhBBCiCeNMoZmUo4SU6F0d3fH3d09x3JWVlZUrFixCBIJIYQQQgghhMhOialQCiGEEEIIIURhM8igPAWqxDxDKYQQQgghhBBCWaSFUgghhBBCCPHUkGlDCpa0UAohhBBCCCGEyBOpUAohhBBCCCGEyBPp8iqEEEIIIYR4asic9gVLWiiFEEIIIYQQQuTJU9tCGaBLLu4IuRJtUEZOUTgSSC3uCLkWk5pU3BGeOKkKmno51aCcrBqVMu6lKmmfRqbEFXeEXItNuV/cEXIlPiWhuCPkWlJqSnFHyLX45MTijpArKXrl/P7/WtwB8kA5Z1dlUMavqhBCCCGEEEKIEkcqlEIIIYQQQggh8uSp7fIqhBBCCCGEePoYZB7KAiUtlEIIIYQQQggh8kRaKIUQQgghhBBPDb20UBYoaaEUQgghhBBCCJEnUqEUQgghhBBCCJEn0uVVCCGEEEII8dQwGKTLa0GSFkohhBBCCCGEEHkiLZRCCCGEEEKIp4YMylOwpIVSCCGEEEIIIUSeSIVSCCGEEEIIIUSeSJdXM3Q2lnQa24vK3p54NPDE1smOBVN+4MCynVluo7bQ8Nb6zynv5cbyGQvY+sua9HWOZZzp/dYwPOpXw7GsM3q9nrCgW+xesJED/+7KV1ZLGyu6j+1NNe/qVPX2xM7Jnp8nf8fuZdtNyrUf3InWfX0oX60iNg623A2L5GzAaZZ/u4Q7weEmZR1KOzJo2rN4d2yMlZ0VIZdusnrOvxxcF/DE51RaVisbK3qN7YuXd3U8vb2wc7JnzuRv2bFsm0k538Gdade3PRWquWHrYEtUWCSnA06x9Nu/CQ8Oe/hveqYj476amOXnfTvxa/asyPo4yC7ngJeeoWbDGtTwroG9kz1fvv4Vm5duMSnnN6QbHft1pFI1N2wd7IgMjSBwfyALZy0iNENOnZWOcR+/Qs2GNXAt74pao+bWtVtsXLKJ1X+uITUl9bEzKjXrwJcGUKthTWp418DByZ7PX/+STUs3m5TzH+KHb7+OuFerhK2DLRGhkZzYH8iCWQsJDQ5NL+da3pVug7rQ3Lc5FStXQK/Xc/X8VRbNXszRPcfylXPwywOp1bAmNb1r4ODkwP9e+4KNSzeZlOs+1I/O/TpRqVol7BxsiQiN4HhAIPNnLTDJCdDr2R40bN2QWg1rUrZiGTb8s4nPXv8izxkzZlXCPn2QVQn71drGmufGDaVewzrUbVgbR2cH3p34CauWrEsvo1Kp6DnQD19/H2rWrY6jswM3r99iw4otzP/xL5ISkzK9r0tpZ8ZNHU27zq1xdHbgTngkB3cf5oPXZ+Y5q42tNWPGj6RBo7o0aFQXJ2dH3hj/Hv/+vdoka79BPejaw5fa9Wrg5OTIjes3WbN8I7/M+dMka/kKZRkwrDcdOrelclV3UlNTuXDuMnO++pW9uw7kOacxqw3jXn2Bho3r07BxPZydnZj4ylss+WuFSbmGjeoxaGhfGjapT+061dFqtZRzqmX2PUu7lmL6B6/TqYsPtna2XLwQxHdf/8zqlRvznNPW1oYJE0fRuEkDGjWuj7OLE+NemsbiRf+ZlGvUuD5DhvWjcZMG1KlbA61Wi4u9V6b3GzKsH3N++izLzxvz4mSW/bMqz1lff/0lmjb1pkkTb1xcnBg9+nUWLFhmUq5JkwY8++wAmjZtSL16NdFqtVhZuef4/q1aNWXbtn8BqFixARERUXnK+SDrlMkv06xpQ5o29cbFxZkXXnyNPxf8Y1KuaRNvRowYSLNmDalfrxZarRYLXcVM7+fmVoHnnxuEv58vnp5VSE3Vc/r0OT6dOZut23bnOWdJZZAurwVKKpRm2Lk44D/xGSKDw7l59hrVW9bJcZv2I7vhUqG02XW2LvY4l3fh+Pr9RIZEoLHQULNtPZ79ahxlqlZg9Rd/5zmrvYs9fScN4k5wONfPXqV2y3pmy3nUrUr4jVCObjlEXPQ9XCuVpf3gTnj7Nuadbq9zN8x4UrOys+bdZTNwLO3ExnlriQ6Ponn31kz48Q1+eHUWASvzdlJRSk7lZXVgwKTBhAeHcfXsVepmkbVK3aqE3Qjl0JaDxEXfo0ylsnQa3IXGvk2Y0m0SUWGRAJw5cJrZk77OtH2PF3vhUasKp/aeyFNORxcHhr82jNDgUILOBNGgVQOz5arVrcbtG7fZv3k/sdH3KFepLH5DutHMtzkvd32FyFBjTksrHR7VPTi47RChwaEY9AZqN67F2PfHULNhDf434fM85VReVkdGvDY8Pat3Flk907IGbN7PvehYylUqh/8QP1r4NmNs15eJSMvaqktLBr0ykH0bA9i0bDMajYbO/Tvx+eL/8cXkr9j4zyaz75+bnCNfe5bbwaFcPhNEw1beZst51fHk1vXb7N0UkJ6zx1B/WnZqzqguLxERGpFedsgrg7C2s+Hc8XOUKuOSp1xZZVXCPn2QVQn71bmUIy9NfpGQ4NtcOHORpq0bZypjZW3Fx99O58ThUyz9cwWRd6Jo0KQuL7/xIs3bNmZU/wkm5ctWKMP8VT8BsPTP5YTdDse1rCt1G5qvKOU6q4sTr74xlps3bnH29AVatmmaqYy1jRVffP8RRw8F8tcfy4i4E0mjJvWZNO0lWrVrxrA+Y9LLdvJrz9gJz7F5/Q7++3s1GgsNfQf1YMF/PzF1wvssW5y3ig9AqVJOTJ42juAbIZw5dZ7WbZubLefbpR1DR/Tn7OkLXLsajKdXFbPl7OxtWbVhEa6upfhl7gLCQ+/Qq283fpn/DS+PmsLyZWvzlNOllDNT35rAjes3OXXqHG3btTBbrnMXH54dOYDTp85z9eoNvLyqmi23b+8hxo6anGn5y+Oep269muzasS9POQFKl3bhnXcmcf16MCdPnsHHp5XZct26deT55wdz8uQ5rly5TvXq1XJ8b5VKxddff8i9e3HY2dnmOWPGrO9Of51r14IJDDxL+/bms/r5deTFF4YQePIsQVeuUyOLrL16duGNKeNYuWoDfy5YioWFBcOHP8PGDX/z4qjXmP/nP2a3EwJAZVDAuLkGg4HIyEicnZ1Rqwuml+74yoOyXGehs8Da0ZbY8Gjc61Vl6uqZ2bZQ2pVy4L3t37DtlzX0mDwoUwtlVsb+OpXqLeswpd5zGPTm/wzRhuRs38NCZ4Gtox3R4XepUq8aH635wmxrmjmV61bl47VfsuR/C1jz43IA/Mf2ZsjbI5k55D3O7DsFGE+C76/4H6UqlGZSq7GkJqfk+N5KzVnSsiaQfeuVhc4CO0c77obfpWo9Tz5b85XZFkpzqtatxmdrv2bR//5kxY//ZllOZ6njlyPzuXjsPJ88+0GW5WL0mVsQHtDqtNg52hEVHoVXfS++XzvbbKufOZ71PJmz7jt+m/k7//ywNNuyr3z0Mr2f78XgRkOJCs/bnd+SlDUVfa6zVq/vxQ9rvzfbmmaOVz1Pflw3h19n/sbfPxgvFDyqexAVHkVMVIzJZ/y04Qesba0Z2nx4lu+Xasg6q2nO6sxdN8dsS5o51et5MXf9D/w881cWz1mSvrxsxTKE3jS2BK87v4qda3fnuiVNo8r6d0Qp+zRz1uLdr5EpcdnmdHC0JyI8ktoNarJ44++ZWigttBbUaVCTE4dPmWw79vXneWXqaMYMeJUDuw+nL/9+0ZdU8fRgaLcXic6wb3MjNuV+lut0Oi0OTg7cCYugnndtVm5ZlKmFUqu1oJ53HY4eMr3BNmHKGF5782We7fdSeuujV42q3AmPJCryrslnrNnxNza2NrRp4JdllviUhGz/HTqdFkcnR8LD7tDAuw4bdywz20JZ2rUU92LvkZCQyKefT+eFMcPMtlC+MuEF3vv4Dfr3ei49v0qlYt2Wv6lQsTxN6vmSnGz+miQpNevfW51Oh5OTA2Fhd/BuWJdtu5abbaF0dS1FbFrOz758j9FjnzXbQmmOlZUl5y/v5/Ch4/Tv83y2ZeOTE7PN6uzsSGhoOI0a1WffvjVmWyjLlClNTEwsCQmJzJr1ES+//FyOLZSjRg3ngw+msHjxciZMeDHHFsoUffa//xmzNm5UnwP715ttoTRmvUdCQgLffvMJ41553mwLZe3a1QkNDTfJpNPpOHJ4E3a2tlSplvnmSnrWpJvZZi2J2lX0LdbP33Vza7F+fkErUc9Qrl27lhdffJERI0awebPxx/vff/+lWbNmtGnThjyOwdYAAI3ISURBVObNm/Pbb78Veo6UpBRiw6NzXb73tKGEBYVwaPnjtTRFBoejtdZhoc17Q3FKUgrR4XfztO2dtG55Ng4P75TVaFqbmDvR6RUfMFboD67dh1MZZ2o1z7m1Vsk5lZj1bh6zhqVltXXI/k5p405NsbG3YXceuro+kJyUnOcKXugNY5c8Owe7nMsGPyib97u/T3PWaxeumVR8HnzGwe2HKFPBFWtb6yLPefvG7Uw5gfRKT0FTyj7Nb9ai3K/JSclEhEdmWyYlOSVTZRJg6zrjeadq9crpyyp7etDWtxV//PAX0VEx6Cx1WFhoCiRrUlIyd8Iisi2TnJySqTIJsGmt8UZeteoPWwAvng8yqUw++IwdW/ZSoWI5bO1s8pU1POxOjuXuhEeQkJB1JeqB5q0acyc8wqQrrsFgYNXyDZQt50rL1llXKLLPmURYLnKG5zKnOd38OmLvYMfSPHZ1fSApKYnQ0PAcy4WF3XmsrM7OjnzwwRQ++ugroqMf7wZIVh4va/Y3JwDOnLmQqYKblJTEhvXbqFSpQoG0qoonV4np8rpu3TomT55Mw4YNcXJyYsqUKbzzzjt89NFHDBs2jDp16nD48GG++uorqlatSocOHYo7MgAeDarRvL8Pswa8l2NvbK2lFp2NFZa2Vng1r0WLAe25cvQiyYnZt0IWJDsnO9QaDaUqlKbPxIEAnNl7Mn29hc6CpITMLU2J940nzsr1qnJqT966PT6JOZWX1R61Rk3pCq4MmGhspT+ZQzfWtn18SLyfyIEN+4siIgD2aTnLVCzDsElDATi+93imchZaC2zsbLC00uHVoDr9x/Tn9o1Qbl4NkaxmOGTIOnzSMACOmsn6KBdXZ+7HJ6R/ZwubMaeGMhXLMGKSsQUvv88bFhal7FNQ1n59oHSZUgBERTy8yduiXRMAIsMj+XnpbJq3bUJKSgr7dx1ixrQvCEmrLBc11wdZH6lAZlU2Pu4+9+NzvtAvKjqdzmwl6f59Y8b63rXz1Z20MD0zqBfx8fdZsyrvXcgL0/vvTyE0NJxff13E229nPU5BSVS2nCtxcfHEx2fdsi9EialQ/v777wwcOJCPPvoIgBUrVjB9+nRGjhzJG2+8AUCvXr0wGAz8/vvvJaZCOeDD5zm6Zh9Xjl7Exc0127LtX/Cn97Sh6a/P7TnJwjd+LOyIJr498Cs6Kx0AsZEx/Pn+ryaVmdtBIdRtU59SFV2JuPnwzleNpsbuMc7lSklOBWede+D39KwxkTH89v7PBGZTmbVztMPbpxGHNh0gIa7ofkz+OrQwPWd0ZDRz3v2Ro7szX/i29mvN23PeTH99/sQFvp4yC31q9l0Fn9asfx/6yyTr9+/O4ejuo9luU6FyBdr4tWbXmt3o9UWTdenhv01yzn73e47kkLO4KGWfgrL26wPPjRtGbMw99m57OICZe5VKALz7xTROnzjLG2OmU65iWV6a/AJz/5nNgI7PklCEFfUHxkx4jtiYWHZs2ZNtOY8qlejavSPrVm0p0r9/Ti5fukK79i1xq1SB4BsPb3Q1b2l85rV8hbLFFS1bTs6O+HZqx7o1m7l3L+uu18Wlbt2ajBo1jD59Rpaov3duVKtWmb59/Fj271rFZc9JiX/eT2FKTIXyypUrvPbaa+mvfX19efPNN2nbtq1JuQ4dOvDee+8VdTyzWgxoT4Ua7vz68qxclT+8ai/XA4OwK2VP3Y6NsS/tmP7jXlS+fO4TtJZaKni60bqvD5bWlibrd/y9hY7DujBhzmQWfTyP6PC7NO/RmsZdjQ/7F1VepeRUWtZPn/sIraUWN0832vZtj5W1VbblW/i3QmupzVd317yYPuJdtJY63L0q0bFvR6xsLM2WO7HvBG8OeQtbBzsatvGmaq0qOf6bnuasb42Yjs5Si7uXO536dsTKJvvPt7Sy5L0f3yExIYlf/1f4jxs8MG3E2+gsdXh4utOpn2+OOYuTUvYpKGu/Arz46gha+jTjk2lfEBtzL325TVo34YjwSMYPm8KDoSDCQsL5bO5H+PXtwvK/Vpt9z8LyyqQXaNO+Be++8alJ1kdZWVvx/W+fk5CQyOcfzy7ChDlb9OcyRjw/iJ/nfc17b/+P8LAIevXthl+PTgBYWZXM70vvPt2wtNTlu7trYfn66w/ZuHEHW7Yoa6RUa2sr/l48l/v3E3j7nU+LO44o4UpMhdJgMJBxfCAbG+NzBfb29iblbGxsiI2NLdJs5ljZWdNr6hC2/Lyau7eyf97igaibd4i6aXyO4MiqfQz5dDTjF07n446Tiqzb69kA4zMqgTuOcXTTQWZu/oaE+AS2zF8PwI1z1/hh4jc8P2Ms7/1nHHr9blgUiz76nec/fYmEuKLpnqOUnErLejrA2BX3+I6jHNp0kK83zyYh/j4b5q8zW75tHx9io2I4tuNIkWUEOBEQCMDhHYcJ2LSfuVt+JCEugVXzTS8S7965y7E9xwHYs24Pg8cPYuZfM3ih3ag8P1v2ZGc1tkYf2nGYfZsC+HXLXO7HJbByfuYLMbVazTs/vIW7lztvj5iePmppUTi+z5jz4PZD7N20j9+3/sL9uARW/LGyyDLkllL2KShrv3bt7cv4N8fw36JVLJ2/3GRdYlq3zE2rtppcN2xavY1Pvn8P76b1irRC2b1PF15/exxLFi5n0bysB+NSq9XM/uV/eNaoyguDxxN2O+fn34rS2dMXeGXUG3w26wPWbFoMQOjtcN57ayafz/qAuLj4Yk5o3jMDexEZGcWWTfmbhq0wPPNMT1q0aEyjRp2LO8pjUavV/LXoR2rX8qJHz2e5dSs0540URi9tlAWqxAzKU6FCBYKCgtJfazQa5s2bR5UqpsNb37x5k9KlzU/PUZR8R/dAo7Xg6Op9uLi54uLmilM54xDrNo62uLi5otFmP0jAsfUHcKlYGs/mtYsiciZh10O5dvoKrfq0M1l+aF0AE5qN4r2eU/mgz5tMajWWsOvGk8ntK0X3vJfScoKysoZev82V01do28fH7PrSFUpTs1ltAtbuy9dcifl169otLp+6TIe+OXdz3712DzZ2NrTsYn5Y+sKmtKyXTl3GN4usr38+iRa+zfli8lfpFZHiEHLtFhdPXaJT347FliG3lLJPoWTv1xbtmvLJ7HfZvWUfn0zNPMJs2G3jjdlHB/rR6/VER0Xj4GifaZvC0sanOV/O+Zjtm3czffKMbMvOnPUuHbu0ZeqE9wnYfaiIEj6eNas24V3Th24dBuDfaTBN6vly7eoNAIIuXS3ecGZUdCtPy1ZNWLl8AykpeRvZvTDNnPk2//23luTkZDw83PDwcMPR0QEwzvtYvnzJ7EY896cv6O7fiRdGvcb2HXuLO45QgBLTQtm2bVuTCiVAy5YtM5XbsGED3t7eRZQqa84VS2PrZMf0LZnn7Os6vh9dx/djpv9Ubp65luV7aNO6OlrZ532Uv/zSWunQ6rSZlqcmp3Al8FL667pt6gNwuogGj3mUUnKCsrLqssgK0LpXO9RqdZF3dzVHZ2WZZc6MLNOOKVv74huNTklZLbP4+495ZxTdBnVlzvs/sn3ljqIP9gjLXO7TkkAp+xRK5n6t17A2s+bN5PSJc7wxZjqpqZlvZp0NPA9AmfKm4xZYaC1wcnEkMuJuUUSlQaO6/Dj/a04eP8P4F6eZzfrAmx9MYsCwPnz09ues/m9DkeTLq+TkZI4fezjibru0+Q137QjIapNi039AT9RqdYnt7lqpUkUGD+7L4MF9M607cGA9J06cpnnzrKeOKQ6fzZzO888N5rXX32PJkpLXe0GUTCWmQjlt2rRclZsyZUqJaKHcMW8DgZtM7zDal3JkyMwx7F+6g8DNh4i4YRx+3c7FnnuRmbvpthrYAb1ez41TVwo1q1qjxsrWmvgY04fVqzbwpFINDwJWZt+vv2zl8nQc1pVjWw5x+8qtpz4nKC+rta01cY9k9WzghXsND/asNN9NqE3vdoQHh3Hu0JlCzfeAWqPGxs6Ge9Gmzx/V8K5OlZqV2b7i4TygDs4OmaZiAOg2pBsAFwIvStYcs9agSs0qbMuQFWDg2GcY+NIAFn23mOW/ryjUbLnJWdO7BlVrVmHripznVi0qStmnoKz9WsXLg+8WfknIjdtMePYNEs2Mjg1waN9RIsIj8e/XlV+//ZOkRGO53oO6Y2Fhwf5dBws9azWvKvy2eDbBN0IYNfTV9G645oweP4Ix40cy5+tf+ePnxYWerSBVqerBiOcHsWnDdoIuXy3uOJk8M6AHN67fZP++wzkXLgYDBowys6wXAwf24oUXJnHzZuH+/j+uya+/xOTJLzPzf7P57vuifca7qEmX14JVYiqUueXq6srly5cpVapwR8ZsN6Ir1g62OJZ1BqCeb2Oc0kbj3Dl/PcGnrxB82rQi+GCU11sXbhC46eHJrev4flRtXIMzO48TFXIHGyc7vLs1p7K3JzvmrefOtfz1Te800g9bB1ucyhq73Dbs1ASX8sasm/5Yh0oF3+7/mQNr9hJ84QaJ8YlUqulOuwEdiY+NZ8Vs02c+/rflWw6u3UdEyB1cK5Wh4/Bu3Lt7j3lvz30qciota7eR/tg42OKSlrVxp6bpWTf8sRZUKn7a/xv71uzhxoXrJMQn4lHTg/YDfImPjWPZ7CWZ3rNSdXcq167C8jnLMq3Lq14je2LraEupssZsLTo1p3R5482hlfNWoVKpWHjgT3au3sW1C9dIiE+gSs3KdBnYhbjYOBZ9+/BCzLdfR7oP92ffxgBuXb+NjZ01jX0a07hdIwI27+dEPrsTKilr75G9sMuQtWWnFrimZV0xbyWoVCw+sJAdq3dyNT1rFbqmZV347aL092rdrRVjpo8mOCiY6xev4/tId8gju49y987dPOXs81xv7BxsKZ2Ws1XnhzmXz1sBKhX/HPyL7at3cPV8Ws5aVeg2sAv3YuP4M0POB//OarWrAqCx0FC1VhWGv2ocRXvf5gCCzub9Rp1S9ikoZ78OfqE/9g72uJYzZvPp3Jqy5csAsPi3pej1Bn5cPAsHJ3vm//gX7Tq1Mtn+xtWbBB4xtpolJyXz9UffM+O795i34gfWLNtAuYplGTZqIEcCjrN1bf56VTz74iAcHO0pW874m+7b1YdyaSOc/vnL3+gNeuYvnYOjkwO/fP8nHbqYDh54/Uowxw4bn63u4t+Btz54jSuXr3Hp4hV6D/A3Kbt3x37u5DBHZ3ZeGD0UB0cHypUz7svO3TpQvkI5AH77eSGxMfdwq1SBZwb1AqBBw7oATJryEgDBN0JYtuRh696u/atZvXIjwcG3cHd3Y+SLg7l7N5qpr32Q54wAo8YMx9HRgXJpf/Nufh2pkJbz57l/puccNLgPAA0b1QNg8huvAHDjxk3++du0taxWLS/q1qvFrK9+yle2R7300kicnBzSu6P6+3eiYsXyAPzwwx/ExMTi7l6RoUP7AdCokbG30ZtvTgDg+vWb/PXXfwCsXp15GpMGDYxzT2/cuD3TvI+P65WXn8PJyTE9a48enXBzM2b9fs7v6VmHD3sGgCaNGwDw9lvGqUuuXQ9m0aJ/Aejduxuf/e9dLlwM4uy5i+n/vge2bNmVq/lExdNJZcj4RLsCbNy4kUmTJnH27Nl8vc/4yoOyXf/hnu8o5VbG7Lr32ownMjjzw/Qubq58tOd7ls9YwNZf1qQvr9mmHj7P+VGpbhXsXBxITkwi5Nx19i3ZxoFl2f/wRRtyHqzn6z0/4VrJfNbXWo8lKjSKwW+NoHbLupR2c0VnpSMqNIrTewNZ+d1S7jzyb3ll9mt4NamJY2kn44Asmw/x36wlxGSYBywvlJKzJGVNIOdnF+fs+Zkylcw/h/FK69FEhUYy/K2R1GlZjzJuZdBZ6YgMjeTk3kD+/e4fwoMzT2Q+dOqz9B33DJO7vMr181l3284oRm++NeGB+fv+oFwWOUe0HElEaCSj3n6RBq3qU9atLDorHRGhkRzbc4zFsxcTmiGnV30vBr70DDUa1sC5tDOpqakEXw5m6/JtrJy3Kt9TcZSUrKnk/O9YuG8+5SqVM7tuWMsRRIRGMPrtUXi3akC59KwRHN1zjEWzFxMa/PCG1ojXhjPi9Wez/KzJA97gxP5A81kN2WddHLAgy5yDWwwnIjSCse+MpmGrBpR1K4dlWs4je46x4NtFJjkBpn39Bt0GdjH7fv977Qs2Ls16PjqNKvvhA5SyT6Hk7NfIlOyna1h36F8qVipvdp1fU+OF6/pD/2W5/cola3lvoukzit16d+L5CcOp4ulBbMw9Nq/exuxP5xKfw+AxsSnZT4G06+ha3NwrmF3XtqGxQrj7mPmBzACWLV7F1AnvAzBx6lgmTn0py7JDeo/iwF7zg57Fp+Q8YNuhwC1Ucq9odl3T+r7cuB5CqzZN+W/Nn2bL7NtzkH49Rqa//vHXL2navCGuZUoTGRHFpvXb+WLmd9y5k32lNyk1++cXj5/ajruHm9l1Deq058b1m7Ru04zV6xeZLbNn9wF6+Q83WfbuB5N5bfJLtG7enbNnLmT7+RnFJ2c/pcz583vx8Khkdl2NGq24di2Ydu1asGnTP2bL7NoVQJcuWV9jTp/+GtOnv0bFig2yrVCm6HP+/b90YT+VK5vPWs2rOdeuBePTriVbt5i/Obxz5z58Ow8A4L13X+e9dydn+Vm+nZ5h5y7z3Z5Tkm7mmLWkaVGhfbF+/v6QHcX6+QVNKpQlXG4qlOLJlZsKZUmRU4VSPL7cVChLitxUfkqKnCqUJYWS9mlOFcqSJKcKZUmRmwplSZFThbIkyalCWVLkpkJZUkiF8vE9aRXKEtPltWfPnrkqFxennB8tIYQQQgghhHiSlZgKZVBQEJ6entSunf0UGjdv3uTWrZL1ELMQQgghhBBCGWRQnoJVYiqUXl5eeHh4MHPmzGzLbdy4kUOHSub8TUIIIYQQQgjxNCkxFcr69euze3f2Uy08oLDHPoUQQgghhBAlhEFaKAtUialQjho1Ch8fnxzL+fj4sHXr1iJIJIQQQgghhBAiOyWmQunu7o67u3uO5aysrKhY0fwQ2UIIIYQQQgghik6JqVAKIYQQQgghRGGTx+cKljIm4xJCCCGEEEIIUeJIC6UQQgghhBDiqSHThhQsaaEUQgghhBBCCJEnUqEUQgghhBBCCJEn0uVVCCGEEEII8dSQQXkKlrRQCiGEEEIIIYTIk6e2hVKDqrgj5Eo9bIo7whMpQSEPY8ep9MUdIdcSNNbFHeGJoynuAI9Bq5BzKkCyQo7/1OIO8BjCNLbFHSHXIrWJxR0hV2L0CcUdIddiU+4Xd4Rci02JL+4IuZKYmlzcEZ5oMihPwZIWSiGEEEIIIYQQeSIVSiGEEEIIIYQQefLUdnkVQgghhBBCPH0M0uW1QEkLpRBCCCGEEEKIPJEWSiGEEEIIIcRTQy/ThhQoaaEUQgghhBBCCJEnUqEUQgghhBBCCJEn0uVVCCGEEEII8dSQQXkKlrRQCiGEEEIIIYTIE2mhFEIIIYQQQjw1ZFCegiUtlEIIIYQQQggh8kQqlEIIIYQQQggh8kS6vJqhs7HEd2xPPLw9cW/gia2THYum/MjBZTuz3EZtoWHa+s8o5+XGihkL2f7LmizLNu7dmhHfTiAxLoGpdZ7LV1atjSXNxnanvLcn5b2rYu1kx7rJczm1bLdJOb8vx1BvQLtM20dcCuE336kmy1qM70UFb0/Ke1fD1tWRvbP+Y+83/z0VOR9kbTW2BxW9q1HRuxrWTnasnDyXE8t2ZbmN2kLD2A0zcfWqyOYZiwj4eZ3JemePsvi+OZgqretgobPg1qmr7PhqGVcDzuQrq87GEp+xPank7UmlBtWwcbLjnyk/ciSHrJPW/4+yXm6snbGQXb+szVTGxb0MXSYPxKt1XSztrIm+FUHg2v1s/PKffGVVwnGllJwPsnbIkNXGyY7FU37kUA5Zp6RlXTVjITsyZHV2c+XdPd+Z3e7PCd9yfHVAvrIq4buqtH2qhO+qpY0VPcf2wdO7OtW8vbBzsufHybPZtWybSbmOgzvTpq8PFaq5YeNgS1RYJGcCTvHvt0u4ExxmUtba3oa+4wfQpGtzSpUvRfSdaE7tDeTfb/4mIuROnrNa2Vgx4KVnqNmwBjW8a2DvZM+Xr3/F5qVbTMr5DelGx34dqVTNDVsHOyJDIwjcH8jCWYsIzZBVZ6Vj3MevULNhDVzLu6LWqLl17RYbl2xi9Z9rSE1JzXNWaxsrhr08mDoNa1HbuyYOzg58/Nr/WPfPxvQyKpUKvwFdaO/Xlup1vXBwsifk+m22rNrGXz8tISkx2eQ9nUs788rbo2nl2wJbWxuuXrrGn9//xbY1WX+ncs5pzQvjhlGvUR3qNayNo7Mj77z6MSuXPDyeVSoVvQb606l7e2rVrY6DswM3r4ewfsUW/vhhEUmJSSbveSp0v9nPmvXJHH77bkGes9rYWjN2/PN4N66Hd6O6ODk7Mnn8dJYtXmWStf/gnnTr3ok69Wvi5OTIjes3Wb18PT9/P5/ER7IOf34grdo2w7txPSq6lWfp4pVMGf9unjM+zGrDuFdfoGHj+jRsXA9nZycmvvIWS/5aYVKuYaN6DBral4ZN6lO7TnW0Wi3lnGqZfc/SrqWY/sHrdOrig62dLRcvBPHd1z+zeuVGs+WVTAblKVhSoTTDzsWBbhOfITI4nJCz1/BqWSfHbdqN7IpzhdI5ltPZWNLrrWEkxiUURFSsXexpPakf0cF3CD97HfeWtbMsm5KQxIY3fzNZlhgTn6lcuzcGci/sLqGnr1G1ff2nKieAjYs9PpP6cTf4DqFnr1M5m6wPNHuuC44VSpld51DehReWf4AhVU/A3DUkxSfiPcCHYQumsWDoTK4fPJfnrLYu9nSa2J+o4HBunb1GtVx8V1uP7IpTNt/V8rU9GPv3u8TcjmLXr2uJj7qHU4VSOGXx78stpRxXSskJYOviQNcMWT1zkbVtLrIeXbmXs9uPmSy7dvRiPrMq47uqpH2qlO+qvYsD/ScNJjw4jGtnr1KnZT2z5SrXrUrYjTCObDlEXPQ9XCuVpePgzjTybcKb3SYRFRYFGC/o3174AW5eldi8YAO3rtykrEd5Oj/rR/123kzxHU9CHnM7ujgw/LVhhAaHEnQmiAatGpgtV61uNW7fuM3+zfuJjb5HuUpl8RvSjWa+zXm56ytEhkYCYGmlw6O6Bwe3HSI0OBSD3kDtxrUY+/4Yajaswf8mfJ6nnMasjrz4+khuBd/m4tnLNG7VMFMZK2tL3p31JiePnGb5glVE3blLvcZ1GDX5OZq0acT4Aa+nl7Wxs2Huitm4lHbmn9/+JSIsCt+e7Zkx9wPeH/cJm1ZszVNO51JOvDxlFCE3bnH+zCWatW5sJqcVM2a/y/HDJ/nnz+VE3InCu0ldxr0xihZtm/BCv3GZttm34wCr/llvsuzsqfN5yviAi4szk6a+RPCNEM6eOk/Lts0ylbG2seKr7z/h6KETLPpjKXfCI2nctD6vTXuF1m2bM7jPKJPyL736PHZ2tpw4eooyZXM+9nKrVCknJk8bR/CNEM6cOk/rts3NlvPt0o6hI/pz9vQFrl0NxtOritlydva2rNqwCFfXUvwydwHhoXfo1bcbv8z/hpdHTWH5ssw39IR4QBEVyuTkZP777z86duz4//buOyqK6+/j+BuQjoC9gCigIAqKBRFFUDDYC0HsNRF71ycaYyxpGsvP3jXGFmPv3diVWAMoahSwYUGk9yL7/IGsrLQF2YWN93VOzsnO3tn9+J3C3il3qFSpksK/L+ZNFDMchhMXHkMNOwumHP4l3/YGFQxpN96LM2sO0Wlyz3zbthv7JSkJSQT5BmLn4fDJWRPeRLOy6WgSwmOoamfOwCM/5tk2410G9/ZfKfAz17ScQGzoW3TLGTDWb80nZ1SlnADxb6JZ1HQUCeExVLMzx+fIT/m216tgiMs4T66sOUybyd453m85qis6hnqs8ZhGRMgrAG7vOMfoswvwmNmfDZ1nFDlr7JtofnQYQXx4DCZ2Fow7/HO+7fUrGOI+/ksurDmERy7rqpqaGr3+N4rw4Jes7f0j6R8dvf4UqrJdqUpOgNg3Ucx6n9XUzoJJcmT1GO/F2TWH6JBP1tC7j7l14PIn55PNqhrrqirVVFXW1eg3kYxoOpiY8Ggs7Cz5+ciiXNv9NmNtjmk3T17jl6OLaOXVhkOrM69Aqd3Yitr2Vvz2/VpOb/nQoXgV8oIRC8dh69yQmyevFSlr5JsoejfuS1R4FHUa1GHF0WW5tlvx3coc066e9GXlseW09XJn16rdAMRFxzOh20SZdke3HSMhLpFuQ7qy9of1RIVHFSlrxJtIOtl/SWR4FHUbWLHpeM76paWlM6zbGO7cDJROO/THUV49f43P/w3BoVVjbly6DYBn/y7UMDdlTM9J3LqSefBj35aDbDi8krEzR3L26AXS09ILnTM87C2uth2JCI+kfsO67Dz1ey450+jfyQe/m3ek0/ZuO8iLZ68YM3UYzV0c+PviDZl5ngQ/48jeE4XOk583YeE0tWlD+JsI7OzrceSvP3NmTU3jy/YDuHXDXzrtz617ef7sJZO/HU1LV0euXPiw/vXq8hUvQjP/9t97mvuZ1aIIex2OnVUrwt+8paF9fU6e35Nru983/smKJRtITk7hl/kz8uxQDhzcCwvLmnh1HcyVi9fez7uDY2f+ZPZPUzly8BRpacX3m6CkiUF5ipdK3EOZnJzM7Nmzefr0qVK+711qOnHhMXK37zK1D29CXnFz/6V821WqVZXWX3XkwI9befcu41NjAplZEwqRVU1dDS0D3XzbxIYW/XKhvKhKTih8VvdpvYgIecWdPDrBZg7WvA58Ku1MQuZZ2H/P3Ka6nTnla1X5pKzxhcjaYWofwkNecXt/7j9s67g0oFpdM84s3Ut6ShqaOlqoqasVOd/HWVVhu1KVnFD4rJ3eZ71VQFYALV1tNDQ1PiWeDFVZV1WtpqqwrqanphMTHl2kecPfXz6qZ6gvnaZnoAdAzFvZz4x+fwYzLVn2ksPCSEtNK3IHL+x5GAAGhgYFtw3NaqtfQMu8paWmEVlA1vS0dJnOZJYLJzLXgZq1a0qnNXS0I/JtlLQzCSCRSPjr8HkqVqlAo+a5n62VJ2dEeGSBObN3JrP8dTzzUluLOrVynU9bRxstba0i5cpNamoa4W8i8m2TlpYu05nMcvJo5iXcdawsZKZndSaLW2bWgn8HvQ2PIDk5pcB2ji2a8DY8QtqZhMzlf2j/CapUrYRTy08/CCr8d5WaM5RdunTJ8z2JRIJEImHatGno6uqipqbGoUOH8myvTGYNLWnm5cpS71kFtvWcOZBHfwdy77wf9p2dlJBOlqauFuMD16Olp0NSdDz3D/lyYe6fpCUWvKNRJlXJCVC9oQUNvVz4vcccJHkc7dLQKkNyTEKO6elJmT96qtmZE/kkTKE5AUwbWtLEy4XV3rMhj3sH6rS0zcyWks7YQz9j2sCC9JQ0Ak/dYP+M30jK5d+hCKqyXalKTsjM6uDlynLvWQXeOeIx3ouu3/UnIyOD0DuPObZwJw8vBSglJ6jOuqpKNVWlddXAuCzqGupUrF6RL8f3AiDwyodahQQEkZyQRM/JfUmIjudl8Auq1qpG328HEeT3kDuXc/7YV5Sy77NWNqlMvwl9AfC74pejXRnNMugZ6KGto0WdhlZ4DfPi9fMwXjx5qbSs2ZWvVB6AmMgPByQ0tbRIyaXjkdUZqdvAihuXbikn4HsVK2Vevh4VGZ3jve69O9F7iBfq6uoE//uYtUs2cWzfKaXmy65SlcyskRHRJZbhU2hpaeXa8UxKyrx8vIF9PS6ev6rsWIKKKDUdykePHlGxYkVatWqV473U1FSCgoKoVauWUi55LQyvOUP454gvT24/orxp3tnqtWlE3VYN+LXDVCWm+yDhTTTX1hwl7O4T1NTVMHdtQOOBX1DZxowdvX5GUkxnTD6VquTM0mHOIAKP/E3o7SCMTHO/NyIi5BVmzeqipa9Darb7emo4WAFQtmp5pWTtNmcw/kd8eXb7EeXyyFrBvCoA/VaO598L/pxbdZBqNma0GdUNo2oVWN1jtlKyqsp2pSo5ATznDMHviC9Pbz+iXB5ZJRkZPLjoz52TN4h5HUkFsyq4ft2RYb9PY+PQBTnuAVQUVVlXVammqrSurry2ES2dzLNOcZGx/D5rvUwnMS4qjmVjFuIzbzQzdny4fcL//G0Wj5xPhhL/TvxxY5s0a0xkDCu/X83tSzmXacsOLZm+cpr09b/+D/nflMVKzZpd/1G9iY+Nx/fch7NRz4Kf49CqMVVNqvD6xYeDnA2bZd7zWqlq8d3/J6+vxvQnLjaey3/JDl71z/UATh46Q+izV1SuUpHeX3kxf/UPlC1rwM7Nnz44X1GMGDuE2Ng4zp8p3kvblSU46DEurZ0wrVGd0OcfDnQ4OmXe81qtetGvpiqNxKA8xavUdChXrFjB3LlzCQ0NZcaMGVhbW0vfi42N5ejRowwfPhwHh9Jzyt3R25Xq1jXYNHJxvu00NDXw/H4gV7afISzohZLSybo4X3bEwweH/ybq8WtcvumJdcdmPDhcfNf1fwpVyQnQ0NuFynVrsHvk0nzb3dr2F9ZfNMFr5VjOLdhFamIKTQe0pbpd5mUxmjrFd7lOXpp6u1LVugbbClhXtfV0AAgNCGbnxMx7hO6euE5aciodpvahdktbgq7cVWhWVdmuVCUngIO3K9Wsa7C5gKzRLyNYN3CuzLRb+y7yzZlFdJ3RXymdH1VZV1Wppqq0rgL8OvgHNLW1MKltirOnK9q62jnaxEbE8iQwhJObjxH68Bm16pnTeYQnIxaOZemoBUrLOmPg92hqa2FWpwZunm7o6OXMCuB/1Z9pfb5F39CARs72WNiYo6Oro7Sc2Q0a249mLk2Z/+1i4mM/nMk/tOMongO68NOaWSyds5LI8MxBeVzbZx7o19bJ/d+mKD7jB+Hk2owfv5lPXGy8zHsDugyTeb1vx2F2nf6dcdNHcGDn0VzPtCrS6IlDadXaie+m/ERsbJxSv7u4bN+yh4FDerFu0/+YOX0e4W8i6OrZng6d2wKgo1My66ugGkrNPZRt27bl2LFjNG3alN69e/PDDz8QE5N5KYaaWvHcw1WctA106fxNH86uO0z0q/yvt2/9dSf0y5fl+OLdSkonn5sbjpPxLoNazrYlHSVfpTGnloEu7t/04urao8S+yv/ekKDz/hyf+Ts1m9Vl2LFfGHN+EXXcGnH2/WMNUotpxM+8aBvo0v6b3lxcd4SYArJm3Xvkd0j2sha/g5n3h9ZsYqWYkO+pynalKjkhM2unb/pwTo6suUmMSeDG7vNUsTTBSMFn01VlXVW1mqrKuprlnu9d/M/f5tiGQywZuQCvCb3wGNRR+n7lGlWY8eePnN/1FwdX7uHW6evsXbqTTTPW0rxTSxq2bqy0rP6+Adw8f5N96/fz88hf6D+xH10H5byFJ/ptNP9c9uPyscssn76Ca39dZ+4fP1OuUjmlZQVw79qGYd98xaE/jrJ/i+ytQ8H3Q5g15idMalVn3cEV7Lm6He+vvmTp7BUAJCUmKS1n+25tGTttOHu3H5LrjGN6Wjo7Nu7ByNiQeg3qKiHhB527t2PK9DH8uXUf2zYV/dFaJe1+4ENGDf0/apqbceTUDq75nWLo8AHM/DbzgFhCQs7R9lVZhkRSov/915SaDiWAtrY248eP5+DBg7x48QIPDw+2b99OenrhRxVTNDefzmholuH2YV/Km1aivGkljN//MNAz0qe8aSU0NDXQKauLxxhPfP88i05ZPWlbbT0dUIPyppUwqGBYIv+G9JQ0kqLi0DEu+qAAylAac7YY1hENrTIEHvkbI9OKGJlWxPD98tcx0sfItCLq2QbfuLH5NIuajOI3z1ms7/Qdq9ymSB+FEvFYMTfsZ3Hx6YSGZhn8D/tSzrQi5UwrYlQ1814PXSN9yplWlA4UEhuWOcBD/FvZgT7iI2Kl7RVJVbYrVckJ0ManM2U0y+B32JdyppUoly1r5vKvVOBAMVEvMzsiesYFDzbyKVRlXVWlmqrSupqbN89e8yTwMS27f3g+sYu3G1ramtz+S3bUz1unrwNg3VS5HYosr56+IvhuMG082xTY9tLRy+gZ6OHk0VwJyTI5tGrCzCXTuPrX38yf9r9c25w7epEujXvwVccRDO0yCk/H3rx4mvk36llIqFJyOrk045flM7l45io//N+vcs/3+mXmZbpG5ZS3njq3bs7/Vv3M2VOXmD4579HrVcWRQ6ewr+tK+zbedGzbm6Z27jx98hyAkKAnJRtOKNVKzSWv2ZmZmbF27VrOnj3L3Llz2bJlS6k7S1nOpCL6xgZMP5Nz+HOPMZ54jPFkfsepJMUmomOgS9sRXWk7omuOtrMuLyfg1A02Dst9GHVF0tLXQa98WRIjSvflGaUxp2H1iugaGzDqTM5niLUa051WY7qztsN0wu59GJk4LSmF0NtB0tfmzrakJaXw/OZDhWY1NqmInrEBk88szPGe2xhP3MZ4sqTjNF7de8qLu48BMKwie9bEsHLmUfSE9z/WFUVVtitVyQkflv/UXLJ+McaTL8Z4srDjVF5mW1c/VsEs896ZeAUvf1VZV1Wppqq0ruZFS0eLMlqa0tdGFY1BTQ11ddlj4hqamT9p1DWKbyTdwtLS0UYzW9a8aL+/1UG/rHIOlNZrZMO8jT/yIOAhM0bMyXf03vS0dO77f3ieo0OrzHvolDEgj13j+iz9fR6B/g+Y7PMd7969k3te05omAERFFG2U3sKyb2LHus1LuOMXyKivpxQqa2mWlpaG3z8fbhdwad0CgIvnffOaRRBKZ4cyi5ubG87Ozvz+++88fvyYihWVf0N4Xi5uOs6dU7JHRw0qGNF7rg/Xdp/nzumbRDx/w7u0d2wYlvPHkcvg9tRqbMWWccuIfROt0Kwa2ppolNHIcWml07juqKmr8/iC8kYazI+q5AS4/vtJ/j11U2aafgVDOs8bit+uC/x7+hbRz9/kOb9pkzrYtHfg5rYzpMQp9jKiK5tOEPhRVoMKhnjN9eHm7vMEnr5F1Pusgadv0mXWQJp6u3JrzwXpyLUOvTOPuD+6nHNY9+KkKtuVquQEuLTpOHdzydpzrg/Xd5/n7umbRL5f/vrly5IQKXvgxqhKORx7tubl/afEFfHRD/JSlXVVlWqqKuuquoY6uvq6JMTKjs5r2bAONaxrcuXgRem0149foq6uTvPOzlzcc1Y6vUXXzHv9ngSGKCxnVlY9Az3iY2Tv67O2t8K8bi3OHTgnnWZYzpDYqJwHDdr3aQ/Aw4BHCs0KULO2GYu2zOXV89dMGfQtKYV4rIqpuQmeA7pw+fRVniv4DKVFnVqs2raIF89fMbr/5DzvgyxXwZioj0ZS1dPXY8CwXkS+jSLQ/4FCcwLUtjJn044VhD5/yZA+Y5R+z6aymFvUZOCQXpw6cY6Q4CclHadYiUF5ilep7lBC5jDGw4Z9uPk6KiqKoKAghQ/O02pgO3QN9TCqknm029a9sfQyoYubTxAa+ITQwCcy82SNnPfqYSh3sv0ouvPRDyQAOw8HajbMyPW9wmo06At0DPUweJ/Vsm0jylbLzHrr91PoGOkz+NjP3D/kS0RQ5shd5q4NsHSzJ+S8P49OyR51rOfZEiPTipR5fwO+qaM1TmO7ARC47zKxLwp/z5Aq5QRwGPQFOob6GFQxBsCqbSMM32e9/vtJXt99wuu7T2TmyRrlNfxRKP9my2pkUpEeK8fy75nbxIdHU9nKlCb93Al78Iyz8z/9fgungR7oGupj+L6uNu6NpZcJXt18gpeBT3j50bqaNXJm2MNQ7mVbB+PDYzi34gAek3vy1eZpBJ66SfV6Zjj0duOfg1cIDfi0H2qqsl2pSk4A54Ht0MmWtb57Y+l9eZc3n+BF4BNe5Fj+mVlfPwzlbrYMXb7tRwWzKjy6epfYsCjKmVbCqa87Wrra7J+z+ZOzqsq6qko1VZV11WNQR/QN9Sn3/oxy47YOVKiWuexP/H4UNTU1Vvy9Ad8jVwh9+IyUxGRq1K2Jq7c7iXEJ7F/2YV95YfdZOg3rxtBfRlKrvjmhD59jbmtBm95f8Pzfp9w4eS3XDPLqOqgL+kb6VHj/GIjmbR2pWC1zPTy46RBqampsu7aFC4cv8vThU5ITkzGvWwuPnh4kxCWwfekO6We5f+lGp/4duXrSl1fPXqNnoEsT1yY0cWmM7+m/8b/6aY846TG4OwZGBlSskpnPuW0LKlfLXL67f9uPJCODJX/Mp6yRAdtX/0kLd9lLbF88fcndW/ekr/84t4mzRy4Q9uIN1cyq8uXArsRGxzF/Wv4DOhWkz1c9KGtUlsrvc7b2cKZK9cqZ37lhFxkZEtb+uQRD47JsWrUdl7YtZeZ//jQU/5uZZ836DOmBWwcXzp+6zKsXYVSqXAHPPl2oZlqFb8fMIT3t026TGjS0N4ZGZalSNTNf23atpSOc/r5uBxmSDLbsXoORsSFrV/yOu4eLzPxPHz/n9s0PB8Dd27lSzzbznu4ymmWwqWfF2Mk+AJw+fp4H94p+UOErn74YGhlS9X3WL9q3oVr1zBGwN67bRlxsPKY1qtOjV+ZVBw0bZY5FMWHKCABCn79kz84P99Je/Pswhw+eJDT0FWZmpgz6ujfR0TF8M3F2kTMKn4dS36H82PXr15kwYQL3799X6Pe0GdaZCtmGVm/YwZGGHRwBuHngMskKPqtUGM18OmJU40NW6w7NsO7QDIDA/VdIiU0k+K9/qOVsS30vZ9TV1Yl6GsaFX3dyY90x+Ojm4Aa9WmPmZCN9XbNFfWq2qA9A6I2HRe6oqUpOACefThhny2rToRk277MG7L9cqLOKKXGJxL2JxmHQF+gaGRAXFsX1TSe5tOJgsQzI4zKss8xjAOw6OGL3fl3958ClQq+rfy3fT2JMAi0HtaPLzIHEh0dzbsUBziz79KHYVWW7UpWcAK0/Wv4NOjjS4H3WW4XM+u+lAFr0a0vLAR7oGemTFJtIyPUHnF6+L0cHqihUZV1VpZqqyrra2ac7lWpUlr527OCEY4fMZ1xe2n+BqLBIzv15hnpOtjh2cEJLR4uosCiuHrrE/uW7eRv64YqP+Og4vus8Be/JfWnc1oG2/doTHx3H+V1/sXP+Vt59YofCa7gXVWt8eESCc0dnnDs6A3B231kiwiI5seMkDVs0oFVHZ7R0tIgIi+TcwfPsWLaDsGxZ794IpF4TG1p3c6VcxXK8e/eO0OBQ1sxZy8FNn/487b4jelGtRlXp6zadXGjTKbODc2LvaQCqmmT+W0Z/NzzH/Ed3nZDpUD66F0ynXu0pX7EcMZEx/HX4PBsW/p7jjGBhDR7ZDxOzatLXX3RuwxedM68mOLLnBADVTDP/HZO+H51j/gN/HpV2KP+5HoC9gx1e/bpiXM6IxMQk7v5zj+8n/sT1y59+Wa7P6EHUMDORvu7QpS0dumSOdLp/11EATEwz/y3fzpqYY/7dOw7KdCg7dGmLd59u0te2DW2wbZj52+XVy7BP6lCOHPuVTNbOXT3o3NUDgL27DhEXG49ZTROmzRgvM1/W66uXr8t0KAPv/kuvvp5UqlyRyIgoDu8/wYK5y3n7Nv9B0lSRRFK6HkOn6tQkeT2NvZQ6efJksXQox9fqXUyJFMtEonJ9fpWQrCKXOiSoqc4OT1VqqkpK7k6wwtOkdN3nnp80FVlXVemOrDcSxY5WXZwiM1Tj8sTYDNWpaVx66ThwIY+4dNUYrTTlXVpJR5Db62jFnuRRBPMKDUv0+x9HfNrVCaVNqemtdOmSc5jt3CQkJBTcSBAEQRAEQRAEQVC4UtOhDAkJoXbt2tSrVy/fdi9evODVK8U+ZkEQBEEQBEEQhP+mDBW5UkVVlJoOZZ06dahZsyZz587Nt93Jkye5ceNGvm0EQRAEQRAEQRAExSs1HcoGDRpw6dIludqq2G2fgiAIgiAIgiCUEqrcl3j69CkbN27E39+fR48eYWFhwZEjR6Tvx8fHs2nTJi5cuMCTJ0/Q0tKiQYMGTJw4EWtra5nPiouLY+7cuZw5c4a0tDRatWrFjBkzqFy58sdfmy/1gpsox9ChQ5kxY0aB7VxdXfnrr7+UkEgQBEEQBEEQBKH0ePToERcuXKBmzZpYWlrmeP/ly5fs3LmTli1bsmTJEn788Ufi4uLo1asXwcHBMm0nTJjAlStXmD17NgsXLuTx48f4+PiQnl640bJLzRlKMzMzzMzMCmyno6ODiYlJge0EQRAEQRAEQRD+S9zc3GjbNvNRNtOmTePu3bsy75uamnL69Gl0dXWl05o3b46bmxt//PEH33//PQD//PMPly9fZuPGjTg7Zz4aydzcnI4dO3Lq1Ck6duwod6ZSc4ZSEARBEARBEARB0TKQlOh/n0JdPf/um56enkxnEkBfXx8zMzPevPnwnNyLFy9iaGhIy5YtpdMsLCywsbHh4sWLhcpUas5QCoIgCIIgCIIg/Ne5u7vn+35x394XGxvLo0ePaNGihXRaSEgI5ubmqKnJPkfawsKCkJCQQn2+6FAKgiAIgiAIgvDZUOVBeYpiwYIFqKmp0adPH+m02NhYypYtm6OtkZFRjstoCyI6lIIgCIIgCIIgCEqizAFG9+7dy65du5g3bx5Vq1ZVyHeIeygFQRAEQRAEQRD+Yy5cuMDMmTMZNWoUnp6eMu8ZGhoSHx+fY56YmBiMjIwK9T3iDKUgCIIgCIIgCJ+NjM/gklc/Pz/Gjx9P9+7dGT9+fI73LSws8PX1RSKRyNxH+fjxY6ysrAr1XeIMpSAIgiAIgiAIwn9EUFAQw4cPp3nz5syZMyfXNi4uLsTExODr6yud9vjxY+7du4eLi0uhvu+zPUMZ+C6qpCPIxUijYklHkNu7TxwGWZniySjpCHJRpZqqEi3UCm5UCuiq0DE/bYlq1BRAU0WWvyqpgH5JR5BbioZeSUeQS7qG6uz/EzRV428qQAKFe2B7SUmWvCvpCP9pEhX+fZWUlMSFCxcAePHiBfHx8Zw4cQKAZs2aIZFI+Prrr9HW1mbQoEEyA+wYGBhQu3ZtABo1aoSzszPTp09n6tSpaGtrs3jxYqytrfHw8ChUJjXJ5zbM0Xtta7Qr6QhyaSE6lAohOpSfN9GhLH6iQ/l5S1OhfVWKmmpkTVehmiaoyN9UEB1KRdjx9EBJRyi0qsY2Jfr9r6PvF3ne0NDQPB87smXLFgAGDhyY6/vNmjVj69at0tdxcXHMnTuX06dPk56ejrOzMzNmzKBKlSqFyiQ6lKWc6FAqhuhQft5Eh7L4iQ7l5010KIuf6FAqhuhQFj/RoSy8T+lQlkaf7SWvgiAIgiAIgiB8fj7T82kKozqHvwVBEARBEARBEIRSRZyhFARBEARBEAThs5GhQpeUqwJxhlIQBEEQBEEQBEEoEtGhFARBEARBEARBEIpEXPIqCIIgCIIgCMJnQwzKU7zEGUpBEARBEARBEAShSMQZSkEQBEEQBEEQPhsZ4gxlsRJnKAVBEARBEARBEIQiEWcoBUEQBEEQBEH4bIh7KIuX6FDmQkdPh54jvLFpVBdre2sMjcsyf9JCTu0+LdOuY58OuH/phpllDfQN9YkIi8T/7wC2Lt5GWGiYtF2lapVo38sDR3dHTGpVJyMjgyf/PmH7sh3cvvzPJ2XV0tOm5fDOmNpbYtLQEj1jA/ZNWYvfnot5zqNeRoNRx+dSuY4JJ3/ezpX1x2TeN6hkjNtELyxb2WJQyZi4sCgenL7FhRUHSYqOL3LOVsM7Y2pfG9P3OfdMWcM/BeQce3wuleuYcvzn7Vxef1T6ntsEL9wneOU571qv2Ty79bDIWd2Hd6GmfW3MGtZG39iA7VNWc33PhXyzTj3+K1XrmHLg522cW38kz7ZNurVk4NKxpCQk8039wUXKmD1r2+FdqWVfm5rvs26dsoprBWT99vh8qtUxZf/PW/krW1ajyuXo9m0/ajawxKhKOTIyMngT8opLW09ybW/ey+q/kjMra5tsy1/P2IAdU1Zzo4CsU94v/0M/b+N8tqzlTCvx/eXluc63ZexS/A77flJWVdmuNPW0aTG8Myb2lpjYW6JrbMDByWvxLyDr8BNzqVTHhNM/b8d3ney+qlzNKrhP6415y/qU0SrDq7tPOL9oD0987xUpY1bO5sM7Ud2+NtXsLdA1NuDI5LXc2XNJpl2nhcNo4O2SY/6IoJesc/9GdqKaGo7DOtJ4gDsGlYyJfPwa31WHuXeo6MteFbOqwvJXpW1KS08b1+FdqGFfmxrvs+6asppbBWSdcHweVeqYcvTnbVzMljVLebPKeEzuSZ2Wtmgb6BLzKoKAo39zcuGuIudUlf2/tp4OHYZ3w8K+DuYNa2NgXJYNU1ZwZc+5POfRKKPBnOOLMKlTg50/b+bE+kMy76upqdF+WFfa9G+HceVyvA55xdHV+7h26PInZ+0yvDu17a2wtK+DgXFZVk9exsU9Z2XaufX+AmdPV6pbmqJnqE/Um0ju+d5l79KdvA19I9NWt6wenmO8adrOkQrVKhDzNoa7VwLYu+RPIl6+/aS8wn+b6FDmwqi8EQMn9icsNIyQeyHYt2iYa7vatpa8fv4a39N/Ex8TR9UaVenYpwPN3ZsxvN1IIsIiAWjh4USvUT25etKXU3tOo6GhwRdebZm/Yx4LJi/i5K5TRc6qV74sbcZ/SXToW8LuP8PcqV6B8zQf5IFR9Qq5vqelp43P/tlo6WpzfdsZYl5GUNXGjGYDPTB3qseazjOKdFRHr3xZ3MZ7ERUazuv7T7Fwql/gPE6D2mFUvWKu7wWeuE7Ek9c5pnv8Xy+09HV4ERBc6IxZDMob0n58DyJDw3l5/yl15MjqMqgd5fLImp2WnjZdv+1HSkJykfNlZ1DekI7vs764/xQrObK2HtSe8nlk1S9flnLVyuN3/G8iX0agUUaDuq3sGLBoNJUtqnN4wZ//6ZyZn21Iu2zLv7YcWVvJsfxvH7zC/XOyB5Ce3n5U5JygWtuVXvmyuE74sK+qJce+qtngvPdVhtXK89X+2UjeZeC79gipiSnYe7vSb+tUtvady7PrD4qc03nCl8SEvuXN/WfUzCdnenIqx6ZtlJmWEpuYo53r/3nTYnRX/vnjLK/8Q7DyaEK35aORSCTcP/x3kXKqYlZVWf6qsk3ply9L2/dZX91/iqUcWVsOaodxPvuqavVqMvzP74l9HcXFDUdJjIrHuHoFjPNYDvJQpf2/QfmydBvfk7eh4Ty//xQbJ9sC53Ef1JEK+dTU6//60mnUl5z/4zSPA4Jo9IUDI5ZNRCKRcP3wlSJnLVveEK8JvQkPfcPT+0+o72SXa7tatha8ef6GW2dukBATT6UaVXDr/QWN3Zsyrf0Eot5EAZkd3+nbZmNapwant57g1eMXVKlZjS8GdKCBiz1T3MeQXEy/XYT/HtGhzEXkm0i8G/cmKjwKqwZ1WHV0Ra7tln2Xc/qVk1dZfWwlX3i15c9VmUfz/Hz96es4gNioWGm7I9uOsubEKgZNHvhJHcq4N9HMdxhFfHgM1e3MGXH4p3zb61cwxHW8J5fXHMZ9sneO963bNqGcaSW2DVnAw3N+0ulJMQm0Gf8lVeqZ8TrwaZFyznUYSXx4DCZ25ow6/HOBOduM9+TSmsO0zSVn2IPnhD14LjPNqFp5DKuV59af53mX9q7QGbPEvIlihsNw4sJjqGFnwZTDv+Tb3qCCIe3Ge3FmzSE6Te6Zb9t2Y78kJSGJIN9A7DwcipwxS+ybKL51GEZceAxmdhZ8c3hugVnbj/fi9JqDdJ7cK8f7Lx88Y2nvH2SmXdxykuEbvqH14A4cWbQTSUbhDyioSs6srLPeL39TOwsmybH8PcZ7cXbNITrks/xD7z7m1oFPOyL9MVXaruLfRLOo6SgSwmOoZmeOz5H891V6FQxxGefJlTWHaZNL1pajuqJjqMcaj2lEhLwC4PaOc4w+uwCPmf3Z0HlGkXMuazqahPAYqtqZM+TIj3m2zXiXQeD+/H8QGlQph6NPR25tPsWpmVsA8P/zPP12zcBteh8eHL1W5HVV1bKqwvJXpW0q9k00PzqMeJ/VgnFyZHUf/yUX1hzCI5d9lZqaGr3+N4rw4Jes7f0j6SlpRc4mm1N19v8xb6IY7/A1seHR1LKzZNbh+fm2L1vBkG7jvTm25gBfTu6T433jKuVpN7QLf20+zrZZGzKz/nmGaTt/pNe3A7lx1BdJRkaRska/iWRE08HEhEdjYWfJz0cW5drutxlrc0y7efIavxxdRCuvNhxavQ+A2o2tqG1vxW/fr+X0luPStq9CXjBi4ThsnRty8+S1ImUtjTIQl7wWp1IzKM/jx49JTU2Vmebv78/w4cNxdnbG2dmZkSNHcvfuXYVnSUtNIyo8qkjzhj3PvNTVwNBAOu3pw6cyncms77h+7gaVq1dCV1+3yFnfpaYTHx4jd/svpvYiIuQV/nn8sNAum5kl/q3sZ8a9iQYyj3IrI2e7qb15G/IKv/3y/wBv0LUF6urq+B38tB/t71LTiStE1i5T+/Am5BU391/Kt12lWlVp/VVHDvy4lXfvivYH5GPphczabWpf3oS85EYBWT8WGRqOpq4WZTSLdgxKVXJC4Zd/p/fL/5YcWbV0tdHQ1Chyto+p2naVUIis7tMy91V38thXmTlY8zrwqbQzAZn7p3/P3Ka6nTnla1VRSk41dTW0DPLeh1t5NEFDqwy3tp6Rmf7Ptr8wrF4Bk8Z1ipTzv561JJe/Km1ThcnaYWofwkNecTuPrHVcGlCtrhlnlu4lPSUNTR0t1NTVPikjqNb+Pz01ndjwaLnbe0/tz6uQF/juz/1S20ZfOFBGS5OzW0/ITD+3/STlq1ekdmOrT8oaU4is2YW/v9RVz1BfOk3PQA+AmLeynxn9/gxmWhF//wmfh1JzhrJjx47s3LmTBg0aAHDz5k0GDx5M5cqV8fDwAOD8+fP07duXP/74A1vbgi9DUBZD47Koa6hT2aQy/Sf0A+D2Fb8C5ytfqRxJicmkJKUoOGEmk4YW2Hu5sNF7DuRxZObptQdkvMug46yBnPh5O7GvIqlStwauo7tx7+QN3ga/ynW+4mTa0JJGXi6s856DpBBHkBp2b0n0i7c8uVa0S52KwqyhJc28XFnqPavAtp4zB/Lo70DunffDvrOTEtLJqtnQEkcvVxZ7zyywqprammjp6aCtr0MdRxuae7fm8e1HpBXTEev/Qk7IXP4OXq4s955VYFaP8V50/a4/GRkZhN55zLGFO3l4KUApOUG1tqvqDS1o6OXC7z3m5HmJvYZWGZJjEnJMT0/K/NFTzc6cyCdhOd4vTpq6WkwKXI+Wng5J0fHcO+TLubl/kpb4YZ9epX5NUhOSiXj0Umbel36ZlzpWsa1J6M2i3UP3X82qKstflbYp04aWNPFyYbX3bPL6+1+nZebvqvSUdMYe+hnTBhakp6QReOoG+2f8RlIu9S5uqrT/N29Ym5ZerfnFe0aey79mfXOSE5J4GRQqMz3EL/N2B7P65jy6qZz1wOD9b9WK1Svy5fjMM7+BVz78DQoJCCI5IYmek/uSEB3Py+AXVK1Vjb7fDiLI7yF3LvsrJaeyiEF5ilep6VB+vGCXLl2KjY0NW7ZsQVc384jqlClT6NevHytWrGDNmjUlETNXf974Ay0dLQBiImNY8f1Kbl+6ne881WtVx7lDSy4euURGES93KKxOcwZx98jfPL8dhLFp7tf7hwe94NC3G2j3XT+G7Z8jnf7PnoscnLpeKTk7zxnEnSO+PL/9KM+cH6tcx4RqNjW5uOZQwY2LkdecIfxzxJcntx9R3rRSnu3qtWlE3VYN+LXDVCWmk+U9Zwi3j1zlcQFZAVp/1ZFuU/tKXz+4fIdt/7da0REB1ckJ4DlnCH5HfHl6+xHl8sgqycjgwUV/7py8QczrSCqYVcH1644M+30aG4cuyHFfpaKo0nbVYc4gAo/8TejtIIzyyBoR8gqzZnXR0tchNdt9PTUcMo/4l61aXqEZ499E8/eao7y++wQ1dTUsXBvQZOAXVLYxY3uvn5G8vwrBoLIxCW9znp2Jf3/Vh0HlcgrNqWpZQTWWP6jWNtVtzmD8j/jy7PYjyuWRtYJ5VQD6rRzPvxf8ObfqINVszGgzqhtG1SqwusdshedUpf1/vzlfc/3IVYJvP6RCHlmNKpcjNpdtKub9Wb9yVRS/nmZZeW2j9LdqXGQsv89aL9NJjIuKY9mYhfjMG82MHR8un/c/f5vFI+eTUUxXVgn/TaWmQ/kxf39/fv31V2lnEkBPT48hQ4bw88/53yegbN8OnIGWtiZmdcxo6+mGjp5Ovu21dbSZufo7UpJT2TBvY75ti0sjbxcqW9fgz5FLC2wbGxbFC/9gHp7zI/rFW2o61KX5YA8SI+M4+csfCs3Z2NuVKtY12DFySaHma9jdGQC/A0W/wb2wHL1dqW5dg00jF+fbTkNTA8/vB3Jl+xnCgl4oKZ2s5t6tqW5txoYCsma5eegKzwJCMKhQFlu3JpStaCT9Q6RIqpITwMHblWrWNdhcQNbolxGsGyh7z9CtfRf55swius7or5QOpSptVw29Xahctwa7C9hX3dr2F9ZfNMFr5VjOLdhFamIKTQe0pbqdBQCaCl4PLsyXHfHy/uG/iXz8mtbf9KRux2bSAWzK6GjxLjU9x/xZ96cpOqeqZVWV5a9K21RTb1eqWtdgWwH7Ku33v11CA4LZOXElAHdPXCctOZUOU/tQu6UtQVcUd9uRKu3/nb3bYGpdk1UjF+bbTktHi7TUnGdM05S4TWX5dfAPaGprYVLbFGdPV7R1tXO0iY2I5UlgCCc3HyP04TNq1TOn8whPRiwcy9JRC5SWVVA9peYeyo9paGhQuXLlHNOrVKlCYmLOkelKkr+vPzfO32Tv+n38MPJnBkzsT7dBXXNtq66uznervsWsjhk/DP9ROhKsImkb6NL2m15cWXeU2Ff5f59ZEyv6bZzCmQW7+HvTSR6cusXJn7dzYcVBnIZ2oFJtE4Xm9PimF5fXHSGmgJwfa9itBa8fPMsx+IGiaBvo0vmbPpxdd5joVxH5tm39dSf0y5fl+OLdSsn2MR0DXbp+04czcmTNEvXiLf9eucOtQ1fZPGE5Ec/CGLNtBpramp99Tshc/p2+6cO5QmTNLjEmgRu7z1PF0gQjBZ9JUaXtSstAF/dvenF1bcH7qqDz/hyf+Ts1m9Vl2LFfGHN+EXXcGnH2/aMNUktgNMIbG46T8S6DWs4fbslIT05FQyvnsdsy79fRkrovqTRmVZXlr0rblLaBLu2/6c1FObJmLV+/Q1dlpvsdzOz81mxS9Pv9CqJK+38dA116fNOPE+sOEllA1tTkVDS1cubRLIHt/57vXfzP3+bYhkMsGbkArwm98BjUUfp+5RpVmPHnj5zf9RcHV+7h1unr7F26k00z1tK8U0satm6stKzKkCGRlOh//zWlqkP566+/MmLECEaMGIG6ujpPn+YcTfTFixcYGxsrP5ycXj19RdDdYNw92+T6/qT5E2ju7siCyYvwu6qc69Fb+nREQ7MMdw//jbFpRYxNK2L4/kesjpE+xqYVpQOFNO3rRsLbGF7eeSzzGQ/O3EJdXZ0aTYo+KENBnH06oaFZhoBsOY2qZg5VrvtRzuxqNrWmnGkl/A8q74ivm09nNDTLcPuwL+VNK1HetBLG72uqZ6RPedNKaGhqoFNWF48xnvj+eRadsnrSttp6OqAG5U0rYVDBUKFZ3aVZr+abNT//HL9GeZOK1HYseKj//3pOgDY+nSmjWQa/w76UM61EuWxZdY30KSdH1qiXmT9E9IwN8m33qVRpu2oxrCMaWmUIPPI3RqYVMfpoX2VkWhH1bFlvbD7Noiaj+M1zFus7fccqtynSR2FEPFb8/d4fS09JIykqDl3jDwNdxL+JRr+SUY62BpWN379ftAHgPlVpzKoqy1+VtimX91n9D/tSzrQi5T7KWi5b1tiwzOX78aB88RGx0vaKokr7//Y+3dDQLMP1w1eoYFqJCqaVKP++pnpGBlQwrYTG+4GBYt5EYVTJOMdnGL2/fDxKCScVcvPm2WueBD6mZfcPz6d18XZDS1uT23/dkGl76/R1AKyb1lVqRkG1lJpLXh0cMh+hkJCQedN3vXr1ePnyZY52p0+fpm7d0r1Sa+to5XpEath3Q2nfqx0rZ63m3MHzSstjZFIRPWMDxp7JOfy165juuI7pzqqO03l97ykGlYxQ08h5nEGjTOaOXL1M8Y1Q+TFjkwroGRsw4UzOyypaj+lO6zHdWdHxW17dkz3Q0LB7SzIyMvA/eDXHfIpSzqQi+sYGTD+Tc5hujzGeeIzxZH7HqSTFJqJjoEvbEV1pOyLnWetZl5cTcOoGG4flPtx3cWadceZ/Od5rN+ZL2o35krkdv+HFvZwHcLJkXZajU7boIxL/V3ICGL/fpqbmsvy/GOPJF2M8WdhxKi/zyVrBLHMUyqwfa4qiStuVYfWK6BobMCqXfVWrMd1pNaY7aztMJyxb1rSkFEJvB0lfmzvbkpaUwnMlDB7zMS19HfTKlyUxIk46LezeU+z7tKFCneoyg91Ub2SZ+X7gM6XnhNKZVVWWvyptU1n7qslncl6a6TbGE7cxnizpOI1X957y4m7mgWTDj+7rM3zf+UlQ4L5Klfb/FUwqYmBclp/P5Lwsu8sYL7qM8WJmx8k8v/eEZ/ee4NrnC6rXNpUZmMfSPvPg/LN7TxSaNT9aOlqUyfZb1aiiMaipoa4u+xswq3OsrqG4338loTADaQkFKzUdyq1bt8rV7uuvv871UlhlU9dQR89Aj/iYeJnp1vbWmNc15+yBczLTew7vQc8R3mxfvoP9vx1QYlL4e9NJ7p+6KTNNv4Ih3eYO5fbuCzw4fYuo55lDSL8NeUVtlwbUam7Dk7/vS9vbdW0BwOvAJwrL6bvpJPdO3ZKZZlDBkO5zh3Jr9wXun75F5PucWdTLaGDb0ZGnN/4l5mXhLz0sqoubjnPnlOxRPIMKRvSe68O13ee5c/omEc/f8C7tHRuG5fxD7jK4PbUaW7Fl3DJi3w94oSjnN50g4KOsZSsY0WfuMP7efZ6A0zeIeF9Xg/JliY+My/EZLXq2ISMjg+d3H+d473PLCXBp03Hu5rL8e8714fru89w9fVO6ruqXL0vCR1mNqpTDsWdrXt5/SlwRh32XlyptV9d/P8m/ueyrOs8bit+uC/x7+hbRH2XNzrRJHWzaO3Bz2xlS4pIUllNDWxONMho5LqtsOa47aurqhFz4MHLio1O3aft9f5oMaCt9tiNAo37uxL6K5MUtxXZ8VSmrqix/Vdqmrmw6QeBHNTWoYIjXXB9u7j5PYLa//4Gnb9Jl1kCaertya88F6WCJDr0zr7h6dPmOwnKq0v7/zKaj3D51XWaaYQUjBs8dwaXdZ/nn9A3evs/6z+nr9Pl+MG4D2kufQwnQul87Il9FEHTrX4VmVddQR1dfl4RY2RF6LRvWoYZ1Ta4c/PC4k9ePX6Kurk7zzs5c3HNWOr1F11YAPAkMUWhWQbWVmg6lvCwsLAgODsbMzEyh39NtUFcMjPSpUCXzMgants2pVC1zZLQDmw6Cmho7rm3j/OELPHn4lOTEZMzrmtOupwcJcQlsW7pd+lkt27dg2AwfQkNCefboGe6ebjLfdevSbaI/eu5PYTQb+AW6hvqUrWIMgLV7I+l9WX9vPsmrwCe8+qgjmDUiXfjDUB5k+8N4bctpGnm70m/DZK5tPkX0i7fUcrShQbcWBF28Q+j74eOLovlAD3QM9TCsknm0s657Y2lO380neRn4hJd55HzzMDRHpxgyn5ulX75ssV9C1GpgO3QN9TB6n9XWvbH08puLm08QGviE0I+yZo1I9+phKHeyZb2TS247DwdqNszI9b3CchnYDl1DfWlWO/cmGL+//ObC5uOEBj4mNFD2D+yHrM8JyJah3ZgvsWhizb0LfkS9fIuesQH27R2pZV+b85uO8/Zp0YfhV5WcAM4D26GTbfnXz7auXt58gheBT3jx0fLPGuX19cNQ7mbL2uXbflQwq8Kjq3eJDYuinGklnPq6o6Wrzf45mz8pJ6jWduUw6At0DPUxeL+vsmrbCMNqmVmv/36S13ef8PqubNasUT7DH4Xyb7Z9lZFJRXqsHMu/Z24THx5NZStTmvRzJ+zBM85+NAhNYTUZ9AXahnqUfV/T2m0bUfZ9zlu/n0LHSJ8hx37m/iFfIoIyz+SZuzagtps9wef9eZgtZ9zrSG78doLmIzqjXqYMrwJCsPJogpljXQ6OW1nkB7CrYlZVWf6qtE05DfRA11BfmtXGvbH0ktarm0/kmjVrlNewh6Hcy5Y1PjyGcysO4DG5J19tnkbgqZtUr2eGQ283/jl4hdCAoncoVGn/7z6wA3qGehi/P1Nr796U8u+X/5nNx3ka+JinH2XNGuX15cPn/JOtsxn1OpJTvx2l44juaGhq8Ng/iEYezbB2rMfacYuRfOIo/x6DOqJvqC8dLbZxWwcqVMus64nfj6KmpsaKvzfge+QKoQ+fkZKYTI26NXH1dicxLoH9yz5sKxd2n6XTsG4M/WUkteqbE/rwOea2FrTp/QXP/33KjZPXPimr8N+mch3KGzduMGHCBO7fv19w40/gPdyLqjWqSl+36uhMq46Zo7Od2XeWiLAIju04gX2Lhrh0bIWWjhYRYRGcO3iO7ct2EBb6YYdmaZM56pyphSnfLsv52IjJ3v/3SR3KlsM6yTyyoH6HZtTv0AwA/wOXC3WkNiLkFWu6zMB9sjcNurfEoJIxcW+iuLz2COcW7y1yRgDnj3LadmiG7fucfoXMmaVh95akp6Zz92jx7ujaDOssMwx4ww6ONOzgCMDNA5dJVuDR78JyH9aZCqYfztrbd3DE/n3WGwcuFSpr4NnbVDSrglPPNhiUNyQtJZWXD56xdcoqru258FnkBGg9rLPMkPUNOjjS4H3WW4Vc/v9eCqBFv7a0HOCBnpE+SbGJhFx/wOnl+3J0SotClbYrJ59OGNf4kNWmQzNs3mcN2F+4rClxicS9icZh0BfoGhkQFxbF9U0nubTi4CcPyNLMp6NMzrodmlH3fc7A/VdIjk0k+K9/qOVsi62XM+rq6kQ9DeP8rzu5tu4YfDTgwrl5O0mOScC+rxt2PVoR9eQ1h8av4t5B30/KqWpZVWX5q9I25fLRvsqugyN27/dV/xRyvwrw1/L9JMYk0HJQO7rMHEh8eDTnVhzgzLJ9n5RTlfb/7Yd1pWK2rE07NKdph+YAXD1wkaS4wg0MuefXbSTGxtO6rwctvdoQ9uQVa8cv4e9Dlz85a2ef7lSq8SGrYwcnHDtkPuf60v4LRIVFcu7PM9RzssWxgxNaOlpEhUVx9dAl9i/fzdvQD2fS46Pj+K7zFLwn96VxWwfa9mtPfHQc53f9xc75W3mXlnMEaFX2XxwYpySpSVTsyZ4nT54slg5l2xrtiimRYrXQkO/ZVqXBOxW6Hj0e1XiekirVVJVooVbSEeSiW7rGTcuXtkQ1agqgqSLLX5WkqdC+KkVNNbKmq1BNE1TkbypAAqrRMUqWvCvpCHLb8fRASUcoNF3dmiX6/UlJed8PrIpKzRnKLl26yNUua9AeQRAEQRAEQRCEwlKx82mlXqnpUIaEhFC7dm3q1ct/uOcXL17w6pXyh4MXBEEQBEEQBEEQZJWaDmWdOnWoWbMmc+fOzbfdyZMnuXHjRr5tBEEQBEEQBEEQBMUrNR3KBg0acOnSJbnaitPUgiAIgiAIgiAUhXgOZfEqNR3KoUOH4urqWmA7V1dX/vrrLyUkEgRBEARBEARBEPJTajqUZmZmcj1bUkdHBxMTEyUkEgRBEARBEAThv0Zc7Vi8VGdMekEQBEEQBEEQBKFUER1KQRAEQRAEQRAEoUhKzSWvgiAIgiAIgiAIiiYueS1e4gylIAiCIAiCIAiCUCTiDKUgCIIgCIIgCJ8NcX6yeIkzlIIgCIIgCIIgCEKRiA6lIAiCIAiCIAiCUCRqEnFXqiAIgiAIgiAIglAE4gylIAiCIAiCIAiCUCSiQykIgiAIgiAIgiAUiehQCoIgCIIgCIIgCEUiOpSCIAiCIAiCIAhCkYgOpSAIgiAIgiAIglAkokMpCIIgCIIgCIIgFInoUAqCIAiCIAiCIAhFIjqUgiAIgiAIgiAIQpGIDqUgCIIgCIIgCIJQJKJDKQiCIAiCIAiCIBSJ6FAKgiAIgiAIgiAIRSI6lIIgCIIgCIIgCEKRiA6lIAiCIAiCIAiCUCSiQymnAQMGYG1tjbW1NatWrZJODw4OZsiQIdjb29OyZUvmz59PampqieZ6+vQpM2fOpFu3btSrV4/OnTsXOG/2/4KDg5WW9cKFC/Tv35/mzZtja2uLu7s7c+fOJS4uLsf8Z8+epWvXrtjZ2dGuXTv27t2rtJzZJSQk4OLigrW1NXfu3Mlz3pKqaZb9+/fTvXt37OzscHR0ZOjQoSQnJ8u0UVZN88qaV72sra05evRorvMquq551fTcuXN4enpia2uLq6sry5Yt4927dznmV1RNP2VbB9i9ezft2rXDzs6Orl27cu7cOZn3Q0NDc61xz549lZY1Pj6e5cuX06NHD5o2bUqLFi0YMWIE//77b462cXFxTJ8+nWbNmtGoUSPGjRvHmzdvlJIT4Ndff6VTp040atSIxo0b4+XlJbPOZhccHMzo0aNxcHDA3t6e7t27c+XKFaVllWf7SU1NZf78+fTr1w97e3usra2JjIwsVMbiyAoQGxvLTz/9hLOzM3Z2drRt25bffvstR7uSrmtSUhKLFi3C3d2dhg0b0q5dO9asWUN6erq0TXHV9VNypqamsmDBApydnWnQoAE9evTA19c317aKqunx48cZOXIkLi4u2Nvb061bN/bs2YNEIpGZ99ixY4wdO1b6N3bjxo25/nsUVVN5chZmPwXg5+fH4MGDpfuKnj17cv/+faVk/diZM2ewtrbOsa4U5/YvfJ7KlHQAVdK4cWOmTp1KtWrVAIiJiWHQoEHUqlWL5cuXExYWxrx580hOTmbmzJklluvRo0dcuHCBhg0bkpGRke/OJWve7ExNTZWWNTo6mgYNGjBgwACMjY159OgRy5cv59GjRzI/IG7evMmYMWPo0aMH06dP5++//+a7775DX1+f9u3bKzxndqtWrcq1I/HxvNkps6YAq1evZv369YwYMQJ7e3uioqLw9fWVya3smuaWddasWcTHx8u02bx5M6dOncLJySnXebNTVF0/zunn58eoUaPo1KkTkyZNIigoiCVLlpCUlCSTSdE1Leq2fvToUb7//ntGjBhB8+bNOXbsGGPGjGH79u3Y29vLtJ00aRKOjo7S1/r6+krL+vLlS3bu3ImXlxcTJkwgJSWF3377jV69erF3714sLS2lbSdMmEBQUBCzZ89GW1ubJUuW4OPjw969eylTRv4/bUWtaUJCAt7e3lhYWKCmpsbJkyeZNGkSGRkZdOnSRdru0aNH9OnTB2dnZxYsWICmpiaBgYEkJSXJnfFTs2afN7vs209ycjK7d+/Gzs6OJk2acPny5ULnK46siYmJDBgwAA0NDaZPn06FChV48uRJjv1EaajrDz/8wKlTp5g0aRKWlpb4+fmxbNkykpKSmDhxIlC8dS1qzl9++YWDBw8yYcIEzM3N2bdvHz4+PuzcuZP69etL2ymypr///jsmJiZMmzaNcuXKcfXqVb7//ntev37NmDFjpPOdOHGC58+f07p1a3bu3JnrZyuypvLkLMx+ytfXl2HDhuHl5YWPjw/p6ekEBAQotaZZkpOT+eWXX6hYsWKu7xXn9i98hiSCXPr37y8ZNmyYzLQ1a9ZI7O3tJVFRUdJpf/75p8TGxkby+vXrEsv17t076f9PnTpV0qlTJ7nnVSR5v2/nzp0SKysrmRp+9dVXkl69esm0mzRpkqRDhw5KzRkUFCSxt7eX7NixQ2JlZSUJCAiQe15FyO37goODJfXq1ZOcP38+33mVWVOJRP7auLm5SXx8fIo0b3HI7bu++uoriaenp8y0jRs3SurXry8JDw+Xaaeomn7Ktu7h4SGZNGmSzLRevXpJhg4dKn39/PlziZWVleT48eMlljUhIUGSmJgoMy0+Pl7SrFkzyQ8//CCddvv2bYmVlZXk0qVL0mnBwcESa2trydGjRxWeMy+9evWSDBkyRGZanz59JOPHj5f7M/KijH19RkaGRCKRSPbu3SuxsrKSREREKD3r4sWLJe7u7pKEhIR8v6Ok6/ru3TtJw4YNJcuWLZOZ/s0330jc3d1lphVHXYua8/Xr1xIbGxvJli1bZPJ07txZMmLECJm2iqxpbv/mGTNmSBo3bizz78j+/1ZWVpINGzbk+h2Kqqk8OeXdT6WlpUnatGkjmT9/fqGzFVfW7JYsWSLp169fnutKcW3/wudJXPL6CS5evIiTkxPGxsbSaR06dCAjI6PQl4gUJ3V11V6sWfVMS0sDMi/FuHbtWo4zPB07diQ4OJjQ0FClZfvpp5/o3bs35ubmSvvOwtq3bx+mpqa4urrm2aY01TS727dvExoaKnOGpzS4f/8+LVu2lJnm7OxMWlqa9EhuSdRUnm39+fPnPHnyhA4dOuTI5evrq7RL9OXJqqenh66ursw0fX19zMzMZC5nvXjxIoaGhjLLxMLCAhsbGy5evKjwnHkxNjaW7rcg8/LBW7duMWDAgE/KlJfi3terqakV6+dlJ2/WPXv24OXlhZ6eXp5tSkNdJRIJ6enplC1bVmZ62bJlc5wpVFRd5cn54MED3r17J7OtqKmp4ezszOXLl6Xbv6JrWr58+RzTbGxsiI+PJzExUTpN3vVEUTWVJ6e8+6mrV6/y4sULBg4cWGJZszx79oxNmzYxY8aMPD9Pkdu/8N+n2j2PEhYSEoKFhYXMNENDQypVqkRISEgJpSqc69evY29vj52dHf379+fGjRslkuPdu3ekpKQQGBjIypUrcXNzk16O9ezZM9LS0nLUOuuyEmXV+sSJEzx8+JDRo0fn266ka+rv74+VlRWrVq3CyckJW1tbevfujb+/v7RNaanpx44cOYKenh7u7u453ivJuqakpKClpSUzLet11n1opbWmWd/78UEQS0tL0tLSeP78ucz02bNnY2Njg5OTEzNmzCA6OlpZUXMVGxvLo0ePZOoaEhKCubl5jh9AFhYWSq1zVqciNjaWAwcOcOXKFfr16yd9P2ubS0xMxNPTk3r16tG6detc7wtTtJLeL8kjNDSU8PBwypUrx4gRI7C1taVZs2bMmDGDhIQEabvSUFcNDQ2+/PJLtm3bRkBAAAkJCVy9epWDBw/Sv39/peUoSFaHMbf9V2pqqvRAV0nU9NatW1SpUgUDAwOFfUdxkCdnbvspf39/jI2NuXPnDu3ataNevXq0a9eOAwcOKD3rzz//TLdu3ahbt67Cvlv4vIl7KD9BbGwshoaGOaYbGRkRExNTAokKx8HBgW7dulGrVi3evHnDxo0bGTJkCFu3bqVRo0ZKzdKmTRvCwsIAaNWqFYsWLZK+l1XLj2ud9VoZtU5KSmLevHlMnDgx3z8qpaGm4eHh3L17l4cPHzJr1ix0dXVZs2YNX331FadOnaJChQqloqYfS09P5/jx47i5ueU4O1HSda1ZsyYBAQEy0/z8/IAPtSqNNc3+vQXl0tLSkt4/ZWhoiL+/P2vWrOHu3bvs3r0bTU1N5QZ/b8GCBaipqdGnTx/ptNjY2BxnhiBz33v37l2lZfP19WXIkCEAlClThu+//17mDPXbt28BmDJlCoMHD2bq1KlcvnyZBQsWoK+vT+/evZWSs6S3H3ll1evXX3/Fw8OD9evX8+TJExYtWkRiYiL/+9//ZNqVdF1nzZrFrFmz8Pb2lk4bPny4dJ0oDWrWrAlAQECAzD2zH++/lF3TmzdvcuzYsRz39ZY28ubMbT8VHh5OUlIS06dPZ9y4cVhaWnLkyBGmTp1KhQoVaNWqlVKynj17ln/++YcTJ04U6/cJQnaiQ/kZGzdunMzr1q1b07lzZ1atWsX69euVmmXdunUkJSURFBTE6tWrGTFiBJs2bUJDQ0OpOfKyevVqKlSogJeXV77tSkNNJRIJiYmJLF26VHo0smHDhri5ubFt2zbGjx+vlByFdeXKFSIjI3MdqbCk69q3b1++++47Nm/eTLdu3aSD8pSW9bM4VK5cmdmzZ0tfN2vWjDp16jB8+HBOnz5Nx44dlZ5p79697Nq1i3nz5lG1alWlf39BGjRowJ49e4iPj+fixYv89NNPaGhoSDsYGRkZAHTv3p2RI0cC0Lx5c16/fs2aNWuU1vEp6e1HXln1Mjc359dffwXAycmJMmXKMGPGDCZOnEiNGjVKTV0XLlzI+fPn+emnn6hVqxZ+fn6sXLkSQ0NDhg4dqpQMBbGysqJp06YsXLiQatWqUatWLfbt2yc9Q511ll+ZNX39+jUTJ07E0dFRYZeDFgd5c+a1n5JIJKSkpDBlyhTpWWsnJydCQkJYs2ZNsXYo88qakpLCL7/8wtixY3O9RFYQiou45PUTGBoa5vp4i5iYGIyMjEog0afR09PD1dWVwMBApX933bp1adSoEd7e3qxatYpr165x+vRpAGktP651bGyszPuK8uLFC3777TfGjRtHXFwcsbGx0vsTEhMTZS7F+lhJ1NTQ0BBjY2OZS1uMjY2pV68eQUFBQMnXNDdHjhzB2NgYZ2fnAtsqu65ffvklgwYNYv78+Tg6OjJ48GB69+6NkZERlStXBkpnTbN/b1Fyubq6oqenVyL7hAsXLjBz5kxGjRqFp6enzHuGhoY5Rv0E5e97DQwMsLOzw8nJialTp9K3b1/mzZsnHU056yxw8+bNZeZzcnLi1atXuf4blKEk9/X5yVp22UcZhg/1e/ToEVA66vrw4UN+++03fvjhB7y9vXFwcMDHx4fhw4ezdOnSElu2uZk3bx7lypWjd+/eNG/enO3btzNq1CgAKlWqBCivprGxsfj4+GBsbMzy5ctL7ZgP8uYsaD8Fudc062+xorNu3rwZdXV1OnXqRGxsLLGxsaSlpZGRkUFsbKxSH3Mn/LeVzi1ZReR2v05cXBzh4eE57qMS5GdtbY2mpibPnj0DwMzMDE1NzRy1znqt6FqHhoaSlpbGsGHDcHBwwMHBgREjRgAwcODAUnV5E0Dt2rXzfC8lJQUo+Zp+LDk5mTNnztC+ffsSu7QyP+rq6tLHgBw8eJCrV6/Ss2dPIiMjadiwIVD6apol63tzy6WpqUmNGjVKIla+/Pz8GD9+PN27d8/1jLqFhQWPHz/OMfjJ48ePS3TfW79+feLj46XPb6tTp06+7cWPOVk1atTIca9fdln7r9JQ16wOgY2Njcz0evXqkZqaKr2FozSoUaMGe/fu5a+//uLo0aOcPn0aHR0dKlWqhImJCaCcmiYnJzN8+HDi4uLYsGFDrpetlwby5ixoP5VfTbPWZUVnDQkJ4enTpzg5OUl/vxw5coTg4GAcHBwU+uxp4fMiOpSfwMXFhatXr0qP9EPmwC3q6uo5RoRUBYmJiZw/fx47O7sSzeHv709aWpr0fg8tLS0cHR05efKkTLtjx45haWmp0Gc8QuYPhi1btsj89+233wIwZ84cZs2alee8JVHTNm3aEB0dLfPg5KioKAIDA6XPHCvpmn7s7NmzJCYmyj26a0mtq2XLlqVu3boYGhqydetWTE1NadGiBVD6apqlRo0a1KpVK8f9M8eOHcPJySnfH/Dnzp0jMTFRqXUOCgpi+PDhNG/enDlz5uTaxsXFhZiYGJmHsz9+/Jh79+7h4uKirKg53Lp1CwMDA8qVKweAvb09xsbGXL16Vabd1atXqV69eoldglZa9vUf09LSomXLljLLFZDWL2v/VRrqmtUR+/gs7927d1FTU6N69eoKz1BYpqam1K5dm7S0NPbs2SNz76eia5qens6ECRMICQlhw4YNVKlS5ZM+T1HkzSnPfsrZ2RlNTc1ca5r9+Z+KzOrj45Pj94uzszMmJiZs2bIFNze3T84hCCDuofwkvXv3ZuvWrYwePZrhw4cTFhbG/Pnz6d27t8yGPW3aNPbv38+///6rlFxJSUlcuHAByLxcMz4+XvpjslmzZpQvX56bN2+yYcMGvvjiC0xMTHjz5g2bNm0iPDycpUuXynyetbU1np6ezJs3r9izjhkzBltbW6ytrdHR0eHBgwds3LgRa2tr2rZtK203cuRIBg4cyOzZs+nQoQPXrl3jyJEjLF68WObz3NzcMDExYevWrcWW0dDQMMclWFnq168v/cNQWmratm1b7OzsGDduHBMnTkRbW5t169ahpaVF3759pe1KsqYfO3z4MNWrV6dJkyY53isNdQ0ICOD69evY2NiQnJzM2bNnOXjwIOvXr5e5j1LZNZVnWwcYO3YsU6ZMwczMDEdHR44dO0ZAQADbtm2Tfta8efNQU1PD3t4eQ0NDAgICWLt2Lba2tjLb4r59+/j222/ZsmVLnttFUbNGRETw9ddfo62tzaBBg2QG2DEwMJCefW/UqBHOzs5Mnz6dqVOnoq2tzeLFi7G2tsbDw+OTssqT88GDByxcuJD27dtjYmIi7aDt3r2bSZMmUaZM5p9WTU1Nxo4dy9y5czEyMqJx48ZcunSJo0eP8uOPP0q/MzQ0FHd3d8aMGcPYsWOLtaaF2X4uXLhAUlKStO7nzp1DX1+f2rVrS2uvyOUPmX8TevfuzeTJk/H09OTp06csWrSILl26YGZmVmrqamtri62tLbNmzSIiIgIzMzMCAgJYt24dXl5eMo+VUFRd5a3ptm3bMDAwoFq1arx48YJNmzahra2Nj4+P9LMUXdM5c+Zw7tw5pk2bRnx8vHRQIMg8q5t1YCsoKEjmctCHDx9y4sQJdHV1ZR6FpaiaypNT3v1UxYoVGTBgAEuXLkVNTQ1LS0uOHj2Kn58fGzZskM5z7do1Bg4cyNy5c/nyyy/lrKh8WS0tLaUjjWfZv38/YWFhOWqiyO1f+O8THcpPYGRkxObNm/nxxx8ZPXo0+vr69OjRg4kTJ8q0S0xMpGLFikrLFRERkePyi6zXWTuBSpUqkZaWxuLFi4mOjkZXV5dGjRoxZ84cGjRoIJMdUFj+Bg0acOzYMdatW4dEIsHExARvb2++/vprmTMnTZs2Zfny5SxZsoQ9e/ZQvXp1fvrppxzP1lN2rbMrLTVVV1dn3bp1zJ07l5kzZ5KWlkbTpk3Zvn279H4ZKD01jYmJ4dKlSwwaNCjX52CVhrpqampy6tQpVq5cCWQOcpTbCJnKrqk82zpA586dSUpKYv369axbtw5zc3NWrFghk9/S0pIdO3awa9cukpOTqVKlCj169GDcuHHSDhJk/oiFwtdZnqxBQUG8fv0agMGDB8u0bdasmUwHfMmSJdJ1PD09HWdnZ2bMmPHJWeXJWbFiRQwNDVm1ahXh4eGULVsWCwsLVqxYIdP5Bujfvz8SiYTNmzezZs0aTExM+PHHH2XODimypvJuP5D5A/XFixfS19OnTweQ6TwoMiuAra0t69evZ+HChYwcORIjIyN69eqV4+9qSddVQ0ODNWvWsHTpUtauXUtERARVq1Zl6NChMh01UFxd5a1pamoqK1as4PXr1xgbG+Ph4cH48eNzjKatyJpmPZs7t4N9f/31l/QKjuPHj7NixQrpewcOHODAgQOYmJhw9uxZ6XRF1VSenIXZT02ePBk9PT02btxIZGQklpaWrFy5UmasAEXXVF6K3P6Fz4BEkEv//v0lPj4+krS0NElGRkah5nV1dZWsW7eu1OWSx9WrVyX169eXvHr16pM/S9FZnz59KrGyspL4+/t/0ueImn5QXDWVSFSnrqW1porOJa8pU6ZIhg4dmm8bVclaWnLu2rVL4ujoKElMTMyzTWnJqkrL/79U19KSU9S0+C1evFjSqVOnfDOUlqzybP/C50ncQ1kIFy5coH79+qxevVrueV6+fElSUpLMpYalIZe8bt26haenZ7EN2a/IrLdv36Zly5Y5jroXhahppuKsKahOXUtrTRWZS163b9+WPlYgP6qStbTkHDx4sMxlkrkpLVlVafn/l+paWnKKmhav27dvM3z48Fyv0MmutGSVZ/sXPj9qEslHw+QJuQoJCZE+HqJKlSrSRwWUtNKaKzeqklVVcoLIqgilNWdpzZUbVcmqKjlBZFUUVcmqKjlBdbKqSk5QrazC50l0KAVBEARBEARBEIQiEZe8CoIgCIIgCIIgCEUiOpSCIAiCIAiCIAhCkYgOZQGePn3KzJkz6datG/Xq1aNz58452gwYMABra+sc/wUHB0vbXLx4UTr940cNFIcLFy7Qv39/mjdvjq2tLe7u7sydO5e4uDiZdmfPnqVr167Y2dnRrl079u7dK/N+cHCwzL8hMjKy2LN+LCEhARcXF6ytrblz5450emmoa5b9+/fTvXt37OzscHR0ZOjQoSQnJ0vfL+m65lUra2trjh49mm+bkqjnuXPn8PT0xNbWFldXV5YtW8a7d+9ytFNmXeXZ1gF2795Nu3btsLOzo2vXrpw7d07m/dDQ0Fzr3LNnT5l2EydOlL73ww8/FGvW+Ph4li9fTo8ePWjatCktWrRgxIgRuT4LNy4ujunTp9OsWTMaNWrEuHHjePPmjdKyAvz666906tSJRo0a0bhxY7y8vKTr7ceCg4MZPXo0Dg4O2Nvb0717d+nw+QA7duyQZs1rGRY1pzzbUGpqKvPnz6dfv37Y29vnuV4quqYAsbGx/PTTTzg7O2NnZ0fbtm357bffcrRTVE3lzZqUlMSiRYtwd3enYcOGtGvXjjVr1pCeni5to+i6ypMzNTWVBQsW4OzsTIMGDejRowe+vr65fp6ianr8+HFGjhyJi4sL9vb2dOvWjT179pD97qVjx44xduxY6d/VjRs35vpvUfR6WlDWwuynAPz8/Bg8eLB0P9GzZ0/u378vfX/hwoXSrMOHDy/WrB87c+ZMrstO0XWVJ6c8+6ksiqyp8HkRz6EswKNHj7hw4QINGzYkIyMjz51L48aNmTp1qsy07M8AatSoETt37mT37t0cO3as2HNGR0fToEEDBgwYgLGxMY8ePWL58uU8evRI+gPi5s2bjBkzhh49ejB9+nT+/vtvvvvuO/T19Wnfvr00886dOzl//rzSRhJbtWpVrp0JKPm6AqxevZr169czYsQI7O3tiYqKwtfXV5q5NNR11qxZxMfHy0zbvHkzp06dwsnJSTqtNNTTz8+PUaNG0alTJyZNmkRQUBBLliwhKSlJJpuy6yrPtn706FG+//57RowYQfPmzTl27Bhjxoxh+/bt2Nvby7SdNGmSzIOf9fX1Zd6fMGECgwYNYsyYMcWe9eXLl+zcuRMvLy8mTJhASkoKv/32G7169WLv3r0yD7qeMGECQUFBzJ49G21tbZYsWYKPjw979+6VPtNRkVkh86CSt7c3FhYWqKmpcfLkSSZNmkRGRgZdunSR+aw+ffrg7OzMggUL0NTUJDAwUPpsNAAPDw9sbGxYtWoVL1++LNacUPA2lJyczO7du7Gzs6NJkyZcvnw5189RdE0TExMZMGAAGhoaTJ8+nQoVKvDkyZMc+wlF1lTerD/88AOnTp1i0qRJWFpa4ufnx7Jly0hKSpI+f1LRdZUn5y+//MLBgweZMGEC5ubm7Nu3Dx8fH3bu3En9+vVlPktRNf39998xMTFh2rRplCtXjqtXr/L999/z+vVr6b/5xIkTPH/+nNatW7Nz585cP0cZ62lBWQuzn/L19WXYsGF4eXnh4+NDeno6AQEBMjXt168fbdu2Zc6cOcWeNbvk5GR++eWXXJ/FqOi6ypuzoP0UKL6mwmdG+U8qUS3v3r2T/v/UqVMlnTp1ytGmf//+kmHDhsn1ecuWLZPY29sXW7787Ny5U2JlZSV5/fq1RCKRSL766itJr169ZNpMmjRJ0qFDhxzz7t27V2JlZSWJiIhQaMagoCCJvb29ZMeOHRIrKytJQECA9L3SUNfg4GBJvXr1JOfPn8+zTWmsq0Qikbi5uUl8fHykr0tDPSWSzHp5enrKTNu4caOkfv36kvDwcJl2yqyrPNu6h4eHZNKkSTLTevXqJfNcrufPn0usrKwkx48fl+t727RpI5kzZ06xZk1ISMjxnLj4+HhJs2bNJD/88IN02u3btyVWVlaSS5cuSacFBwdLrK2tJUePHlVK1rz06tVLMmTIEJlpffr0kYwfP16u+QvzXfLmlHcbynpOnDzrpaJqunjxYom7u7skISEh389SZE3lyfru3TtJw4YNJcuWLZOZ/s0330jc3d1lpimyrgXlfP36tcTGxkayZcsWmTydO3eWjBgxQqatImua2795xowZksaNG0v/Ddn/LVZWVpINGzbk+lmKXk8LyirvfiotLU3Spk0byfz58+X63sL8rZM3a3ZLliyR9OvXL89lp8i6ypNTnn+/MmoqfF7EJa8FUFdX3RIZGxsDkJaWRmpqKteuXZOe2cnSsWNHgoODCQ0NLYGE8NNPP9G7d2/Mzc1L5PsLsm/fPkxNTXF1dc31/dJa19u3bxMaGipzdqe0uH//Pi1btpSZ5uzsTFpamvRobknUtaBt/fnz5zx58oQOHTrkyOTr60tqamqxZ8pLQVn19PRyPCdOX18fMzMzmctZL168iKGhoczysLCwwMbGhosXLyola16MjY1JS0uTvg4ODubWrVsMGDCgWHJ9rDj39QU9T+5TyZN1z549eHl5oaenl2cbRdcUCs4qkUhIT0+nbNmyMtPLli2b4yyhIutaUM4HDx7w7t07mW1FTU0NZ2dnLl++LN3+FV3T8uXL55hmY2NDfHw8iYmJgPzrsqLX04Kyyrufunr1Ki9evGDgwIElljXLs2fP2LRpEzNmzMjzsxRZV3lzFkQZNRU+L6rbWyplrl+/jr29PXZ2dvTv358bN26USI53796RkpJCYGAgK1euxM3NDVNTU549e0ZaWhoWFhYy7bMuKQkJCVF61hMnTvDw4UNGjx6dZ5uSrqu/vz9WVlasWrUKJycnbG1t6d27N/7+/gClsq4AR44cQU9PD3d3d5npJV1PgJSUFLS0tGSmZb3OusejNNY16zs/PvhhaWlJWloaz58/l5k+e/ZsbGxscHJyYsaMGURHRysraq5iY2N59OiRTE1DQkIwNzfP8QPIwsJC6TXO6ljExsZy4MABrly5Qr9+/aTvZ21ziYmJeHp6Uq9ePVq3bp3r/WGKVBq2oYKEhoYSHh5OuXLlGDFiBLa2tjRr1owZM2ZIn2UHpaOmGhoafPnll2zbto2AgAASEhK4evUqBw8epH///krLUZCsDmNu+67U1FTpQa6SqOmtW7eoUqUKBgYGCvuO4lJQ1tz2U/7+/hgbG3Pnzh3atWtHvXr1aNeuHQcOHFB61p9//plu3bpRt25dhX53YeSWs6D9VEnVVPjvEvdQFgMHBwe6detGrVq1ePPmDRs3bmTIkCFs3bpVoQOb5KZNmzaEhYUB0KpVKxYtWgRATEwMAIaGhjLts15nva8sSUlJzJs3j4kTJ+b5h6U01DU8PJy7d+/y8OFDZs2aha6uLmvWrOGrr77i1KlTpa6uAOnp6Rw/fhw3NzeZsxOloZ4ANWvWJCAgQGaan58f8KFepbGu8mbS0tKS3j9laGiIv78/a9as4e7du+zevRtNTU3lBn9vwYIFqKmp0adPH+m02NjYHGeGAIyMjLh7964y4+Hr68uQIUMAKFOmDN9//73MGeq3b98CMGXKFAYPHszUqVO5fPkyCxYsQF9fn969eys8Y2nZhgqSVatff/0VDw8P1q9fz5MnT1i0aBGJiYn873//k2lXkjWFzHvAZ82ahbe3t3Ta8OHDpetDaVCzZk0AAgICZO5F+3jfpeya3rx5k2PHjuW4X640kidrbvup8PBwkpKSmD59OuPGjcPS0pIjR44wdepUKlSoQKtWrZSS9ezZs/zzzz+cOHGi2L+vqHLLKc9+qiRqKvy3iQ5lMRg3bpzM69atW9O5c2dWrVrF+vXrlZpl3bp1JCUlERQUxOrVqxkxYgSbNm1SagZ5rF69mgoVKuDl5ZVnm9JQV4lEQmJiIkuXLpUekWzYsCFubm5s27YNZ2dnpeQojCtXrhAZGZlj9LnSUE+Avn378t1337F582a6desmHZRHQ0NDaRkUqXLlysyePVv6ulmzZtSpU4fhw4dz+vRpOnbsqPRMe/fuZdeuXcybN4+qVasq/fvl0aBBA/bs2UN8fDwXL17kp59+QkNDQ9rJyMjIAKB79+6MHDkSgObNm/P69WvWrFmjlM5PadmGCpJVK3Nzc3799VcAnJycKFOmDDNmzGDixInUqFGjVNQUMkeSPH/+PD/99BO1atXCz8+PlStXYmhoyNChQ5WSoSBWVlY0bdqUhQsXUq1aNWrVqsW+ffukZ36yzvIrs6avX79m4sSJODo6lvpLF+XJmtd+SiKRkJKSwpQpU6RnrZ2cnAgJCWHNmjXF3vnJLWtKSgq//PILY8eOzfWy05KQV03l2U8pu6bCf5+45FUB9PT0cHV1JTAwUOnfXbduXRo1aoS3tzerVq3i2rVrnD59GiMjI4AcjxGJjY0FkL6vDC9evOC3335j3LhxxMXFERsbK732PzExUeaSrOxKoq6GhoYYGxvLXN5ibGxMvXr1CAoKKlV1zXLkyBGMjY0L7OyW1Hr65ZdfMmjQIObPn4+joyODBw+md+/eGBkZUblyZYBSWddPyeTq6oqenl6J7BMuXLjAzJkzGTVqFJ6enjLvGRoa5hj1EzLPtii7xgYGBtjZ2eHk5MTUqVPp27cv8+bNk46mnHUmuHnz5jLzOTk58erVq1z/HYpWkvv6/GQtu+yjDMOH2j169AgoHTV9+PAhv/32Gz/88APe3t44ODjg4+PD8OHDWbp0aYks17zMmzePcuXK0bt3b5o3b8727dsZNWoUAJUqVQKUV9PY2Fh8fHwwNjZm+fLlpXq8B3myFrSfgtxrGhQUpJSsmzdvRl1dnU6dOhEbG0tsbCxpaWlkZGQQGxur1Hvo88uZm9z2U8qsqfB5KL17IOGTWVtbo6mpybNnzzAzM0NTUzPHfVFZrz++V02RQkNDSUtLY9iwYTg4OODg4MCIESMAGDhwYKm6zKl27dp5vpeSklKq6gqZQ5afOXOG9u3bl9illQVRV1eXPgbk4MGDXL16lZ49exIZGUnDhg0BSl1ds39nbpk0NTWpUaOG0jMVxM/Pj/Hjx9O9e3fGjx+f430LCwseP36cY/CTx48fl0iNs6tfvz7x8fHSZ7jVqVMn3/bK/kFXmtWoUSPHvX7ZpaSkAKWjplk/Xm1sbGSm16tXj9TUVOktHKVBjRo12Lt3L3/99RdHjx7l9OnT6OjoUKlSJUxMTADl1DQ5OZnhw4cTFxfHhg0bcr1svbSQJ2tB+6n8apq1Lis6a0hICE+fPsXJyUn6u+XIkSMEBwfj4OCQ4xnJilQcy19ZNRU+H6JDqQCJiYmcP38eOzu7Es3h7+9PWloapqamaGlp4ejoyMmTJ2XaHDt2DEtLyxzPJ1IkGxsbtmzZIvPft99+C8CcOXOYNWtWrvOVRF3btGlDdHS0zIN+o6KiCAwMpH79+qWqrpB5j0diYqJco7uW9HpatmxZ6tati6GhIVu3bsXU1JQWLVoAlLq6QuaPyVq1auW4f+bYsWM4OTnl+wP+3LlzJCYmKrXWQUFBDB8+nObNm+f5DDEXFxdiYmJkHs7++PFj7t27h4uLi7Ki5urWrVsYGBhQrlw5AOzt7TE2Nubq1asy7a5evUr16tVL5DK0kt6G8qKlpUXLli1llisgrV3WMxNLQ02zOmIfn+W9e/cuampqVK9eXeEZCsvU1JTatWuTlpbGnj17ZO79VHRN09PTmTBhAiEhIWzYsIEqVap80ucpkjxZ5dlPOTs7o6mpmWtNsz//U5FZfXx8cvxucXZ2xsTEhC1btuDm5lYsOT41Z25y208po6bC50XcQ1mApKQkLly4AGReqhkfHy/9QdmsWTPpRv3FF19gYmLCmzdv2LRpE+Hh4SxdulRpOceMGYOtrS3W1tbo6Ojw4MEDNm7ciLW1NW3btgVg5MiRDBw4kNmzZ9OhQweuXbvGkSNHWLx4sdJyQualFh9fipWlfv361K9fn5s3b5aKurZt2xY7OzvGjRvHxIkT0dbWZt26dWhpadG3b1+g9NQV4PDhw1SvXp0mTZrITC8t9YTMQS2uX7+OjY0NycnJnD17loMHD7J+/XqZ+yiVXdeCtvXy5cszduxYpkyZgpmZGY6Ojhw7doyAgAC2bdsm/Zx58+ahpqaGvb09hoaGBAQEsHbtWmxtbaXboqKzSiQSvv76a7S1tRk0aJDMADsGBgbSM++NGjXC2dmZ6dOnM3XqVLS1tVm8eDHW1tZ4eHgoJeubN29YuHAh7du3x8TERPrjZ/fu3UyaNIkyZTL/TGlqajJ27Fjmzp2LkZERjRs35tKlSxw9epQff/xR4TkLs6+/cOECSUlJ0rqfO3cOfX19ateune9VD8WVtXz58owZM4bevXszefJkPD09efr0KYsWLaJLly6YmZkBiq+pPFltbW2xtbVl1qxZREREYGZmRkBAAOvWrcPLy0vmsRKKrKs8Nd22bRsGBgZUq1aNFy9esGnTJrS1tfHx8ZF+jqJrOmfOHM6dO8e0adOIj4+XDgoEmWd1tbS0CAoKkrls8eHDh5w4cQJdXV2ZR2Apej0tKGtcXJxc+6mKFSsyYMAAli5dipqaGpaWlhw9ehQ/Pz82bNjwyTnlyWppaSkdZTzL/v37CQsLy/F7RpF1LShnQECAXPspZdRU+LyIDmUBIiIiclyCkfV6y5YtVK1albS0NBYvXkx0dDS6uro0atSIOXPm0KBBA6XlbNCgAceOHWPdunVIJBJMTEzw9vbm66+/lp45adq0KcuXL2fJkiXs2bOH6tWr89NPP+V4rl5pUKlSpVJRV3V1ddatW8fcuXOZOXMmaWlpNG3alO3bt0vvmSktdY2JieHSpUsMGjQox2MgSks9IfMH16lTp1i5ciWQOchRbqNkKruuBW3rjo6OdO7cmaSkJNavX8+6deswNzdnxYoVMtktLS3ZsWMHu3btIjk5mSpVqtCjRw/GjRsn7RwpOitkDtgAMHjwYJl2zZo1Y+vWrdLXS5Yska7f6enpODs7M2PGDKVltbS0xNDQkFWrVhEeHk7ZsmWxsLBgxYoVOTrg/fv3RyKRsHnzZtasWYOJiQk//vijzBkiReUszL5+zpw5vHjxQvp6+vTpQOaBv7Fjxyo8q6OjI7a2tqxfv56FCxcycuRIjIyM6NWrFxMnTpSZT5E1lTfrmjVrWLp0KWvXriUiIoKqVasydOhQmY4aKLau8uRMTU1lxYoVvH79GmNjYzw8PBg/fnyOZ30qsqZXrlwBMg9cfeyvv/7C1NSU48ePs2LFCun0AwcOcODAAUxMTDh79qx0uqLX04KyvnjxQu791OTJk9HT02Pjxo1ERkZiaWnJypUri21gPHnqKi9F1rWgnIX5W6/omgqfGYmgFBkZGZK0tDTJkiVLJPb29iUdJ19paWmS3bt3S6ysrCQRERElHSdfoq7FS5XqmUUV6pqbd+/eSdLS0iRt2rSRzJkzp6Tj5EuVsmatw998842kU6dOJR0nT6KmiqEqdVWVmqpKPSWSD1n79esnGTZsWEnHyZeq1FWVaiqULHGGUkkuXbokPdr68dHM0iQ4OLhEHmtQVKKuxUtV6plFVeqam8mTJ3Ps2LGSjiEXVcr6559/Sh/bUtAAKSVJ1FQxVKWuqlJTVaknwP/+9z/pYzFat25dsmEKoCp1VaWaCiVLTSL5aHg/QSHi4+N5/PgxABoaGtSrV6+EE+UuJSWFhw8fSl/b2NgU26VviiDqWrxUpZ5ZVKWuuXn+/DnR0dEAVKhQoVQOPpJFlbJGRkZKLzfT0dEptT/WRU0VQ1Xqqio1VZV6AoSFhfHmzRsgc6yGmjVrlnCivKlKXVWppkLJEh1KQRAEQRAEQRAEoUjEY0MEQRAEQRAEQRCEIhEdSkEQBEEQBEEQBKFIRIdSEARBEARBEARBKBLRoRQEQRAEQRAEQRCKRHQoBUEQhHwtX74ca2trIiMjlfad+/btw9ramjt37ijtOwVBEARBKDzRoRQEQRD+89asWcOZM2dKOoYgCIIg/OeIDqUgCILwn7d27VrRoRQEQRAEBRAdSkEQBEEQBEEQBKFIRIdSEARBkEtUVBTjx4+ncePGODo68tNPP5GSkgJAaGgo1tbW7Nu3L8d81tbWLF++XGZaWFgY06dPx9nZGVtbW9zc3Jg1axapqal5fn9MTAw9evTAxcWFkJAQAFJTU1m2bBlffPEFtra2uLq6Mn/+fJnPsba2JjExkf3792NtbY21tTXTpk0DID4+np9//hk3NzdsbW1xcnJiyJAhBAYGfnK9BEEQBOFzUKakAwiCIAiqYcKECZiYmDB58mT8/PzYunUrsbGxzJ8/v1CfExYWRo8ePYiLi6Nnz55YWFgQFhbGyZMnSU5ORktLK8c8kZGRfPXVV8TExLBt2zbMzMzIyMhg5MiR3Lp1i549e2JpacnDhw/ZvHkzT548YdWqVQDMnz+fGTNm0KBBA3r27AmAmZkZALNmzeLkyZP0798fS0tLoqOjuXXrFsHBwdSvX/8TKyYIgiAI/32iQykIgiDIxdTUlNWrVwPQr18/DAwM+OOPP/jqq68wMDCQ+3P+97//8fbtW3bt2oWdnZ10+vjx45FIJDnah4eHM2TIEJKTk9m2bRsmJiYAHD58mKtXr7J161aaNm0qbV+nTh1mzZrF7du3ady4Md26dWP27NnUqFGDbt26yXz2hQsX6Nmzp/SMJYCPj4/c/xZBEARB+NyJS14FQRAEufTr10/mdf/+/QG4ePGi3J+RkZHBmTNnaNOmjUxnMouamprM67CwMPr3709aWhrbt2+XdiYBTpw4gaWlJRYWFkRGRkr/a968OQDXrl0rMI+hoSH+/v6EhYXJ/W8QBEEQBOEDcYZSEARBkEvNmjVlXpuZmaGurk5oaKjcnxEZGUl8fDx16tSRq/3//d//UaZMGY4dO0alSpVk3nv69CnBwcE4OTnlOm9ERESBnz9lyhSmTZtG69atqV+/Pq6urnTv3p0aNWrIlU8QBEEQPneiQykIgiAUSfaziR+fWczy7t27T/oODw8PDhw4wJYtW5g8ebLMexkZGVhZWfHtt9/mOm/VqlUL/PyOHTvStGlTTp8+zZUrV9i4cSPr169n+fLluLq6flJ2QRAEQfgciA6lIAiCIJenT5/KnLl7+vQpGRkZmJqaYmRkBEBsbKzMPC9fvpR5Xb58eQwMDHj06JFc39m/f3/MzMxYtmwZZcuWZdiwYdL3zMzMePDgAU5OTnl2aOVRuXJl+vXrR79+/YiIiMDT05M1a9aIDqUgCIIgyEHcQykIgiDIZfv27TKvt23bBoCLiwsGBgaUK1eOmzdvyrT5448/ZF6rq6vTtm1bzp07x507d3J8R26D8owePZqvvvqKRYsWyXxehw4dCAsLY9euXTnmSU5OJjExUfpaT08vR2f33bt3xMXFyUyrUKEClStXzvfxJYIgCIIgfCDOUAqCIAhyCQ0NZcSIEbRq1Qo/Pz8OHTpE586dqVu3LgDe3t6sW7eO7777DltbW27evMnjx49zfM6kSZO4cuUKAwYMkD7uIzw8nBMnTvDHH39gaGiYY56pU6cSHx/PDz/8gL6+Pt26daNbt24cP36cWbNmce3aNRo3bsy7d+8ICQnhxIkTbNiwQTrwT/369fH19WXTpk1UrlwZU1NTzM3NcXV1pV27dtStWxc9PT2uXr3KnTt3ZEZ9FQRBEAQhb6JDKQiCIMhlyZIlLF26lEWLFlGmTBn69+/PN998I31/9OjRREZGcvLkSY4fP46LiwsbNmzIMWhOlSpV2LVrF0uXLuXw4cPEx8dTpUoVXFxc0NHRyfP758yZQ2JiItOnT0dfX5+2bduycuVKfv/9dw4ePMjp06fR1dXF1NSUAQMGYG5uLp132rRpzJw5kyVLlpCcnIynpyc//PADffr04cqVK5w6dQqJRIKZmRmzZs2ib9++xV9AQRAEQfgPUpPkdn2RIAiCIAiCIAiCIBRA3EMpCIIgCIIgCIIgFInoUAqCIAiCIAiCIAhFIjqUgiAIgiAIgiAIQpGIDqUgCIIgCIIgCIJQJKJDKQiCIAiCIAiCIBSJ6FAKgiAIgiAIgiAIRSI6lIIgCIIgCIIgCEKRiA6lIAiCIAiCIAiCUCSiQykIgiAIgiAIgiAUiehQCoIgCIIgCIIgCEUiOpSCIAiCIAiCIAhCkYgOpSAIgiAIgiAIglAk/w/5YnJiE+FP1AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "import pandas as pd\n", "tt = srlut.reshape(17,17,17,17,16)\n", "i = 8\n", "aa = pd.DataFrame(np.transpose(tt[i,5,5,:,:]))\n", "aa.columns = [f\"[{x*(256/17):.0f},\\n{(x+1)*(256/17):.0f}]\" for x in np.arange(17)]\n", "sns.set_theme(rc={'figure.figsize':(11.7,8.27)})\n", "a = sns.heatmap(aa, annot=True, fmt=\".0f\")\n", "a.set_xlabel(\"buckets\")\n", "a.set_ylabel(\"output pixel\")\n", "# aa" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB+MAAALKCAYAAADpifMYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf6klEQVR4nOzdf5TV9X0n/tfnc8fBmcDMBVesolEg1dKtCmQjsoMklZhEYpr+stlpa2qhSLckCNWuxmP8knP2+OOsVashVXFMY2poSN3TRIup0VpJWM+aVBLXxPqjAx4z0U5PYO4MOyAw937/YJk4mV+X4cOde2cej3M4dO77fV/v172nSZj7vO/3OymVSqUAAAAAAAAAADKTjncDAAAAAAAAADDRCOMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyVjfeDUxmpVIpisXSeLcBAAAAAAAAQBnSNIkkScqaK4wfR8ViKXbv/r/j3QYAAAAAAAAAZZgx412Ry5UXxjumHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY8J4AAAAAAAAAMiYMB4AAAAAAAAAMiaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY8J4AAAAAAAAAMiYMB4AAAAAAAAAMiaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY3Xj3QAAAMBklqZJpGky7HixWIpisVTBjgAAAADIgjAeAABgnKRpEvl8Y+Rywx9a1tdXjO7ufSPWEdgDAAAAVB9hPAAAwDhJ0yRyuTQ2bt4eHZ2FQeOzZjbHmtaWaGpqGDWw7+rqFcgDAAAAVBFhPAAAwDjr6CzEro49w46XE9inaSKMBwAAAKgiwngAAICjNB73vI8W2I/Wl6PsAQAAACpLGA8AAHAUyr3nvdLHxidJEvn88MfZO8oeAAAAoLKE8QAAAEeh3Hvej+xQH2mneqX6cpQ9AAAAQOUJ4wEAAMZgtGPjy9mp3tOzv+J9AQAAAFAZwngAAIDjoNyd6gAAAABMTMJ4AACA48hOdQAAAIDJSRgPAADwDmmaVOyedwAAAAAmLmE8AADA/5OmSeTzjRW/5x0AAACAiUcYDwAA8P+45x0AAACArAjjAQAAfo573gEAAAA4VkOfvQgAAAAAAAAAjJmd8QAAwKSQpsmIR8wXi6UKdgMAAADARCeMBwAAJrw0TSKfb4xcbvjDwfr6itHTs7+CXQEAAAAwkQnjAQCACS9Nk8jl0ti4eXt0dBYGjc+a2RxrWltG3DkPAAAAAEdDGA8AAEwaHZ2F2NWxZ7zbAAAAAGASGP6MRgAAAAAAAABgTKoqjH/88cfjv/7X/xpLly6N+fPnx8c//vH427/92yiVSgPmfe1rX4sPf/jDce6558av/dqvxdNPPz2oVk9PT9xwww1xwQUXxIIFC2Lt2rXR2dk5aN7zzz8fn/jEJ+K8886LX/3VX437779/0HqlUinuv//++MAHPhDnnXdefOITn4jvf//7mb52AAAAAAAAACaOqgrj/+qv/ioaGhri+uuvj7/8y7+MpUuXxmc/+9nYuHFj/5y///u/j89+9rNx6aWXxqZNm2L+/PnxqU99alA4vm7duti+fXts2LAhbr/99ti5c2esWrUqDh061D/n9ddfj5UrV8bJJ58c9913X/zBH/xB3H333fHggw8OqLVp06a4++6748orr4z77rsvTj755FixYkW88cYbx/X9AAAAAAAAAKA2VdWd8X/5l38ZM2bM6P958eLF0dXVFV/84hfjT/7kTyJN07j77rvjox/9aKxbty4iIi688MJ45ZVXYuPGjbFp06aIiNixY0d85zvfiba2tliyZElERMyePTuWL18eTzzxRCxfvjwiItra2mL69Olxxx13RH19fSxevDh2794d9957b1xxxRVRX18fb7/9dtx3332xYsWKuPLKKyMi4r3vfW985CMfiba2ttiwYUPF3h8AAAAAAAAAakNV7Yx/ZxB/xLx582Lv3r3R29sbb7zxRuzatSsuvfTSAXOWL18ezz77bBw4cCAiIrZt2xZNTU3R0tLSP2fOnDkxb9682LZtW/9j27Zti2XLlkV9ff2AWt3d3bFjx46IOHyM/d69ewesWV9fH5dccsmAWgAAAAAAAABwRFXtjB/KP//zP8cpp5wSU6dOjX/+53+OiMO73N9p7ty5cfDgwXjjjTdi7ty50d7eHrNnz44kSQbMmzNnTrS3t0dERG9vb7z55psxZ86cQXOSJIn29vZYtGhR//yfnzd37tz40pe+FPv3748TTzxxzK+vrq6qvg8BAAATUi5X3r+70zTJZE7WtbJar9z3AQAAAIBjV9Vh/Pe+973YunVrXHfddRERUSgUIiKiqalpwLwjPx8Z7+7ujmnTpg2q19zcHC+++GJERPT09AxZq76+PhoaGgbUqq+vjylTpgxas1QqRaFQGHMYn6ZJTJ/+rjE9FwAAyN7UqaP/276cOVnXymq9pqaGzNYDAAAAYGRVG8a/9dZbsX79+li0aFF88pOfHO92jotisRTd3b3j3QYAAEx4uVxaVhC9d+/+UUPtcuZkXasc5dTq7t4XfX3FTNYDAAAAmIyamhrKPn2wKsP47u7uWLVqVeTz+bjnnnsiTQ+/mObm5og4vKv95JNPHjD/neNNTU3x1ltvDapbKBT65xzZOX9kh/wRBw4ciH379g2odeDAgXj77bcH7I7v7u6OJEn6543VoUM+CAMAgGpRLJYymZN1razW6+sr+h0EAAAAoEKq7sLA/fv3x+rVq6OnpyceeOCBAcfNH7m3/cg97ke0t7fHCSecEGeccUb/vJ07d0apNPDDqJ07d/bXaGxsjFNPPXVQrSPPOzLvyN87d+4ctOZpp512TPfFAwAAAAAAADAxVVUYf+jQoVi3bl20t7fHAw88EKeccsqA8TPOOCPOOuus+OY3vzng8a1bt8bixYujvr4+IiKWLl0ahUIhnn322f45O3fujB/96EexdOnS/seWLl0aTz31VBw8eHBAraampliwYEFERCxcuDCmTp0ajz/+eP+cgwcPxhNPPDGgFgAAAAAAAAAcUVXH1H/uc5+Lp59+Oq6//vrYu3dvfP/73+8f++Vf/uWor6+PT3/603HttdfGu9/97li0aFFs3bo1Xnjhhfjrv/7r/rkLFiyIJUuWxA033BDXXXddTJkyJe68884455xz4kMf+lD/vJUrV8ajjz4a11xzTbS2tsYrr7wSbW1tsX79+v5gf8qUKbF69eq45557YsaMGXH22WfH5s2bo6urK1auXFmx9wYAAAAAAACA2lFVYfz27dsjIuLWW28dNPbUU0/F6aefHpdddlns27cvNm3aFPfff3/Mnj07Pv/5z/fvZD/irrvuiltuuSVuuummOHToUCxZsiRuvPHGqKv72Us+88wzo62tLW699da46qqrYsaMGbF27dpYsWLFgFqrVq2KUqkUDz74YOzevTvmzZsXbW1t/cfiAwAAAAAAAMA7VVUY/4//+I9lzbv88svj8ssvH3HOtGnT4uabb46bb755xHkLFy6MLVu2jDgnSZJYvXp1rF69uqz+AAAAqlWaJpGmybDjxWIpisVSBTsCAAAAmJiqKowHAADg+EmSJPL5hsjl0mHn9PUVo6urVyAPAAAAcIyE8QAAAJNEmiaRy6WxcfP26OgsDBqfNbM51rS2RJomwngAAACAYySMBwAAmGQ6Oguxq2PPeLcBAAAAUJVGu+avXMJ4AAAAAAAAAIjDQXw+3zjsNX+lUvmnCQrjAQAAAAAAACBGvubvyBV/5RLGAwAAMMhIx7EViyV3ygMAAAATWhbX/AnjAQCAmjdacMzRSZIk8vmGYY9j6+srRldXr/cWAAAAYATCeAAAoKaNdo9XX18xenr2V7ir2lbOcWxpmgjjAQAAAEYgjAcAAGpaucExRy+L49gAAAAAJithPAAAMCEIjgEAAACoJkOf4wgAAAAAAAAAjJkwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY8J4AAAAAAAAAMiYMB4AAAAAAAAAMiaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADJWN94NAAAAk1OaJpGmybDjxWKpf95ocwAAAACg2gjjAQCAikvTJPL5xsjlhj+sq6+vGBEx6pyenv2Z9wcAAAAAx0oYDwAAVFyaJpHLpbFx8/bo6CwMGp81sznWtLZERIw6Z6Sd8wAAAAAwXoTxAADAuOnoLMSujj3HPIfxUc5VA64SAAAAACYrYTwAAABHLUmSyOcbRr1GoKurVyAPAAAATErCeAAAAI5auVcNpGkijAcAAAAmJWE8AAAAY+YaAQAAAIChDX+eIAAAAAAAAAAwJsJ4AAAAAAAAAMiYMB4AAAAAAAAAMiaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjNWNdwMAAABMbGmaRJomQ44Vi6UoFksV7ggAAADg+BPGAwAAcNwkSRL5fEPkckMfzNbXV4yurl6BPAAAADDhCOMBAAA4btI0iVwujY2bt0dHZ2HA2KyZzbGmtSXSNBHGAwAAABOOMB4AAIDjrqOzELs69ox3GwAAAAAVM/Q5gQAAAAAAAADAmAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY3Xj3QAAADDxpGkSaZoMOVYslircDQAAAABUnjAeAADIVJomkc83Ri439EFcfX3F6OnZX+GuAAAAAKCyhPEAAECm0jSJXC6NjZu3R0dnYcDYrJnNsaa1Zdhd8wAAAAAwUQjjAQCA46KjsxC7OvaMdxsAAAAAMC6E8QAAAIy7NE1GPDGhWCxFsViqYEcAAAAAx0YYDwAAwLhKkiTy+YbI5dJh5/T1FaOrq1cgDwAAANQMYTwAAADjKk2TyOXS2Lh5e3R0FgaNz5rZHGtaWyJNE2E8AAAAUDOE8QAAAFSFjs5C7OrYM95tAAAAAGRi+DMAAQAAAAAAAIAxEcYDAAAAAAAAQMaE8QAAAAAAAACQMWE8AAAAAAAAAGRMGA8AAAAAAAAAGRPGAwAAAAAAAEDGhPEAAAAAAAAAkLG68W7gnV5//fVoa2uLH/zgB/Hqq6/GnDlz4rHHHusf//GPfxzLli0b8rn19fXxf/7P/xlx3vnnnx9btmwZ8Njzzz8ft912W7z00ktx0kknRWtra6xatSqSJOmfUyqVYtOmTfGVr3wldu/eHfPmzYvPfOYzMX/+/AxeNQAAAAAAAAATTVWF8a+++mo888wzcf7550exWIxSqTRgfObMmfHVr351wGOlUin+6I/+KC688MJB9f70T/80Fi1a1P/zu971rgHjr7/+eqxcuTJaWlpi3bp18fLLL8ftt98euVwuVq5c2T9v06ZNcffdd8e1114b55xzTjz88MOxYsWK+PrXvx5nnHFGFi8dAAAAAAAAgAmkqsL4iy++OD74wQ9GRMT1118fL7744oDx+vr6QbvR//f//t+xd+/euOyyywbVO/PMM0fcvd7W1hbTp0+PO+64I+rr62Px4sWxe/fuuPfee+OKK66I+vr6ePvtt+O+++6LFStWxJVXXhkREe9973vjIx/5SLS1tcWGDRuO5SUDAAAAAAAAMAFV1Z3xaXr07Tz22GMxderUuPjii4/6udu2bYtly5ZFfX19/2PLly+P7u7u2LFjR0QcPsZ+7969cemll/bPqa+vj0suuSS2bdt21GsCAAAAAAAAMPFV1c74o3Xw4MF44okn4pJLLokpU6YMGt+wYUOsX78+8vl8LFu2LK699trI5/MREdHb2xtvvvlmzJkzZ8Bz5syZE0mSRHt7eyxatCja29v7H3+nuXPnxpe+9KXYv39/nHjiiWN+DXV1VfV9CAAAOGa53Oj/xk3TJLP1yqlV7nrVWqvS61VrrXL+fwsAAADgWGT5+UNNh/Hbtm2Lrq6uQUfU19fXR2trayxZsiSampriBz/4Qdx7773x4osvxte+9rU44YQToqenJyIimpqaBj23oaEhCoVCRER0d3dHfX39oLC/qakpSqVSFAqFMYfxaZrE9OnvGn0iAABMMFOnjv0LrWOpVe561Vqr0utVa62mpoay5gEAAABUg5oO4x999NH4D//hP8TixYsHPD5z5swBd7lfcMEF8Yu/+IuxevXq+Na3vhXLly+vcKdDKxZL0d3dO95tAABApnK5dNTQdO/e/ZkF0eXUKne9aq1VjmrtPcta3d37oq+vOOo8AAAAgLEq57OtctVsGP9//+//jaeffjouv/zyyOVyo85///vfH42NjfHDH/4wli9fHtOmTYuI6N8hf8SBAwdi37590dzcHBGHd8AfOHAg3n777QG747u7uyNJkv55Y3XokA+SAACYfIrFUkVrlbtetdaq9HrVWquvr+h3KAAAAKBm1OyFe9/61rdi//798bGPfWxMz29sbIxTTz21/074I3bu3BmlUqn/jvgjf+/cuXPAvPb29jjttNOO6b54AAAAAAAAACammg3jH3vssXj3u98d559/flnzn3766ejt7Y1zzz23/7GlS5fGU089FQcPHux/bOvWrdHU1BQLFiyIiIiFCxfG1KlT4/HHH++fc/DgwXjiiSdi6dKlGb0aAAAAAAAAACaSqjqmft++ffHMM89ERERHR0fs3bs3vvnNb0bE4XvfZ8yYERERu3fvjmeffTZWrVo1ZJ1bb701kiSJ+fPnR1NTU7zwwgtx3333xa/8yq/EBz/4wf55K1eujEcffTSuueaaaG1tjVdeeSXa2tpi/fr1UV9fHxERU6ZMidWrV8c999wTM2bMiLPPPjs2b94cXV1dsXLlyuP5dgAAAAAAAABQo6oqjP/pT38aV1999YDHjvz80EMPxaJFiyIi4vHHH49Dhw4Ne0T93LlzY/PmzbFly5bYv39/nHLKKfHbv/3bsXbt2qir+9lLPvPMM6OtrS1uvfXWuOqqq2LGjBmxdu3aWLFixYB6q1atilKpFA8++GDs3r075s2bF21tbXHGGWdk+fIBAAAAAAAAmCCqKow//fTT4+WXXx513u/93u/F7/3e7w07fvnll8fll19e1poLFy6MLVu2jDgnSZJYvXp1rF69uqyaAAAAAAAAAExuVRXGAwAA1S1Nk0jTZNjxYrFUwW4AAAAAoHoJ4wEAgLKkaRL5fGPkcumwc/r6itHTs7+CXQEAAABAdRLGAwAAZUnTJHK5NDZu3h4dnYVB47NmNsea1pYRd84DAAAAwGQhjAcAAI5KR2chdnXsGe82AAAAAKCqCeMBAACoGWmaDHv6QrFYimKxVOGOAAAAAIYmjAcAAKAmJEkS+XxD5HLpkON9fcXo6uoVyAMAAABVQRgPAABATUjTJHK5NDZu3h4dnYUBY7NmNsea1pZI00QYDwAAAFQFYTwAAAA1paOzELs69ox3GwAAAAAjGvpsPwAAAAAAAABgzITxAAAAAAAAAJAxYTwAAAAAAAAAZEwYDwAAAAAAAAAZE8YDAAAAAAAAQMaE8QAAAAAAAACQMWE8AAAAAAAAAGRMGA8AAAAAAAAAGRPGAwAAAAAAAEDGhPEAAAAAAAAAkLG68W4AAAAAspSmSaRpMuRYsViKYrFU4Y4AAACAyUgYDwAAwISRJEnk8w2Ryw19EFxfXzG6unoF8gAAAMBxJ4wHAABgwkjTJHK5NDZu3h4dnYUBY7NmNsea1pZI00QYDwAAABx3wngAAAAmnI7OQuzq2DPebQAAAACT2NDn9gEAAAAAAAAAYyaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY8J4AAAAAAAAAMiYMB4AAAAAAAAAMiaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADIWN14NwAAAFSHNE0iTZMhx4rFUoW7AQAAAIDaJowHAAAiTZPI5xsjlxv68Ky+vmL09OyvcFcAAAAAULuE8QAAQKRpErlcGhs3b4+OzsKAsVkzm2NNa8uwu+YBAAAAgMGE8QAAQL+OzkLs6tgz3m0AAAAAQM0b+gxKAAAAAAAAAGDMhPEAAAAAAAAAkDFhPAAAAAAAAABkTBgPAAAAAAAAABkTxgMAAAAAAABAxurGuwEAAACotDRNIk2TYceLxVIUi6UR5x2ZAwAAADAUYTwAAACTSpIkkc83RC43/GFxfX3F6O7eF01Nw8/r6ytGV1evQB4AAAAYkjAeAACASSVNk8jl0ti4eXt0dBYGjc+a2RxrWlsil0uHnXdkTpomwngAAABgSMJ4AAAAJqWOzkLs6tiT2TwAAACAdxr+TD4AAAAAAAAAYEyE8QAAAAAAAACQMWE8AAAAAAAAAGRMGA8AAAAAAAAAGRPGAwAAAAAAAEDG6sa7AQAAAKhlaZpEmibDjheLpSgWSxXsCAAAAKgGwngAAAAYoyRJIp9viFxu+IPn+vqK0dXVK5AHAACASUYYDwAAAGOUpknkcmls3Lw9OjoLg8ZnzWyONa0tkaaJMB4AAAAmmaoK419//fVoa2uLH/zgB/Hqq6/GnDlz4rHHHhsw54orrojnnntu0HO3bt0ac+fO7f+5p6cnbrnllnjyySfj4MGDcdFFF8WNN94YM2fOHPC8559/Pm677bZ46aWX4qSTTorW1tZYtWpVJMnPjhgslUqxadOm+MpXvhK7d++OefPmxWc+85mYP39+tm8AAAAcB+UcoQ0cm47OQuzq2DPebQAAAABVpKrC+FdffTWeeeaZOP/886NYLEapNPSHggsXLozrrrtuwGOnn376gJ/XrVsXr732WmzYsCGmTJkSd911V6xatSoeeeSRqKs7/LJff/31WLlyZbS0tMS6devi5Zdfjttvvz1yuVysXLmyv9amTZvi7rvvjmuvvTbOOeecePjhh2PFihXx9a9/Pc4444yM3wUAAMhOmiaRzzeOeoR2T8/+CnYFAAAAABNfVYXxF198cXzwgx+MiIjrr78+XnzxxSHnNTU1jbgrfceOHfGd73wn2traYsmSJRERMXv27Fi+fHk88cQTsXz58oiIaGtri+nTp8cdd9wR9fX1sXjx4ti9e3fce++9ccUVV0R9fX28/fbbcd9998WKFSviyiuvjIiI9773vfGRj3wk2traYsOGDZm9fgAAyNrRHKENAAAAAGRn+O0x4yBNs2ln27Zt0dTUFC0tLf2PzZkzJ+bNmxfbtm0bMG/ZsmVRX1/f/9jy5cuju7s7duzYERGHj7Hfu3dvXHrppf1z6uvr45JLLhlQCwAAqtmRI7R//s9QAT0AAAAAcOyqKowv13PPPRfz58+Pc889N37/938/vvvd7w4Yb29vj9mzZw+49z3icCDf3t4eERG9vb3x5ptvxpw5cwbNSZKkf96Rv39+3ty5c+MnP/lJ7N/vOE8AAAAAAAAABqqqY+rL8b73vS8+/vGPx1lnnRWdnZ3R1tYWf/iHfxhf/vKXY8GCBRER0d3dHdOmTRv03Obm5v6j73t6eiLi8JH371RfXx8NDQ1RKBT6a9XX18eUKVMGzGtqaopSqRSFQiFOPPHEMb+eurqa/D4EAAA1YqS74t+pnGPqyz3KPstalV6vWmtVer2JXms8ei/3P4sAAADA+Mryd/iaC+PXrl074OcPfOADcdlll8UXvvCF2LRp0zh1NTZpmsT06e8a7zYAACCmTh39C6blzMm6VqXXq9ZalV5votcaj96bmhrKmgcAAABMHDUXxv+8xsbGeP/73x//8A//0P9YU1NTvPXWW4PmFgqFaG5ujojo3zl/ZIf8EQcOHIh9+/b1z2tqaooDBw7E22+/PWB3fHd3dyRJ0j9vLIrFUnR39475+QAAMJpcLi0rBNy7d/+ooWI5c7KuVY5q7d37UL21xqP37u590ddXHHUeAAAAML7K/TytHDUfxg9lzpw58eyzz0apVBpwb/zOnTvj7LPPjojDIf6pp57afyf8O+eUSqX+O+KP/L1z5874pV/6pf557e3tcdpppx3TEfUREYcO+TAGAIDxVyyWMpmTda1Kr1ettSq93kSvNR699/UVo1gsDXusfbFYyvT/HwAAAIDxV/OX1vX29sY//dM/xbnnntv/2NKlS6NQKMSzzz7b/9jOnTvjRz/6USxdunTAvKeeeioOHjzY/9jWrVujqamp//75hQsXxtSpU+Pxxx/vn3Pw4MF44oknBtQCAACA4SRJEvl8Y0yf/q4h/+TzjWXfPw8AAADUhqraGb9v37545plnIiKio6Mj9u7dG9/85jcjIuKCCy6I9vb2eOCBB+KSSy6JWbNmRWdnZ3zxi1+Mf//3f4+/+Iu/6K+zYMGCWLJkSdxwww1x3XXXxZQpU+LOO++Mc845Jz70oQ/1z1u5cmU8+uijcc0110Rra2u88sor0dbWFuvXr4/6+vqIiJgyZUqsXr067rnnnpgxY0acffbZsXnz5ujq6oqVK1dW8N0BAACgVqVpErlcGhs3b4+OzsKAsVkzm2NNa0ukaWJ3PAAAAEwgVRXG//SnP42rr756wGNHfn7ooYfiF37hF+LgwYNx5513RldXVzQ0NMSCBQvic5/7XJx33nkDnnfXXXfFLbfcEjfddFMcOnQolixZEjfeeGPU1f3sJZ955pnR1tYWt956a1x11VUxY8aMWLt2baxYsWJArVWrVkWpVIoHH3wwdu/eHfPmzYu2trY444wzjtM7AQAAwETU0VmIXR17xrsNAAAAoAKqKow//fTT4+WXXx5xTltbW1m1pk2bFjfffHPcfPPNI85buHBhbNmyZcQ5SZLE6tWrY/Xq1WWtDQAAAAAAAMDkVvN3xgMAAAAAAABAtRHGAwAAAAAAAEDGhPEAAAAAAAAAkDFhPAAAAAAAAABkTBgPAAAAAAAAABmrG+8GAACAsUvTJNI0GXKsWCxVuBsAAAAA4AhhPAAA1Kg0TSKfb4xcbugDr/r6itHTs7/CXQHHYqQv2EQc/pKNL9oAAABAbRDGAwBAjUrTJHK5NDZu3h4dnYUBY7NmNsea1pYRQz2guiRJEvl8w7BfsIk4/CWbrq5egTwAAADUAGE8AADUuI7OQuzq2DPebQDHaKQv2EQM/JKNMB4AAACqnzAeAAAAqogv2AAAAMDEMPzZdwAAAAAAAADAmAjjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY8J4AAAAAAAAAMiYMB4AAAAAAAAAMlY33g0AAAAARydNk0jTZMixYrEUxWKpwh0BAAAAP08YDwAAADUkSZLI5xsilxv6sLu+vmJ0dfUK5AEAAGCcCeMBAACghqRpErlcGhs3b4+OzsKAsVkzm2NNa0ukaSKMBwAAgHEmjAcAAIAa1NFZiF0de8a7DQAAAGAYQ59pBwAAAAAAAACMmTAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyVjfeDQAAAADZS9Mk0jQZcqxYLEWxWKpwRwAAADC5COMBAABggkmSJPL5hsjlhj4Qr6+vGF1dvQJ5AAAAOI6E8QAAADDBpGkSuVwaGzdvj47OwoCxWTObY01rS6RpIowHAACA40gYDwAAVWik46UjQoAGlKWjsxC7OvaMdxsAAAAwKQnjAQCgyqRpEvl847DHS0ccPmK6p2d/BbsCyIa77AEAAJgshPEAAFBlRjpeOmLgEdMAtWS0Lxu5yx4AAICJRBgPAABVyvHSwPFWzpUYxWIps93s7rIHAABgMhHGAwAAwCSUJEnk8w2jXonR3b0vmpqGnzeW3ey+bAQAAMBkIIwHAACASajcKzFyudRudgAAABgDYTwAAABMYuXuUrebHQAAAI7O8GfRAQAAAAAAAABjYmc8AAAAUFXSNIk0TYYdLxZLjsUHAACg6gnjAQAAgKqRJEnk8w2Ryw1/mF9fXzG6unoF8gAAAFQ1YTwAAABQNdI0iVwujY2bt0dHZ2HQ+KyZzbGmtSXSNBHGAwAAUNWE8QAAAEDV6egsxK6OPePdBgAAAIyZMB4AAAA4ZuXc817JNd0rDwAAwHgTxgMAAADHpNx73nt69ldsTffKAwAAMN6E8QAAAMAxOZp73iuxpnvlAQAAqAbCeAAAACAT43HPu7vlAQAAqFbDnx8HAAAAAAAAAIyJMB4AAAAAAAAAMiaMBwAAAAAAAICMCeMBAAAAAAAAIGPCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIzVjXcDAAAAAMdLmiaRpsmQY8ViKYrFUoU7AgAAYLIQxgMAAAATUpIkkc83RC439MGAfX3F6OrqFcgDAABwXFRVGP/6669HW1tb/OAHP4hXX3015syZE4899lj/+N69e+OLX/xiPPPMM7Fr166or6+P8847L9avXx/nnHNO/7wf//jHsWzZskH1zz///NiyZcuAx55//vm47bbb4qWXXoqTTjopWltbY9WqVZEkP/vWfKlUik2bNsVXvvKV2L17d8ybNy8+85nPxPz587N/EwAAAIBMpGkSuVwaGzdvj47OwoCxWTObY01rS6RpIowHAADguKiqMP7VV1+NZ555Js4///woFotRKg38ZfgnP/lJfPWrX43f+q3finXr1sXbb78dDz74YHziE5+IRx55JObOnTtg/p/+6Z/GokWL+n9+17veNWD89ddfj5UrV0ZLS0usW7cuXn755bj99tsjl8vFypUr++dt2rQp7r777rj22mvjnHPOiYcffjhWrFgRX//61+OMM844Du8EAAAAkJWOzkLs6tgz3m0AAAAwyVRVGH/xxRfHBz/4wYiIuP766+PFF18cMH766afHt771rWhoaOh/7MILL4yLL744vvKVr8RnP/vZAfPPPPPMEXevt7W1xfTp0+OOO+6I+vr6WLx4cezevTvuvffeuOKKK6K+vj7efvvtuO+++2LFihVx5ZVXRkTEe9/73vjIRz4SbW1tsWHDhkxeOwAAAAAAAAATx9CXpo2TNB25ncbGxgFBfMTh3e7vfve7o7Oz86jX27ZtWyxbtizq6+v7H1u+fHl0d3fHjh07IuLwMfZ79+6NSy+9tH9OfX19XHLJJbFt27ajXhMAAACoLmmaRF1dOuyfNE1GLwIAAAA/p6p2xo9Fd3d3vPrqq/Gf//N/HjS2YcOGWL9+feTz+Vi2bFlce+21kc/nIyKit7c33nzzzZgzZ86A58yZMyeSJIn29vZYtGhRtLe39z/+TnPnzo0vfelLsX///jjxxBPH3H9dXVV9HwIAgCqQy5X3b8RywqFyA6RqrVXp9aq1VqXXm+i1arn3LGvVcu9Z1qqry0VjY/2I/93b11eMnp79g67TAwAAYOIp97O5ctR8GP8//sf/iCRJorW1tf+x+vr6aG1tjSVLlkRTU1P84Ac/iHvvvTdefPHF+NrXvhYnnHBC9PT0REREU1PTgHr19fXR0NAQhUIhIg6H/fX19TFlypQB85qamqJUKkWhUBhzGJ+mSUyf/q7RJwIAwBCmTh3936HlzKnmWpVer1prVXq9iV6rlnvPslYt955lrWnTDs/ZuHl7dHQWBo3Pmtkca1pbIp9vLKsvAAAAOKKmw/hHHnkktmzZErfeemv8wi/8Qv/jM2fOHHCX+wUXXBC/+Iu/GKtXr45vfetbsXz58nHodrBisRTd3b3j3QYAAFUml0ujqalh1Hl79+4fNWgqZ0411ypHtfbufajeWrXce5a1arn3LGsdmdPRWYhdHXuGndfdvS/6+oqj9gUAAEBtK/ezuXLUbBj/zDPPxE033RR/8id/Er/xG78x6vz3v//90djYGD/84Q9j+fLlMW3atIiI/h3yRxw4cCD27dsXzc3NEXF4B/yBAwfi7bffHrA7vru7O5Ik6Z83VocO+UUeAGCySdNkxKOTi8XyjkEuZ16t16r0etVaq9LrTfRatdx7lrVqufcsa5W7Xl9f0e/wAAAAHJWaDOO///3vx9VXXx2//uu/HldfffWYajQ2Nsapp57afyf8ETt37oxSqdR/R/yRv3fu3Bm/9Eu/1D+vvb09TjvttGO6Lx4AgMknTZPI5xtHvZsYAAAAAKhtNRfGv/baa7F69eq48MIL43Of+1zZz3v66aejt7c3zj333P7Hli5dGk899VT82Z/9WZxwwgkREbF169ZoamqKBQsWRETEwoULY+rUqfH444/3h/EHDx6MJ554IpYuXZrhKwMAYDJI0yRyuXTUu4kBAAAAgNpWVWH8vn374plnnomIiI6Ojti7d29885vfjIjD976XSqVYuXJlTJkyJf7gD/4gXnzxxf7nTp06Nd7znvdERMStt94aSZLE/Pnzo6mpKV544YW477774ld+5Vfigx/8YP9zVq5cGY8++mhcc8010draGq+88kq0tbXF+vXro76+PiIipkyZEqtXr4577rknZsyYEWeffXZs3rw5urq6YuXKlZV6awAAmGBGu5sYAAAAAKhtVRXG//SnPx107PyRnx966KGIiHjrrbciIuLKK68cMO+CCy6IL3/5yxERMXfu3Ni8eXNs2bIl9u/fH6ecckr89m//dqxduzbq6n72ks8888xoa2uLW2+9Na666qqYMWNGrF27NlasWDGg9qpVq6JUKsWDDz4Yu3fvjnnz5kVbW1ucccYZmb5+AAAAAAAAACaGqgrjTz/99Hj55ZdHnDPaeETE5ZdfHpdffnlZay5cuDC2bNky4pwkSWL16tWxevXqsmoCAAAAAAAAMLml490AAAAAAAAAAEw0wngAAAAAAAAAyJgwHgAAAAAAAAAyJowHAAAAAAAAgIwJ4wEAAAAAAAAgY8J4AAAAAAAAAMhY3Xg3AAAAADBRpGkSaZoMO14slqJYLFWwIwAAAMaLMB4AAAAgA2maRD7fGLnc8AcR9vUVo6urVyAPAAAwCQjjAQAAADKQpknkcmls3Lw9OjoLg8ZnzWyONa0tkaaJMB4AAGASEMYDAAAAZKijsxC7OvYccx1H3gMAANQ2YTwAAABAGUYKx7MOxR15DwAAUPuE8QAAAACjSJIk8vmGYcPxvr5i9PTsz2w9R94DAADUPmE8AAAAwChGCsffGYwfTb1ydtlndeQ9AAAAlSeMBwAAAChTFuF4pXfZAwAAMD6E8QAAAAAVlPUuewAAAKqTMB4AAABgHGR1BP1oR967Ux4AAGB8COMBAAAAalQ5R953dfUK5AEAAMaBMB4AAACgRpV75L0wHgAAoPKG/tp0Gf7u7/4ufvzjHw87/uMf/zj+7u/+bqzlAQAAACjTkSPv3/nn58N5AAAAKmvMYfxnPvOZ2LFjx7DjL7zwQnzmM58Za3kAAAAAAAAAqFljPqa+VBr5eLPe3t7I5XJjLQ8AAABABaVpEmmaDDteLJYcdw8AAHAUjiqM/5d/+Zf4l3/5l/6fv/e970VfX9+ged3d3fE3f/M3MXv27GPvEAAAAIDjKk2TyOcbI5cb/hDFvr5idHX1CuQBAADKdFRh/JNPPhmf//znIyIiSZL46le/Gl/96leHnNvU1BS33XbbsXcIAAAAwHGVpknkcmls3Lx9yLvmZ81sjjWtLZGmiTAeAACgTEcVxv/O7/xOfOADH4hSqRSXX355rF27NpYuXTpgTpIk0dDQEO9+97ujrm7Mp+ADAAAAUGEdnYXY1bFnvNsAAACYEI4qLZ85c2bMnDkzIiIeeuihmDt3bpx00knHpTEAAAAAAAAAqFVj3rp+wQUXZNkHAAAAABNEmiaRpsmw48ViyXH3AADAhHdM58h/+9vfjr/927+NN954I7q7u6NUGvhLVJIk8eSTTx5TgwAAAAAcm5HC8aMNxcuplc83Ri6XDlujr68YXV29AnkAAGBCG3MY/8ADD8Sf//mfx0knnRTnnXdenHPOOVn2BQAAAEAGkiSJfL5h2HC8r68YPT37M62Vy6WxcfP26OgsDJoza2ZzrGltiTRNhPEAAMCENuYw/qGHHooLL7ww7r///jjhhBOy7AkAAACAjKRpMmw4/s5gPOtaHZ2F2NWxJ5sXAQAAUIPGHMZ3d3fHhz/8YUE8AAAAQA3IMhwXtAMAAIxu+Mu7RnHuuefGzp07s+wFAAAAAAAAACaEMYfxGzZsiG9961vx6KOPZtkPAADUtDRNoq4uHfJPuUcAAwAAAAC1b8zH1K9bty4OHToU/+2//bfYsGFD/MIv/EKk6cBsP0mS+MY3vnHMTQIAQC1I0yTy+cbI5Yb+zmtfXzF6evZXuCsAAAAAYDyMOYzP5/ORz+fjzDPPzLIfAACoWWmaRC6XxsbN26OjszBgbNbM5ljT2mJ3PAAAAABMEmMO47/85S9n2QcAAEwYHZ2F2NWxZ7zbAAAAAADG0ZjvjAcAAAAAAAAAhjbmnfHf/e53y5r3vve9b6xLAAAAADDJpWky4jUvxWIpisVSBTsCAAAoz5jD+CuuuCKSZPT7Ll966aWxLgEAAADABDZS0H4kYM/nGyOXG/5wx76+YnR19QrkAQCAqjPmMP6hhx4a9FhfX190dHTEli1bolgsxjXXXHNMzQEAAAAwMSVJEvl8w7BBe19fMXp69kcul8bGzdujo7MwaM6smc2xprUl0jQRxgMAAFVnzGH8BRdcMOzYb/7mb8bv/u7vxnPPPReLFy8e6xIAAAAATFBpmgwbtL8zZI+I6OgsxK6OPePRJgAAwJgNf8bXsRRN0/joRz8aX/va145HeQAAAAAmiCNB+zv/DLULHgAAoNYclzA+IqJQKERPT8/xKg8AAAAAAAAAVWvMx9T/5Cc/GfLx7u7u+N73vhdtbW3xn/7TfxpzYwAAAAAAAABQq8Ycxl988cWRJMmQY6VSKebPnx+f+9znxtwYAAAAAAAAANSqMYfxN99886AwPkmSaGpqine/+93xnve855ibAwAAAAAAAIBaNOYw/jd/8zez7AMAAAAAAAAAJowxh/Hv9Nprr0VHR0dERMyaNcuueAAAAAAqKk2TSNOhr1QsFktRLJYq3BEAADDZHVMY/+STT8att97aH8Qfcfrpp8f1118fy5YtO6bmAAAAAGA0SZJEPt8QuVw65HhfXzG6unoF8gAAQEWNOYx/5plnYu3atXHaaafF+vXrY+7cuRER8a//+q+xZcuW+PSnPx333ntvLF26NLNmAQAAAODnpWkSuVwaGzdvj47OwoCxWTObY01rS6RpIowHAAAqasxh/Be+8IU455xz4uGHH47Gxsb+x5ctWxa///u/H7/7u78bGzduFMYDAAAAUBEdnYXY1bFnvNsAAACIiIihz+4qw8svvxy//uu/PiCIP6KxsTF+4zd+I15++eVjag4AAAAAspKmSdTVpcP+Ge7OeQAAgLEY8874KVOmRKFQGHa8UCjElClTxloeAAAAADIz2r3yEe6WBwAAsjXmMH7RokXx0EMPxUUXXRQLFiwYMPaDH/wgvvzlL0dLS8sxNwgAAAAAx2qke+Uj3C0PAABkb8xh/J/92Z/Ff/kv/yV+93d/N84777yYPXt2RETs3LkzXnjhhTjppJPi2muvzaxRAAAYT2majHh0rQ/tAaA2uFceAAColDGH8WeccUZ84xvfiPvuuy+2bdsWW7dujYiI0047LT75yU/GVVddFSeddFJmjQIAwHhJ0yTy+cZRj7Xt6dlfwa4AgOMhSQ7fKz+cYrHkS3gAAEBZxhzGHzp0KKZMmRI33HBD3HDDDYPG9+7dG4cOHYq6ujEvAQAAVeFojrUFAGrbtGknlnWvfEQM+7/9AnsAACDiGML4//7f/3t873vfi8cee2zI8dbW1li0aFHceOONY24OAACqiWNtAWDiK+cLeLlcOmJofySwF8gDAMDkNuYw/tvf/nb8+q//+rDjH/7wh+Mb3/jGWMsDAAAAwLgY7Qt4I52a884Tc4TxAAAwuY05jO/s7IxTTjll2PGZM2fGv/3bv421PAAAAABUNafmAAAAIxlzGJ/P52Pnzp3Djv/rv/5rTJ06dazlAQAAAKCmpWky7L3yEe6WBwCAiW7oi63KcNFFF8Xf/M3fxI9+9KNBYz/84Q9jy5YtsXTp0qOq+frrr8dNN90UH//4x+OXf/mX47LLLhty3te+9rX48Ic/HOeee2782q/9Wjz99NOD5vT09MQNN9wQF1xwQSxYsCDWrl0bnZ2dg+Y9//zz8YlPfCLOO++8+NVf/dW4//77o1Qa+EtQqVSK+++/Pz7wgQ/EeeedF5/4xCfi+9///lG9NgAAAAAmjyRJIp9vjOnT3zXsn3y+ccSwHgAAqG1j3hl/9dVXx7e//e24/PLL4+KLL473vOc9ERHx6quvxtNPPx0zZsyIq6+++qhqvvrqq/HMM8/E+eefH8VicVAoHhHx93//9/HZz342/viP/zguvPDC2Lp1a3zqU5+Khx9+OObPn98/b926dfHaa6/Fhg0bYsqUKXHXXXfFqlWr4pFHHom6usMv+/XXX4+VK1dGS0tLrFu3Ll5++eW4/fbbI5fLxcqVK/trbdq0Ke6+++649tpr45xzzomHH344VqxYEV//+tfjjDPOGMO7BwAAAMBENtK98hHulgcAgMlgzGH8KaecEo888kj8+Z//eTz11FPxrW99KyIipk6dGh/72Mdi/fr1I94pP5SLL744PvjBD0ZExPXXXx8vvvjioDl33313fPSjH41169ZFRMSFF14Yr7zySmzcuDE2bdoUERE7duyI73znO9HW1hZLliyJiIjZs2fH8uXL44knnojly5dHRERbW1tMnz497rjjjqivr4/FixfH7t274957740rrrgi6uvr4+2334777rsvVqxYEVdeeWVERLz3ve+Nj3zkI9HW1hYbNmw42rcOAAAAgEnCvfIAADB5jfmY+oiImTNnxm233Rbf/e53Y/v27bF9+/b47ne/G7feeutRB/EREWk6cjtvvPFG7Nq1Ky699NIBjy9fvjyeffbZOHDgQEREbNu2LZqamqKlpaV/zpw5c2LevHmxbdu2/se2bdsWy5Yti/r6+gG1uru7Y8eOHRFx+Bj7vXv3Dlizvr4+LrnkkgG1AAAAAAAAAOCIMe+Mf6ckSeKkk07KotSI2tvbI+LwLvd3mjt3bhw8eDDeeOONmDt3brS3t8fs2bMjSQbeuTVnzpz+Gr29vfHmm2/GnDlzBs1JkiTa29tj0aJF/fN/ft7cuXPjS1/6Uuzfvz9OPPHEMb+murpj+j4EAAAVkMuV92+2cu58zfJe2CzXq9ZalV6vWmtVer2JXquWe8+yVi33nmWtWu49y1q13HvWtSq9Xrn/zgAAACojy3+jZxLGV0qhcPh+raampgGPH/n5yHh3d3dMmzZt0PObm5v7j77v6ekZslZ9fX00NDQMqFVfXx9TpkwZtGapVIpCoTDmMD5Nk5g+/V1jei4AANVn6tTR/11YzpzxWK9aa1V6vWqtVen1JnqtWu49y1q13HuWtWq59yxr1XLvWdeq9HpNTQ3H2g4AAFClaiqMn2iKxVJ0d/eOdxsAAIwil0vL+qB87979o37wXs6ccmW5XrXWKke19u59qN5atdx7lrVqufcsa9Vy71nWquXes65VjizX6+7eF319xUz6AgAAjl25nwWWo6bC+Obm5og4vKv95JNP7n+8u7t7wHhTU1O89dZbg55fKBT65xzZOX9kh/wRBw4ciH379g2odeDAgXj77bcH7I7v7u6OJEn6543VoUN+2QIAmCiKxVImc8ZjvWqtVen1qrVWpdeb6LVqufcsa9Vy71nWquXes6xVy71nXavS6/X1FX0+BAAAE1RNXUp15N72I/e4H9He3h4nnHBCnHHGGf3zdu7cGaXSwF96du7c2V+jsbExTj311EG1jjzvyLwjf+/cuXPQmqeddtox3RcPAAAAAAAAwMRUU2H8GWecEWeddVZ885vfHPD41q1bY/HixVFfXx8REUuXLo1CoRDPPvts/5ydO3fGj370o1i6dGn/Y0uXLo2nnnoqDh48OKBWU1NTLFiwICIiFi5cGFOnTo3HH3+8f87BgwfjiSeeGFALAAAAAMYiTZOoq0uH/JOmyXi3BwAAjFFVHVO/b9++eOaZZyIioqOjI/bu3dsfvF9wwQUxY8aM+PSnPx3XXnttvPvd745FixbF1q1b44UXXoi//uu/7q+zYMGCWLJkSdxwww1x3XXXxZQpU+LOO++Mc845Jz70oQ/1z1u5cmU8+uijcc0110Rra2u88sor0dbWFuvXr+8P9qdMmRKrV6+Oe+65J2bMmBFnn312bN68Obq6umLlypUVfHcAAAAAmGiSJIl8viFyuaH3zPT1FaOrqzfTY/YBAIDKqKow/qc//WlcffXVAx478vNDDz0UixYtissuuyz27dsXmzZtivvvvz9mz54dn//85/t3sh9x1113xS233BI33XRTHDp0KJYsWRI33nhj1NX97CWfeeaZ0dbWFrfeemtcddVVMWPGjFi7dm2sWLFiQK1Vq1ZFqVSKBx98MHbv3h3z5s2Ltra2/mPxAQAAAGAs0jSJXC6NjZu3R0dnYcDYrJnNsaa1JdI0EcYDAEANqqow/vTTT4+XX3551HmXX355XH755SPOmTZtWtx8881x8803jzhv4cKFsWXLlhHnJEkSq1evjtWrV4/aGwAAAAAcrY7OQuzq2DPebQAAABmqqjAeAADGQ5omw97HahcaAAAAADAWwngAACa1NE0in28c8Z7Wnp79Fe4KAAAAAKh1wngAACa1cu9pBQAYTyOd5BNx+DQfJ/oAAEB1EcYDAEC4pxUAqF5JkkQ+3zDsST4Rh0/z6erqjYgY8fodgT0AAFSOMB4AAAAAqthIJ/lE/Ow0n1wujWnTThzx+p2url6BPAAAVIgwHgAAAABqwGgn+ZR7/Y4wHgAAKkMYDwAAAAATiOt3AACgOgx/0RQAAAAAAAAAMCbCeAAAAAAAAADImDAeAAAAAAAAADImjAcAAAAAAACAjAnjAQAAAAAAACBjwngAAAAAAAAAyFjdeDcAAAAAAFROmiaRpsmw48ViKYrFUgU7AgCAiUkYDwAAAACTRJIkkc83RC43/IGZfX3F6OrqFcgDAMAxEsYDAAAAwCSRpknkcmls3Lw9OjoLg8ZnzWyONa0tkaaJMB4AAI6RMB4AAAAAJpmOzkLs6tgz3m0AAMCEJowHAAAAAAZIkiTq6oY/yt698gAAMDphPAAAAAAwwLRpJ7pXHgAAjpEwHgAAAAAYwL3yAABw7ITxAAAAAMAgWd0rn6ZJpGky7Lgj7wEAmKiE8QAAAADAcZGmSeTzjY68BwBgUhLGAwAwYZWzCwsAgOMnTRNH3gMAMGkJ4wEAmJDK3YXV07O/gl0BAExOWR15DwAAtUQYDwDAhHQ0u7AAAAAAALImjAcAYEKzCwsAAAAAGA/Dn9kJAAAAAAAAAIyJMB4AAAAAAAAAMuaYegAAAABgTNI0iTRNhhwrFkuZ1jraegAAMN6E8QAAAADAUUuSJPL5hsjlhj58s6+vGD09+zOr1dXVK5AHAKCmCOMBAAAAgKOWpknkcmls3Lw9OjoLA8ZmzWyONa0tw+50H2stYTwAALVEGA8AAAAAjFlHZyF2deypuloAADDehj73CQAAAAAAAAAYM2E8AAAAAAAAAGRMGA8AAAAAAAAAGRPGAwAAAAAAAEDG6sa7AQAAAACAcqRpEmmaDDteLJaiWCxVsCMAABieMB4AAAAAqHpJkkQ+3xC53PCHffb1FaOrq1cgDwBAVRDGAwAAAABVL02TyOXS2Lh5e3R0FgaNz5rZHGtaWyJNE2E8AABVQRgPAAAAANSMjs5C7OrYM95tAADAqIY/0wkAAAAAAAAAGBNhPAAAAAAAAABkzDH1AAAAAMCEkqZJpGky5FixWHKnPAAAFSGMBwAAAAAmjCRJIp9viFxu6ENB+/qK0dXVK5AHAOC4E8YDAAAAABNGmiaRy6WxcfP26OgsDBibNbM51rS2RJomwngAAI47YTwAAAAAMOF0dBZiV8ee8W4DAIBJTBgPAEBNGu0eUAAAAACA8SSMBwCg5qRpEvl844j3gPb07K9wVwAAAAAAPyOMBwCg5pR7DygAAAAAwHgRxgMAULPcAwoAAAAAVCthPAAAAAAw6aRpMuJpSsViKYrFUgU7AgBgohHGAwAAAACTSpIkkc83RC6XDjunr68YXV29AnkAAMZMGA8AAAAATCppmkQul8bGzdujo7MwaHzWzOZY09oSaZoI4wEAGDNhPAAAAAAwKXV0FmJXx57xbgMAgAlq+HOYAAAAAAAAAIAxsTMeAAAAAGAISZJEXd3w+5mKxZJj7AEAGJYwHgAAAABgCNOmnRi53PBhfF9fMbq6egXyAAAMSRgPAAAAADCEXC6NjZu3R0dnYdDYrJnNsaa1JdI0EcYDADAkYTwAAAAAwDA6Oguxq2PPeLcBAEANGv6MJQAAAAAAAABgTGpuZ/wVV1wRzz333JBjd9xxR3z0ox8dds7WrVtj7ty5/T/39PTELbfcEk8++WQcPHgwLrroorjxxhtj5syZA573/PPPx2233RYvvfRSnHTSSdHa2hqrVq2KJEmyfXEAAAAAAAAATAg1F8b/f//f/xd79+4d8NiXvvSleOKJJ2Lx4sX9jy1cuDCuu+66AfNOP/30AT+vW7cuXnvttdiwYUNMmTIl7rrrrli1alU88sgjUVd3+K15/fXXY+XKldHS0hLr1q2Ll19+OW6//fbI5XKxcuXK4/QqAQAAAAAAAKhlNRfGv+c97xn02DXXXBMtLS0xY8aM/seamppi/vz5w9bZsWNHfOc734m2trZYsmRJRETMnj07li9fHk888UQsX748IiLa2tpi+vTpcccdd0R9fX0sXrw4du/eHffee29cccUVUV9fn+0LBAAAAABqSpomkaZDn6JZLJaiWCxVuCMAAKpBzd8Z//zzz8ePf/zj+NjHPnZUz9u2bVs0NTVFS0tL/2Nz5syJefPmxbZt2wbMW7Zs2YDQffny5dHd3R07duw49hcAAAAAANSsJEkin2+M6dPfNeSffL6xP6yvq0uH/XMkzB9p3nCBPwAA1anmdsb/vMceeywaGxtj2bJlAx5/7rnnYv78+dHX1xfnn39+XH311fG+972vf7y9vT1mz5496N73OXPmRHt7e0RE9Pb2xptvvhlz5swZNCdJkmhvb49FixYdU/91dTX/fQgAgIrL5Ub/N1S5H1SWM288alV6vWqtVen1qrVWpdeb6LVqufcsa9Vy71nWquXes6xVy71nXavS61VrrUqvV621ylFXl0Yul8bGzdujo7MwYGzWzOZY09oS9fV10dhYP+K/Y/v6irF379sxdeqUYef19RWjp2d/lEp22gMAHC/lfPZYrpoO4w8dOhSPP/54XHzxxdHY2Nj/+Pve9774+Mc/HmeddVZ0dnZGW1tb/OEf/mF8+ctfjgULFkRERHd3d0ybNm1Qzebm5njxxRcjIqKnpyciDh95/0719fXR0NAQhUJh0POPRpomMX36u46pBgAAQ5s69cTM5o1HrUqvV621Kr1etdaq9HoTvVYt955lrVruPctatdx7lrVqufesa1V6vWqtVen1qrXW0azX0VmIXR17hpwzbdrhOUMF9hE/C+2bmxuGnXdkTj7fOOj5AABUp5oO47dv3x67d++Oyy67bMDja9euHfDzBz7wgbjsssviC1/4QmzatKmSLY6oWCxFd3fveLcBAFBzcrk0mpoaRpyzd+/+sj5kLWfeeNQqR7X27n3IvlY5qrX3aqxVy71nWauWe8+yVi33nmWtWu4961rlqNbevQ/Z1yrH0aw3UmBf7rzu7n3R11c8pp4BABheOZ89lqumw/jHHnss8vl8LFmyZMR5jY2N8f73vz/+4R/+of+xpqameOuttwbNLRQK0dzcHBHRv3P+yA75Iw4cOBD79u3rn3csDh3yD2cAgHc6cp/mcIrFUkSM/m+ow/NGV8688ahV6fWqtVal16vWWpVeb6LXquXes6xVy71nWauWe8+yVi33nnWtSq9XrbUqvV611qr0euXM6+sr+kwRAKBG1GwYv3///njyySfj137t1+KEE0446ufPmTMnnn322SiVSgPujd+5c2ecffbZEXE4xD/11FP775B/55xSqTToLnkAAI5NmiaRzzeOepdmT8/+CnYFAAAAAHD0ajaM/8d//Mfo7e2Nj33sY6PO7e3tjX/6p3+Kc889t/+xpUuXxhe+8IV49tln4z//5/8cEYdD9h/96EfxR3/0RwPmPfXUU/Fnf/Zn/aH/1q1bo6mpqf/+eQAAspGmSeRy6ah3aY60cx4AACa6ck6TynL3PwAAY1OzYfyjjz4ap512Wrz3ve8d8Pj3vve9eOCBB+KSSy6JWbNmRWdnZ3zxi1+Mf//3f4+/+Iu/6J+3YMGCWLJkSdxwww1x3XXXxZQpU+LOO++Mc845Jz70oQ/1z1u5cmU8+uijcc0110Rra2u88sor0dbWFuvXr4/6+vqKvV4AgMlktLs0AQBgskqSJPL5hlFPk+rq6hXIAwCMs5oM4wuFQnz729+OP/iDPxhwxHxExMknnxwHDx6MO++8M7q6uqKhoSEWLFgQn/vc5+K8884bMPeuu+6KW265JW666aY4dOhQLFmyJG688caoq/vZ23LmmWdGW1tb3HrrrXHVVVfFjBkzYu3atbFixYqKvFYAAAAAgCOO5jQpYTwAwPiqyTC+ubk5XnzxxSHHjoTn5Zg2bVrcfPPNcfPNN484b+HChbFly5aj7hMAAAAA4HhwmhQAQPWryTAeAAAAAICRjXS3vHvlAQCOP2E8AAAAAMAEM9rd8u6VBwA4/oTxAAAAAAATzEh3y7/zXvkjc4djBz0AwNgJ4wEAAAAAJqiR7pYfbfd8hB30AADHQhgPAAAAADAJjbR7PmLgDnphPADA0RPGAwAAAABMYiPtngcAYOyGP38IAAAAAAAAABgTO+MBAAAAABhWkiRRVzf8vq5iseQYewCAIQjjAQAAAAAY1rRpJ0YuN3wY39dXjK6uXoE8AMDPEcYDAAAAADCsXC6NjZu3R0dnYdDYrJnNsaa1JdI0EcYDAPwcYTwAAAAAACPq6CzEro49490GAEBNGf5sIQAAAAAAAABgTOyMBwAAAADgmKVpEmmaDDlWLJYcYw8ATDrCeAAAAAAAjkmSJJHPN0QuN/RhrH19xejq6hXIAwCTijAeAAAAAIBjkqZJ5HJpbNy8PTo6CwPGZs1sjjWtLZGmiTAeAJhUhPEAAAAAAGSio7MQuzr2jHcbAABVQRgPAEDFjHSHZMThoy0BAAAAACYCYTwAABWRpknk843D3iEZcfgeSQAAAACAiUAYDwBARYx0h2TEz+6RBAAAAACYCITxAABUlDskAQAAAIDJQBgPAAAAAEBFpGkSaZoMO14slqJYLI0478gcAIBqJ4wHAAAAAOC4S5Ik8vmGyOXSYef09RWju3tfNDUNP6+vrxhdXb0CeQCg6gnjAQAAAAA47tI0iVwujY2bt0dHZ2HQ+KyZzbGmtSVyuXTYeUfmHNk1X84uewCA8SKMBwAAAACgYjo6C7GrY88xzSt3l70d9ADAeBLGAwAAAABQU8rdZZ+miTAeABg3wngAAAAAAGpSubvsAQDGw/Bn+AAAAAAAAAAAY2JnPAAAAAAAk1qaJpGmybDjxWLJcfcAwFETxgMAAAAAMGGNFLQfCdjz+cbI5YY/SLavrxhdXb0CeQDgqAjjAQAAAACYkJIkiXy+Ydigva+vGD09+yOXS2Pj5u3R0VkYNGfWzOZY09oSaZoI4wGAoyKMBwAAAABgQkrTZNig/Z0he0RER2chdnXsGY82AYAJShgPAAAAAMCEJmgHAMbD8JfgAAAAAAAAAABjIowHAAAAAAAAgIw5ph4AAAAAAEaRJEnU1Q2/v61YLEWxWKpgRwBAtRPGAwAAAADAKKZNOzFyueHD+L6+YnR19QrkAYB+wngAAAAAABhFLpfGxs3bo6OzMGhs1szmWNPaEmmaRET0//3z7J4HgMlFGA8AQCbSNBnxAycAAIBa19FZiF0de4YdT5Ik8vmGYXfQ2z0PAJOLMB4AgGOWpknk840jfuDU07O/wl0BAABUVpomw+6gf+fueWE8AEwOwngAAI5ZuR84AQAATAaj7aAHACYHYTwAAJnxgRMAAMDoRrrmK8Ld8gAwUQjjAQAAAACgQka7Vz7C3fIAMFEI4wEAAAAAoEJGuuYrwt3yADCRCOMBAAAAAKDCXPMFABOfMB4AAAAAAGqU++cBoHoJ4wEAAAAAoAalaRL5fKP75wGgSgnjAQAAAACgBrl/HgCqmzAeAAAAAACq0EhH0L8zXHf/PABUJ2E8AAAAAABUmSRJIp9vGPYI+r6+YvT07K9wVwDA0RDGAwAAAABAlRnpCPp3Hj8PAFQvYTwAAAAAAFSprI6gH+3Ie3fKA0D2hPEAAIxopA9sIsIHNgAAAFWunCPvu7p6/X4HABkTxgMAMKw0TSKfbxz2A5sI9xQCAABUu3KPvBfGA0C2hPEAAAxrpA9sItxTCAAAUEtGO/K+nJPRBPYAUD5hPAAAo8rqjkIAAACq02hH2Uc4zh4AjpYwHgAAAAAAJrmjORlNGA8A5RHGAwAAAAAAEeFkNADI0vDnzQAAAAAAAAAAY2JnPAAAAAAAUJYkSaKubvh9fsViyTH2APD/COMBAAAAAICyTJt2YuRyw4fxfX3F6OrqFcgDQNRgGP8//+f/jM985jODHl+1alVce+21/T9/7WtfiwceeCB+8pOfxOzZs2P9+vXxq7/6qwOe09PTE7fccks8+eSTcfDgwbjooovixhtvjJkzZw6Y9/zzz8dtt90WL730Upx00knR2toaq1atiiRJjs+LBAAAAACAKpTLpbFx8/bo6CwMGps1sznWtLZEmibCeACIGgzjj3jggQdi2rRp/T+fcsop/f/33//938dnP/vZ+OM//uO48MILY+vWrfGpT30qHn744Zg/f37/vHXr1sVrr70WGzZsiClTpsRdd90Vq1atikceeSTq6g6/Na+//nqsXLkyWlpaYt26dfHyyy/H7bffHrlcLlauXFmx1wsAAAAAANWgo7MQuzr2jHcbAFD1ajaM/4//8T/GjBkzhhy7++6746Mf/WisW7cuIiIuvPDCeOWVV2Ljxo2xadOmiIjYsWNHfOc734m2trZYsmRJRETMnj07li9fHk888UQsX748IiLa2tpi+vTpcccdd0R9fX0sXrw4du/eHffee29cccUVUV9ff/xfLAAAAAAAAAA1ZfiLXWrUG2+8Ebt27YpLL710wOPLly+PZ599Ng4cOBAREdu2bYumpqZoaWnpnzNnzpyYN29ebNu2rf+xbdu2xbJlywaE7suXL4/u7u7YsWPHcX41AAAAAAAAANSimt0Zf9lll8WePXvitNNOi9/5nd+JP/qjP4pcLhft7e0RcXiX+zvNnTs3Dh48GG+88UbMnTs32tvbY/bs2YPufZ8zZ05/jd7e3njzzTdjzpw5g+YkSRLt7e2xaNGiY3oddXUT7vsQAMAEksuV92+VNE0ymVOuLNer1lqVXq9aa1V6vWqtVen1JnqtWu49y1q13HuWtWq59yxr1XLvWdeq9HrVWqvS61VrrUqvV621Kr1etdaq9HrVWqsc5f4uCQDVKMv/Hau5MP7kk0+OT3/603H++edHkiTxj//4j3HXXXfFv/3bv8VNN90UhUIhIiKampoGPO/Iz0fGu7u7B9w5f0Rzc3O8+OKLERHR09MzZK36+vpoaGjorzVWaZrE9OnvOqYaAADVYOrUEzOZMx7rVWutSq9XrbUqvV611qr0ehO9Vi33nmWtWu49y1q13HuWtWq596xrVXq9aq1V6fWqtVal16vWWpVer1prVXq9aq1VjqamhsxqAUAtq7kw/qKLLoqLLrqo/+clS5bElClT4ktf+lL88R//8Th2dvSKxVJ0d/eOdxsAAMPK5dKyPkTZu3f/qB/clDOnXFmuV621ylGtvXsfsq9VjmrtvRpr1XLvWdaq5d6zrFXLvWdZq5Z7z7pWOaq1d+9D9rXKUa29ex+yr1WOau290u9Dd/e+KBZLw+62LxZLUSqVMlkLALJW7mei5ai5MH4ol156aTz44IPx0ksvRXNzc0Qc3tV+8skn98/p7u6OiOgfb2pqirfeemtQrUKh0D/nyM75Izvkjzhw4EDs27evf96xOHSoeMw1AADGW7E4+oco5cwZj/WqtVal16vWWpVer1prVXq9iV6rlnvPslYt955lrVruPctatdx71rUqvV611qr0etVaq9LrVWutSq9XrbUqvV611ip3vWnTThz2mN++vmJ0dfVmuiYAVKMJEca/05H73dvb2wfc9d7e3h4nnHBCnHHGGf3znn322SiVSgPujd+5c2ecffbZERHR2NgYp556av8d8u+cUyqVBt0lDwAAAAAAk12aJpHLpbFx8/bo6Bx43eusmc2xprUl0jQRxgMw4WV3+/w42rp1a+RyufjlX/7lOOOMM+Kss86Kb37zm4PmLF68OOrr6yMiYunSpVEoFOLZZ5/tn7Nz58740Y9+FEuXLu1/bOnSpfHUU0/FwYMHB9RqamqKBQsWHOdXBgBwfKVpEnV16ZB/hjtOEAAAAMrR0VmIXR17Bvz5+XAeACaymtsZv3Llyli0aFGcc845ERHx1FNPxZYtW+KTn/xk/7H0n/70p+Paa6+Nd7/73bFo0aLYunVrvPDCC/HXf/3X/XUWLFgQS5YsiRtuuCGuu+66mDJlStx5551xzjnnxIc+9KEB6z366KNxzTXXRGtra7zyyivR1tYW69ev7w/2AQBqUZomkc83jnhsYE/P/gp3BQAAAAAwMdRcGD979ux45JFH4q233opisRhnnXVW3HDDDXHFFVf0z7nsssti3759sWnTprj//vtj9uzZ8fnPf37QTva77rorbrnllrjpppvi0KFDsWTJkrjxxhujru5nb8uZZ54ZbW1tceutt8ZVV10VM2bMiLVr18aKFSsq9poBAI6Hco8NBAAAgOMhTZMRf+8sFktRLJZGnHdkDgBUo5oL42+88cay5l1++eVx+eWXjzhn2rRpcfPNN8fNN9884ryFCxfGli1byu4RAKCWHDk2EAAAAColSZLI5xuGPa0t4vCJbd3d+6Kpafh5fX3F6OrqFcgDUJVqLowHAAAAAABq20intUX87MS2XC4t61Q3YTwA1UgYDwAAAAAAjItyT2sbbZ4j7wGoRsJ4AAAAAACgZjnyHoBqJYwHAAAAAABqliPvAahWwngAAAAAAKDmZXXkPQBkRRgPAAAAAADw/5R7//yx1nJHPcDEJ4wHAAAAAACI8u+fL+du+TRNIp9vdEc9wCQmjAcAAAAAAIjy758v5275kWq5ox5gchDGAwAAAAAAvEOW98q7ox5g8hLGAwAAAAAAHIUkSaKubvij7I9mt3uWd9QDUF2E8QAAAAAAAEdh2rQTR71Xvqdn/6h1sryjHoDqI4wHAAAAAAA4CuXeKz+aLO+oB6D6COMBACagco64AwAAAMbOvfIAjEYYDwAwwaRpEvl8YybH5QEAAADVYaQv3rtXHqA6CeMBACaYozniDgAAAKh+o90t7155gOokjAcAmKAccQcAAAATw0hfvB/LvfJ22QNUhjAeAAAAAACgBoz2xfuRQvaI6A/ZR7rezi57gOwI4wEAAAAAAGrcaEfZRxwO2nt69pe1yz4iRg32BfYAIxPGAwAAAAAA1LiRjrKPGBy0j7TLvtxgv7t734g9CeyByU4YDwAAAAAAMEGMdpR9OcoN9puaRg/sHXkPTGbCeAAAAAAAAAYZLdgvdye+MB6YrITxAAAAAAAAjEkWO/EBJqrhzw4BAAAAAAAAAMZEGA8AAAAAAAAAGRPGAwAAAAAAAEDG3BkPAAAAAADAcZOmSaRpMuRYsViKYrFU4Y4AKkMYDwAAAAAAwHGRJEnk8w2Ryw19WHNfXzG6unojIoYN7COE9kBtEsYDAAAAAABwXKRpErlcGhs3b4+OzsKAsVkzm2NNa0vkcmlMm3bisIF9xM9Ce4E8UEuE8QAAAAAAABxXHZ2F2NWxZ8ixkQL7iJ+F9kd2zjvyHqgVwngAAAAAAADG3UiBfUT5R94L5IFqIYwHAKgxaZqM+A1wAAAAgImonCPv0zTx+QhQNYTxAAA1JE2TyOcbR/wGeE/P/gp3BQAAAFA5o+2gB6gWwngAgBpS7jfAAQAAACarkU4VjHC3PFA5wngAgBrkG+AAAAAAg412r3yEu+WByhHGAwAAAAAAMCGMdKpghLvlgcoSxgMAAAAAADChOFUQqAbDn9EBAAAAAAAAAIyJMB4AAAAAAAAAMuaYegAAAAAAACadNE0iTZMhx4rFkjvlgWMmjAcAAAAAAGBSSZIk8vmGyOWGPkS6r68YXV29AnngmAjjAQAAAAAAmFTSNIlcLo2Nm7dHR2dhwNismc2xprUl0jQRxgPHRBgPAFAlRjoaLSL88gcAAACQsY7OQuzq2DPebQATlDAeAKAKpGkS+XzjsEejRRw+Hq2nZ38FuwIAAAAAYKyE8QAAVWCko9EiBh6PBgAAAABA9RPGAwBUEUejAQAAAABMDMJ4AAAAAAAAGEKaJiOeVFgslqJYLFWwI6CWCOMBAAAAAADg5yRJEvl8Q+Ry6bBz+vqK0dXVK5AHhiSMBwAAAAAAgJ+Tpknkcmls3Lw9OjoLg8ZnzWyONa0tkaaJMB4YkjAeAAAAAAAAhtHRWYhdHXvGuw2gBg1/rgYAAAAAAAAAMCbCeAAAAAAAAADImDAeAAAAAAAAADLmzngAgApI0yTSNBl2PEmGHwMAAACgeiVJEnV1w+9/LRZLUSyWKtgRUC2E8QAAx1maJpHPN0YuN/wvZX19xQp2BAAAAEBWpk07cdTPfbq6egXyMAkJ4wEAjrM0TSKXS2Pj5u3R0VkYND5rZnOsaW0Zh84AAAAAOFblfO6TpokwHiYhYTwAQIV0dBZiV8ee8W4DAAAAgIz53AcYyvBnZgAAAAAAAAAAYyKMBwAAAAAAAICMOaYeAAAAAAAAjrM0TSJNkyHHisWSO+VhAhLGAwAAAAAAwHGUJEnk8w2Ryw19aHVfXzG6unoF8jDB1FwY//jjj8c3vvGN+OEPfxjd3d1x5plnxhVXXBG/9Vu/FUly+NtEV1xxRTz33HODnrt169aYO3du/889PT1xyy23xJNPPhkHDx6Miy66KG688caYOXPmgOc9//zzcdttt8VLL70UJ510UrS2tsaqVav61wMAJrfRvtUMAAAAwOSWpknkcmls3Lw9OjoLA8ZmzWyONa0t/Z8vDfc5U4Qd9FBrai6M/6u/+quYNWtWXH/99TF9+vT4X//rf8VnP/vZeOutt+JTn/pU/7yFCxfGddddN+C5p59++oCf161bF6+99lps2LAhpkyZEnfddVesWrUqHnnkkairO/zWvP7667Fy5cpoaWmJdevWxcsvvxy333575HK5WLly5fF/wQBAVUvTJPL5xhG/1dzTs7/CXQEAAABQjTo6C7GrY8+QY6Ptno+wgx5qTc2F8X/5l38ZM2bM6P958eLF0dXVFV/84hfjT/7kTyJND/8XVFNTU8yfP3/YOjt27IjvfOc70dbWFkuWLImIiNmzZ8fy5cvjiSeeiOXLl0dERFtbW0yfPj3uuOOOqK+vj8WLF8fu3bvj3nvvjSuuuCLq6+uP34sFAKre0XyrGQAAAACGM9LnTBEDP2sSxkNtGP6rNVXqnUH8EfPmzYu9e/dGb29v2XW2bdsWTU1N0dLS0v/YnDlzYt68ebFt27YB85YtWzYgdF++fHl0d3fHjh07xvgqAICJ5si3mt/5Z6hfmgAAAABgJEN9zuSzJqhNNbczfij//M//HKecckpMnTq1/7Hnnnsu5s+fH319fXH++efH1VdfHe973/v6x9vb22P27NmD7n2fM2dOtLe3R0REb29vvPnmmzFnzpxBc5Ikifb29li0aNEx9V5XV3PfhwAA3mGkY8OOyHJnfDm1yl2vWmtVer1qrVXp9aq1VqXXq9ZalV5voteq5d6zrFXLvWdZq5Z7z7JWLfeeda1Kr1ettSq9XrXWqvR61Vqr0utVa61Kr1ettSq9XrXWqvR61Vqr0utVa61Kr1fO51HA2GX5n7GaD+O/973vxdatWwfcD/++970vPv7xj8dZZ50VnZ2d0dbWFn/4h38YX/7yl2PBggUREdHd3R3Tpk0bVK+5uTlefPHFiIjo6emJiMNH3r9TfX19NDQ0RKFwbN9AStMkpk9/1zHVAACq39SpJ1a0VrnrVWutSq9XrbUqvV611qr0etVaq9LrTfRatdx7lrVqufcsa9Vy71nWquXes65V6fWqtVal16vWWpVer1prVXq9aq1V6fWqtVal16vWWpVer1prVXq9aq1V6fWamhqOtR2gQmo6jH/rrbdi/fr1sWjRovjkJz/Z//jatWsHzPvABz4Ql112WXzhC1+ITZs2VbrNYRWLpejuLv9ofQCg+uRy6ai/AO3duz+zX97KqVXuetVaqxzV2rv3Ifta5ajW3r0P1VurlnvPslYt955lrVruPctatdx71rXKUa29ex+yr1WOau3d+5B9rXJUa+/eh+xrlaNae/c+ZF+rHFmu19OzPxob64fdvdvXV4y9e9+OqVOnjLjDt6+vGD09+yNi+F35xWIpSiX30zO5lPOZb7lqNozv7u6OVatWRT6fj3vuuSfSdPj/MmlsbIz3v//98Q//8A/9jzU1NcVbb701aG6hUIjm5uaIiP6d80d2yB9x4MCB2LdvX/+8Y3HoUPGYawAA1a1YzO4XlnJqlbtetdaq9HrVWqvS61VrrUqvV621/v/27jy+qure//87CdKCyKBXqeJQpRpkcAgaQDAQSknAIGgCiARFvCrSKvC1Kg6VWpTaaEWlDu0VcaBYaSlqL4gXHKAPA2itA0IQQQUVZUggDCERks/vj/zO7jkZV2BzztnJ6/l45PFIzvnks9b5ZGXnZK+914p2e409V5D77meuIPfdz1xB7rufuYLcd79zRbu9eM0V7fbiNVe024vXXNFuL15zRbu9eM0V7fbiNVe024vXXNFuL15zRbs9M1NSUqIef/GdavvIdzihjX4+qrcSElRrTHicJB1zzA/rnNjftavE11oATUkgJ+NLS0t1ww03aM+ePXrppZdqXG6+PmeccYZWrFghM4vYN/6LL77QWWedJalyEv/EE0/09pAPjzGzanvJAwCAxiUxMaHOvbr4JwQAAAAAAACx8s22Yn35zc7DiklMTKh3Yj8xMYHzYMAh8m/3+Sg5ePCgJk2apM8//1xPP/202rdvX+/3lJSU6O2331a3bt28x9LS0lRcXKwVK1Z4j33xxRdau3at0tLSIuLeeOMNHThwwHts0aJFat26tbf/PAAAaHwSExPUtm1LtWt3dK0fbdu2jLioDwAAAAAAAAii0KR9+Ef45HxiYoKaNUus9aOuG1qApixwd8bfe++9euuttzRlyhTt3btXH374ofdc586d9fHHH+vpp5/Wz372M3Xo0EHbtm3T7NmztX37dj366KNe7Pnnn68+ffrozjvv1O23364f/OAHmjFjhpKTkzVw4EAv7tprr9U//vEP3XLLLRo1apTWr1+vWbNmafLkyWrevHk0XzoAAIiiuq4KliKvDAYAAAAAAAAaq4SEBLVt26Le/edZzh6oLnCT8e+8844k6YEHHqj23BtvvKHjjz9eBw4c0IwZM7Rr1y61aNFC559/vu69916dc845EfGPPPKIfvvb3+qee+7RwYMH1adPH919991q1uw/ZTnttNM0a9YsPfDAA7r++ut17LHH6uabb9a4ceOO7AsFAABxwWW5LwAAAAAAAKCxashNK0zGA5ECNxn/5ptv1hsza9Ysp1zHHHOMpk+frunTp9cZl5KSonnz5jnlBAAAAAAAAAAAABqb+m5aSUioXMq+NhUVxmQ9mpzATcYDAAAAAAAAAAAAiC/HHPNDlrIHqmAyHgAAAAAAAAAAAMBhYSl7oDom4wEAAAAAAAAAAAActvqWsgeaGibjAQBAk5SYmKDExIQan+PqXAAAAAAAAODIqO+8HOfm0JgwGQ8AAJqcxMQEtW3bstY9rMrLK7RnT2mUewUAAAAAAAA0bgkJCWrbtkWd5+XYVx6NCZPxAACgyUlMTKh1D6vw/asAAAAAAAAA+Mf1vFy8TsbXdVe/xJ39qI7JeAAA0GSxhxUAAAAAAAAQffWdl4vFpLfLtpZ1rbYpcWc/qmMyHgAAAAAAAAAAAEBcqG8pe+k/k96SfNl/3nVby9ru6peCcWc/oo/JeAAAAAAAAAAAAABxoa6l7KX/THonJSXqmGN+WO/+86GctamosAZta8lqm2gIJuMBAAAAAAAAAAAAxBWXpezrm0Cvb8Je+s9d7y5tAg3FZDwAAGhUXPaTAgAAAAAAANA41DWB7nqXfV3nE4HDwWQ8AABoNOrb20mKvNIVAAAAAAAAQOMXzTveExIS1KxZ7ecnG7KXPYKPyXgAANBocKUrAAAAAAAAgFhyWRZ/164SJuSbCCbjAQBAo8PeTgAAAAAAAABiwfVmISbjmwYm4wEAAAAAAAAAAADAJy43CyUmJtS6gidL2TceTMYDAIDAqO8NKgAAAAAAAADEu4SEBLVt26LW5exZyr7xYDIeAAAEQmJigtq2bVnnG9Q9e0qj3CsAAAAAAAAAaJjExIRal7MPX8o+FFsb7qCPf0zGAwCAQGjIG1QAAAAAAAAAiHd1LWdf393zEnfQBwGT8QAAIFBc9lsCAAAAAAAAgCCr6+YkKfIGJSbj4xeT8QAAAAAAAAAAAAAQh7g5KdhqX9cAAAAAAAAAAAAAAAAcEu6MBwAAAAAAAAAAAICASkxMUGJiQo3PVVQYy9jHEJPxAAAg5up6syiJN4sAAAAAAAAAUIOEhAS1bdtCSUk1L4heXl6hXbtKOMcaI0zGAwCAmEpMTFDbti1rfbMoVb5h3LOnNIq9AgAAAAAAAID4l5iYoKSkRD3+4jv6ZltxxHMdTmijn4/qrcTEBOfJeJe77F1urmLyvxKT8QAAIKbqerMoRb5hBAAAAAAAAABU9822Yn35zc5an3ddnbSuG6fKyyu0e/d+tW5d+534oTjuxq/EZDwAADii6nuTl5BQ+Vx9bxYBAAAAAAAAAA1X31L20n9WJ63vLvukpESnm6uSkhKVmFj7ZHxTuXueyXgAAHDEuC5BDwAAAAAAAAA4Mhq6OqnLjVP1xRxzzA+d7p4P9a8mjWHCnsl4AABwxLi+yQMAAAAAAAAAHFnRXJ3U9e75uibtG8Ny90zGAwCAI44l6AEAAAAAAACgaXHZx76+ZfFDd83Xt999vE7YMxkPAAAOWV37wcfrmx8AAAAAAAAAQPyoa9Ledb/7eF3ynsl4AABwSOrbD768vEJ79pRGuVcAAAAAAAAAgMbCdSvUeF3ynsl4AABwSBqyhBAAAAAAAAAAAIfKryXvmYwHAACBwn7wAAAAAAAAAIB4EG/nq5mMBwAA1dS1F7zEfvAAAAAAAAAAgOCJ9rlvJuMBAECE+vaCl9gPHgAAAAAAAAAQLAkJCWrbtkVUz30zGQ8AQBNT15V/FRVW5946EvvBAwAAAAAAAACCJxbnvpmMBwCgCanvrvfwq/7ibW8dAAAAAAAAAAAOVzTPfTMZDwBAE1LXlX/c8Q4AAAAAAAAAgH+YjAcAoJGoa/l5qXIJ+hDuegcAAAAAAAAA4MhiMh4AgEagvuXnpcgl6AEAAAAAAAAAwJHFZDwAAI1AXcvPSyxBDwAAAAAAAABAtDEZDwBAI8Ly8wAAAAAAAAAAxAcm4wEACIC69oMP3wseAAAAAAAAAADEBybjAQCIc/XtB89e8AAAAAAAAAAAxB8m4wEAiKG67niXKu96r2s/ePaCBwAAAAAAAAAgPjEZDwBAjNR3x7sUedc7+8EDAAAAAAAAABAcTMYDAHCE1HfXe0JC7Xe8S9z1DgAAAAAAAABAkDEZDwDAEeB617vEHe8AAAAAAAAAADRGTMYDAHAE1LXPu/Sfu94BAAAAAAAAAEDjxGQ8AABh6ltavqLCVFFhdcZVVJj3OXe9AwAAAAAAAADQNDEZDwDA/891afndu/erdesWtcaVl1doz57SI9VNAAAAAAAAAAAQAEzGAwCajPruZnddWj4pKbHWuFBMXXfXAwAAAAAAAACAxo/JeABA4LksLS+pzrvew+9md11aniXoAQAAAAAAAABAbZiMBwAEmuvS8nv2lHI3OwAAAAAAAAAAiBom4wEAcc2vpeVDObibHQAAAAAAAAAARAOT8QCAmIjV0vIAAAAAAAAAAADRwGQ8AKBB6rtTPXS3en1Lvrdu3YKl5QEAAAAAAAAAQKPFZDwAwFl9+7OXl1do9+79ThPtLC0PAAAAAAAAAAAaMybjAQCS3JaNr2t/9tAEelJSotNEu8QkOwAAAAAAAAAAaLyYjAeAAHOZQK9v2XiXvdmlhu/PzkQ7AAAAAAAAAABoypiMd7Rx40bdd999+uCDD3T00Udr6NChmjRpkpo3bx7rrgEImGhPoNe3bHx9e7NL7M8OAAAAAAAAAADQUEzGOyguLtbVV1+tH//4x5o5c6a2bt2qBx54QKWlpbrnnnti3T0Ah8mvyfH6YkJc9lP3cwK9rmXj2ZsdAAAAAAAAAADgyGAy3sFf/vIX7du3T3/4wx/Utm1bSVJ5ebnuvfde3XDDDWrfvn1sOwgERDQnvWNxd3l9MaG4WE2gM9EOAAAAAAAAAAAQPUzGO1i+fLl69erlTcRL0qBBgzR16lS98847uvzyy2PXOcScy6RwKK6umGhPQkc7l+TfHeGuk97Rvru8rpjwOIkJdAAAAAAAAAAAgMYuwcws1p2Id7169VJ2drZ++ctfRjx+8cUXa+jQodUed2VWOYmZUMv8ZfhPprYY17hY5gpy311yJSYmKKGOZKFfsfpizEwJCbXncomJ91wJCQnaV/K9yisqqj2flJioo1s2V0VFhRITE2uMc4k51FzFe0tVXl5DrqREtWn1wzrjXGLC4yRFtb14zUUdqAN1oA7UgTpQB+oQ7VxB7jt1oA7UgWMudaAO1CH2uagDdaAO1IE6UAfqQB3CX58LJuMddOnSRRMnTtT1118f8XhWVpbOP/98TZs2LUY9AwAAAAAAAAAAAADEo9rXeAYAAAAAAAAAAAAAAIeEyXgHrVu31p49e6o9XlxcrDZt2sSgRwAAAAAAAAAAAACAeMZkvIMzzjhDn3/+ecRje/bs0fbt23XGGWfEqFcAAAAAAAAAAAAAgHjFZLyDtLQ05efna/fu3d5jixcvVmJionr37h3DngEAAAAAAAAAAAAA4lGCmVmsOxHviouLdckll+j000/XDTfcoK1bt+qBBx7QkCFDdM8998S6ewAAAAAAAAAAAACAOMNkvKONGzdq2rRp+uCDD3T00Udr6NChmjx5spo3bx7rrgEAAAAAAAAAAAAA4gyT8QAAAAAAAAAAAAAA+Iw94wEAAAAAAAAAAAAA8BmT8QAAAAAAAAAAAAAA+IzJeAAAAAAAAAAAAAAAfMZkPAAAAAAAAAAAAAAAPmMyHgAAAAAAAAAAAAAAnzEZDwAAAAAAAAAAAACAz5iMBwAAAAAAAAAAAADAZ0zGAwAAAAAAAAAAAADgs2ax7kBT99VXX2nLli2SpJNOOkmnnHJK1NouKirSp59+qo4dO+qEE06QJO3evVutW7d2+v6SkhI1b95czZo1065du1RQUKDTTz9dP/rRjyLiCgoK9M033ygpKUk/+clPanyNsayDJBUXF6tNmzZ1xvzlL3/RFVdccdhtxVPdy8vL9e677+rbb7+VJJ144olKTU1VUlJSvf3YuXOn2rVrF/FYRUWFEhMjr/GprbYHDx7U+vXrdcopp+iYY46ps61HHnlEkyZNqjOmvp/hp59+qtWrVys5OVndunXzHl+/fr3OOuusOnNL0saNG9W2bVsdd9xx2rhxo/7973/rrLPO0rnnnhsR9/3332v58uX6+uuv1axZM/3kJz9Rz549I2KaUt2lmmsftLpL1WvfkLpL7rWPh7pLbrV3qTsAAAAAAEEQhPM1LucM6monhPNklZryebLi4mItWbIkou4DBgxQ27Zt6+2HJK1bt06dOnWSJJWWlqqoqEgnnXRSRMxnn32mM8880/t6165dqqio0LHHHqvi4mK9++676tixo84444xa27njjjv029/+ttbn9+/fry+++EKnnnqqWrVqFVGDo446SgkJCZKkZcuW6cMPP1SnTp2UkZEhSXrrrbd08cUXq1mz+qfJli9frhNOOEGdOnXSihUrtGrVKp111lkaPHiwF7Nt2zYtWrRI33zzjVf3IUOGqHnz5hG5/BzzsTw/WV9bUnSONa7nJw9nzIePd8ltzB/KeJcObcy7jHfJfcy7jHfJbczH8px8LI7xtTLExIYNGyw7O9t69+5tOTk5lpOTY71797bs7Gxbv369U46BAweamdmiRYu8xwoLC+26666zlJQUy83NtW+++cZ77tZbb7UdO3aYmVl+fr716NHDsrOzrWfPnrZkyRIzM+vSpYuNHz/e3njjDSsvL6+17QULFli3bt0sLS3N8vPzvb6npqbawoULzcysoKDAsrKyLCUlxTp16mRZWVl24YUX2k033WR79uzxvQ6bNm2y3Nxc69+/v02fPt1KS0u9mBEjRnifr1271i699FIbNmyYrV+/3q677jo755xzrG/fvlZQUGBmZkuXLq32cdFFF3mfB73uZmbvvfeepaWl2fDhw23ixIk2ceJEy8nJsbS0NHv33XfrrXvfvn29zz/++GNLT0+3Ll262IQJE6ywsNB7btiwYd5rT01NtdTUVFu1apVlZ2dbZmam93XIc889V+0jNTXV+9zM7Nlnn/XiN2/ebIMHD7Zu3bpZenq6rVu3zszMrrrqKq/uCxcutD59+tjNN99s6enp9uKLL3rfn5ycbEOGDLHnnnvOdu7cWeNr/Z//+R/r1auX9e3b115++WXr27ev3XzzzdavX7+IvqxYscL69etnQ4YMsa5du9rYsWNt0KBBlp2dbd99912TqLtr7YNW9/Dau9TdtfbxWHfX2rvUPdzmzZtt5cqVtnLlStu8ebNTzf2ya9cup7jwY8PhKCwstPz8fNu6dav3WHFxsdP37tu3zw4cOGBmZjt37rT8/Hz79ttva4xdu3atLVmyxN58881aaxrLupu51T4e6m7mXnuXuh88eNDy8/Nt/vz5Nn/+fMvPz7eDBw869aOoqCji65reF9RV1wMHDtiaNWts9+7ddbYzY8YMp/7U9zNct26d/fWvf7WPP/444vFPP/3UKf+GDRu8Y9eGDRts3rx59uGHH0bElJWV2ZIlS2z27Nn2wgsv2IoVK2rN11SONTWNd7PYHGsOZ7ybHd6Ydx3vZm5j3uVnWNOYdx3vZv6OeY7xsTnGm8X/seZI1t0seMeaqscZs8Z9rHE5zpi5HWtieYw38/d9TdCO8UEY80F6P2lWf+3j8XyNyzkDM86T+V1319oH+TzZ4sWLrVevXjZp0iTLy8uzvLw8mzhxol100UW2ePHieuseXvt//vOf1r17d0tJSbFhw4bZl19+Wa3uodeekpJiKSkptnDhQsvKyrJrr73Wevfuba+//rqZmU2fPr3aR/fu3b3Pzczy8vK8nAUFBda7d2/LyMiwnj17RoyZoUOHesfD559/3i655BL73e9+Z9nZ2TZz5kwzM+vUqZP17NnTpk+fXudcxAMPPGBZWVk2aNAg++Mf/+jluvzyy+33v/+99/rS09Nt/Pjx1qNHD5s8ebJde+21lp6ebhs2bPBy+TXmo31+0iw+jzWu5ycPd8yHH2tcxrzLeDfzb8y7jHcztzHvMt5Dr7G+MR/tc/KxOMa7YjI+RnJycmr8JX/ttdcsOzvb+7qgoKDWj969e5tZ5MH1rrvusgcffNC2bdtmzzzzjE2YMMF7bsiQId7no0ePtrVr15pZ5UAaOnSomVVObM+aNcsGDRpkvXv3tgcffNA+//zzav3Mysqyr7/+2goKCqx79+7eG+Yvv/zSa2fkyJH23nvvmVnl5Pa0adOsrKzMHn74Ybvtttt8r8O4ceNszpw5tnr1arv11ltt5MiR3uRz6PWFXvuSJUts/vz51q9fP1uwYIGZmS1ZssSuueYaM6v8YzBy5EjLzc31Prp162a5ubk2ZsyYwNc9lKvqPzpmZh999JFlZWV531/bR8+ePb3vGTVqlL311ltWVFRkM2bMsMzMTO+PXeg15uTk2Nq1a23lypWWmppq+fn5XnujRo3ycp199tk2fvx4mzJlivdx3nnneZ9Xrf3kyZNtzpw5Zlb5R3Xs2LHe6wsZMWKEff3112ZWeRIo/LmsrCxbvHix/fd//7edd955NmnSJHvnnXciajJ48GDbtWuXbdmyxc4991zv5FBhYaFdcsklXtywYcPsiy++8F7XrbfeamZmL730kt14441Nou6utY/HurvW3qXurrWPx7q71t6l7maHf9FV6IIrM7eLrlwuuDKLz4uuXC64MuNiN7/r7lr7aF/sxj/WDfvHurEfa1zGu1n0jzVN4R/reLzYLcjHeDP/xnwsjvHxeKyJdt1dax9PxxomarigOUjHeD9qz6TwoY35eDxf43LOIPxnacZ5Ms6TudU9IyPDvvrqq2p137x5s2VkZHhf1/S7/9xzz9mzzz5rF154oZmZZWdnW0FBgVVUVNi8efMsPT3du5gm/DzZsGHD7LvvvrONGzfaeeed5x0TNm3a5M0DnHvuufbLX/7SZs6c6X1ccMEF3udV637DDTd471E++OADGzlyZI11z87O9iYq9+/f7z03dOhQW716tU2dOtUuuOACGz58uL300ku2d+/eiLoMGjTIysrKbNeuXXbuued6x9J9+/bZ4MGDvfZCj2/evNmbH1i+fLldddVVEf3yY8xH+/xk1drHy7HG9fyky5h3Ge9mbmPeZbyb+TfmXcZ7qH/1jXmX8R5qs74xH+1z8rE4xrtiMj5Gwv8Jr+u55ORk69+/v6Wnp1f76NKli5lFHlyHDBkScaVs+ERweN7LL788os3QwA8fYO+//77deeeddv7559uVV17pTVpXbTM9PT0iV+i5Sy+9NOLx8DZDfTlSdTAze/LJJy07O9t2794d8brC48L/QQnv89/+9jcbOXKkrVmzpt7XaRa8ulf9vKrQc506dbIxY8ZEXJQQfnFCTf0yM3v55Zdt4MCBtmXLFu+1hccMGDCgxr6bVf4TmJOTY2+++WatrzW8XuG1NvvP6x84cKD3Mxk+fHhETPiBPjzXli1b7PHHH7ef/vSnlp6eXuMfvH79+tXa96q1v+yyy7zPGzLmg1z30Ouor/bxWHczt9q71L1qXG21j8e6V42rrfYudTdzu+jK5YIrM7eLrlwuuDKLz4uuXC64MuNiN7/r7lr7aF/sxj/WDfvHurEfa1zGu1n0jzVN4R/reLzYLcjH+Kq1P5wxH4tjfDwea6Jdd9faR/tYw0RNJS5oDv4x3rX2TAq719219vF4vsblnEHo9YVwnuw/OE9Wqaa6/+xnP7PahNelc+fOdvvtt0f87ocfA6q2bVZZu/T0dCsoKKj1PFn4hH/4cxs2bLArr7zSXnjhBe+5uupe9bWGtzFo0CBvgvGKK66wiooK77nQhGJ4rtLSUluwYIHl5uba+eefH3FsC8/bp0+fGtus2pfw3JmZmd7nfo35aJ+frPqa4uVY43p+0mXMu4z38LZDahrzLuPdzL8x7zLeq+aqbcy7jPea+lLTmI/2OflYHONdsWd8jLRr104vv/yyLr30Um9/g4qKCr3yyisR+x+cdNJJmjt3rtq3b18tR9++fSVJZWVl+vTTT2VmSkhIiNhrIbRHhCT16dNH9913nyZPnqyLLrpIr776qoYMGaLly5dX21tHklJSUpSSkqK77rpLCxcu1EsvvaRhw4ZJkhITE/XZZ5+puLhYJSUlev/999W9e3dt3LhR5eXlkqRmzZpp48aN6tixoz788EO1bNnSyx16zX7WobS0NOLx8ePH66ijjtLVV1+tffv2eY+bmfd5jx49Ir4n9Fx2drZ69uypu+++W927d9eNN94YUcug112STjnlFP3hD3/QqFGjdNxxx0mSCgsL9eKLL+rkk0+WJJ122mmaPn2693VNdZcq9ykJ36tj6NChOuqoozR27Fh9//33kip/riGZmZkRuUJ9l6RevXpp9uzZ+s1vfqP/+7//01133VWt9rt379abb74pM9PBgwcjngv9DLOysjR58mTdcsstysjI0JNPPunVvabXI1XuVzJhwgRNmDBBK1as0N/+9jdJUvPmzfX222+ruLhYCQkJWrRokQYPHqyVK1dG1LRly5ZauXKlevbsqcWLF+vYY4+t1kZjr7vU8NrHS90lt9q71F1yq31D6l5RUdGguj/xxBO69NJLG1x3ya32LnUP9T98b6LwmsyYMUOSNGzYMHXo0CHi9YTs2rXL+7ywsFCjR4+WJOXl5empp57S2LFjNXv2bK9ue/fu1YABAyRJjz32mHf8HDBggGbOnOnluv/++/XXv/5Vd9xxhzp37ixJ6t+/v1544YUa6/vxxx9rwYIFSkpK0jXXXKMFCxZ4z5WVlXmf79+/X2effbakynEX+lm3bNlS48aN07hx4/Tvf/9b8+fPV3Z2ts4++2wNHz5cw4YNU1JSkjp06CBJat26tbeX1mmnnRYx5vfv368LLrhAkvTTn/5UTzzxhJo3b67Jkyd7tXapu2vtXeruWvt4rLskp9q71F2q3KcrfB+0kHPOOcc7RvziF7/QhRdeWGPdQ+9ZSkpK1K9fP0nSpEmTdPrpp+uqq67Ss88+G1H3AwcOeK+9devW6tWrl9deSUmJJGnWrFl6+OGHNWLECKWnp0uSVq1aVeceZBs2bNDDDz8sSd4xJfT6ysvLlZSUJDPz6lZ1j7VmzZopIyNDGRkZ+vbbb7VgwQLdc889qqio0OWXX65f/OIXat68udq0aaM2bdqoXbt2OuWUUyRJxx57rLd/WUVFhX784x97r2nDhg2SpBEjRmjWrFlee439WOMy3qXoH2tcxrvk35h3Ge9Sw8d8beM99BrrG/Mu412Sb2M+yMd4yb8xH4tjfDwea6Jdd9faR/tY43KckRr/scblOCO5HWuifYx3rX081l3y7xjvWvtoj/kgv590rX08nq9xOWcgcZ7M77pLjf88Wbdu3XTHHXdo1KhR3p7XW7Zs0YsvvqiuXbt6cWeccYauv/76Gve4zs/Pl1T5/uH777/39oju1auXHnjgAd144406cOBAjfUNvQeq+lzHjh313HPP6fHHH9e4ceM0bdq0anUvLCzU888/LzOLON5JkT/f0aNH67rrrtMvfvEL9evXT1OnTtUll1yi5cuX13iM/cEPfqBhw4Zp2LBh2rRpk/7+9797z7Vu3Vpz5szRnj171K5dO/3pT3/SZZddpn/+859q0aKFJOm4447T/PnzlZaWpldffdU7HplZxGv3a8xH+/ykFJ/HGtfzky5j3mW8S25j3mW8S/6N+YaOd6n2Me8y3iW3MR/tc/KxOMa7YjI+Rn73u9/pnnvu0X333afjjz9eZqbt27erS5cuEW9k+/fvr6+++qreyfgJEyZ4A+C7777Tj370I+3ZsyfiD/Htt9+uhx56SGlpaWrTpo22bNmiO+64Qz179tT9998vqeZB1LJlSw0fPlzDhw/3Hps4caJyc3OVkJCgGTNm6JFHHtG2bdu0Y8cOTZs2zYu58sor1a5dO+3atUuPPfaYJGn79u3eP9s11WHHjh3q3Llzg+vQsWNHLV++XGlpad5z1157rRITE/W73/3Oe+y//uu/tHfvXrVq1Sri8W3btukHP/iB93WHDh30zDPPaPbs2Ro9enTEH7FQ3W+88Ubv61jVffv27dq+fXuD6i5VnvB58MEHNWDAAO9AlJSUpMzMTOXl5UmSLrvsMu3cubPGg+AVV1zhfZ6SkqJly5Z5/5BJ0uDBgyVJt912mySpS5cuXt1vueUWL27z5s1q1apVRO5WrVopLy9Pr7/+unJzcyNOCkmVF2fMnj1bUuVBf+vWrWrfvr0KCwt11FFHSZJuuukmPffcc7rqqqtUWFiogwcP6umnn9Yll1wSMbZC8VX16tXL+wf0rrvu0j333KPExEQ98cQT+tOf/qTbb79dLVu21COPPOJ9zx133KGbbrpJO3fu1PHHH+/9o7l9+3YNGTKkxrqbmZo1axZXdV+8ePEh19219kei7kVFRTrhhBOc6i5VH++utXepe0Nq78d4r63us2bNanDdXWvvMt4lt4uuXC64ktwuunK54EqKz4uuXC64krjYze+6h+oWbxe78Y91w/6xbuzHmoaOdyk6x5qm8I+1XydPJf/GfJCP8dKRGfPROsbH47EmlnWvq/bRPtYwUcMFzbGsu+Tv+5p4HPNBfj8pudU+Ly9PDz30UNydJ6vvXI0U/PNk8Vj38NofifM10ThPVlfd77//fs2aNUt33nmntmzZIqnyXHhGRoauvfZaL9fYsWMjJtTDTZo0SZI0cOBArVq1ShdffLH3XGpqqvLy8nT33Xd7j/Xv39+r/ZgxY7zHN27c6F2UI1W+N5g4caI++ugj3XTTTdq/f39Eu71791ZBQYEk6cILL9S2bdt0wgknaOvWrd4xU6qcnGzfvr3+8Ic/aOPGjTp48KA++OADDRkyRBMnTvRec01OO+00TZ482ft62rRpysvLU2Jiop566inNnTtXAwcO1KmnnurNL0ydOlVTpkzRfffdp65du3qPFxUV6brrrvNy+TXmo31+UorPY43r+cmaxvxJJ52kzMxMb8y7jHfJbcy7jnfJnzHvMt4ltzHvMt4ltzHvMt4l/8Z8LI7xzhp8Lz18VVhYaJ988ol98sknEfs2+WH//v3e8kzhSkpKbN26dbZmzZpqey7Vtf9VXQ4ePGirV6/29nwKKS4uttWrV0fss1eTUB0++ugjW7RokW3durXe+Pz8/Ii4srIyKysrqzEmfO+tunKF70Ub7t1337U5c+bU2a/wPHXV/aOPPrLFixdH5Kpa95peX0127Nhhs2bNsi1btkQ8Hl732nIVFxdHtF/Tzz48pi4ucbXFHDhwwPbv319r3Pbt2+3tt992ynXw4EErKSmpFrNnzx7btWuXr30vKiqqtj9iKC60J0tt9u3bZ99//73t3LnTduzYYe+88459++231WIOHDhgZpU/n/z8/GoxrnE1xWzZsiWi7lXjvvvuO1u6dKlzv0J1r/oaQ2PwUF9jeExRUZG99tpr1ca7mdnevXu9Y2hd9VqzZo29/vrrtmDBghp/T0PWrl1rS5YssTfffLPWOJeYmuIOHjxYrfahmAULFtjzzz9fY541a9ZE5CkvL69W91DcggUL6nyNrn0Pb/OTTz6pcU/Qjz76qM5cX375pV111VXWvXt3y8zMtMzMTOvevbuNGTPGW8502rRp3vKkVf3qV7/yPp8wYYItW7asWswzzzxjycnJZla55GtNf3O2bt1qOTk51R6vqKiwWbNm2ciRI6stvZSenh6xRUpoTFXd/qSsrMzuv/9+S0lJsfT0dEtOTrbOnTvbuHHjvJpUXUqpJm+//balpqZajx49LD8/33Jzcy0jI8NSUlIi9lZdtmyZpaamWkZGhvXo0cPbx3Hbtm129913m5lb3c3cau9Sd7OG1T6e6m7mVnuXuptV/g2/44477LzzzrNu3bpZt27dvCU8Q++TnnrqqRqXHjUze+KJJ8zMbMqUKRHLZYUsXLjQ26InFFdT3Tdt2mRXXHFFtccXL15sQ4cOjVgqOaTqUmCh9087duyI2Pbm2WeftbS0NOvSpYslJydbSkqK/epXv4p4L1F1ObqafPTRRzZ06FC77LLLrKCgwCZPnmxdu3attjxqWlqadevWzfr37+/ts7Zt27aI7TUa+7HGZbybRf9Y4zLezfwb8w0d72a1j3nX8W5W/5h3Ge9m/o35IB/jzfwb87E4xsfzsSZadTc79GPNwIEDj9ixxuU4Y9b4jzUux5lQXH3Hmmgf40NxfryvCfIx3iz+x/xrr70WqPeToTiX2ofUdp4sGqqeJwtX0zmyuoSfJwtX13myQ1XTebLw51zEa93NGlb72upu5n/t/ah7PNu/f7+3F3djFK9jPojHmsYw3s0a95iP1/Fu5t8xvi5MxsfIokWLvM8LCwvtuuuus5SUFMvNzY2YEHaJC48pKiryLVdD+nX99dcfUr9uvfVW7x+J/Px869Gjh2VnZ1vPnj1tyZIl3ve7xEU7V5D7bmbWpUsXGz9+vL3xxhu1vmlziTlSuZYuXXpYufzu+4033uiUq764BQsWWLdu3SwtLc3y8/Otd+/elp2dbampqd5JKZeYppDLz/YKCgosKyvLunfvbp06dbKsrCxLTU21m2++OeKkw7p16ywrK8tSUlK8uAsvvNBuuukmL84lxjUu1C8/2qspV9XX6GeummpaU64QPy4+q3rRVbi6LroyqzzRXNsFV2Zm69evt7lz5zr1o6SkpN6L3ar+E3AobzZru9DNrOEXu8Wq7mZ11z4e6252+BcZhrcfj/9oNOZ/rGM95us71nz66aeHNebrGu9msTvWhNqOx/FuFr8nT80Ob8zHeryb1T3mGzLezRo+5mN5jI917f3622rGsaYhgnqsCfoEmZl/72uCdIwPidcxH8T3k6Hn6nLw4EHLz8+3+fPn2/z5823FihXe3se1xeTn51eLcY3zK+ZQc9X0+mLRr9q4/K64/j419lyH2l5Nvys1/U66xEU7V5D7Hu7AgQO2Zs0a27179xGPaQq5XNszM5sxY4YvMfGaK1777vp33yXOrxi/c9WEyfgYCb+z66677rIHH3zQtm3bZs8884xNmDChQXFBzjVkyBAvZvTo0bZ27VozM9u8eXPE1fYucdHOFeS+m5kNHDjQZs2aZYMGDbLevXvbgw8+GHEnjWtMNHJ98cUXUW3vSObKysqyr7/+2goKCqx79+7elexffvml97NziWkKufxsb+TIkd4dSkuXLrVp06ZZWVmZPfzww3bbbbd5uVziop0ryH0Pt3nzZlu5cqWtXLmy1rvxXWKaQi4/2wOasnj9pyzI/1C6xL344otOuVzi/IppKrkQfS4rmrmueuZXrmi3F41ch7MS26HEBTmXn+2ZHfkV245krnjpe9WLa1xzmR3ZFduC0l40c7333nuWlpZmOTk5NnHiRJs4caLl5ORYWlqavfvuuxExw4cPrzXGNc6vmKDnqkvfvn19iWkKuRra3scff2zp6enWpUsXmzBhQsTFheHn9F3iop0ryH03q7x5LjU11VJTU23VqlWWnZ1tmZmZ3td+xjSFXK7tPffcc9U+UlNTvc9dY+I1V7z2/dlnn/XiN2/ebIMHD7Zu3bpZenq6t0qNa5xfMX7ncsVkfIxUnWANvyIwfJLJJS7IuQYOHOg9VnWpsKysLO9zl7ho5wpy380i3wS8//77duedd9r5559vV155pS1YsMA5Jl5zxWvfw38v0tPTLVzoOZeYppDLz/YuvfTSiMfDfzfCf2dc4qKdK8h9NzP77LPPLDs723r37m05OTmWk5PjrV6wfv165xi/c23YsCHucvlZh7qE/3wONy7auYLQ902bNllubq7179/fpk+fbqWlpd5zI0aM8DXmSOa6//7746JfLn0yqzyxeumll9qwYcNs/fr1dt1119k555xjffv2tYKCAueYeM0Vr31funRptY+LLrrI+zzEJc6vmKaQ60itsha0XLHoezyuehb0Fdtc4vxaPc01zs9cnTt3rrfvrq8xlMul7360xyprscvlsoKaS4yfuaLdXixyZWVl1bj0/0cffeSdT3OJ8TNXtNuLRa6a3vuEPnr27Okc0xRy+dneqFGj7K233rKioiKbMWOGZWZmehcPhZ9nc4mLdq4g993MLCcnx9auXWsrV66stpXJqFGjfI1pCrlc2zv77LNt/PjxNmXKFO8jtAXMlClTnGPiNVe89j18vmTy5Mk2Z84cM6vcamjs2LHecy5xfsX4ncsVk/ExkpmZaevWrbOCgoJqExrhX7vEBTnXb37zG5s2bZrt3bvXHnroIXvllVesoqLC3n77bRszZowX7xIX7VxB7rtZ5MEkZN++fTZv3jxvTzCXmHjNFa99v+yyy2z9+vX23nvvWY8ePexf//qXmVVO5oX+EXGJaQq5/Gzv8ssvtw0bNpiZ2QcffGC5ubne92dmZnqfu8RFO1eQ+25W+aZ48eLFVtVrr71m2dnZzjFNIZef7RUUFNT6Eb63o0tctHMFue9mlfv7zpkzx1avXm233nqrjRw50jvBF/oH3K+YppDLtb3Ro0fbkiVLbP78+davXz/vIrglS5bYNddc4xwTr7nite/Jyck2cuTIiL1hu3XrZrm5uRHvO13i/IppCrmCvDKan7li0fd4XPUs6Cu2ucQFeWW0aOeK9qpurnFBXmUtFrnicdWzoK/Y5hJX10W4oedcYvzMFe32YpGrU6dONmbMmIj3PuHvgVxjmkIuP9sL/1tsZvbyyy/bwIEDbcuWLRHvi1ziop0ryH2vGjdgwICI76npBqXDiWkKuVzby8/Pt5ycHHvzzTe9x6re1OUSE6+54rXv4WM//L2OWeR8o0ucXzF+53LFZHyMpKenW//+/S09Pd3S09O9Jal2794d8UN2iQtyrrKyMrv//vstJSXF0tPTLTk52Tp37mzjxo2LWC7KJS7auYLcd7PqbxBq4hITr7nite9vv/22paamWo8ePSw/P99yc3MtIyPDUlJSvCvhXWKaQi4/21u2bJmlpqZaRkaG9ejRw1umaNu2bXb33Xd7uVziop0ryH03C/ZJgSCfaElOTo74Gxz+0aVLFy/eJS7auYLcd7PqfwuefPJJy87Ojnj/41dMU8h1KO1VXaIx9E+SS0y85orXvv/tb3+zkSNH2po1a7znavon3SXOr5imkKvqRGaQVkbzM1cs+h6Pq54FfcU2l7ggr4wW5BXiwn8vmvIqa7HIFY+rngV9xTaXuGuvvdZmzpzprdZhZrZjxw6bOXOmjRs3zjnGz1zRbi8WuTIyMuyrr76ymqSlpTnHNIVcfrY3cODAaiujLFy40AYOHGj9+vXzHnOJi3auIPfdLPK95UMPPRQRH3rv41dMU8jl2p6Z2Z49e+zWW2+1KVOm2J49e6x///5WlUtMvOaKx77379/f3njjDVu6dKkNGjQo4rnwn51LnF8xfudy1UyIiTfffLPGx5s1a6bHHnusQXFBztW8eXPdeeedmjx5sjZv3qzy8nKdeOKJateuXcT3uMRFO1eQ+y5Jzz77bI0/n4bGxGuueO173759tWrVKu/r1NRUFRQU6MQTT9Rxxx3nHNMUcvnZXlpampYsWaLNmzfrxz/+sVq1aiVJOv744zVt2jTve13iop0ryH2XpHbt2unll1/WpZdeqsTERElSRUWFXnnlFe+45BLTFHL52d5JJ52kuXPnqn379qqqb9++3ucucdHOFeS+S1JpaWnEc+PHj9dRRx2lq6++Wvv27fM1pinkcm3PzLzPe/ToEfE9oedcYuI1V7z2PTs7Wz179tTdd9+t7t2768Ybb1RCQoKqconzK6Yp5CorK9Onn34qM1NCQoKSkpK858JjXeKCnCsWfe/Tp4/uu+8+TZ48WRdddJFeffVVDRkyRMuXL/f+BrvE+Jkr2u3FIle4lJQUpaSk6K677tLChQv10ksvadiwYQ2OaQq5Dre9xMREffbZZyouLlZJSYnef/99de/eXRs3blR5ebn3/S5x0c4V5L5LlefNNm7cqI4dO+rDDz9Uy5YtI9pxjfEzV7Tbi0WuvLw8PfjggxowYID380hKSlJmZqby8vKcY/zMFe32YpHrsssu086dO3XyySerqiuuuMI5pink8rO9lJQULVu2TOnp6d5zgwcPliTddttt3mMucdHOFeS+S1KXLl20d+9etWrVSrfccov3+ObNm71za37FNIVcru1JUqtWrZSXl6fFixcrNzdXZWVlqsolJl5zxWPfTzrpJM2ePVuSdNxxx2nr1q1q3769CgsLddRRRzUozq8Yv3M5a/D0PQAAgKMvv/zSrrrqKuvevbtlZmZaZmamde/e3caMGeMthekS0xRy+dnetGnTvGUYq/rVr37lfe4SF+1cQe67mdmECRNs2bJl1WKeeeYZS05O9jWmKeRybW/cuHER+4KGbN261XJycpxj4jVXvPY9pKKiwmbNmmUjR460Pn36VPuehsT5FdOYcwV5ZTQ/c8Wi7/G46lnQV2xziQvyymhBXiGurhXI/vd//7dBcdHOFeS+m8XnqmdBX7HNNS5k586dtnPnzmqPNzTGz1zRbi8WuYCm7MCBA1ZaWhqVmKaQq76Y7du329tvv11nDpeYeM0Vr30POXjwoJWUlPgS51eM37mqYjIeAAAccYWFhfbJJ5/YJ598YoWFhYcc0xRy+dkeoq+srMzKyspqfO67777zNaYp5HJtrza7d++2LVu2HHZMvOaKt76vX7/e5s6dW28Olzi/YppKLjOzkpKSWpckbWhckHNFo72SkhJbt26drVmzxoqKimr93vpi/MwV7faimct1ksdFY8/lZ3tVHTx40FavXh2x3PShxkU7VxD7XlxcbKtXr67xwriGxPiZK9rtRTvXpk2bLDc31/r372/Tp0+PmMQZMWKEc4yfuaLdXixybd682ZeYppAryH2nDtQh1nUI8nEyHttzjdu8ebONGTPGaTzUF+dXjN+5XCXWf+88AADA4Tn22GPVpUsXdenSRccee6wkKSMjo8ExTSGXn+3VxCUmXnMFoe/NmzdX8+bNa4y76qqrfI1pCrlc26vNMccco7Fjxx52TLzmire+n3nmmRo1apSkun93XOL8imkquSSpRYsWuvbaa+uMcY0Lcq5otNeiRQslJyerc+fO3lLqVX8+LjF+5op2e9HM1bZt22rxIQ2JaQq5/GyvqqSkJHXt2lXHHXdcnccjl7ho5wpi31u3bq2uXbtWW2I3PM4lxs9c0W4v2rnuvfdeZWZm6tFHH9XOnTt19dVXa+/evZLkLbvrEuNnrmi3F4tcv/71r32JaQq5gtx36kAdYl2HIB8n47E917hf//rXysjIcBoP9cX5FeN3LlfsGQ8AAI6YdevW1fpcaL9nl5imkCvIffczV5D77meuIPfdz1xB7rufuYLcdz9zBbnvfuYKct/9zBXkvvuZK8h99zNXkPvuZ64g993PXEHue7zmCnLfXeMKCws1evRoSZV7nT/11FMaO3asZs+erYSEBOcYP3NFu714zRXkvlMH6kAdqAN1aNx1cMVkPAAAOGKGDRumDh06yMyqPbdr1y7nmKaQK8h99zNXkPvuZ64g993PXEHuu5+5gtx3P3MFue9+5gpy3/3MFeS++5kryH33M1eQ++5nriD33c9cQe57vOYKct9d40pLSyMeHz9+vI466ihdffXV3oS9S4yfuaLdXrzmCnLfqQN1oA7UgTo07jo4q3sVewAAgEOXnp5e677OaWlpzjFNIVeQ++5nriD33c9cQe67n7mC3Hc/cwW5737mCnLf/cwV5L77mSvIffczV5D77meuIPfdz1xB7rufuYLc93jNFeS+u8ZNmDDBli1bVu35Z555xpKTk51j/MwV7fbiNVeQ++5nriD33c9cQe67n7mC3Hc/cwW5737mCnLf/cwVi7674s54AABwxPTv319fffWV2rdvX+25vn37Osc0hVxB7rufuYLcdz9zBbnvfuYKct/9zBXkvvuZK8h99zNXkPvuZ64g993PXEHuu5+5gtx3P3MFue9+5gpy3+M1V5D77ho3Y8aMas9J0jXXXKPBgwc7x/iZK9rtxWuuIPfdz1xB7rufuYLcdz9zBbnvfuYKct/9zBXkvvuZKxZ9d5VgVsP6PAAAAAAAAAAAAAAA4JAlxroDAAAAAAAAAAAAAAA0NkzGAwAAAAAAAAAAAADgMybjAQAAAAAAAAAAAADwGZPxAAAAAAAAAAAAAAD4jMl4AAAAAACakJkzZyo5OVlFRUVRa/Pvf/+7kpOTtXr16qi1CQAAAABArDEZDwAAAAAAAuWpp57S0qVLY90NAAAAAADqxGQ8AAAAAAAIlD/+8Y9MxgMAAAAA4h6T8QAAAAAAAAAAAAAA+IzJeAAAAAAAmqCdO3dq4sSJSklJUY8ePXTfffeprKxMkvT1118rOTlZf//736t9X3JysmbOnBnx2NatW3XnnXeqT58+6tq1q/r376+pU6fq+++/r7X94uJi5eTkKC0tTZ9//rkk6fvvv9djjz2mn/3sZ+ratav69u2rvLy8iDzJyckqKSnRggULlJycrOTkZE2ZMsWPkgAAAAAA4Ktmse4AAAAAAACIvkmTJqlDhw665ZZb9OGHH+qFF17Q7t27lZeX16A8W7duVU5Ojvbs2aMRI0bojDPO0NatW/X666+rtLRUzZs3r/Y9RUVFGjdunIqLizVnzhydeuqpqqio0I033qj3339fI0aMUMeOHbV+/Xo999xz+vLLL/XEE09IkvLy8nT33XfrnHPO0YgRIyRJp5566uEXBAAAAAAAnzEZDwAAAABAE3TyySfrySeflCSNHj1arVq10ty5czVu3Di1atXKOc/DDz+sHTt2aN68eerWrZv3+MSJE2Vm1eK3b9+ua665RqWlpZozZ446dOggSfrHP/6h/Px8vfDCC7rgggu8+DPPPFNTp07Vv//9b6WkpGjo0KH69a9/rVNOOUVDhw491JcPAAAAAMARxzL1AAAAAAA0QaNHj474Ojc3V5K0fPly5xwVFRVaunSp0tPTIybiQxISEiK+3rp1q3Jzc3XgwAH9+c9/9ibiJWnx4sXq2LGjzjjjDBUVFXkfPXv2lCStWrXKuV8AAAAAAMQD7owHAAAAAKAJOu200yK+PvXUU5WYmKivv/7aOUdRUZH27t2rM8880yn+1ltvVbNmzbRo0SIdf/zxEc9t2rRJGzduVK9evWr83sLCQud+AQAAAAAQD5iMBwAAAAAAEXexV72jPaS8vPyw2hg4cKBefvllPf/887rlllsinquoqNBZZ52lO+64o8bv/dGPfnRYbQMAAAAAEG1MxgMAAAAA0ARt2rRJp5xySsTXFRUVOvnkk9WmTRtJ0u7duyO+Z8uWLRFfH3vssWrVqpU+++wzpzZzc3N16qmn6rHHHtMxxxyj66+/3nvu1FNP1bp169SrV69aLwYAAAAAACBI2DMeAAAAAIAm6M9//nPE13PmzJEkpaWlqVWrVmrXrp3+9a9/RcTMnTs34uvExEQNGDBAb731llavXl2tDTOr9tjPf/5zjRs3Tr///e8j8g0aNEhbt27VvHnzqn1PaWmpSkpKvK9btmxZ7UIBAAAAAADiDXfGAwAAAADQBH399dcaP368Lr74Yn344Yd69dVXlZWVpU6dOkmShg8frj/96U+666671LVrV/3rX//SF198US3P//t//0/vvPOOxowZoxEjRqhjx47avn27Fi9erLlz56p169bVvuf222/X3r179Zvf/EZHH320hg4dqqFDh+q1117T1KlTtWrVKqWkpKi8vFyff/65Fi9erKefflrdunWTJHXp0kUrVqzQ7NmzdcIJJ+jkk0/Wueeee2QLBgAAAABAAzEZDwAAAABAE/TII4/o0Ucf1e9//3s1a9ZMubm5uu2227znf/7zn6uoqEivv/66XnvtNaWlpenpp59Wr169IvK0b99e8+bN06OPPqp//OMf2rt3r9q3b6+0tDT98Ic/rLX9e++9VyUlJbrzzjt19NFHa8CAAXr88cf17LPP6pVXXtGSJUvUokULnXzyyRozZoxOP/1073unTJmie+65R4888ohKS0t12WWXMRkPAAAAAIg7CVbTmnEAAAAAAAAAAAAAAOCQsWc8AAAAAAAAAAAAAAA+YzIeAAAAAAAAAAAAAACfMRkPAAAAAAAAAAAAAIDPmIwHAAAAAAAAAAAAAMBnTMYDAAAAAAAAAAAAAOAzJuMBAAAAAAAAAAAAAPAZk/EAAAAAAAAAAAAAAPiMyXgAAAAAAAAAAAAAAHzGZDwAAAAAAAAAAAAAAD5jMh4AAAAAAAAAAAAAAJ8xGQ8AAAAAAAAAAAAAgM+YjAcAAAAAAAAAAAAAwGf/Hx/mMndLZIeNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hh = pd.DataFrame(srlut.flatten()).value_counts().reset_index().sort_values(by=0)\n", "hh.columns = ['bucket', 'count']\n", "sns.set_theme(rc={'figure.figsize':(24.7,8.27)})\n", "sns.barplot(data=hh, x='bucket', y='count')\n", "plt.xticks(rotation=90, fontsize=8);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-128, 127)" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.transpose(srlut[:17]+127).min(), np.transpose(srlut[:17]+127).max()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dtype('int8')" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "srlut[:17].dtype" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-128" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(srlut[:17]+127).min()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import cv2\n", "from pathlib import Path\n", "\n", "ds_path = Path(\"/wd/luts/data/Synthetic/\")\n", "hr_path = ds_path / \"HR\"\n", "lr_path = ds_path / \"LR\"\n", "w = h = 1024\n", "\n", "for i in range(256):\n", " cv2.imwrite(str(hr_path / f\"const_{i:04d}.png\"), np.full((w,h,3), fill_value=i, dtype=np.uint8))\n", " for scale in [2,4]:\n", " cv2.imwrite(str(lr_path / f\"X{scale}\" / f\"const_{i:04d}.png\"), np.full((w//scale,h//scale,3), fill_value=i, dtype=np.uint8))\n", "\n", "# for i in range(256):\n", "im = np.ones((w,h,3), dtype=np.uint8)\n", "for i in range(h):\n", " im[i] *= int((i / h) * 255)\n", "cv2.imwrite(str(hr_path / f\"linear.png\"), im)\n", "for scale in [2,4]:\n", " im = np.ones((w//scale,h//scale,3), dtype=np.uint8)\n", " for i in range(h//scale):\n", " im[i] *= int((i / (h//scale)) * 255)\n", " cv2.imwrite(str(lr_path / f\"X{scale}\" / f\"linear.png\"), im)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "im = np.ones((w,h,3), dtype=np.uint8)\n", "for c in range(3):\n", " im = np.rot90(im, c)\n", " for i in range(h):\n", " for j in range(w):\n", " im[i,j,c] *= int(((i + j)/ (h + w)) * 255)\n", "cv2.imwrite(str(hr_path / f\"diagonalc.png\"), im)\n", "for scale in [2,4]:\n", " im = np.ones((w//scale,h//scale,3), dtype=np.uint8)\n", " for c in range(3):\n", " im = np.rot90(im, c)\n", " for i in range(h//scale):\n", " for j in range(w//scale):\n", " im[i,j,c] *= int(((i + j)/ (h//scale + w//scale)) * 255)\n", " cv2.imwrite(str(lr_path / f\"X{scale}\" / f\"diagonalc.png\"), im)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([1, 4, 1])" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "import torch.nn.functional as F\n", "n = 4\n", "a = torch.arange(n**2).view(1,1,n,n).type(torch.float32)\n", "b = F.unfold(a, kernel_size=(2,2))\n", "a, b, a.shape, b.shape,\n", "gg = torch.nn.Linear(9,1)\n", "gg(b).shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[0;31mInit signature:\u001b[0m\n", "\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0min_features\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mout_features\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mDocstring:\u001b[0m \n", "Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.\n", "\n", "This module supports :ref:`TensorFloat32`.\n", "\n", "On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward.\n", "\n", "Args:\n", " in_features: size of each input sample\n", " out_features: size of each output sample\n", " bias: If set to ``False``, the layer will not learn an additive bias.\n", " Default: ``True``\n", "\n", "Shape:\n", " - Input: :math:`(*, H_{in})` where :math:`*` means any number of\n", " dimensions including none and :math:`H_{in} = \\text{in\\_features}`.\n", " - Output: :math:`(*, H_{out})` where all but the last dimension\n", " are the same shape as the input and :math:`H_{out} = \\text{out\\_features}`.\n", "\n", "Attributes:\n", " weight: the learnable weights of the module of shape\n", " :math:`(\\text{out\\_features}, \\text{in\\_features})`. The values are\n", " initialized from :math:`\\mathcal{U}(-\\sqrt{k}, \\sqrt{k})`, where\n", " :math:`k = \\frac{1}{\\text{in\\_features}}`\n", " bias: the learnable bias of the module of shape :math:`(\\text{out\\_features})`.\n", " If :attr:`bias` is ``True``, the values are initialized from\n", " :math:`\\mathcal{U}(-\\sqrt{k}, \\sqrt{k})` where\n", " :math:`k = \\frac{1}{\\text{in\\_features}}`\n", "\n", "Examples::\n", "\n", " >>> m = nn.Linear(20, 30)\n", " >>> input = torch.randn(128, 20)\n", " >>> output = m(input)\n", " >>> print(output.size())\n", " torch.Size([128, 30])\n", "\u001b[0;31mInit docstring:\u001b[0m Initialize internal Module state, shared by both nn.Module and ScriptModule.\n", "\u001b[0;31mFile:\u001b[0m /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py\n", "\u001b[0;31mType:\u001b[0m type\n", "\u001b[0;31mSubclasses:\u001b[0m NonDynamicallyQuantizableLinear, LazyLinear, Linear, LinearBn1d, Linear" ] } ], "source": [ "torch.nn.Linear?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import numpy as np\n", "\n", "class PercievePatternv2():\n", " def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2):\n", " assert window_size >= (np.max(receptive_field_idxes)+1)\n", " self.receptive_field_idxes = np.array(receptive_field_idxes)\n", " self.window_size = window_size\n", " self.center = center\n", " self.receptive_field_idxes = [\n", " self.receptive_field_idxes[0,0]*self.window_size + self.receptive_field_idxes[0,1],\n", " self.receptive_field_idxes[1,0]*self.window_size + self.receptive_field_idxes[1,1],\n", " self.receptive_field_idxes[2,0]*self.window_size + self.receptive_field_idxes[2,1],\n", " self.receptive_field_idxes[3,0]*self.window_size + self.receptive_field_idxes[3,1],\n", " ]\n", "\n", " def __call__(self, x):\n", " b,c,h,w = x.shape\n", " x = F.pad(\n", " x, \n", " pad=[self.center[0], self.window_size-self.center[0]-1,\n", " self.center[1], self.window_size-self.center[1]-1], \n", " mode='replicate'\n", " )\n", " x = F.unfold(input=x, kernel_size=self.window_size)\n", " x = torch.stack([\n", " x[:,self.receptive_field_idxes[0],:],\n", " x[:,self.receptive_field_idxes[1],:],\n", " x[:,self.receptive_field_idxes[2],:],\n", " x[:,self.receptive_field_idxes[3],:]\n", " ], 2)\n", " # x = x.reshape(x.shape[0]*x.shape[1], 1, 2, 2)\n", " return x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[[[0., 1., 2.],\n", " [3., 4., 5.],\n", " [6., 7., 8.]]]]),\n", " tensor([[[0., 1., 3., 4.],\n", " [1., 2., 4., 5.],\n", " [2., 2., 5., 5.],\n", " [3., 4., 6., 7.],\n", " [4., 5., 7., 8.],\n", " [5., 5., 8., 8.],\n", " [6., 7., 6., 7.],\n", " [7., 8., 7., 8.],\n", " [8., 8., 8., 8.]]]),\n", " torch.Size([1, 9, 4]))" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_extract_pattern = PercievePatternv2(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)\n", "n = 3\n", "a = torch.arange(n**2).view(1,1,n,n).type(torch.float32)\n", "a, _extract_pattern(a), _extract_pattern(a).shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def round_func(input):\n", " # Backward Pass Differentiable Approximation (BPDA)\n", " # This is equivalent to replacing round function (non-differentiable)\n", " # with an identity function (differentiable) only when backward,\n", " forward_value = torch.round(input)\n", " out = input.clone()\n", " out.data = forward_value.data\n", " return out " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[[113., 113., 113.],\n", " [113., 113., 113.],\n", " [113., 113., 113.]]]], grad_fn=)" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "class DenseConvUpscaleBlockv2(nn.Module):\n", " def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2, in_features=4, hidden_dim = 32, layers_count=5, upscale_factor=1):\n", " super(DenseConvUpscaleBlockv2, self).__init__() \n", " assert layers_count > 0 \n", " self.percieve_pattern = PercievePatternv2(receptive_field_idxes=receptive_field_idxes, center=center, window_size=window_size)\n", " self.upscale_factor = upscale_factor \n", " self.hidden_dim = hidden_dim\n", " self.embed = nn.Linear(in_features=in_features, out_features=hidden_dim, bias=True)\n", " \n", " self.linear_projections = []\n", " for i in range(layers_count):\n", " self.linear_projections.append(nn.Linear(in_features=(i+1)*hidden_dim, out_features=hidden_dim, bias=True))\n", " self.linear_projections = nn.ModuleList(self.linear_projections) \n", "\n", " self.project_channels = nn.Linear(in_features=(layers_count+1)*hidden_dim, out_features=upscale_factor * upscale_factor, bias=True)\n", " \n", " def forward(self, x):\n", " b,c,h,w = x.shape\n", " x = (x-127.5)/127.5 \n", " x = self.percieve_pattern(x)\n", " x = torch.relu(self.embed(x))\n", " for linear_projection in self.linear_projections:\n", " x = torch.cat([x, torch.relu(linear_projection(x))], dim=2)\n", " x = self.project_channels(x)\n", " x = x.reshape(b, c, h*self.upscale_factor, w*self.upscale_factor)\n", " x = torch.tanh(x) \n", " x = x*127.5 + 127.5 \n", " x = round_func(x)\n", " return x \n", "\n", "layer = DenseConvUpscaleBlockv2()\n", "layer(a)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[[0., 1., 2.],\n", " [3., 4., 5.],\n", " [6., 7., 8.]]]])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rotations_count = -1\n", "b = torch.rot90(a, k=rotations_count, dims=[-2, -1])\n", "c = torch.rot90(b, k=-rotations_count, dims=[-2, -1])\n", "c" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([1, 9, 4])\n" ] }, { "ename": "RuntimeError", "evalue": "mat1 and mat2 shapes cannot be multiplied (18x32 and 64x32)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m/wd/lut_reproduce/explore.ipynb Cell 43\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> 1\u001b[0m layer(a)\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1511\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1509\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compiled_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs) \u001b[39m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1510\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 1511\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_impl(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1520\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1515\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1516\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1518\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1519\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1520\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1522\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 1523\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n", "\u001b[1;32m/wd/lut_reproduce/explore.ipynb Cell 43\u001b[0m line \u001b[0;36m2\n\u001b[1;32m 22\u001b[0m x \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mrelu(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39membed(x))\n\u001b[1;32m 23\u001b[0m \u001b[39mfor\u001b[39;00m linear_projection \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlinear_projections:\n\u001b[0;32m---> 24\u001b[0m x \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mcat([x, torch\u001b[39m.\u001b[39mrelu(linear_projection(x))], dim\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m)\n\u001b[1;32m 25\u001b[0m x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mproject_channels(x)\n\u001b[1;32m 26\u001b[0m x \u001b[39m=\u001b[39m x\u001b[39m.\u001b[39mreshape(b, c, h\u001b[39m*\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mupscale_factor, w\u001b[39m*\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mupscale_factor)\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1511\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1509\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compiled_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs) \u001b[39m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1510\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 1511\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_impl(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1520\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1515\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1516\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1518\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1519\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1520\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1522\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 1523\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n", "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py:116\u001b[0m, in \u001b[0;36mLinear.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m: Tensor) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Tensor:\n\u001b[0;32m--> 116\u001b[0m \u001b[39mreturn\u001b[39;00m F\u001b[39m.\u001b[39;49mlinear(\u001b[39minput\u001b[39;49m, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mweight, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mbias)\n", "\u001b[0;31mRuntimeError\u001b[0m: mat1 and mat2 shapes cannot be multiplied (18x32 and 64x32)" ] } ], "source": [] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/wAALCAQABAABAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/ALB++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1p5++/8AuUi/ei/3aaP9Wv8Av04/8tqUf6yP/dpn/LH/AIFT/wDls/8Au0z/AJYp/vU//ls/0pn/ACwX60//AJeB9KYP9VJ9aVvuxU4f8fJ+lNT/AFclIf8Aj3H1p0nWOlP/AB8ikT/XtRF996SL7r0Rf6pqWL/UtRF/qmog+41JB1aiL/WtSf8ALxRN/rBT5v8AVilT/U0yD7xpsn+tqWX/AFQptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv9ZUzf6mo7fqabJ/rqkm/1Yoi/wBUaZD/AKw0Sf64U64+6KX/AJd6SD/Vmkg/1hpF/wCPilk/1won+8tLP9xaJP8AUrQ3/HuKP+Xagf8AHsaB/wAexpB/x7Ggf8exo/5dqG/49xRJ/qFol+4lLL95KH/160f8vNEf+tekj+5JSD/j2P1p5++/+5SL96L/AHaaP9Wv+/Tj/wAtqUf6yP8A3aZ/yx/4FT/+Wz/7tM/5Yp/vU/8A5bP9KZ/ywX60/wD5eB9KYP8AVSfWlb7sVOH/AB8n6U1P9XJSH/j3H1p0nWOlP/HyKRP9e1EX33pIvuvRF/qmpYv9S1EX+qaiD7jUkHVqIv8AWtSf8vFE3+sFPm/1YpU/1NMg+8abJ/rall/1Qptv0NRyf62rDf6qoIfv1JP92m2/WluOlNg61JN92oI/vVbP3aqSfeqWGpX+7VR+tPjqyOlMkqs3WkXrU6VMKWmmmGmGkNJS0op4p4p1IaieoGpB1qeOp+1QSVX71ZiqVulVJPvVJDUz/dqofvVZi+7Uc3Wkg61JN92oYvvVPL9yoYfv1LP92o4OtLcdafD9yoW/1tTyf6qo7frTZv8AWVM3+pqO36mmyf66pJv9WKIv9UaZD/rDRJ/rhTrj7opf+Xekg/1ZpIP9YaRf+Pilk/1won+8tLP9xaJP9StDf8e4o/5dqB/x7Ggf8expB/x7Ggf8exo/5dqG/wCPcUSf6haJfuJSy/eSh/8AXrR/y80R/wCtekj+5JSD/j2P1r//2Q==", "image/png": "iVBORw0KGgoAAAANSUhEUgAABAAAAAQACAAAAABadnRfAAAbJUlEQVR4Ae3UAXbaWgIEUUkI7GTns+HEgBDzBM5JZrZQl+9g8yT83dVNzf85X7/OP56/Hj/HD+vP6df28bn9mn6u16/Tz+X3bRz9vp9/jKfL5/unr9v6Y/m6Lj/W++/n58f+ezt/Ltev+fPy+NrGpdvX8+Njul7Hwf51Xz7P38/X2zh5Xm/j6nz/2tePdR9Hl/Hi+lg+Ls/bbV8v5z/f7td9+TjP23Wbzx/Lfrs9T5fz/Ljep3HTtN2O7+v8uN2fy+W8PO+3x+tgv9/2eT2v836/P6bTZV2e2317vo7+/jRt232fTut6mp/btu3Tsq7rPD227fF8H0+Px/YY56f1dJq+X8zLeLFMz/11aVwbj3ma9sd4PKdpOQ6WaVwfJ/s+TfM8TpZl3PIc79nHYxqHy+sxj9PjzvG1P5/j3cfdx3/L/Lo0PcfV8bbX13jxehyXxr/vxzRevM+P53HL6+vv0+td73e+n79v/n7T8W38e339ffr/Xzn+jD+P8dM/f8j4I8afOr7e7zhuGmGOP/j1P3tHOdIcf9u4djxel46Mp/F0nI+zwWW84UB1nL7ODlTj7OD5onfgHF1M87jluGfAHCfP8foN/LuA8XJdRj1HHftxcbR7lLONW48X49I2mvtz5X/KPoqfjz2Me449/DON03o+Tfs4HTec1+V7Oudx6+M+fts4O34acxqre49tGT+9jv4OcT2f34s8Rvve6GWdtvvf9c7jynvW49Zj1q+538fsz5e/r7/nf7+NT8XldPyi47bXh2S8HB+S48Nxuz2Wy+V1erks4yNzfIL++TYOj3d8XF6fvO9V+IYAAkECh4g9EEAgSoAAosWLjcBBgADsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx0BArABBMIECCBcvugIEIANIBAmQADh8kVHgABsAIEwAQIIly86AgRgAwiECRBAuHzRESAAG0AgTIAAwuWLjgAB2AACYQIEEC5fdAQIwAYQCBMggHD5oiNAADaAQJgAAYTLFx2B/wJ+XZ2OWro5qAAAAABJRU5ErkJggg==", "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "im_x1, im_x2, im_x4 = gen_sin_im2(tgt_size=256*4, exponent_coef=.148/1.9*2, max_value=16, rotate_angle=0, start_val=127)\n", "im_x1" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sin_015_15_0_0\n", "sin_015_15_0_15\n", "sin_015_15_0_30\n", "sin_015_15_0_45\n", "sin_015_15_0_60\n", "sin_015_15_0_75\n", "sin_015_15_0_90\n", "sin_015_15_0_105\n", "sin_015_15_0_120\n", "sin_015_15_0_135\n", "sin_015_15_0_150\n", "sin_015_15_0_165\n", "sin_015_15_0_180\n", "sin_015_15_0_195\n", "sin_015_15_0_210\n", "sin_015_15_0_225\n", "sin_015_15_0_240\n", "sin_015_15_1_0\n", "sin_015_15_1_15\n", "sin_015_15_1_30\n", "sin_015_15_1_45\n", "sin_015_15_1_60\n", "sin_015_15_1_75\n", "sin_015_15_1_90\n", "sin_015_15_1_105\n", "sin_015_15_1_120\n", "sin_015_15_1_135\n", "sin_015_15_1_150\n", "sin_015_15_1_165\n", "sin_015_15_1_180\n", "sin_015_15_1_195\n", "sin_015_15_1_210\n", "sin_015_15_1_225\n", "sin_015_15_1_240\n", "sin_015_15_2_0\n", "sin_015_15_2_15\n", "sin_015_15_2_30\n", "sin_015_15_2_45\n", "sin_015_15_2_60\n", "sin_015_15_2_75\n", "sin_015_15_2_90\n", "sin_015_15_2_105\n", "sin_015_15_2_120\n", "sin_015_15_2_135\n", "sin_015_15_2_150\n", "sin_015_15_2_165\n", "sin_015_15_2_180\n", "sin_015_15_2_195\n", "sin_015_15_2_210\n", "sin_015_15_2_225\n", "sin_015_15_2_240\n", "sin_015_15_3_0\n", "sin_015_15_3_15\n", "sin_015_15_3_30\n", "sin_015_15_3_45\n", "sin_015_15_3_60\n", "sin_015_15_3_75\n", "sin_015_15_3_90\n", "sin_015_15_3_105\n", "sin_015_15_3_120\n", "sin_015_15_3_135\n", "sin_015_15_3_150\n", "sin_015_15_3_165\n", "sin_015_15_3_180\n", "sin_015_15_3_195\n", "sin_015_15_3_210\n", "sin_015_15_3_225\n", "sin_015_15_3_240\n", "sin_015_15_4_0\n", "sin_015_15_4_15\n", "sin_015_15_4_30\n", "sin_015_15_4_45\n", "sin_015_15_4_60\n", "sin_015_15_4_75\n", "sin_015_15_4_90\n", "sin_015_15_4_105\n", "sin_015_15_4_120\n", "sin_015_15_4_135\n", "sin_015_15_4_150\n", "sin_015_15_4_165\n", "sin_015_15_4_180\n", "sin_015_15_4_195\n", "sin_015_15_4_210\n", "sin_015_15_4_225\n", "sin_015_15_4_240\n", "sin_015_15_5_0\n", "sin_015_15_5_15\n", "sin_015_15_5_30\n", "sin_015_15_5_45\n", "sin_015_15_5_60\n", "sin_015_15_5_75\n", "sin_015_15_5_90\n", "sin_015_15_5_105\n", "sin_015_15_5_120\n", "sin_015_15_5_135\n", "sin_015_15_5_150\n", "sin_015_15_5_165\n", "sin_015_15_5_180\n", "sin_015_15_5_195\n", "sin_015_15_5_210\n", "sin_015_15_5_225\n", "sin_015_15_5_240\n", "sin_015_15_6_0\n", "sin_015_15_6_15\n", "sin_015_15_6_30\n", "sin_015_15_6_45\n", "sin_015_15_6_60\n", "sin_015_15_6_75\n", "sin_015_15_6_90\n", "sin_015_15_6_105\n", "sin_015_15_6_120\n", "sin_015_15_6_135\n", "sin_015_15_6_150\n", "sin_015_15_6_165\n", "sin_015_15_6_180\n", "sin_015_15_6_195\n", "sin_015_15_6_210\n", "sin_015_15_6_225\n", "sin_015_15_6_240\n", "sin_015_15_7_0\n", "sin_015_15_7_15\n", "sin_015_15_7_30\n", "sin_015_15_7_45\n", "sin_015_15_7_60\n", "sin_015_15_7_75\n", "sin_015_15_7_90\n", "sin_015_15_7_105\n", "sin_015_15_7_120\n", "sin_015_15_7_135\n", "sin_015_15_7_150\n", "sin_015_15_7_165\n", "sin_015_15_7_180\n", "sin_015_15_7_195\n", "sin_015_15_7_210\n", "sin_015_15_7_225\n", "sin_015_15_7_240\n", "sin_015_15_8_0\n", "sin_015_15_8_15\n", "sin_015_15_8_30\n", "sin_015_15_8_45\n", "sin_015_15_8_60\n", "sin_015_15_8_75\n", "sin_015_15_8_90\n", "sin_015_15_8_105\n", "sin_015_15_8_120\n", "sin_015_15_8_135\n", "sin_015_15_8_150\n", "sin_015_15_8_165\n", "sin_015_15_8_180\n", "sin_015_15_8_195\n", "sin_015_15_8_210\n", "sin_015_15_8_225\n", "sin_015_15_8_240\n", "sin_015_15_9_0\n", "sin_015_15_9_15\n", "sin_015_15_9_30\n", "sin_015_15_9_45\n", "sin_015_15_9_60\n", "sin_015_15_9_75\n", "sin_015_15_9_90\n", "sin_015_15_9_105\n", "sin_015_15_9_120\n", "sin_015_15_9_135\n", "sin_015_15_9_150\n", "sin_015_15_9_165\n", "sin_015_15_9_180\n", "sin_015_15_9_195\n", "sin_015_15_9_210\n", "sin_015_15_9_225\n", "sin_015_15_9_240\n", "sin_015_15_10_0\n", "sin_015_15_10_15\n", "sin_015_15_10_30\n", "sin_015_15_10_45\n", "sin_015_15_10_60\n", "sin_015_15_10_75\n", "sin_015_15_10_90\n", "sin_015_15_10_105\n", "sin_015_15_10_120\n", "sin_015_15_10_135\n", "sin_015_15_10_150\n", "sin_015_15_10_165\n", "sin_015_15_10_180\n", "sin_015_15_10_195\n", "sin_015_15_10_210\n", "sin_015_15_10_225\n", "sin_015_15_10_240\n", "sin_015_15_11_0\n", "sin_015_15_11_15\n", "sin_015_15_11_30\n", "sin_015_15_11_45\n", "sin_015_15_11_60\n", "sin_015_15_11_75\n", "sin_015_15_11_90\n", "sin_015_15_11_105\n", "sin_015_15_11_120\n", "sin_015_15_11_135\n", "sin_015_15_11_150\n", "sin_015_15_11_165\n", "sin_015_15_11_180\n", "sin_015_15_11_195\n", "sin_015_15_11_210\n", "sin_015_15_11_225\n", "sin_015_15_11_240\n", "sin_015_15_12_0\n", "sin_015_15_12_15\n", "sin_015_15_12_30\n", "sin_015_15_12_45\n", "sin_015_15_12_60\n", "sin_015_15_12_75\n", "sin_015_15_12_90\n", "sin_015_15_12_105\n", "sin_015_15_12_120\n", "sin_015_15_12_135\n", "sin_015_15_12_150\n", "sin_015_15_12_165\n", "sin_015_15_12_180\n", "sin_015_15_12_195\n", "sin_015_15_12_210\n", "sin_015_15_12_225\n", "sin_015_15_12_240\n", "sin_015_15_13_0\n", "sin_015_15_13_15\n", "sin_015_15_13_30\n", "sin_015_15_13_45\n", "sin_015_15_13_60\n", "sin_015_15_13_75\n", "sin_015_15_13_90\n", "sin_015_15_13_105\n", "sin_015_15_13_120\n", "sin_015_15_13_135\n", "sin_015_15_13_150\n", "sin_015_15_13_165\n", "sin_015_15_13_180\n", "sin_015_15_13_195\n", "sin_015_15_13_210\n", "sin_015_15_13_225\n", "sin_015_15_13_240\n", "sin_015_15_14_0\n", "sin_015_15_14_15\n", "sin_015_15_14_30\n", "sin_015_15_14_45\n", "sin_015_15_14_60\n", "sin_015_15_14_75\n", "sin_015_15_14_90\n", "sin_015_15_14_105\n", "sin_015_15_14_120\n", "sin_015_15_14_135\n", "sin_015_15_14_150\n", "sin_015_15_14_165\n", "sin_015_15_14_180\n", "sin_015_15_14_195\n", "sin_015_15_14_210\n", "sin_015_15_14_225\n", "sin_015_15_14_240\n", "sin_015_15_15_0\n", "sin_015_15_15_15\n", "sin_015_15_15_30\n", "sin_015_15_15_45\n", "sin_015_15_15_60\n", "sin_015_15_15_75\n", "sin_015_15_15_90\n", "sin_015_15_15_105\n", "sin_015_15_15_120\n", "sin_015_15_15_135\n", "sin_015_15_15_150\n", "sin_015_15_15_165\n", "sin_015_15_15_180\n", "sin_015_15_15_195\n", "sin_015_15_15_210\n", "sin_015_15_15_225\n", "sin_015_15_15_240\n", "sin_015_15_16_0\n", "sin_015_15_16_15\n", "sin_015_15_16_30\n", "sin_015_15_16_45\n", "sin_015_15_16_60\n", "sin_015_15_16_75\n", "sin_015_15_16_90\n", "sin_015_15_16_105\n", "sin_015_15_16_120\n", "sin_015_15_16_135\n", "sin_015_15_16_150\n", "sin_015_15_16_165\n", "sin_015_15_16_180\n", "sin_015_15_16_195\n", "sin_015_15_16_210\n", "sin_015_15_16_225\n", "sin_015_15_16_240\n", "sin_015_15_17_0\n", "sin_015_15_17_15\n", "sin_015_15_17_30\n", "sin_015_15_17_45\n", "sin_015_15_17_60\n", "sin_015_15_17_75\n", "sin_015_15_17_90\n", "sin_015_15_17_105\n", "sin_015_15_17_120\n", "sin_015_15_17_135\n", "sin_015_15_17_150\n", "sin_015_15_17_165\n", "sin_015_15_17_180\n", "sin_015_15_17_195\n", "sin_015_15_17_210\n", "sin_015_15_17_225\n", "sin_015_15_17_240\n", "sin_015_15_18_0\n", "sin_015_15_18_15\n", "sin_015_15_18_30\n", "sin_015_15_18_45\n", "sin_015_15_18_60\n", "sin_015_15_18_75\n", "sin_015_15_18_90\n", "sin_015_15_18_105\n", "sin_015_15_18_120\n", "sin_015_15_18_135\n", "sin_015_15_18_150\n", "sin_015_15_18_165\n", "sin_015_15_18_180\n", "sin_015_15_18_195\n", "sin_015_15_18_210\n", "sin_015_15_18_225\n", "sin_015_15_18_240\n", "sin_015_15_19_0\n", "sin_015_15_19_15\n", "sin_015_15_19_30\n", "sin_015_15_19_45\n", "sin_015_15_19_60\n", "sin_015_15_19_75\n", "sin_015_15_19_90\n", "sin_015_15_19_105\n", "sin_015_15_19_120\n", "sin_015_15_19_135\n", "sin_015_15_19_150\n", "sin_015_15_19_165\n", "sin_015_15_19_180\n", "sin_015_15_19_195\n", "sin_015_15_19_210\n", "sin_015_15_19_225\n", "sin_015_15_19_240\n", "sin_015_15_20_0\n", "sin_015_15_20_15\n", "sin_015_15_20_30\n", "sin_015_15_20_45\n", "sin_015_15_20_60\n", "sin_015_15_20_75\n", "sin_015_15_20_90\n", "sin_015_15_20_105\n", "sin_015_15_20_120\n", "sin_015_15_20_135\n", "sin_015_15_20_150\n", "sin_015_15_20_165\n", "sin_015_15_20_180\n", "sin_015_15_20_195\n", "sin_015_15_20_210\n", "sin_015_15_20_225\n", "sin_015_15_20_240\n", "sin_015_15_21_0\n", "sin_015_15_21_15\n", "sin_015_15_21_30\n", "sin_015_15_21_45\n", "sin_015_15_21_60\n", "sin_015_15_21_75\n", "sin_015_15_21_90\n", "sin_015_15_21_105\n", "sin_015_15_21_120\n", "sin_015_15_21_135\n", "sin_015_15_21_150\n", "sin_015_15_21_165\n", "sin_015_15_21_180\n", "sin_015_15_21_195\n", "sin_015_15_21_210\n", "sin_015_15_21_225\n", "sin_015_15_21_240\n", "sin_015_15_22_0\n", "sin_015_15_22_15\n", "sin_015_15_22_30\n", "sin_015_15_22_45\n", "sin_015_15_22_60\n", "sin_015_15_22_75\n", "sin_015_15_22_90\n", "sin_015_15_22_105\n", "sin_015_15_22_120\n", "sin_015_15_22_135\n", "sin_015_15_22_150\n", "sin_015_15_22_165\n", "sin_015_15_22_180\n", "sin_015_15_22_195\n", "sin_015_15_22_210\n", "sin_015_15_22_225\n", "sin_015_15_22_240\n", "sin_015_15_23_0\n", "sin_015_15_23_15\n", "sin_015_15_23_30\n", "sin_015_15_23_45\n", "sin_015_15_23_60\n", "sin_015_15_23_75\n", "sin_015_15_23_90\n", "sin_015_15_23_105\n", "sin_015_15_23_120\n", "sin_015_15_23_135\n", "sin_015_15_23_150\n", "sin_015_15_23_165\n", "sin_015_15_23_180\n", "sin_015_15_23_195\n", "sin_015_15_23_210\n", "sin_015_15_23_225\n", "sin_015_15_23_240\n", "sin_015_15_24_0\n", "sin_015_15_24_15\n", "sin_015_15_24_30\n", "sin_015_15_24_45\n", "sin_015_15_24_60\n", "sin_015_15_24_75\n", "sin_015_15_24_90\n", "sin_015_15_24_105\n", "sin_015_15_24_120\n", "sin_015_15_24_135\n", "sin_015_15_24_150\n", "sin_015_15_24_165\n", "sin_015_15_24_180\n", "sin_015_15_24_195\n", "sin_015_15_24_210\n", "sin_015_15_24_225\n", "sin_015_15_24_240\n", "sin_015_15_25_0\n", "sin_015_15_25_15\n", "sin_015_15_25_30\n", "sin_015_15_25_45\n", "sin_015_15_25_60\n", "sin_015_15_25_75\n", "sin_015_15_25_90\n", "sin_015_15_25_105\n", "sin_015_15_25_120\n", "sin_015_15_25_135\n", "sin_015_15_25_150\n", "sin_015_15_25_165\n", "sin_015_15_25_180\n", "sin_015_15_25_195\n", "sin_015_15_25_210\n", "sin_015_15_25_225\n", "sin_015_15_25_240\n", "sin_015_15_26_0\n", "sin_015_15_26_15\n", "sin_015_15_26_30\n", "sin_015_15_26_45\n", "sin_015_15_26_60\n", "sin_015_15_26_75\n", "sin_015_15_26_90\n", "sin_015_15_26_105\n", "sin_015_15_26_120\n", "sin_015_15_26_135\n", "sin_015_15_26_150\n", "sin_015_15_26_165\n", "sin_015_15_26_180\n", "sin_015_15_26_195\n", "sin_015_15_26_210\n", "sin_015_15_26_225\n", "sin_015_15_26_240\n", "sin_015_15_27_0\n", "sin_015_15_27_15\n", "sin_015_15_27_30\n", "sin_015_15_27_45\n", "sin_015_15_27_60\n", "sin_015_15_27_75\n", "sin_015_15_27_90\n", "sin_015_15_27_105\n", "sin_015_15_27_120\n", "sin_015_15_27_135\n", "sin_015_15_27_150\n", "sin_015_15_27_165\n", "sin_015_15_27_180\n", "sin_015_15_27_195\n", "sin_015_15_27_210\n", "sin_015_15_27_225\n", "sin_015_15_27_240\n", "sin_015_15_28_0\n", "sin_015_15_28_15\n", "sin_015_15_28_30\n", "sin_015_15_28_45\n", "sin_015_15_28_60\n", "sin_015_15_28_75\n", "sin_015_15_28_90\n", "sin_015_15_28_105\n", "sin_015_15_28_120\n", "sin_015_15_28_135\n", "sin_015_15_28_150\n", "sin_015_15_28_165\n", "sin_015_15_28_180\n", "sin_015_15_28_195\n", "sin_015_15_28_210\n", "sin_015_15_28_225\n", "sin_015_15_28_240\n", "sin_015_15_29_0\n", "sin_015_15_29_15\n", "sin_015_15_29_30\n", "sin_015_15_29_45\n", "sin_015_15_29_60\n", "sin_015_15_29_75\n", "sin_015_15_29_90\n", "sin_015_15_29_105\n", "sin_015_15_29_120\n", "sin_015_15_29_135\n", "sin_015_15_29_150\n", "sin_015_15_29_165\n", "sin_015_15_29_180\n", "sin_015_15_29_195\n", "sin_015_15_29_210\n", "sin_015_15_29_225\n", "sin_015_15_29_240\n", "sin_015_15_30_0\n", "sin_015_15_30_15\n", "sin_015_15_30_30\n", "sin_015_15_30_45\n", "sin_015_15_30_60\n", "sin_015_15_30_75\n", "sin_015_15_30_90\n", "sin_015_15_30_105\n", "sin_015_15_30_120\n", "sin_015_15_30_135\n", "sin_015_15_30_150\n", "sin_015_15_30_165\n", "sin_015_15_30_180\n", "sin_015_15_30_195\n", "sin_015_15_30_210\n", "sin_015_15_30_225\n", "sin_015_15_30_240\n", "sin_015_15_31_0\n", "sin_015_15_31_15\n", "sin_015_15_31_30\n", "sin_015_15_31_45\n", "sin_015_15_31_60\n", "sin_015_15_31_75\n", "sin_015_15_31_90\n", "sin_015_15_31_105\n", "sin_015_15_31_120\n", "sin_015_15_31_135\n", "sin_015_15_31_150\n", "sin_015_15_31_165\n", "sin_015_15_31_180\n", "sin_015_15_31_195\n", "sin_015_15_31_210\n", "sin_015_15_31_225\n", "sin_015_15_31_240\n", "sin_015_15_32_0\n", "sin_015_15_32_15\n", "sin_015_15_32_30\n", "sin_015_15_32_45\n", "sin_015_15_32_60\n", "sin_015_15_32_75\n", "sin_015_15_32_90\n", "sin_015_15_32_105\n", "sin_015_15_32_120\n", "sin_015_15_32_135\n", "sin_015_15_32_150\n", "sin_015_15_32_165\n", "sin_015_15_32_180\n", "sin_015_15_32_195\n", "sin_015_15_32_210\n", "sin_015_15_32_225\n", "sin_015_15_32_240\n", "sin_015_15_33_0\n", "sin_015_15_33_15\n", "sin_015_15_33_30\n", "sin_015_15_33_45\n", "sin_015_15_33_60\n", "sin_015_15_33_75\n", "sin_015_15_33_90\n", "sin_015_15_33_105\n", "sin_015_15_33_120\n", "sin_015_15_33_135\n", "sin_015_15_33_150\n", "sin_015_15_33_165\n", "sin_015_15_33_180\n", "sin_015_15_33_195\n", "sin_015_15_33_210\n", "sin_015_15_33_225\n", "sin_015_15_33_240\n", "sin_015_15_34_0\n", "sin_015_15_34_15\n", "sin_015_15_34_30\n", "sin_015_15_34_45\n", "sin_015_15_34_60\n", "sin_015_15_34_75\n", "sin_015_15_34_90\n", "sin_015_15_34_105\n", "sin_015_15_34_120\n", "sin_015_15_34_135\n", "sin_015_15_34_150\n", "sin_015_15_34_165\n", "sin_015_15_34_180\n", "sin_015_15_34_195\n", "sin_015_15_34_210\n", "sin_015_15_34_225\n", "sin_015_15_34_240\n", "sin_015_15_35_0\n", "sin_015_15_35_15\n", "sin_015_15_35_30\n", "sin_015_15_35_45\n", "sin_015_15_35_60\n", "sin_015_15_35_75\n", "sin_015_15_35_90\n", "sin_015_15_35_105\n", "sin_015_15_35_120\n", "sin_015_15_35_135\n", "sin_015_15_35_150\n", "sin_015_15_35_165\n", "sin_015_15_35_180\n", "sin_015_15_35_195\n", "sin_015_15_35_210\n", "sin_015_15_35_225\n", "sin_015_15_35_240\n", "sin_015_15_36_0\n", "sin_015_15_36_15\n", "sin_015_15_36_30\n", "sin_015_15_36_45\n", "sin_015_15_36_60\n", "sin_015_15_36_75\n", "sin_015_15_36_90\n", "sin_015_15_36_105\n", "sin_015_15_36_120\n", "sin_015_15_36_135\n", "sin_015_15_36_150\n", "sin_015_15_36_165\n", "sin_015_15_36_180\n", "sin_015_15_36_195\n", "sin_015_15_36_210\n", "sin_015_15_36_225\n", "sin_015_15_36_240\n", "sin_015_15_37_0\n", "sin_015_15_37_15\n", "sin_015_15_37_30\n", "sin_015_15_37_45\n", "sin_015_15_37_60\n", "sin_015_15_37_75\n", "sin_015_15_37_90\n", "sin_015_15_37_105\n", "sin_015_15_37_120\n", "sin_015_15_37_135\n", "sin_015_15_37_150\n", "sin_015_15_37_165\n", "sin_015_15_37_180\n", "sin_015_15_37_195\n", "sin_015_15_37_210\n", "sin_015_15_37_225\n", "sin_015_15_37_240\n", "sin_015_15_38_0\n", "sin_015_15_38_15\n", "sin_015_15_38_30\n", "sin_015_15_38_45\n", "sin_015_15_38_60\n", "sin_015_15_38_75\n", "sin_015_15_38_90\n", "sin_015_15_38_105\n", "sin_015_15_38_120\n", "sin_015_15_38_135\n", "sin_015_15_38_150\n", "sin_015_15_38_165\n", "sin_015_15_38_180\n", "sin_015_15_38_195\n", "sin_015_15_38_210\n", "sin_015_15_38_225\n", "sin_015_15_38_240\n", "sin_015_15_39_0\n", "sin_015_15_39_15\n", "sin_015_15_39_30\n", "sin_015_15_39_45\n", "sin_015_15_39_60\n", "sin_015_15_39_75\n", "sin_015_15_39_90\n", "sin_015_15_39_105\n", "sin_015_15_39_120\n", "sin_015_15_39_135\n", "sin_015_15_39_150\n", "sin_015_15_39_165\n", "sin_015_15_39_180\n", "sin_015_15_39_195\n", "sin_015_15_39_210\n", "sin_015_15_39_225\n", "sin_015_15_39_240\n", "sin_015_15_40_0\n", "sin_015_15_40_15\n", "sin_015_15_40_30\n", "sin_015_15_40_45\n", "sin_015_15_40_60\n", "sin_015_15_40_75\n", "sin_015_15_40_90\n", "sin_015_15_40_105\n", "sin_015_15_40_120\n", "sin_015_15_40_135\n", "sin_015_15_40_150\n", "sin_015_15_40_165\n", "sin_015_15_40_180\n", "sin_015_15_40_195\n", "sin_015_15_40_210\n", "sin_015_15_40_225\n", "sin_015_15_40_240\n", "sin_015_15_41_0\n", "sin_015_15_41_15\n", "sin_015_15_41_30\n", "sin_015_15_41_45\n", "sin_015_15_41_60\n", "sin_015_15_41_75\n", "sin_015_15_41_90\n", "sin_015_15_41_105\n", "sin_015_15_41_120\n", "sin_015_15_41_135\n", "sin_015_15_41_150\n", "sin_015_15_41_165\n", "sin_015_15_41_180\n", "sin_015_15_41_195\n", "sin_015_15_41_210\n", "sin_015_15_41_225\n", "sin_015_15_41_240\n", "sin_015_15_42_0\n", "sin_015_15_42_15\n", "sin_015_15_42_30\n", "sin_015_15_42_45\n", "sin_015_15_42_60\n", "sin_015_15_42_75\n", "sin_015_15_42_90\n", "sin_015_15_42_105\n", "sin_015_15_42_120\n", "sin_015_15_42_135\n", "sin_015_15_42_150\n", "sin_015_15_42_165\n", "sin_015_15_42_180\n", "sin_015_15_42_195\n", "sin_015_15_42_210\n", "sin_015_15_42_225\n", "sin_015_15_42_240\n", "sin_015_15_43_0\n", "sin_015_15_43_15\n", "sin_015_15_43_30\n", "sin_015_15_43_45\n", "sin_015_15_43_60\n", "sin_015_15_43_75\n", "sin_015_15_43_90\n", "sin_015_15_43_105\n", "sin_015_15_43_120\n", "sin_015_15_43_135\n", "sin_015_15_43_150\n", "sin_015_15_43_165\n", "sin_015_15_43_180\n", "sin_015_15_43_195\n", "sin_015_15_43_210\n", "sin_015_15_43_225\n", "sin_015_15_43_240\n", "sin_015_15_44_0\n", "sin_015_15_44_15\n", "sin_015_15_44_30\n", "sin_015_15_44_45\n", "sin_015_15_44_60\n", "sin_015_15_44_75\n", "sin_015_15_44_90\n", "sin_015_15_44_105\n", "sin_015_15_44_120\n", "sin_015_15_44_135\n", "sin_015_15_44_150\n", "sin_015_15_44_165\n", "sin_015_15_44_180\n", "sin_015_15_44_195\n", "sin_015_15_44_210\n", "sin_015_15_44_225\n", "sin_015_15_44_240\n", "sin_015_15_45_0\n", "sin_015_15_45_15\n", "sin_015_15_45_30\n", "sin_015_15_45_45\n", "sin_015_15_45_60\n", "sin_015_15_45_75\n", "sin_015_15_45_90\n", "sin_015_15_45_105\n", "sin_015_15_45_120\n", "sin_015_15_45_135\n", "sin_015_15_45_150\n", "sin_015_15_45_165\n", "sin_015_15_45_180\n", "sin_015_15_45_195\n", "sin_015_15_45_210\n", "sin_015_15_45_225\n", "sin_015_15_45_240\n", "sin_015_15_46_0\n", "sin_015_15_46_15\n", "sin_015_15_46_30\n", "sin_015_15_46_45\n", "sin_015_15_46_60\n", "sin_015_15_46_75\n", "sin_015_15_46_90\n", "sin_015_15_46_105\n", "sin_015_15_46_120\n", "sin_015_15_46_135\n", "sin_015_15_46_150\n", "sin_015_15_46_165\n", "sin_015_15_46_180\n", "sin_015_15_46_195\n", "sin_015_15_46_210\n", "sin_015_15_46_225\n", "sin_015_15_46_240\n", "sin_015_15_47_0\n", "sin_015_15_47_15\n", "sin_015_15_47_30\n", "sin_015_15_47_45\n", "sin_015_15_47_60\n", "sin_015_15_47_75\n", "sin_015_15_47_90\n", "sin_015_15_47_105\n", "sin_015_15_47_120\n", "sin_015_15_47_135\n", "sin_015_15_47_150\n", "sin_015_15_47_165\n", "sin_015_15_47_180\n", "sin_015_15_47_195\n", "sin_015_15_47_210\n", "sin_015_15_47_225\n", "sin_015_15_47_240\n", "sin_015_15_48_0\n", "sin_015_15_48_15\n", "sin_015_15_48_30\n", "sin_015_15_48_45\n", "sin_015_15_48_60\n", "sin_015_15_48_75\n", "sin_015_15_48_90\n", "sin_015_15_48_105\n", "sin_015_15_48_120\n", "sin_015_15_48_135\n", "sin_015_15_48_150\n", "sin_015_15_48_165\n", "sin_015_15_48_180\n", "sin_015_15_48_195\n", "sin_015_15_48_210\n", "sin_015_15_48_225\n", "sin_015_15_48_240\n", "sin_015_15_49_0\n", "sin_015_15_49_15\n", "sin_015_15_49_30\n", "sin_015_15_49_45\n", "sin_015_15_49_60\n", "sin_015_15_49_75\n", "sin_015_15_49_90\n", "sin_015_15_49_105\n", "sin_015_15_49_120\n", "sin_015_15_49_135\n", "sin_015_15_49_150\n", "sin_015_15_49_165\n", "sin_015_15_49_180\n", "sin_015_15_49_195\n", "sin_015_15_49_210\n", "sin_015_15_49_225\n", "sin_015_15_49_240\n", "sin_015_15_50_0\n", "sin_015_15_50_15\n", "sin_015_15_50_30\n", "sin_015_15_50_45\n", "sin_015_15_50_60\n", "sin_015_15_50_75\n", "sin_015_15_50_90\n", "sin_015_15_50_105\n", "sin_015_15_50_120\n", "sin_015_15_50_135\n", "sin_015_15_50_150\n", "sin_015_15_50_165\n", "sin_015_15_50_180\n", "sin_015_15_50_195\n", "sin_015_15_50_210\n", "sin_015_15_50_225\n", "sin_015_15_50_240\n", "sin_015_15_51_0\n", "sin_015_15_51_15\n", "sin_015_15_51_30\n", "sin_015_15_51_45\n", "sin_015_15_51_60\n", "sin_015_15_51_75\n", "sin_015_15_51_90\n", "sin_015_15_51_105\n", "sin_015_15_51_120\n", "sin_015_15_51_135\n", "sin_015_15_51_150\n", "sin_015_15_51_165\n", "sin_015_15_51_180\n", "sin_015_15_51_195\n", "sin_015_15_51_210\n", "sin_015_15_51_225\n", "sin_015_15_51_240\n", "sin_015_15_52_0\n", "sin_015_15_52_15\n", "sin_015_15_52_30\n", "sin_015_15_52_45\n", "sin_015_15_52_60\n", "sin_015_15_52_75\n", "sin_015_15_52_90\n", "sin_015_15_52_105\n", "sin_015_15_52_120\n", "sin_015_15_52_135\n", "sin_015_15_52_150\n", "sin_015_15_52_165\n", "sin_015_15_52_180\n", "sin_015_15_52_195\n", "sin_015_15_52_210\n", "sin_015_15_52_225\n", "sin_015_15_52_240\n", "sin_015_15_53_0\n", "sin_015_15_53_15\n", "sin_015_15_53_30\n", "sin_015_15_53_45\n", "sin_015_15_53_60\n", "sin_015_15_53_75\n", "sin_015_15_53_90\n", "sin_015_15_53_105\n", "sin_015_15_53_120\n", "sin_015_15_53_135\n", "sin_015_15_53_150\n", "sin_015_15_53_165\n", "sin_015_15_53_180\n", "sin_015_15_53_195\n", "sin_015_15_53_210\n", "sin_015_15_53_225\n", "sin_015_15_53_240\n", "sin_015_15_54_0\n", "sin_015_15_54_15\n", "sin_015_15_54_30\n", "sin_015_15_54_45\n", "sin_015_15_54_60\n", "sin_015_15_54_75\n", "sin_015_15_54_90\n", "sin_015_15_54_105\n", "sin_015_15_54_120\n", "sin_015_15_54_135\n", "sin_015_15_54_150\n", "sin_015_15_54_165\n", "sin_015_15_54_180\n", "sin_015_15_54_195\n", "sin_015_15_54_210\n", "sin_015_15_54_225\n", "sin_015_15_54_240\n", "sin_015_15_55_0\n", "sin_015_15_55_15\n", "sin_015_15_55_30\n", "sin_015_15_55_45\n", "sin_015_15_55_60\n", "sin_015_15_55_75\n", "sin_015_15_55_90\n", "sin_015_15_55_105\n", "sin_015_15_55_120\n", "sin_015_15_55_135\n", "sin_015_15_55_150\n", "sin_015_15_55_165\n", "sin_015_15_55_180\n", "sin_015_15_55_195\n", "sin_015_15_55_210\n", "sin_015_15_55_225\n", "sin_015_15_55_240\n", "sin_015_15_56_0\n", "sin_015_15_56_15\n", "sin_015_15_56_30\n", "sin_015_15_56_45\n", "sin_015_15_56_60\n", "sin_015_15_56_75\n", "sin_015_15_56_90\n", "sin_015_15_56_105\n", "sin_015_15_56_120\n", "sin_015_15_56_135\n", "sin_015_15_56_150\n", "sin_015_15_56_165\n", "sin_015_15_56_180\n", "sin_015_15_56_195\n", "sin_015_15_56_210\n", "sin_015_15_56_225\n", "sin_015_15_56_240\n", "sin_015_15_57_0\n", "sin_015_15_57_15\n", "sin_015_15_57_30\n", "sin_015_15_57_45\n", "sin_015_15_57_60\n", "sin_015_15_57_75\n", "sin_015_15_57_90\n", "sin_015_15_57_105\n", "sin_015_15_57_120\n", "sin_015_15_57_135\n", "sin_015_15_57_150\n", "sin_015_15_57_165\n", "sin_015_15_57_180\n", "sin_015_15_57_195\n", "sin_015_15_57_210\n", "sin_015_15_57_225\n", "sin_015_15_57_240\n", "sin_015_15_58_0\n", "sin_015_15_58_15\n", "sin_015_15_58_30\n", "sin_015_15_58_45\n", "sin_015_15_58_60\n", "sin_015_15_58_75\n", "sin_015_15_58_90\n", "sin_015_15_58_105\n", "sin_015_15_58_120\n", "sin_015_15_58_135\n", "sin_015_15_58_150\n", "sin_015_15_58_165\n", "sin_015_15_58_180\n", "sin_015_15_58_195\n", "sin_015_15_58_210\n", "sin_015_15_58_225\n", "sin_015_15_58_240\n", "sin_015_15_59_0\n", "sin_015_15_59_15\n", "sin_015_15_59_30\n", "sin_015_15_59_45\n", "sin_015_15_59_60\n", "sin_015_15_59_75\n", "sin_015_15_59_90\n", "sin_015_15_59_105\n", "sin_015_15_59_120\n", "sin_015_15_59_135\n", "sin_015_15_59_150\n", "sin_015_15_59_165\n", "sin_015_15_59_180\n", "sin_015_15_59_195\n", "sin_015_15_59_210\n", "sin_015_15_59_225\n", "sin_015_15_59_240\n", "sin_015_15_60_0\n", "sin_015_15_60_15\n", "sin_015_15_60_30\n", "sin_015_15_60_45\n", "sin_015_15_60_60\n", "sin_015_15_60_75\n", "sin_015_15_60_90\n", "sin_015_15_60_105\n", "sin_015_15_60_120\n", "sin_015_15_60_135\n", "sin_015_15_60_150\n", "sin_015_15_60_165\n", "sin_015_15_60_180\n", "sin_015_15_60_195\n", "sin_015_15_60_210\n", "sin_015_15_60_225\n", "sin_015_15_60_240\n", "sin_015_15_61_0\n", "sin_015_15_61_15\n", "sin_015_15_61_30\n", "sin_015_15_61_45\n", "sin_015_15_61_60\n", "sin_015_15_61_75\n", "sin_015_15_61_90\n", "sin_015_15_61_105\n", "sin_015_15_61_120\n", "sin_015_15_61_135\n", "sin_015_15_61_150\n", "sin_015_15_61_165\n", "sin_015_15_61_180\n", "sin_015_15_61_195\n", "sin_015_15_61_210\n", "sin_015_15_61_225\n", "sin_015_15_61_240\n", "sin_015_15_62_0\n", "sin_015_15_62_15\n", "sin_015_15_62_30\n", "sin_015_15_62_45\n", "sin_015_15_62_60\n", "sin_015_15_62_75\n", "sin_015_15_62_90\n", "sin_015_15_62_105\n", "sin_015_15_62_120\n", "sin_015_15_62_135\n", "sin_015_15_62_150\n", "sin_015_15_62_165\n", "sin_015_15_62_180\n", "sin_015_15_62_195\n", "sin_015_15_62_210\n", "sin_015_15_62_225\n", "sin_015_15_62_240\n", "sin_015_15_63_0\n", "sin_015_15_63_15\n", "sin_015_15_63_30\n", "sin_015_15_63_45\n", "sin_015_15_63_60\n", "sin_015_15_63_75\n", "sin_015_15_63_90\n", "sin_015_15_63_105\n", "sin_015_15_63_120\n", "sin_015_15_63_135\n", "sin_015_15_63_150\n", "sin_015_15_63_165\n", "sin_015_15_63_180\n", "sin_015_15_63_195\n", "sin_015_15_63_210\n", "sin_015_15_63_225\n", "sin_015_15_63_240\n", "sin_015_15_64_0\n", "sin_015_15_64_15\n", "sin_015_15_64_30\n", "sin_015_15_64_45\n", "sin_015_15_64_60\n", "sin_015_15_64_75\n", "sin_015_15_64_90\n", "sin_015_15_64_105\n", "sin_015_15_64_120\n", "sin_015_15_64_135\n", "sin_015_15_64_150\n", "sin_015_15_64_165\n", "sin_015_15_64_180\n", "sin_015_15_64_195\n", "sin_015_15_64_210\n", "sin_015_15_64_225\n", "sin_015_15_64_240\n", "sin_015_15_65_0\n", "sin_015_15_65_15\n", "sin_015_15_65_30\n", "sin_015_15_65_45\n", "sin_015_15_65_60\n", "sin_015_15_65_75\n", "sin_015_15_65_90\n", "sin_015_15_65_105\n", "sin_015_15_65_120\n", "sin_015_15_65_135\n", "sin_015_15_65_150\n", "sin_015_15_65_165\n", "sin_015_15_65_180\n", "sin_015_15_65_195\n", "sin_015_15_65_210\n", "sin_015_15_65_225\n", "sin_015_15_65_240\n", "sin_015_15_66_0\n", "sin_015_15_66_15\n", "sin_015_15_66_30\n", "sin_015_15_66_45\n", "sin_015_15_66_60\n", "sin_015_15_66_75\n", "sin_015_15_66_90\n", "sin_015_15_66_105\n", "sin_015_15_66_120\n", "sin_015_15_66_135\n", "sin_015_15_66_150\n", "sin_015_15_66_165\n", "sin_015_15_66_180\n", "sin_015_15_66_195\n", "sin_015_15_66_210\n", "sin_015_15_66_225\n", "sin_015_15_66_240\n", "sin_015_15_67_0\n", "sin_015_15_67_15\n", "sin_015_15_67_30\n", "sin_015_15_67_45\n", "sin_015_15_67_60\n", "sin_015_15_67_75\n", "sin_015_15_67_90\n", "sin_015_15_67_105\n", "sin_015_15_67_120\n", "sin_015_15_67_135\n", "sin_015_15_67_150\n", "sin_015_15_67_165\n", "sin_015_15_67_180\n", "sin_015_15_67_195\n", "sin_015_15_67_210\n", "sin_015_15_67_225\n", "sin_015_15_67_240\n", "sin_015_15_68_0\n", "sin_015_15_68_15\n", "sin_015_15_68_30\n", "sin_015_15_68_45\n", "sin_015_15_68_60\n", "sin_015_15_68_75\n", "sin_015_15_68_90\n", "sin_015_15_68_105\n", "sin_015_15_68_120\n", "sin_015_15_68_135\n", "sin_015_15_68_150\n", "sin_015_15_68_165\n", "sin_015_15_68_180\n", "sin_015_15_68_195\n", "sin_015_15_68_210\n", "sin_015_15_68_225\n", "sin_015_15_68_240\n", "sin_015_15_69_0\n", "sin_015_15_69_15\n", "sin_015_15_69_30\n", "sin_015_15_69_45\n", "sin_015_15_69_60\n", "sin_015_15_69_75\n", "sin_015_15_69_90\n", "sin_015_15_69_105\n", "sin_015_15_69_120\n", "sin_015_15_69_135\n", "sin_015_15_69_150\n", "sin_015_15_69_165\n", "sin_015_15_69_180\n", "sin_015_15_69_195\n", "sin_015_15_69_210\n", "sin_015_15_69_225\n", "sin_015_15_69_240\n", "sin_015_15_70_0\n", "sin_015_15_70_15\n", "sin_015_15_70_30\n", "sin_015_15_70_45\n", "sin_015_15_70_60\n", "sin_015_15_70_75\n", "sin_015_15_70_90\n", "sin_015_15_70_105\n", "sin_015_15_70_120\n", "sin_015_15_70_135\n", "sin_015_15_70_150\n", "sin_015_15_70_165\n", "sin_015_15_70_180\n", "sin_015_15_70_195\n", "sin_015_15_70_210\n", "sin_015_15_70_225\n", "sin_015_15_70_240\n", "sin_015_15_71_0\n", "sin_015_15_71_15\n", "sin_015_15_71_30\n", "sin_015_15_71_45\n", "sin_015_15_71_60\n", "sin_015_15_71_75\n", "sin_015_15_71_90\n", "sin_015_15_71_105\n", "sin_015_15_71_120\n", "sin_015_15_71_135\n", "sin_015_15_71_150\n", "sin_015_15_71_165\n", "sin_015_15_71_180\n", "sin_015_15_71_195\n", "sin_015_15_71_210\n", "sin_015_15_71_225\n", "sin_015_15_71_240\n", "sin_015_15_72_0\n", "sin_015_15_72_15\n", "sin_015_15_72_30\n", "sin_015_15_72_45\n", "sin_015_15_72_60\n", "sin_015_15_72_75\n", "sin_015_15_72_90\n", "sin_015_15_72_105\n", "sin_015_15_72_120\n", "sin_015_15_72_135\n", "sin_015_15_72_150\n", "sin_015_15_72_165\n", "sin_015_15_72_180\n", "sin_015_15_72_195\n", "sin_015_15_72_210\n", "sin_015_15_72_225\n", "sin_015_15_72_240\n", "sin_015_15_73_0\n", "sin_015_15_73_15\n", "sin_015_15_73_30\n", "sin_015_15_73_45\n", "sin_015_15_73_60\n", "sin_015_15_73_75\n", "sin_015_15_73_90\n", "sin_015_15_73_105\n", "sin_015_15_73_120\n", "sin_015_15_73_135\n", "sin_015_15_73_150\n", "sin_015_15_73_165\n", "sin_015_15_73_180\n", "sin_015_15_73_195\n", "sin_015_15_73_210\n", "sin_015_15_73_225\n", "sin_015_15_73_240\n", "sin_015_15_74_0\n", "sin_015_15_74_15\n", "sin_015_15_74_30\n", "sin_015_15_74_45\n", "sin_015_15_74_60\n", "sin_015_15_74_75\n", "sin_015_15_74_90\n", "sin_015_15_74_105\n", "sin_015_15_74_120\n", "sin_015_15_74_135\n", "sin_015_15_74_150\n", "sin_015_15_74_165\n", "sin_015_15_74_180\n", "sin_015_15_74_195\n", "sin_015_15_74_210\n", "sin_015_15_74_225\n", "sin_015_15_74_240\n", "sin_015_15_75_0\n", "sin_015_15_75_15\n", "sin_015_15_75_30\n", "sin_015_15_75_45\n", "sin_015_15_75_60\n", "sin_015_15_75_75\n", "sin_015_15_75_90\n", "sin_015_15_75_105\n", "sin_015_15_75_120\n", "sin_015_15_75_135\n", "sin_015_15_75_150\n", "sin_015_15_75_165\n", "sin_015_15_75_180\n", "sin_015_15_75_195\n", "sin_015_15_75_210\n", "sin_015_15_75_225\n", "sin_015_15_75_240\n", "sin_015_15_76_0\n", "sin_015_15_76_15\n", "sin_015_15_76_30\n", "sin_015_15_76_45\n", "sin_015_15_76_60\n", "sin_015_15_76_75\n", "sin_015_15_76_90\n", "sin_015_15_76_105\n", "sin_015_15_76_120\n", "sin_015_15_76_135\n", "sin_015_15_76_150\n", "sin_015_15_76_165\n", "sin_015_15_76_180\n", "sin_015_15_76_195\n", "sin_015_15_76_210\n", "sin_015_15_76_225\n", "sin_015_15_76_240\n", "sin_015_15_77_0\n", "sin_015_15_77_15\n", "sin_015_15_77_30\n", "sin_015_15_77_45\n", "sin_015_15_77_60\n", "sin_015_15_77_75\n", "sin_015_15_77_90\n", "sin_015_15_77_105\n", "sin_015_15_77_120\n", "sin_015_15_77_135\n", "sin_015_15_77_150\n", "sin_015_15_77_165\n", "sin_015_15_77_180\n", "sin_015_15_77_195\n", "sin_015_15_77_210\n", "sin_015_15_77_225\n", "sin_015_15_77_240\n", "sin_015_15_78_0\n", "sin_015_15_78_15\n", "sin_015_15_78_30\n", "sin_015_15_78_45\n", "sin_015_15_78_60\n", "sin_015_15_78_75\n", "sin_015_15_78_90\n", "sin_015_15_78_105\n", "sin_015_15_78_120\n", "sin_015_15_78_135\n", "sin_015_15_78_150\n", "sin_015_15_78_165\n", "sin_015_15_78_180\n", "sin_015_15_78_195\n", "sin_015_15_78_210\n", "sin_015_15_78_225\n", "sin_015_15_78_240\n", "sin_015_15_79_0\n", "sin_015_15_79_15\n", "sin_015_15_79_30\n", "sin_015_15_79_45\n", "sin_015_15_79_60\n", "sin_015_15_79_75\n", "sin_015_15_79_90\n", "sin_015_15_79_105\n", "sin_015_15_79_120\n", "sin_015_15_79_135\n", "sin_015_15_79_150\n", "sin_015_15_79_165\n", "sin_015_15_79_180\n", "sin_015_15_79_195\n", "sin_015_15_79_210\n", "sin_015_15_79_225\n", "sin_015_15_79_240\n", "sin_015_15_80_0\n", "sin_015_15_80_15\n", "sin_015_15_80_30\n", "sin_015_15_80_45\n", "sin_015_15_80_60\n", "sin_015_15_80_75\n", "sin_015_15_80_90\n", "sin_015_15_80_105\n", "sin_015_15_80_120\n", "sin_015_15_80_135\n", "sin_015_15_80_150\n", "sin_015_15_80_165\n", "sin_015_15_80_180\n", "sin_015_15_80_195\n", "sin_015_15_80_210\n", "sin_015_15_80_225\n", "sin_015_15_80_240\n", "sin_015_15_81_0\n", "sin_015_15_81_15\n", "sin_015_15_81_30\n", "sin_015_15_81_45\n", "sin_015_15_81_60\n", "sin_015_15_81_75\n", "sin_015_15_81_90\n", "sin_015_15_81_105\n", "sin_015_15_81_120\n", "sin_015_15_81_135\n", "sin_015_15_81_150\n", "sin_015_15_81_165\n", "sin_015_15_81_180\n", "sin_015_15_81_195\n", "sin_015_15_81_210\n", "sin_015_15_81_225\n", "sin_015_15_81_240\n", "sin_015_15_82_0\n", "sin_015_15_82_15\n", "sin_015_15_82_30\n", "sin_015_15_82_45\n", "sin_015_15_82_60\n", "sin_015_15_82_75\n", "sin_015_15_82_90\n", "sin_015_15_82_105\n", "sin_015_15_82_120\n", "sin_015_15_82_135\n", "sin_015_15_82_150\n", "sin_015_15_82_165\n", "sin_015_15_82_180\n", "sin_015_15_82_195\n", "sin_015_15_82_210\n", "sin_015_15_82_225\n", "sin_015_15_82_240\n", "sin_015_15_83_0\n", "sin_015_15_83_15\n", "sin_015_15_83_30\n", "sin_015_15_83_45\n", "sin_015_15_83_60\n", "sin_015_15_83_75\n", "sin_015_15_83_90\n", "sin_015_15_83_105\n", "sin_015_15_83_120\n", "sin_015_15_83_135\n", "sin_015_15_83_150\n", "sin_015_15_83_165\n", "sin_015_15_83_180\n", "sin_015_15_83_195\n", "sin_015_15_83_210\n", "sin_015_15_83_225\n", "sin_015_15_83_240\n", "sin_015_15_84_0\n", "sin_015_15_84_15\n", "sin_015_15_84_30\n", "sin_015_15_84_45\n", "sin_015_15_84_60\n", "sin_015_15_84_75\n", "sin_015_15_84_90\n", "sin_015_15_84_105\n", "sin_015_15_84_120\n", "sin_015_15_84_135\n", "sin_015_15_84_150\n", "sin_015_15_84_165\n", "sin_015_15_84_180\n", "sin_015_15_84_195\n", "sin_015_15_84_210\n", "sin_015_15_84_225\n", "sin_015_15_84_240\n", "sin_015_15_85_0\n", "sin_015_15_85_15\n", "sin_015_15_85_30\n", "sin_015_15_85_45\n", "sin_015_15_85_60\n", "sin_015_15_85_75\n", "sin_015_15_85_90\n", "sin_015_15_85_105\n", "sin_015_15_85_120\n", "sin_015_15_85_135\n", "sin_015_15_85_150\n", "sin_015_15_85_165\n", "sin_015_15_85_180\n", "sin_015_15_85_195\n", "sin_015_15_85_210\n", "sin_015_15_85_225\n", "sin_015_15_85_240\n", "sin_015_15_86_0\n", "sin_015_15_86_15\n", "sin_015_15_86_30\n", "sin_015_15_86_45\n", "sin_015_15_86_60\n", "sin_015_15_86_75\n", "sin_015_15_86_90\n", "sin_015_15_86_105\n", "sin_015_15_86_120\n", "sin_015_15_86_135\n", "sin_015_15_86_150\n", "sin_015_15_86_165\n", "sin_015_15_86_180\n", "sin_015_15_86_195\n", "sin_015_15_86_210\n", "sin_015_15_86_225\n", "sin_015_15_86_240\n", "sin_015_15_87_0\n", "sin_015_15_87_15\n", "sin_015_15_87_30\n", "sin_015_15_87_45\n", "sin_015_15_87_60\n", "sin_015_15_87_75\n", "sin_015_15_87_90\n", "sin_015_15_87_105\n", "sin_015_15_87_120\n", "sin_015_15_87_135\n", "sin_015_15_87_150\n", "sin_015_15_87_165\n", "sin_015_15_87_180\n", "sin_015_15_87_195\n", "sin_015_15_87_210\n", "sin_015_15_87_225\n", "sin_015_15_87_240\n", "sin_015_15_88_0\n", "sin_015_15_88_15\n", "sin_015_15_88_30\n", "sin_015_15_88_45\n", "sin_015_15_88_60\n", "sin_015_15_88_75\n", "sin_015_15_88_90\n", "sin_015_15_88_105\n", "sin_015_15_88_120\n", "sin_015_15_88_135\n", "sin_015_15_88_150\n", "sin_015_15_88_165\n", "sin_015_15_88_180\n", "sin_015_15_88_195\n", "sin_015_15_88_210\n", "sin_015_15_88_225\n", "sin_015_15_88_240\n", "sin_015_15_89_0\n", "sin_015_15_89_15\n", "sin_015_15_89_30\n", "sin_015_15_89_45\n", "sin_015_15_89_60\n", "sin_015_15_89_75\n", "sin_015_15_89_90\n", "sin_015_15_89_105\n", "sin_015_15_89_120\n", "sin_015_15_89_135\n", "sin_015_15_89_150\n", "sin_015_15_89_165\n", "sin_015_15_89_180\n", "sin_015_15_89_195\n", "sin_015_15_89_210\n", "sin_015_15_89_225\n", "sin_015_15_89_240\n" ] } ], "source": [ "for angle in range(90):\n", " max_value = 15\n", " for start_val in range(0, 255-max_value+1, max_value):\n", " coef = .148/1.9*2\n", " im_x1, im_x2, im_x4 = gen_sin_im2(tgt_size=256*4, exponent_coef=coef, max_value=max_value, rotate_angle=angle, start_val=start_val)\n", " name = f\"sin_{int(coef*100):03d}_{max_value}_{angle}_{start_val}\"\n", " print(name)\n", " im_x1.save(f\"./data/SyntheticTrain/HR/v2{name}.png\") \n", " im_x2.save(f\"./data/SyntheticTrain/LR/X2/v2{name}.png\") \n", " im_x4.save(f\"./data/SyntheticTrain/LR/X4/v2{name}.png\") " ] }, { "cell_type": "code", "execution_count": 250, "metadata": {}, "outputs": [], "source": [ "Path(\"./data/Synthetic/HR/\").mkdir(parents=True, exist_ok=True)\n", "Path(\"./data/Synthetic/LR/X2\").mkdir(parents=True, exist_ok=True)\n", "Path(\"./data/Synthetic/LR/X4\").mkdir(parents=True, exist_ok=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "from PIL import Image\n", "import numpy as np\n", "\n", "def gen_sin_im(tgt_size=640, exponent_coef=0.8, max_value=255, rotate_angle=0):\n", " normal_size = int((np.sqrt(2)-1)*tgt_size*np.cos(np.radians(rotate_angle/np.pi)))\n", " size = tgt_size+normal_size*2\n", " im = np.linspace(0,np.pi*size,num=size)+np.pi\n", " im = np.sin(im**exponent_coef)\n", " im = np.stack([im]*size)\n", " im = im-im.min()\n", " im = im/im.max()\n", " im = im*max_value\n", " im = im.astype(np.uint8)\n", " # im = im[normal_size:-normal_size,normal_size:-normal_size]\n", " im_hr = Image.fromarray(im, mode='L')\n", " im_hr = im_hr.rotate(rotate_angle)\n", " im_hr = im_hr.crop((normal_size,normal_size,im.shape[1]-normal_size,im.shape[0]-normal_size))\n", " im_x2 = im_hr.copy()\n", " im_x4 = im_hr.copy()\n", " im_x2.thumbnail([tgt_size//2,tgt_size//2], resample=Image.LANCZOS)\n", " im_x4.thumbnail([tgt_size//4,tgt_size//4], resample=Image.LANCZOS)\n", " return im_hr, im_x2, im_x4\n", "\n", "def gen_sin_im2(tgt_size=640, exponent_coef=0.8, max_value=255, rotate_angle=0, start_val = 0):\n", " normal_size = int((np.sqrt(2)-1)*tgt_size*np.cos(np.radians(rotate_angle/np.pi)))\n", " size = tgt_size+normal_size*2\n", " im = np.linspace(0,np.pi*size,num=size)+np.pi\n", " im = np.sin(im*im**exponent_coef)\n", " im = np.stack([im]*size)\n", " im = im-im.min()\n", " im = im/im.max()\n", " im = im*max_value+start_val \n", " im = im.astype(np.uint8)\n", " # im = im[normal_size:-normal_size,normal_size:-normal_size]\n", " im_hr = Image.fromarray(im, mode='L')\n", " im_hr = im_hr.rotate(rotate_angle)\n", " im_hr = im_hr.crop((normal_size,normal_size,im.shape[1]-normal_size,im.shape[0]-normal_size))\n", " im_x2 = im_hr.copy()\n", " im_x4 = im_hr.copy()\n", " im_x2.thumbnail([tgt_size//2,tgt_size//2], resample=Image.LANCZOS)\n", " im_x4.thumbnail([tgt_size//4,tgt_size//4], resample=Image.LANCZOS)\n", " return im_hr, im_x2, im_x4\n", "# for max_value in range(1, 255):\n", "\n", "# im_x1, im_x2, im_x4 = gen_sin_im(size=256*4, exponent_coef=coef, max_value=max_value, rotate_angle=45)\n", "# im_x1" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sin_055_255_45\n", "sin_055_255_90\n", "sin_055_255_135\n" ] } ], "source": [ "max_value = 255 \n", "for angle in [45,90,135]:\n", " coef = 0.55\n", " im_x1, im_x2, im_x4 = gen_sin_im(tgt_size=256*4, exponent_coef=coef, max_value=max_value, rotate_angle=angle)\n", " name = f\"sin_{int(coef*100):03d}_{max_value}_{angle}\"\n", " print(name)\n", " im_x1.save(f\"./data/Synthetic/HR/{name}.png\") \n", " im_x2.save(f\"./data/Synthetic/LR/X2/{name}.png\") \n", " im_x4.save(f\"./data/Synthetic/LR/X4/{name}.png\") \n" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sin_007_255_0\n", "sin_007_255_1\n", "sin_007_255_2\n", "sin_007_255_3\n", "sin_007_255_4\n", "sin_007_255_5\n", "sin_007_255_6\n", "sin_007_255_7\n", "sin_007_255_8\n", "sin_007_255_9\n", "sin_007_255_10\n", "sin_007_255_11\n", "sin_007_255_12\n", "sin_007_255_13\n", "sin_007_255_14\n", "sin_007_255_15\n", "sin_007_255_16\n", "sin_007_255_17\n", "sin_007_255_18\n", "sin_007_255_19\n", "sin_007_255_20\n", "sin_007_255_21\n", "sin_007_255_22\n", "sin_007_255_23\n", "sin_007_255_24\n", "sin_007_255_25\n", "sin_007_255_26\n", "sin_007_255_27\n", "sin_007_255_28\n", "sin_007_255_29\n", "sin_007_255_30\n", "sin_007_255_31\n", "sin_007_255_32\n", "sin_007_255_33\n", "sin_007_255_34\n", "sin_007_255_35\n", "sin_007_255_36\n", "sin_007_255_37\n", "sin_007_255_38\n", "sin_007_255_39\n", "sin_007_255_40\n", "sin_007_255_41\n", "sin_007_255_42\n", "sin_007_255_43\n", "sin_007_255_44\n", "sin_007_255_45\n", "sin_007_255_46\n", "sin_007_255_47\n", "sin_007_255_48\n", "sin_007_255_49\n", "sin_007_255_50\n", "sin_007_255_51\n", "sin_007_255_52\n", "sin_007_255_53\n", "sin_007_255_54\n", "sin_007_255_55\n", "sin_007_255_56\n", "sin_007_255_57\n", "sin_007_255_58\n", "sin_007_255_59\n", "sin_007_255_60\n", "sin_007_255_61\n", "sin_007_255_62\n", "sin_007_255_63\n", "sin_007_255_64\n", "sin_007_255_65\n", "sin_007_255_66\n", "sin_007_255_67\n", "sin_007_255_68\n", "sin_007_255_69\n", "sin_007_255_70\n", "sin_007_255_71\n", "sin_007_255_72\n", "sin_007_255_73\n", "sin_007_255_74\n", "sin_007_255_75\n", "sin_007_255_76\n", "sin_007_255_77\n", "sin_007_255_78\n", "sin_007_255_79\n", "sin_007_255_80\n", "sin_007_255_81\n", "sin_007_255_82\n", "sin_007_255_83\n", "sin_007_255_84\n", "sin_007_255_85\n", "sin_007_255_86\n", "sin_007_255_87\n", "sin_007_255_88\n", "sin_007_255_89\n" ] } ], "source": [ "max_value = 255 \n", "for angle in range(90):\n", " coef = .148/2\n", " im_x1, im_x2, im_x4 = gen_sin_im2(tgt_size=256*4, exponent_coef=coef, max_value=max_value, rotate_angle=angle)\n", " name = f\"sin_{int(coef*100):03d}_{max_value}_{angle}\"\n", " print(name)\n", " im_x1.save(f\"./data/Synthetic/HR/v2{name}.png\") \n", " im_x2.save(f\"./data/Synthetic/LR/X2/v2{name}.png\") \n", " im_x4.save(f\"./data/Synthetic/LR/X4/v2{name}.png\") \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(43.49568901720914, 38.837762584624734, 38.445220463904704)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from PIL import Image\n", "import numpy as np\n", "\n", "def PSNR(y_true, y_pred, shave_border=4):\n", " target_data = np.array(y_true, dtype=np.float32)\n", " ref_data = np.array(y_pred, dtype=np.float32)\n", "\n", " diff = ref_data - target_data\n", " if shave_border > 0:\n", " diff = diff[shave_border:-shave_border, shave_border:-shave_border]\n", " rmse = np.sqrt(np.mean(np.power(diff, 2)))\n", "\n", " return 20 * np.log10(255. / rmse)\n", "\n", "def _rgb2ycbcr(img, maxVal=255):\n", " O = np.array([[16],\n", " [128],\n", " [128]])\n", " T = np.array([[0.256788235294118, 0.504129411764706, 0.097905882352941],\n", " [-0.148223529411765, -0.290992156862745, 0.439215686274510],\n", " [0.439215686274510, -0.367788235294118, -0.071427450980392]])\n", "\n", " if maxVal == 1:\n", " O = O / 255.0\n", "\n", " t = np.reshape(img, (img.shape[0] * img.shape[1], img.shape[2]))\n", " t = np.dot(t, np.transpose(T))\n", " t[:, 0] += O[0]\n", " t[:, 1] += O[1]\n", " t[:, 2] += O[2]\n", " ycbcr = np.reshape(t, [img.shape[0], img.shape[1], img.shape[2]])\n", "\n", " return ycbcr\n", "\n", "image = np.array(Image.open(\"./data/Set14/HR/monarch.png\"))\n", "np.random.seed(2)\n", "noise = np.random.randint(-5,5,size=image.shape)\n", "\n", "def with_noise(image, noise):\n", " return (image + noise).clip(0,255).astype(np.uint8)\n", "\n", "a = _rgb2ycbcr(image)[:,:,0]\n", "b = _rgb2ycbcr(with_noise(image, noise))[:,:,0]\n", "\n", "image = np.array(Image.open(\"./data/Set14/HR/monarch.png\").convert(\"YCbCr\").getchannel(0))\n", "c = image\n", "d = with_noise(image, noise[:,:,0])\n", "\n", "image = np.array(Image.open(\"./data/Set14/HR/monarch.png\"))\n", "y = _rgb2ycbcr(image)[:,:,0]\n", "e = y\n", "f = with_noise(y, noise[:,:,0])\n", "\n", "noise_before_rgb2y = PSNR(a, b)\n", "noise_after_pil_rgb2y = PSNR(c, d)\n", "noise_after_mutlut_rgb2y = PSNR(e, f)\n", "\n", "# 43.49568901720914, 38.837762584624734, 38.445220463904704\n", "noise_before_rgb2y, noise_after_pil_rgb2y, noise_after_mutlut_rgb2y" ] }, { "cell_type": "code", "execution_count": 254, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sin_023_255_0\n", "sin_023_255_15\n", "sin_023_255_30\n", "sin_023_255_45\n", "sin_023_255_60\n", "sin_023_255_75\n", "sin_023_255_90\n", "sin_023_255_105\n", "sin_023_255_120\n", "sin_023_255_135\n", "sin_023_255_150\n", "sin_023_255_165\n", "sin_023_255_180\n", "sin_023_255_195\n", "sin_023_255_210\n", "sin_023_255_225\n", "sin_023_255_240\n", "sin_023_255_255\n", "sin_023_255_270\n" ] } ], "source": [ "for angle in range(0,271, 15):\n", " coef = 0.23\n", " max_value=255\n", " im_x1, im_x2, im_x4 = gen_sin_im(tgt_size=256*4, exponent_coef=coef, max_value=max_value, rotate_angle=angle)\n", " name = f\"sin_{int(coef*100):03d}_{max_value}_{angle}\"\n", " print(name)\n", " im_x1.save(f\"./data/Synthetic/HR/{name}.png\") \n", " im_x2.save(f\"./data/Synthetic/LR/X2/{name}.png\") \n", " im_x4.save(f\"./data/Synthetic/LR/X4/{name}.png\") \n" ] }, { "cell_type": "code", "execution_count": 227, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pathwidthheight
0data/Synthetic/LR/X4/const_0000.png256256
1data/Synthetic/LR/X4/const_0001.png256256
2data/Synthetic/LR/X4/const_0002.png256256
3data/Synthetic/LR/X4/const_0003.png256256
4data/Synthetic/LR/X4/const_0004.png256256
............
1271data/Synthetic/LR/X4/sin_085_253_90.png256256
1272data/Synthetic/LR/X4/sin_085_253_135.png256256
1273data/Synthetic/LR/X4/sin_085_254_45.png256256
1274data/Synthetic/LR/X4/sin_085_254_90.png256256
1275data/Synthetic/LR/X4/sin_085_254_135.png256256
\n", "

1276 rows × 3 columns

\n", "
" ], "text/plain": [ " path width height\n", "0 data/Synthetic/LR/X4/const_0000.png 256 256\n", "1 data/Synthetic/LR/X4/const_0001.png 256 256\n", "2 data/Synthetic/LR/X4/const_0002.png 256 256\n", "3 data/Synthetic/LR/X4/const_0003.png 256 256\n", "4 data/Synthetic/LR/X4/const_0004.png 256 256\n", "... ... ... ...\n", "1271 data/Synthetic/LR/X4/sin_085_253_90.png 256 256\n", "1272 data/Synthetic/LR/X4/sin_085_253_135.png 256 256\n", "1273 data/Synthetic/LR/X4/sin_085_254_45.png 256 256\n", "1274 data/Synthetic/LR/X4/sin_085_254_90.png 256 256\n", "1275 data/Synthetic/LR/X4/sin_085_254_135.png 256 256\n", "\n", "[1276 rows x 3 columns]" ] }, "execution_count": 227, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pathlib import Path\n", "\n", "hr = list(Path(\"./data/Synthetic/LR/X4/\").glob(\"*\"))\n", "sizes = [[f,Image.open(f).size[0],Image.open(f).size[0]] for f in hr]\n", "import pandas as pd\n", "df = pd.DataFrame(sizes, columns=['path', 'width', 'height'])\n", "df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pathwidthheight
0data/Synthetic/HR/const_0000.png10241024
1data/Synthetic/HR/const_0001.png10241024
2data/Synthetic/HR/const_0002.png10241024
3data/Synthetic/HR/const_0003.png10241024
4data/Synthetic/HR/const_0004.png10241024
............
1271data/Synthetic/HR/sin_085_252_90.png10241024
1272data/Synthetic/HR/sin_085_253_45.png10241024
1273data/Synthetic/HR/sin_085_253_90.png10241024
1274data/Synthetic/HR/sin_085_254_45.png10241024
1275data/Synthetic/HR/sin_085_254_90.png10241024
\n", "

1276 rows × 3 columns

\n", "
" ], "text/plain": [ " path width height\n", "0 data/Synthetic/HR/const_0000.png 1024 1024\n", "1 data/Synthetic/HR/const_0001.png 1024 1024\n", "2 data/Synthetic/HR/const_0002.png 1024 1024\n", "3 data/Synthetic/HR/const_0003.png 1024 1024\n", "4 data/Synthetic/HR/const_0004.png 1024 1024\n", "... ... ... ...\n", "1271 data/Synthetic/HR/sin_085_252_90.png 1024 1024\n", "1272 data/Synthetic/HR/sin_085_253_45.png 1024 1024\n", "1273 data/Synthetic/HR/sin_085_253_90.png 1024 1024\n", "1274 data/Synthetic/HR/sin_085_254_45.png 1024 1024\n", "1275 data/Synthetic/HR/sin_085_254_90.png 1024 1024\n", "\n", "[1276 rows x 3 columns]" ] }, "execution_count": 212, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hr = list(Path(\"./data/Synthetic/HR/\").glob(\"*\"))\n", "sizes = [[f,Image.open(f).size[0],Image.open(f).size[0]] for f in hr]\n", "import pandas as pd\n", "df = pd.DataFrame(sizes, columns=['path', 'width', 'height'])\n", "df" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAB/AH8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCrf6d9pl+0QZlgkVj9oidpJYTlVRMJwBtZTgjPBA4AJZYRPGl1arAvlz7GaRY42aON2O/O0fw5kG3ADKCRhRzLfy3j2scZuXuVtCUm4Hkq3mcH7q7eeBtOQFOB3qtawpCoWCa2uYki3h3bainKK3ynr9xs4bAP3SuMVMVN0uWTv2+Vmr+ez2Sfbe/jKS5X207+f9flqRXUkBR7GG2lguJZNqiSRkkUbf8AV7cKdpYrjOP4c8gE3Hlt0uHvJrSyklVnaUmAbYMStGw8sY+bPlkFx3PPogS8si1zdSLNsBLyNOY5JC55ZBzjBaNjjg89cmmlN372J3inSM+ddSnLNsJ+7uYHd8oIVgpXchxnDhys7fi7vV6XV97bd3t5oqna11t/WvT+tbEt1bx29u88MtpZyxqolRYGBjAK7skEBOrkJsAOSTgsMOjtJIt1xcRBbgL+8ENyPtC8KASXJOc+X8ynJ3KADyaJUWWzlivndYVlbcpYg2z79xGSgVVzlge+3kNhUpkPy6bqSusYRIjbyCaIANKhzyQSGZlfkBhyCADkFsE2o8t+v4NrRP8A4fo9UybOXvdvk/nvfUZak20M/wBsgmWCYo5YuyQZcn5XGzblCABjpgkMNownm2vmJap5xZkmdoV3RsrYPVVIwmUVgM7QSRyMFZNTguPt1oLfUJJRHK6eXJO6OysArAAfNyd2UBLDAGARzD598Jo9uwQWwV2SSQhd0aDJLFjhxkKONvAB4zW0Upr2ie+u7XktGvT/ADFK7sr/APD7df6+8XTbZ/sIlk0qU+WjR2z/ADOCTsGGTLAFc4b5QOBkNjh4McC3Jt3neGKNSI1hxhlcv5bYJ+fEanICZEZHyk5FufUZXszdQLdrG4Vfs8bMoRwoQqSCFXkdfl6cHIYrVkjlsZ/skkULzRxCK5mdNyRRjLoHILHBIUleewDYODmpSm3z6N9Lvur7328urVug1J3u/wBP67+v4El3YK18TJPII7qRxIZV3kBmkk2lVP8AeQHAIyQ3VgcRG0fy3guPszXIiICeXhjDgZ8x1+aMBDgqAWIOOcLRN5MuoJPfeaox9kMUduY5ZBJkNhFwAcOvXqATgnK1UjkVboSN5M0lsscsbQq8KyIFI2AdmO4ZbGOSeoJrSEZuKjfZdv1+5P5edhtpKd7+v/D+np5myVu2u0S52pE1tC6OlwJA0WG3R7BkFQRnO0gbcng7aowwz/u5xOS8JKGK3UIsw2hhzghskbhgMfnUED5ctSezkTySyrA8Y8sqyqPLbKEiNPvjOc5AJCjoQMWQ010hnS6NlBKHtrtJ4gyQADIGBlRn52PyKAc5OQCcmpU1rp8tOva+/puujZKXM9tPl+v9efQSFPJ2OYrt5wp3QiBYzsTYqgq+cjquSX4YsDkMKRIrmS0aeGKMSRO0zW0SRzyvK7bCIhtKGMKmeckBT/skR3iNHq0UzSWtzO2ER4FAEybSGbdkADqD2BdhnAG2SK6uYLiK4NtaybraJovPnJAIXkxgYbGXkHHAx7gBcsnBSjq3/Vtbd97X36o0dRRk2/n/AF5b9fmJZaUtl9qgnu/On3r+4KskYdn+VccEFihOSSrDaxBzkTCFLW3jgkSaW5S523EkQV4mKqVG9Tltpw5zgt95skjFR2rRXltOttGun2MkatJISSdysGDgJwPmU4VSQgyeDtBqNOwdJYnG07tpZC4t5EGEzuP3eT97j5TkHaaajUqN8710021t5afLXprfQiUlzafp+n/D+pcnvItySyrK0dycbJo8wyxjeS0iYYtgoCSu0kk8Lk7qqW8tuJGsZwLmQy3fDYSGIOcRrjcNx2Zz22oARxTtP8gJYxxvbSq8ikxqqYYEj72CGZiTIvKkFSSMYzS3kttLZ2TrGs94qoIHMqymKXO8KASSzEszE4wNoTGcmqUVTmoQT1dvLS9r3tp/WtrGkW2munp5/n+JCgkvLm5lnV1vjB5LRsHUlvL3bSOCTJnaADlQ2McKaS8uXknmiS7s0S3kBg/ejaWi2qu4E4GFYEEBR8h4BbixfRfbLm7toLW5byo/n8xhH5DIpY8x5XhgCFyOV4yOaY5jTRGS51MJa3B86USXDs7OwbaQwzuH3TwMkqwAGDVxlF8svTTe11fTfpsn9+txX/mXXZa+X+f/AAxctZ7meS3kk0vY8qhfMVzkbg5Cnry29T8wY5YFi2RiuHtYtakubmayjjUxySW+FdnByAgDbgVDHDcr93fycGoHKaezRRm5jeaIRLIow0gTbiMjbkZVOAA+dwyxGQLcrO8DtNZ3VlGqSZmVfLWIsO4KbiCrHAJbJG0Y+7WXIo36Jq3/AAyb+StqvWya53zc8db/ANf1fsJaIYBFK5bfLcOqhdoklLn5AQ65A2rnKgkl0644p3msw3JjaOYpH/cij8t41CtnYc54DMRuBzv6DIzoLJM8Yg+1rHF5ErwRSuqCOLIP7zYVA6ggYOMcA5IFG8vhcamskYmiWEsst085VTIBycqpUp85BVME5yTjFXTXNUbkrv8AL71+V3dO2m8xinK60S/r8f6RHbG/iSEuyRlnMsMkqHKAq+WyQWyF3N8mRuwcZJq79ntfIii81JlIjK+cmwf7JYHGdgaPBUciTHC5w64El/ZlpLhpN5laMRjZujXO7AY5IIZfpubgkhmpW1zctc3L21wJVg81zKkCqWDMPmZBkHDkFcjI+8M4q9aico2TW/T01a/y1J5rpp9O1/0/rf5WY7i+1W5aC4Fu1uUZIUjPIJk2l1Kox2jySMjqOSQKLVJoWtroabKuHKvtVokKKFRZCVXK4IywZmxluBuOHXQZ3RFeWbUYgZWifmRnVsYVgR/DvwQxxjGeNtR3MthNevH9ok3qjqs5ZWhiYqQAFwuMqhUfJxg89GXK10lFadkn6X36731vbuaRlurWX6L+v8i8rxTJY7rW3+1IiyndKpkjkwztn7oUYXdnqoOVwduITMbKJVjljudWQGLylh3sAHYbcqRlgoU4JHHPUnMdrrF1FqDTqLm+j2xxRIImxMoOXVgoJOFZuNrYJzuI611shqt3cxSoQ9yzyvKbtU8tt/zcMuVbKbSu0g5J7AiFTcJP2nwpX893dO7vZX8rvTdAoLlXNt8rLb0+7W4k7teJP5RgR2VZWhUqirnbuycZVgU5A65Y/dwafqUel3bSSQQTW8ACOyJ5eVDK3yoowzkbm6HaBx0UYswXqWzzX8KHdO0fnSLHuESsCI5CyckMTkjAJweFyN1W2DRrG8sUU8kls8sTGNWjKsiqoULjBG2QZwudoAOCoraL95NaW219L+WnRvXrqhJTim9l/X9f8ElujDPffZ2be0BkBhkBkjY7vnwFUDcEXdgjnKgAA4LZbmaFLiW2eEsLh1YTyKuHbIJD5CfwhQTu4AOFGDT4o7aa5WaxuYYoDuljtFuYxjhuHBBRW+bBAJwG27QDlZFijkSGKKS9ja4m85ZUt9zqQRtlY5HO8scrkMDnIHFZqaSSfZbr5vt+HpdhKEYtJr+rv+v6RDt+xTXHmi7LKm66uYwdqkNkMqEsMBIyofIJBC8FskuYpY0R0v1ESXCOu4jcu0fLhVLfMCFXnLnaoGSMCrI0qQ3Iia7imnLeazfufIICEBSzHyl3KeOSREBwK25reK3gmtIHnh8mPypUWVJymWJCgBTtU7eg252cjCqKJScJRv1+fZN/jZW0a063FUtFc19t7eX9fLfyMeNTGQqaeUczBHtVZnTIBG1kPBIOSBu6kjHrYVt2oiSESTSLKrJ5kj7UDAKWcFwUCBhtPXlSKzZ7MzeTfCNYY2IQH50hBGUwWbBOduHYDIIY8bgTbuLKe2WO5hxFdq6ySRRDLEbhsHQEkYAwcAbhnPJHXNQmt9Wmu+vZ7+j9bNkN8k1r+n/D/wBdCeCFft93MsZu9OuhhfKeRmeVkJyfkySPmx8pKnOBk8WryMZAmlaWB0e2xbxgENEqEghcnI2nklge2B81UZZ7meSaNJozYRBykFu+ERVSQ7RtkIVj0B5Y5J4XGdPSyJLaEJcyrclYxNPEiJM+5vMbcPmy2Fk5B3Dbn5t1cFVyglVfT17aN6aOy1st12sauN1Z/wBafN6aa/8ADGVPZ+aGSWOOCCdVBDKqpkOcktt+bBJAC5OJFDEDIq5DI8rxNF5yReSCl0JHWAYZQERfl3R8gdflDdPlrOaSU3kMdzqSl3JTcbfcZlZ2YuEBHd93zDjOfvKAXX1lHb3jw28CptABMA+WX5QE2KQS3HU4bdk7sZWupwcmoTfS/l+O/T9fJO1rN+n5d/u3LunS297c+Rbztk+TcLBKNxdjGqyOTtIDAkqflJOQelOhvLj/AImSwWKQ2ccu11kEUa+WWClCxGA2FA+8Mvx1BJjuDb6jEiJcyGZp8Cfy/MJkVFWRCWwOODySMAsSc8QwyR/ZJHj86JJZwhSPAEkShgY9q7UBAA+8OpGAN2Ti6fMm7dtH676WvtpfVWV9Ni61b0/4bu+jvb77FjTC1xbiZ7IxxrvgdEkO9WPC+a7BmCDAXOeeTg4qjdXDGzZDbeTfNOokt+YiMKzMTvJAO6TPI/jODk4FppHtJDDdMrSbo5EuY9zN543uvIwzZHG4gjg+m1actoXm+xxoJDLKfIk2MAyqDnsGc/LyVHUZOSDt3pJOpzt2W636ev49dtiFyrp/w36r+tSzC9tcS27C8iklPyzLI3y8yEAHcwVgAgIBPJXB4pmGeBLaGeK3haLzPMZQm4IduCASpVNoO8gEYJA5wZlEUCLcRxJHIXkR2t3/ANaBwRGyrhF2NG28KDt7rjmKC5W4uJY5JUkgWLz4ZIZVLSpHhzlOcYAGULKPkUEEgVLlf3lsv69NLq3l+FxpySslt/Xo7/59iZ55xbXFzceabqQx3CyHCr+7KsRgKccRAgkgYBOAAMvVZPMt41WJ7Q3LwS3Ag8xWUkYzIMkkHaAp4+6vJDCoZrqEsbi1066hlcxiKO1mKsoc4DZUkKwwVK7RyyjuMJ5EkWoXECXEbSCYxCB7csVwNgjyOQcM4yPkK7sbuQM7Lpo+3bp02S6dLofK+W8lpr/XXUnmRZLC7kM84hmCOrGLyY9oI+YDIAZhjGNpOMZNR3k1zFO11qTyXMZsh5cZUSR4cgLuQbVOAGYcDccYx0Do4LEafcyG/MFpHIZIXhdkWRv7xzjJwM7d3ysxyB/Ex4reeCaNbG3juhEW80EyCLooAZmCkjI69MleuNxHkb1V1e21rXUertZ7Xt6bkRbi7P8Ar/hv+CRfa5LmMTpCxtGykltGGCxyEBzhRghf3eSOAxLcjHySrZfa0eNr35pWEZn3bI1TOyVQQ4GwDHAJ/hAwuDUM2qyWVmVujHM0gE8SQlWWaTIIEgGA3TBJUHgYJyBV2G0ex1eO8W4jtmuS5WKItIwXamQiqHBcDaQDkKQcDBXDqN04uytvbre3qvvduiTNIK7Tv1++3pYoRw2UEsc10zrfJKi/Zpm2fMGX5VGcYfcxLMCuQc/3jcktrtrme3J+z3cjhZrVWc+YgjLbuodskZAByGK5PXCP9kZ5A8E0dxLPDGYFgYCRjH8+RGF68ADAAK543MKWBYSLqe2mkLsWgQW/mAsOUzIgXHzIFYsCpOCRgjhTnJ+9rfzWm6su1r3130unpqWg9e39f0tRlvHPI8MT7APusUtVK5RmLhXABRu4GQRxngZqeRm89EjWe3uo9sSy5jkC7m4G1cfIhJI+U8bOgO0tuVOmWwu7q9AdhI00CTlC0gYKuNvJ3Rhh0AHO0rnnPlmR7OYI9nNNJJKqucyLvwdzBy2CcOOWIHVm4AojH2r5+m3X577r8Gvwi0tEtU/u/D/hy40yyLI32OSeC1t18xGYFpCWLPyMEBU+QkgADb8uNpqtM0OsalBH/aXnYDEvM0jkSHOE+Ybjg7ef4WYDHTdPsHnQzRR3cMDskLSx3CYcBCR+9OzBUqxOCwLMTuI4Mk0kl9qwkn0tmcozgPKLaaRFGdueN3G1t/zdGwFzw4y5XzR00fa6+/Tz0a316FcvR7/ht/w/p+JEy27XqfZ3mklUeVKsWJHCK4ChTnjKhfvbj0KkYYiKa7trdG2ia6hiLb1dVRJNxUr5YKsB0LcYHJ461fGnhJlkkvpY4y/mS7M+UVdFVmR0JymAQpY5OexyWz70vLew22nNHHJceY26VUlaPacMVK5G04UBckj6VdGcKjWra+78bdtrGck4y5XZ2/p+ffz7ajoHe5EVvbpcg4RQrFY3VfLVYw2CFB3ch8fd2+m0RwzPJdra2TFLSDyp/K5ZlcBSFChXYDczY6Z3EZIwKtzxLbXH+k3SR20zOsiWsJIVQMhgdqnb90k854wSCcUYbG4GlXO6GFTGQsUrMFYnezMoPLFgE3DowLE4IbIpOm4eTta/d9dUr28u9/TSLblKT/roaGn3ht72K4bUV8h8HdFbIVUMWKk7S3IxgDGAdgxjay1tVeSe5gC2EN3Pb5umWOIOJc5JBMZYfL8mc4yMgKOAScI0d5GzpfLbSbztLIr5decspMhBPPPAB5GTmaeV1YX0N0Xj05vMXzYyBJIoG4EgdGCo+1TjYDwAvzZ8qU1UW+3ZbabWet7fO+lgg7yvb+vl/T6XJHgWeWKK2tWPlyvEqbmkzghSVOYxtY7yQdo+TOcMFNS4u4/tgtLi1klYoohEmNixn52ZwDzuCAkAqAGYjB4M15LIilbncCJZmjYx4Bxs8zfzuXYCeTztABBY4FdnEumSSmWVnhUxy/vPkaNSzKock7G2PjsBvznjFVTi7JvXp137389n93mSpWfvRS7fP17P8Rt1qUsdpcQI1rCodi8UY3KW3qGIXJBHIAGAQQCCCeb8yW89xDaWczyypJHM7My4d87SBEeC5VvmxkkthuctUINzNCSIZVms1ZlP2gFDu3FmRDkjK5wysOxPQ5S7tLe5lln1CGS5WKERxRrGC0CgkKjFAduDtx1BGT1yoJKHMtLWvtrduyXr82vvSFGSta/5fP7v+HLU8NvZ4ka3SKafYbdEvGLMEY7AzMSCCBuXrwqjb1qC71qXT4GS4lhi8syPCjwH5WJ2qGyQB8pJxtGFTb8x3ioUnnijsI4IIbl7gt5sTbvM2sQuSgP38LnOTgYIwTk27IN511qU0CJFcgF4XIkRyArkMWLN03sflwFJOcrhspU1BXqLmttru72Ss9VpfXXrqVF6ty1v/wAC/wDXYzoPOluLSwt7q3TZcMoUBoGV04x8hIBwmQWyfnJPODVqWd2kW6e1kZ5JhG8xUAbsEBlK4bBHGMEcc7iPlWyniiSVbeNJ9OYF0gMHmGR8x7dxx8oDFSxJKnA4G4Cn6i13BdkfajJbRworO2QkoOdzMF55k3NuAOCQc54GvM3W5bL56Pu9uu2j6rrqKdmtX3/y/wCAMEtq8NxdQyWqyOR9oVocGNGwCdp+bKkOQcnOQAOwi+12V5HdTahMpuFZSdvDIwx8+7BC7mbJUDHTgAsRIjRX0cksxU3MbLMzyR4eJzsDnAIAKserIQOQONzCcxrJf+ZdyM85ARpU5jut8YVPmXDOeV+UEcHgYJInmjG973X39HZeX/A6XYuXl0f9dPnp2/K4jXH2a31Fn2tIWL5a3KFn3BQxOMAKUzngAsQc9RYuIjBJLLdrvhIKy3YjjYxqrBdgA427gpChuMn5RghaETwWxgnW6sra3VtssELyJnAJLqoXcDtYANgEYHfJKrHYlzFMWukKmNBPcsFdVIOD5fT5mJAPpnJzhZdP3rpfh6LfRJq1+q2vtYl8sV770/T5WJ2s5ZGeeJxOIpxEiQwKCm4liEABJ2r82HwCW7ksGjhMU1zZF15K7yHkEUmMgAq+5QSDGeePmIHTAqeK4LQEgrPcqywlZVEQZMrhw0gB5OfkJI3SDIYnDRDieWSOYWkbqnlXSIEjYfIq7XPRUZWO08bQGAO3FQpStKMvl/wy9b93ro7MpxvaS3+Xl/St67lJJ2ubWRrRp2MMm/FvChaRvKYBiEAKYK4zliN6nr8zK9pHa2iln3iYQ+UWQxbtpLEu44bGVGAcgHBJ2nNjT5rxEgsJII7cSRhkOXCspT5X5J+QEOSo+UYTO3JJkd7ufSkuYS6KZklzbP5ccDdAQ2eOXA28MNx3AgCt+dxnbRK/ffdbpd137re1rnJ35baf1/Xy7FK6KT2Mc8ZeZpImY+dc72VlEg5yOSFPccr0Vs4V91f/AD2s99FC8c08nl+W/VyDgHON+GK5cEDcjdT96xqsQR3vYY7g2fkBxIJ1YhMrKW27SAMEpjGAx5zxTja27u738UUapKySzbFWRQzME3B/u5LMMkBcK2QMAhKpDlUnt+Ot9N91t/w4eTV7+u/9MypZ1kDReVJHFcXEkaLDAjs0gABcc/d+YsRnklQOMEXb0WU1s7xywfZdhnLXUrLKCxyP49wyjIASG4XOAxIaeaWCzurmaRI2ilutkcsM21WznCkHIZAG2gkbcZ43GkWR71QojDzTSOwjiKP5pVAQoYEAFgzOcHI5BU8VTm3aeqS8/T026u/yJ5mvdgvn3+dvLT8R7RWkUjJbJOs0dwVXbKiH51dDGFZSsbEqMA5O04BqjcPcxWclhHpsyeWsjSGeQyFJNh2sCQei7QOATu4G41YKRrp8P9oidpbZxE0JVNseGykgZyWG5S7fMeSvI2jmR7eFGnZYJJJA7qmzCI2H2ERI2efm+VdpIJwDkis6clHWWvr3Tt3WnX56aXHJ2aS1/r8SCGYyRi0uoYYYZGdmhCsCwzliw+ZsAx8kZySCcgAGRb6e5t0NrPcyM6vA2/ksqlQ5VSAN2ELMoYgDbydo21bi3muIbVo44ZLkwb4YVGB8pGWbOVy25yMfdwT16Ou3ht8WbKZ4o8+WzBgwGMIxwuGcLlMEfLhx/CM7+zhKa5Vr26dm/Pp16aXsSnaD6/0/PboXvNjuNLvbWa3ME1vIEVEDnYWwI8snDByN+QpydxHLDEeZrh7uQtJBG7Mt0Yi0hTlQVaTkEoAGIIAI434OBCqWbvNIsYj2Ryslvb5EsaxklJcHlZFAzgEHDZyS3LHS2eaCWZC4aKRfNjZtp5bDK20swypIdtwJIGcCsIQ1aXr+Tdr+nnrrrqzWXItbf5f1/VyxNc2d65W1jJaSA29vOhMazKhXazHI5MeQMD5dxznfgWdAumtI7ZDcW8bodqW8l2UhjAVtoLH5iW3SNkZGRgd9udJMTqR8pZkmaFmt5LnhZUCbQBlc7vlLg5wSoAyauzu8F4kkUz2c6xBSElMEUOcbhtfYM8JgccNyMhairRi6fsV11116W+7Xp1utNgU5cyutH0++3+XcbHdQPrcIkjvGXZFEGiRoyyqcKcZ5DOqqGzj5eduFw1dVePR2eaeX7JMzrKLdI8qg2hSAACr4XGcKMrnrhWjuLeS7vY7m4liWOWYNDDIcC5I2BmHQMxEYOMjBYBiCMGrFcQxSWVrZXJYpJ5zmSMKx5GEbkEhSgOQVGTkkFRWiowqJWV3p6K13vbR3/HtZoSaSXlv/AF/w69bF6SdWupRbG2uYp3dYmt4o1lgkUhsowO4jcyspyeCQV+7TXntbi/jt7m6aO2a2MmHYSiOM42KAzFi/UM2D1PAyTU4ltkuEgeBJvODl4lbywsa7gFwvBJIVtvOAFxuJFNSyWWK0t7mIhXm8u4Ry0cittSVywGA6H5huAHy87ucVneEN7rTfS+2+va3ZX/8ASpTc1rt/Xbr13K8EdozG6gbdcW3lyPZzxqfMYIN+HYEcqSRtOTgnjgiSW3cwpb29w0joJFL3Nw6NbqPLb7rbS3IZuAf4GNUtXSS3kiNxc219DuYPh8BERuIwWyVyQefRht6E1OGl1S9lkkuY57nyYpZPPQMsbqCpRlkG0Z4G44w2OOGI3lGWlXmut/8AJbLTXdpPp7y0LirLX+tvT5K9uj3G21rLeXlwNs37mTZZTXBJlMil2AySMH7q5P3c9uTTZprmyS5doXaTerJKYm39WX5FGAASEGCSc5wDjFP1LS7Zr5TEWwSyrGHDNKScZ8qQhlbcc7T1wQGB2mp7YxNqEJt2iktxGlsGSbYXXc0YYqwI5CgY4zkZ4YBn7VNcy1Vr9tul/PW628tyHFNc0lddv677+fyJbnW7e2LTJc20c5YG4ni5zIqAbjGVOSpYttGccnGfmMcttsaTakkMkQC3Fi0u1Q8o+U7icE4BBxjcUXIwGqZ7US3qWq6OttHLEsIxJGV37m3SMduN22N+SpIIHy5BxVlE15Z/aI7aHEakPCgPO8El8biRhywySox1GG5wpKHu8mnfVP0Wja8lrp0feZe6tXr/AF0/rpsSQLc6tvUGeO6lWNpxBkIf9VtYsMZB8zdtyectwGNPEqT26Ovmx3rIZt6NvwcbXWNkBYbFKrnqMAE4XlLi1Se0g8+0SKztuHkgkLBeFfajMRuY4UBg20dexzVT7LO9qJzNNcpJ5/l2pJZwpJyoUjGTtOVyQ3mEnimlFptLRdF89H0asldPZNX6FfG9NP6/r8bE1wVTSrFC8z27nyo4VgI8s7wobLAg/KNxUEckEHkEOt7q1tLK2gSdzJG6vZeag2852s8ecFlYYyOjH+JgVEclnFBOFtrm4dUU28SxEvGTufYPlyGHzHg7cFWGegpujaZdFWknglitpn2JJAWVjvdehDbD98NwGDbCM4Gac1S9leUtL3tor3v09N+r1v3Khq3bS35/1/WxZijkkR1hS5iKnam2FywZpPn2jJzghgTx82eCTuEV/bWkj25dLi4tt7RkrOXVSEUlo9u5sMcZ44xjgdK+ozQQXhmWxhmtWDSlFJUSKS5AKlQV4XAwOQR/eBq7Gjz28Npb3Ml2HywtI5vLDBlV+d+QcY3bcZ+bJ28KabcVGpey/LTXXy87LfzMowabtp/X3kMKS3a6ZbfaFgkRFSJFYxBJCM7gVz2PmZO0EbQA2TUsUcdiLaKx1HEc0fmfezJL5bHJAfavHykbmG0RtgHhjPJCdWlhdRPdtCPNimfb50i+YFVckqP4yCeM4HBAGMxJnyzwTHzDGdk8qAMG+RdvGWO3cvJOOpC8AGEpTXLe3dWVtW7dL9dmr3vuy1JPZaa/f/X/AAxYvrVYcRQCOaaSLz3vYHwYstnPzNkbF2gEkEqx4J5qSRbGERy6xHBtuIQoxKqvGUfYitsbDBlBXfnGAwG0A4ik1CREn06AxCVQyxyMuSIVIXavZccv06gdegkuII4b26judQiFw80pKzRmVWZFWRixWNflOSCADywxkLyNSSUKjfqr3f3fD027PQcG5apdvL59v0+4rCNEke5t78OoUGWOGEqAcbCJEUFY1CyYOAeCeNwqQw3VxZ34SSLyZWVsvDE26LC4K7clztUlgSB09CKkutOhMd1aTCzAjYRzXCQMcbJEJXBIY/LICQD/ABkBvlADZXexBEgWK4jmW2dZPmEXAdVyvLIQhGRynYE8ilUU0nB3eltF8tv6WnWyaalfbXz+/wDryQreYmn/AG6+heAvH5iSIV3tGSf3cmME5CgZA4BGMZKhrXl1fzSRrpfk7JUimdd3l8KFVY1T7wVQrAhhwWA4bFRGOS8vYZbCKKRpbp/KWEtblXU+Yc8kcGZQeeq8HHVZ1uDrOoRQTysEMsCyMwTJG3O7hiRsUlsYLbSP4uWoxertzJX66apf1fqtOxfLytro/u/q23ReepPqzTR3scZE8sRYtcBnMrRxlwwYE442ocAgH92N2QBtmF3bQTpbQW89vFsSNWNsZN7MxbIaMYwDGgxnk5ClRlqilsorm5+wyKqzRS8KqFYTI3LqQGzwQVDADg46YIrGK6+zmaTZbxoN8aF2CyGQbztRPuBg2TlgeQOMcRGnGUIwbt+t9na2vTXot+5HPDd620/rX10trqTW97Jb2lpbzbTLETEFdVWZHG08MfmHRgWJCjcDzwprR2Ugs7y0t4Gka4txN5oRg4lVQ4JIZupldSCCMjHGeJobhGgFzJdLHLbgXDp8yqSDtVWKLypZ87FGACQDyau/2IV1J7WVrXzISquDucKSyEPsKgM2JMctj5+hxgVUnClJ82j3tr0af4fr97g5JXS07/j6en9NZk2x4YFtn+2Xs0gMciY+RQAFAJwcooJBwOoPOzFTb0jFpfWtjc7UllZ38lWCRKWZNrKCR0XO5hyhUH7xpZrOS5vorOF7yK6hheFItysrsBtK/eUJyQuRnK+nJqZVkudJtb6C6e5UTorzzSyKEZdyj5gd2cnqqDBJ5IwQ6k42ir7979b220t28+j2HFq19/0/4Nl+DGW8LveJA0QWSOTzWSDdHGen3SpOWG7cAFAAJI+U8PsNGTUFvLP7Okkaz7yt1JIULABfuxhMkDHPuOB1ptncfabW8MVrJPM1vuJWXyihJySSD84LIpxxlt3ADGlNqVS3ZLhYoliPmTxxBp8b2A2kgYwcKe3PyjBNTUdT3oX5Xpbrrveyd/JLR9mzFVOSSkn/AMOf/9k=", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH8AAAB/CAIAAABJ34pEAAC2/0lEQVR4ARxdd1zN+xs/e4/GOe29S9op2aMoIkRIkshIRmTvTUulzGwNQlQikSJpL+29d529x++5v/u6f9zXS/fofL+f8Tzv9SCN78RmrksMP39QjkUy/04OrWDI8QiBpdgySYziiXiWapS26f6beGEv7YJPVvocG6WJbleAioyswE+hTJ4NXSx6F5AfTm9FE73HqVcoaK5oeJmazo8ZJE+IQCD6N+joJdYgCXjVfNSMt2JyvQ1rhcBeb7hrRn2fWcmXSVvRZszIWiONCu7MLMr0SuHP+Xc3RR0bWaS0eCaUX59JMstUQylD5m/u2aGv910wbU0S+7DhY1HF9LiIh7vzQ6l6XN2ggdY7VsRubHhgTu4cw+FQO461zCAPQW6Z7A7SUqIRsxZ1NpSZ/toSs8N/n1FS522dH5ttV16p+3YoKoJe3LW7tOz2hSDVynEZk7r28fc3x735WhjG61qZq9XRp2mJ9q4D++1yDtxWQ2EWxkTiPSe+2L/Y1bOWe1p3xIOI5SI4Fgr4fRBKZITXl5c9c5BIJeUuPTj+U9KdDczHlYtqORldzkIRVjlIws0gxepKy+TRi4Vvw2IPMhpFfSsJKFP7gU0fI/AsOXlcNrqIoV3CZfyTWd/k+L4slrV1mp1pZiUo85wffFgXf7XOZ/iFTvsOmowp1S5FECcQZlkjZ03mmL8QaaZUJlhlHHyRuSCtlmeghEffcZ0e9KXkWXjC265i7QL51EJee4oJNmCc8ZHY/cpcLMG8m61bX2nKnaMvVkVMuFI/Xo2h/yCFuW9ad7bQIlXQHkLARNH27T207tjR5F/pjHp51PPXGukN/BFKuFWxiImIc19s+YSnd0wkn2WiVoFFSRA5jrqDe+zIowqSBv9wXNqIl5bXqipal7L3tZn6PwRLgVTg0AXldpViinCu+bnZS7E8eWuMfmLvMmq3oDNEs2M3JqZiRXjcmxlrZeS/Ksyl8QM5IQg0mrx4ImZ8mcvvPRrVQtwT9YVJR2sbja+9eMRcPsSdL8xfF0vuR5ll8PP2Lp7uUQ0wrCFV9czCD7EtlPDofwU6cUcpC4y7vm2K/r0v1uCLdHquFgEp0/PvGV5AaA1ORjrmnUHkqJNH5Q7narep/9n86YBukZLSNiNTJ2En+RNzGXICkrGxX4PIa3tkTZhWaB/r4gUSYTH6rStdRasLfR0upSngN7i27/nhz0FWieOd16hH7L6vJLe+Yrm28LS6k632n89qF2qtotcdvHLg6+U43yNH+Noo3IoJe+bwInrr+S8b0ZpC0l8yX0+Jn0IKbURWx4eVajTvt+XP41fxPHm0fPKmo98efPZ08Ojkr5EdrPyT6Ldu+Coyyqogtt1TPYbUE6Z8PPf5bBxvU8hB02sta9VqbpwK5uqhNKuE554/O79/18g8rFhTZnOuN+JP8aGqzWYXBC0n6AgF0vr6ZNcObaQcQXSeJr5WUaKQk3bIgJW/fl6Zx93OxuSpbj305e6v5cZmo0N/9Px8/+xWLw03WYwuZAqv63AMcUi/SdodGu3cgHDptNzDVsTAKbDIwAt5KS99DV/2jfoaitQQFI8JNf/B7mcWay0a/wVbysm4469e7/m4GyVFmN9uR72a/VS0gs0JZX+qsz9v6YFjoQxPtMGjt7jTwrFRI4/LZStYvAd6oZol07aIYX+JFoGT9eedeqNcDcMXKHHwKRg+Sj+950J8sNYfhOKRWCWfREUJ960Ne16w+N9b6/EV4iaBbnrR/EuzFjDeNW81XUJrmVFtlcizmd8abF7aGBnNGrbWHuPYSZ6tTzkbkoGcxE94G1MfTN9PW/XgTEL9vCcfLkc/apqn/ee/PW5SILhxJBh2GOqrqgVujJCu2rMGb/AcHe26ZHHlbo2LPQHq5Y+HFw4vV1QcS8Q09d5YtZFY2rptbZHhJ0Rq1YeEjf63nN6NLWIyNdjURqxu+rjp/V6zxT3ae9hYngIjUMCJ+vOyB61pStCiyrJS3i3xtLfp6xtVV58z1rjRpFGsOfXRGB79y9Q7Gu9aJodUcL+bjMhTKCsTpEK54mLJ5euPc+ebGWYOG36Yyj8dbfCZlTIrbeadXoxz1qdcd82HQ7lZT24Fb1P7hzDKEY6/UEdNyYk68bg/zi+sj7QqFUoZUVnWbSy5wCrOdJbumsZypLrnFIm3ki7tD7W8N56/4G7JCxebz+GIPRM/trpGJe42zhxHWXDHfYxZtnJaCyfGJEvIQGZPOCFlClon8tCe96aPlCwpiVmNuNda8KH5++LqKUVLp+gIC24Xm5tTg2+tZt7rTd01QmIURTybS2mbVVqRSAWCtwGlf7NSoUSu89q69spx+TDpUHR6bbmZv1rl8Hz0z93uwqXcT2zHkSUyjADJ18YiiARbjdGJs0bfOLaDXLp13LR/h++Zqh+53zNbY6x/jFlExGfs2LBXeIuvj52Zt7uKQeYLdJQ/OiwQMpmbWm9s2Tvi0SFqaZfmX+SQl/JV4Yv8rdFGORKLA1ViH/69ua9Ugtjy3oHIPwFT3WraF7sW/jw4udYKN4GZztLLK5hzPidt8oTo1cclsWs3LCoZ3F/wtfXs7Pc8S8MHvfsuHbximX3k7ybDc38qP9p+Eqhiu8eY+T0LU8r5QjxqR9Z+t6Qqxz+7/Cs74B3u9P5Bribi0TL9ew0XLT9hGrqlaqTQO4d4EWwlDs1S4DkuIsIQlnKcwI0WK5EIiTYNjVIwSyedZ3fzjakmGLR27N+ZCwZbsr5PO8miM9ajL4+XDhl7Rf3qldEcHh1cTmnuz7Thi3E673vgjNpsVsNylj6NibXc355/fRFhEqH5vj3zcvTkEzrCwSro5cH2U2TihlGv+bXJ4ZsIk8gOsZZcQ9J7BKGfgOnkaxh+RBpdqhyfJ0dIJNPzpoYW4Vs4WlMDKh2XyK2VRjvKQ5Y3+cGbIBwlaaHZ2NuTxDVjga8OwQIK0vkLnxZoWzkcYPZ1xPoH37KtT7vloinLAunvVnVieLlP2X4sW/R5oGpol93NHm9ZJgFFJJjfl610r+vlqJ1zzbMOa9YtlsxwSQ8D7u98FjEzQkPbcNpD1b4dWnjp+o4r9x6+GXQuf+nA00fGBAVanp5QLHYyTBu4+Hib17fWzMqPJ9T/GW5tQ6GN+IupLRVzH2pi2AoyPn/ERi9nTBKtPZWpffVkyMum/K6tGK0y3kmLL/CnAcV7rc5NGN9pnnBXmfyrxZ0txXDEwgFq31VcdaMJpai1Sozf196O4Umv1PpolaA1amQDXw1FnbS5lI6dv0LE2rKNORGiETLmi4p+NhuLldWy9VtW3rs8vOpJy9d5Jypo/bLhAIul345IvjLRLL5mlQyFUdBCxQN81b7VGIO7jTcL1qBxCvWPJOwIu7zBrN8XgdbVMjQe74owv9pTJSMp28Y0zPdVKQdIsIfkQgwcGt1bNNqiiFFn93eMM5VSGd6WtWffp1M//c/vSst6u5DRIDKjTz6+66tWhsv0Sb4XdL9o2GxwGUrZQ96Y9n1x+N4je9/dN0/Pt8oZDZr9IDN5TEQb6WTENC+XKVF92xS0InL0gpXVYXfwo5gXzk8tb/cMLcCrp9ddW7M5zPCXduHkqcC3HUH41mN6n17f79uiv8C/5sljbzFCDptAtMwepf2ccOJ2mP+WfYXsWU4P6h9avu67RVgZ/XOmkTkdwHfNO2x1oj3oRd6p6nWv3z9ACNEni3LXlHVqlM0QphDmoZUcc6rlw2kvo9Zfq2OReNyZyLDb57eNzKXkzU0hjksJk5KsfTFM24mklauhGiMx+b5za0jDKI3ntWIF5qPLQ+4pnVk/d0/7k7BIZO1hB1rkAN5nAomT3z2cLHsoyUtJUshRgtk68gM0W/velngr/DTKfF+3Sl5z30atJM8XSDEK9VxGOkpc4V1lgpXYuneH2JStbprasLzMcU+95V2hfiaGPIQoWpQooSK9TZvb451P2Xx5lLgmyyv58fa1GbvicCOcX12m+gHdfuFFcJRFe/mx/6lLXCys53aroXksE/TDS+tujq6YlAvYlor1N4+3fzJ7vzpRMEGePGrgbdOk3ig4/SvPMfUw0oa7M/HQ/l/FO/y/BdR2r8isuP5ws8BUBe48N7tOM9vB+VcP49mIESEdI0RsaNl6onzD7ZR7SMMHt3d6/IKNMK4QJkwuzKp1sorjDlzBGOwabblqplqPdghpaEmYPbpAYfhJMbxDUuyRsiki0u5sXf2ULuU0aeKSlE4Q7tAv+zJlO4fem35rpVrllFSTsi7lW07ggtPv0k+0bUC8ZBZFJ80oxEHbImhXB/mLp7puzJGrywyzEONOWI1q6cJbZb8nTEZYdIPNrdq/iWo4vjuly4kwdMB3d1sY9advrG9NGPKnStGx2KW3jl44+AKLlEcUbDfIV66+8SM1yysx6NHZVr/3dk8n5NhWifYPlrWvWt2l28Gzd/5rZzHpW6eRRCI8o30p4XpfpkauI+UlaqgFM4oSVf2M3jEfo18X7/jbeUttDKCE51uL1X/heQYIk9T+/gT6Ar2uvjUq7HlGk3aokPXfXj/11F7VT8FKRP6IzkNmUHHU7Lpj//LwLI+uq4bZcaOeo9s0FQ9FWkRuzRtbvdedCj0N6Jn25uVHpQVT+xA3Tz8UKbGx+wMFh9nqu/n6H1iYz953vL8eRrgjqlkGE0nGPidqPx+x03iP6d9Ft77QITPRsSaPjtTqTNqrb43LufV1jW9DCM8R3ekmG0pVQwViDQlDU7l6t0gbdUoEj+dZM8alQiP64HZp3gKLs5WvT5zYt/5C4beeeWva/FBRKinvk1bkH7E2oao1IwSaWNKJXhOEslXFyBg/scW8wufzkaFI157vCMMvwo9+c1StptSIWMtjDWvaj+uldyj0UW7akQhdxIV72xUL2IRRNJYtFCmwK30rSEiJ6iXCsjXHFRgErCxP36q7ZuYMN97gSbOTjzPP7giGC9YFL8fyEEc+vjfBsvSc8UeG55dJVBFSqVqLwLks1FiF13dA8W9+0uzUCI3f4xIfDVn/IJ+t+XXAweTVkBezZLtKxa7gQ/ydIkyQgvBWOrLUMmtrnByBXBUSbvanYSBDN2ls2W3dgsW3d383e7GlbUvQzoJ3Y54zlkiMiBZVu0FiIDFb1nM8Jky4jGvcNXXdOivweLgZahK50vw4VHKMl1MdidaqBR1jGyypQzKnK9XN83AxrT+Oz10vNdXq2YdYZtbWGGt35+bdiys3y9TIGnF95SXW/3V5KET1lvjVBw6JVFEyIjLh2L2UkaWNuZbxux7dcV80vtZCtmZa8yoWPc45+eNTSNkO5AhB134E79WPUVMlfUQd1Cm8buXa9nC2r20jS0psnNSeGaXix7CkEYRaq3jaEq+ZWjOy12nL7m8PqhYdm/N1Ebk95GIkFEUiVeStiNTD1QGu+v1r1Ouut65EIhEqBGFvmxa5H31l94vz97ev216S/WwhtGbvA2N3n4qUbJ1GIxWSfCZ1SL775vuXoatmLElQVn7eFLP9zDGUTMkJ4BqpTje1GMxzaPvdZE5px94Mexr1IgReG2lMKVJHbtr9vXDMcqBKT64jwncQUI5seSNdrC4njqBFGgqjXBmhZURJJcd9eXYoYJ9tyr+WYHNlIrejxiBi5Rc4FZIvJ0YeOgClinj39Df7l1ylDCXVprdfoa1WryeGDuM+YBh1XJYxpvy6K0pPJ2plcM9uY83bPWYxEmjQUVLl2cBd8q4+zBhbIMMZ5YoUuiLzy/8oKPyqqz9Ik/KcU7eD88NqflqKZwvvrFwjtdJX6RQ5aQ7yr/Ank3FnD++21B07uiqH91Ynf6ias8gMLupzB3cjrUxXzmrSIcyU/rXRDmNBQfUsMAmhROy7/1b7Q7fC0ZI8pnjwewm1ARfz0+f4ki3qNWz1iim93NGbh4Od9QZQCKUDfoiYriIpha0ihUe/PrDkYvJ2/bTuKn9L7+1/kDLEzvORo8tkJJyEFk3lz+crMMisUWeoF6AbMvkgXJl99MW1GPqXVoPwadn/kQyRHGtzZZTRKFVH81Q9xtS9h5BKhJF/V6eAqUdmb/Eu0c7B7duSt8OinNqnRNKkBvF1VknjA8uxYz6GQhOV1e+Pdq8nNe2bNTZPDenLJg8iH7d7oCXKPwIz6zONsGQVCKRDwQHPR8eRJjGxUDKjZ7MFLKLmD+jVJmYqNHR/ivVvdFiQx4pD5rTvIEFPL9CnCJjoaTuFlsXE8KAabhxrmjY1vFydWSvC8CQ8I8qMJYrerUi/HfOa7Zz+bJnEnYeuo5zenpm2zH3yAQmZwRBoIJUYhMhBEO2SdSF5+6vDcSfn+r2ofO+WFWkZM+D3rTaxdQkhl55xIfrWqFdRsR1SXwCwBO1NJdLOctqODqUb0X2K+ERlYrMQj5MRPtBVXpTzAuaI6Sjvfb+yOh3WmjbmvvGIDH4f/2Q9NBPXt7944L+mNYJ8Yl7+vbaFeielQyuYlGEFP4j1xj41bM/hsTnYNev+/Iyf++xK7KiccrnLV/xYW6yCYtRyYblM/9KS2vLNj4x17TeJ3vL8bHKwbD4HUUPTrJKOhQmXG7YX5LpoVsu+3b8nVEqdfu4zvavoPoScY9hnSRn7s9N5ZD5VvpAN9XRml5O8ji4yFpvvqJ5TJ69eyug4ZWVyvHz0kDvjnwQV7feS4T5KJ4muz38Px4jsLdPkyUDXVlRtum2ISs2Vt0/1C5Tw6Bde+iNSR6iZTo+MqZgYjUF3Dv+E7M5HnJ9QYlCsbdzCfdEqvwc2XDpe7EjjmchVP5LPBWe89vdsu6mBzGQkX0ksOhIj0FGccvxyf9v6pUEVxy0Wtpwz3O7sl7surv2QQSh9SCTESagIAzThR7uFnCltWvBEum16LNyNa0bzPfrT6EH7Ut0OLF9hfFOucwlB6xPnDlbSOnjMl3Wva9xiHLKqDzne233v+ud1sGb1r/y5Ere96xTWybIvIXON1rpWxAzbcH13QnQSl0vcE3Z4dJcIoCESWhJ17vUhQ48r3as1SbzT157T/IfQXcMjzZooZ3aAVQ30YrpzB1M2rCVNKA0uKwAmM7zURn9H3aJeZvJiGCVWOCZHXBibb3lyfN/LdzkeKXcNPjuS+tKzH3IdJPRM6pSUbBA2JlZTWN9gT+z30MBxFOb6xDEkysHKwK9nKEyCjGv2fPLIGw5HtAih3iQnhA/3/9WXGYhodAF7kK5Rhhqfo3R06DalTA4IVAd5dBPaVMk/CyRWcd49t1moe4pZujjuKKNRQqjrHVtv8fVcTJBPaOshyq0Fb10JgwHnoiQbZjSu4/l6RPWI3vYiE5OMCX6SlEnke6k3JT71M3jVM7rWmDVXhMbJy+ff37Z8u5RJiX1571i3PydV3+JAsz1t4Gn7XMZjMncfG2pW3As1vYjO7qcWWP9xO/Vh6OOIOTSoPcR05NcT0TusVwgXWE9bYcUevHqPJxVi7P76rXpXkf2nEUaR7MkUAqeSaVAgGJ1D0ssf3/qp6MmBdT3r0FanWhXmBtBLDkdJdTe2z2xzUatnmz7qqrvpOOGE+u/DDcVeNi1FhQ5SXbG/Xe23VHe1Vgksvp6tCHotbt3un3PIXUlePn0B2gvX1WxSr8Ai5Ltehjssb6v6Y6HzWwHg8Y3bDw7G7du05/vzFjcCXvrM/ln08MqyBnNUBdtIvVkC5xplUFmYlLxd7y+tG6GVi1OPJ5vvL2eG9pJGUGMJJoWDFlX9+uTzlF91VlmeKQgBplGg9/eSq2vxfpUuOUBOc78PEaYUm3YcDHuXQ6/HnigIWP42Cg67H05PO0LwLAtUU63Rh5AYbqJsskgHsDO2nKTaIVcKhICHJM97DV8mYMv+KVfGjZcPj27bCxjD5GrhwAXz72sdMN/pMcnJxirT+KdqYhrcjig5AaFN4fzsM4OTmrm9T72wh+I7uqk18FRDqdGFNhkZIeHgH7JNx+VUg/1TbAuKifrU5oK/HCHB6CMr4MmXFcF/ezdqXHkTMHOQZ/mYJ7cxisjIEmjheVOkztsusEBH56t8z3UeWYDAsRFGN2tNnyj0CDOmt5qsL0//THJDSxHdm5F+id9MXisBUv06bK2PYTWfZKzb9Kt3CebiwV0nj+19GHSvqtTC4k4fVxeN2TO6/fsuzQru11HrRy4vOdPkM4v8mzKtEUQ5qvq7Nb74H9Rq+ju7XBIPTssoChxi2hqlOD05uc9j6I0xjoV4HBvHGqeqfSX2+lJyfO6EJB1ytuv+UOay+9b7Cy65uBmJ2uM/RUfnyUhIJRpZwLJV6ZAGLSglTCGLY5LjJudcWvwBvoZl8sSBHRED/YwbO59L3W2+B855mhDX+1h/UfleG+wUpYSM/F1vvr/FHCMHbNWYOq35njAyD9dzk3z58PMt6YeGeTQFFsHz4olCKMxaAQEtNT0n5LgbcCX41pNGpAtUuQJ1dVswVE1ye56jRV9ink/Uj81wr9CbOXv1fqZt8dpuWaGI5aQPuVaccwnY9JM8jOAL8MqG9o5gvDthitY4Ge5epFWmhHWQFRVt+JlrHllJHlYCksO40T8oUoW2X6KvClAE1wChVo39tHcprDmoRFS2cyK7NiLlyKoZg9UVfSNB4qEVyovdvnKqYtzbSLOURVw7/skzqW0X0Vu7Kbhgt+lzxcw8PeSyad9ZjSjtv7K2BDvzhG5Y4Bqeg/ezvLWy2lXdxombecnHk1Q7JACfBf8L1v6GvnshyW1ZU1BDyIW9r4aSTVF0ScaaRSbYcffEqhVNHNsbDaqZtWwTbJ+fmgKH+jZs5eFX73QnAs7Wh6c3WAe2IJRKgRZWrQobWbEJV9vVcwbDUuCMIyZwGPniz5Hq/4Qdd13JaEnAqp07Pn1L1i2hV4/qzBs0vCZ/NTp3+fIaLFp+5FKG4aZ/fCvG2VfPx86YvCh8/iMpZbCbSRhHDS4nA/Kx7Wkem0PKmXOvc4rh4tF+fUlW9ISHaWrXw6FFSKH0+cdlissaiCtMtgmmzIVSfCYeOseBk65fvePnPz4GEP/LVK9V54vGXdCh4UcsU9qmdrghtkzqUDlX9T8ZEqcqxardOxGt25NhOTJq+ZN2xPzLsQgk4l7VB9RRmu43FPuRweOueQdm/yR3Ys6Z5K5zq5qxVchUCc/bvm3IPAK4C09GUNHlHHycCeWyDWOsm6eONL0VZ/hZiP3XK5+ewejp7iz61SLUnZBQPxc5o6RIvR+Sz8/v+7WvVSwZQrrMtn7QUvxkzr4D2VpYdnLghmkbsnpabfsjm9qlKR/5+hk+8xFiybCf4b2jSccj91MbJ8aWacmxiB378h9keMNaU39eGdjUmxCzcU5YTVGek+a84Yumnw43BvC6VczSeWImccQdk709JqB2F3eAVrkurk5MezE+b5FqW+pFv2e3YtdU7jVjTLaXGkMBbvi4HUEmJ5akeX6KtDrV3Ht4dsWe+E0rtyN5ouE1umwb2ZGFXwEqeHx4PcscS/IZg1agbVDTMnJwaoXZ+GIZQoIyylbAWtHKH1qW1/g1dAGGJehbx4RTK2zdl/T4lUINhLFXzyCHvs6oISNrMVqI4BvKrW8PDSbSeH000iCKb6D4uTZm38JArqMWuY9nn9rkQO4fk9IL1jvPfdv0qs31+OwCc9yYO1621mvL/fwnm08cU2liG6X2/Ltu73G+HNDAWfQR5EqjI/LBYfkC+9XJRSMS+vs2e5WvJI4P33BjQ2eCe+Kq51wF8duMzU7mr6Bve/SMJ+5Zph1fvk2iSz+e+nJIqlbBNaZgJGVX56hE9EmWjGE0GPtLf51tXovNVlUikTOzlOYnq0+3Vt50Xz682Rzgrdf9cyTpmmoNnFefHgXN8hYstCT/7QYEkZ+iB1ec8blyyXKn4V3i0rn3t5kshv/x6JW9qkEDj8wyYseXtu23HPWg6r7tbT1uQOtCrQktge4pZ8BW5Ra5KwT9fknymaUBhpmjCiVqr0ZRcF2IsEWF1oOQ+rD0wllKvqD1julym9bydHutO3+Ffq5sIzRiEQv7WUWlSzzmjLfzaxk7Z9K9DoOfQpss6m3u0PV2aKxNcGT58XQe4Ad3Sc3O84Hse9D/u0Oqerxpg84elsRc+9GrpEaJ5o0Ob9XtrKDSmk6R5vs++1KnF30yGbTuy53/Vb6wZ7uKiRSxcJRsdZ8tjhf0NukApQHwn+VFNtJhf5zR1s6pW0buVyrelLnVrUkI7Fw3kWokxyO5XlDJ4/54JtRJ1ML/BL6e/yjiWgTOf0yDxHtj+tlvwYbEn68DrkRJyQiupVxFj415r7rzeI4KWhB/LUCOQzJf1yEN9aZd1al94q4QpOY3nEATCW3Ut8joHT6hXWfxSiXC/AJ/xokBtOrKT9XZhzwBqZdQkNq5/ay5epPrhZSfZOgMARYWv9eEQ3/b/i9PXq+E2ow4qVSvmEwueJoytbBi0gDv2Tt02kNCV0Ix9yMyxuXzYTQXrSDLAb+yJg5dur8tcve7hLsbtH6xdB72//5uZ/yei+4bGV9jIaEhsMummBv6hvc50X1GdMmcQzoFl/yDH2ffj+zzmz6t37tPaX5ZMLiKoZ87Ie/sndjtSpxU0H909O+0dFrfNHDRgljbu7Gk4e2C2d3hFupNCvyMDFtU257sPM++ffCqRf9mma7mTLzFG/+CcDQPbfhZ+vBJQrHAFODkY69DoJRCBR74QsOKfjx88PaX+2aPv0eGlofq/pp0QPy+lEj5RsEN4xb8OpC0xNMyovvixh0Z56MpOLFkJ9ntWgQwtxvrQzU/dnAt5D9XxUKrqcAh11ParjzfzPg14hdRdOLf3/H5DAUaIaVhtL9gP9+K41rKUDLEmBwtVSWmuLwmVpBHl2oogqagGF9JbpbjUfDOtAtGhVZavC0cg2SUZumMWps40KBiykWmVTIdQm/SLhVxrGTQst/5+szrT/jHz+50nEjsO6c6PFG/UPr36J2t+vORMiRSW4SmSwpPLzhWtBkOkzv3NxBYSqkasenubKNP/I4gskvhKNRjXHuJ5kGxIp8Brd80j3RAu1CuRMFm/iEw5njyWSf4R+y/D1zHalaJejcwFe6zzALbcWEjLj/Gvh+M/tVijv/ZyFpq+mHM0fAzT/2fgjQiCrybizYzxqmJgArsD5ARyeLRGu3TW3YhcQqKKavHD62Dxl4r8MuZdizaGW19YgDFxHCH5/IuTcw2ypEVj5pNiijJuzY9X5fSLpUB1Dd3+b8v8++2Req1xpnJqLgtF4/Jr2l27dByD6kxeIDRpnLk0ywkRbrPzX/W6vZpD2g88UYP29vCtZ9Uz2sW6YKkgJnX2b9OQcn4u8UvDBYyb64QC/z2MPs7dxbfWQjV9E2rd/2hlmsfR62++cN1DzQ4cvLpoWDzvzOWRPUHIxP2+LvpvgGuFcc/vnHOPmwXX2/8Tnlz0Oe7wNL8LFfFYWL8oTGWK7Mu3OMd//MVx6j7lhtVh4vGyi3Oc8llXfhxjIyE4Jgq1H70Gt5sU82qQyqVxBHU+7SFaKlyltHQkK8Og8A/EhIOzdGhG+F7HoeT9w9ey9yY2Foo/cZoE2hfsf2I/lXvv6lETsBAsTvFJwOA4Vm92yqyc/K9AT50hH9RtyPKhm2Kwo5y7nUt7AnQ0FDhuuFF6CHCV9cH9A5ESmZKyoKXYea/lQTFHxGJWYWseO4ARNvoejMUvO2Uvl+fExcS2kZvWrxvbDEQq2K/82YNyenQ+lZm2+4JOdi4MVG9FLfnwTvZupkpG7xEVX5bu3g0QjSaYQRssr729Ohak/ZMC8ZPXFj/Mr6bCZaLdLPoKZ62ZFsp/Iqbjrh/g/u8Zz3V2HiM9ot4eNPe7OK3GbWu5jFiZmbj6TNhBhn91AFlkb9j32pa20Gd84Y5OceWnYhKA7xl3pYagC1PMMt2l2/HzaBz891gxQlC6S+u+MrVyIDbTDoiop/dw/Xj03pcnvXNNX85o3eI2+jxFP60L8zSNKGdOI6wPNHA9jBsSp4tWjq7z5uybvOvsOA8ZfBkU4+uTsEkR0Lo98IDG5F5Llr3B99ZbcDoE3dFXiR+RplT5QB0BVpby4vaSOgYq60zkf9VefrjxUaTWtfiSVEJY7v+38yXSajz4yURsUuyGzh1DKQ9B8pl/zl+aDFicUYUs3xKDYW6fG6nPaFf+zs61t4dzhUcRynQJa3eW4JcaRYlNlDr88Hplsi3R38KpA6um+25oHg4/fmyc2FpZ2rWyoRYFE6u8pPItlQaOQ4qbmoCkiczYPIMCMBGFd11R6yfpCbSdS92NI5r/3Z+5phx2CK+TzY8ilAqMD91+vON1JcPQxHd36pF70A5bP03ulDU/dL6gevLnfm7KT3o02EZq0kjqWyrV/HecBqovW+EpumGy2Klkc7oPDqg+atIbPerEVwjpUxTSm7BSZ15Mima/ptYeCZ2YeJRg5fdnGekH7ZvDw3PmxBTbxpkh7YFDoyqHXb+fr9lwRzd/oocWzh8VFuVVy48fjY230e94VLt6sYFqVb5+yxMRibeGazfU1S20sjw40yfD6XllhG9Bsd2kfxadmf92ahVR4udST1klDji/l7+LDFdla8V0Nd22/6S17vne9dcffJw+5sDW1b+epO90CSxbfKFGkgFXHbX+alXT8koL3asPvIqg4oUGWH5CwoPN3mleO85ABWqzfkG4Azajxgb5YmRrf3aB9eFAZIDipJOHsNPs+5BvJ9mXu/wBiMFCkGcVkrJyIhD794usm++YtTok7Ts7GGOMbI8NC55xv73lCk/Rq9vrfLE/Pw3h1YShrkHP2bH7djauQuFnsDpfZe9ehj/V6Rzo82bL8JhKql8E5lKA0breQOSRlWqUhGDY/BWqHlYClZU+s3O+ANHWdeCVlNVvMG3duiapsv7divOO+dmLHWVvUTBkvx9yf1VQuyEAr8l4xCjXjHmI1H9TXh6Km591pGLvm9A4nBxmX93sI7ERKSVhwu9mF3KNvvvjj1faVKGhl0ldDAc8cACqGVAnWl9YX366KvL97bBCgVwSbVdvvdG1s0nAb5bSudSOu/PmyeyM/j87P7xEY+cckfjbPn8mL/pXxao2k5OjNEZv7H0bvHNZw+u9q8eu2csJaE0PrXLTHUTMu9tiT0Gp9xRz7wGnj5oh7TKkGPuyoCFZScZ5R0y9LnV2xSt3bIFduxjXE49w+zxMNL0Zty7LXG/BOaxVZ6kf4SfB2PW7z88vBC9eflvQK/wAzjczH8lzVz7dn3iTKOvLqz64Xkkvolc4w8Kz5anJcft3BQOQgnrzAOznHtSTLI2nI7afiq3S6QBzbD19QGoDlVNZ7DpalwDpOnK7r73JjcPpiau9eNaqEzao/8Dx7X5F2fnxl3aMr1GYHAP3b0Op/kXQX9ft62h4+6VTWIaUqVLSuycXJlTI1Wi88MXC5k46Y4pyRcm20liFdGK0Nfhm6tIqGiAegSLeQoFMtk1bV/ZNsZXwriHwsBs7I3Va/+ISEphE8JIVxAvXqTRCaC/xYaO2l49ShVRNI9nfEM+6USX4xCaj6s6rznbzOlhRxtMzsboevZjtis79xnipxG0foUsZEpYyOQZKpR4xbGF+fF5q83S2ONuKvQNQ8pYjbsPEqPsVkpczPq8cWZpHPhAIQOhdOUIR8j+8yqvaVTaFO+SS1BaX7EzViiDfH5a1r1t5stQUqbUCosFcQ6xmQBUbeSAtxyHUm1CQLMKC5PepYRta/FUUFNgnZ3jgcBgeleR+KYyow9y6/AmStPE4swoniExYmiBkikGdi3MYW3U+deh9J7vz900jKeFs3QMbUYe2L6aWctn1kq9Nf5pru3PnXHgmakwDvcCOG5tO6Abj4m9uoUyJI5zfjM8n6D/TTE3qvJBR+G5nxuE6sh9Ednjzlj99LGEfJ+nz1ZmvLq768oHIFLSj8UcmPOj9a7Vm28vB7yREy4Ieo9UR5VN+04+fX23wQu0bljXj1WxLyxfBQZFcPXQV/4Vwb6U39P8u8+FO1si2IrXT8d+PxZDLKF0baJPLxRpVPNEng4W90amEwxlRJRYTQmHUtsRA90SqWdg+dmbT6l4EZTLUMgCax+fu3qXd+GxrDeXjz0dqNMJupMT8OCo+68JpFRBb0dqJA9Co6MfV2V4UZbje6f8ggtHKTbRmlBK0OYHW1y8mvsilfCcHcsEyKSWJYn/lpgeGBnaas6xl1ifHc6qyF7VvJH/Sofry1to0FXUY256Udi6X+29b8KeC4fJo7KZcC4xQ/XtrehmiWrkw90yIsJiSbfkoFr7MULZ4qRUltOvzfb7PubFHdgKx9znx8kf+VpaGNbR6L20XilxiIfkizgOmtR21uAKtbrI5CV79wz4KVAsrEJVihvAnQvIBHWbRVRNx9NZBhrTIQZ/Hp1YjxYpev0RQCqQBxFYvpKvjdRcPtjToQ384s6NBZl3vFQ6RGvufU99uOrg3vd9YkZ5mFP7fuxup99P85ZpViqoRW3yGbZ4lQuOLbWOb2qfh3rV9cP91/6N1rUZf918XOq//Ha86vPm44Rjf6I5TwclpSE0K6Q65zrrP1nDXwR1jiaVK5ZjZvJ1gkO/5I3Yih/oDK+U6+WgbE43wikf9TA0Oiz1YtsaFp8IOMfWK1FqzYKhhaSdQV/GJbQ6F/RM0By2CdI0qV2poSZlUAxut3dfsOYaYJFe+K0oQ/2OUE3/laX1KzRvln/6KzRxJfZsLNuDGCKSzVnOWgPDYQb9vipAWUAFCcj+qlXlhf2WcPsbpg9MLtEjBw5TceKpJCPlrokgw/LnV31VPza2xFurV2HJIzLCp4ruNEezXW1jOxygbyLEqlpe/wc95IwFUqImR5DkTxY/qRKY5I7YqhMEW7X+gnhCxseBzGT94gB5Tz/S3vLE27RDd/dCTwe9Ash7ESK0RXh1e6ojvKovwbf3BIRP2ZENt3V2z6iJq9QklkLEGOHq6syznzdRO1FaqbW8bG3FEw1qr2D8rOTJ7Od8BS6oeDd2GHfW/+2d+I3C5Vx8CRWqO4/Amuq7jozi4SE/XZ6LEBhQ0hCSYyMz+vgfe5p//y6Usw/u+F09nnpnyyZlZdOjvpJykd6NhK3aeUPKySmktmbWz/R5NdsxH1STzyUdOX6A9qVJ7GbZu13B+I4HxRGtBXN2X9rlplV6m7tQ+jog2l3x+BfS8mIcaJiIvmN0/7FLjT/vji6rGDKQDJGNP0m7A5FmT2SZGfe2WiyTuVgq0Sir6H9F2c60HuWqEz+paNGdUs/bi9+kHNxocqml4ZFdyaU7S04eir50/zff4svZxcD0TrgoQH+xKf2IQl+o+wZL+trQe9oJdAAu9w5jBIgDu7NTb6zde/r9s4G5cMr19TGt9td33HbS+amccERLzYSUSiJQuFiekvGmEamlMbFAk/G2EZtHaftlolkhOxX/PN5s1vROd5tdTZd08x5Oz6txwZ1srwZBZ1iPX7zh+92bwlESGbK9T25n1h2BwP0jCfVljHI08/uAMBXtzuz9MmANwPVuneJLF3aOLZFZn+7rStKSCLHWNzjXvrza+uQI7IBjd1+da1kLUsOJFUYAcMo0pP5O1Z/y3EEXBEgG9CtykhLLRmL5CL6TUEVFgEtTI0xKhRpYuOegv9H+I8b8akAR8ONb7DTeNl+v+7q7KUhcxKg+kvRXjMEYZU0OezJGJ+icl4S44RXdLDV3vb7++xaTBwXW+9nt0Zqrjx2xKvpXVI2DLgYXYmzY0yB2twKNpvn1VmS08tny+ROB2GPq1X09lqt37MdRFGEv94n1JdYVfejZehsX/9THyAFsYWaIO3YQTt/uHZPOFIuocMUZPem5YbF6z/FCqKbImRLleqGVcAxpYezo0kWbKxzuMNdmsCdViAaX/o4cdWd+Qy9RLQVt8P29i/Eo1q2gmLpNesDrKn0RoBYWyHGemVEqbUim1VR4raWeKguzA+G1+7ixlCNRIwZVdVz7NFs+o4Bda31lUOCg1x2naoKdsiCM1m2hNj42/UmxHlsqNcpE8tyNjWIECKS0fw2TpSA6ezdX4mz6JAxRhZrxpx7ENgqOpy4jYhBOiK1rfqZ9WqxRD5+pJH+q8ajhl3vqdamYqX1DCDWUk7NxhGll0NZvTz568vRwqV0lAzIVubL67gv7wOpQ3TvYzp0S6zcHaGYzSJP0a0b3EeMuRKO13cMvTaYXiahVBCARTe92NF830stH08r6uhMZxrsGWq9ZAk7UcYoInaQGnZtq+WrdvSjCNAKWJzOjwfaX4H3xHMtrnbFVn3y+HCYyBHZaI/1cFYkc7aHZ27lGvSuBudG8NqNwPsVixlVr4Mcvu9OrPmS5W31oKgS9SUebrvWV/jtlWYeXBHIctYYWI8wyRadfvDjfuVbwVpvRwAM5/33zDJ9XUSTbaVvm6FSY1pCnWtqh2GEZ7fz5XWpFvVDCvvn6cm3rRnmC1rQlBm4joHaPlm0ithKE1qJ9jiWvHnkBjYHjIfAsBUaoIHewlr6tyYtaAnwNvqwVgUS+bil4yLJ7numpPn80xPAPQGYyJZqIkvyKcifW9b2o+ShSKsKc17Un6MKZrFcow/KkI3NJc/wb6p7aVZ5PDuj2Gr5rOrxMvtSupePGLJ4OGs9WIrdNzNXsyfvstmbV33pHhc5f2pgP+nXD5+XXjoJ0Hvml25qvwCcc3EI5MSiSY4DbSvdbIqcTH71J3ue+MbMie8HNI7v35+StcwMlIYoj3Jhbejt9A2PeyOCImtWhrv59NoBVAf4OR8ef106S+VxHncGab9YGX/inXr+MqN8ibqXDIWMU36A0NVA2dXzoK513/TBnrtA8TkJLHLOgjFWF2qskjrS9tqQOyjSO91TXmRjlKIgdEwPrdOi9ClrDRMcVSoTdz4dPVwFhS2qfgHdDLWhC4nDvG776BuzqXU3SLZZiBPKpYwLmdbxAm3Am+hlIzDtOE+7PecVSkAYl6qlPvPFLJ5XZDFqfBHl8HFDGonUxwWFHRnaKX89JPe+xZnqpkfuRyvIYF2TwBAgFtX8hKW8qhk65w2vT/IyzO9Lw+72DnIhgzh0Z7NJYO6d6rWrNywmPR/q/Zj0Kf7o9SR0lAm0PGqFc8eWI5ZF/YyEOM/ayq4ve1QsM3/1zADEkupOEsuZKeynqNpPyd8ypBRKVChwAOaiw7yGuhFFSy3jriCZ6xejFLxskWtSuA6h6iebF0px1W/dql8zAo2c5MgbPIYSm6o/ProNHP/1TW/cTdijEBrjp2I3Pv/x1+NFjoZs3hvtFrfhttcC7Pjvr0cnWDZR3tAVLG/QL+SvKh9pDaYAR5vI1tF41IcYJFg87eKEqpSfchTokiQINXQ+lZqipwHzHwl/bEz61nFene40CrikyVI11yfo0Yncl7MXoXGzLCQ2TYy30L7iRAMt/UmXEs7cKPeFAoGxyNgGbpQq1b3Rsyje2bctBqoyLEyjxKfs3FXjP0ioXnLH4zDFTzljidMgcWicq4HRUny/KMA55xn/nwBbjKVskX44HwRrviyaCqBjxli5t5KLEiINORaRRKVtKVG+RY3gIgQSH5qMKM+ZExux1pvbZJYVDvwISWnjoAXeOrU2NWudavb66V+7JKveOByF34zwCcgrnYjCAtWVvMKtLWvcEiiLb3f/87Ws4HkKjXAFyQeGxiWIdoa6cqs3ld9MVODB5IOltqG+nYnpl2CPtm66ZZfOVuP2FwVo/UWNzEZ/WxgO9ddC8iInhpKxY2XJMwyxN0r0HcXXOx5vJm+cHVX+utgfZMMh+Bk64gsbI4mQ9ikZti9MtX5TsWnBw5ex/rSzN4Rk6soWi2qoQqaHY7iLENM4qegCKawz/v+sLM29a9S7F+ErrVsbfPZ92M2oR0HNJlnAk3VQ5UUHS4am+pg4tUxply8fm4BJDHlYITHOvLqF/bmq/aKtQk1Z7JjVLCEcv7ucYIuFWPBHy9sGZDdOzUJcC05L7Fvf1Ms8tyLn6Z7XeJzRxTHTw5ZuI31vVf+NJE/KQW9mXy1d/XJR8cWDNTu1fKSu95eoUMBvF6BTZFYSrMHkaV3H9UUoyUZxt94SOxNrlRVglcz1e1aV3OK80bmk8ZOeUWJvXOwuIaI65AqfLh+Ll4erHHgRBOtfg3aq5wP3Sm7AYPmLVgZLKrTZ9l3FI59BYvg4Smgu9H/Ldse9u3wvQ/TqJFEsYr2cwKLkOnv19xHJkSJXWhJUvYFe7PXdJOKhTwvdJLXkV5z1tr7i84i04IJi/qRU/bI6s//QwaQ1lWO58rrrwzRy9AhaKJ245o5o0//UiAmvj2lBFTbNVJSa/0KV8W2ybFDcqox/5uYWhw2Y3MMyT+0buUaW/1KDjo/VL+nbILc9Mt0Zq6xco2MYYht8ACqncolP59IQfXHRJdxM/cJy+Xls4Og+BkiBR+gKzszzl6DiQl3o/lO1sJuhqN735QUULLzT6ikU4Qj3x5u6nl9tWq5EE0qtahtfbes9aocRy54TaNw3O5sHVYx+tNWII/Z7E+9vu39q4FfGvs/OKY0NgwoLaIMIz1S93EjbZreyMsm7annRm3BU0DSBMyo68He64lptOo2yaab0BBaHSYk8V7Zc6f5+6RIPctxJnkToJuLTQQgyv88RsT9FcS/SJMeA17eLqr2qW+busQdCpKLXnFXX7kow/iRGHxpO6loo0EP3rGC3nGJPricbEqcxWJ2Bt1MuxYjUECHdX7Nn/LSJ6womc3ueiUTR8cNnXMRm9I84VpG0STWl20BKoypPvJAC7pPeF1baXougf8rVtuHphh0PWIQUW3f3avvmYrUxLsvTm0a254cdygmAtgGYYvlVHhAG3RRVkaBq5ncCxYDuIxlmjsM3HnTCACCIvqAukuNS+eSMeKHj6GyvCyr2NKJl/gxeXVG+OP2H/tf0SrfORyUiaXn2yXf8Qw/9NUczzDSuIE6D02zn7j1BTeXfjuvWGdV0VBqNz8KMB6i+e3OkKxAKlYXWwE6Tn83W7s9LvibWlJ1o2IKVyyQJbjBDp17YexHHULk69BCecYwZ4AxqJyuma5RTU8PpILJhzxtdZkv3G5NaGuiYTwKp33pnD9xYpmjvYxnjgGGQpwrCt+eYP5CHXIg/WVQAPAwDl1FFBQbrbyZH5fGcDBE+AGjnkZvP6gEdCBXkPQpnJ+LbtNnoOC4w1Ldf1Xre7mEeO9+yzuHDieVlIrFo1Bp9bcXVsKYh/9Gks5fhk7r7FBcHzAFQSbcN3+TxED08q57JPLg4wI43N3IBKGPm+u2S5ShPoOym9KKRCsdmmCrDyuRZd2mktCLSyfFOs745f9/wfWX7bI6Mpote9rHAldSZqjy+VinSlPz45oyUIg6+8CXdFtz+B+1mLehQ726PL5GKL3gNsy2Xd7ttzvakNWxZtGZaoqvwgymYInvrtIPdATWOhlPobHu/vtwuuxEB6NSDefCNqxgNPgy8SwJr64ymg4rO+NEAx4ICZMrg6pGFax/voYXiC6oET/atU4fXnhkSP5hoAsaOobQ5v3ApXjsGTtmW794AwomzA+Hz/2oFzSIE3B2WgO7yQPDJBD5z7p3bDnUVloxNhbsz3LXKy4pNl9t2GRd1+RAkdkT9jz/MwFatgtPdyTu7KrIh3hp6f/xSLErnxDQqkP895iEwZ0E0sy4hiUHhgzjN/JNOkc1tvQrUnP1btH7gieNpB3nHPbT6tg1kn5y1l07/iZSSMRA0/KFHrv0Oz/LlTZKNL/kgbu0uAS1KWzTR5JwOY+8Woh+/Bnyqrhvn65GExPaq9vnOGgaTRzK2Gti/e9rbDce/73RoabARK+dDRgfNJ/4dHsvkDKXEQKzYTeaxs6NhKojejs/wSoAj2fvOXt2C8qNZGSsGkLb1PtmQFlOyR6Kl+PzGftVS4xKlpBa0BOolVC6vj6j9fGPcQ6JNOHN6PRiKkpkIcS/biaFxXIKp7Wl3cTrsS9AqqW/V7ZJaEaHyUNVqrRc/7h8ApwEn6df9tliXyNcsVKsLbJT7cLe7oL6o6vyXAJuI+V6V1urjp9V3U//TU8blBUHf/DZzAVhTv/uYwo3yL85ovxxaDwxBMReq1SMf7B7/Nu5sTEItZNP212+p9cnzw5U+KicnLdavVSod7NqiAnhW1e1YpxwgHeBmg9lhrtobdeKzZ24M3MjCDk7aqI+bJMurhAZ2nOCQfDBdIegv6mY0pxwDdccO5bkTn1aN4YnWPAX5K2kh/5v4EU1glZCJnpskbdGpBCK3AoAAyavpmPixSkT3Qmnf278guPSkCzRUSNn75i/QcAX+Et0lz3LoX6pGIltUp4JbhFGmuTDrOsiBpVMtUSwlVmXZWdyf4OojNL46otisTapaiqVTrS/2TtugzXeuUxaqX3D9hp/h9q1FvPe5f0P6yhCgFl8SkhLzu2bForSrKj9aB5ciAI8eUU/iYpymfebOzlqeA+9X80RgYiYLOHetdi5qr1jPmpU/rRiI1GNa3WOdslwCsDxBITuJipDXX4onoS/Qd55D6MWccYfHkwDl33Zvo4nqr0EtHwGHYfsMOU0Q3fag0x05gESjae7kCj7pk/JG7isf8MSg0lILVNOT0UVmxWp77vUXJx5JS/QQrHXA4mUxLBc4xQMxQxZPmYUezJ+drtZzSW2fSMIfZB/3YqxF3v681X9tt+Jd57LsGAJa5fOxqWX+XPUuW2lOk9bhWQZFrP8T7XTrefdAyLnvNu+BYUDwMH/dQeLChu0EjFA6Xa/Al/2yzDrqubOpfiacXdTRuMgWbpxNu2vgYJ91Ke+CNNXo9r2zMOMVmVtb31z0yycQEnW8tMfgw9v3aHXLjCKOaq51YiZDKoBg1fdg35ilRSNEjwbNZT8lCAxnilobO3SqunMCLkzjbd+dyHPbarbaPD2fZScsrLE0e9CwPCbP8wX/k85h+oB9clVpo2Y9xy02/9lwdXdERqgWMB5gU9b4hypbrpZ+NnraTKynE9z8yBvfaqWc3A1cK2A5Yw7QTejds3WdAmNYt5oN3CuvE4piQDHIR9G2Dy2qmU30f0ntkA8uJR5cGbty4p22aOW2BPnFon+o7cvafbOwUBjx+xAmp/svO433r9L+w5gfUQBtIT6Na3W2h98gBSUW6b4lxP14JV4HB26Gggl+P+ufDyq3kGI9vok0u1Vd9VQVt9Ju0xQIrccqCV+nj7s3TmluMqrL6ncg3qNiGHs5yK+KkBO4Z4G/NPrOLX7o4bvlXUm4D9iDQzFrd6oMNvv30MbXifrGl1q3U+zvuHQKpMzmrYvCMO9VjQq5EqhEFktva0DdO2pE0y1iY+BmQnh3KDbZ4wu4KUFXpUKq/+7emoud++wLKKzookLkcomlQPSvYDUA3YH4enErI59j9CpvTEYadZ93Z/Nxmxl2MRCutTo2JrLRTn9zJ4c2K/7kSji+tJ3W9xx1MnvQjFMoWqHwyUYPLMDhjLqGQJlZBXAhJSxt1Y103ALg4a+NiEH/TBmSkiu7+h5r8cbJaFWZNxM8mjk5HugV1UE4ubuMutcSz/9vfPRsRNSsT5987CmILnpmcNIAGOBKaailDdmB+IeCVu6uC5H1kBU6pVYaYMUdZe3UOPDUFSbaUokQl30z4WDQH0ALCS+H5d5sBtvUgdY4HMdsO6atXTUsX2xvgplS6FGS66MDfrZMbKSUOrz4MOrD+agwelHmUjNGLO4HlmRNeo/FJ/KnWHv5WD3qnYZ6MbyS3se8DI+dBi2U8PWR7NDMkJfuMKcimZQDQT4e6l+2NW63377v9i7Va9YyzvRsfFSC8p9tDaODLSXZ0ASuzhEmS6kjgd5jaYJsdvEQsxQx5KoR1ahrq3Kkw90lHpcrbWo4xIrR++x8PdcwMH84N8H9pfeohduLnm3XJR8fHnXDeFfsSvvr89Y37ePz2aKjDi+BEBF84vtKQ0I1nmWHNTlcbHZph3P9L7Vce/7lJeEzD7UblX44p15yu2iYOjv0IFYewm+Y/p2rzoYJnZfPXMGvVm0TkHg5vseXrO7HTVvjedcjExWmb2zfqXf+r85u3f8F3aI9NHvau9i4331NRzTaMbNnIzCCiDfnBS0pUfnQx62W8Ezo3zjyCvWXyToAKvXUEgULsDc3BoeS+K8rBnLWuIEKYIrNMHmk7QQapoi+lh9bGNlCdIZIkLVe126TKmZ9alAGl0Q1laYjzjtKqgN9hFSlOpqSJ+MXp+rnjDoT+hId3oQgDcjyzOKM1ye5nRIxOBl4Lw+6+6qZ2sjf+/gaNwqF5CZFdAmaxSP1Jgu8Ql57w0m+bSYWu1Rh7hRjJVIebszsIoVGEbT1GUQvuR1Q3wzlgc3Oc6jy5zbBcRkAwq5HiRbYyFZmv4T/pR9WWUyrwWH0LG0b8jC28ukaPGuuW4t+GxzCo/GMrc0KWB3/kzVJbOzgqpw890YAL3HBJH56l9KydBKvJ9ta+yAvpWJqYGDP+c8S877A5WHZBQ/92pTsoi3Ec5Fnmnx+bnS0thiq4poxrfUvTKr0ul4D6ET4BN445+SzYUXXQ59/MwHIKwC0Wu5o5TwgfGh1YwXPr8qwlUkxSXCLqH+V5vXtbvB5xVIi4Onk0KQzO/fE5ZKTL51NgbVDLacltLnKMCdf6KwAVJlBI68OPFKQk+xl7KO0soQRemVaW8NNL9weSVjvas00nKfgh9PH2uLHdmw8wYvq67luRxmR9Puh9ywqB/wN2BTgEnh7ePbKy6MUcvq7S4u7Aws9txfN0ZLONwZA/ZUsEm+Bghgls0tCwvPiK5XCs7f+9jUCWQCfpzBz89teOqMc1OCcdW8iAZTJrW/PvRgs0SbrFtup1qUfSihen74aA/omyYbLjvK1mhZL+u3fsEV1Ypq5/q/JZz8/QxdsUgyM9ryxQjRQ3n3/LVZteDbtzU/QfxMSDo9h/YQDQOwImama2/JZn5r0D/o43a09r/Nre6Q+X3KQ9yuhieXuKM1mDL+TjFFxc9PL0Sp7J239OSjnS2mikr8AItji9WzltjTTMF3CNiLk3Y1dcOgaPXuPPZOD771+mZ4NOQuYvm/QxB4XS2eMvLt/ZngaurbZAMELjQlE9QbrGL4eEj+CmjqYujiwzLxSstl1K9hwfdSdBSb4x9NCUNdqzaWNad/Hgcmp3gMrXgDnXPd9CsgTUofV7koZlqocKtvndOr7rWfZt/ZzXV2Om9/OAkHrV5fo8exnfVKUrAKtWPjYqouu+atMrkvUEG6TmekqczLrXEyeOitbvLfpgng9kfWzEwzvVy8A5dDg9VClGk75SGedxA+tU0BpC3Q0tK95U8nURjAahOXkcjOH+s2qhZkWrSgBwdwhoom7h9EbOfrThAVwG6ZXZ0/0qtD5lx9PZXAVCpkGTz7F21h3w9isfDTcgoKQcMQEUsr7fI+ZGHxbeV3AMUSr+g6r/0EBOAGn84a9Lq4QIPwMCG/BAH27/BxgtAAYW4d3axpOPrMwLHnsoFUiLFElvoZFqqzxtZzysCahuIE+BZY50/XpIs2Qc8IN+X0YN30gDz4VHv6Sol+PLY9ZwHvr5wLfwyT88Xq6N9hpuOc+UqCjbDun0NWuj4OackFD+JjkrDbXTZj37fOS20tW2fwXGILlxnEUFwAT4flCVs6LlF95uRh8fFTHxvgZz0p0t0SoSzTL2pWdbF+Qe3RAbpXkTF9DQF2L2V6InGZmLWeDYqp82akiaelj3EZQEZPdJ7TL57Jh6BVHBGaH+WaxVKkLdbFhxOTLULKjmrm4Z1XHS06FJuorVfRyNEImL5iUn9P6u4+oDtsU1IJQFOWxeXQKJAz8arZVjBFYffYCn0nbWwnxp97WQHeoJZLBYMypRW09/xnUTTvavm55FhlKk/K/Vj2duUhoIxIfpUdgllOb9c34SppTqRAGo6oAd1Eitws+Ih9bo6JmNB3/adxhcCiuUg7ulEAWBrKaBS8C7rBcgT7QGU/tjX6fn4/ZgkuGnmQXn//qX7h2bD05iSW2M442tLxBiVHsoM/v5QoG1+H21ExqpZL2kF/nZ3XZ4D+BKR7A60oyHIMhBR/ymrxRHkWiXKsyiqm56Z6CwH/AA5ohVka37yWA1SWc7DHiRIaJAzuXSycJTR/eyzNBv1iTtMv5t9nS0e4jpcrE6p78CYazHVOUOLaFn7ok131ceffBR+05cMcvy45FlQNqp/1OSMeLvJfYVJ1wWvY2SE5TER6qPE+MsSaNEDT79H6bltlni8HJAd2PuJNN+M80LQ63Uxque2+vuHEE3k5U6zPtTc7FIZU2G7a1dT8eWyqac6D8uzz8KUtBx7CynHuu702Mcasumu7DERg+LcdVdWj8wEhryy2pHWrey84PZlIdk7Zo/cqoMtMdKDBK+1Icvr0JrglN+LSNOyyGiRl2PxTZBTW91bg8i6uaPuzP7LB7PaKC5a11rTK9JBjxRs3zahU4gu5OTBtGnS/OHNhh6Nq8FGnnQS3VIqGIR3tO1+sHLL09PXn0Z+WszpQtN7UNCfQw6GpUGrA+9brxRQ2DJuOfi6tnIIUwgjZlTup8wAPd/FWjBfw8vRsIevRexETnrWBxpXCnfPIXOVCeOy6AS0CmcePrtmfv3Q7udfz2qmW+sO0HYi+EkIwb71VECdNn62GVVYfjPdNz6cbkCOV+7u3WF6srijnsZq4ziGm79KzTEILZ0rp9FH819774zoGAF5V+7VONkdqDZ2dr+Y04Fe29v230EX1h3tK1OosRkTbqOrycrOdz+g3aXQl795lh4UDvvdC9DPmZO2aLwjjOcKbLVkY62K9avfZMvOy7rOGOt91Pe569gFmMZpeOKoRG+1+zll3/9cSIjUcjRPS5aqXUoOi327/utt45Bfg62hShmKpRUGWYUp8Qozc5UL6xmp9Z7VC5OAddN5aIUAPv21Adp3cTGZd4/sOcgCENWFxy0TuB0nCYpFf8Bt8k9i2lhUqjfAY9Ztri+JOc/oF+qLsPMYEzPV/WcdaE4TalfJ6L4ko7tdEo/Uvs3Z+CMUtZElzDkpukSnj5h0bGy39fcj9xIO/dim+HtGtp3Ss8T8/3H3+dBHI1N9gV5DV1KVfosrf6d6gJBPfHxdze/PQhWyh5fkgL/HxrzmGVf4mM5tUhfvWKCb66GPjxKCJL0hfx3Z/r4lreu0Wq7paGnMaO8qxlw4/OLXndxPhPI2BtnH+3+EkrtQFNGFKMeCMIECqxokHGl0oIUeHENAv6LyzAK7W+9bmUdPdq1U7diZ5z7393zDbqjNAsOmi/BfVMTLR6fVy96+c8tyS3t2ONQpQvHaO9oe5T5kdW5kIED6DE0d+IuGo6F1KiTEfvYti87aqd1h4r1Xb2bdmmW9EoZ4BWYBgXuTxQ9u37OXy6cXU0nZncFoIlDGOPHvVPLDDFCpXjHtBF9piXPXO8bt8+XirNn3Zr9LmnZSkmqArdVzFpiwtdElR2/s279LhkFe+nR46CisPfL7vr/3ovGKiQcHLwGuNgIw3xJLE8Ro2lwob2sz0jtM0ntY/Oi0uFWnvboEmnXUwvjRGTPWiJahCQ4TuvsmhraYg6UPdLsRpzJO47niz/PH60EyQJhRjljjcDPIFf4l7duMe7119D5LRrxIFCGlKr17PadNJA6SWgoMR1xZOf7LdR+tkIa6r5R+AzbO8RAsrHgGOaBDT5wQmGmP+5GRXlPQR2CcmHrRGMldCwkEwB13JBvCadnSFb+U3/v/osofAFdq2g88nP2pS5fQGs77hnByX5rVdqDkPXomvaO63aZfknnnLwUbE7feTegBBDbJ0fH6ahpnMWTGSUWDf/ib4+PPDd22NtQ+M8aM4YDl9LjPUknD+5jnuipqTGF5CbXjQ2/ftiZ3+sH+lDJ5Vl+436sdFJpxHANlVrlSvLHagg8itQveDftskGtCuAK3/nrzN4MV8Y6UXuF25/lAk+yQ+s3aL5hjSrUJYxi3O2zD851+IlkGNlXBtprSlaoThpTwA93biaiNERA7LSuStnZ5zm9RMjxc+Bpo7bu+vagaJlOMUIQzCpxfO7y9IiG20iEURFAj4iR+bTDql0gWBNqKQOPfgGJ1td9t//Ezbn4JePTnmiw4+p/Zk3NRvikl1rd7ocSataOJp6FNMvF7KtAbenDqMnlhogYDVezPsPPcrDxQR6Q9B0V2dAGFdhT2+d3dj5y0ho0T2zxul0Cjx44A6jVFqVVpW71Zd+WMJ6Q4ZVPuTEXEsTSF1orSvvMdrSqm0+dqNgw4UQCIAVKi7MbQvS+SKjFanTXCRBaYe+p7Xcufrz2ATz3yLdvuv0o/W9Nfly+Y0UeAeXdh62xsFB2Po3AsqUz5wysEsYu73lR3GkOUtyxFQbG78bZnpbt3qpwvgMrt3BRI5g+uq+5bNaujJu75IjGdwgMsfixU/hAeUazSL5tin1O8DLQR484U8y1BqUmYKVpCx/CBXPg4d6hQXV6DLX6ZLLmMYVuVh8o1K6nP4aledyhQPM3+tKEszO9byjCiRQ2RPCcgDSwWysynE/WLNHtWNfmb5jHRyUyH4atRxo+vwHr5YLfGyiViofNZrpVae0okJGiprDEUSSOi4CuT3JqerlW26fkxXdPJoU8j4DHB6ou0vZh5C1m1IOX0T0r8IeJoR/yE45v4e1ka51B9pzHqL0lo3aOXzHP/jDtUhXtxA7g8qdJgHo72/Y0lJiThhFsKznTeHqbccUXL9vBjYY6a/pEMbrEfk6vn5rIWKKuycGkq48tl1gmijoCaeoNCICpTbZ1/PtuDsZuR+2hgesWEgoq4frdi14BPZs1jdNGor59vLo75Oyjpzd6fTD7CLovRwb2GPadQWvROe+sMzbrzc0eqnCPPbxqe+mnjHlYAYJtLSf1owUWkpeLHgVn7wctl/lDKXjMLeJ6ZhYbQVOimt+aVJfrWXjI2aLvP+BeKCL+UPv318Tgm5TQMaH/ZuKaTmHytMuLwkW0LiTL6j8jUS7POn3AlXoY4/2uHMwg4GVrDzXr2qJi8oE3/1FlwfmFo25ojWrF2AaRp1lrzx5TpOG9aP0vSs4ujvYpBUQRKZXIi3NylpJ65n89olWEWRL152PWPDDbi2yFqqp8R+ZQ+bChzmXkiaz0kO+hZq/k09YEgTYCUs9AEQZc852lK1fmN+RvcFP2DbbF21I1eXoHOS0ndWltaKEHXzWPRAoaDjX4feNpAGIO29OwTRUr+Dw4i3BPFT8l6V9BgvWFQCFF9kb4mi5IlgIgE3+OLtAhgIUcAt3W7zmEiRxBn1JpD8dttq8C9eMh1bYF9ZvFn5k6OQOGWRPqWP6XpAUan7sP//5+qmX9Let30Vu2zNhQdp34GNe0bJFBV1WqA9xVbGfxywWPr24MQvWOtJ+wkNPkbrO7wDoRVLIbuIf2J9Z5F6IXP44CFSU+eIT9UQcAeosVXfzT2jmZj23eHQAaQKtUSa8YHFltwKwToJt6AM6rP+1IP9PfOKCz1rrhQ70jCiufZ9o9vkhI+0Frz7AAsFoCTio5wuxCPW/lbDhvZoJ5ujdQSLetMap/hkCSxsjvAmYDHCNosbxrAxnuB9MXo6cL3gV93Wt9Y6jllC6AGN+d1IYiXEJ35kP6IZdPCLKu+HZ2QUJi0gnjuaAAMEhp7n+im+X8qFJkCO8vbN7mubldgH9tefalimcE0TSW1DGOjNCzSZvtrAW7Jy0u5g3HAeriue9bKmcMObcNBAw01xCp2qYAX66UgvgaGb3pYOTma58TPviCt5I4xG8/jM9bdHf7paMo/0l2BRO+z7HA90nti8HQapUigAIcjPPIsanmaybtq+41SWXrvx9glmAow1KBBnbDqW/+tLpvfIvspXYDgSYvDsS/Yc0pvjEXoj8iWrZAzo0emdUaZzvlL6B+oaA3TEw3MpYuqS8bNoJcQevYKcl9Cfu13ulTL0GEELY0uGOnpumFKpS2ZstJHai5Ox7MMXspWfWgOOWjN3EMofuhX0kmtUTScTQJg87bb/wTBOWDx+TifqpqE9Jud0PXFRvw6iBXmh5rO6hleaWj+ZaJVRJ/fK7Kyci0WoHhmyKPp2vvH0jaZ7C2R7EDd6/k9fbwSAhtMvoo7Q5GaPzA8ddxFFV0ABov7noFaRLnI3d7XCj/8NnDKE8gvsQieA997Ctbs3EXqG5No5v799rQF49dNP8UXrkVi5WDfXn0pTExYESeqknr5LEtqfQ2LlIkGVnCWLijquSZi8677tt/PxCQijdsp6L9HmOuUC0g0KsmNQ7JurdpAfDpd6qwgaMHbbZP/HG4ZjXye0SzdOXHJ+GykcgwxDiV/hC59lsctXrI8N1k8yW77TGfNlH6XP7s1lLlkLES2WmNgUh5hftj59KwJ67PYgZXnjXIjTwYLlJFs1fzpcMky0ttQ0+0wYjRflNdzsID5mx5qKf7gb45cwI8LMvUW5wJvX8E5s8eeGs9ruOssRtfIyZVEHGek2CO7GrRMcxVqJ3pA+is9odlVUg88O8QXkV2nsK9VmX78wyuKcfc6TNOUuSz9rnJXYuF35g6P1jdm1QOrMvjyQmQtTD+wZT8lD66EdKflNXzHi47c1jledmCBrEebhpysTQekAgjvKHlqmptMikRRRoVdezAMksxwI6Beidnd/T25u0TdZpMh7HJGk3tMhlkk975/nJTbJTO227Z6Dh3i5sURII4BOBlioVsgLyHvWU+do2lL5x11vcuY7ZCm/O8211Uqi5WVco1Jc8XPKkUGn/3c0RwuLBBTYJaJAvtsp4l3ZlyPc2oA2nJebdVQb+q7p7eRB4SyuDp0tBDSxE/18SCaIf4t2Nss41Kp+TO47snbJeDoRlwPc0fYxcLMs9bzVc4W4HI0PSOQqBDBKPgmCtSTpc9XvL04vFdit0TUFyZba85212//8E+av9/5dbEDNX8QC9QMbiHnGDtUnU0v1xg+s2WMrNzLoDGxs8GJhfrITZNMnbz/L7Xf9i4ADwKLdHmNldHrT4MV1xzHZmP9F1Ymds2e41Vw+duG6RxXCyjHqG9q9tRZWAJpeWm61Klhjr6Hvdfpx4ItRMWpd1f7SPSp/f4o6itGJ6jyMlk4KHRp+hJd4jT+dJke93j/YMj/hIqSr59arxHDQT7fUFGhi97my/pzp/V0c1Wn6rUPLnx3aXfa1B8tHo9EhIrcX7j8kzmq0sxx/vWq+H5UVoFfCUW1mx481b1XTwFUxXY67ZwEvjNmXheYam98UfxmpTv3ULmKY3i7caLx/a76nwc8Pr87y/LhLVcoJxtxkwY+NNhYhErOvDuw+2j2z2vlLiQu5N8fDd/Ko5rW8ZrU1XqiCgVRJ2XLdv/1r/Y4IVM4rQOaFmdm2qJ0vJybezdbxqe8T6xb2nXgAZVRWigMtPUpXfKI28HbWCN8dy2OEcQ4IMMjVSiCXZBCFRiZHD+/phFtZ/y0mvNLJ6LFqDAALG/bevQiNpxty8htN71y7YgBEKxuea4I17EVMqJyvmuLRIFZuyyCSyLkfkIhtnU5BTV6joXub50X3WXwVrb+vppXckDbdBKbDhX4EtpDA8M7/Mhmd3tGXlAP2X5pVvC/D1pBoqrvwtSIFYMltdAjhFI++OCU39wZoHcrlvAmDygh+wZGg6yFjEQkHOJUCjGV5mA+Q/VSga4Rt1rmCMi/HR85vjuMLjLJbOEKyyaIYnC+Ghr1ZA+ookq0pHanO7hvKKhkhljQSKTi6LWKNrzhakRjZvV75KVxydQ1xnD4RLDK/JlrytguQ2e9YBgtQeTi3TxLNgrRatnZZW+haAp+IHOIDpIl5LmzO85YAnpLH+XJf4Q6gP/DD/TF0cxPCVe9r4m6c8y62PtgOSk97kySbwBjop2OA/8geYvuKAbQ5XQwdaLYarr5goiNb+ZYvAXJpzqPZnN142RGKW/Q80VjYr1Huuaz2nRmbzZGiNTq5DP6nNVUQS/eetBjVF/3eH47Vcps2YPHHUS6MqtZw0Mc2jFTs+apdgrnhs5dkyMWEkobEDxlnEN01F7GCXw6KEgHfMV5+9fHLb3cOLrFLjTlCIR0PBPXe1fZHiO8Gh3XDPXNQdy3+mMvDGCvADQme4vCYJ1kflpoTaB034Ih1RTLTgWLSMr+5JUFWloWNGv5qQaxzfL3Likgzhfg3/XJ9w95zZAbo/5TVG3F+nW7Xu1n2yM1KfFBpIV9k1t8frULTOEcTE8enGCiNyMAzjook0OruQfvO+p2XjJAIV9U1LkZT5+wAMKdlD1dAcbupC6i9bY7i0shEREe+1hOD+DvX5CduSUjwXJdcr6GsszNurlsHtmn1PrFXVQYkGjYEMYKl4RD5hrYv0SRTqzJ8dE8yxqYKPBPLeW9mBqmOVvyLEF+2PvbvOmaa2jc/z8XFeDTOpedTa5G2tuOEpDC+fWbMO8kJLVBJp+beORhh3Jhl6xUUsOhYvMmYk6f2/G3D/4c+uF1lKFExe6/VTTtztMyx2+h7+dmQN5fsRxuCS6+046IceHdLaZLu245aCgypE8dKzPq8gfW+Gpuc7qbs2y0HvZJnIy7tmCAM+0Z1WY3kUlaoYD+YZWN/sQBPz8jy0l25xREzN8J/3+FSgvt4aN6hUXTuziGqB+RcbBGtexGi+e/c7s416UGFnpH/+UPYuAlP5np49eMO6qhLIKb8GByCjGPuHNkqzDuw7IiahJWwzE7IR82GuexuWYU7Cho5AygUSjkepqum8my7LswdsEQHy2eQ4osLskGpcL/TRMpqm3qeOHRRtM6p7+nQ8BkSBGL1txZ4fRwvS+37l8AwiT0MII/KOjMCsngcjs/WuQtjUBqNtzIbuByTg84DNxSJ8cO9Y0omVyRbI0verRJy9VhwmuEK+34R+Gyciu+2qVFW51tXNsnQXzWZV4if1/lKxCSerjjV5RSCrUDO82d56wYTQqVf8Me+U1vL2wgtYyHfKhAA6Mf1xdIlpqQRrLSPLSzGoDGjxwXVFG2hLDV33cJzhkSY/poVvh07PlD7yf7M0LBS+r/ld25xaaRfJwzp/spBmTe80LTM6LhlYyqo4lrV2xVdk9sKv+H7yeR9aWDpXSeneC0NMOGuC8xIQtHv5AmSb/yQz3Chn0ZkKnhlo3AU92748iCOUzvlHrUz38ZsAZ/t/BAXXwQRYsTvK7G6X/uKX9vCVuGnUmMLOMa/a5wmGde9Vm1XKINofuzOJkw8huB923PS75A1tUKiCSPHnarWKnQ+s+IuSm6SXU8H3sB5chrBMmW46poyhSi72dCoFg9IAbnIqalRKWKW57RP6bKytIoxLsBG/Ah7Et+D9hd1pggkiB4SoJ4aWB1BqCbnpnxJ/iE0mhkDAKFApEXvC1UJpl3GtZT8oFJnczfFXbFSwzVGxIasL6DZRksPLnzL0fCTQhqbSj/7EOBq2ADQosAvDe9w2+dUoVEIuBNuWhq6gGedPqD0cBDz9sVHizw3uTYfWzpyt14suHD7uBsBe5Uu8gKVPKO6T56dNzn627uWAAPv3xybW1amWjioEhnq8TRx+lk1I1HupSdCZufVA4lJuahbjRRTLAOyEs4fSBtGfeS1J/vtJAk6xe7v8P5MtoM/7KK7/vzDZFpG9JOBm8BzfGbTlJBz3hnb7l02/1KSNywsdybr4Z6Ta9N1RBBD7rPe3PrZRFB/aCj061TQnLCnTYSBnK+tqgXEsNYlF7N2vJZvMNGNNdbToJXq9SNvkhJTLy/em92kW1QqMhsUrlDZfhpUqA6fFXVbq24Kp973hePgrXD7NGOmOJ9Q8tev7P/ajjt1KWGR0rBLExCGyA6caxkfoFXDRb+F+XMA72TBkSh131s/VtlDepfUr2QIzZiVaoUXrX0iHO3IXaA7Td3cT1PH2IkVJit4++sX71nmsVX7fc/IYQKZRAUedfu1tv/wykzTIwnLPFG4Cx2M0sDsw4yKxT8HRR2r+54+ek8h9quo8aIKnecmM7SsnjX9H/CNJw/85VxtFt7LW8GyWrGbt6ESzOyD4Xn4tFPCfRq+6flCHZupAD8+6UaxXg1Hb10ZqxdBOWeCF3Sk7pukltktA3dK6EY4TeJe26pwucg8aHNvMnYyd37OHp40cXMzc7VObN2OO2y6GHYhzrGY/wYAsI3f6Y5x5P5HIw6XHMvu7ma6NN7ndDfBvkfaH56OOL806WfF70tAJ8zxDKEmhdiQvDYDjoAYna5XfP5f/aavv0jiWEvXjqBT02cUJieaxxZIrufa8YqOnIwRWwwwAonNwjqDmRbEkYMb6HgGdXPaTfs0YN1IzYSoqFa9/JoLfDC6jDKzSefHkK2QHEHBwkYEaXriSMCv67GFEKUIaNXpTD/dexBA8JP1eL1wiW8KCkZpsiP9tkeCZGdQg1wf8tVSdJ9FQOrQ6VyNC62ZykryvT1i4FRckAXyWyfZP+d4nFkWaBlhLiZD20e7QTy5USSeievPY3FqjxzbPuTiw5/TVLulZUWGVL+EklDGFYiQbjfpaa5fxHpYtA1QRJLUan2gj1fbbEwd8xKcoI2q0DqZwOVVB1xXxdDRlcBhh2mmmOspIeeTct1eU5cUw6scYCIRSdTH0BbkXA0b7f8Shosx4MMILjSBSI4+n/F0JE12eHJ4YnOaajBsZmGQ9BAEV3EjN8T3brXqLed4URbuJ8+K4n/+amv3/IM1R+vb7w6c9XZq+n83ycwCiLmGuvmYP/cTwWePzbdh6AwvJXzJaLMZ8PLgGwl4YRnY168aHcRU+F9YlPvfBy66r7Pz8MOSQ4ZnDmGsY9S4EqQIvIAW2zXmozs0aw8VCkI6k3SOsPkGKEYezbj6nU5unuYqPpMdpi3U7oSwy+y7uOg0oEucv6z4EtOQB2CpQyob2wfasRbzHfOb6mZ5cSlr/KB8pWRhnZhC00oN/wf+Wj+e++1evuTSgIZf0XmORaGNF0zi60pWtrY0+nQBO/cgK5HOnfdccdmJ192bmnGvygJNA43C04xGQkD02KyKit8rlf+8q8jRUzLMk8m4Fl/3EU1G4ky1VilI7Afa+VfNEbZdOwf6hcW4m1yfBt43cQqdYzoU76SYFYpfNLs2EKQ2DEl8ct86QSDEQ+BB89eurG826Jxpcllq+qP7qX7tV+iedpY0Aqeu5ucMHR6HqJyv4Pu66vSQeJx7Y5ZW/bHU3C+nuO2IAIAMdVzguvBMOeSIQFExbkMPacdni09Z5EiQaVtu27g0V+MV7PjuvPG5jJ0NcM7FV4z2R2FOXwdafllDfnvAOv5sZ89sUZ8rQeEXAs8Zt3D9fuiph7s+Lb3XkCLQSI3S0fTA9cxQr6qYwaZMLFu7cGfCBl6fysPOj869foQzQtKZtGCRpyVe/Pf+Ghl9Z5r/L9stIDFoeGNv+qu93sJf1H1yqXCdXRIESEdLWCi7HbnNY4FYxuUqk8FHaAp4fFbJxQ2TwhfkcH2Y6e6fhAHwP5ptPpydB82ZJR+xrE5x5rw8PsoSQqZMpW/7a4ti494fRmkTpKpVOsODnZ26k126ZPdEoLzREqO/pQetot59St4vj0e+Nm5PEfoxb0jeMQFW2+tb3trYVmwp+u1474FmLRnmiBUgmSpnuZq7RLJb3BCquLMwi5gvaaB8ll5CEks050/ulTSBFaFHVApWFaYESHlyFbPaN5C4/pn9B/P9Nz2ALTMdgXagFK/Bqe4XJ6EzzN6IcbATRmzRHvdPrTI1SHCN6WMyoQ1Acu7V8TptdMP+xvCATqzWDnEGxznrfdkI8cM4E1fzYha+2QrJoDfjZwj0KUNnRPShqZ+XCk6cmsPZHZYAW8lbhZuJDHeEuacESp2E/w/vxXPpDGFQ9vxQdU79KNwYKKFB4lpA8p101hMtWgvVdxnhBJMZUur+D0buiAoxarUSUHubWB09A4l6pF40x+1IftjuUgdRcPwKY/bvRlz6/tCDkKdSV5G1Rvynl2UxKScJDav8UgwKSGvUtdqiYjocRjc5CMOh6utpu4B2n8Xg4kxqXXqR3BahCj7/WpjtKIi855Ul9guYZey/muGVZTW34miRdCh+xFiMVQ+04wuF21fcPeZR+Ofd42v2J3PGiDIW9P7dXMtZ9vVjPqKANIgO/7fPCtYu01ZvOFm2eUSTx4KBCoJWpU7fMm9ew0rE2xh3fQedji14HYa/Xe0O5evBECJ4brpgbtj73H5hQ8KVsA3teua2RSGx5U45c0GsAMcs1lqSpZYHhguu+Azdv2Ihxb1rQyGWHEl6mSdrX39m2U4yOHQew/vlhLoU6TUwktD22mHeUPY/2uP9j89Fi8ZIo4OhcJWi5lFgPaz9uHHgGa/Y7tLBilmCa04icEc/bXwHGE+KSu2sw9s+ktBNpnOz5yjotoKzbZ7lqm9VdmdfofhAX11+iWuqaO5+qrN4k95jc/CkmGl4Hbj48N2Eyrw8OvhFxpfBTspsR8EuuyAXZG3O9DBaUU5NsBWeNwsrZnrbpgti6IQw9EZ7aJtEHQ0bPXTHKLM1yqp18oxF8ZlZ5gXsl4Au9z+/ODYg259dV+aNDaEowXmneOryWwF5q8j4v1PxhJ6WA9yk/dtSbs9ocnJz3WIcikscWa1AHpgCfGMvY/w5tIl0ZsHW0/qI834ag/p5AG+WMXZbwmNfv5HUMpZpOzkdYe3WbUCVWM4PupBSwTDDCXzOC+rt9Ghh79mEDZnb/vXrHcMtudJHycTi4G4gTdXdtmwjSSPj/ZH7CfbU5aGvmn3t+07SJdOY23PN+qno8YFVC7+jRxVMlNh/dxPZ7gClK/Sph0JGv8Zc3MpqtmVHPXONmdqPtW7KhtNxplUnAkN+iu79Pw3BCQRx7+Vbj//S7TTN7gaYWPcQseKc19sgCysl43uprqTIDRgy/FsfO1fxyNAU96aZkN2G/A2g9+uUvV33bVb5dWq5DGENNzJcjFXjflBBRSqhQfmhlvZqq0I0FS2uKX7BO8t38FVr0RQQ0eHCjV16iVD89HWVxp6Ugx9rFoOqVZFDp/s1oGd8pLPrPGVqyCPHLwrQP+v20Vcj2S+bIWpa4GTiDz07UHmuoTzSwV3/WV1zV4RzmEFNX+dcqPy5I2pEeG+Rbc+77cMpUNuUWYsua2RLtZlgOQJgAoGET9EDrxIi05Wk1skIrB/frHW2UPDeS5vbvht2VE9W7UrEodmMcSEbcZVX4Yts+3eQNmh85GPSVOCccjBBXiT1Akt7nsN3ouu+r6PbHjAbNovRLCKH/ihlzjqLLvOk7cTTPMl+CHOGpPJw5rf9v4fT9uCGv8jjX3ZR3ozpRSFATIs61o0EAhhMKOI2Yk65ntZuW1HIMuFoN2gdi9jooRITTLpSIGBjhFt7vVNZ6aLVdMkGSZSSoCN8jqX6clchTSi4iaX/tbLmmBn+kjzwgASg+93r6DZmBK3HD5OIptgouIywBZi0oUGqUrcAqtR4lR1ycdxlxxWGMeUMMY7zG1FsXpmGegqbtUW2iytbb+osPylKhxT/3KQQNkDpXewWNZy2NTNq79HrH/6GG2mVLgZTc/v7Nxc4IkT+NK+2rx6jk0nFgYxYJcwdHtokPuhWCHl6nJbIkDlD6USJsCJynSxODYgnzpcUZM2UqNkknDNyCKQVidbIYyhtA0OBbqJN89dXFnqBKLGliJhDlRZ/I3jRboF9m/hChXOOXvTM8eKDZAMsSWh+vBNQ96k7vZD4dZdL4Xtz/UoPuRoeaHdkJ5h7yxbb5WN4LL1w/shk4bsoYQbG5Zl3E2ywkhREk0ZBapnc9qPCDvwOA9asKZrr2vq+2wdvd+M51SGSAKD9+thHpK+k4DxheBxglk7oSiRsKMnAOZrH22kNJnfXMs3OnniDsBgs6EOkpcM3HjoW9duwysL00cG/KEdLJlBh0OlH73B9VAbFCGpCjgrcDYN2lPmbqlIP4lQ6i0isV01puFIobScHsXXNCQjIEVKKEP1C/g72sKBLgVrnVwE0IfO1e/dzjLCD3JNX0rBepqj9vPQW952sYkyr9xiPcBwOuw0fcthlVDW6UDT0z3GpcMdTJVcshvBpzuJ/rRmjFGmJm48IfEmp6l13+PLmG8G3Ycc6dS1flcG7X3DxLAzzS50db61ODIQxXfPSXQmn1NSz10J83qRLNsaNgqZVL/flPAHD8N34Gz4WEl252DN36DYRMQ8wVtF/jr9NB4RhqJ+IOK5Ap11VgaOZLWG1ZI51lld1xBrQX3cPDa70By7f31y/LsdHmES6VfvPX5ntvaf7S1ZqIGfT7cT4BmDbCHEys+gdiYo4/peOwMun78BrZG0YjswkyKz9P8B3dRairEXhaU/1w2cdXnmul5OoUe+oZPOj4c9tSzHbkT8igt1RPi328XZxSX2QoW8MHJkxO0CA4oClpE7GUjD9cGQPBrK0ezrVtHTZNzxLzw5fZVPH0S9VMNa5MzVOtwLN68HBR+NuvexQ30jw3i+TYg9JQemHoz63mY20bwQEPCSsd26tqFlb8T50zMlT/3fLSnZpvOPRy+czyzNMuucL+GBsdabQzElJezAhRYJXEcCUIl1UICRFt0bsbBAh9P15kaoTlZ9QmWsTqezAKzA3TRGpV8kAhAgXt+WXbGdi/lzRl/7ZrYf8ulQgyljgBCM4PcGaE+FcuWEK+N9meZ3ItMgkC7fm/a772x3qciwX4ENTGWK1VgUZ2QnrD8biFvljF+PPlAQL8XBsyR4f55vpQmrgITmBRZHZlk+zzikn+GPmbq+pI1YjONidl4v5CSPxGuH9Luz/m7S8TBH3D78XUWjR00l2OENF3WA4d7H0uVM0lZYNPe+sAGXBsgB4GUGv5CvrtB768aK80/KBxXPrQInbXhzimbJWw/e5hpBNnvaqexCAwEXisA7ENuLttdVmNhfXMQ0lxgEgSI/Cevyqb6VTEcFIxHM8ye0Hg29rPBiqQugARuOA2I8yYFZQzS3En1yxCoRZHS/wPLLBd0i5dN2VXKS8eMVfbL+bM0yLVDvcGGoJ16wXL+vdpi5C55l2kpTENqjTeh0oX8nv+sqaQh9J5teQm1SyEirO0Qyfr8aHuEPowJ4f7USNpz/3DCXrUWCeFPq+iDen+TtgKjZNTAzkTAXT1tg6OuHnFl9INQEKomsGuvXvc394O7xEKY4J6RNu6+TK3FldAL4Wb7v+zQ/Y4AIcnkFj7zNSk3KWHR7UiTjZ39z83oXWK2CZ67kvfFLeXSsM/YSpTzz6mcpwvYs6X6eSi0UCE5PG1Cn5rewZh2YWJEysXnSgNVyw0xmF19K1i+KIWB5uwnrdVTetPZetovmxAG2gm5qb+EphACejJ9O2iTtjj59uwzhxKGvUKwzKStM9Ia5jBJ6LgBLwxCQ7TJtiZU7Q8KWipKLxpC2sUqaPKIEjU4vlC7C0GUAeUCO6h7C3NsuaLK545wjGyUMQJeU+FvBqhx4OISXeWAEeC8b9ZCr3qotPpPu3pQ2pUvNFoPafE1MaCRh0iKTceOvX69rH+zvvYhERwsRl+FgGZLa1Sg8sVPovVjqqrYRm7GvYPLVeZZdio5vPcb4+kncSBs+c2zPBmeEZ78Jqn5K6TiIqXIr75xzJyO6WUiuOUg/0koxeriZxYHV2gXs8BZll3glrLjPqmWeHe2Q9tT66vf167LPgyxfObh5awgHvXrvyzXhwM+ijvTTh+O3eYf1USsmxwKl2jkdJhckTYBddFtKnE2dSb3wJYyeykHkz9gTZTL1NIqq46dzK1nPsMErvR/Lqs/RK43X1z5y6otwaB7owq874kveoF7CxyKWUPL1YbkVLBdxEUFSnSlKxu3TfqYSa0EkEoAA8jidX5zTvFIt0a3xufBAtrvWAxS9WO961FjHw3003oQbxiLTpVBMylKJ+1QK70yNxtypzgLTCFHC6muCvJoCIsEVk/nxzR27jQIRqQMMktArGk1zFi7eChImzKEAIQyqsp/7elCyzP/npyNgyWJwCpVfvfLnHlP9iYqRsfVCMKfOU6fU5MBl6d3KsV6UiSJBHJPW+pwyaHYyf06bZetTi7aOLhCBS1EZmQseeE6+/SbbaDPHfO3BLBz278d4BUwS5RBo5Sx5i4YiiBNsenwbPsnzVIKCiyPe1/v1S1kKURiGAjINJoG/rlg53wQ0YOa6HjDH9+cwxEe30sOzQ1t3+r2qJa5dYxYREVQKUm5j0t5FsAAeyaUOOFH9XMnB5YR2BaKwWXY9h04q/vTMGUNOE7MA666Kg/Q/1fthRqVSmejAZV2JdwHQF0BuwAMF9Fz4tHoIvOn3dTKAbW/WIhSAnTINF4Opw08busP4S4a/Z6M5ixrjb0rvqWmrRwdVRl5bIJ81DbfBDdOheC3li1J1ukQWtC1zxiGs30cmM04jUFBdBoKea7i684nEXjXaW63Svume6ls3cfd8yA/eaxO89Pm2P1hhzACmVlcy6+3TiaruiE2EbIK/5xLtPq8j9qG9Qn807DNoi1MTacEASAtdfE4bXWPU7Uso86FWo/nGSksnnHajxDWzGooGjTX3tzbecXB4nYn380YLjqWnQywqvnLG0Z98LDTeSa01/Exq+4e5xv/l1T2p8kMO4U1OVs5eNz1z/64ff3eIAYRqSLA2tlyycwsQ9wVhlJI0DBFAhqrF3/euKcf3er161Pqwp178yDpytypv7vMMCXg4aFHYeCoAdodtBHzdHp6tuiNL9KEkA3xIu5OqzKQcVxu+7P/2kGNH8OUF7xetipMjpgapZ+f9ylnwn7mqiHY03bWt5z4sQkSUPu4qh9sXq9qCJ6coUA+uCep90j/Gh0i66ZmhcPfYPQfGuQH4ydRYobizqqXKQOL/0vJuHA2FAKZtocUvLvhqVo3Ne2kDvU7WC/hnz9H4pefPuwUUQt/+YuZubUhs2CtwYgH/dgqhUTSm2n/0f0eeMYgL2ClS33vCuKMtxUEzkI+yqkzL6OygywejHFnM9WP9LaMakY7vUvYvRnfOtS34z8BqNhITG7G03sUip2TvO8aPBsJZCPDdrky/330vQA44sB4fWp/BktOgskRcFjR3CdIWAlI7E9YfH3iYMNab6/2e1hiqA4eDZ4OMmXfvdPHwqAqFX/SUG0V9/hhdYqVMCtvsoVRHhD7ij0ra9BxqlRLoqaAOMz/JH8BBCh20QuntU8o5C3twgLjPYYloCfL+eoGECaoVK599TN9K4IMTsIAS2CiKiOhz99OPXZ397G9b9Pn2q7+3Qk85RJq86Hnu3WLRXwdnP/Zgpyjywa3y4Cz69yiSutFPD8d+3rGHRQrIHMzvtehki0r7zEy1xlfyOgscaZ3X3RBW3CRFpfjbgc+P/wnAGI1Zz7rwKhJhvWk+gEpvGeQ2oID9E7YQ3gNcQs8225rKWQoBBdr+k7St4IAkTNICRJowoLK2RrlKIxACTmiqFVTW+s6XQl9MPZF504PhD/m9ZYvCw3r26x4vyjl9OzlbVdnhS8vgOJB5unSuxpjduivym8GrCYIeJ/hkfT9GzmBcx0P1/7otcCXUWC2EH+QmrMm3v/pUa/VVbkttpQaglqLdH/iW0BBjlRtkokxpBa83IUr76DCSCVIHgP7g/m15h3MX3sSIyD6DmI3dm4qgHzpZhhU+PFhWGAEtm9icIMBeUy57Pjv6qBZGfnPHArDoSoDSYCe+fgh4+9x57YOL5cvtm2re21LnFLOPVbRtNdmxpoC5Tkcp6fuPT/RvEE1kYIf5Kx+V5b43hcCY+HunHpgSG/n3XiXGvjoiFBPbvxOPrwAZ5I+AbMqufpo7Z8skOqADQ+YOyjl4WiFQASesQLCdxEpAesqlt4lh8qgeaN3IOH3aLmgXj+iY7izE6wTu36E/Gd6OW4ImS6Vy5NIQ6jBxQTzu70oASrPL67jjA08eojmhbyLrlp9mJWT4WF3pHtjVwQKBi61PbSLGnW5dz8BN4Df9vCIR+mk5dkmwDsxVuZfnj2AMwdVpAuxNCMJpqDdMD4jhAyxMU8pxFVqpBEFLkJJCx3HRgXdPgp5MyAAhWBd9WYplCIn/vgn+/oiesj679CGb0ekg2Tohpx31v/nQSxthgE9W4v3QHk2JSTB7CK2jLiU1owaZ228dBx0QZ3R6noZ/7EIgE2xbVQG5EqDd2i1rROzbfuSLdJfDHv8jE0GXVOqQbF3aOmYmzL/gxtKJNt6/Iv8xOTgTul3zizSC5V+L+zB3I9SJcbkVmNxiwVLTDxz5blLan3wnSPMBtlnn/hxZ5zR9Rq3N01A4QKU37tORatwFMCiioN3tO1Hc4KjSSvHYTosSs9laFtavuunI+/LsiEzeWaWQrURnTAvQyLAVrUarbryg6wuYFZzQdkKdNJW/32w0Bp2J/XsMoJWFp4yLIHAk5/httAsGgP/1OVvGYDst7XogcUOVVwHKTQweifSNxT6FMPXA69aXYGepeZSeq4SPJs3BGd+6aw08NeqHvKSm6XI2/Yy5VzsIqv2cR+TwTVyMlnUsiOZOIoApfHIfHKrv/5/klskItf2ldljGSQ8m6VNg3PT6m2/+XPOqBumsNrW4mZ7xyPLc6MLCRSx5p0/6KvqMAkU0uzjej1bruqEHM1R/ychlpFbLhrQfEbCGrftvfxuX9tWBRoJkpumKuONLyInhWRgT7UeDM6t3QQh7RDXAmf0pY8v773zjjD6IYVM8EtuIhWU8SfRvu/BHyOXtyZa/hfQ+kqzVmBUucdRqK0c9sCooJRKN/bgIacyV9qSe2V5IYtMXo3KOrtxPMU9lhXoZz9y7fkFGqnT85BN/TpHFwZIjJjYSd7IMgbcNqs2/6l1RKBnWwniRIRT1OisR34l+8ED/WNfdFBHwOgnA52HdW23Z+t/Q+BYsBmRLAv8f5lPXKVabqv0LUWUrDO0Rga2TYh7W7G3tCjGQ6SGpKwaHa3XpHchLYP/U7ZwF01rl5IbntlGHsk8990fBilY7O9Oacy7PrqiuMdss1V11TozCHMGITujUY6SKEhNI+l/srbMWfeq4j2A5q9qPoHr4UDTVhabZKo90VWnbxnbp/We40Ad+LLGGYFGAVMImlRyFRGmJI7JaKl5y6PWfAQIUyOv26uwrU2g+bXVpmLJXRgRAze5/vH2qgEDk5tSn9elnwPndRzFwxQb3feshiQ7GYiPSYgvx6LXnD/2+mIMX4npkGjGXd4C8t7rHh/u9y0UpGmXXr1rmb1f5ydy1B1pebOj65BF9ObnbvhxwNXDF2yBwYg7SkOwPQSoyoo3xEB/qtBU7T6JRXSRYW2hfDOPyrTVIGIUfl24cODR/4ybC2fx8owKyNPtPY70+7XfLLhOddGoe27kPv2fem964lsKsWx0YUoKXxeP75mEqVXgNqYMSDQ/yyFfifKlEY7R73ui4ZX8uuz+8Go8QNsZNi9A+htz4v74KeP6QZ2ho26LVNq08gfSVi9WM2Btn10OKNgL1pxf+faUIvKfSWPwUuGnkUb32mDM1Nm7T4Emg9E+fduNQaDQddA80Nb7itcmajINT5AO/DT4sD5e9wP7vl7xemoTbxbzxfcXoCeIcPzJtZJBiO+D6oXgAYnP8NPY1ivXZ4LgoG8lWfUXAUZIykm4nTezRy6ZQSwxanRaBzujc7//wdyX0CeW9JoSJ2UwXvhtZLT/kaOTrop1D6KGZCrn07ceOPfG9KmyXaQ1+E+bbYZc47vd8kjt1CwUXO89+y3meTbAcI1KMWOP4UK/L9XwtvSysOBlw7JQG85Eja02tnjUmeueImFKj464ovBmHEZcP/hadDRYZiFtlVEu4B6dr9bx4bwXiSLeaFELWPHwMXeYqwF3LEBfqwr/+RQdNHs2tsYnaNf5D8OJxNx9t40yRxcn/Cmus3KtEgEFVmT/OnDnIWA/4MKJ3L5PoSXe1BSMOz1y22XR0EKCTITRu1P1du0CJYvDuavUDOP8OuDGLGeBkg6m+8JYR1GKLowHVzhyFXqa3y/GXdsfsresDKZi1kYkJXYuAfS8Jca8JZIBeZkGW9orwuLD27f0RFnaP4holahAcemae/jU581fFxihRKj7/QsNstAWj6aNU9rb6gyQdW1j7kjQ+cCKtrzPU4kZinmxoXeLArJCwWz0cPu6vtOWHRIt/UIerpwCKAVYcfbsPkT/0wdZCRd2pEHCT0zg01ahDvp3fV7cItNMAWECsTMjb/KDEYw33e64pnR3LMz7o5QR7+zcDK6/+HS/dZSecUe0VTTH5OmASloV1C8A9eyKOJLvldAcPguV6fwYINPrsdvA+/rM6Gvs42ThPIs737zxLCl/lPL6t8fvklkKdw6lH6GkyWIPBz6/tVrrK0ZoojbopaKPndLeMba8JALWZuGZBbrGk2MSGnhXCoWqUgoajjno2mVkDKmRkGr9UnGKAZOhab1KkDeB3UmiRYNhx0NDarPzRnAdI0PLVSD5Grxn1Wl2YCaxON8omiFMXpcFmC4mlLacfhDcOK0Dw630qGzqsQGbyyPAudfnWjOKSYFdayfKtJfeLTVO7S3hWcn2T4Fk0eJcU9dRaxiiJk3WJrdOte9SB1W6ZhkCjF0m74V8WEh0RFsotXZQ1+DTFLSWMGEm8MYxkQbh1bNEmEDKvcSXuPEwbNHbyJVDi3CykTHQI0GWk+AnUxfDysxfsKlpSD27ZTBKDifbk9lWM23qbdtS+ndYbGrbpIoialQLuncjVxUfMIyuXX71KH3OREeoukxHDSacZp29HdvjCTHDfi+OXc94jNrw4igZJ+YsFC4tGxErZad9g/vWK2FG95Q1Xr0avWleufnTKV+TfxDk1uJ1/1zCEyBeIDaHe5BtkD0GcXpIPF7jMwGBxYpU0KGGpTWp9sAH3Vu7amobH4anQ90mZGJ0f3C7pOrrnn5vuOowtkDu9q7F8DMfxqTNfhVhubchUPWv8AVeO/YP28sS0spmb25Gq6mM7LRzt+lmnMUoZVKpi8V/eXgrusWzBTA32kO92yp7BMQEO7YWjJ40aezVhckDkGPfdswQssDHGzQWzW9c8XcQdJZdYYbkXm7rObrJexGhZTg3Nh7yPYYWkQw+jeOcZgBfgXlm7Fmq19ICYEoMGNYoFX1BQRFwgU3/1Vxq3N4eqtLnh6zbcQdCbC0utn444mWztn1TxhG9Ism7Fa6Lfg8Jx8mxqRs6rzpCPpbPumDqkJIvwfus2d7vRaL/JVhdYcM4ddUOMSCMNq494stsBFUKSqfNelVmXt0UxylLjAK5vOhw5z89oHvCq8phJkLjtPYOwzJ3Yrf/60gIB4ne/jR+91bcKLcngAFhBjPLRWaxUqRAgmRxWk4bQd16Zs17uNbq2Ab/si1BKLDJvDZE9e/SvKOWD7k961SA/wJEXqyCFaqhpp3kWDWR2Rnu7Lfd1Yedxp0Iei/awM27tj6U8oBOLGiApro/0hH6LNqAgjAhvv/q7kHXdVJznREP0vKACohC8M2rylnlIjRncoywM/NFFntagR9ObP++KSZKpVMqZGCOnku/Gb9VK6/fLbcbkttBN3fu7K7p9QLIr/Rg9mRWzoGNv8qp/nue8xyvpprsWfrJDRMBdla7miu/22A5CL2k2ra7ttELM6/c3abzrOl105elNSEQypE+79HZraGomra3XcWQVF/gabXxR02PmFm11hQhFoNT4/7wkssGHwt5NgU+trL+IVBoQ8wedNGQtj8SYsd2lmhpsqRZGlMLxWA3A6euwR9cn5twapc78mjdpuy22eBO3r1yJ5Rx6gH9JIy0P91U611H0O/qmOjNmvl9XBe9N0lx8z4cBePuWeuFMKbdjjH8vdVyvnkXjMd8NuzRN62KKaaDfAzm9HhpNG+jta7fdRAE7K9Mch1Ld0m4+LPzcuKerYdkPxjzWJbmIGYgdN0Hh/7oSVQVVhfaEDoaIGZqPWNq+ZjVEayqZj0p+s4E+6tf4whEk0ASQ9HVecvO/c69txD2qGICD8naoyW6YnMRNF98FyGeKH3tnBpQHoarIet/nkYMjLaftzZ/xemMwsolaMhOlIZOoV+oQzYu+HvUGv8TAc7e09icNBtSZyB2FsiW3hAjg8/sPZkfYTTjwAXkBds8OE9Ey+24ehhmFUSqEnrWoq2v98Mh2bCAgiQSblbmQmr7+wiv/uV47b9ySmV/5wFjag9CqInQW9q/Trvu3oM1kJKl+ZcDY+4ghtzZoZu/R7XzHHG27ghYSErPuz1OiocQSVTpzTlbrKt9Yo+fynn7/sztOWp9A69NP5y6DZKu04Ub4eOg9tpwrWBB5jGAugIrQ7vPOqqdxAytJoEOcK5K18Pd6ztGmbCmkg8lw6NvrTJKebsqi2sKc5YEK3jLog5ts6rEjWBjX60HxHTMBV3+6j+/q/G8PjdGn16x2M2pQ2JvkpD3pOW8CSSrd5/HgZZEUMLU+zTal2EVm+erEzzy+o/Htiu5oNOz2t6CGCaA2z3BPFNkJIUBqTD+ENJicMU0iI6lfyF9OXC7bZcKQlfD3rXrwrsXZjEyjUIcaPHU90vw0zL4UhDUY7GzZcJD1stVAyzeIgUUVsjZucMAx8JAruPvgzzT/hqrTV+9txV0/X2b5IB2SFXwp+8/M8uUTHoZlZ+ds6W6bWSjBQyJzHHWm4gQNm5PhIJYyVABCQnc5HA8wEivoikrlBwx4ygdWkIDbCd6RXpXuvmzL08Xm3T2PzOr2WNP+dsDoa8+PyNQMDAEygk8R7nn6b693jtBjhF/4h4EMMDQOQjvYjTIyoaMYIYU3WoaqS2EMVDQba/O+P2+Nh8GXfWKGKNuhAKPZME4uU2i3f7HGPA89xX/4K4HxGJ8uwNKooQOy+CrEHJDWm4aQvpEZPhbvehKVDDyXd687k3oGIOPmte616dEzbLtp3RiDONRS0nDQFrtzi+wYE7o2w9DgAQMRL1dvjLt5TJAQzWqlCDP25YYCcMEwXKvsqu/M2HO48iEqOt7VZ+W7Vq7hziGgnQHwQFGIde27SAe7LhgGYQ8CuLp4WVvokyy2NMHdCLmfocUfsCaRjworXvVGjebwXwyiI0zyhHea1gIWx/65POvnuJIUuKE8vmzhH1vwh6+TpqehSCWtoPTZMmuctFSe8+qMTRasd5tbZ8/ottfFTiG1CMJMDgD5gfAMAdGvdDgE5LWq9B/2QEjmEFPtrl1qxqWD9dnxwGMbHwi4ls+vQqP0r9TNyamTS6U7NmcP7iScd8i7caaTXFH76e9XQIxgFIyKsD0v5xZVaIA005qfzjH9HJt3NfVaw3nrnSrr3fD0ZaOfeZZW98ef3LOj2o3BRlAw5EmK9ZWGLoM8vUQo/OQtfMev0+/H2/0Ticf057gspY8IF7hePJnntm8XqtTHRDbVdlvcCY0Q7ZiJmr3W//UAkirQOhowhzSrnyTJ5av/4wZ7VxYAkJEvpWkna8JYlj4Di4BDZrJ5dgqCkgHLE//Oz/XF7thfEvrSN9qOtSFL+5673/3sczXTIPJAXMATIuAYIYpAXnZwvp5z2oQcuXLrjkfHi7WSa6RzOPa2/fAsGZwb+zIKRyeT5JP4f/lW4CjJn3aHY1SjC+Tbm7eDrtteVYU2EVhIuNi7Y71KlVjrtj3F7xYwzTJcxQYTEyyZiheYzCW/WB9pYtzZ8u01rgzMS4xef2lAsh2vlC5Rvv75EipriftH5EqAr7+em/l/uIg6oAc6Zh3RuOEstef8W3XbYECGbFxL0gbYf46jE64F3bvuu1ctUJ8L0cNcJiLbjnX0zfCoMhBTxWd23/Yn83x91VZO3lgs0dcn0IdoY3NV1kSWt7NYxiQZjr9mP1JKjDf0zG18fe4Ce+jNnwlyITlmBBVG9nd/iooS66shyJXl0IpTWnCQYX3bs6DTxwHSMyH8cG59xdqFU00R6pCza6kSTEjeOiYLB9MdF0lLTVq795nDlNU7884fDmzaMIBY/x6JL04HZzrYOuAEXthebv0rUcD9SoexPmZBrcDjuSgMghuvbal5NYEc3wfDuBV66ssi4y++lMO0qPTFL8RYAWe9/8KNliAKdIa/GQECZKm56r7TrkACJYVGHfM2ANsFLO/ToyI6P2XLbTOdkMKSfNRWxkFszE6PzXRF1hu+ElY4IDpbwouevtkCXwpANGs7oyOJ+HA1itiYGFwYetFNXD+TNwyXnOz8Pt6J60Xo6hvDs/aTlAUtrwrI15Xh33a9xBgKjMEQx8I/pQ17YqwNAI6CQi21PnPMhY75+6ECDM6o0kGrAX3D5NjgFF9TIER1ks12mD8PEzHA4/1Tp3fEFIFHQAok1v3kN40OaVbv9TO7oV5xyPzSGB4h37SNHNmv02J1l8ljDJ6tPCZfkYflCVhLdse185rCkrKbHNimyuBVgMlNwxT1s7Hyuhy8MRCvi2piLJGrRYllnrVBwNxD/Q9ZKUpRsYgo2RarmTl6pw/s8viGXeqQAd8P/AImvIs2n+aVHnr9wvUZnxttL9g/hvc/A4dlFd0SfM30BL/LfAdjjDw9lDf2rjeUtlJ5prtv2idEKblBBUB1NabqnYrFthv/VVTO6PHkRKUkRN13yw7A3QXJP0dCRbljNkBcglfXEpFVBy6A2sod9CWYysFjhfKSDgzfjukdW/AcAxQXjn1W+0qN2uWD2ySwb7pDNboOW+N2jZ/s/FzJCQSD/ireas3orjonOr8Y6fTE5uW/HrigohjS+bPAtFOo0gfxuRQkQjQNyy8DpOOkXpX/0A6NlwDHyqdLfEj1jcG7257uPzY7/OJwUgU4kV9jlo9a8uccq1sPANFmHpEvuOUGRBYJNImF7VYIkcnX0b7ANnCXcH7NOO0obAaxq+q7JU1L3sINk8xiwA90b2g+zG3k6mr+7EChbHFCHnNKATysZylB3JCJl1VJd8ZMKyoP5YsEmMh8mvyrR64wPBeEyA9n7KnUZeOb+72BuBPqK0AVwwqDWFOGX96LZae1wQDvAxOtQNE4/J7D6qsESaTwqR5CIODyXLlQmMpHVezwQzCdrBslGmm0CCfa3KSj+udWEsehlmEDXXG/R2akQHZkEWKR0lNdveNZRkK9s9I6QqDi3+gxFDLJktymTZn+sDQIHIzR0ik65dubvBL5JnKC/ycoE273LTaLFk+NRvlsLA95WEC0unzaZkcBX5XDW0W5Q7dK764yJ6m/KaNPkhuO05+MT/19oA3zGN8+81D7R+C8XNwbIX+qahXzvjhZdnHLB+zh5eqbt/9Jalsme5XNHFcMrCckLM9Op3tGqlWu+Z/JZ11WJPtH8XXY2yjB6NhNEqJoNhigomB2KBioAgGtq+dGCiKGAgmiomBoCihIohIKjC6axsDxgYbG7/j9Xv/U693Fzx7nvu57/M953PWbcVBEcZS1VbBeP1aPLalD0f8OHD1X2emd9uTpu8L/q4AbU17QT0ua0jtEtkhQ2ptR+dsC8C5GaNEiF625hlDduUdzm/f6mEIPA+K07sHFj3KOPPD127rnwW/myaqVz0Qedky2q9HLTL4KsC+Ar65lqlEAAKME/8hZ8YFFXBpvSlnJqM1HmaQd+WZs/2DmsKVOJe8vTUJM06xw/DmmZ/SOhwcNTtwt+kubho+qd8cosDtWD+PicPHxAVFWSmuvJu1Vdt5vEN5DU8dM8bEBmzZQX//q+rG6Jw5l+eeiAC1QuH5rxURdBxsfsL3PHWmt4AaiXw99/Ff+M/QaZg+Mbpg0Oj2qoXal1r+PrOTmgzbxuII/UWvYHQiilfFRRxap3SrVllHyJiNptnoBHI0awu+t/WK5XN4S8tWRAtGDQ/FD4sny6L2rYC6YPNIOsBlYqUDjpbvE0vZ2G5yrjo7MHJ7rX9qi+PMPeH1i0lWicKmRcquPO7v7W75KSMU6gSgxgbPGNY8dBnzbXNXL+upUzxaR9GVg8YceKoH7lFs15cvWfBVOkDrTTIG2MfyQC6ZoxsddqMynCHfK5IZM8/mz9YsolVcHXmxcMaTbs/x7CogrcErIZDJPSoC6jsRv7ma8RDN7CBCl+93itAtFbgS0Z3ikCGZuXpDWMLTwTZmSrOjQXzR/j0PE/2iH1R7tvdqIE+Ruj+SulQy6coP5mcWMf/v3kUvEzZcBc4SYNzArNxby2Kr4l2gfwQt2Igll2LEtX6keNo7cv62zLeh5wkVLNvgYkRi0D4GMPW/fcrqJvxUNTfNJ/BqIMR6fwlL6vDkRDUu4BQafe3Fpe9x1SdaPjrlbcsP1f+MjvnGNTyUp2KXBorgnhUvFrDqZx3euXJ3qp1aK4asOVKrl+4WO0vzQx8F/1h3EZv6RWg2IRDRCT3EIMNNLv1g1pVjCGwpUMnzD3++mTcFiBvDDEqb95DdrYEBfYbniV8wHyQuuxrXNRE1zA1hzvq/FTgZaNUAWzwsMcIEhaCbXj+so9FwjKoq08BQpcGXiTEQtY8AcPrX7yPUBEQsJhxrYU8+R24JNxr95vzbUGAe+07iPu4awWp9dnpW2rnLlQrK8tehTMsexJ2VHK3q5Sx4WnUqlU1+SgeL1qu8Z9uspy4taTz5ZYF+Lknr0c+hKa7M/1paHvMggJe+cHDw48Ouk1dsjdJvsa+DbLmYmKZzbMe9J52e+VkOM2cUZD1z5xQpAENj0uVtDbqmKUT1xr5rybdx0ZedjBDbDRtnqwBipRv+w5APa+LWIDCq6BaxlY0b7KAgGH0WVexiOkQ0kDR+MMIM0tf9WTNob4xFHI8qs0OZGRyZ5O8NVjXud1QHnN4VuCJq1/O2UQR7Sw5Zgq90hY33tZsLvS/uxnv+8L0ERmPPwarfqK0hjOxD3TJ5cBjaA0FKNkkloy4Itt6mmWxoxcVbnGyuN/03ye8gNx1HfK3qf80Z/sGf5aFCwu5O0lIBXHltfpaE+hZHgw7LJMHI62XhS94Yfenu9pYVJo7UKyKYRZdA8HrtlLDcL9PCSACOBxDx6Dl7nf28qodzI2VW56xBQH6Ojpvr4YmmSHLctydA+pmmDyHh9fb6FYQg255ZwObW7+sWe94PcwWtv5LaRyPbxtK3mGRwEn7/KLK186uSDlHbT1shhyRc6IgX7wH7VDTdhaes7t7MhYEQY3fcDYzyNmDLYWx5OjOmyW+ofoHWbeH4WS93zQz5DlSs0+Eid7cagwTGwVmvzZ+RTZIp6uMED4vfmT1p4v6QKKL6QdPhXzEliR2V87O2Cuu1W6bQrwXH5tx133v1HlqbHBL43Fu/iFry5YGfpQZk9OXgTXDyZcKi99s1vLpI5iYmqV2aPm1IysW2TykP1XH71/U5AMfSkbNxakJ57zI1CkeGIAboioY0MbhIYApUBdPE40zEt+iHWnw1ljdP3JeLo+ZcdjGgaX7GRVpH1dRrxbu2P228b47uauXf6leFo67dm88P1LK4S2K1qLATc/4qAZsKJO6sXeOwjht9ldqd5COxb/cq5KH9gy2+acN9VNCFhTMsvWHFamaOS9mhcb1TLesP7aPW+Pz1apPxBQ9POLI9LDJR4Kk0ekZb+CBD5706GrxDX66z/Ea4O/u2j15prVCX999f1S0D2oqOTnfSxRPLLUY1290WN8zTvjvn1qRXJVgeKs9wBE4MZYYO3JXPpsRmrI8sXueIyM2TnLG6+ZSCqFGlGTbaexownW/yJgM7AQtamVx9adpP/hYqDh9oYECOjOThUlM2LRYqgsVr8eaCVWBVYly5U+fPmy+ew272w0rSJGaF6coa4HQM41qaFNrA7l60TwpIzsR7v/uzYeVpDpMih/HWOX1rZbSV/f4ytEHjQZuWVv5rws05nBLAaqao8125LWh+uzkl4fipOygiR3km8hsfm/8VqnHISkJLx+PTvsMUctMcvWaFjn4sA+o0havP4Yo9Fpbt9UluH0MfcyAfv/PzDC96WuGHHDe133XnitPQQwoC/tNGd41q8qKTe+7dmW2YTUx5O0aysPeVB2/2hMJ57kVzOcV1+10tmCKzsJ6BLD3tT1U45d4JmF8w90rbeJINrR2jN901jbyIH2k5ruPpitsn/d543MyqsumxJEnec8MWvtUu6dlsloX5u8Xd2s2/VmVPNT9w4EHOpGvG/nX6v2QBFgWlAyYTnu1+9jYeRXF4YrSWNx0/dmeQq5Du4WYvugBfGvoa0fZ+pGa+YIiNoZjuRXXEMc6nzyUBIz7+VDga3vRjWqzCBWYfJVWDBnNXbIR+2TyNpfuNtoe/RDqpgx3V3rDPDuWvu4xTjwauO1M6+0VpmsnlX7bnZM1BxiCIQ/TfNfoTumxEq3VIOSXvdk5rVargB9HJaAi4tPtHnn3RvCufep0wu+DvtkZR1+2ZcRMNa2/FRn2VGSOOq10ibghXeS0pTmtzhEccSUyCOoNFHyy7PRI7d/N79QVCUxy8TT8rJX7uqFyovGqGQxBg00NK8gnb10Rv0cODF6BKoR0D/wXa5qEA60P5iJQv7leqvBNWRQO6XnNRx+ibVO5gKp0sgXCWLjXEwrX97kZ4CbiMPrKDLcS7ybu3SvWI0z+Gr3fJObspvsdNnnBhbmW4uge99ZZ4JOTM4SrWsFJ58N4a/5Adf+qNd8U/RnRbi9yP9wr2eF6HfjL+04BhO2rSDDTfxyTFLCoJgsc2T2QR536vsdQoY47DBf4Mkb2aZmq5l3vlPzIYupYH9dRAkwCVy3Z353BPr3du+6cN40GW91xcMlGzSqRkfl7g2j6dq3+/aMrPrvjXM/CGwJbgftPYxia9MXZ1dTdtNfnSbQ+fxzZPlv9nULuBeGrs6yPPA+BZ017VJHpshggjxq3NK2zQI3xXOCElzdPibT+piM+/6UCvUnu6/pKcQI4XTKjp0xuO0GmfwOZ+6xM7shB5eFrirs4eTHBLWHUvDN4xJI1wtLG5094xlQs1Rjc+D6s2hEy1SjWcdzBJBgSsfR4DQgrrqz6LMlgbaY/1Smd3wyrDH/tfrpwzPT/1neewo0TnFVP7twDlDO+rv3sdCLl5NGppzmbUAzwq8lSr+zemJjv2mv8nF7nr4s1nFZ7rUkgq3uqMgzq8QJS/DTU3zKx3dgF9+2a8Tfs9g34pHQ2RNWtIgGMhQmL6YbifS0FhOP1wW/V3C+NsBf7oEfobcOq46HnfDkWNK1hD+qDD/dhGUqqrGvYRzt+4QWQxWT/UXd63SKaPMKR291kyzJI7M/7YnyzwvZbn3XCeAScpkWeaPcsGvFDre52Pmj2ZawbIAmpekfXRI3dR+Bb2bXl5nRGtvAlcj3PRAQBQ4f0uTDTTCGjGpYeKqZzUs2v1FpH8nzVhyq1cOH/stteOmFW112fNyodh+rQ+aZTJ4gef9QtktUtZh/9LeFM7EgNYfXZfVr8d8HvoOEzbEanzZ1h1e9BlQ4neg9/9Kea49PaHOk1O5SiNB4y/9LTPV0ffM5nFumrx0p/zEwg59U+lT6zeH36wSruc8LbCife4M3vsDY2nPxGaqLzuiHC09caKpiEdVi7j9yIrM2NhwOJMqIED/bQT7x/Jl3aDpK+Xo/2lxeZZUiwa0QC8AVsMyB2I0m+WjEsqSUURmtWJAeSc7bdXGI5rOTftKSTMzP8ut4UMwvsVvOAjdW9b8skLZcdcbsfME7krYGvoq9HGCt8fO/zPy7Yld5VtaP2J3x+3HdwuWdJrur5VOB+3DIHdMNDgwxgyGeDdJUTfu7Zr9Hzo2hHLNvI30rGVpGsO6iWpJ0ddmhC32/w9aO2AtA/X7HeyH1/L7/qnOQN8wYtvQXcKYI74U/iRbbQ+VbcN2SyuErZArJJUInlERjCxXQ0NXJq3NdRSCkiONtgPULczKkK1iHKSbVwvtCP9XxJyx794G+6MD3Hj+6xUmFDj4fu+7oJf6A40WBolVePzq64YqlrU0eltG9oomWBN295KW6uyTe548320Nq9b7wS9cgPd4iVBnS8QRlNw/Blr0FC5Gf3LLJ0P/LqbRiiq6vZRuWeJHhWOoXRSjTOGGN8rdhTlXnLyqD7uErngQUzQEvrJDtGAugmrpyzVFk4h3Xv5nRs9SL5C7UgmhAcYhz432ZI/aEPRQjMufsKusUreUyW2M7xr/KpdtkMayt1TUoCI6BrSgJQ7Z/8u0guhR/KEGPFse//sTRp1Mr2b6kj7AzytXSCsDqTAK3rY873P9cyt67fXhNpC9Ah//NTGsk2b20cpYjG2tCwM24kzUe1OUsHzkZUxNv6+XyuzeZZHBgcFDIuzhf1OBsM0FZD0a3+uk3KIyB5Z+Nbx99vimLaYv7hcobQ72oPOukE5VTCCcrT656MP8U0/TIkDCv0cMhgBRKXSML2Tv4VWvdEY2S5/rZ9gJNlFtWE47OLNn3FmN7BVkLcifqQvzSpWtTPU24jERgbmZdhrm7G6O3zNm2XaVEMp/aE2TpjMOqrIniocx1W+5FhrC0zVRAptumCOTD7SHB66vwIDuC4+Rk3gZFL1ioZpYjnRmIvlGzo577k0qn46Ob9CuYWtuYNc8dKWMlos8FIMe47AMqgf0EIeGHp+f0r5VBbxk/b1vdGD4yRwayFZRhwkAWmHcwnIJjgD296VoqUc6lnCBI9JN3YLZg+Qvr5xfdfnjF5rnFxIhZUIKoLuNY1TSZQN2l+RoGN1ObslfawxklPY+cKHDQZexxuz3h6GzEA1mVPN2tb0KuDSHJs/un8UdpGynyLz92sj2TdF80YXYeSbcP0SMHhY9UxuU8FcHaYON7625EXkjTmd35Zitjh7i3i0PsGEC2Cy6afe/9Zs8N27E370FSnZneOUNUdciMIekQfH4aQI7w8kSXNlVj+ORiMfAhWl4yxv9NriG/HzJDZDUBh9mbWWr+Vwhb5fHgminMPZRnOG6NzeWw8tPyiHSFpFQhjV0rcAnkLwCs8/uPf+ZdN3Mb8mt3vSuDq9dfPp4vc2nPNqmfXWWnwZFmgMIxUa1LplnJ3ZH+Epb5jDFKUZda0d1eegrdBn9fGUhEwtqAMqChH/yk5V25f40GlROf2tGkCyWqRB3pGBM5vjDcNrjDOHAd+iMobip8UJPRT0i10WLwVbOJnSURYmGVJ2LoME/gG4BQiPsRqIRCszVmiz2ZqGG1+m0+4PdHpp61YM7WsfK5nmWHd4lHGWbM9Yv4YSY7ZPO7nhH3jygN7foaMGEKe49J4OTyrQ6DAThs5ZXxtvi+Ib/lH7HfWLOy7yDLI61aq7LDfzsZIYpwsFm8aOUG9hN6vAlYb4Bz/TaI0GTEKwU+ryGP6S41QqNZ0+6o/L+GqJh5l2SsX1L/fh3G/2Jl+Pn7+mfiY2o708QmR0TH676bNtF7Bx1CdLLwgm1m8cbp1EKBo0Rg3H8e/JP4JGbX20cdKBUKWIXn0MgxLivGMR3Dx5ochkV66/18td+8d8MPJukgzSrHbnbbHKHtSlM7+wzj2+mXvbfY/TR6nBP2ATekqgYgFiFxiUiuRX2yQiYAp+436BuIC7ntrVb5XUI1mhdt5tYsdB3gpu3ojEmgTRuIq97A9iZ+ATu1zIuFEAE0vtcUaId2CfAUxTi3I3q+fXXkq84RecSQJ6In2dl2i0Ls5vZnebUEclm+Bw1feeREGbvClv55VHX2M9lZsFVgntNUvoEz7W3VsYw95JYYzsTh1/ffayddTfVUgwJ9aMNj/za6dOFTKO/715BNbxhwk8G5cmX06pbEM31NS/BwxgDCVJZCo1GogAiWNGaL4rA8ITW0x2Tu0HFz2wv5QfjRCY+b0kKvnNOP6JEUW51hAj+YftAw5GAIxzyPclBixVCXasX00aNYSj05ey4zVvdE1ZNWm5z7dtqHdn5jHAYkVuHYPWVQlhSgYlcsU9ZpsCBxpyGVPvt7jbcbhtHI25hWT6lAIb95n0+X0JJnDEQNl3UmtunKfivqqO6fRGK+0CVi20lrfrI280T0VIEfTqycxKJL/wfeQmuRQKTfhB6sjJqPg10FMVZnoAFd9IuHri5oq9nG+VfQbUVnptoAWYE9h0oMNedsKo1M+c3k1AzTqpRQ0TseclH3YvCv5wfjLJh/uHWFYj9+8GhS+zwXpb7FPWvuarq/3lVwwxJ+GQe/WK+7Q2DlaE6mOH9+7U1NALW2tW6P32eDzj3c4uV0bVLavS4y6SPjX4Z+fx5whnDLjRhkGd7Pa1r2zgapH/VezhwPLb94rWS1bdCkNSZX3nEhnUVzScwNhuotaN6Y9dLvH4uqA4m0RQEGuHiGH+bzpdKUo9uWg+Zeesd2pi5eYRPlPUa7C/Us4Tdd9R75veX35Qt8eS/KXJpi+WiC2D0E1peLsIpuiHrrb4+wur4gd1aGHpK2lfisVyNR+/PEQEdEoJ5m/E1UHc9RdfIXVDM5D+EzZWOXySWgDrRu6lVO61gjZ379qlgJXbcPpdWLBRdpDrz8kXeSqCroW1y9jsGlJG+AWQ2yl9ZOvAMpQ5oLlGeVRklqa6LZpokiYE6ifM5NPKuZmaNwU1W3hg7eDBat6kwJZhcWDmjofrzyx6dMz5LaAG/LUseJ5J78O8z/zNkJTpDHzknHJ9vTtvKYZBy+NTYdDsO2ZyYsrCTg82/5weTsY6JcS5BzMMljagTOqjTM3+ejcEH/Q3vo25avSc1nGVTtjMtFlX3q0a/LYyEvsl+JZxDEHlBDxJuGt2HE20TOqsOOs41MXAecoktiS5xPXVnSk9PEpliJ3ZOf7i0nVvs1/sXbEp+tH8yLXxX6ddsf7Qi5XdeH8VHoXpL3fbXqzJcb/P9q1N8YohC6nkqaJPo2+BS3Lu94fgyZl9vs4WI1o7gtx8A79b4TDPoeClN7NYWNPGWar9k0QZxk2NSBpKjb90O0gmCUYYthvur/FZ9/3oz3nl58yQ1NSzF9jcEwWUBWFoBY3BbLcUMhQ8Sw+m3sKAt6rIDFjNNaMW2F9qwe5WN5uFWxuIqWCzbxTJ0ALNArGzziQt/p4Tm3LcGI8s0xH9VV3oIXqM0GFLlR1duVMM0OG1L3kl4AtjR1di+rb18Uui3ZFLeHWA1WRDUQbYT4ddQuhjw1zT0pRvYp460OythidI2SVs3+YBuAsKAdnW3dIyHZDV8Qazvidomq8nsRrydKzFgR5RDeR4bXxqyvJ4Jl+GHt66PDF5l46FmPxcR6FOxJgX6VQ8gCavWmCDMU3ubVqqK3E1Yrz/zb8yCh0QsP+RZCQIucEvNjFtxXpR6tSegcr1LIeTDbD5IRBAEUr+7tHBGZIhVJmGV/Wu0YCuGWKQse3Q9pSzlybG7ILPN2hG4LQXBRX9ht/eu2A28K902FypzpUcc3pbLjN+/GIqQl6Gu2ryy3iZvpekw6RVpUHdNdqWrxUkhVLBpmI7UDiKRDE06JhnuXvXk1aFVsynmbaHyuyyBr7e8jwScW930lrs8W4suHN54WKLu/WTNPlTGE2aJOqSqoWVheYQXDFcW/nf+8ic2YZfKB0+g7BVoSCELB9mdAyq/hOC5i67gdO5jsyAjq52xCqgCBNQ93G926X8kqNolo3QmXDf7rFZ+mBb2CDsUHUbeaEVZaCHAItybt4jTcYAxa4XncjoVW1cqGec0UcTULCGXI1cSieSzOOq5MvJPPcm9YL6Ob+DHS536kcMy/T+8RhYTYTwpW9wjHz5/QVep+l8u5arLFZpBz96FJwQGT326k0kDFJQCrt6VpZ+JJ00pBI7apjZdrh8aJuTvJPSJnqb9RwtaLj08RculqTYlUdwMCbDT7724FsMGr+GXAzy8g9//xqQmOw0F8v4RoaAgFcFka2A9RzjoMSkqSsWZ7RMIfJFetiSLf+7dtP2HaoUXTyXJ+/eagxTqdd2F25xITPVQ79+6XZUHX0a8OzMLK2/pFeVmeVbHHCVDsWshS4Av3RGn6NCm5Ga53I4eVng4s2I0gnvmrPriPpkiUZl7+uN06gsudiaeHFsErwOMEIvPZrWZ67W9MsEyPoZ3Aq/2HS0eFxxdPtHAsbcbia3PL7cSy5g8J4P0fIqJTNGsLOrcSbqHKsF/oyi/98GwNCo2167Aw3e3Q7DRt9U7Z5kik2foVYP6bgutVvG38uY51CKp/HJxwk290XtZ4iGobIhI+0HT6+n9POejDAh2/DKw3Tswgodc5WgvOADfcz/JhW7o3EFJVx5g/rHzq+lLOyy1BTlVfBmO5f6aJfGTp4MunlTsRE3R3X78mWhkhF2dqtn8O+GZdzFKbmJm31xwpQYExFYaAwYsj/YOZRAwJyEc4VRs5yMiKusT83KtCPN4Y3T9a1Pgi+BTaA0GbAJLK4/Nubt6kgTCrVDKc8fMDlcNB+/uFWSArSCrsBRqPm9FnMlIGaXSXRR1ypXBBqA78eI2CpBhSPVi/gpA2P7QbVp9CEyG8iufn+N1cRfor1eHYv0ubKHPb0j0ykJbLzO0SS6XY/ZfrmCw0K8uWUSfZCjRPLS7khF+XlbIl1pt6UcO0ySdaLcXbdZnSQ3eKBmmEmk14sQ0mQXtvdNtJbrqoeHP4OxHVeKqS0jxHPKYpxO778N+kJydNQN/1sWR+WpDq/6TdSIvf3amYhpsJ+9m8hsJe5/k5Q36lHVJuMXSTf9t+x4unya+C1PMFaPk0fqWeJePl2DSlEyXmpmtNrYbijBLTDtWsSxirkMgVLrP7XOo5b0JmpZtyFgQeavRUPXuTZHS70O55cOGqmRhiCeANLef5NwJXbR9GtfjYNroIozsv7iJwz58llxliuV0jEXZNZTYGPCIEWHLpuxJnjs/JIH3eOwTB/0SCGbmxqNaZn7KGJ07rrgVaEo7sa6TNKQg/hilE3pmSwTW1HMyaTisOvNoa66t3O1KgAoEwKQHXM/OvXsZGSJEIZGS2LkzEST9J6fGY4lUzQt11UFu8yTWCphwnR4um3e0c8oQ7rknFS5UU/kwBh/KQ+DUotklf3lNtE8B4i+7laNx/9kv0tLJM622VNzmmV1sJ+/SV/JkVPoQ3qa/bIP+hhpnjgQ96BjnHid3oGUpOM8t74VXu3jVCafCfhuqoONZ8/6hVlUcrkz9v5mqTLnqBIc9hpCR+AURtSUR417SiKo9pUuQjVe0wwWRmawepm/6Owaz1Es7JYN0qDC43EmFlfhdy6/4kRc0wnleVhfB9/cWa8ZoulWgjkDq0fm4fiOSDRxhgg4M/jDMXTE8GaKRvnFdSsxQ+Y9FS55noUK7s063zfZz5SPc2yaTrM+8weCgVDBnKb114/ZM7l0sUbIcIO/YcqW85usvZWejq0T1eH+0JrQQb+ss+BSeqqHYVhpAeipUktttFmaH88jutiLTshdOK0tK7ms+J728zwM3TZcenE2btmqNZ8yPTm1B109vf8WvnU8GXR/rFrHwtJAZI9g/Ep/NVqvTIlap2EyiSLqrznOUNYzCaYykDRhft7ODxBmGX7eHLmraS4/zkGnXIpLpGKoye9nPJg15bdNYKEGa0BrJ6nHRTEh5CfqzZZy8gVj9E57L6yN9Npz7EHKvMtwA4akf8xde7F6jlZa0hjTBxTsfDp3Dn5IHlNx0gEpfd5rhf1uxKGIL4XuW+2ztj56ERTwsddt0DS1p+Mi2S64fAy30XJNFZWkkpgzq+46HDBM6+ERNfbTof2yY4Wn/ZaXH+Khr4hGV3xqs4ckdyYsjpyso1kPnzIhV2hROs/4qrsXtYAPIzQOKOdLZ36KHh/EX7G79Cc1sxgEalW/dKfeT3/dnweLFmbIqBrBcqfndU5zK/1O77lWnSHXooGnLjUbCud9BtgxZf2kq+Wf9txY33KeGn/rMqdQubWyApFx8MuRXVE1twqOWbSNJ2vtbcDYY3vQ6/eHvAcnjgDbeLHeLxjRZqmLAC3VPKGOVHPRcdddq19im1Trx+o7LEF9IZjPJllKGBrDfwZsOLWj750hdi7rR/sVpjlYr6tEbpI4Y8wx0QjW0KJugyX1h8p/YA8ZemPzp+2RmBdTiUPwlXweGzO3cAMm7/PGLYTNeOend1xKX5LY49d8y0Z/U1Sfs14V1DwYgY8j2FqeSY7PkVq/nz4S5aTb3TOenJ4tcCOYubYc5yXHtHuzKYNtMo2hNdT4b0/Gftluf76PKFcSenotU3pBttuYEQjMq8OBFiQgXv56t9BmEujSqGbSn9Esfm6iVSP/f/c8gUSquGwDWbt3NRsmGR2K5MTrJQj77dv78ErEcoSV+0eZdFtRTF63EBIUhOUqFVfnwuu4VRd34VuMa5vUv1mnMliboCNHoTUgEEwjCZoqjd634WOnvioGrFYYQ9Ne3Cxe5HrjVNS+ZcHg5jcPaK/W+37KZRIKprg/5PSvf5rC3OhigsGjUqKRQds0fbGnHFGy4WNCWjC54pgO0n2mJ1E0KxFOMgLxPsgsB3vcVqlGXZ4ZtBYlfXie12+4N/dxPxI9PuzXOMMiH+/cZJJ1efdK9Q+F5t8o6LIef2GHdvXQp5s3/Gt85auofXeoNppdHhr157N8I6c9caW3oblRtlmr6iBztHljVbfeS+e4wMqV3gb8cJ0ip9Rt9latpCCK/pPuzkAD20d1b7M83DyrW6Ot0DHGjSus3+s2aC7PnBY15e0udg35Zmh0vox3JdUXk1skT8Ur+jbZfxtUUQG1iKyaJcnmmN0qf1f2Ze7MABDJJHNdWycTIN6R+8gmn4dag+RPx9xCy2X21rECZwYEAN7dpqrNpvv8Xl54vIjZQuAkleKtMCxH8S5RMdax2ZvOeyyoXqvnNfmPn17B7amTRZPNzpy4eWLjuti4K0iqtKxX4GyM1yx9tAjDdNj5u9yHGaZ9E0zqyk859RuQsUHXX9goizYe2ihE4+GWZe9TJ9vg8/um2asJ5IAiXvs6ncGRarxi66RV3S98M/Xy7n6XAU1tKTiCdldbmxcZ79n0FE9STq81cZbjgUef7q2asrJuBXfAQm75mNC0QQHV7Ncpd+EIsofvn29VVnZbq/Dpa0v5NyKWogXNfcGf+jN2rRPJmH8tnf/1H4F5l1ndQnWkZ0r8rvjbT6u6ZWMb3qzq6SNZmPCPsIGrVJbxYXfV/kNKO3zhYOv0+lBrcl1b4019ttogLg0gKcIyvejFd3EahHILmRCgySMV8w1ZvVXfLGFC5T2T1M9nu02r7F1Cnf25XKBgv6hxQVHDdbfH6LZAgduPTguNFT2zv1Zffznn7LL70VsCBM60wbGSU26vj8StCliRcff7JPRP7l37jE2S7cxZxk2ldnoS7SLrZSONG30p6JHvHjOIK06QUmzsWpAMPLnt3q9+S/xqoqVMAMp0/qpggUKdlF5O58zXvzOFtu23eHTxvy70w1+WfJlzEZyNDfpZB8I3tfgrDoz+8MLbzfKNCEEBwKXnuJWglDhNNDLvw0g0KoT99xRwofO+j4HN/0cCHhhWhTf4lXfqm4d2I4VSi0nhiD5Ig4fdUu4Hz0WFsVpbP1zt5jrdtuxO/jIznQeiU8bvpmZuN31GWRP55mTuXCpDUTIhbvbGEFzKltWDEHuZFr2kdC2DfEmbFwtHHtyS6IEUrRvba0WweCcl/vwzNNEZUa+3TSO1Tqr3GzOWHf9wN2aO19rfPzvM9RZU1572BCChY5VMI4WpYBNv7bj6VWr7usWFfFlPsq0HpSDihZISr4Txh7fBsaTNl6PcYO2ht/G1XkDfts8x0/kja/ZmmB3LtcxTi+B+WhQVgSPF9NV5YERq/iEPz+h2M2hBFdCmklK4xh3G1rGog78/OeAS91qgOZzAmd2stoEot9AFXYYmlNnfrsR2Dssm9GCT9P5jiXc3R4XuCnmG9z/eRVcrpoLb/DJiFmrwPp6POt7lVRI8QnlODBIerWc48/QV/6oF5c1c3U9qyqUiVEZYhzSjEhz0DLuIMtL4hN1Y1h9bppr9N3Tq+yuCGo33oF0xSKGWMc/fWVq7hJ54O0orpkP9nQZwW8nFrvzjmmVd3Jl5IcNSysXo659FDpHjkxRdao1DgwDxi4Il5AqmpVML3BzgyY27/QtsXcz2TgXe7w4as373GxPPZtzqBHeHDk/63W+TOtu0oGqg2CPq1zS/jZnZL0ZdG/G4J8ATegjrr4BSyOLkdOlfzfH/FPIgdra7btOADkXYoK1ZIbng+nzu4nWC0arInbfU+B2XT157cHSuXrhKztPH5RvUpaWvP0+xwrVUhc7dgB0XtgZZN8c4XBGl77tAf6n1I33khpI/eAhsbrSCbaNNk8Jai/6zyUsLTJ81gTrXuNS4fg798M27rZM1+X36ub/sAIo3jyqpCWCsTQyFsS5x0dSzyX7Xbi00DWoB6ZPSp+hyI/j7rH1TPZIT3YQXAFihOklFu1onDfmIAU+BAgbuG4ZieEB1VjSuO/n6x3tnknmKVP80fUJRAGpr0CFVG8CpXc01NxByc+X91kNw4frt392zURcsSYRvHA610P4wJBKGdjKzct4NU7K8sNXkUPECu4iS7Q4z8OQaLkar4kDzN9OBDnXQGoRylqV5R2DEu2NX1wRHJH/ttkFoAlMEi+hqC5867lciu4J6PG+u0EV1duzLvLm85JBIG+pgtx0xT2IN92Hy5kg8TFXXxlhadkBjeV3oBrewYRaRJBuM8fElSwaApoUNtHKH8a5K/zcXLw3TyPWbVIivTjiSOyUxghInLTnvCvJY90R46AmikarAN59WzwqUcokk+76ItOX0erpKly2bM+qyYY7Od7rlrLqUEqfWBaZmR3K+h13iOnccjtiIbe7Qfs6+GW9IA/JhKzPrh/28p2LQhAgNrUyHbiiPr/6kG7N68KiBuISYrfEtmqdmXU2gkefXLbN/tePMuLa4EkMIuz3ttdtJ+6xTE67OqevUPfdykeXjdqKizWr0ya0afq2G6n0AZCrZKm42kbaunU0dxJdWeckZNJA/XVxcBeOQHrk1V+dUY3GG7b9i6pmdneWcf/2ef3v4a7VCZqeNU69akbZlyZhfJaOJFj/oTWuMVUw6sbpJ5mWLFNGfTGvs50bsK8WiP/yzrC7RyVJf2PXCDA2QM2YWpFU5oOupPXgU9mTm8dVAofHiGgdsuZQD7XC/oNDq6Nb7t+f5KDXUWqaycSPDaRyqmxvoMlfmZdOwWIVIZtU63U0+nxKvz4Q7E7qKbr6gfJ+GiZHIWac1J94dL096j4pV0Nw7xhR4Y1RxsusJPTP6hwRqMT4JF9evrF5F1vtBtQiqkivJlR36Z91e3rCxrnviwmIOoqbJkNYDSSNj73hYg3peGAFqWn7BFgM+ND46nGnSfyFp3WGJWhVQjDjmIo1zrJr1JPsL/QeTE3HdcEiM2BRieKS64bKd697CTzX2Vhtq8ff8WGtS9gAZbGEGRVEu0Ld5KAY/2mZ7ORrVy/imZ8ozV3rliP3V1Z5rMR9rmr4SQ1HA/2aWJuUUDTrrtuoWE8RLMUAjgmR4+/ns406TjT8SfwlMYSnUofWHvn8DuMDyn3/VS5r5Ag6Yc4IVUqTyqpcx7zZmszOZxH3aizZlQOCrGj2oyZZpfWEavWlM3xr595Q52hJQRNA+lob6dYh0YBL7qItbzlHaDihBc+Fezi3pMQ50mqPimWB88cz7hmFCK4IbnQqN/MPXYcLtmDRUuUmP1khnHNWs89UwuPNbO6hRbEVGDBrb2W8LHfFbHN0fP9StxrUSbs8PoFW2aun3IacvXcOsSudZ7euNXe43lG52cfRz8msdAItSdk75cG7y8et3oAdv5WUAn4zmId1IBspFnua9EqOflKdusuSvw2UB+5KGxqmWPZ5pEmvNtT/WRVQu3b05pMuZirULrROVPfoKoRpaKiui7RLH3SbBQeVg0NH00Vz1Vbtip/q2Rt/OEGP0Etjdke2s8i9Y5SiaYoZpSdKFC/XbrAxvN9mz27vc1Du2DzQFoCaYeNbl1ZAmXTqjDzHiJxXpIFm/d3x2y+4R8Lpj6OKElDgEByFa4dhtlThE+85eb/GdLiR+kVrimW0bx85Z5XqpdWYQv9EgSFgTZ3sq+0XQ3OBvsy7rF8qRq0edDdnaEu9VoRMTwjWmpibrOzrcKRRTI2N1scKFF/j4fddKKU4YNScd7U/Xvsj29Dy2NX5NtKNNC6WPyLv0F9ca9qH46s9hZumr132EbRS4ovJwg9iVsYf+LoDwglpVH+vyUR9aQm0zQ7a+DkzN9Jpbsi89ef3jtyCXGlHEWPE2HtwBM3a3PRFc6N3rQ1A9p/9NQOkhRz2IiWhc6JG7objYUrtUjJbkwx+TaF3S4p9WifvmtC2VQwUg39YFCszsUZ2BjWD+hF8I1HF+kt6lPtbLoi7PCSaBBlKRYTVp0W+5p0SzgP7A4kvPaTkU865RbNE74157bdutf9X/dGys8e+xZWUUOX7r4iGEjrahrsmGxgnlu56v7dsnIZSy7WkCOOJ1S2UnujzCeRNBT1tTvWjl6lB7Wnt4wbIL1k4vHsawWlW46SA5XIhdmnggcqR/OZ4b9LCiDwHeKfzThtM7ACjZMHcjtU+uRiRxs8UVIXq8lVXJh8/nDhjQJMPDXF2Ccx/mDeVHnbfeSYIM+cYjNvbxnI7RlOowa7ZFD4jKKzI3oTvOOFue/Odzgw/T2atmNT8g5GPg06iZ7WOpfeZUcE8OHtio/khLu5SUKbWqCrTM3+gKjtt6zRbQ7OEHDY/c4kRvlQjUv/Xbxm+7gnknVOVh237YVUXh/R1SFqzqlsmyneZeZR1cxEDAsLGIq7sTvmhN3rpuZy2kQpp8hq3PDWq4CNacertoah7YgV1iVt6F0eY0gWjmgN3jEL+dX4itav8DAK/WE7xg7fgAAAAASUVORK5CYII=", "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from matplotlib import pyplot as plt\n", "import numpy as np\n", "cmap = plt.get_cmap('viridis')\n", "cmaplist = [cmap(i) for i in range(cmap.N)]\n", "cmaplut = np.array(cmaplist)\n", "cmaplut = np.round(cmaplut[:, 0:3]*255).astype(np.uint8)\n", "cmaplut.shape\n", "\n", "im = np.random.randint(0,255,size=[127,127]).astype(np.uint8)\n", "im_c = cmaplut[im]\n", "from PIL import Image\n", "Image.fromarray(im_c)\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(
, array([, ], dtype=object))" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAFlCAYAAADrvyBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIEklEQVR4nO3de1xUdf4/8NfMwAwiziAiM15QdNUU74HCaG1bkmTk5mZlLim5pl8NW5XWjFbFLitdNjPLZLO89Ntcy3ZzywtqmLrleMMsr6iJC6sOoAaDKLc5n98fxtQoCoPgOWfm9Xw8zuPRnPOZOa/BGN58eJ/P0QghBIiIiIiIvJBW7gBERERERE2FxS4REREReS0Wu0RERETktVjsEhEREZHXYrFLRERERF6LxS4REREReS0Wu0RERETktVjsEhEREZHXYrFLRERERF6LxS4REREReS1Zi91FixYhIiICAQEBiImJwe7du+WMQ0RERERNZPv27Rg+fDjatm0LjUaDNWvW1PmcrVu34vbbb4fBYECXLl2wfPlyj88rW7H78ccfIyUlBWlpadi3bx/69u2L+Ph4FBYWyhWJiIiIiJpIWVkZ+vbti0WLFtVrfG5uLhISEnD33Xdj//79mDZtGp588kls3LjRo/NqhBCiIYFvVkxMDAYMGIB33nkHACBJEsLDw/H000/jueeekyMSEREREd0CGo0Gn332GUaMGHHdMTNnzsS6detw8OBB177HHnsMxcXFyMzMrPe5/G4maENVVlYiOzsbqamprn1arRZxcXGw2Wx1Pl+SJJw5cwYtWrSARqNpyqhERE1KCIHS0lK0bdsWWi0voyCi6ysvL0dlZaXcMdwIIa6pxQwGAwwGw02/ts1mQ1xcnNu++Ph4TJs2zaPXkaXYPXfuHJxOJ8xms9t+s9mMo0ePXjO+oqICFRUVrsenT59GZGRkk+ckIrpV8vPz0b59e7ljEJFClZeXo1PHINgLnXJHcRMUFISLFy+67UtLS8PcuXNv+rXtdnuttaLD4cDly5fRrFmzer2OLMWup9LT0/HCCy9cs/+/+yJgDOJMCBGpl+OihI63n0KLFi3kjkJEClZZWQl7oRO52R1hbKGM2sdRKqFT1H+Rn58Po9Ho2t8Ys7qNSZZiNzQ0FDqdDgUFBW77CwoKYLFYrhmfmpqKlJQU12OHw4Hw8HAYg7SK+QcnIroZbMkiovowtlBe7WM0Gt2K3cZisVhqrRWNRmO9Z3UBmVZj0Ov1iIqKQlZWlmufJEnIysqC1Wq9ZrzBYHB9IZvqC0pERESkdE4hKWprSlar1a1WBIDNmzfXWiveiGxtDCkpKUhKSkJ0dDQGDhyIBQsWoKysDOPGjZMrEhEREZGiSRCQIMtCWtfwNMfFixdx4sQJ1+Pc3Fzs378fISEh6NChA1JTU3H69Gl8+OGHAIBJkybhnXfewbPPPos//OEP2LJlCz755BOsW7fOo/PKVuyOGjUKRUVFmDNnDux2O/r164fMzMxrGpGJiIiI6AoJEpp2PrX+PE2yd+9e3H333a7HNS2qSUlJWL58Oc6ePYu8vDzX8U6dOmHdunWYPn063nrrLbRv3x7vv/8+4uPjPTqvbOvs3gyHwwGTyYQfj3VWXN8KEZEnHKUSWnY7iZKSErZoEdF11dQ++UfbKab2cZRKCO9+WvGfX6pYjYGIiIiI1N3GIBdl/GpARERERNQEOLNLREREpBISBJwKmVFVy8wui10iIiIilWAbg+dY7BIRERGphFMIOBWytoBSctSFxS4RERGRSkg/bUqglBx14QVqREREROS1OLNLREREpBJOBV2gppQcdWGxS0RERKQSTnFlUwKl5KgLi10iIiIilWDPrudY7BIRERGphAQNnNDIHQPAlSxqwGKXiIiISCUkcWVTAqXkqAtXYyAiIiIir8WZXSIiIiKVcCqojUEpOerCYpeIiIhIJVjseo7FLhEREZFKSEIDSSijyFRKjrqw2CUiIiJSCc7seo7FLhEREZFKOKGFUyHrCzjlDlBPyvhqERERERE1Ac7sEhEREamEUFDPrlBIjrqw2CUiIiJSCfbseo7FLhEREZFKOIUWTqGMLlSnSu6gxmKXiIiISCUkaCAp5JIrCeqodlnsEhEREakE2xg8p4xfDYiIiIiImgBndomIiIhUQlk9u2xjICIiIqJGdKVnVxntA0rJURcWu0REREQqISnoDmq8QI2IiIiIGhXbGDzHYpeIiIhIJSRoufSYh5Tx1SIiIiIiagKc2SUiIiJSCafQwCmUcWGYUnLUhcUuERERkUo4FXSBmlMlbQwsdomIiIhUQhJaSAq5QE3iBWpERERE1Jg4s+s5FrtEREREKiFBOb2yktwB6kkZvxoQERERETUBj4vd7du3Y/jw4Wjbti00Gg3WrFnjdlwIgTlz5qBNmzZo1qwZ4uLicPz4cbcxFy5cQGJiIoxGI4KDgzF+/HhcvHjxpt4IERERkberWWdXKZsaeJyyrKwMffv2xaJFi2o9/tprr2HhwoXIyMjArl270Lx5c8THx6O8vNw1JjExEYcOHcLmzZuxdu1abN++HRMnTmz4uyAiIiLyATV3UFPKpgYe9+wOGzYMw4YNq/WYEAILFizArFmz8OCDDwIAPvzwQ5jNZqxZswaPPfYYjhw5gszMTOzZswfR0dEAgLfffhv3338//vrXv6Jt27Y38XaIiIiIvJcEDSQopWdXGTnq0qgleW5uLux2O+Li4lz7TCYTYmJiYLPZAAA2mw3BwcGuQhcA4uLioNVqsWvXrsaMQ0RERORV5J7J9YmZ3Rux2+0AALPZ7LbfbDa7jtntdoSFhbmH8PNDSEiIa8zVKioqUFFR4XrscDgaMzYRERGRKihr6TFl5KiLKlKmp6fDZDK5tvDwcLkjEREREZEKNGqxa7FYAAAFBQVu+wsKClzHLBYLCgsL3Y5XV1fjwoULrjFXS01NRUlJiWvLz89vzNhEREREqiAJjaI2NWjUYrdTp06wWCzIyspy7XM4HNi1axesVisAwGq1ori4GNnZ2a4xW7ZsgSRJiImJqfV1DQYDjEaj20ZERETka6Sf2hiUsKll6TGPe3YvXryIEydOuB7n5uZi//79CAkJQYcOHTBt2jS8/PLL6Nq1Kzp16oTZs2ejbdu2GDFiBACgR48euO+++zBhwgRkZGSgqqoKU6ZMwWOPPcaVGIiIiIhuQBJaSAq5MEwpOericbG7d+9e3H333a7HKSkpAICkpCQsX74czz77LMrKyjBx4kQUFxfjjjvuQGZmJgICAlzP+eijjzBlyhQMGTIEWq0WI0eOxMKFCxvh7RARERF5Lyc0cCpkyS+l5KiLRggh5A7hKYfDAZPJhB+PdYaxhTp+qyAiqo2jVELLbidRUlLCFi0iuq6a2ueFXXEICGrUxbQarPxiNdJivlT85xcrRSIiIiLyWsr41YCIiIiI6uSEctoHnHIHqCcWu0REREQqwQvUPKeOlEREREQk++2BG+N2wYsWLUJERAQCAgIQExOD3bt333D8ggULcNttt6FZs2YIDw/H9OnTUV5eXu/zcWaXiIiISCUENJAU0sYgGpDj448/RkpKCjIyMhATE4MFCxYgPj4eOTk5CAsLu2b8ypUr8dxzz2Hp0qUYNGgQjh07hieeeAIajQbz58+v1zk5s0tERESkEnLP5N7szO78+fMxYcIEjBs3DpGRkcjIyEBgYCCWLl1a6/gdO3Zg8ODB+P3vf4+IiAgMHToUo0ePrnM2+JdY7BIRERFRgzkcDretoqKi1nGVlZXIzs5GXFyca59Wq0VcXBxsNlutzxk0aBCys7Ndxe3Jkyexfv163H///fXOxzYGIiIiIpWQhAaSUEYbQ02O8PBwt/1paWmYO3fuNePPnTsHp9MJs9nstt9sNuPo0aO1nuP3v/89zp07hzvuuANCCFRXV2PSpEl4/vnn652TxS4RERGRSjihhVMhf5ivyZGfn+92UwmDwdBo59i6dSvmzZuHd999FzExMThx4gSmTp2Kl156CbNnz67Xa7DYJSIiIlIJJc7sGo3Get1BLTQ0FDqdDgUFBW77CwoKYLFYan3O7NmzMWbMGDz55JMAgN69e6OsrAwTJ07En//8Z2i1dRf+yvjVgIiIiIjqJEGrqM0Ter0eUVFRyMrK+vn9SBKysrJgtVprfc6lS5euKWh1Oh0AQAhRr/NyZpeIiIhIJZxCA6dCZnYbkiMlJQVJSUmIjo7GwIEDsWDBApSVlWHcuHEAgLFjx6Jdu3ZIT08HAAwfPhzz589H//79XW0Ms2fPxvDhw11Fb11Y7BIRERHRLTFq1CgUFRVhzpw5sNvt6NevHzIzM10XreXl5bnN5M6aNQsajQazZs3C6dOn0bp1awwfPhx/+ctf6n1OjajvHLCCOBwOmEwm/HisM4wt2IlBROrlKJXQsttJlJSU1KvnjYh8U03t83/bR8IQ5C93HABAxcUq/O3X/1T85xdndomIiIhUQggtpAbeprexCYXkqAuLXSIiIiKVcEIDp0JuF6yUHHVhsUtERESkEpKAgpYekztB/bDYJSIiIlIJSUFtDErJURd1pCQiIiIiagDO7BIRERGphAQNJIX0yiolR11Y7BIRERGphNpvKiEHFrtE1+EUEn6ULiNU11zuKERERADYs9sQLHbJZ1QJJ2wVOtc359dl3bBi/d3X/SOMrlyDFqcEirtf/zW1nS8iI+oj1+OOfg508g9qxNREREQ/k6BRzmoMbGMgklfWZR1KpWaYf/JeFO1oA7/LQIePTkGUl18Z4HSic7GtztdpeYNjGn89XjP+xvW4bFAXFN7uh6oWEl4YvhrNtRUYFFCAMM4OExFRIxAK6tkVCslRFxa75DU2XfJHflUrzNswAoFntOjwrzOQis4jsPIMOlTkAgCqG/mcoqoSzvMXXI8DvtiNDl8A0Gjw9xciAQCvPtATF9tr0XPEUdwbchgPBZ1ES11gIychIiKi2rDYJVXbdMkfywvuwOFVPdD2yyJIJ/PQpXIXIESjF7YeEQJSaSkAwPiPnTACKF6gx6e6CCwZOQIFgyVMvWsTJpqOIVCrlzMpERGpiCQU1MagkBx1YbFLqrO9HHi/4Nc4+GFPmL/5EdLB4zBLO+CUO1gdRFUlRBVg+mgnTCs12NisLT5+8D7Yh1RjUsw2pIQchb9GJ3dMIiJSMF6g5jkWu6QKTiHhWXs0vloSg7A9Doh9h9Fa2CDJHayhhIB06dKVWd9/AFtbWPD5fffg7PAqrL4zA1EGzvYSEdG1OLPrORa7pGj7Kyrw0H8mo/0//dB8yxG0LrVBJbfi9ohUWoqg1bvQdTXwfOyTKIwKQsKE/+DlsANyRyMiIgXhTSU8x2KXFOn7ynKM2P4Uur1dha579gGAemdxPbXze4TtBPatao3+jz2FoU/uwLywfdBp1PHnIiIiajqc2fUci11SlEOVlzF8ezK6LaxE1737vHIWt76c5y8gbNEOHPikNaIfnYK48TbMM+9lXy8REZEHWOySIhypvISE7VPQ7a0KdM327SL3as6iIoQtKsKhT8Mw4NGnce84G14274ZB4y93NCIiusU4s+s5Frskq4tSOf5wKgGOaW3QNftbCMEy93qcBYUwv12IQ5+EIeqJqfjXU6+jmz9vVkFE5EtY7HqOxS7JZtrZaGx/fwAsq49BnDsodxzVcBYUot3r5/HHrP/D8an+2PWbdxDKO7QREfkEFrue4xUvdMsVOsvQad0EHBsVjtaLbXCeOy93JPWRnBB7D6LruAO4N30Gni/oI3ciIiK6BQR+XpFB7k0tf4tlsUu31DNnb8f9L/wJ3f5vH5wncuWOo3qiuhph7+7A/sTu6LThSfzovCR3JCIiIkVhsUu3xDlnGTqtmYgjv++MVu/bAEnp9ztTF+fhY+g24Vvc+8IzSCvqKXccIiJqIjVtDErZ1MCjYjc9PR0DBgxAixYtEBYWhhEjRiAnJ8dtTHl5OZKTk9GqVSsEBQVh5MiRKCgocBuTl5eHhIQEBAYGIiwsDDNmzEB1dfXNvxtSpOcL+iDhz39CtynZcOackDuO95KcaPW+DXt+3wudPp/IWV4iIi8kd3Hr9cXutm3bkJycjJ07d2Lz5s2oqqrC0KFDUVZW5hozffp0fPHFF1i9ejW2bduGM2fO4KGHHnIddzqdSEhIQGVlJXbs2IEVK1Zg+fLlmDNnTuO9K1KMmQX9sD+xO4I/5GzureI8lINuT2Uj9sNnWPASEXkZuYtbNRa7GnETaz0VFRUhLCwM27Ztw69//WuUlJSgdevWWLlyJR5++GEAwNGjR9GjRw/YbDbExsZiw4YNeOCBB3DmzBmYzWYAQEZGBmbOnImioiLo9fo6z+twOGAymfDjsc4wtmAnhhL96LyE6NUpuC2jCM5jP8gdxzdpdXCMGoCH/rwZM0L4b6BUjlIJLbudRElJCYxGo9xxiEihamqfOz5Phl9zg9xxAADVZRX4+reLFP/5dVOVYklJCQAgJCQEAJCdnY2qqirExcW5xnTv3h0dOnSAzWYDANhsNvTu3dtV6AJAfHw8HA4HDh06dDNxSCFKpMuIXfEMuvxpDwtdOUlOGP+xE1lJsZh/obPcaYiIqBEIoVHUpgYNXmdXkiRMmzYNgwcPRq9evQAAdrsder0ewcHBbmPNZjPsdrtrzC8L3ZrjNcdqU1FRgYqKCtdjh8PR0NjUxEqkyxi4IgWd5u6BYNuCIojsQ9iUZIX2QwnTWp6SOw4REdEt1eCZ3eTkZBw8eBCrVq1qzDy1Sk9Ph8lkcm3h4eFNfk7y3PwLnfHbyVPRKW0PBC84VBSRfQibfheFzv/8P1ySKuWOQ0REDST32rpXb2rQoGJ3ypQpWLt2Lb766iu0b9/etd9isaCyshLFxcVu4wsKCmCxWFxjrl6doeZxzZirpaamoqSkxLXl5+c3JDY1ofkXOmPTE4MQ8MVuFroK5Tz2A7r9aT96f/pHFrxERCol9wVparxAzaNiVwiBKVOm4LPPPsOWLVvQqVMnt+NRUVHw9/dHVlaWa19OTg7y8vJgtVoBAFarFQcOHEBhYaFrzObNm2E0GhEZGVnreQ0GA4xGo9tGylFT6Iq9vOWv0omKCnSd+S0LXiIilZK7R9fre3aTk5OxcuVK/Pvf/0aLFi1cPbYmkwnNmjWDyWTC+PHjkZKSgpCQEBiNRjz99NOwWq2IjY0FAAwdOhSRkZEYM2YMXnvtNdjtdsyaNQvJyckwGJRxdSHVHwtd9XEVvPgjDjy8EIHauldAISIiZVDSjKpSctTFo2J38eLFAIDf/OY3bvuXLVuGJ554AgDw5ptvQqvVYuTIkaioqEB8fDzeffdd11idToe1a9di8uTJsFqtaN68OZKSkvDiiy/e3DuhW46Frnq5Cl7xRxx4hAUvEZFaKGlGVSk56nJT6+zKhevsyq9EuozfTp6KgC92yx2FboLGYEDApmCs6bpR7ig+i+vsElF91NQ+Uf+crqh1drNHvqn4zy9WiuSxmuXFmm3YJ3cUukmiogLlKaF4/cKv5I5CRET1IBRwUVrNppaZXRa75JEfnZcwcFkKlxfzIiL7ELLGxOLV813ljkJERHUQAIRQyCb3F6OeWOySR6JXpyAijcuLeRvx7SF8NXYgNl3ylzsKERHdgNzr6vrMOrvkm54v6IPbMooA3hnNK4n9h/H0x0/iR+cluaMQEdF1yL3UmBqXHmOxS/XyfEEf7E/sDuexH+SOQk1FCETM3o2Y//cMSqTLcqchIqJayN2n6/U3lSDfdM5Zhqz5g+E8fEzuKNTUJCd+9fJ3+PPZ38idhIiIqFGw2KU6DVg7HcEfcYkxXyFduoQTk7pgf0WF3FGIiOgqsl+UdtWmBix26YaeOXs7eiy4wD5dX/NdDh77cDrbGYiIFEbuHl327JJXKXSWYdviGDhzTsgdhW4xUV2NzguOYLb913JHISKiX5C7uGWxS14lZuNUtFrK9gVf5fzxRxyb3B3HqsrkjkJERD+R+4I0XqBGXmPa2Wj0eOU82xd83bdHMGLJDFySKuVOQkREkL9Hlz275BUuSuXY/v4AOE/kyh2FZCaqqxGx5AReKBoodxQiIqIGYbFL13gi9wFYVnOZMbrCWVCITR8Mwv+qL8odhYjI512ZUZW/V/fKJvdXo35Y7JKbI5WXcHGaGc5z5+WOQgoS9u4u3LPjKbljEBH5PPkLXF6gRiqXsH0KxL7DcscgpZGciHhLgx+qOLtLRCQnobBNDVjsksuhysvo9laFejrO6ZbS7Pwew2yc3SUikpPcM7mc2SVVG749GSL7kNwxSKmEQMRCDZciIyKSk9xTuY0wtbto0SJEREQgICAAMTEx2L37xsucFhcXIzk5GW3atIHBYEC3bt2wfv36ep+PxS4BAL6vLEe3hVxeim5Ms+M7PGCbLHcMIiJSqY8//hgpKSlIS0vDvn370LdvX8THx6OwsLDW8ZWVlbj33ntx6tQpfPrpp8jJycGSJUvQrl27ep/Tr7HCk7qN2P4Uuu7dJ3cMUoGIhRocib2EHvpAuaMQEfkeJbUPNCDH/PnzMWHCBIwbNw4AkJGRgXXr1mHp0qV47rnnrhm/dOlSXLhwATt27IC/vz8AICIiwqNzcmaXsL+iAt3erpI7BqmEZsd3eHDnJLljEBH5JLlvIlHbTSUcDofbVlFRUWv2yspKZGdnIy4uzrVPq9UiLi4ONput1ud8/vnnsFqtSE5OhtlsRq9evTBv3jw4nfW/6RWLXcJD/5kMseeA3DFIRSLe1uL7ynK5YxAR+Ry5L0ir7QK18PBwmEwm15aenl5r9nPnzsHpdMJsNrvtN5vNsNvttT7n5MmT+PTTT+F0OrF+/XrMnj0bb7zxBl5++eV6f83YxuDjnEJC+3/yfwPyjOab/VhUeDf+1r7238SJiKiJCE2D2geaxE858vPzYTQaXbsNBkOjnUKSJISFheG9996DTqdDVFQUTp8+jddffx1paWn1eg1WOT7uWXs0gr46ivr/MYDoit0f9ocz9RvoNPwDERHRrfLL9gG51eQwGo1uxe71hIaGQqfToaCgwG1/QUEBLBZLrc9p06YN/P39odPpXPt69OgBu92OyspK6PX6Os/Ln1I+7qslMXA6HHLHIBVq8/dDeLu4s9wxiIhIJfR6PaKiopCVleXaJ0kSsrKyYLVaa33O4MGDceLECUiS5Np37NgxtGnTpl6FLsBi16dtLwfC9rDQpYZxFpdgYfY9cscgIvItcq+re5Pr7KakpGDJkiVYsWIFjhw5gsmTJ6OsrMy1OsPYsWORmprqGj958mRcuHABU6dOxbFjx7Bu3TrMmzcPycnJ9T4n2xh82LLCO3lrYLoprTcbUDGkCgaNv9xRiIh8gpLuXNaQHKNGjUJRURHmzJkDu92Ofv36ITMz03XRWl5eHrTan+diw8PDsXHjRkyfPh19+vRBu3btMHXqVMycObPe59QIoZTOj/pzOBwwmUz48VhnGFtwcrqhbn9pMlov5gVG1HDa5s3x4J5TmBR8Wu4oquUoldCy20mUlJTUq+eNiHxTTe3T4b050DYLkDsOAEC6XI68iS8q/vOLlaKP2nTJH+ZvfpQ7BqmcdOkSXt0xTO4YREQ+Q+6lxmpbekzpWOz6qA8LB0M6eFzuGKR2QqD11/4okS7LnYSIyDfI3aN7kz27cmCx66MO/iMSkLjgGN28Vqu/x9qy9nLHICIiqhWLXR+06ZI/2n5ZJHcM8hLS5XLM+mqk3DGIiHyERmGb8nE1Bh+UX9UK0sk8uWOQt5CcaH6KHyVERLeEktoHlJKjDpzZ9UHzNoyAqKyUOwZ5kQ5fnMfOcrbFEBE1Obl7dFXYs8vpGB8UeEarnHsNknfIPwu70wTgotxJiIi8m9Bc2ZRAKTnqwJldH5N1WYcO/zojdwzyMs7SUqRsTJQ7BhGR1xNCWZsasNj1MaVSM0hF5+WOQd5GCOgv8OOEiIiUhz+dfMz8k/eyX5eaRMghgbPVbGMgImpScvfoqrBnl8Wujyna0QaiokLuGOSFgrf8gOPVQXLHICLybjU9u0rZVMCjYnfx4sXo06cPjEYjjEYjrFYrNmzY4DpeXl6O5ORktGrVCkFBQRg5ciQKCgrcXiMvLw8JCQkIDAxEWFgYZsyYgerq6sZ5N3RDVcIJP97oipqK5MSZqpZypyAi8moaoaxNDTwqdtu3b49XXnkF2dnZ2Lt3L+655x48+OCDOHToEABg+vTp+OKLL7B69Wps27YNZ86cwUMPPeR6vtPpREJCAiorK7Fjxw6sWLECy5cvx5w5cxr3XVGtbBU6dPjolNwxyEs5z1/A85mj5I5BROTd5G5bUGEbg0dLjw0fPtzt8V/+8hcsXrwYO3fuRPv27fHBBx9g5cqVuOeeewAAy5YtQ48ePbBz507ExsZi06ZNOHz4ML788kuYzWb069cPL730EmbOnIm5c+dCr9c33juja0hCC1FeLncM8mLaSnX8SYuISLWU1D6glBx1aHDPrtPpxKpVq1BWVgar1Yrs7GxUVVUhLi7ONaZ79+7o0KEDbDYbAMBms6F3794wm82uMfHx8XA4HK7Z4dpUVFTA4XC4bUREREREdfG42D1w4ACCgoJgMBgwadIkfPbZZ4iMjITdboder0dwcLDbeLPZDLvdDgCw2+1uhW7N8Zpj15Oeng6TyeTawsPDPY1NAHaUdQWcvMsVNZ2A8xpUiCq5YxAReS+52xZU2MbgcbF72223Yf/+/di1axcmT56MpKQkHD58uCmyuaSmpqKkpMS15efnN+n5vNWy9ffAWVwidwzyYh3//l/kVPEXKiKiJiN3cavCYtfj2wXr9Xp06dIFABAVFYU9e/bgrbfewqhRo1BZWYni4mK32d2CggJYLBYAgMViwe7du91er2a1hpoxtTEYDDAYDJ5Gpauoo7OGiIiIrktJRaZSctThptfZlSQJFRUViIqKgr+/P7KyslzHcnJykJeXB6vVCgCwWq04cOAACgsLXWM2b94Mo9GIyMjIm41CRERE5N3kXldXhevsejSzm5qaimHDhqFDhw4oLS3FypUrsXXrVmzcuBEmkwnjx49HSkoKQkJCYDQa8fTTT8NqtSI2NhYAMHToUERGRmLMmDF47bXXYLfbMWvWLCQnJ3PmloiIiKgOSlrfVik56uJRsVtYWIixY8fi7NmzMJlM6NOnDzZu3Ih7770XAPDmm29Cq9Vi5MiRqKioQHx8PN59913X83U6HdauXYvJkyfDarWiefPmSEpKwosvvti474qIiIiICB4Wux988MENjwcEBGDRokVYtGjRdcd07NgR69ev9+S0RERERASwZ7cBbrpnl4iIiIhIqTxejYHUySkk6MrV0UhOKuZ0osjZHACXHyMiagoaKKdXVi1VBWd2fcSP0mW0OKWQ7w7yWqK8Av+8MEDuGERE3kvu1RdUuBoDi10fEaprjuLucqcgb6dpHohJrbfKHYOIyHvJfRMJFd5UgsUuEREREXkt9uwSERERqYWSZlSVkqMOLHaJiIiIVII3lfAci10iIiIiteDMrsdY7BIRERGpBYtdj7HYJSIiIlIJtjF4jqsx+BBt54vQ+OvljkFe7FLPNgjWVssdg4iIyIXFrg/JiPoIWmOQ3DHIi+XH+aODH/8fIyJqMnLfREKFN5VgGwMRERGRWrBn12MsdomIiIhUgj27nmMbgw/p6OdA2aAucscgL6UNDETH/qfljkFE5N3kvj0wbxdMStbJPwiFt3Myn5qGpnlzpHX+XO4YREREblj5+JiqFhKg0QBCJb+OkXq0NCJAUwXAX+4kRETeS0FtDJzZJUV6YfhqaIN4tTw1vtzHzBhoYKFLRNSk5G5bUGEbA2d2fUxzbYXcEchLCT+VfOoREamZkopMpeSoA2d2fcyggAIUP9BT7hjkZbSBgRh47yG5YxAReb2a1RiUsqkBi10fE6Zrjovt+c9OjUvj54dRrXfLHYOIiOgarHp8UM8RR3nbYGpURSN7YpDhgtwxiIiIrsFi1wfdG3IYGh3/6anxXLJo0FIXKHcMIiLvJ/cFaSq8QI0Vjw96KOgkfhzZT+4Y5CU0BgPufihb7hhERD5B7h5d9uySKrTUBaJg8E/r7RLdrD7d8HirHXKnICLyHXLP5qpoVhdgseuzpt61CdpmzeSOQV7g9F0tEBugkzsGEZFvkLvAVWHBy2LXR000HUPxg33kjkEqp/Hzw9DRO+WOQUTkM+RuW2AbA6lGoFYP+5BquWOQykkDe2JUyC65YxAREV0Xi10fNilmG7QtWsgdg1TMHtuctwgmIrqV5G5bYBsDqUlKyFE47ouUOwaplUaDexJ5IwkioltJ7raFxmhjWLRoESIiIhAQEICYmBjs3l2/nyWrVq2CRqPBiBEjPDofi10f5q/R4ezwKrljkEpJd/TDEyHfyB2DiMi3yD2Te5Mzux9//DFSUlKQlpaGffv2oW/fvoiPj0dhYeENn3fq1Cn86U9/wp133unxOVns+rjVd2YAsbxQjTz332Qn+hkMcscgIvItche3N1nszp8/HxMmTMC4ceMQGRmJjIwMBAYGYunSpdd9jtPpRGJiIl544QV07tzZ43Oy2PVxUQY9CqOC5I5BKqMLbYUJvTirS0R0q8ndtlBbG4PD4XDbKioqas1eWVmJ7OxsxMXFufZptVrExcXBZrNd9z2/+OKLCAsLw/jx4xv0NWOxS0iY8B/oWoXIHYNU5H9jb8OMkB/kjkFERAoQHh4Ok8nk2tLT02sdd+7cOTidTpjNZrf9ZrMZdru91ud8/fXX+OCDD7BkyZIG5/Nr8DPJa7wcdgD9H3sKYYt4Fyyqm84chseeyJI7BhGRb2pg+0CT+ClHfn4+jEaja7ehkVrcSktLMWbMGCxZsgShoaENfh0WuwQAGPrkDhz4pDWcRUVyRyGF+19iFzwfuknuGEREvkmBxa7RaHQrdq8nNDQUOp0OBQUFbvsLCgpgsViuGf/DDz/g1KlTGD58uGufJEkAAD8/P+Tk5OBXv/pVnedlGwMBAOaF7cPZR7vKHYMUzs9ixsikrXLHICLyWXL36N7M0mN6vR5RUVHIyvr5r4OSJCErKwtWq/Wa8d27d8eBAwewf/9+1/bb3/4Wd999N/bv34/w8PB6nfemit1XXnkFGo0G06ZNc+0rLy9HcnIyWrVqhaCgIIwcOfKaCj4vLw8JCQkIDAxEWFgYZsyYgepq3s1LTjqNFnHjbdCZw+SOQgqWn/grzAo9KHcMIiLfJffqCze5GkNKSgqWLFmCFStW4MiRI5g8eTLKysowbtw4AMDYsWORmpoKAAgICECvXr3ctuDgYLRo0QK9evWCXq+v1zkb3MawZ88e/O1vf0OfPu7LVk2fPh3r1q3D6tWrYTKZMGXKFDz00EP45psrV247nU4kJCTAYrFgx44dOHv2LMaOHQt/f3/MmzevoXGoEcwz78WAR5+G+e0br3VHvsmvjQWPJm2BTsM/CBERyeVmbubQ2BqSY9SoUSgqKsKcOXNgt9vRr18/ZGZmui5ay8vLg1bbuD9nNEIIj6NevHgRt99+O9599128/PLL6NevHxYsWICSkhK0bt0aK1euxMMPPwwAOHr0KHr06AGbzYbY2Fhs2LABDzzwAM6cOeN6YxkZGZg5cyaKiorqVaU7HA6YTCb8eKwzjC34g7cxzbD3x6FhreEsYMFL7s78aRD2T3+HxW4jc5RKaNntJEpKSurV80ZEvqmm9ukxZR50hgC54wAAnBXlOPLO84r//GrQT63k5GQkJCS4rZMGANnZ2aiqqnLb3717d3To0MG1fprNZkPv3r3dlp2Ij4+Hw+HAoUOHaj1fRUXFNWu4UdN42bwb+UldAK1O7iikILrbumDUWM7qEhHJTu62hZtsY5CDxz+5Vq1ahX379tW6hprdboder0dwcLDb/l+un2a322tdX63mWG3S09Pd1m+rb0Myec6g8ccnT/0Vmtt7yB2FFELj54cfXgzErNCjckchIiK5i1tvL3bz8/MxdepUfPTRRwgIuHVT6KmpqSgpKXFt+fn5t+zcvqiHPhDHp/pD48eV6QiQYnohM/ZduWMQEREAjcI2NfCo2M3OzkZhYSFuv/12+Pn5wc/PD9u2bcPChQvh5+cHs9mMyspKFBcXuz3vl+unWSyWWtdXqzlWG4PB4FrDrb5rudHN2fWbd1AwcaDcMUhmutat0fft79DJn7eUJiJSBLlncr19ZnfIkCHXrHcWHR2NxMRE13/7+/u7rZ+Wk5ODvLw81/ppVqsVBw4cQGHhzxdAbd68GUajEZGRkY30tuhmheqaY9iEr6HrwbV3fZXGzw8/TO2CF8J2yR2FiIh+Ive6ujezzq5cPPo7dc26Zr/UvHlztGrVyrV//PjxSElJQUhICIxGI55++mlYrVbExsYCAIYOHYrIyEiMGTMGr732Gux2O2bNmoXk5ORGu70cNY555u/R6ZmB6DZRB0hOuePQLSaiI7Hm8TcQqA2UOwoREVGDNfql1W+++SYeeOABjBw5Er/+9a9hsVjwr3/9y3Vcp9Nh7dq10Ol0sFqtePzxxzF27Fi8+OKLjR2FGsG++IU4/we2M/gandGIfou/Rw89C10iIkWRu21BhW0MDVpnV25cZ/fWSivqiT2je8J5+JjcUehW0OqQO28g9j3+JoK0yljL0ZtxnV0iqo+a2qfn/82DTq+Mz2ZnZTkO/c1L19kl3/JC60M48nQw1971EZqoSPx91EIWukRECiR3j64ae3ZZ7FK97HtgAU69NJAFr5fTRPXEkGU7MNDgL3cUIiKqjdxtCypsY2CxS/XSUheInWPfgGPUALmjUBPRGAwIf/cUZoT8IHcUIiK6DrlncjmzS16tpS4QI57PgqZ/T7mjUCPT+OtxPL0/3myXVfdgIiIiFWGxSx6Z2eo4hvy/ndBEseD1Fhp/PY6/fju+e3QB+3SJiJRO7rYFtjGQL5gR8gOGrrBB1+1XckehRvDDX6Jw4GFekEZEpAZyty2wjYF8RkrISRx9OhQa3ghE1aQ7+uGN361AoFYvdxQiIqoPuWdyObNLvuTg797G8Vf7s+BVKenO/hjz/lr8tvkluaMQEVF9yV3cstglXxKo1ePAwwtx/BUWvGoj3dkfY5Z8gbHGc3JHISIiD8jdtsA2BvI5gVo9DjyykDO8KiLd2R9PvP85C10iIvIJLHbpprlmeNNZ8CqdGNwPY5Z8gcQW5+WOQkREDSF32wLbGMhXBWr1OPDoQgRsCuayZAqk8dfj5GtWTFn+CWd0iYhUTCOEojY1YLFLjSZQq8earhsxZMVO3nhCQVzr6P7+LV6MRkSkdnLP5HJml+jKOrx3f7j7SsGr0cgdx6dpDAYcf+12fPfwAi4vRkTkBeS+II0XqBH9ZGar40hZ/QlOvRQLaHVyx/FJmqie6PgfLb57hHdGIyLyGnLP5HJml+hnQwOrsDPpDeS+PBDawEC54/gOrQ6aAb0xZMVO/K29jYUuERH5NBa71KRa6gKxZ+x8/GqbE5r+PaHx85M7klfTGY3InTcQL36yFDNCfpA7DhERNTK52xbYxkBUC5O2Gd5ptwuv/GspTs0eCF3LlnJH8joaPz8gtg96b3Ng3+NvYqDBX+5IRETUFORuW2AbA9H19TMYsGv8G+i86RI0A3pzlreR6Fq3Ru7cAViwKgOvmvezbYGIyIvJPZPLmV2iOtTM8i78NAN5zw2EzhwmdyTV0vj5QQzuh54bz+HbJ95CDz37oomIvJ7cM7mc2SWqn27+zbF30gL0zixE4ZRBXLHBQ7rbuiD3o0j8beU7eN3yLZcVIyLyIXLP5qppVhdgsUsyCtTq8ap5P7549jXkruwJYe0Lrst7Y35tLDgzYxAGrT6InDs/RCf/ILkjERERKRqbJkl27f2CcOzXH+IH60UM25GMiIWAxvad3LEUxc9iRn7irzBy7FasCV0Hfw1nwomIfJIQVzYlUEqOOrDYJcX4lX8Qjt21AscGleEB22RELNRAs8O3i16dOQz/S+yCR5/Ygs9bbYBOowXAQpeIyFcpqYVAKTnqwmKXFKebf3Mc+/WHOBJ7CQ/aJiPiHQ003+yXO9YtpQtthdNjbsOocVl4PnTTT3vZdURE5POUdGGYUnLUgcUuKVYPfSCO3bUC31vLsajwbuxe0R9t/t9BOB0OuaM1DY0G0h39kDfFiSd7foMZIVlyJyIiIoXRSFc2JVBKjrqw2CXF66MPwN/a2+B8/hu8NbkL3tn3G7TebEDIv76HdOmSanqGaqPx84M0sCfssc1xT+JuPBGSgX4Gg9yxiIhIqTiz6zEWu6QaOo0WKSEnkRJ3EpfuqcSy1F/hr9/ch9Zf+6HVp99DulwOSE65Y9ZJYzAAvbvizF1G3PP73fh9yPu/uOMZC10iIqLGxGKXVClQq0dycD6SE5agZNhlrH2+PWZ9NRLNT/mhwxfngfyzcJaWKmLWVxsYCI2fH4pG9sQliwZ3P5SNx1utQGxAzYVmvLUvERHVDy9Q8xyLXVI9k7YZElucR+Jv3wMAfDNRgr06GDM2job+gg4hhyUEZx0HhIDz/IUmzaINDIQmsBnQ0oRTj1kg+QHR9x7Go613486ATLTU1dzljCsqEBFRA3DpMY+x2CWvMzhAC8CBkSP/BgA4W30Rx6uDcKaqJZ7PHAVt5ZUbVwSc16Dj3/97/RdyOiHKK6Bpfv3b8F7q2Qb5cT/PzHbsfxppnT9HgKbqF60JNXg7XyIiujmc2fUci13yem38gtDGD0DAj3jskQzX/gpRhZxJ1+/xLXI2xz8vDMCk1huuOyZYW40OfrXdxYytCURE1AR4gZrHWOySzzJo/NFHf6Oi1Ikh7XYCCLhVkYiIiG6IM7ue4yr1REREROS1OLNLREREpBa8QM1jLHaJiIiIVIJtDJ5jsUtERESkFrxAzWMe9ezOnTsXGo3GbevevbvreHl5OZKTk9GqVSsEBQVh5MiRKCgocHuNvLw8JCQkIDAwEGFhYZgxYwaqq6sb590QERERebGamV2lbGrg8cxuz5498eWXX/78An4/v8T06dOxbt06rF69GiaTCVOmTMFDDz2Eb775BgDgdDqRkJAAi8WCHTt24OzZsxg7diz8/f0xb968Rng7RERERF5MElc2JVBKjjp4XOz6+fnBYrFcs7+kpAQffPABVq5ciXvuuQcAsGzZMvTo0QM7d+5EbGwsNm3ahMOHD+PLL7+E2WxGv3798NJLL2HmzJmYO3cu9Hr9zb8jIiIiIqKfeLz02PHjx9G2bVt07twZiYmJyMvLAwBkZ2ejqqoKcXFxrrHdu3dHhw4dYLPZAAA2mw29e/eG2Wx2jYmPj4fD4cChQ4eue86Kigo4HA63jYiIiMjnCIVtKuBRsRsTE4Ply5cjMzMTixcvRm5uLu68806UlpbCbrdDr9cjODjY7Tlmsxl2ux0AYLfb3QrdmuM1x64nPT0dJpPJtYWHh3sSm4iIiMgraCB/n65rk/uLUU8eFbvDhg3DI488gj59+iA+Ph7r169HcXExPvnkk6bKBwBITU1FSUmJa8vPz2/S8xEREREpUs06u0rZGmDRokWIiIhAQEAAYmJisHv37uuOXbJkCe688060bNkSLVu2RFxc3A3H1+am7qAWHByMbt264cSJE7BYLKisrERxcbHbmIKCAlePr8ViuWZ1hprHtfUB1zAYDDAajW4bERERka+RfTb3qs1TH3/8MVJSUpCWloZ9+/ahb9++iI+PR2FhYa3jt27ditGjR+Orr76CzWZDeHg4hg4ditOnT9f7nDdV7F68eBE//PAD2rRpg6ioKPj7+yMrK8t1PCcnB3l5ebBarQAAq9WKAwcOuL2hzZs3w2g0IjIy8maiEBEREZHCzZ8/HxMmTMC4ceMQGRmJjIwMBAYGYunSpbWO/+ijj/DUU0+hX79+6N69O95//31IkuRWb9bFo2L3T3/6E7Zt24ZTp05hx44d+N3vfgedTofRo0fDZDJh/PjxSElJwVdffYXs7GyMGzcOVqsVsbGxAIChQ4ciMjISY8aMwXfffYeNGzdi1qxZSE5OhsFg8CQKERERke9pqgvNGrp5oLKyEtnZ2W6LGWi1WsTFxbkWM6jLpUuXUFVVhZCQkHqf16Olx/73v/9h9OjROH/+PFq3bo077rgDO3fuROvWrQEAb775JrRaLUaOHImKigrEx8fj3XffdT1fp9Nh7dq1mDx5MqxWK5o3b46kpCS8+OKLnsQgIiIi8kkaIaBpYK9sY6vJcfUqWQaDodZJzHPnzsHpdNa6WMHRo0frdc6ZM2eibdu2bgVzXTwqdletWnXD4wEBAVi0aBEWLVp03TEdO3bE+vXrPTktEREREQGA9NOmBD/luHqVrLS0NMydO7fRT/fKK69g1apV2Lp1KwICAur9PI9vKkFERERE8lDizG5+fr7b4gHXa00NDQ2FTqerdbGCGy1UAAB//etf8corr+DLL79Enz59PMp5UxeoEREREdEtJHePbi09u1evmHW9Ylev1yMqKsrt4rKai81qFjOozWuvvYaXXnoJmZmZiI6Orv/X6iec2SUiIiKiWyIlJQVJSUmIjo7GwIEDsWDBApSVlWHcuHEAgLFjx6Jdu3ZIT08HALz66quYM2cOVq5ciYiICNdNyIKCghAUFFSvc7LYJSIiIlKLm7iZQ6NrQI5Ro0ahqKgIc+bMgd1uR79+/ZCZmem6aC0vLw9a7c+NB4sXL0ZlZSUefvhht9fxpC+YxS4RERGRSjT0Zg5NoaE5pkyZgilTptR6bOvWrW6PT5061bCT/AKLXSIiIiK1UPnMrhxY7BIRERGphEa6simBUnLUhcUuERERkVpwZtdjXHqMiIiIiLwWZ3aJiIiI1OIX69vKTik56sBil4iIiEgllHgHNaVjsUtERESkFuzZ9RiLXSIiIiK1EACUsgqCOmpdFrtEREREasE2Bs9xNQYiIiIi8lqc2SUiIiJSCwHl9MoqJEZdWOwSERERqQUvUPMYi10iIiIitZAAaOQO8ROlXChXBxa7RERERCrBC9Q8x2KXiIiISC3YxuAxrsZARERERF6LM7tEREREasGZXY+x2CUiIiJSCxa7HmOxS0RERKQWXI3BYyx2iYiIiFSCqzF4jsUuERERkVqwjcFjXI2BiIiIiLwWZ3aJiIiI1EISgEYhM6qSQnLUgcUuERERkVqwjcFjLHaJiIiIVENBxS6UkuPGWOwSERERqQVndj3GYpeIiIhILSQBxcyoqqRnl6sxEBEREZHX4swuERERkVoI6cqmBErJUQcWu0RERERqwZ5dj7HYJSIiIlIL9ux6jMUuERERkVpwZtdjHl+gdvr0aTz++ONo1aoVmjVrht69e2Pv3r2u40IIzJkzB23atEGzZs0QFxeH48ePu73GhQsXkJiYCKPRiODgYIwfPx4XL168+XdDRERE5M0Efi54Zd/k/mLUj0fF7o8//ojBgwfD398fGzZswOHDh/HGG2+gZcuWrjGvvfYaFi5ciIyMDOzatQvNmzdHfHw8ysvLXWMSExNx6NAhbN68GWvXrsX27dsxceLExntXRERERETwsI3h1VdfRXh4OJYtW+ba16lTJ9d/CyGwYMECzJo1Cw8++CAA4MMPP4TZbMaaNWvw2GOP4ciRI8jMzMSePXsQHR0NAHj77bdx//33469//Svatm3bGO+LiIiIyPuwjcFjHs3sfv7554iOjsYjjzyCsLAw9O/fH0uWLHEdz83Nhd1uR1xcnGufyWRCTEwMbDYbAMBmsyE4ONhV6AJAXFwctFotdu3aVet5Kyoq4HA43DYiIiIinyNJytpUwKNi9+TJk1i8eDG6du2KjRs3YvLkyfjjH/+IFStWAADsdjsAwGw2uz3PbDa7jtntdoSFhbkd9/PzQ0hIiGvM1dLT02EymVxbeHi4J7GJiIiIvIPsfbpXbSrgURuDJEmIjo7GvHnzAAD9+/fHwYMHkZGRgaSkpCYJCACpqalISUlxPXY4HCx4iYiIyPcoqchUSo46eDSz26ZNG0RGRrrt69GjB/Ly8gAAFosFAFBQUOA2pqCgwHXMYrGgsLDQ7Xh1dTUuXLjgGnM1g8EAo9HothERERH5HEkoa1MBj4rdwYMHIycnx23fsWPH0LFjRwBXLlazWCzIyspyHXc4HNi1axesVisAwGq1ori4GNnZ2a4xW7ZsgSRJiImJafAbISIiIiK6mkdtDNOnT8egQYMwb948PProo9i9ezfee+89vPfeewAAjUaDadOm4eWXX0bXrl3RqVMnzJ49G23btsWIESMAXJkJvu+++zBhwgRkZGSgqqoKU6ZMwWOPPcaVGIiIiIhuQAgJQijjwjCl5KiLR8XugAED8NlnnyE1NRUvvvgiOnXqhAULFiAxMdE15tlnn0VZWRkmTpyI4uJi3HHHHcjMzERAQIBrzEcffYQpU6ZgyJAh0Gq1GDlyJBYuXNh474qIiIjIGwkFtQ+opGdXI4RKkv6Cw+GAyWTCj8c6w9jC45vAEREphqNUQstuJ1FSUsLrEYjoumpqnyGmMfDT6OWOAwCoFpXIKvl/iv/88mhml4iIiIhkJEmARiHtA97YxkBEREREMhICgEL+KK+S5gD2ABARERGR1+LMLhEREZFKCEmCUEgbg1euxkBEREREMmIbg8dY7BIRERGphSQAjUKKTBa7RERERNSohACgkPYBFrtERERE1JiEJCAUMrOrlls1cDUGIiIiIrplFi1ahIiICAQEBCAmJga7d+++4fjVq1eje/fuCAgIQO/evbF+/XqPzsdil4iIiEgthKSszUMff/wxUlJSkJaWhn379qFv376Ij49HYWFhreN37NiB0aNHY/z48fj2228xYsQIjBgxAgcPHqz3OXm7YCIiGfF2wURUHzW1z280v4Ofxl/uOACAalGFreIzjz6/YmJiMGDAALzzzjsAAEmSEB4ejqeffhrPPffcNeNHjRqFsrIyrF271rUvNjYW/fr1Q0ZGRr3Oqcqe3Zr63HFRIQ3aREQNVPM5psJ5ByKSQbWoUMxteqtRBeBKIf5LBoMBBoPhmvGVlZXIzs5Gamqqa59Wq0VcXBxsNlut57DZbEhJSXHbFx8fjzVr1tQ7pyqL3fPnzwMAOt5+St4gRESNpLS0FCaTSe4YRKRQer0eFosFX9s961dtakFBQQgPD3fbl5aWhrlz514z9ty5c3A6nTCbzW77zWYzjh49Wuvr2+32Wsfb7fZ6Z1RlsRsSEgIAyMvLU+UPB4fDgfDwcOTn56v2z5Zqfw/MLy/m/5kQAqWlpWjbtm0jpSMibxQQEIDc3FxUVlbKHcWNEAIajcZtX22zunJSZbGr1V7p0zWZTKr8QVnDaDSqOj+g/vfA/PJi/ivU+Es7Ed16AQEBCAgIkDtGg4WGhkKn06GgoMBtf0FBASwWS63PsVgsHo2vDa/uIiIiIqImp9frERUVhaysLNc+SZKQlZUFq9Va63OsVqvbeADYvHnzdcfXRpUzu0RERESkPikpKUhKSkJ0dDQGDhyIBQsWoKysDOPGjQMAjB07Fu3atUN6ejoAYOrUqbjrrrvwxhtvICEhAatWrcLevXvx3nvv1fucqix2DQYD0tLSFNcTUl9qzw+o/z0wv7yYn4jIN40aNQpFRUWYM2cO7HY7+vXrh8zMTNdFaHl5ea52VQAYNGgQVq5ciVmzZuH5559H165dsWbNGvTq1ave51TlOrtERERERPXBnl0iIiIi8losdomIiIjIa7HYJSIiIiKvxWKXiIiIiLyWKovdRYsWISIiAgEBAYiJicHu3bvljgQA2L59O4YPH462bdtCo9Fcc99mIQTmzJmDNm3aoFmzZoiLi8Px48fdxly4cAGJiYkwGo0IDg7G+PHjcfHixSbPnp6ejgEDBqBFixYICwvDiBEjkJOT4zamvLwcycnJaNWqFYKCgjBy5MhrFnrOy8tDQkICAgMDERYWhhkzZqC6urrJ8wPA4sWL0adPH9dC/1arFRs2bFBN/l965ZVXoNFoMG3aNNc+peefO3cuNBqN29a9e3fV5AeA06dP4/HHH0erVq3QrFkz9O7dG3v37nUdV/L3MBERXYdQmVWrVgm9Xi+WLl0qDh06JCZMmCCCg4NFQUGB3NHE+vXrxZ///Gfxr3/9SwAQn332mdvxV155RZhMJrFmzRrx3Xffid/+9reiU6dO4vLly64x9913n+jbt6/YuXOn+M9//iO6dOkiRo8e3eTZ4+PjxbJly8TBgwfF/v37xf333y86dOggLl686BozadIkER4eLrKyssTevXtFbGysGDRokOt4dXW16NWrl4iLixPffvutWL9+vQgNDRWpqalNnl8IIT7//HOxbt06cezYMZGTkyOef/554e/vLw4ePKiK/DV2794tIiIiRJ8+fcTUqVNd+5WePy0tTfTs2VOcPXvWtRUVFakm/4ULF0THjh3FE088IXbt2iVOnjwpNm7cKE6cOOEao+TvYSIiqp3qit2BAweK5ORk12On0ynatm0r0tPTZUx1rauLXUmShMViEa+//rprX3FxsTAYDOIf//iHEEKIw4cPCwBiz549rjEbNmwQGo1GnD59+pZlF0KIwsJCAUBs27bNldXf31+sXr3aNebIkSMCgLDZbEKIK8W+VqsVdrvdNWbx4sXCaDSKioqKW5q/RsuWLcX777+vmvylpaWia9euYvPmzeKuu+5yFbtqyJ+Wlib69u1b6zE15J85c6a44447rntcbd/DRER0haraGCorK5GdnY24uDjXPq1Wi7i4ONhsNhmT1S03Nxd2u90tu8lkQkxMjCu7zWZDcHAwoqOjXWPi4uKg1Wqxa9euW5q3pKQEABASEgIAyM7ORlVVlVv+7t27o0OHDm75e/fu7VoYGgDi4+PhcDhw6NChW5gecDqdWLVqFcrKymC1WlWTPzk5GQkJCW45AfV8/Y8fP462bduic+fOSExMRF5enmryf/7554iOjsYjjzyCsLAw9O/fH0uWLHEdV9v3MBERXaGqYvfcuXNwOp1uPwwBwGw2w263y5Sqfmry3Si73W5HWFiY23E/Pz+EhITc0vcnSRKmTZuGwYMHu+5QYrfbodfrERwc7Db26vy1vb+aY7fCgQMHEBQUBIPBgEmTJuGzzz5DZGSkKvKvWrUK+/btc90i8ZfUkD8mJgbLly9HZmYmFi9ejNzcXNx5550oLS1VRf6TJ09i8eLF6Nq1KzZu3IjJkyfjj3/8I1asWOGWQQ3fw0RE9DNV3i6YmlZycjIOHjyIr7/+Wu4oHrvtttuwf/9+lJSU4NNPP0VSUhK2bdsmd6w65efnY+rUqdi8eTMCAgLkjtMgw4YNc/13nz59EBMTg44dO+KTTz5Bs2bNZExWP5IkITo6GvPmzQMA9O/fHwcPHkRGRgaSkpJkTkdERA2lqpnd0NBQ6HS6a67gLigogMVikSlV/dTku1F2i8WCwsJCt+PV1dW4cOHCLXt/U6ZMwdq1a/HVV1+hffv2rv0WiwWVlZUoLi52G391/treX82xW0Gv16NLly6IiopCeno6+vbti7feekvx+bOzs1FYWIjbb78dfn5+8PPzw7Zt27Bw4UL4+fnBbDYrOn9tgoOD0a1bN5w4cULxX38AaNOmDSIjI9329ejRw9WKoZbvYSIicqeqYlev1yMqKgpZWVmufZIkISsrC1arVcZkdevUqRMsFotbdofDgV27drmyW61WFBcXIzs72zVmy5YtkCQJMTExTZpPCIEpU6bgs88+w5YtW9CpUye341FRUfD393fLn5OTg7y8PLf8Bw4ccPthv3nzZhiNxmuKiFtFkiRUVFQoPv+QIUNw4MAB7N+/37VFR0cjMTHR9d9Kzl+bixcv4ocffkCbNm0U//UHgMGDB1+z3N6xY8fQsWNHAMr/HiYiouuQ+wo5T61atUoYDAaxfPlycfjwYTFx4kQRHBzsdgW3XEpLS8W3334rvv32WwFAzJ8/X3z77bfiv//9rxDiyrJFwcHB4t///rf4/vvvxYMPPljrskX9+/cXu3btEl9//bXo2rXrLVm2aPLkycJkMomtW7e6LR116dIl15hJkyaJDh06iC1btoi9e/cKq9UqrFar63jN0lFDhw4V+/fvF5mZmaJ169a3bOmo5557Tmzbtk3k5uaK77//Xjz33HNCo9GITZs2qSL/1X65GoMQys//zDPPiK1bt4rc3FzxzTffiLi4OBEaGioKCwtVkX/37t3Cz89P/OUvfxHHjx8XH330kQgMDBR///vfXWOU/D1MRES1U12xK4QQb7/9tujQoYPQ6/Vi4MCBYufOnXJHEkII8dVXXwkA12xJSUlCiCtLF82ePVuYzWZhMBjEkCFDRE5OjttrnD9/XowePVoEBQUJo9Eoxo0bJ0pLS5s8e225AYhly5a5xly+fFk89dRTomXLliIwMFD87ne/E2fPnnV7nVOnTolhw4aJZs2aidDQUPHMM8+IqqqqJs8vhBB/+MMfRMeOHYVerxetW7cWQ4YMcRW6ash/tauLXaXnHzVqlGjTpo3Q6/WiXbt2YtSoUW5r1Co9vxBCfPHFF6JXr17CYDCI7t27i/fee8/tuJK/h4mIqHYaIYSQZ06ZiIiIiKhpqapnl4iIiIjIEyx2iYiIiMhrsdglIiIiIq/FYpeIiIiIvBaLXSIiIiLyWix2iYiIiMhrsdglIiIiIq/FYpeIiIiIvBaLXSIiIiLyWix2iYiIiMhrsdglIiIiIq/FYpeIiIiIvNb/B+pGsPmFX5uMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import torch\n", "import matplotlib.pyplot as plt\n", "\n", "def perm_roll(im, axis, amount):\n", " permutation = torch.roll(torch.arange(im.shape[axis], device=im.device), amount, dims=0)\n", " return torch.index_select(im, axis, permutation)\n", "\n", "def shift_left(im):\n", " tt = perm_roll(im, axis=-2, amount=-(im.shape[-2]+1)//2)\n", " tt = perm_roll(tt, axis=-1, amount=-(im.shape[-1]+1)//2)\n", " return tt\n", "\n", "def shift_right(im):\n", " tt = perm_roll(im, axis=-2, amount=(im.shape[-2]+1)//2)\n", " tt = perm_roll(tt, axis=-1, amount=(im.shape[-1]+1)//2)\n", " return tt\n", "\n", "def circular_aperture(h, w, r=None, low_pass_frequency=False):\n", " if r is None:\n", " r = min(h//2, w//2)\n", " x, y = torch.meshgrid(torch.arange(-h//2, h//2), torch.arange(-w//2, w//2), indexing='ij')\n", " circle_dist = torch.sqrt(x**2 + y**2)\n", " if low_pass_frequency:\n", " circle_aperture = torch.where(circle_distr, low_pass_frequency=False))" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(12453.)" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aperture(h=h, w=w, condition=lambda circle_dist: circle_dist>r, is_inv=True).sum()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAAQpCAYAAACUdrFbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Tag123rWD1/3qJpzrWefffaOIXpOzmvENGyYTgJGDwEbigcighiwYSCNIGJaEeQoYhpGAkLAlgQDaaZjw5YK8hKQiIQXQtSIHVFQSCPqe07iP569z36etdacVeP+N8ZHjRqzPudn1ZzXD55nrTVnfYwaNapqzvsa932JqioIIYQQQgghhBBCCCGEEEIeAHPrBhBCCCGEEEIIIYQQQgghhFwLCiOEEEIIIYQQQgghhBBCCHkYKIwQQgghhBBCCCGEEEIIIeRhoDBCCCGEEEIIIYQQQgghhJCHgcIIIYQQQgghhBBCCCGEEEIeBgojhBBCCCGEEEIIIYQQQgh5GCiMEEIIIYQQQgghhBBCCCHkYaAwQgghhBBCCCGEEEIIIYSQh4HCCCGEEEIIIYQQQgghhBBCHgYKI4QQQgghhBBCCCGEEEIIeRhuKoz88i//Mv74H//jeH5+xte//nX8+3//72/ZHEIIIYQQQgghhBBCCCGE3Dk3E0b++T//5/jmN7+Jf/gP/yH+03/6T/jhH/5h/PiP/zh+7/d+71ZNIoQQQgghhBBCCCGEEELInSOqqrfY8de//nX86T/9p/FP/+k/BQBYa/EDP/AD+Ft/62/h7//9vz+4rrUW//t//298+ctfhohco7mEEEIIIYQQQgghhBBCCFkoqorvfve7+NrXvgZjhnNCyiu1qcVut8Nv//Zv4+d+7ufia8YYfOMb38Bv/uZvHiz/9vaGt7e3+Pf/+l//Cz/0Qz90lbYSQgghhBBCCCGEEEIIIWQd/O7v/i7+6B/9o4PL3EQY+T//5/+grmt85Stfab3+la98Bf/tv/23g+V/8Rd/Eb/wC79w8Pqflb+MUukfT1bMUMbTbZK5CCGEEEIIIeT+EQEkiSeobb+/tu9jIjDvngEAWtuRheMqgDFAUQAA7PsXwNaXauEySb+Tp+e877v62sbFvWEKiPHnRgygFmrb50SMuNfCNZ2eM1NANi4UKuLfsgopBPL8FLc5SLhvhDGibl+6rwBVd/1ZBYw01xgAKd1+dbdrNyttvxFIYZLGAbC+Pel2jMT1tK7dfvc1oBay3cRrOlbZMf5+JwJ9fYXu9u7vtI1FARGBfXmD7nfJ8Sb9Dbj+ucR1kOwnnmOEXWqzbzHxHAJo959fRuu63eaw7px25/eAdFv+PhnOadxFst84DgFIUbTOmWxL1+c2GaPWQqsaahXm3ROkKKD5GIg7csujKJpth7Fr1a1X1+4YkoyJMB7s2y6Ow3Bcsb138AyosMf/D/9ffPnLXx5d9ibCyFx+7ud+Dt/85jfj359//jl+4Ad+AKVsUN7WP56Q0xgsBccPXIQQQgghhBByEXJhBFnQbG1Vu0Vg1AdeJQTT/M8QZMwDiCIQFcC6frAosj453IfbwZ1+V03Pee939Ts99tUgECniX6oGgA8ahwCvCFAkQerWOROIv05CsFmtQqSA2NIHjpOAdFcLiiAQJC+qQiEuKK/WtUm9wGF9m2zhV9tk12LTDrds0bIN0LCjcJi2iL+7ADlie1UNxBatPgptgDFO+LDu+EQka2Ph7iMooLLJDjoVRywuex34drUIB+8Fn3AOO0QsNyZC/yXXsRSY1e6heF0UiYrD11XdvrTZvcRjcu0VWwAwgBXfZgWsgaoAsDC2iMfqznEmFPnlRYxfLvSXF1vqGqphHGV96Z8VGgdREFXg2jf0DFgL/jRPsd+4iTDyfd/3fSiKAt/+9rdbr3/729/GV7/61YPln56e8PT01L2xe38wk/uG45YQQgghhBBCbsPYzPCV0cwu1vax2WSmN9AEvqxCoW72+KVmga8V9sUyUT3IEGllMohpv99xHrXaN+/5mKLWgL7/ACl8RslAxobms/f9zH+ta3dNeUFGjAVq1z6FQsJy+yq2tWlUcv3VAk0yVw6ON82eSN/329A9XLZA2j9eHFXA7d/WPghft+4Hnftr9eOV7hMjGXxR9Oq6h+vw+e/EeBEizZYYW1ekv53Z+XV9WsdMGK2qVnZS7HO/f60qIGT+Jfs4ODdqgbAtIy57RASq6s5zmnmTtqfOjlPr9ph/IG4iA223W/ypP/Wn8Ou//uvxNWstfv3Xfx0/9mM/Nn1Dd/YhhhBCCCGEEEIIIVcgDwDdQ0AoC5hG1PbHT9S6YNzcEjMTZuISchHGxnP6MyUEfsM/oB3ItrUXN9yMe1jbZJWE0kXWHm4jvJYJkmq1Kenlyzuphr+b1/O2hnXy9dPtdL/fHEt4L75f182/tMSYJm0e6rvYuGuIIhP2kfdbfk7mcI572di+w7lLzovW9eE5jItrM2byc5mOhfR1qwdjMd9f35iLx/CA3KyU1je/+U389E//NH70R38Uf+bP/Bn8k3/yT/D+/Xv89b/+12/VJEIIIYQQQs4HM5sJIWTZrP3+nM3wlcI0JXWsNrOTazcrXLzvQKh1r9V+piDSrv3fzNpeeT+SdREyPVIxQNxsec3EidY10jdO09dtDftmXeZI8ASpXSDZZlkYsnGlt9QHomMmSnjfezYEDxD0XS8Hf1to3fOea9D4PPE0yO6zVjo9V8LfWkNRuCwXaUo+9bYh59zZBpPEkRP2Z4ru1+ccR99y8fN/R3aNTvTvsB3nuKttfnvh3NldkkkTMkFaTaagnXMzYeSv/bW/ht///d/Hz//8z+Nb3/oWfuRHfgS/9mu/dmDIPgk+hAkhhBBCCCGEEPJoJMGyVBQ5QC2AUC6mJ1A8VdAPQdYpRtWEXILB2fnazgLIMwLGxrcv13UQQm6tl2aSKHKRpnO9qVlql4hx3lupvFOOpS9DJJYaPEHkuWQm3UhGitoB8WvKNh4U0SFHoYXy+eef49NPP8Wfw19BmRsCEUIIIYQQQgghhJyLW9VenxvQnSJspNvMlwuzqPuCa6aIs+DjcksNKaXnbOiYyX3REkR8hpNkHjtAO7MkCClB6PN/hwyr6BkS/vbjv5U9dZCpkomGU67J6PVRd77fao/q4fU6ZV9D5O2I28uu867g/9quq65jSDLiWh4cKad4loT9ZuOsl74+n7PeEHfsKVLpHv8O/wqfffYZPvnkk8Flb5YxQgghhBBCCCGEELJo1uSlcenyM+gIKC+NvkwBZrc8BqnIkZMIJE7gC5lP3de4pplVHct0ZmY1b2b7nhaEdu3qfCP5WWfLn2lsRyERbQG0u6HJendyXakFwuR70SYrLn1/Bp3nMt1efn86aEvPs2eOmDLJQH6B9/ErQmGEEEIIIYQQQggh5NEJs5vXJAYNkQb8ptb2vzV51s8a/MqWGFz1EWl32utOoeRAVDgw865bf7cypQ72N+P482yCkKFiRq67juD52Yf1QZbaQFbYEgXSqWOxaxmRxDcpHPdMr5WwqXAur31tTL1338s9/gxQGCGEEEIIIYQQQgjpYqxsyT2ypEAnWR5LFEJS8ms2BLjTklr+95Y4Muo9ch4hIJZrmpKAMPfec1YD9Cl9spBxkGeKjRqjd/kwJUJIny/MpcizU8jVoDBCCCGPyBpmHhFCCCGEELIE7vUz82Sz9TvwFFgLa+jXLu+DS32/nCoMdBmbH7QtmGu7AHTMDhDjX5tpXN0XgO/zBpLEv6KjvZ2lq9LjOCjt1CUAnYjPlFEdEBeCgHDrsZp4ojRiU2hTz7m8Ukk9rapxAfEgK+y47JQDpgiXYezc+hwuAMpRhBBCCCGEEEIIIY/EsSVXluwn8GiZPUtgyYHVwaD0GT05rrFeX3sv1f+ryRQx7Z/563NRnWdePratg9d6yrDl/05hKedmJTBjhBBCHhE+LAkhZB1wNhchhDwu6YzioWfB2Gz9rvenPltabVigp0DKKX20NLq8Rpba9ku2q2tm+xwBLO2/ECy3dXsb+d+nMjXj5NL7G+PYayL05ZRSW5cmZNHkPjEhCyg3YZkqiE3pmyn3m871rthvpnDl4tIspXA93frcLQRmjBBCCCGEELJEOPOVEEIIsIwA1hLacA5Emn9r4l76fyl0ld66NWr7MwqmcMy4Psi0WNl1kdBZiqxzwQWc62tC75JBmDFCCCGEEELIEnm0L26EEEKGGcoaOMczwwdFpSjcJnMvhLU/l9be/kcl92LoYoqfQ549cCyXyj4aab/zRMmuybxPxAB5N+UZCnm2TM6c47tlJlM0SPeeKEDmwXKCyHQP5ax8lt/BsF9DFtoVoTBCCCGEEEIIIYQQslbOGdy619nFDACumymZDOcI9J5RYDzrNqdsx1+7wYgcGMiiOKcJ+RIC7AdG9CPHtrbSenOZ0xcPzrqFkRWneBFCCCGEEEIIIYRM5tJmz35WfZx9PcezhJyXe+rbSwkWp2732HJaSzImb+0rBMB9xpfV6MEhReYz0edzMaXtqm5fax6j1/ZluTaTzyO506kAhBBCCCGEEEIuDierEXJ9Ln3d0ZiXrAGO0WFOET/WQuqrck/HRa7GujNGCCGEdMMPB4QQQgi5BvysQcj1ufV1d+v93yNL+P52yZJISzi+U+k7hksc2zHnwi+vVdVeP/hMBP+RLs+RUFrrWh4c5yJvR5dnyiX3R1YPhRFCCLlHzlkzlBBCCCGEEHI/LMETgJClc6uMyHPsN72+o9n2CftamrC1tPbM4Zj7b9fxdp27NfbHjVm3MCIG4DknhJBDLj1TghBCCCGEkGvDQNBprDmYeO8s4ZwsoQ1Loi8zZGy5cyAG0TPk1O3H6942JuUhOB+3PZItsrSxcev2tMzNZ7RljujVtWwrE2hgv2kW0Nw2Phj0GCGEEEIIIYQQQghZKmkd/b73CSH3gVwgVCtmXcLH0hHTnKdL339PGQ+hnXxG9LLujBFbX+aGQQghhBBCCCFk/XCG/H0RS8JcuRTUrUtPje17bb4A5LG4l3F37eM4tjx2/txThTMZQfP3vQfKsz6QsoRa9XFkgRRF8/cxXKNCx9Rsnr51lVVEpkBVgZBHJsw8GpuBRAghhBBCyBLJP8/2fb695efesZn+/By+bML54Xm6Lue6XnneyJrpmgw+5boYyxK4F7Gqj7TffFkpMZItspJ7w7XO1YPeK9edMUIIOR/3/mAkhBBCCCH3S5pJMPT+LWD5kvNy7eANz9H1Odc5ftBAH7kTQrZIyFjLx3P+d8tw/Ygsg3si7TsAWu3bb9c3yqYYOye3zHJ90PFCYYQQ8rA3QEIIIYQQskJuXdaIEHI5KIrcP/k9nPf088Ax38+tyjDOJWS6sAzW1aAwQsgjs+QHAhmG9bIJIYQQ8qi0ZsVq93v8rHS/PEJ9/EfnktdtOnYeyadmSbAf5tMqDdnjihCyJNi//X2w9L5RO+ylzc82Z4ceI4QQsjZ8jczBByYhhBBCyCPDoMF9E8QRCiS3Z83nYM1tvyd4PXcz8fu+GHF+GYwP9MOxRXpgxgghhKwNVaZWEkIIcXAGKiH98Nq4b3h+l8E5z0OYAIYOf4S5z7u+zKL09WuOIY7XYdg/DpHMFLyAWm2yQVL8a2q9sfij+4oM0dcvphjut7F7xSXuJV3nOr7HjMlzQzmREEIIIYSQNcIvRuSacLyRJcBx+Jgce97XWk6HPBZd2TJTKkSoxrHsxBOO66NI+zmci/ycjP19LnTCeZx7nvncHIQZI4QQQgghhKwRfgEm14TjjSwBjsP7oS8DpGv29qnnvWtW97HbzIOMazF1JtcnjJVoqJ1lAoTxko1LrWsA9eFy8e+seoStu4PffX46MTOro019+7xXxo5/bkZI53kw58/mmdOuRzmXR0JhhBBCCCGEELJsaDZJCFkjDJZ30xfEvXRfnbKPvlnX+SzyAM87OZZjxk7XOn3ih5hYrkttR1aK2va1kn8G6ytRt0YOSvaFPqu73++jdR8wya/SbI6fZRcJhRFCCCGEEEIIIYSQc8MAWDdddfIv2Vfn2nY+635oGQZBSaAvK+HSYyRkkvSJJmohRlwZrkBo61B21RrG9LEi6JC/R2u5Ac+RZBut5J6z+pAs1Gtkhfc9CiOEEEIIIYQQQggh5Hqckrlx7aDbEgOQZD10ChNZptGlxvSE7TbZIx2lvdbMMf06tvxY4D8VLC7dj0s7Tyu9T1IYIYQQQgghhCybpX35I4TcFyx5tR7OHeg8dhtjmSEcT2Qoq2BsmQsShJCQNdLKGBED4Mx+GLfg0kLTkPihCpgCELisnUdhqNTagukoJkcIIYQQQgghhBDyAESD5BOCOXPXvXbgSGQ9waq1tJOQqfRdf1OyEy59PYyZsJ9tPwu9rsf6OLw/81yIESdALfW4T+HOjokZI4QQQgghhBBCCHlMQumTU2YY3yKL4Vz7W0q2TGjHEtoyh7W1l1yfY31nLjW2xEAKA61tI4j47JGL7Xep10lPu2SzdW/XPuMjz/wYOZ643lKP+xTGjmllx8yMEUIIIYQQQgghhDwuU0renIOlZW6k2TK3bNeS+oSQa3HsdXfK9SoCGAGMCwer1Sa7AVhdUPsiiEAKA9mUTb/MZY0i74PCjBFCCCGEEEIIIYQ8NiLtWdOXYGqgrG9m+Zg3wbGmv2F5U/i/k1nkwOXr5DOASB6BLh+aVOTou97P6V+jCt1XQF3HrAatm/da+z3H/m6dkXbMPVEVdreHGGkyP8jdsm5hhLMKCCGEEEIIIYQQcgbECNQmNffnChOzd9gTNOwSaIJwE9o2Vhd/Svs6lnEzpIumHQC0qy/IujhWNCPTOTIIf+BzlL52CWw9rv923Wvmjp0lxGzjccwUOKb00b1za1HrSqxbGCGEEEIIIYQQQgg5A2q1v86+CKQo3DIAIDi9Jn9f1kdXRE4VgO14LVv3pPbYRhgCAJy5Tj6D84Qc0nU9XFocGSO/Bx1zzd7yGOK9hqLu0TxIv9FjhBBCCCGEEEIIIevk1Hr7KUNChxhnWpzW45eekMpYe/I2h7/z9Ya2c6mgVRoQVdst0nQx5xwsYSY5WQ9rGC+XaOOtfCrOXLrrptx6/9dk7hjsW34N19sZYcYIIYQQQgghhBBC1smxs5LT8jVp8KwvkKY2qcWfigdJXf5QAusYL5G8VNZgW2a+Pqct6f6PWbfrvUcKTi6VNZ+Dpbf9ngPJ58wWW/p5XBtTn119XOI5skLWnzFyyuwQQgghhBBCCCGXY+z7Gr/PkXNwbCAnCBEhwDS0HdUmgyIsmy0fM0lObW9fJsq5Z5D3ZaqEfaXLHbv9vvV53ZNHguP9uoR75an9vtTPKKmQTk6CGSOEEEIIIYQQ8uhcajbn2DYfbGYiWSAhy2PoGpjijaEKrUcMftN9dATtZFMCVqHVfmLjTyQXP3LD5anX5zEzj3ntk3vj3sb7Odt8bj+kKZxD0DhadL/w8XV5TpGjuD95aalqHiGEEEIIIYQsGX6PIo9CPtt2aObt0MzcA48S7X590joGUhRAmnWyhmvy2m1cQ5+Qx+JWXiBLYygDLV+u6/dzt6Xv9WveQ6b2ydztARxzZ2L9GSPnNAUihBBCCCGEkEeE36PIo5H7aHQarkuzrBhIWXivkbq9TOoRErabCCpiBGoVsFlGSas+vIXudm65U2cp9x3PEMfOQO6aCX7J+wnvVcvkkYK1eZA79xa6h74YavtYkH8s825s++fkVufgopkiV6JPxL8z1i+MEEIIIYQQQgghxJEH5Wh6282cPlGFlAVkU0LrGgJ4AaMtgjgBxDRCivHiiBEI6mFPc1VoVY23ZWrQ9Zgg5JSMl6n7HHotvM5xeR9ELxkD6Eg5uXsgyyBrrvvs2KeM8XSZWwgHRyJF4e6BQFtkHhKYgbZ4fEn69rPwfr04fffjLoE7HefXOGc3Yt3CiCrALEpCCCGEEEIIIcTx6IGfIY4J+GsS/LP9gTYpBLLdAnUN3e38KgoxFkAxvX1L8OU5dh99PgL5+yyHdT884rmMgqjxf+pxQfiuzJN0+wtmsigSXk+z766d9cBnYsOYcNVabvnj8Bzcn8cIIYQQQgghhBCSMzRz/V6552ObS8tcfL6puFqFqgJWu7dTFJCnJ0hZJqV1rC+hNSMwd4lzds5t3tLQmCyfR7jnBE8Rf413luWbMsbF+H/ON0KM+7ea62OKKJK+f00vFp+1B+AxxiRw/HEOCVpjy9wB684YIYSQe4UzGwghhBBCzsuUL//3xj0f2zGEYJkkf8f3hvtKUlP0jhnduq+gLy/QuitQ6gWSW3oPnOv7xcwSZGfZDlkurfN45WyApTD3mPsyRdL3l96Pc0SRWxHauNT2nUo+Ti5xnPfadwkURgghZGnE2WwP+sGSEEIIIYSQc5OUcwkih9o0IDnw2TsLZHaWzrE17FsSiEtKx7T3Q8idci/fXaeUgBvLfhgSNzo8SlaF3ljkncPS23cJjhXW1iDIXQAKI4QQsjRCPccHfCgRQgghd8uDfuEkZJGMGQCnQT8JIopCMGIs3ZuV1LOvzHi5MTQ+00znNKB7ifvPWoKjhJyDWCJvpndI9p7ZbgBjmuvS2qZM39L9RUKb13LNP+Jnr3N5RD0IFEYIIWSJPOhDiRBypzzilxJCUh6lvjUhS0cVUnSUxEpncKfXayvwn2R+TAmOBlElXS7fdp4lLgZSAFrj9ADpnBIrcwQOPtPJI+I9QNQaf4EOLRvuEx3LiYFst0BRACFzbbeHWAutKoxprzflnJUtLnkfSf2kACx20mmegXTMeseK08fu+w6hMEIIIYQQQi7Lg3/gJoTXACHLQa1CjPf86FygQ9AIr8/N5Bj12GjX6de6Do2ctv05+zvXerngQuGXPAKq3SX0ckwB8+4ZAGBfXrtF1E0JGC+MWIWUCtR1vJ6k9KFa012Cz76+dRu+n4tW4D3Lrjv23pQH8C/5uajj3no15ggVY6XY+pbtE9uH1s/X5efSCIURQghToAkhhBBCyGnw8yS5FXPHntpmIndfYL+3JNaAB8kxYz9fxy55ungPvObvi3wm+SPf23NRYOz69OXw5OMvuT+rCqjrRPD0fViWTvywFjCAAk4kCcLIdgsUuSG7iRkmxlrY3b7xSqrr82QAhG34bAsxPvNC5VAUmpllNlom8Nzj7FbjVYzLLKqqE7YhcTuBgzEU3xgSV5IMx3Nwp9mCFEYIIXd5cyOEEEIIIVeEnyfJGjkouXIk5xr/jxyEJuQeUOuyPwAnBgAQwAsLNcQIZLMBygKorRdHLKDSiCjGQGqJQojbmIkZJlpbJ/Ba04gXYd8ntT1ky1m/OdNk12kmaMwJkqfZcKnYNCfbbGx/t7p35u3SpOTisai6QQO0MxuPEt/P6Flzp88lCiOEPDL84E0IIYQQQgh5JELwLxVE8kDdDWcbL9J8+db9cg+sZbZ1miXCMmnzCOW2QrZAUUBEXD/WFmprd41vSuimhOwrwAqkrqFwWQG69+uKNKW0svOgseyWLw1YFO716gxeGq0gfw3VnnE7dz+tceV9SkJ2xVTT+a6smGPHaF+pqqnXaX4saYmqMQ+aKQSBJRekJq+vGPVWOfaetJZ72UQojBDyyNzRzWx13NnDhBBCCCGEkJtwrM9FVyDu3KWypm5/qE1LgN9bHpe5ptD3NFaOuB7FCOTZeYzo+w8+W8JmPh3a/EszAoJAYBVq0GSeHATxbfYzez8Iv8cG1dPtnJMD748s+H8OTgn2H0Nf24c8QuZu+xLeUan4eZTocj9QGCGEkGsTPqgI1llHmBBCyP1xb8GMR2JKeYkllp8g5JxcO7Az9bqaur97vg75fHGsqQ+ODSzns+fvlaHrtSgAb76O9x98doc9LImU/NP4u41lpyQROxToLvnn99/atvfzaHmDnHJOxJwnAyKQZ3qEeMg5RZhr3nO69pN5tThmnoNY1uwCx5H39YPfoymMEELILVjqbDBCCCGPyQN/IVo9ozPQT3yfEHJIn3HwlGUfDW0HbQ9eI/eD3qko0hc47nq9roGX1+Z3q5lHhwV2e0htofu9W2a3Tzw4nMeH1sgC63VSdio34LaJz4gmL888F13X56XiFnNMxE9lruhytgzBLEto9vpXEEUIhRFCCDkrUx6i9/hhkRBCyDJ58FlgZAaXnpl463G4lHaQdTJUfz7xK5HELFmt9meHdwYgH2RsnnsG+rVZw3N1qI2XuhcuvU/mkGc1dPlIdPmw+GwP+/l33Z/7yotFzbpa19CXF0AMdLdzhutV1YgYYpr7RnadjGoUSQaJmKzcVpc/RxfpsR5bpvAS9LU5P1dzvUfOfYxr+KzR56+15DZfEAojhBByTh70YUIIIWSh8LlEpnKpsbKUMbikAA9ZLyPjuV0uZySK+YiiCLD+zPk1nKuhNq6h/Ush9lU2ZoeeJWIg240LPhcFYF2GiMsCqb0gsnebr2snjNTnMetO23WQLTL1GdglpBzLZDFm4nJDzMlA6Sp1eI+fD/r6dYovygPdJ+5bGHlgxYsQQgghhBBCSAK/G5KpzI0lzDXJXcpYvPbs5qUcNyFzOMgSC2WrDkslRfP1ogCqKhqow4siUAv74cP525dkrh0Evlvl7AYytsJypnA+JdEb5fgSaVIUvvzXQPacmKZMmODyJdm6tn1Mpknf62PbOEesekzEyMdD2OdAJpkUhV/8RF+alXHfwsiDnERCCCGEEEIIIYScibkmuWtlzW0nZCn0XUdp1oYxQH3BbCn1wey0TFL8PS0DNrENQRQ5McNrdBu+3WrNfIH5EpzFW+QKpdWnmrPPOH+9njRrKA92AvctjBBCCCGEEEIIIUtgqAb6nQYcCCHk7hgy1RaT3OvtZcWQLmIpLJeFATHQam5G25mECk0yRYaC+Oly12LJFYamtm20ZN5ICbi8nKPWMXNErYnrj2b9hG3LlcStoeM4AjO+CCGEkNncY41KQgghhBByPHkZi6GyFoQQsjT4HfcQkeZfwJgmUGxu0GdBFAFO9/Q55zMq7aO5Yynv4/zvuSz12RuO6dTjA5rPGF2fNQaOP8/yiX+PtefS/lHn6JMO1i2MTOkQ3rgJIdcmfAji/YcQQgghZPnwMxs5NxxT5N5IPQvulbn+EmKaf/l2uoQSkwS9L4EPgEtRQEpXIEjrep4IcMm2AYAp3L858ZJ87IlAyo3zxMi3caHg+VVoCT+mv4+OPb4+kSRfxiZjJv+7r91Ttj2XvnOZXndd195M7r+U1lJVQELI/dKVtkgIIYQQQpYJvzOSczNgcDu6DCFL5dIzwm/FyTPzQ/kqtx3d7yEiwH4HWIWIQI0P4IoBUF+3lFNa5miK/8Wp/TG0v6TU1+g2QnvS9cK6RgAUzsdF0N7uGsdpJoqEjJ/O6lXnGDdTnkUzskyOWu7Y7Yx61sxj1cKIFAVgF1wXjhDyuPC+RAghZE0sudYyWTd3btrZou86Gru+HqFv7oljxI1YHiUNBk4IUpIGPqcuxyQT5wfs+6HnV+6fATRB+ZdXKAD78goAMF96B5EC2O+hJvFsOMc9oOfcaZLVEr1GaiBO4BzZrxhxyw891w536t7yGStaVdCqOnjf/V63MwLS91oZIlkQ3BQQIz4ebIGi8Os37XH+KCd6lvS16xLXQZ4pkv7E5bxXWuMwsOTrPPdnO1NbVy2MuDpnCz5phBBCCCGErAF+piaXhOOL3BNhRvWccR3XWUkAijwOay07dAnmCp2AEx58cF4KAxjjxABr4/Wu+8pvXgGrjWfDOe4BB+bv/j5jTdyPWgMxTXtcm+XASyIVUdzx+FJcU+93yXKaBrH9dl0QPuyqQyw24rJrVIHaCQLOBDzfj3/NGJcsogqE5YxARJ1gorYtzJyasTdjHSnLg+yVg/7u3IcfM3XSR7076Tgvqag0YoQ+qT1TOHYcHytwnPnZuWphBLa+/xqHhBBCCCGEELJWHin4O7UcxVJ4pGyeqUztk65gVN97Y6+TabD/zsuQIDL03r2ehzwzYIggIBSFK5lVFE4ceXoCbA372edeUHDxSvWZI5MN0cfuQ33vh1JeVhshxGe2tPSPsoBsSic+RPFEYZ6fnKBg3Xpa175K1YzsFnECiEiTPRL6R6yNgkn0BzHG9WHoz80Gut9D33+AarOdiFq3bOgDL46gSPrAGEhhoLWFfvGFf92LPUGgGcsomdr3Xfd+EZiPPgKKIhHJ1B1/nQhmQSjqEsyzc9bZDjHIM4Ck3EA2pRt/dd2cuzR2noyLWcydEDA6jrOsoBvdW9YtjBBCCCGEEEIIIYScg3sN+hKSM5T51BX0JZ2oKiSICDYNRp+00eP6PllvchuMxGpNQQiBPUcWwaGXSMwECeKLMYC1UMDZrgBQ43xDQnbNwfY8IUvnwFze/63+91guSp04MLlf+oL6E4VvNy5s05dBFOoTRY7KYOk4T2pdn6THeWBQ7gWVa2RqjE4yuL0fzLqFEd6kCSGEEEIIIYQQckvmlOCh+EKWwpzMqHuOv514Teq+cgLDzpxHVBhr05BwokmGQF8A3GeuxLJVYdXdzgX0y9KLFyNZE2OkAXlrneBRVU4A8RkkMAZa19DdDrLdwsD3Z93OZkgFDVNKzM5pLWfz0lkGst1CrIV9e/NVh2aM4zQjAxgWEfPX9nuoLZxQFkSeIFoMrdvZjuklwLSqgKpqvFiyclyzRLtTn1crEEWAtQsjAD9YEEIIIYQQQgghhBByKR417jbgzxDLPHlPD+z3zd9oSmednEEyo12TqGuc1KLgq5IH+scw0nhvBGyWWRL6KvMeMWXbewRV1ZSE8ttR1czHJGvfnPKReZbFzP6OmUSJKDJ7W10izokx8NzrZRHc+N6ybmEkDFSKI4SQa8OazIQsH34+IIQQsgT4PCIBjgNC1sHQteozD6JFg1oANbTqX6VFZso9i6nPk4Hta+UyMqTceL8O40WEdDcC7ZFPZFPCPD25DJMZwoiIANutEzFqCzXN67LdxOwRqDoj+7Dedgu8e4ZUlfNrsRb2w4fDHWQChFoDWHdSYumtatpJajItQimumX4cVqFoe7i0hJzBnU/IasmzuTqN2DMT9viyzD6c9r7M9GMZYiHPw3ULIyn8sEkIuTa85xCybHiNEkIIWQJLfR4ttV2EEHJLJgkPvmTV0CJ9M/NPKSF0xvu28xQpmsB9azcD/h6pWfp26zJQugSSsJ41TmQxghjyN0OlwOD8R9zO/DZ85sXUUmWpKOB/Vzvgq9Oz/qyMmJSQRZSKIlOYIor0HUPv620hbnEZIzdm1cKIGEGUGNVSHCGEXA/ea24DM3UIIeQ4+Dn5NPj8WS8zanMTQlYEn2tkKRzM1A/B/LqZYQ/Myxo4d7u6rhdbQ9M2+vdjmbBUMOlos2xKyHYLfXnJTNAtYqYFAOjevWeKw22kz+hgyC4SMzwAOBHF1q49sXRWh29K6Nuwvlpo5bI9VP1+phiPi7iMlZjBYmd/DnTHXjeCRN8YiX8b/8OXXxsSZPJjCD+HRJVU6LEjYs/QsU4QBFvbWcE9etXCCCGEkAdjyGiOEEIIISQnfHZYwZdzQsgMeE2TayJNYL3T0LovI0AVOPXr69zJGWPLdX2fztvflekQ1isKoCzdfqy6zJFy052VkAtB1meOhG2FzBDb9uBom6gLxKoP6ifb9fsRIy47I8W/JqUPe4tpslSsQve7rp5JmuD9TI7M7hETxKbg6ZH1Qy5mxOPJjqNr+alt6jsfU+kbd+cah+fkYEwLphrprFsYEePq3jENiBBCHodrPWAZRCGE3BNLv58t/Z675LaRcXj+yLXpm8iz9LHI7DhCHEmmRyjHJEUBKQzk+cm9XFsX0K8qF2wPgfSDQHJiMC5mtl+FFAUgBlrtj78208B6NBb3be3MJEkbIIApoiAkz0+Qd++gux3w9ub65V2T4aG7HfTtracf/HLGOEFFpF22C4Duq0a4GJsUqeo2G4UribFibIomeyTJQNGqOuzL7Hzrbjevr7N7p5Rl3Keouj7pyhg66KMOs/jseHtJJ5GqdSLLsRlKXgCMos7Yvi9JyDRKryOgyXxJxmbMvBEB3iZu/kzNvClRiSOEEEIIIYSsDwbhCCFLhhnLy4HngtyKtJRTyhwPiaN2e9ntz2pHztyJ6jG4Ld1+IflrfYbi+XtB4AnlwLTxIxnyS+kk3cep95ukHbM4dr9zj7V3O4e+M9Hk/aAM2IXvyWo7M5p6lwVmjct1Z4wYOSxttvTZZoQQQtYDnymEEELI8uHzmgQuMRbiTOJs5q20Z6gOzszNzG8XC68jQhyqWWaHm4EvotC9L/MUfCDSslND94D4+8zMrDyDo48p2/WlvVw2wAS/jbg9m8zU9wJEXbdEh1AeS7uyUPx2tKpcZTFf4qpVMqtLQMjus7HdQz4Zal0GD9TtSxUa/Eusbc5bx3rB20StSfpJx3058qwXVUhdu6yiuQbsgWOfG3n58bnPxehdkh1zmlUjiG2Tomgf37meI7ng0vKwSZZR65oax0iHkDLA+tMsWjeX9R8OIYSQBcEvh/cNZxwSQsh9wOc1CVyz5OrkZRmnIOQuCDPX88yEiYiRpuTPLZ9bXdkAk1dNBCAxrrRYIoioqvvbFEd913KiSn9Qe7LAEDw70owNOyACJcbzB/s7J7MEihuJ6UPnLYofHf4l+bPuUt+1U+HtDNfRfT6hGegghJzCCQ9yckcwyPIY8DonjwLHej9jfcO+I4SkhJr1FDxuR1c5F0IuiQ/GOgNw5y2itcs+GMwWCZ4XRpznROJ1MYm+8kVdy805Fuv9UMRMWzcVLKwTG6QsIO/eAZsy9gl8ZobZbmL2xaR2Tyk3pda3e/x7ejwnVuN5gj93vWKW7xeta+8nUzT7nIvV+SW88raEn73javi8xf7Pjd4HV/LPN9Nx7kJbQn+k2ZLosLkQc1pcLS2PNpYFFcanF/3mCFqrfpLHvs0/kDCYRQg5lWNNqh4Bfgkh9wSvc/IocKwfD/uOEDJCDAgxYE/I3RMyI7pmz7cYuheMCR7x/SPCthe+D6kqtKrdP2vbfg6tcoMTRZe0BFce1I4CwVxhIS1vZuM5C/sYxZyp/47Jzpl6/kb6t7XfueNhan/3jU9JsqP69n+xjJJ5pbTW7TFCCCGXgAGQfsKHs7ze5JpJH8g8948Fzze5d+I9+07E/rk1uadyD33zyFxqXNwCeqWcn67Ay9Q+zj1E+hbzM8GlQDRh1qoaDvqYovvefOp4zte/p+uDjHOue0i6nXsfQ0PfBfv603aUXRrwFsln0jc+Fh2eCX6d1nLVyOe4lp9Eer868vPfyDnX3e7Qp0PEZc/UtiUqSLnxWTYd8QPjynBFT5J9Bd3vOnaYeGZM9VEBAK2hGjJStDkPg14wybmK5y3xV5nzmdr6DKM5mKLxNRkL7qfv5/0SPHJCNZSp7fY+MAccGK6bpp2+LVppW9AT456LGpa7cGkwnXA9dkBhhBBCyDzWYBxJCCHEcU/37HsNypDTuKdxcU/HsjRyM9ohDgxf/X1UnBmve0mTtxUi/m8jQJ1sY2y2N7NL5jPnXD4avIfMJ4ynPpGy672uz1YdYlJnyb1EVAkz6p0JerPdGMD370u5acpeAdBqfxgEjoFx2wStj53LmAa984C6+vJhrUMXZ2yevaYG/UbntSuJpb7ftK6HP7Mee93H82uh1jhjbgCy2cbjiccZRKxwTAAQTepbB9dsOyc7D0e3fWyMde0zX+bY+2Tf8WVjuTMTJh+Lfct1bX9qO87MuoURYwBIVP7ObopDCCGkzT1+2L7HYyKEEID3N0LIYzAWPJlq0pqXrckCglIIZLuFprOaQ8BtX0PKEiIltCggyezigziFXyedSS6FcWVe9lV/QGzKMRwEcO/0OUBx5LIcOfN6tfSKIuE6rlvL5lkAhxkgTtyQpyf3elW57IG9n4kfA8buHhC8LLRy60tZtoQG+egJKIx7XQT2/34H9u2t+zyFEkZ+tn538DoxkO9QT2RTQrZbYLdzbZb2elpVQJpVUJaNd4o/HilLYLeDDX2VXK9a114ImTm2jh2LaQaJdf1rPv2ye223dxkre/fTiVle6LHWHbpq9JKJ57quO4WKKIapbY+TqW1X2y1o9WWSJGJOs4kmOyZm64RMjlQ0CZlJRuL5kLKElCW0tp3ZLs57xbj3u7J7wrH6vj6KVFjEkLDSnWkV35u4/1V7jBBCCCGEEEIIIYScjOphoGXO6jarX59uq/V7UnokC/gcmNcSQuZzDtFsynWoTfZH7+z5roB48nrXei3T7jwbYGKb4iq5V8aMe5x4keVgG/kurb/v2SToPubRcargNtWUfmj/oQ3e+F1SAXrADH5oUn4QLo6euD8mSvacvzAG5+y379yqaiNw9Z3HS2akX1mMXXfGSB+szUoIIYQQQgghhJA55TjyGdRJbEGtr4GfzhROt2lr6K4jWNQXGHUrud1NCTIlpbw66/U/Goz5LI8lxeKObYtILF016vMQ7wP+ejRuhnsIJtvXN/f3pmzK7KXbC9dxPuN/XwG1y0JDUfiyUzaWr9J6zHMkZKGFCjs+QyVkAEzoF1cKy7j9WwVQN34b+fq2htraZzUkYWbTIS4Fj48pDPq/JNuZeq6TLAl9eXU/fRaPFKb1dzwn2RgY9QyxPlMizUCc69nT6WuTZWCEDJK6jplG7U0IIEnbu/ovZLYkgpbWNVDXME9PkI8/gu52sa/cdtwz66SKTVPOlyYiT994ObVkmOc+hRFCCCGEEEIIIYQQ4LRgbSs41xdkyoSSSwSI05r1hCyRpYgi56bveu7xHsk9Q9BZTk+T1YaD5KoKmTNB37hSUGKt9/mYse6p2LZgLEXR8vA4K8eII7Gd4V7uz5kOB9d7M4Kmcs7SfxK8aU643tSiMUXP3/NjbsCw3ZX1mtbOXl+UUXFkxHNmaNdGJpfSWrcwwpqShBBCCCGEEEII6eJUQSQ3m+2qix+XS4JIk+vJq1sPSfBwJMPkJlzJBJeQs3DqONV20Hzy9Z14Wbj1fAA7N0vP/R6yDLDoD6EK8QF8FYFgg2jKPmAYHzw+tK4h3ih9VomlxHheRKAhV2UsEh4zRwRiy5jxIvu980SZtvNJywT/iRjcVzseiA9tVHFt86hVoN75TJvCtT+cu/TYW8biN7oXhufNgGgRCefLFIfLB6+Y6F3SzuTRfQVrX9rXgioUBWQj88S2/JzOyRo6OKae52Pi3TWX+5huMFa7jhBCCCGEEEIIISRlzmTLS9RUP8fMX0LI2Wldk6de+31ljCbcf1p+I7VtTM+H1p/i8TGGXz/sP3pNTBEEvN9SWDc9hjG/klntCybz+Tb7+iXN0kna1xxbk+GTvn8Ul87um1Q6zIyLEK1SWknpL/+eezmbJDDleRUEnK5/6b7mMKX8WMzamn7u1p0xAl/37iB9jR8qCCHkKG49A+ISDNUmJYQQsg6WVLecELIsjr03JLOiD7aTBYZiEKdnhvZRnh/pzF+bzDAfu9/d4l64pPvvwEx5AMtqK1kX/po8Wag0IZuhIyAtArPdAMY4/warB/cPDb4gNdw9Imzu5cVlkYhAthvvNXLohSKbEthsnZBS1148CH5GQ94k/joqCvcv+G3At0MyD6YetNoDLwMBajGH20nvwy3D+RBIR5K1YZqMDgPAGkCr9nZycSTPltjt3GIh8yR4j3gPEUFzDtVqv79KDzHrJxymzbyrjom75M+l4Qb4TJBk+z2ZI9A6ZuGEzBExTVaNqkLgPU5CVtBYO8W4cRjIhMZJ19ix93K1s8TM1QsjhBBCyCD8ckQIIeuH9/L1QlGLLJU0ANcX9IolSzrq2MdA0rRgYef+b1Ua697Ig6mEHEsox5MGkOc8x0SSDIbCbzLJTBADbDZ+WS9YZLeBgxn6oWmqLsBchJJZzmBdRHHgF3G40cnCBozPRvHm6VIY97smbe0SHpLXRo2zx/o0O/6m3FPT/jhJ/piMnqy94Zw5UUqOyjyYvf8hWs8mdJzP4f4TI66MGWrXZVEoMW2RKW3SpY71nNlXF+CxhRF+SCeEkDa8JxJCCCGE3AZ+P70+QwF1X2/ezbK2bmZxUQB17YJnReEChrWF9pmyA8M14dPAK9AILRjZ3iOPkzF/h7Vzjxn8l+ASWUKpl08+q35qW8S4mfbGtHwsYMRlcQTRxKq7l+yrQ8HVe3P0CTNN1sjW3TOqymWG+GwH3e1dtod2BKRNcZjhlt6jAGdM7veBsoRst8B2A3zx3vmW+HthzNpQbTJTCgOtKtemfB9qmyD9duuOPyyX9fFheSwvIqnbzoFnyVCGSPp+ds892MfGH9Nud9K4cpknHZ5UXW3raGc4t7Hc4m4fs1lcU6XZT9f2iiL2cfCpces50Ut3e+h+125TKjpZbbYbhL2ybGcnDd6LbXxWtt+bnnVzLe7DY4QQQgghhBBCyPJY2BfgxcNZ78uisxRORxhlSr30CcvQa4SQBXDu51bIAElMvVvvHSxvmqyNKUKoD3yLN0sffY4Mvd+3r757k0k8I4b8Q/LtWj3ufpffR1Xnn6+uzJacU8fA0WWgvAgRzqMfC1K4jI8uwWiQ9FybEyQAv5++bKYuDjKYFpgtAjx6xsgxaXGEEEIeA87WIoSQ88L7KiHj8PpYDrY+KBsjIlC4c6R17WrpTzWRHQsKZTN2e5ch9wGfiaexpH5rtcW6LAgxTrAImSPGArs94pJqfakj4OBIuoQLa504oRZSbN2s/6oCdjvnNQLvLSLifxo3Y7+uXVZb3ZElEktR+Rn+6d917TJBVKO3CbJtqGrbh2SIVoaPhe4H7nWqTXvj/bWO60b/iq6Mk7zvuvqyo+xXUz6rmGYuHnxkhvw2Tsk4UYWoxjGEzQay2UBf3wDdu5JY8EKFaUL7MYOkroH9vtmWJBkmVg/HwxAxy2nEyL33YJYpiATuUxiZWf+PEEIIIYQQckH4mZsQsiY6Sl61SosASTkR2y+OTJ25vaQgLyHkePy9IpR9Emu9qKDOCyTF9geMnQg7Qtg24O5D1oktMXvjCOuj2C6rsX3B2+Qgu2JqxsdYmavOdXq8NbqWmbLPEaI4khnZH8Wpk++Dl4x4USQIbCLQJGPjIHuktzlB2LCNKDLhGFul0gA3pqwvaTY2tlbkoXWfwsiki4xfzgh5aJgpRsbg+CCEkPPDeysh/fD6uDxZLX/3c3rGh+58TfYw4zjU5Q+zhg9mKyfve+8AtTo8y5g8BvfulXLPjAX6be28MKzPL9vtnfF1UfjVk4CzVX8PSjI2jBc21LTFE7UugB/+NsYJLwYACpc5ouq8JcrS+Uj4jIrGvwjdQfEki8Lu9q7Nm9J5KYlADSAq0NpnHSReI9GDQsT7MNnue2HTQaM+G1IU7nirruV6/CvCcfhtzCUKWlMEn757eHyuDIjeU2JRwY8lZHuoG0siAvjzEr1CujIXxbhz4dvQyhSZIooYiaW3Uo8SNXCZIzIhw/HgmK5wb/Mm86IWmJjMdJ/CyBSGTNYIIYQQQgi5JzghgBBCDpkqigCdWSTIQwoyo9QI4xGErIOuIHd6rXe9n82Y19rfLsR4IQPjGRchIJ1nloTySkAjjmRG2WnGx2yiCbvLWmhljHTFUkOmRR9z7rPnZqZQcnGfpxntEGMB68aLjJ3LIUP0OD5Tke2UjJaJ4+qa3zvCRIX49/Qxt3phJCqsx6183sYQQtbDo17/TNcnZP3wOibnhOOJEPJIHIgbA2WwppBkikhRuIyQ2kL3u7BAq25/rIff1RayDsaem3yu3i/BayjMxJeN++kDxTGoHu4LWVDevV9DULS3q1kGRV27TJPg8+HLOwVfCOszUGS7jQbdThxx72tVRc02ZHs4f4j98LhsCT8CrfbQ6vA9KTfO4yMcm/qyT2G5rNxT9L1I+7HvOgl9Ve0P25cEv7Wufcmwot1/oT1dQvYcjryO49gIu03v+Wnwvi/bwhSuz6IPiDvOljcNkPw9lnnSCGU6o0yYWudTIomQE3xmWse0IGLfzzR6v6Fsd14uruoRQgghhBCyVhigIYSQhjTodUljWN57CblPOmanj3o+hIBta+Z+z/0n9w+Jy2ssqQXrBYFk2RDQ1qrqEB3MtIyFfPZ9fE3G1w/+JOdiyn672nqJ/U/tg7RNeWkt+HFyahu7xJ+uZU7BKlSbf50+M0viyGf5ujNGuk4yP3gQQkg/vEdOh7O9yFLhmCTn5FrjieOWELIU0oBUnF18oueHr+E+OCPXFEnd/Kq9//B7GuDLZ5GTZXDpYCRwnvKX/C5zPkL5qLSMVMd1fnD992QvpJkAndd5KJUVMkXSYHRyz7Jvtl3Sy2/HvrxEr4VmPeM8Q0Sch0jqkZEF6c3TE2S7hVYVNGQNGBN9Klp+S+G4mz9a97H4Xjqmx7JWTOEyUmLWBKJPU9h+yA6I2zdJtoAYSCHDfk6xDen5SvvMb897rLh9NMKS/fCh8ziCibsUBjAlsNs1xu5+HwAgpWnObUefOfFk47Jvupq/r5o+6Svh6MtvBdHMtcH3W2cWTzIebQ0N2z/osxM59f6W+4PZOj6DY4bNjO2vWxghhBBCLgFrPhNCCCGEkDlkngLHEEqokAfn3sWMNfqedXo3hLJI2XXfJb52bmvkfmHElcDCQHC/S9T1r6tKK9gfBA53n+loayCYqmti9C7iynL5Ik5RsOjaN2x/30ykZfhuO3xNwnKJcHDyvVMtkJY5ExP7zDfKC1ZBkBoQ1IOIIsZ5hfjtZY3HwbmN/VV0iiJBpBk9UrXu/CMrpxY3NHFCwLmv03PFWcQcPi/T62rGuFu/MJIrk4QQQsipdJnKEUIIIdeCM30JuTwxSNVRn/6o7UmrvvzBbGW1gPYFcpDMeAWvfXI8a3h+LLltU/GeQoD3kQhm2SgORYO++0qf2LLZJAFw70miFhoC21MC2h3fZVXVeZHk96B8WV+uSwoDFMZlJ9Q1tLZJlsNI1secLLyD/VuX1dK1XeBA9Gll6gRRaGp4uNMHJuCPofZ9AUDf3vozA0V8podpRJT4nv/dix26r5pMkY6sH/f8qA7Ks+VeIwd97T1KXLtrN0aLApL4wKiqG1OFH6s+4+LkzMkpnC0TzkKrgW2JmaAeOdbtMWLDQKAgQgghhBBCCFkheUCAwjwh12FolvdF9jfP/JYQsiBaWSBJJoFJAt7RV6Ij1DrV2wMhs0NilkbY9qiHycH2jgz5jvmEnPMe1tcvU/aRlxk7h+CW71cbMUHTe/iR+5JwTvv2l+/X+3rk/05m7lhaEkPjussfZ4T1Z4wE+OGCEELIObmHmUyEEELWCZ9BhJyfvIZ6qFffVfd+KHMkDby0Zu2qmzk+WPN9ZEYur31yKrcaQ2vIVDmW4F8hSPwjmuCrbLfOAD3Ncui7B3TR6jvrS1kZiFWoMZC6BsRCa0CML5E0dH/y+2/5WhiB5FkM6fKBYLStCtTBvyOYy6c+IyP3stw/qfVeYlbv+ylm2aT31ikCRJZpcZQnRkfGSvOrL4Xls3Vk47OEgsdKnnHj+xpA4/FhFZJU6HKLicsACsfZdQzp+Ok6vq5rzrpsGikK57VRW6BuJxVEYeVYgWcJpfDGSpnNYN0ZIwAFEUIIIYQQQgghhMzjhMBObqR7sF3GKQi5X4K4YDuu87lZGl0ZE0acOGKy7IKp20rbkAbqgXabh7ZtbXvZII6EclFT29PVJuBwG6GkVMqUe3SHuf0sJvRvmukXMz5idtD4+gfHmotTwOExhOPKj6+z/Jq0+zosYxKBxWfXnEUUuTPuJ2OEEEJIM5tlbDYaaThmVgkhl+SeZ9yR+2UJs8e6WMP11DejkhByXlJz9LF7Q2/wyc9urqoJ+yKkgzU8l45hDceT9v2c74Dhu7WIm6S+99d/amoOQArjsi1qTA88p20JPkWmcNkZm63LAHh5dRkVeWZB17EhycTIhBWtqiQzo0Ow6Mxy869503Gts/JVQ2SZIVrD9aUgyd5zPhuyEcBqc5yjmSIT792maG9vzr0/7TurAOp2H6VZQSFDxyReU8ZAnp/c7/t9LMcVfV76jnPo2L2HiOsnbXmKuDaGjEjjs0Z8hlH0wPHLiXHnYWhMjfXPLUif433vaz0rm2T9GSOEEEIIIYQQMgRFB0JIzq0DPISQ23HM9R/L7vmAvlUXzA/lp+YSZ/qb9r88YK72LBMfo2n6UFvzz0veR0XEZbFIkZboktHPV2PZJQe+S5fItgtm6F1t7cpUOZUgJlnb9hTxglIcK8c+g/L2Tml/4oHTOidzjn0pn6VPzRLKYMYIIYTcE8wUmQ+/FJOlwTFJ1si1xu3cmbZrup6W3talZgUR0kfX/eKUMRxmop7aJl5Hjw3P//XIDdON+EC8v46PFEdaGWNpVkGyTCembTQhmzIKDlF8AKBfvIetrQtmhyyKCe0KbXHL1y5LA3kgXNqBZa3b4oxaSFk63xQjLiOhME4U8evr+w/Ql5cmwJ+UZ4pt9fdL1bDvutmnraGpj0edbmOGL8iUZW194LuSjgEpCp8F2Je50RZq1KYeKOmzpXaaTl1DxUA2ChGBDb4zwSi+ykqZzR2DaqGVPezLbDutMRPOvxGIlE7s2lfQ/a7dlkQ4iRkpuZn5MVkmY5wziy5ej5JckMNQGCGEEEIIIYRchqlf+sa+FC1lltqjw6AuWTq8V5Bbw/vkdZgTTJ06K/6YEsszPuPkM/WDGbp4P5G0VJ9WVSOkzBlPaXmnaLZtWn+Prg9EUaTxO/FeJSKAN58XwJXXCt1bZ/sfantXyaq52SJTr7W8dFq+36Hx0bfu0HFpDdjC9Ysmpce6SnrNZWrpLbWAyuGxGdO774NMkiAeBTGp9d4lMntOvHe2BLACGKl4GVi/MBJOyKVODCGEEEIIIeQ4zhUcCl9MGWy6HT11t3lOyEMz977E64WQ83BEQLxVtimfCZ8TVuuKM+b7zkWaLOAePDakCKKDD057E26taycq1LUryxVm++fVIMaewzEjoomTpsFurTvaHtbXJLMitM/WQJVkyPjsFn3bQXe76GMC36+Dvhld5FkKtgnGH00e9O9oixiBwolOWu3Ht9knjgyuYwFr2pkXQ+29wLMh+KJIIpAoaifIdYzr9vVhIE9PbkyOeWqd3NAukWyi4BjGeOqpUxSwunsgYYQQQgghZOkwoEsIuRc4I399PNIz6JgAFiFrYg3m7Uu656gOihxdHhgnzY7PBJc0aBuEEHhzbhFp+U1obU+a8B335ctozSa/f4ZAeSh1ZQSorQuWBzNvL8IceIXMbXf840xjp+u8qQW8INKU1LrgOB3rj5bx/QVKoockgux3VW2P8XR5twCkcCLDVa9iOXIcBHEtiI3GQFCMrNSwbmHEGADiLsR44c9QJwkh98kaPiwSQh4L3o8IGWfsOuF1tCx4PtbFkgKVl+aa4sij9CmZTjr+LjE+1jDmVtNG6+LRuYjQ5aGQCh55EDs7XkmMruMsdrjMEBGBlCVgxAkh1scw7UxRQTWW2pIiEV8AL2TUrUOZ9QyoayDJEtB95V4Lf3sBx3VDHQ66aVcXfVk18X0DKXzXCo73Tk29U7re7iprNUTmT9LsZrg/w36kKA4zaUQg5cYLTU5kuuQz2olYiQF8hxgYEQMpne+K3e27xR1TdF8jc+nKrAKmeeoE/DgUI+6c1LWzQdHpWS5HSIgrgDNECCHHzJAghBBCyG1YQxDl0RFZ3uST0CZ+/yM5SxmjhJDbMuX5cJBZcGImQcwQmfhsstZljsTMi+n7TkUYEektkzTreKx1AfTwz2ezNP+SwLUmQsPkRneIDabDh2WMY8sYzin35YntmhpnSvrjICMGaAlmB+9dms5sES/kpOO265xO8WWZipg4Blpi4hFoGKtHsO6MkaKAqEANXM00XCb7iBCyMkKNzHtkaQEJQsh8TOFmtVy6Xish9wQ9LW7PEvt9iW1aKlNnxt5Tn97TsZBulvrdaGntWRLXOGetkjze3FxtY0IeY7tZILooAKvQvmyFE32NXaaIb4NVl4Vh/cz8ru0H8/WsPVKWWYZIDa1raD0hayOUmBowD9faAlXlBJDgH1In5blyE/E55zJkG4SMHevFkXQ/U5g7fqQRXlpeJq32HC4f+uvAK6Qv8yUpjRaOL26nq8JRUUBEoZVttj92jmYiidAx5gOjViEIWSxd5cgWEmsTgWy3AFxGkxiBPD815enq6SLTqqdUh/phkqa0cZY4IYQQQhbMrJlQhJBDmB1AyOXg9UUeFY79+yMrf9R+S+KM9bhsUfhMj8JNZCpLL2YUzbJipo8VP4M9+oj4+KWquteSTJE+0aX3e4PPOBBJvDIGthOPccr3EPUlvqLgUjevn5NrC4h98eKxOLKYtuDRJ4rkrw0dX192w6Vj2hMElwP/kauVppw3vqQo3DUb/zZeaJLW62OsPmMEFk5xVW17jSxBwSKEkHPD2UeErB6tKn75JmQufP6RJbKmDIspbb3FsfQ9D9fSr+T6MINw3ZzFWHsk6yTMvM99MJL3VaX1unkqIV/+GEbExRo3JewnH0H2NfAHnwFWIYVxQsbLaxQ2Wu0IQocv66PVvtklAKmqlpl19KHI/SZCZkFsf9b8unbLpsc71B/NDieHSlU1ZjMARStorda4rJsQZDcuQO2yKnqyL2IWRPZ+aJMEsSHLUjhHhlE6mb6P1Dcj97wIHiBdjLWrJ/tIqz1aNhhxDNVJtsrAc3sssyS+5rNWpnqCpH1/4awul72jjfCWJzzkgzUdC2Ig2w0gBoX/ie3GJU4UBcS+AZ9Pa8q6hRHAiSJdJkVr+pBKCCGEkMeCn1EIIYQ8Iun39KFJAq0AyELLJRFCbstQ3G/s3pEbqwMQY4CyhD5tgKct6o+fYHY1ii+2bvnCQLzHhngD8jwrRKyFortcUSyjm9/7TOkyP8RATCJeDB3bMeTHPGU7ocxVUkYrBLTz5URlXHjJ96kDokPKsTHebNsH7W4ta5JfpfV7S1w4B0PHMqVPfPbPJKHrGKP0K5Xf7DqGzvHVRVH4fgpeJcZpBGUB2EfJGDEGAuOUV2m8RiZ1ICGEEDJEX71RQsj54EQWQsiaWcv9ayntHAv0dAkmzLAk12Ip1wmZx5g4MgVV5/Px2eeQL38M+32fQqzF5lufAfsK+vrWBJdrC93tfNUa25TJCh4ZwcNhZH8Aou8grDoxBfClupKsEb+c28cZK+MM9I1a9Zki8YX4ev5avEd7DxIpjfcmyQ3ah31NXDmgee2cxJjIkGdISMgSMd3vXxNJMnPyNtjaZT2dKxP0wFS953ylmSrnwI+ZUBouZFxJASd8pP4ueXv2lVvGCFxmjEDSzJuJrFsYCelNIlBjnDKbK6yEEEIIIWS5UBwhhBBCCCHXoiuTRJ3gIVUFlAbYWej7Dy7gXwdRpHb+ICHzIxVD/DYGP9Nmn3lTU2z/Qv+qRqYFws9Jq3yWHrzWScgcmRs3z4Xxqd8Ppi6ndricVlqOzJdh63z/nAyWyjJN5kSfEHGhsXBgUN/3/rmEOi+KIMT1g0hopLHM6EBVIWrhSr358nXGZW31erh0sGphRAoDJ5/5GmzGNDcsgF+0CblXgkp9zhkThOQwW4SQy8NrjBBCHo+5mSN8VpCUqaV3CAnkJfyilwGa73xe8NCXVxS//5nLDKkqJ4xYb5YejMiDF8jcbIKslFX0VggvbX1mSB7mmJodkB5v336n0pcl0lGCLPUJ6a3iMyN7ZxJ5ZmHffSFkGuRix0i8OJh3x2yFvv2f8nwaKPcmRhqPlxD8D+05db+tHaX96MQYd310xNqmeLXM2nfHtqKHuEL3iQlLdg2npc4aEaQGVJysMqN/Lmx3f2FEmhNj/KGEk3jOk0UIWQ7+mnc3bH4gJheEX8IJIYQQQs7H3M9W/CxGCDkXfbGDLHaoeyeO6OtbI4oEMST9OxFUZt+r0mB4tg051uR75LiOoZ0J05OxMGQOfkn64r59r3e1dUobr/UcytsixmdRZDHu+DPJrDm2rzNRZHH0jTuPJMJcvpzOOG+rzhhBYRC0HakF2jGQWFOLkDvD15/UGvf5ZYmZbtcnfXaw7wkhjwqfP+QccByROUwxYed4IkPM+RzP+9NtuETm11EZECMlrgAXjC4yoUQV+vbWzhAZ8l4AxisP9ATodV/52e6nVS6QogDE+JjJEV4Qag/NxqcIIDFzJATyB8pRnWlcxMyOcH7GqooclOxKPDXSxeqJ2zmVViZTco8yTWkpFAKtO85j17NzqrDW4RUiReFFv/1xItJckvJmISMLQPMznJuec+ramgpIzTXYKzB2sHphRKxAQ2cZE03YY9YPH36E3B/3fk3zvnU72PckpW88sLQHIYQcMrcuOCEBjhdyCnOMgHl/uh1z+v6Y8zT0+bzlJaKuhNbB+qYpz5OKINb2l1M62IQXOObOz17qbP34+/xrpvGp6ChfdaYge1P2CXAWCxMnx6dCWDhnNjkHtyip3dcvxgB2wv0tE3papaYAHJR+SzNQ1LaXH/A9uSiZZ0/0WOlArXZexoAXRWacvnULI0FRC7XX6nrOsROyHvgB7nHgeb4+6SwN9j9J6RsPHCfkHuG4JqfCMUSmEGu9c7yQMzHVd5Jj7jYcc80f66URXhtb389Ub4LB3ttDjJu5/t3vusXqpERPaza/Xz4be7P9H3z7g5+E+Z5PIcag/j9/AN3v+sWesP/0eLqOsdcTZDj7Q8oNpDBNOaIsOO1KiiXHmp0HMQIpS/deXbcyaSabuE9ArUKMPQz6A4ApXDu2W38M1k2m325cObSqcn3+pY9cVtAX71tj1b68XOae4dvVdSzuF9+vVgGx7UyRxPtDyg1k40P6Iu73sgnxy/Mz9Hnb/J2fw88+R/0H/zceoxu7w74iQaiYKhQOon47opDMP6URqzrOq19XCn9uC5+dFMacCFAWgD5KxkhwrVfvWW+CAfuR5bP4AY0sGY5PQi4Lry9CCCHXhJ/tyKNyy3GfX3e8DtfNEs/dI4+pvmO/RH8MZR1MPQdp6SsfXIVV2LpqiwodgX8AjSH6Mdnk+Qx/Eci7ZxfjLAy0SktzHcY4W8HjjL5Z9q19D2QFSGGAzcaVcVIXoI8Y4wWOdIeZOOJ9oMVaV+HHiKvuU6MRMk7Fn7PObQVz7qJwwXK4Uk3uuJxYIACwKYF3zxBVYLd3sWTjy1aF7JMzVwpoZ7nAjTkAgtodS3JuVJsMinw9KYw3Z/fJAk9PkM0mtlW/9A76bntoOeEpXl4PM6kOGpv4+7rGwxmcn7Msnm1EjHAdhizAscydsnT94LUBGAMUBloWUFv0r5dv5sRDWBYh3UZkXl2+1gWcDZpHfaCRZcByLYQQQu4ZPufII8NxT8gy4LOIkPMwlIlw7utrikdRT1uCL0WM7vu/RQQowv1AOsoPhVJZWWZILEsEdM5w7ylBFILdIcitL6+NN8JQibgxD5DQJanPx1gQPN22aiOK5NgeYePAu8P/9GKTJuJOZ5mtOYhAyk07AyVtQ8hGsAoLQIJAYhX6+gopS8gf+hQwBrrdOEEkeMsYaUo0XWDchiyJSOiWg5JjFrDGj4+O7VQVUNuYJGBCFgwAWIUY49q+3UA3BcyuAqoaqGtIVUNfXuY1PAhcpgRQAnXd7O9YWtkq4TXbXHtjWFc1SgoTM4KOOV/rFkbOUZfuEgYyhBBCCCFknDl1wQkhhBByOx45E4IslxM8K+JMfHhRJPVzEOOzG4wrG5Waqw+VbxsRQYAkEByyVIrC7Xu3h8JnNxjx5ul9pX0HjOATU+vRz9rpdT3Qlzr12u9ZrpX1MOWz/9j9xogTDrrKP4V2aA3d+835ElrY7wERJ4iURbMfMYBp9hf7/9z4drmddPh65P2flt1KxIJY+kqMS+LI+kv2e0hZ+LJSblzLbg/sK+jbDrrbH9X8cJ2cJesnkB370dtWBSCubNiMZ9W6hRF/0O73M36p5sOeLIVHHYuctUUIIY/B1LrghBBCyLnJA1AM/A+zpL5ZUlvIOJc+X10B/b6YQsgmCH9aAxGFIgmm+iwHwGUbIHg5RHPofP/tF6TcNNsBmiwQ48tmhewEL4hIWbpl95VrW10n4knHfWlKfw6Zp3cF5JO/D0QiXxYrYuSwD1oCi40WB1IUUNTOR8KXR+r1jsjaMUinmXhHlota6L6CypvzEtlXMADMFx9c//t2h7X09a3p/2uXgEsJZbJCu9K+bbXLlxTzGSSyKVv7kA+vkPcK1O6c6H7vBLj9idkeU5gb15srcloFUMesmZAJpkZ69bIu1i2M9DBZyXQLD98UCCHXZ6CWJiGEEELIqmHwlZDbwqoR5JIc6zlBLsOQsBBKFgWPA9uUU4oZCWnAFXWzTFg/3V54zXtqBCGked201pOicPsJPhj1G7SqvHCgTZbK3LhIX4A5fX0kc0NEoJk4AqD5e2j3vv0i4speiUANXN8NCTZziBkzTYZPpziiCsA2/WpraCVOIKgO+9UJDBcSRbrIY1/+HLmybsVkD231IkE0IQ/sK+jbW/P3bg/d7e4jY18tEAQ3NPXGcqP5MdYtjKi6+napMc2Ei7RzO4SQ5XDPM4j5IZmQ5cPrlBBySXhvIeR2DHkghJ+8RglZH7k4MWfVUOYpBosHjJsPshTQFi5UnZcFFKiqxpsh3FuKwpmsp8bgeTA+LZN1jsmiXf2Rx1zSe5/xxt5qXdmp3a4RFtL2pevl902rUANIXbtYrQ/wx2yRk0QRHS63lN/HsyyheN5CmSrvPYI8W+ccHGQyhTFjm/Pb4XWttXWWNbU3IU9Lo6Xijxd+ol/H3h2Pff8BsveG8mkJrnAupxxjEJWsKys3eF10HesxqDZePQNjRG3TR07k82MiZGnp9FJh6xZGgHjTcf+8SHLOWmeEEHJOWE+fkOXD65QQQg5hlv3yudeg/jUmLJzgU0DOxL2MX46j9ZBc9yHQLqbn/FnbjjWKeBPxHo8PIBptCwonElgnNMhm47IBNqVrQ1U1Y/9c8cw8OyRt21BprUDMmHFx1qOMtr04Eo5pUgmtubQytDoEm3S5FN8nIuJErP0eWtvziiId++tsT49PjKrE0mNirPe98cb1B+JIsl5lgVc4PxWglbmktR0WlYYIYtfU5afez/NnfN8Y6fosYBUwtimdZeHELd1NbeXKhZG6GSgtfN06QghZHPecDUPIvcDrlBBCDrmHgOW9c4/nKA3YdcyqPSv32H9r4l76v89EmdyOIdEtzLgPf1oDCVFWMS7wKu595w3isincZgWSl8uK20TblyNQ19CXF/d7EAx8tojuduf1tojbycpNRb1EWhktWntBZ19B6/ft9k1FXOkx2W6aKj/Ijmfo+KYKpF3f17xwENtsCue5kQoyoSza+/fuZ/AYSTNizkkM9tdNabQpq4VMj1gqbOPEqnDYYiCFQLZbSFnCvr1B91XL4N7uvM9LIva1xKmpE17U+sSlYPZet/tqzuSFrn1m90wpCt/OzKQ+335du/MXFgsZI+Kv04msWxhRdde3auMrkp6cOTcTls0ghBBCCCHkNO5lxu8UHulYCbkFDCwvj7FzwntiwyN7jSzx+TgqjgSsn5GPOEs/YowL/Kd/A42ngzdtj9kV2fmPAsNrYwTeKpN0qclZMfCcBMnTEl/huLyniN3tgf3EtnT0qRQGsimd0GJtO6DfRy6Cd2W1DJ2/cGyx5JQrjyZl2SqlJUXhjvH1rd33QPO3LyE2+binjvcgwk0RR7ISWW434iQmte44igLy9AR52kJCuTJv2q6VjeOpM2/gIJuop3RVuI8lAs/ReQhT/G28eCfGJ0IMLK913RjUGwNVdRpmgfHzl7B+YSSW0rKTTWla8MMWIYQQQggh52FpgZBL8kjHSpbNEoOQp8Lv6cuE2RDTYR/djlNK4yUZJE4gqZMZ9m0z9uhxnPtoZL4OsbRWeC2IE7Gs1XUr3gSj7ljiK7yReDgfv3Hn/YC980058CbpEjwSoaApT5b0eaQneN8qhxZMzL3AtUu8JtIyaXnf56XHhgL3B1WLjuizIdHUZ91ADLTa+9i3y9qIJd+2W5eVY3ymj8/iENRQMf3ZLweZlwPlx8aOb26J1SiydPRtMg6iiLXdOqFxLNYfhD0Rd46NAPoowohVQBEHtIbBMiX9qesmeW8fJgkhhFyOR50BRsg54XVECCHn4Z7EEQaUSRf3NMbvjSWem66MnVkz+xHLH0X/c1GISrNdkwRykwyQXi+NkDmiWbuu3XdBFDACoPBZHdNLD03afhBF0uyZHlEk93UJPhoHJaDG9tnxmtZJlow1jX94pz+HNipRapKe/h1+15kT8/uea72vm6YslNaNz0haEixkKiWZRq3lhrYdxsApz9t0O1OZsk+fuePEIduIXHlpLSCKIjBJf4ngYUppqbWAlSZjpPXmwm7KhJAGBsLIPcDxux6W+GWNOHheCCGEkHXQKqdyg+f3Wj4zhH5aS3vvmfwcHHNO8jJbaTw8K4nkBJJ+QeTg76lxkbkeDr0lp3z709JeqS9Dn/H8TDTNnIkvZqWngiAS+jAXRyTJrkkzQTp32CG4pG+HLAtjD7N58nXS85ed+1mYon180UQ9eKB0tDttc7U/KOvVZN4o9PXNZSj5WHgUoLJz3E2PcfsckaQv82MKvVkp7e1FoTGMI+NVLQ2eP0WTXQM0Y7goIDPatmphxGWMuEwR9SW1jjbL4UOLkOsRHw40OCaEEEIIuShj4vCaJqxQ6CaEkOVzr/fp3CskNWmfO3N+CnmgeurzvI8ugUZrl8EiCkHhSoUZca/N9W1Ogu0xUN+3eGb8HvE+Jyi8GBC3mRmGD7UtyUqIpblC9kh/g9zPPp+XmedWiqIpuyYC3e0zz5qRWJg/N7HEVDj+MAb3OyeeHNPOSV47A8wtoTWVsC0vgESh0b8uRSIqBUwirBnxgpRxSRQTWbcwoiFjxHqRxDavj657pzdqQtbA0W5NK4Bf2AlZHn2ziHitEkIegbF7XQggXOqL7jlZaruWwD31zdTyHsd87uZn9fmwtNl8Hm2cre1Y8/NzjFdC6++ZEz7DzHegu+TRsZlZE5eXzRZSGGeyHoSAIByoxNJgl9h3DPTnfi2ZOKL7RFhJTdLHBKiebJHoX9GXLTJHeBkiZMMUBjDG+YAArrRYjZg5Mnn7QSDp2s+xTLk/pd4veZ/PFVCmZkSl+xMD2ZQuAcILQAfnLu0DMZDNxr1WlpiT4XPGInI3IPqKpCfoigFXfkAg5DjuPbWY9wZClkv6YZwQcj3ywDtZHum9kedqXaz1c/XQOAvfF/JgzEjJlKP3R7phn5FrsoTxduk2+NI/URA4Yv1Zy3ZkncimdObdPpuhud9O9Gw+liSLI2aKhH/GNP8AH4xvPDVyH5JRkmMK68dtpGLUXO+PIdISYcY4H5DgBeIzSHr9Z87FWLvjd+Gx5ZzHR+yzuf2RCiud72Xb9f0mphFt3HWSbCMZD52Evi59v09k5Rkj2l0b7lofDOcaOBFC7h/eCwhZNqF+Ka9VQq4Lr7llk9d25vki12DOjNlzZDRxXM+HfTYf9tnxMbJrx/JugWrbP6KrLUMz7WdnyZmmfpQPKpvv/UPQT74E42Oq8vkX0JcX6G7vfR2mBcF7RZT0uDq8ibSuIQBUTPNe8DoJv3dt/5hyZf7zzUHSRegXmxh6+0C+GIFst815qGuXXTO2/7Ava2JQX1/f3DnfV00JNjGQsmj7qoRj9Z4qeRmpA7yQcJDdE8Wmxrw+9TaJmTN1+K/vWGzMcOlvQ3s/h5tQv78eMSMTTzSrBKW73UB2jYW+vQFioIAT2qrKiW2bEmp3/ceWsXJhxLoL1gaXej6ACLk5axMK19ZeQsjp8JonhJBDeG88Hn6ePOTcpdnYv8vkHsuT3uMxXZN0Jvil+/Bc+8jF17Ddrlny59rfUFA6BouPEE7SZZJAPwCo9UHxT76E/R/+EmzhxIGnbxWQ7xgA7wFrnb8I0Pb+aDXfz+iXjv2rEwZa/hj5cagP/Iu60l1pQLwry6ArOD9HPDoQDlLRILye9FVRQJ6evCm9ALWFVJU7ZWN978URKVzGiL68OrEpE2Bku4EUhetL2yEc7ACt+rMjokeLdI+lKMyoQmK1svS5bA+TL/Lz3ee3kh6H76/2WwKtLQ48eNoH0DqWOAam+tR0vK+7XWyTHfNwSVi3MHIMl6idywcmIeuF1y8hhNwOBhMJIfcA72OHDAXzpixLyK3geDyNa/bfJYyfgeHyn1P9GfJtHkEot9WYvc8gyQQNgkjwbqg/fsLbH9pg83mN4qWClgb4+CNICND7zBFFu/0h2I+qAuq6LWJ0lTgaE4CCiAJ0iDgalxk+xgmvAVksONlv8pr7YSCo3fGFzBmrkLJ02QnVfsL5N5DnZ2CzgdlXUBHYNx/0D2JCEIdixkz7OEfPufcx6V1OG4ErvjTW7r5roLeffT/aRqAQI1Dk2R9d69dx+3GInOt6FgPI9HJl6xZGrEv7Gj25Q3A2ACHnhdcSIYSQqXTNIiOEEHJ/LME7gJBH5p5iX7c+lktlksTj8mbj3qC800IAwOhn6PheEqAWoP5og93HBpvv1jBvFdQY4N0WsnsCqhrwZZ8OSyR5Q3ERWOszEYw4Y/G0XNMUsoycVqmn3Evi1JJiIXOllXmSBc5jpkINReFFC9MIFkUBMSYagY/ytIVuN8Drk6tktts3CoD47Zpm+zGunQpCQyKP9zFx2RY9bUjLc2VMqrgU+qxPDOwQvqIYM+X8nPv6DUKdEWDGptctjJzKrW+mhBBCCCGPzDG1ggkhhKwLZorcL33lhsjyuKdztZR7x2A5pSO31+HbIEWB1D4glFFyMekZn6VN4YzXa4XUcD8rv76FE0Wsy2KIpZryoLoP5Efz+CTAPstYPBuLzbElNglzxY/WBjX73baXGxSUrM8YyZax1pW/sjpYZkpCCa4oYORtc9kcYq0vpaWt9wYJBvZ++7Lduiyeum55mADoFERmk4ojrWM489jv3Pf8mH24bubc6lYtjDhFLU+zmpgadC8PBEIIIYSQtbKUL7aEEEIuz1jZFUIIWQsX/AwbRYmAEQBFU7LIixLOn2NC9rUXXKQoXEkoVZjKiyK1uhJatXWiRxpcN3LoM+LfD/4VB0H9WWJGyHhoBBXnT3LExKkpz5fWMsOlqlS1KS2WvOba3OHPcbCvdjm2mNnhy3iJKNTA9V+ysUmx7Sh8uOwdKUvYt7d2ebMurxZgIPuoazdtb5rWQS+tHPIJMf5VCyMA2hfinA9XSzqBhBBCCJnO0j6IEUIIIaSbzpIzFxRF+Bnh+rC/1wPP1enMzWLIfRsASLlxmwplmfomcIcZ/z54HmfDl6XLXNjt3Lq+lNWgoKAaMyGkVpgasE8F6k+eUHz+BtntnTBSFEBhnShgjM968IFxL5xE8/WiAEpXSgu1dVpDLBd15L34mOdD3m+hVG/8PQnyT/VrsV64OKV9RiDvnoGyhLy+NftWCyd0tfunVd5qMAPGApsN5GkbX5eqOjBBD8eRtidmHg0dh7SFuQOBZMiUPcVk7RnyHJnDQCaJWnWi04x9rFsYsRZAjwpGCCGXgF+2CLk99KVYJ10fYtdyT72H8qtr6WvST8s4lOeSLJD8XpkFdprAFA6fBcB5giViRmcCkzuHzzty6hjI72Gzsxek/XtSxkyKArLdOLHhxR4G6jtm+ju/C1fGCWIgmxLwmR+y30NjFsPwdyT1GQWmsjB7Rb010GKD4v0OUtVJZomBYtNki4TSXcF0HXAB9607Ft3tIdj7oDuSwPqE72uh7XNv22PnJhVEUq8WrbqXP9iuBWyetRPeGsrmaIsK+rQFNiXw+cb7jNhGpAplqtJtaiPopOXUolF7OEdlCdlsAPUigB8bLTraOVYGLGQWhTakbYrZPemx9n2vE+nwnPFlyFLxDOg+h3MzQLx/DuD6SmcMqHULI4QQcm34IZuQ20NfivWx9vrya2nnEPdwDCn3IFbN5ZGOlayTfIxmfzezZYeXO23/LNH18PBeSc56TznTekEcKQrIH/1+6FMJs3eZFvi/nwP7Hez7l3ZWQRrbTYPtu71bD3ABcdVm2TRborMdFvK2R/l+C7O3EKtArdCygDw/QeoN9Lvfhb6+QaNfg8sa0bpuB9v3e2jIIqlzbxB7GDT37RPj+iEtIyVJtkMreN5Hn4dI1l9ODFJfdmxMpEnauN22smWkSEQHq6i/eN8tMHjRQ8sCuikgLzvIvnL9lLZbjC9H5vvYn0BNxJjOzI4gvBQG2G6AqobUNSDizpdfp/NYa4xnvKgmXiWHYk1r/aFnebqdgX0d9V4UbJLtp0JMUUBUgbfh3QcojBBCCCFkXfALLyHL41YzdNcwM3gNbSTkGlzjOjhmZjevT0LmwQxGx9z7hyqkLLH7/k9QfakAFDCV4rksIO9fYrmlwQC+WldCSwxku3EltSqXBXHoCdEdmJaXHcoPW8jeldUSVWBTQovCVeb5LqD7XbPLVgZMI2xobYGqOsx28Mfa6qewnhcEomF4ZZuMDngRprbQqeWa8v2lGR/hda2neYLEQxSX1VMUjRAR/FbK0pUj+/BheJtlAS0KmNo6U/tsnIQ+EP+6JuXSWoJIRz8CrpxaFJeA2D6FjpdVGyOsl4+fuWk9l7g3dE22S7N0vI+OqH0QYeSRb8CEEEIIIWshKSHQggGp++Ha5zGMqTWMnzW0kZBHhdfneljLPZ88Fplo0BmQTrNcjYEt3ez+zXcrmDcfbC5cxoYxBrqv2iJDUSRlrdLyTs4AXUS8qOH9JowvzwSfhZG0yQXNnfF6MF+HN1+Xtx3wtoPd7Q+PC2jPyC8KoIBb13s/u7h5T6aI+nJZMQtBW9sOJbpUTHemQV+mcPp6GiCfKgx0eHmoVWhtXWWmonDHhML1dShnNRHdlG6dvuz53OC9ZWbfkZEhvqTVfg958ULNxoskxrhzqzKsYaz8XhrFo05vGY/JyooNsG5hBGhSry5p4EYIIYQQQk6j64sM/WKOZ6lfaobMIs/NEo+fEEIIuXeGAr2PQEdAtpWtkZX4aQK21okYpYEWQPnFDvLqsj1cKatnnwXwwWVShG2XJWBMI454osF0yDwQ616zofyTX65Ksw8spG5EEfGiCKyFvv8A/eJ9zEBp+VykWR3B/N17W7hSTl6MScWR6PuUfNbXGur9NWJJrbpOxJDccyXZv9p+IQR+m0XhRJhq4mfEsH6aoaK+PwCIGGdtbdX7lEyMPXuBQzc+7G5Mb9xag+dIuv+ez7gh60Zf31zmype/7PZhinZfSU85sjv5/uXEkbYHCtCUfcOMQ1u/MEIIWR6PWPebEELIPFgL/jSW/IxdctsIIYSsEz5blsWjiyOBpERULIWEondxVUXxWgNqvOeIAK97yD6IERL9OqIoEUSRzMxavPIRTNHVZ27Esk9hn3Um1lgX+E9FEakt1Get4BXN/tMyUsFvw2coSJioLgKta5dhYcRnvNSHn/VbJdicWXzw1jjwr0iD/AjZKkWSUZEIIXC7EyONb0c1YLKeZ5Z0kd5vrAJ7V5dJg/Ay5lfi+1d8X08WVEYIninm3Zch7965DJEPr7H0WCin1b+BDv+XpZCd84NyYuG8RbEtM6pPyrEJpt+b1i2MWAsn3RFCFodkD19CCCEkZ4kfypfKUjNEci7dxmtmpBBCCCGkn0d/BqdZD8BBpgaAGLyNgfS6Rvl+D6lLqAAwBuZ1B33bucBuCPraGoqi2ZbpCOaXpXs9iAChlFYiYnRiFVJrSxSBtS4zxQszUlWHokgo6VUUkM3GCTG1M5AXI1BjXPaI1cYjJPP+kKJwwf3g/aGN/4ha4zI3Uk+SpK9j3wZRJQ2Go3C/bzaQ/f5QGsgm75qta7++jRhR+L62b29J1kiHKXq+u9oClfXm6LbJ7hljgjk6tIa8ewf76ccw3/ku9P173zbj39eDxJuDbUzhkp+5+3yKErELGvxWEvEM8OfAID/IOE6NAPoowgghZLmwvB0hpI+1BHgJOScc9+eBfUgIuWeYeX95+Dwm5yDNFAnkmRqqgM8eEdEmvruvYQqB7C3MroLu98B+5wQF73HhNuB8OWS/h9pEbQkZJFXVmG77klSw2niA+DbIpoTuMRqj0aoC3lyJprR0Vi6KQKTJThEDmCQQ35dF5DOMDvxDfAaDK0GWlETK+zYub5v3gZb5OABgv2+LEHl7TMgwse33u+4J1jbtDWJIaH7fPSSWD9PGfwW+/Nh2e+gf0zq0zH+la9vBK+b1DaYwbuz4cdMs5gSjo0NyYT+5ob0pBst8DbW3tZ2u5VJBxBP7I/GpAeD6MC6UjJ8g5lkL1d20NmLlwogqpqUwEUKuyxo+aPZ9IOYHZUIuS0yR5bX2kDzqeT+11ARLVayDRx3fhJDzkZeTIZfhkvfrR8tsfGQxLxUP4LIh0vMff/P+HzGov69hAMiuAvZOjNDXN2hVufhmmm2hNbQSl90RtrspoSJOwDAGUhhXOsiXUQqlrgC4clfWeZvY3b7tpZG2zyrw9gb7/sUdU0+mCArTLViIceJP67XMY6RvjGjmhyGmycIBujM0/Ha1rl0JLXHhba3TEkv9XjBpGSa/k6Ytybq627XKmo3Fn6UoIIUXRurkuLcbZ1USTOqNaczSvZ/J8Ibb3iD64YMTAjTJRrHeg6Uo2qXE5lyjfR4kXrjQGr5u2cB3k7TMXrjXtvxgOnZbFG7c2uCTo4fnKF4XHeKa1k3lrT1gdT9+rJ5VCyOgIEIIOZahhzIh5HKED0a81h6TRz3vpx73o/bb2uB5IoScypzZuOR4LtnHj3T++Jm+HZcMsfyWP4WNwXq13ux8t3dm6bs9pKqhYlwJKGNckLzK/DUK9zNkOcQZ8yHI783ZW20qkraptgQD3e2Atw2k8iWtdntoaGdSKkp95oMATohRBdJ4e2GieTqsOmHHt82V5XKiTWybF1p0t3MlrEzRmKXn8d0ks6T1XjRut/HvmC3QsbyUG993bS+TNCundc6CIJJsr+214vtGk4B/sr4r/aTA286d47ed84x5eY3H1GS7+IwU67OERstoNc+H2D6fmdKII0k7csYEkkGxw3pRxIt7RQF5emrer+tG2Ms307fZZFtQ28qmUZ+NlPr3qGbt7yvHNZN1CyMYV+sIIYQQsjAe/QsUuQ7n/LL+yLMhCemDATFCzs+arqm13gPW2OalsbRM1luMRbUIPgYto3SgHagGoPumrI/WBcxu77IJdnuf9SFeZPACws7/9JkacVu6cwHo4NEBNN4dYTnjfkoohxXak5awenuDGAO11gXSqyoauLvt1NHkW1BAbdWIMEE0qWuYpydXHioE5/cVdL9zZaPK0ok9hQHC30XhhJEPH1C/vbng+vOT64NWeSTbCAVd51XrxuA+yxaI5Z4AF1jflM35Ojh/fQKBE2+AkAVkojiFQgAYH4u2hxkngDtHr2+urNcX751gEESRcuP6wVonGMXjzAQad1KTY2y3VffufB0IKvn6Yd1WxsbAvlK/F63byyWZGlKWkI8+akq5ve2gHz40nji58IQOgSttl9rWdQIR11fxuiqcQBf63be14fhJBesWRjQzX+cDjhBCCCGEAOf9XMjPmIQcwuuCkMeG9wCyFJYyFtMyWiHzQBVSlk2JLPWCSKnOH8KLAkFcAJrsBrEWahpxA0CToRFQdQHyULJKDORpC3l6gu72MZNCjLQrEKXlitLgdd6XanFQAqkoYEpfumq3i6WPDvxDrG3EntbrSdB8n5Q8CkF2FcBW7T6d4lWRE7IQ0ATlpRhaoVmvk/xcpMvG9vkMljorDYbaZ+7UEBVgu/UZNN5I3GeitEpPjTZzQBQZO66OZaPHh8/I0QEDc1WF+LGlRprjTdp0IIQMtKsz6SH1dEHX8Z6n7OS6hZEA000JIYQQQsiSWOtMWkIIIYQslyVksU4M3K6WY/o4iAfeNyK+HLanCt25ALAzzLbO6NyXoMq9FdQ2fh2hnFAsqSXJbH4EISWUilLIu3fQj54hn3/htm1ME5wXacy6rTdr9z4krYB/6seRH+p2C9luoC+vsC8v432Ve2Ak7Y7ZNsHHZLNxZvNpn+aeIQNeFfl+YxaCmaKIDGDa+4xZFblnSzADryr3uzEu0yEkxNgaqk4AciWkFAonlkQD+gNvlI7vFF2CVU66zpi/buLrIuJEtD4RSf2Y0be3bHPO46aV0TREEA9jmbN2hkx8/cL3ulULI60UGkIIIYQQQpYCRRFCCCGEnJulfL5YSjsuyagnQwhM+0yQPCCcGojn2RQIm048Ivwy+ex5Jx6kHgv9cVDxxunuX9scHpIF8kWAPttv790haQmtQCjBZUfisaoua6XwyxtvEF9VSd/6/cBlvQj27ayVPMtBpP3a1IlIQUjoKlnVh5joLRI3M9UTRHz2SzCwD2KWBJGrADYloocL4Mzrg49Hnyg01Df5/otipCRZIuD5bB3XVnGl1nxpNXfcSTk2tWgMdTyJl05s72gGS4dXSE/7LsmqhRFCCCGEEEIIIYQQQi7KEjI1yDJQ9cbhwRTdez3ULgAt4jMgQrmpXBQJmSHBKDuUokqD7VnpKK17PKzTALQp2lkEIu61UH4rbUYQOowcvJ4KM0GUOWh/XSfeJx3XhA+s675y2RWtbIQsoB88QkSgdTCc94bcdcf2h8pqjZRsAopxr+pgeh8EprAfVVeaK88S6cMIoAaw1vWBSpOJUxTOe8U22VeKGoICSEpYqe0RSOIC3ccipfd3CedqLItDjMvW8WPXCX3NOcNuB632zTbSfvaiiFb7bJsjZdCGxs8UznRPXrcwonZigThCCCGEEEIIIYQQQo6AgsjjkJcK65mtf+DHATjBoWjPlpeydEH/YDC+rwBTt3xFeg2402bZjkBynkGg0ogu4kzd862pz1I4POwOn5B0vwheJYmfRB8hq2SITqPxJrOj23fiyOvQn9PRTI/QBjhRQsRlurhyZ8m6Y0F5VScA1XVzjuNxGWC7gWw27tzUxnnBhONNslREtFkna19veayD17yHSWpQnpieO6HPjZVQ2k1EorCH1ENkTgm9viwVScSmqeudstwI6xZGAD6cCCHd9KXuseY7WTvnmBnB64AQQgghhMyFWRPdM54fmXsdEz4rpPn7MJgehQ747AIf1G8JD0aAYgOpC2dWXdewL69une3GLdMleORtAdB2T+9eTkMgPhqfb9riSCpAhL9jZoM22RB5ySp3kN5fooLudsNt6SCWaqqz0k55kF5rKIr+ElDH4rc9ukxoUygZlWdchHJYqUiUt9OLIaH0Vnv71okiHz1D3gxQ1dAPL6501aZsTNABQKz3JAkCiR6WREsJGSlZCTRXEq2IxyE+o0mryu23KIDNFnh7g76+Qd49O/FGXPkz+GU0FW+GSqmNec4M+sX0bPdC95h1CyOqPblkhJCH594+mBESOMfY5vVBCCGEkAAnTJCpcJw42A8N99oXIt5guydLwAe43eumMRFXC1gDRQ34mfduFV/SKJSm6goIH3sv9vuQwpXS0t3elaza74Gqcj4fdd0IDcHcPODFlFa2SF82x8D+Q18AaPwmgoeIKBS+3BjQiE592xzL6kjECbd4VuJpRNTq9LdIzokUReItUjgfkDRzZlM2ZaeApixa6MPg1VEUzo5DxIWvg4/M6yukqlw/2fowU8f7zkjwKtF6craLWuOKKxW+3aqAN3ZPxQ2tvdASBLXXV2C/d9vY7aL3CYxAd/t2Bo9aAP5cpwbusYMw3lYMLJNnbV3wPrNuYYQQcl3uYTbImttOCCHktizhObjUACZn0BJyfc55P1jqvWUu93Ic5LQg8SXHwK3G1xI+g9wrfb4NYpzpeaVNVgPQZB3Ec2FbL0PU+XZYdYHlMNPfz/JXFP2uAHPHbyIQyHbrAvVvb9C3N9iXV+j+MLPDvr0Bb2+HBt9jGSv5fuPviS+IcaW8NBViELxCvAdLWcI8P7ll6p6AfwiMd/WHCKTc+PJPviODKfq+BkwB8/zkNhNePygR1ohTkhrUF4UTI7bbZn1V93owGPd9LV48c5vTpm9DG0N/iAHKMvYNbA372Xeh1T4eh+6rpg+sdZkcVoE0gyTPEunz69AaIhvIpoQaA6lrl3lSw/eZz3ayzdhQP2bCeNK3NyeUdCE++yQ9L0acP0qKZtdVeHnIEL614HXudRRGCCGEEEIIIafBQA0h1+cRr7uxoOEj9sm9coqXwD1yr8e1RNLSTsnfMYNkbHUj+QtOYPGB4vh+GqwPPhBTZtl34Mzfa4i1wHabZDt0LayHpbJmjC8py2jorq1STa5clkI7tt0EwkNbZ3mQHLzXZObErAoDwBQ+cyZpjwEkC9JL+RSzeJoXTVPuK/RfpTF7A8Bhv4bsi9QvJj+u4B9Tw2XMJKKR1nXTNvEeHyb8GUSXJAsmFRQG+scdW+NxEts/YfxOQa268l7pMU5c79gxfikojBBCCCGEEDKFpQQlOCOaEPKImKKp6c57ICHn51E/X+RllbIyVy3Ph771Q9+l5ZVaFE1Q2r9vd3u3/Y0LzYqKM9ke88E42Lf/dbeDqsJsNpDCZyjk5zT8fcJ5lrKEvHvnsgqC10gwDA8eIqFtaTsDtobu02OYkD2QHoc6g/CQlaFiINsNxL8v0mSSqKrL9CiKxjy9KCBf+ghiFfaL94iG76H9qTAWskSiSGYghWlKpIXnURAfEuHBiRO+TXB+NPr65kpYRQP72nmIhDJodQ3UXhRJhRJx5bHc0JjQX3XtSqaFNuVm9gf+Mc3YdwLgwDjMs4C6SMqcda8/gStlyVEYIYQQQgghZC08YsCCEEKAWDudEHIh+BljkMHZ7kN9l8/Sz7IsYtZB2P7RZeQMIIiG2VK6kK8rm1Qflgw7ElUFqqptvh2MypuFsrZlx3SmrIHo2eKFhpjxURRNXxrj3jfivDaAJmMlvOYzOtQqpDDtTBK/HwBOnEgzTYJnSBSDvMiSZpAYE99viSxx4xqPI2bebLdtYUCs37+BqjbntA8xzXEHUSS0bWgd9IzzrrEzmHHUjIdBQWZsH12vn/k+RWGEEEIIIYSQS0HvDULI0lnLvcnXTu+tO08IIWckLROVeoRMoWW6ns3W17p2AfCQ1RD8JWK5pqIxr55yn/MBbykKF9T32Qfy/ASxW9gPH6C785UvckF5LyoURQzSixhgWwD7asbGJt7Hu5bzzwS1vk+LovFZKQygArHqskYAl9XhdQH70vbP0KpKfhcYnzmi6o8znPpQwissn2VjtMpfmUaEiV4n1b77WKw7DtlsnbH7u2c3DmzdZLpY73ViBPr+A+xbk8WSj00pDKQsoXVi7J4+Q/MsIj9+XDt7vEymetL49w59XUbWGRJt0v2eGQojhJDp8MsHIYQQQggh5BacabYzIYQMkpRNajF15nriE9G/i8SjoSPg68oGYlwEbpnC+/JGVeWEgLpuSim1jmWi4DJE4ikCI+4Q1AL7/UB5paTcWOrhMoUJYnj0WQnbFwCFQtRCg1CRZpaE9YaSKMJyXeXRUlHEH4vLakyEiEDd8Vr3QTiRZ18BhTbnEACs9efVt63cNCb3+WZ8uTTxpd2ccNMhaGTj52JMFfi6GBNMToTCCCFknfQ9GDl7jBBClscjZ02ouhlfQKwBPWfG4cV5pOfmIx0rIfdCet0eBEdOCO7xfkDIcrnV9Zl7jYSXbc89qCuro8fkOnpGaOMv0bJwSPYtRQEY8ZvXZsH883Tyd+O/5L0szK7JNEj3b8RleHQFySciRpqSVe4Fl11RVa3Mi2aFJPiOpJyTGMy6j7eeB1lfhOyRN9dXpixcCSsj3pS+I4PBt1+shXZlUZjmfMtm434JZuZV1S45Ff1P/Lm1HZkZ+bGk64VDqSqgrmFjma+QReT63Pr+laJwbXp9g+47vlcEg3vAZZkU7jU3RurWOQkZUbF/RsW45FzGhvdk9Myht68wPXvqCCiMEELuC37BIYSQ5fKo9+hLzsA6lUc6J490rITcC3lN+nSW8SnXNO8HhCyXBV+fqaG0xkyMXBw54nNfKGeU+I70epq0AvipL4T3Kqlrb+SeizO2KQk1lLExYnrtMjOSY44ZNl0+FFk5snCMQSSySf9NyQr0wpGUZWOUnvp5AL68l3d3954eGjxRgp+LQSMc5B4wvqwUgthkbatv2x4xRWu9kEkTy6ONHVPe1/Fv23ifAK58l0naKta3q2cfRqK4I75v1MCNC3j/Ff9MjeOs77oL5+YYf51zcOHvURRGCCHrZMEflggh5OEYywh59Hv2ox//ECNfvgkhJKK+FMg17xe8R52fgeAp6YBjcD5ds/+BGZkJJvsz81jwM/mlQBPcF8SM4DwzQfIyTEGUsM3MfTGJWXrIRhjLMPbruSyA5Ni8X0VOfM0Uzk+i6g44S1G0vEMOsDW0awepsIOQaeMFbTGxv1wGQ9EIDsEHIwgSmWdHy79DDGS7gfnyx668VVn4zBhttlVV0A8vLRGj8dkYMf9WdfvZ+HNRv7pt5iKTP6dSOJNzKUvfnhJQC/vZd13/5mMpjAV/jKG/cnN0t7+m71uiFgC7S/5I9hHN24siyejxr0WBo+mnyZlDt7z/XHjfFEYIIYQQQgghhBBCumBAmtwSjr/zMEco0cOAdouOMlkuG6I7OyAGwPOgfAhYh+D47NJDXpQ5ZowMCATR/2RIROjJ8GgJCOn66e9WAbGN/0mOND4duSABI1G4gTE+a0Sd4XsI9ofskL5jTQScToPwuFy7VFmrPV1jJGRhwAsmWoz6dxwcX4/gNLpcIqiIEXf8HRPXQp83x8H7C4URQgghhBByHvIP15zlSMbg2CCELBneowgZZ2mePXlbukSR9PfO5e1hsDkNRrd8MtyMflcWCk2WRVIWyRmpJxkVeSkraYzB3XIWqlm/drWzz39kiJjlYlrHGdtta+eRMcRQiagD35XaHUtc1/lZ5GKDGGn7anTu1pmJY+NKaWlZQPbe22S3h768JGbl3eKOGIG8e+e8Ql5ee8SIxlxeWxkZwWRd4zkS631j1EBQuf4sCogx0bRdX99a++kskxbGxMF5nuBNmIyDONbSt8M2Q3YOiVAYIYQQQgghp7GkL8OEEEIIIeR6rOVzYGoCPuZVFMQRIM7YT8tEHW7bixkDmSNut3PKeeUCS4fxeGv5QBZcP1g/LXlV9HuZzGVqhknqbdFavT9TJfqSZNuUfQVUNbDb+6C/X3fgXKlVSPQO6fNZ8fvabCCmbpflSn6KqPfu8D4nRbd3ixTGiUND5/8cBuOJH0gUo5J9tvp8aYLmjaAwQgiZj/F1EcdmERBCCHlsbv1he0rGCr8UEELIOgj39GtkI86ZfU2mw0xSciu8rwaAJmNiLJ6Rmk4ngfxegSSKI9nM/zDu80yS1r66SyiFjI7oJYIez5J0UzUQRZ30/XALLQpX6gmhtFKVCRcj12cuMKW/h+2Y4jDQn2WRHGxTLXRft1/zviOhva39VLUzWa8q2A8fXImoypmuS7npb79a2JeX4WOEL4f1/OwyaL547zN/6qyvBKgBhc8uCb4edXKujYE8P0HgMkeieDP3Pjj1O4tqI9rU9bBgxXsyhRFCyBGcYzYBIYQQsgQe+IsAIYSsip6a9hfbF3C9/RFCLkfHdSxGmhn1Q58FM3Gkeb3HhyTN9JjYlgNjb3MYb2ktUxSupFR4rx6Pz6Qm5jAuWN/y4egLkI8F4/MMnGPvmV37UHViTpr9AECsNobrVeX8RaweihZT9pcvm4o+gOsrFSd6dG0mNVBXhcALJJuNO0ebsulDq+7cAceVs5rznUWtE236MqPCcTK2R2GEEHIEtwoihZs3M1UIIYRMYerzKv9SdE9iydAX2vRL0T0dMyHkfglBLzHT6q6fY39z4OzbYWLA8YLPHWb7XJYljPE52b6Zz4cYib4P4j8DHQSpez1Kgr9E4yvif3E/gz9GHmweE1qzz2FRBBDTDl77ZWS7hZRlc1zvX1ymRKtEFuI2pCh82yrA1hDZuD6wFvCB/Zjl0lo3iAR5aa7EvDw9Xr8vV3Zq4v15bDzZulWCyglaToBAXUNfXqF1Dd3vDtc1AgTfl1SsyrNYEjEk+px0ttWLXq3x5zKEBHVrHJjnd66Pty5zRT+8AFUF2ZROHKmqcU3ilHuZqvNd6d12OFfoPle3vM7nZC6lHNlWCiOEkHVBRZsQQsglubcgygQDTkIIWR1LvXfd2zPk3IRZ9pfuJ56Hy3HNzK2hNsxZNhVHrHE+FvHvAaP2oW2hnS0wqY1ZED7ZULtP0yA9Mg1YxAkC4e/MJ+NAqPCBfhH3U1G4wHxZuvJPJnhtqNtuWH9iH0dRxdYxu2P0/hxKZJl2X7b6o72Ttmm9tdDdDqgqJ8L0ZV/Y5jzHnz0i1aB/TLpcETxZUqHFAgjl5t25jOKN35eULnNERYDa3we7BD5JjrN9MPH1WFZt8rppO8MiflyoHxPpMnNExzu411IYIYSshzu46RJCCOng1rMP7+X5Mrcfl3Tctx4DhJD1wPvEOEu9p2oWULzUPshluXQf5wHXU8dz5m2hp1SgCOWdgCYLpTTtLINRcaWduRIC+1FoEb+96FPR9gixLy89/ZNllpTem8P7Xsh260o9PT9BNpuYzYDdHlLXMZivr28uAyNcryLtcxAEpmiI7ttpa9eEdPmUIPhsyibjJbQNcKKCbwfqdgZGLB1mDLSqYH///2kLKLmwpCG7JxFHerJeUiFB6zoawKflu2I7ii3EWtg3vz0vdrlzZ6NoJeGnMUBhoB89u119eIXu9u68aNEu/9XK7tFGSAYAuNelLCFFAfvy6s5RLjL5sSNFkZTwsq5PA1abPi1L1/f+POi+ctlHtxRH5nyP6RxnAkDQWfusAwojhBBCCCGE3AMMBhFCCAnwmUDugVtnp3TRCsj7wHWeeTK6CW0yV/LXi47tpfvsLZHqRYbCB8tb/hbJ+lbbviSaBM7thIyPtK25H8rQ+QqB/uAPEvaXHJcGL45seTVwgfywfCpuTfBtGTmQ7lJaVt1+8owUk2f8OLFL/XGJei+RzQbYlNDCtM+D2vY2urKIXGM6y3rFc3XMtZH0i6o2gpP1bfKiSmdGyhI5QwYbhRFCCCGEEELIbVnDly9CCFk6S80UIWQOXcHOS4zpvtnukz0O2mbs2uUv0oV1WRhaZQH5sJ0q8y45yHbI2pdliMjzU5ONAkDff2j7Tby9QZJgv/qSVCFIPqm8mG9T63D7DL3zjJ3DrcVttkp5iQDBu6OGEwnE9HvC5JkzqRdKjeZ8i8Rsn+Yc1hCfkYGicOWuYKEvL22xRnrObyr6FIB89A767gn2aQMYwHzxBqlqqLVu29b6DJGOMmJJu6Rwpc+w3zeZNHXdOka3WsgwUV8ey68bskUSsUmtWwZioNAovoi1MYsEwLBHyZLo8gSacb+gMEIIIYQQQm4PgziEEEIIIaSLS4l+p5QCip45J3ge+W20RJXM7L0/QyQJ9IfNpd4Wrd0025BkWbcb2/57tM0zZun3iio9WR55ZowXMUIfHWSojLUrnJ8ogLQFhUFvEc1EhT56yzkBsncijuz2wL46yD7pzWwJpa6SEmKdXiodYy9mI0m3KNKUQgvZN15cCRXblpildUEojBBClgFnNxFCyOPCez8hhJBrciemsQfc4zERcml6MjB6yTIgYHxodapAcrC/Hs+TKddz6jGhFrAGWttGHAlls7raVtcx+0JEoLX1JZR6ymO1jvu0e03L+6P1Rl+2ihdvJtrDOI+NEOl3mRlh/dTfJWbJ+P2oqvMHCdkSB1lAWcmrPsNza4F9BfPyBt3voS+vLivH71dV232dmdEHLxHEjBd/4MaX5aqqHtEpLCfOIyUKIbnXSpox47JlokACnVaK7FRRcCH0WNUTQsgN4Ad5QgghhBBCyLm5RlkeQsj5mFkO5yz7OGamvDfenuVpcS66+kh9OaSicKJIVx/G8ko2ZhOoDpQBm3seuvwyDtrdIdac63ynJcgCieig1mdR+P7Jjclbf0eDeYweVyv7ZF+5LJGqagQo/zNkcUi67S7S7UliQD+hn+Ix5qJIXCAVStISZtM9Zu4FZowQQpZBWheSX1QIIYSQ83Dp5yqf22RNjI1Xjuflw3NEyLqZWykillO64HWflmCa077c02Iux1bN6CllFQPgmxKy2UD3lfOmCNkGISsiZBvUtVunjhvob8vENopxQtFoNsExxzy680ZoCH3RKhelNpq2x63VWbttDZgiZmzI05MTT3a7togkBmlZrlQU0X0F+53PGn8Q+D6va+cvYiRZz5W1AnxWSCjxFY/JG7DX/tx4UetAiMv9XYKHykF5tp4+1Xr+ML4TAYXCCCGEEEIIIffKNWZbErIW5pRHIYQQcn7m+FMAx2VxnMqxQftrtrUV1PbB9eClsa+gIi47oe4JjJ+a4ZIea7Lt3hJZXet1cann8EF2Suo7krQ7Eau0rl3pqoCR7gyc6NkhcT9BCJHt1m9WoGF/Wd83okrRFjysAsbGElcQAYyBWAsURcvEPprM29w7xW9T0C+S9AmPidAUttmYvCf9MrW+2UKhMEIIuR19MyQ4E4wQQu4LljC5H+gJRvg5jVzjPtA3zo42SeaYJeTq9ATPJ1+PfUH0S9yD5go2XfufkwUzRD77f2wd1SY4rTXq7363f730GIP3RiilJAZSiPe+6N+flCWkLBtPEtimrFdXkFzSDAmJWRC5ybemWSz2hGB7yHwRAYqtK49V7Q/a4n602yDlk9vEvmpeTJdJS065Roc3fIaG/7ty4pT4DBHZbmG2Avv25jJHisKJJd6EXrzogX3lth1KbqVtBiDbjevHWJIryfKxzltGVb3HinuOivViTTBiV9ucY1NAisL9nfR5OMco/Pt+H2Jt47/i+yOOlKGMo3AcQyLijZ7TFEYIIcvhFrNBCCGEEELIdBhgJteA44yQ9cLv9bfliPtnLhCMLOyC+KoQFZ+tcqSQETIybFOWqqntdQZS8/RU/OrIGJE0IyQVpWyaHTHRh6XvGvB+NKZssj9UtTGDL4wTS4oi9o0TUFJPmNqJLZC4n9ScXYb2Pwe//64smWhaj5ljrSWOdHjB3AAKI4SQ29GnFvOLECGErIO5M8d5f18/fSalPLeE3D8MdhJCrsmJfhejdGWe3PLzTOtz1cDs+1M+f3l/iui9AbQC1JNM5I0L3AucV4egdsH80fMVSk658lAKba+TihhTyTNgTCLUaJIpEpYNmTg+uyVkbABe28lLgY0JNT2xLCk3TVaMaTxEXKaGda/5rA4BGj8SdVkfeHqCGNMIRx9eoLsd7MsroBbm008gz89NZsmHF+hu73xRtlvniZIYvTfHWCfHJjjwIgnLWZe9c0DIOBEDKXzmj8r4uGmdpx7T+Sk+cMDZr1EKI4QQQggh5DgoihBCCCGEkHtgKZ9Vz1WSa/L+XPZE9I8Y264N2Qu5uDJhXU3EEeAgG0OPEkc6vELiC7l3SO41krc3yy5pCSTZPgfN5S2Aovk7FRlC9ofPEoltSLJYUkHFlcsKYo7vo3AOUoy0PFFaoshYW7vOW5dIlGwnF116ycWjuX15YSiMEEIIIYSQy7KUL5rkvBxTj5vMg54uhBBC1gifW5fj1L4NWQIpMlEUgc862IXt1IeZGmPeMmmmhqTv95iDTyCaj6f+F61Gj2TfxLb1ZA/lxyVmsBRUMF/HdgsBYF/fWv2rqpC6juKG7nZuxc3GldOqvV9IVQG1hdaJEKXe52NvmgyVwrh9ibj9hn/IxKLUf6WvP7xQoVXH+YjZHnVMpJlVhi3dlenINOnKGjkQVs772ZjCCCHk9rRqPfIDFCGEELIq+Oy+DPxsREgbXhOEkHPziPeTrsDzRFHErW+BsfJJIQtgLNB9xkyBSWXAutoxJ0NnzoQgn1GhqNuChJjGeN6YduaH9X3my5Whapuxx2MMpushw8Y2gkv4eZg9k5TQAtqZGlPN0FUBHPqznI0bXI8dRb2G+Y3f+A385b/8l/G1r30NIoJ/+S//Zet9VcXP//zP4/u///vx7t07fOMb38B//+//vbXMH/zBH+Cnfuqn8Mknn+B7vud78Df+xt/AF198cdKBEEJWjupjfighhJA1INL8WyJLbtu9w2f35eBnI7JU8rF5rnvwlO101SUnhCyHGHTtuJan3ieu9blzac/Y9N56zc+1cz9vqLqMBc0yGLwQIkUR/zmj9qJ9TsU4Dw4xzb5j5kPhlg+01st9Kty+ALT2P6nvjhXaY3tt8y99PV98v4O+vbk/TAHz8ccoPvkY8vwE2W4gZQnZbiHbLbDZxL6VsgS2vo+sOn+SkFUS+m1fQXc76L5qMlT2+/gabN3+pxr7PvRbaHvwJpFy4zJA0mdtl49Kcu5b2+/rs9bftikJNrRc3ucXYvanivfv3+OHf/iH8cu//Mud7//jf/yP8Uu/9Ev4lV/5FfzWb/0WvvSlL+HHf/zH8fr6Gpf5qZ/6KfyX//Jf8G/+zb/Bv/7X/xq/8Ru/gZ/5mZ85/igIIYQQQgghhNwWCpSEEEKAgdnm5KIMlUhKfw9ixSkcBLx9tkIS8D4oszRaJsn4wHyPwJGIK90G3hPD3GPB9rSPhvqpZztSlpDN1v0sSyc8BDP2njZKdo608AbnG7++FzTEm7bDeGHImKadxmWjtPow+SfGr1eWMNsNzNMT5OnJiyIlZFMCvq2xH8R0iyPnYkrW0AU/X4rq8UcjIvgX/+Jf4Cd+4icAuGyRr33ta/g7f+fv4O/+3b8LAPjss8/wla98Bb/6q7+Kn/zJn8R//a//FT/0Qz+E//Af/gN+9Ed/FADwa7/2a/hLf+kv4X/+z/+Jr33ta6P7/fzzz/Hpp5/iz+GvoJTNsc0nhCyBrtRKQggh1+WYe/GSSprwWULI7bnkl2ZCCCHk3pn72brP1NrmBiLJ8mJgnp8gZQn79uYyCwJzymlNaJcL5pfQqmp7f4RMDzGuZFQoByVOCFDVdrtS1MbsBlgbDcA1mJv3BdnnHJcpYN49u999CatYqqquu71QEm8OKQoUf/j7gKct8LZzWSBvO7etuufcxH17YePTT6DPW0htY3YI6hq63wO1BXy2idtmkrnif1e/fBRNsn2YL30EfPSuOY7K+Z2EzBN920FfXppzkp/DYxgTmMaWzwWlvnEOoNI9/h3+FT777DN88skng806ax7q7/zO7+Bb3/oWvvGNb8TXPv30U3z961/Hb/7mbwIAfvM3fxPf8z3fE0URAPjGN74BYwx+67d+q3O7b29v+Pzzz1v/CCGEEEIIAcAALCGEEEIIeXhipkD3m/6n86+IJa+ONM/uJflc3jcXX4MY0kXIODkoV3U+P5IxpCia7ImicAJOzKIYCKWHTJayhG5KJ45sNkDptgWgXT4s/xfEHo+G81kYt74XkyTNBAmlr4LQBDhBpCiS9hsnuhSFz0LZQJ820I1vZ+mWEWMaD5R0e5fkmO9xZxwLZzVf/9a3vgUA+MpXvtJ6/Stf+Up871vf+hb+yB/5I+1GlCW+93u/Ny6T84u/+Iv4hV/4hXM2lRCyFBjMIoSQ28N78f3A7BmyBDgGCSGE3DuXyJ4+IVuk8YbomUkfswpqN/tfBLIpfXZG7YPrGJyJP7ldYpz4Yavm9XBsqoDWUBWX1RCpoSEp4aBMV538WrsMivB7emynnouQzeL9PSQYlO+lZXau1gCwB8fkjr/x79Ct8w2R/R6qTpjQum4yUTqbIMB+785nEImqCmqtM2Ova6gIBGiyRcK2fH+ICNQ0Ju8i4vb37hmy3UKft9CigKAGKtuIL3sFvCeKeffsvE2q5Bye0sen+uecMi4HWIVz2c/93M/hs88+i/9+93d/99ZNIoQQQgghZD6X9GAYMjwl5FpQFCGEXINrmHMTAlxvnM0VRUKWQMwEyX9m10jYvvHeFWmZpUtlY6QZH50m3j3/pm5XE2Hg3AJV2ic+m+OAqeWhsuViea7wL2DVlRKrrRdh/H5TUSZ4ueTHG7bjf0q2TxGfaVIk5922+139PwA+S8aJOTFbpctv5FRufB8/a8bIV7/6VQDAt7/9bXz/939/fP3b3/42fuRHfiQu83u/93ut9aqqwh/8wR/E9XOenp7w9PR0zqYSQgghhJBTYPDzOC7Zb6qHGSNdX4i7WHqmyZI8bUg3PDdkzSz9Hkgapj7XrtkOgOPn3knvEaeMwaF7zZTPOr7EUZMdglhaSWsXuHcG22V3uSpVyLtnyPMz8OEF+vbWX6pqqD19xxFfO5NfSc/+mkyRM193qtBqD33/wQlHobSV31/cbxAJ1Hb3hSrEKlBXjbARSlOpiVk7Upbu9TRzpobLjqiqKFY4AcX7idS18xIJ+09EkyCstLuuberelOACUNeQ9y/NfqqqtbxsN4B5hlQVdLeLniZa18dncHRdRzf8nH/WjJEf/MEfxFe/+lX8+q//enzt888/x2/91m/hx37sxwAAP/ZjP4bvfOc7+O3f/u24zL/9t/8W1lp8/etfP2dzCCGEEEIIIYQQ8ugws4AQsgSGAr9jWQ+hLFL0kRBI4cslGdP2wEizRw7KbonzlAC6syDGmJKhfIaSVq1/+bbPnSGS4bI2EuP1zFdEjLTFqbSdB5km6YQld740mLln4pUmWR9qbZM5Ymv/03qhJSuhpW5Z7ctsMc5XBiY7DttkiqCuG2ElLB88TArjPFc2GzfuzuE9ckym0AWYnTHyxRdf4H/8j/8R//6d3/kd/Of//J/xvd/7vfhjf+yP4W//7b+Nf/SP/hH+xJ/4E/jBH/xB/IN/8A/wta99DT/xEz8BAPiTf/JP4i/+xb+Iv/k3/yZ+5Vd+Bfv9Hj/7sz+Ln/zJn8TXvva1sx0YIYQQQgg5E0uZnUnG6ZixdtR6S2Pp7SNkyXQFrx7tmho73rH3mVGyDJYkcHE83D/huu8719ceA9oE08UIZLuFFMZ5hNS1yz4wPvsgCY5rjbZ3iPgyWr6clmy3EGuhVeUyAeZcZ133RpEDIaF9HCPZJMHnA4lwMDfL5owZCFK4PgIA+/Lq2lMUTpCqLYDCCRPRf8SfJyMQC2+O7kQsRelEhqKAWpd1oRatPtca0N0O4jrAv+YEEfUeI9gXSM+Svr7B7vauvWFsbDdNWa3nZ+D5yfVHVQObEhCBBmEtjK2qgr68QD79BPLJl4F9BX3bQTYb4N0755UiAt3tGu+RS3Ph62y2MPIf/+N/xJ//838+/v3Nb34TAPDTP/3T+NVf/VX8vb/39/D+/Xv8zM/8DL7zne/gz/7ZP4tf+7Vfw/Pzc1znn/2zf4af/dmfxV/4C38Bxhj81b/6V/FLv/RLZzgcQgghhBBCCDkDDISSeyGU2SOEEHI6S/xsELwgjDSZDj1IYaCFccH9sgkLx+yI+EKPNwjQCB99paT69m0k9VFfLtZnTViFek/6lGhqXhifbeHfUI0LS9qXReHKa8ELVabHIyk1cw/lu3KfkfB+EGCCJ0kUUeDGQlk64Saco3CefNaJVBZS1c22vPgSm1IYiDWQ0m8rZBm9c8eB19fZ3TqbK1xrokNXy0L5/PPP8emnn+LP4a+glM2tm0MIIYQQQh4Z+l8QQgghhJBLk2RTxAwRX0pLnrZAUUA/+xz27a1ZJ/V0EIPy//P9sJ9+DAleFdZCrEK/+x76/n0MjocMEgnG2z4bQjaly6DY790yNvv8OyEjZBa3+HxtvAgQxSHT+lvKTTuT5MMHl23jJyIU3/d93p/DNGWpgOgPop9/13l2bFxMW1/foNU+Hqs8PbVEq9z8vSViJVkqoX3lV/4I9NMvQz68Ql/fnLhRFM4jxFrnX1LX0H3lMj+sKx0Wzq1sN5DtFvrxR7Afv4Psa8jbDvrRE6pPnrH5ve+i/u+/0z7X+fehG34/qnSPf4d/hc8++wyffPLJ4LJnNV8nhBBCCCGEEEIIIYQQckYyQUFVIdY2QXcfvNcxv4aygG4KwAASDMat+kySItmfAeRwOyLe7D0uJrG8F4DxjJCuLMZgJJ4uc0uiIX0QHJKDCr4bxmR9nyxja8AWjXAFX1orLOLFkpB5omEb6X7SPgiiSPAIiebzti1MBQGnKKCb0gkioa2hz63LRtHd3gkjdZ0IHGVjvh72Xzbm8Foa1O8KlJsJckJ+TqdmFl05Y5vCCCGEEEIIIadw6y9vhBBCCCF93Ko0JEtSDtOXOTHkaSKJCBHKPIXl395cELzuUSZ8mSf7yUfY/eF32P4/L5C3t+ijorV1AXNvwg0jMIXPaFAFrIEYb/C927mfefB7KgeeeGuor+URA/PRR668lDdFl+cnSF3CvrwcLq8K7Ct3nqqqMVQHXGZPXTfiRj4msiwR8X+bd89AWUJfXt15B1riFIC4rBgDPG2hz1vIh1eIvkHNE+TpCfjiPfT9rtlfXUOrCvLuGfrxR5CqRvGt/xvfNtsNipcasts3590Uh1lCIl4wMwB6xJGF3B8G3HAIIYQQQgghhBBCCCGrhP5C90VfINnaxmtiDBFoGBYhu0S9yXkSiBdfoqu9bpKVEozRw6byklr3TGEghYnZIxI8PFLT+dCv1pfB8qIDbJpZoocZHwPG9araCFJhuSGj+7CeEagx8XyGrJ9ObCPcwFpgv3elt6wFqhpmXzfeJCOkQs2UdrrGXnccMWOEEEIIIYQQQggh62UhM0/JBHiubsM16v3n55bneZi+/kkD1l3LqIVaAyngAtgFWh4UnQJFODdqYT57jycRmNedMwT3YkoMugdT7zox/FbrAts+0O1KafmgfiqO1APHlbZjLtf2qxg4N7FkWFgm6W/n/1JAd3uXuRPeM040Ue/tEY5HthuIlk1Jq7gbf7xBmLK2KbulCn15AYyJZbCCv4la10atKqCqo2m7BHHGt1n3e1dKa7dvH7b1BvGvrxBbA9st8NE7YF85r5LPv0D54RX6xfukn4IPSyaCFIU7fsmEn74MkrmcaUwwY4QQQgghhLTh7EJCCCFrgc+sZdMKlsnha4SshVuM26F9BkHCjmSJ5NfdvnKiSJ2UP4qZDUkgH4iiSCq2tDINUi+OMW+TeyQIDZr3m4XW1pnT73bxd+z3jUk70PYpyek495rsT/dVS5Rptckm2SrhtfT8eJ+RrjJoqo0HCVSh4ZjUOkHl5cUZx6f7y857K1Ok77WpGSRjnHhdMmOEEEIIIYS0ebQvNYSQ9XLtWaRkefDcX56xGexDdBkt85zdFzEb4QHO6zVmuI+9n5VQct4gqXF5FuzOvB9QVc7zIggj8WfdZIYc7FJ8qS0DhTYCQGwLDn0mphxb373l1uKpKZxHRjQ5bwQGtdr0dzAyf31rZXxgh+j3ojbJysmzQtJSZWpdxon4kldJtogTVvbu/ZCJ4dfppKqcDwjgvFAAl0ECuPW3G1cKDHCCTdIG3VeQsoQ8P7sMmap2gs7bzrd54BoQ48aKGJdVZABRSd6z0ErbHiSn+sswY4QQQgghhBBCCCGEXIyx2b23DmQScimCf8RSt6+2/W9s8dq6YLf1goq1zhQ8DTD3+YVoIgio7cwMGCX6ceQZBD2vx31fSXhLymX13veCCKTB26Vue4cAbf+Q/BzZULbMNu/nbUjLaaWiUyhfFtbpaqPfR7OOP+fhfI9hvIeKMU4MSjNiyvLwPHl/lSCKwAhQFN57Zdg35WjOJMYyY4QQQgghhJwG64UTQm4F7z2ENEydkZ4vN2W9GITreeYPrpvth5le0zlnX12qv9Pzu+RzOrUvTdGd/SA+QH1sBlV+HeTbDt4LY9v0AXhNsjvc7Hu3nvjSTNH/I9uvvn8P7Hft4HwI7vtjbPmUHATttbW/VjmtPtKxISa2MazfyraIrw9klwwJFum6c7LVRNrtQuIZkpSdEiNeOHLlprSu3WumhGy3rWOVwrSM6uO5qWugctkZAJpzWteuf7VsnZvY/LoGkGSdlC7zQ+uOzAtrG0+TqnL7qmuXYeT7Sq024x2AbLcuW6RwfihSltDtBgIAViEff4T6ez+G+ewDzP//91rbCxkooTyYPD+77KTdrhlf1rj9hWOZcv30nUNJxKsp2Uo9UBghhBBCCHlUlv4FlhBCCJnD2p9r12h/mMELTC9hMhTQnUNeVmvt5+vSnNrfzOI5HkkCzWkQPgRh499nGMNZaax512VW+kotgKIpW2S94JIH13dwgfPUh6K17Y6sgriNsN2u9yaSZppYgzTYP0rITAAOjebz8zO6rW7fi0bs8CbpKq1jVlWI9X2ZtiGUxwpZGcZArHXlx5LtQ/c+4yE77nBOrXUlr7w4oqlXyBx82S9ntL47FCOyjA4J4lBrzIsXjQx0u0H90RbmtYJsSndUqu2yYH5ZKQwUJaSuXX8mpbU0zWYZI/bZwHltXa8CQICJm6cwQgi5HJwJRAghy+Zc92fe5wkhZL3cU3B67cdxavunzIQHDrM/5uw3ndk+ZZ+tdbtmyt/R+Ds3qZB0TD91+btckqWfx3N/7j1ZuDqxvFBv5onjQDQIWAXEtktnheyBvDxTGow2hQuaJ6+p1WnZLsnrUhQus2K/b/wt8r4ImTmtNjbCDGSDrlJesT3SerH5PY1ReREgPe6QuRJLQuV9qE4UCpuXooCiBmq/77c3J9xsfLkp2+5nrfbD/eTfU1VIXQ+XvRLngRKzWbrGQxB3igLivUZa4khoa+iDogA2JeTdO+i7J+dF8/7FtUMEKAy0FGghTR/kYrfxQkvwIzECQRFN3ScTz1XP88YLZHGcp+d2xrVOjxFCCCGEEEIIIYSQR+TSgXNmLZyPk3woFixarGmM5EHauf06dqxzsh3OQV4yq6t8mP8XMyjO4BeRG4+Lkfgv7nd0I+cJabfElSHfDgDBVyQVLFJhIAoVoTxZ3p9Tx4xt/EcOttHa3jRfGUkFC/eC+2GkMVQPpu9eAIEXd7SqMoEqaeMUkr6UM17rR/nbdMCMEULI5Vjyhy9CCCGEEEKIg7P2H4PEk8D9PS/bI5ZYiaVQJgRxp9aQ5/jrJpyv3Nh5Kmvo10u1cWhcTalusRbBRq2rIpSV1JKicAFvf63Ga9ZIU+LJYDTAHbcDF9hWaPf1P/E8SmGAd8+Qt7fGYyP6dgDmuYQ8PUGrCvr6dmhsHsy9E3PzGCTvalOfR0XwvTh4zwKalerKBDF9e4OGduQMlnyaeK/z5zRmg+TrmKIlIuV9pPvKZa9UVeMp4ktcQX2WDHyGSFFAVIECzjPk5dULYa4kmGw2TigRAWqLzXdeYb54hfUij4ZSWqFvdju3O90eHpb2jJ3OPtB26UcAsSycJJkivr+OhRkjhBBCCCGEEEIIIZdiSVkZU4ySp+zyTLN1F4mvqd/6t0SW2q4l0Ve+bdK6pvGsuHYmxwnEgHGeDXACItKe7X9K5owxbltBWAj3khjoF8AbgMMEQbbnOuw7L2mbRspWTW575tOi1d5ndijysmWHmSJH3neHTMUTb5ADguF6bd3v1iYeIKYpFQY0WSKhfxOjeRifOWJ8NkldQ152wG7fXebL2la2CzoFtBOupa7j7Su1NZF1Z4zwIUDIfUFPEkIIIYQQQtYBP7tPJ/UkuER/HeM9ceI+WnXdjwgsHrCkrJGltAMYzhRZUjuXQit4P+530buZ1LsgBthnZu10jekh35ehIHhK8AoK66S/i2lleGht29kireC+bTwvQtvS5heFFydC1pJ163QZeAMHGSvdx6jQfQX98OIyDcrSZYaEzJG43ofYBkXdCFTZtqVo+iL6iwwax/eQv18UTrzxHiguIyc5n/5nq//C60FE8j9nZUmEzVRVe3/ZmDHbDbDZuOyMum4vI8YJM/vKZYDUthGdQqmvII5Yl+EhZel8X8Jyf/h78fbVL/vGwGWJ/P53gLc36MurF4YafxiFAnVbQFRVwNZQL6KEsdh7jno7I1s2HOexWXQZ6xZGgP6UKEIIIYQQct8sIYiyhDaQ+4BjidySa409jvPb9sGZ9ntg6szzSpbE3MDrwepnnIQ9dG2kpe2miiJhs0YOr8OAzxQJJZS6RJFJ+zSJD8jEiemD7Ur2GwP/8OW5coEnEQRC1ota04hTeYZG+ncwgz/hniSp2DM0lnqEi8PljmjP0LZ91o0iFalzA3vvcaIWqEMzfIZM2GR4ryx9ZpEzatdtieqjAm4HQPmFcQLW2w72/fuWCCMmGWfw108wWo+eK0k5t6n0Tb44c5LE+oWRHM5aIWS98LolhBAyhyU8N5bQhiVxbHDs2kG1e/zOcI/HRK7DsWPmDFkHi2MoEDPFi2DurORzE2aS95UWyd+f6THi6vGHCNuZj2XpY2MOeV389HykgfCUcx7/IwtVqk3wvLP00ki/eO+CYASuVt11c0pge+j1qVkoWRmr4CkiRXEQbBYf3JYgahhpAtTeA0K7Av5BqAi+E2UJ2ZRNOSbjfCekMNC6aHwt4vHY5nBiCbKRMlYAYAzMxx/7TXhvlO0mHoPu98AX74HaRgFF03JPU/fX1595m1Rhdz4TJL9X9t3rW+dUnfBTN+2TcuPeqvbjz5L0WPJsHP+6fX2DmF1vJorufRZOl6iTH7s40QMvzf7MtwUfveyaMfH6Bt3tISIwz89NtpEm5zx4f9SAvr5BvCASs2rG/H6G+iQemB6eiy5mXKr3J4wQQgghhJBl0ZXh+2hB3DUGKY49R2sRR+4V9iM5lqWNnWs/J9KAVFc7Btf16527D4++DyfHEdqUHkfa3inbP/VcjM38XdK4uwSxv037NaB9nlKmnpMpy66NBdyLDsQRSbIVrk0eHA8lhOLLWZZG8IPwPg8i4oQQ8aJRKh6l249/G19GywskVl2cWZoMEgF8BkCy3tTsCaDtT+FFGKh1Jt9l6Q2/C6AwEFVoUWTiQy7uzswQOsiu6PHB6BqHE8aCOx91k32UlPya1a4+bO2a2NfXfWWmkuXDGHfLqytZ5seRff8B4ktwiYgXemqXgbLZQLCHVugXiLSGvk24Xk7N/ugVoGWyOLJuYaRvwNzbQ4EQQggh5NzcMhjRCs7c/svvarh2EGSoDnbOqeOp78v0pY6TY46QQ44RQY9Zb8lMLb+TH/uZap0ftudIIaErqJeXT5mynbwdx57zoZnz9+gdq4rOQO05DbzTc5J/llr7NXmu9s/NIsibkZf9OTZz5EikLN1sfu8hEYLYqu58RwNttY04otaJDmFMWItgBC5GoMiOoUsU2ZRu32kwP2xvv3fbiwbvRdOu4D0SMllqHAowYlw7gz9FUbjf/TGqKsy7Z+BLH7kMkQ+v7vi222j+HXDnx/uqxOOfFowP3iQHHiFx4wP3rKF9JP2ZGpz3Zm/0rNt+PTFLN2WzvVa2zkQS4SJkd8QswDTGvtv5JvlyXb4sVtxMVZ1+HfR504Tnwtj1O3QuZrRt3cIIIYQQQgghl2ZJwb8T62ZfjHO3K86kvdHszDWzhHFKTmPpgvE1Atm3CJaPBenTzIsp97yhZ8ep57hv/bE29ZXYIudnTNTqK/PUd26X9FnkWpwyIeQc95CD7DFzvcyRcJ8xAtEkawVADGSn7QIAdUF+VYVkogiMANb5QTTlrg5Fkfh6V4ZDMNAGYt9ISzxpAtVSuHukavd5iAbgor7NXhixCjypF0FsIqAYiBqX+RKba53viG+7+zs5tnMJuFNp+W7kE31GBLWpHi4ha6euo0B2NAfZHkkJuuAPEt5Lzz06RMMp5OekK9khXF+pkH9hVi2MOEOXjrSZpX+QJIQQQgi5Ndf8rHRsTdmlcI6+OqX8yDXP1bGzTsdmS085jnQ8XGr29SMGlsh6yLPpgOWN1Uvft8O94tSSTSnHlvbrWje2b8I96hLB7bT8Utd9dW4GyLHce/D+XONoiKFZ0Od4fe2cYywdEyPsy/ZJt3cltK4hXlgQIzFzpBHXjBc8kr/72mj10Jejj7qG+owBGOOyRGqL1Dw7Bv47tidF4cotFYWLbde1M+5O/TB8P2t16L+jdQ15eXWvbTdu/bdd9EmRooB59+xEn9c3Lzp0GHv3Csi+HUHoajrp9GfP1FJYU7fZyhYRdx6qqsnOyZdvCQ9HfoeImZC2nR0U/F16fE3m72dkG5f6LpBxxjN2G1oq3DkHICGEEELIvTHH3I7cnludj0vtd2wm9jUJpUeWxqntutcA2SMTgy2y3HF7Lm5x7+ldJ52Aecbram7Mou+c3zL2ce9xl0teY7xHT+PYczCUYTJnm/kEkfzfqUy9l6ttxJDktbgNhAyCjm2l2SJpYHvCMUSz9ZA1ULt2dAkrarURJMJ73pdCNqUrgVUUPVkUWZ+G9YOQouoM5MUk5vHO9wLbjctKMUl5rtAvXZMMOg/URh8Zt2xXBkPH9kbOXSjrdVRWBXDYT0Ds0zgmThnfE1CrURSJ5x6JKHKOyQtd19YN7pGrzhhBUfhycnL0gCOEEEIIuXumzsC99odRBgjmEWYxXrrfLrH9pZ3rpbXnXDBz/n5ZynlNy01dok2nlqnpq00+9dqIpYx6DLHFIN6Hw36AbBb00PYnzmDv6mORVsDMlZCZ+Uw4q8hzQsbKqetckqW159E42Yy5R0jsy7Ia2salxsKUsn1Ak0HRytJISlelAXQjrsJWHtwfipX2lXUzrlyT1jWwr9qCiCrMuyfI0xP07Q36+tZqIwDnT/Lu2QXyRbyZ+s75YgQT71AiK2+L1tBKgLcdpDDOdH1fQfdJloRVV2bLqvPAMIB475RYWmskeB9LeYVSYDriNTK11FWaSaMK7Xo2pOMwH2tat8qPpT4lbrMj3+cOnlk95dLGxA217nyFZZE8mvv6ZGnfMyeybmEEGE4VI4QQQgght4NB2vOz9v681Jjoq91+jqDdtRgLlEyF1916ufAM0IuPjXMFE5c0hkeyI6LpsJ0YlzjXdU6WS9f45TmfxzFxvtGs6IXFDmcJmqHdReueJNkxn2PSeKc3Rvzdb7soIE9boK4hZucX0ygcS1FANht3ToxAjIECrqyWjmdSqFXIfg+1rhTXQbaKL50FADAGYi0UisZnZEbmQXq853ruiEH0genbZisLJZsQkAvvJ7Ujf8k/s8bmH6Ql5W79PJ76Gf9I1i+MpCzpJkcIIYQQshRu9YH21h+k184tAmhj5+xSActTt7kmAWSIk2qpX/iY78U7YE1cy9NgKl0zUfOSM6egelq2SKsd9ri25XXifR36voDjQZmbPJgV6tiH37uW7Zq521MX/6BkTVcAvisAHJYzyWzzrvjJpKyahQTLlkrPuTuZseDgnHv0UsTHXg+II8bY4Oz3mfeVswXIe87RWKZZ/LvD/B2IIoHWWeA7zOzfV41pdpewcdDOdpmrkOlhPvoIKMsm++H1DbrbQ56fgY/eQcoS5unJeUGEjI66Bt49Q5+3zp+kbO458rqDfHiBvr6i/jwVAvL7tYXd7SGmipklUhSAivu7KHy7tPmsHNYfO9WmcMdaFIhG5gCw3TbLWIVW+/5nSFJOS/x6utu5PqprAHXMRImZMWG/ob+3zoMlljur61b5M91X/hz7gwp+Mun5HLuOU48OGRBE+sTcNNMq7YO5mSJdiDR9FJ6jY+LlUKm8E1i3MGITBStlCTd4QgghhBBCgNMCyl1fVG79WXcJbSDXpSvYynFAgOUKZkcGatzPfiGkM8iYzfyNpU+Ssi5ue/k1ZJLXzxS4DQHXLjGmsxQXMvHmCma3p947jpkwsCax4NKkvkVLPN480A2M/z2XCwVYp+27x8eiqy19E2SiV0iHMJu+P7lJPdkJ2w3k+cmVrQolrFQhZQHdlBDA+Xzs9lARSCVQYyBlCd2UrgxWaaCFEyDEGJi6Bqrq8F6UZ0zAiwJWo5ABa9x9TPzfde1LaRn3c8LknnCsUhStvpWybPYtQXTq6cckoyNsJ5rVx+dCuBe7sZoaqIuI914xkNCvhfElwny5sLp2x5+X2DoQ2frExYkThsa2kz9LhgT9uYQyZkmpuPhcSon79u+d2ZR93cIIMD5jghBCCCGEkHvhVp91p/rUjMHP6utE1dfAyF4jBLifsRADsna8NFanB0jqB9AO3PSJLDEINEVgSoQNDT4DeYDomCoax5RruWV226XG29LH8Vig81gx8BbHPfaZYsqxLVXYSTmY3JIHmXuyyYa20cdYRt8Azm8jDd77f29v0KpyQfyydBkLtmmrGoFYge730C/eu3VCO4wBComiiBYCKQ30aQt52zUeH5sSgvqwC5KsGbUGIj54Xm6AzcabsjsxROrald2qa9hgDt53rFYhxrrjMB33vpC1MSXwr7ZDEEkzLbxxvCBmkkBcWTFjjBd7gujks31Cxkj+zIjZiLb72jn2WhjMtOrIckxfP3ViRHaMBxmYB9u+TJWodQsjagGcWHONEEIIIeReWcOXRrIeOJ4uz1Jn3wPn+yJM1kvf7OUlcskZ4VOCmfn7XWbw6TJRnBgJxknIQAlBtJFyZuc+X/kY4P2ArJFbj9d4H5i7XpLdlXLKdR5FqhowZfKyQGsL7Ctnnl4MxF5VXemrTRkzLzSUmxKBivvbiSNFs0/x++lqT37cGjI0TCtjpLN84ZDglnZVKo6kwsQMg/MDE/k0axBoe3okWT66dyb0bt/pPTx7boRnQnqM1/g8PvS8P+dzoO85OiUL5kysWxgJnCOFhxDSwA+4hBByH/A+vgzu4TzcwzGsgTX08xraSK7HrcfDlIDgnO82SdZIs46fsWwEQHE4kzeZ2SxFx/vATBFFuoNSocY84ErKTDV7z/EiTWMcPzzDenCbtz7/ZD5LOGdLzRq6NHmGl62Pyuw4K8m+4/bVQmvnkyFl6Upl1c5HBCHToTBOTBCBbDYoPvnYCSnWHgTNZW9hXvduH77Uljw9AdYJKgdlmlKB2N8LQyae1jVM8AcBgKpy+61r9zNs56DkVCMsqFXnlWLEHZ8XR1Q1enuM9lmvaOCeF+ZLT05MsurElpcX7w3T9Hcs/xXv64oD8duG/sjKOGYlHC8SFx8tTTbxOdS7fdt+/sxtv+nJnJzJfQgjc2DAl5BhUsX9GjVmCSGEkKVyz58bb5390VUvvIuuL5/3eD7IsjnX9XLr6+4cLKn9t8heEQMxtlv8mEMetEu23zK7zbJTQjBQDZw4gnres6rDg0SMQKsFnVdCTmVN99o57UwyDg5e77of9vpGDHiaBC+Luoa8ewcYb3i+S8WL5B/gymxtthCpmtJS6e6shbxVQGGgxvtsFAXUVvOC2tFbpRETnJChThTpCtJnxvIxEK8KRXGYtHOqf4UX06Usge3G9aOq65fgk52JI261RCAB/P0d/nmTCBAd5dnEyPVDd10lVqcSjrmVKTPzeg3m7WpP0maAexBGpvbAWlJ+Cbk1enizJoQQQh6Se34W3vrYptZGvmdxaipLCfAsoQ33AMf0+egSFy5YSqrLO6SLJhMjK7k1oURW/D0IIcEEPgvuAYjBRSDM9J5wr/DGv645Ct3PzBa5BENCOa+T63Fv96ZzHs+x2+ob28f4hoz6XWT7yUXWOQSfi93OZYAURbvklLVAVTf+GDG7w/9d1xBrgbca8tJ4cMjrDrKvoC8v0H3V3LeAVumpPjP22K66Bt52TgwxBtj7jJaurInUyym0UYwr6WWc/wmshVZVO1A/NGEn/ZkuH8zYjROWsENb1N6UUTiSwmfe+O2EvWldu3WjMbnx2SNFcggKs3VeK+7Yrc/0ubI6cuyzI8mybP89bxudniRHsH5h5Bju5UZPyKXgNUIIIadzb18wCRljonnw6DKt5Y8wQCaELJtzX7ex/FVPTfJziSMh6Da0vUTgiJklx5YbaQUKe/qqKHz5lWkCh4jEAKdYC711WfIYFO0rH8Z7fCTvC/bNNM4xuWDuNZz7L8zZ/1CWx2xh5rTPUFrXLgj/bJqyT6pRHJFwX7I+W8NqI5b48lbiy29pWQBBFHl5hVb7VjsPhN+DxiRttOqyWFpl/Ya8RQ77QArTMl/Py1ylbcs6pWMZiccgmxLBFB6p/4gx7p4riejjRZkWyb1eRJLswLTtgGy3wHYD9f0tKjjwnBrjnBNvjhQ3TtvneUT9VQsj8cPBMapt3AgfIoQQQgi5APyMQR6NKWN+7nUxpc7zvbO0Y1xKBss1uXbd7nvnnGJFus1z7W/OzOyUIGRsSsh240q8vL0BoU5/XcO+vbm6/dstYK2rr49M/IgZJrY9adoaF2xMllGrLhjXNcu6o93W19U/OpZyCfrKh7XoEKWW0PaUU8s+5p4B6VuJmXP+XIyzpscyL/va5ev0x+yjar+8vs0ZE4XO3f5jyytNzY7tW2bonKaix8B2U9+jMI6iKJCPjbpG9NmwQSiwMXMklKvSKhERghF65bIcZLuFvr4CbztALWxtvSArsMELZJ+LGr58V36MPf2g1R76xXsnPnjxJs+YkaJA9GWy2mSUAK5d+b23p0RV+rcrdVX6XQRTdd8nVt129hVgBObjLzUeGIDrT6sotlvXx7sd8Pp2eD37Ul8CQMU07Q7Pl5CRst1Anp4gm02zsjFAWQBFAf2/n6H+7PNm++n9YyjrJWSwbLbuOVZVje9KLsqmY7Dr/nWsd8hUzmQBsGphxHVy10OTELJ6HvFLNyGE3Bree8nS4HhcJrxXHA/77Tac0u+hjMsUjA8SPj25wFYQQp6foLs9sNu74OHTk6/bv4/BN1cnvifI7Q3hY/wnCaapdeVbXIbKSPtsffwk20t67URxpAlGpsHcVtwrFVIucT3NLe2VBQSbQOvEYF2HINQSQoCsBFrqQzCSLdRl0Jy93wqWA9B6RGC7BHPOZS4KLJEL3+ejiBUzCbpLSIXlYoDfm5bLduvLY0l7jFSVC+xbhdrmXhTuSzGrwtZNtkhY34gzZAegLy+wr6/N+0lAXYqiuwRSVykwfxwH40O12X5nB5nGVN2vG/cZxo4/vt5LJ7sGczEp9K0zf68hcAKN+70AytK1AfBZNMYJOdhArBNGdH/oxxIP0aoroRV9VUKWiUCkdOdv445RQ9sKA/u0gT4VKHd7yBfvAZUooEOM20xf1kvyUzYl5N0zZLeHteq2k5631K8q7cTWPXxgfJ6BuJ+5mTIZ6xZGptA1M+QSM1QIIeeD1ychhBBCyDJhYJ+cgzWOo6ltrmvohxdXJx5ws23x2gSV6tqVk1EdLx+TEurXA4CG2cr1QWbJxRgqWTZ3OxMIAsNBGbG5AfGhNncaVhu0Ankj5SHjjPy8XaZoz7KeivdEkKL5GzWgRTG4Wq+gk/vXoJlBHsdfGENzxuM5mdlHkzKkHoG+8ZV6cQBNtoEoUPSNeY8JItm2lWVxUGoqlNUK/3rbmGV79JUF7Fz3iIyDxENJrI3lssx2A61tu4TXyDbcikH48X0U+jSITqUTKfT1DZ0eVL7Ulb6+uuwSXzrLPRcGmrAp3b3l9a01ztW6El3y9gYFIMY/F7w4YqoaeHPeJfL85EqehWdRKLmF7N6UZ4D4e71sNm6dqnTtDSJsmCxwcG9J2tj8cf7nfZd5+wncvzAyBmc7EUIIIYQQQpYCv58Qcns6ZigPvp+gde1mXccXLOzrW/KnuuwRoCWMTAnyNLP60Q7EX9Mr5Jb3qLmTXOPM847+6RVFZiDGCwxtcSpmjchI8P6gzFUSdNR28E9GdJHxpiazuEM2gZEYoBVjGy+DtT+H1t7+EWIGwOiCoQ/CvSIZRGm2iElFNCcmRDPwasi7Q115v9wnY7A9h1lLrbZKI9a1j2ECideHW1XjcaAoIMZME0aAWDpLsmtU66ZdwUBdrELxliyUlcdSd88PxuudQmq+e1+CUcyuvah1Zcd0X0HEQI0ApnBtEYFUtRNJrIU8bV1Gi/cykbqGFoXLbhnTFI0BytKVSBOBFKadMZKKI7kf1jWyuebeqwdYtzCiCgzdC/oemDSpImTZ8NokhJDbsLb7Lz/TkXvk3sYzr9MG9sG6GSmpJEaajA6xvmyKM0cXk5a+agJHvcGpkG2QoflM8GuPqXPvLw+UdmW/iBkWqUb3kdXAb2VVmHYwzwsGk7MR8vbOzd7pmrGNxj8mtl9MM1P9wAw6CyBnmSJiJFuvbtZLSrO5sjf1eUS2rHxSq32nblfMFYOvKxVYesZ6HJ+qrhRWHBJ1UmLKl64y3tOoS1gMnhzhZ/qekZap+QFB3Az+G10eFXnbj8Gq9xexrfbIduuy9qrhjI3YjLpDoDHiRIeicH1nEO8fjqJlop5zUB6wa5ntxpVk3O262+qPwfm31LCv7tzJs/Mdie0Wl32m4RhaJcXy50hynuvaZ6tY5xuz20EK25TikvR558dW1zFf4vpJRZkz3K/WLYwMwVI8hCwfflEmhBByCkuvMT2HtX75JoSQe2SO30G6bFHEQJyEkikGzUx8AC74PFKeKZYKSoJyIcRxraDwtUizQHq8VSYx5A2SCiAHM9Z9xkeVZaNMeS53zYA/5lneNelXuwUjKc3hMj37bIki4feoiyTCS3oc5xBF0p/p66dsO/edOMc2p+53yZ/Pejx7omdRV9utD+JbPy7C+bfZ9WPElV7Kg/hqnWii2mSL5EHxkX479KFItn0CnZk0iTjiTNllXBhJyswBaEREMc6nJZTQSv2EejLaRMQJE1O/t4gAm60TJHpEJq0tBPv4vu520LqGCeJHUTjxyah//tjxazL5Xesast+57ZQlRK0TYlTcIYiJ5cQA+H1kPi6XvG667r1Hcr/CSK5Od71HCLktvBYJIYScwjVLh1yaezkOQnI4tskUlh58BLrblwaSrAK+VEoqXsz2yFDFgTlxiGukosix/bXEvh4q1dPH2HGEIGUorSMGsnGlcTSdOY3mHMl2C/PRR9CqcmVv6no8Oye8HrJ8jp35PjUgnCynYcZ+TuofEsSEvnEY1u+Loc3O0OkODk/aztA5PWMgdDJ5W/Ish7HlL0XM8Onep9luXNB6t298QoK4JgqpjQvUp5kUQQgxZTsrScQLvtrOCrAuUI66duWa9lVsS6d/xoFwaVoeJo1Xz2l9qD77JZSG01AdLgjVIdOli1R8y5aJ9whjoer7xBhn4r6vmvfLTSx5GP1FkmOSpydnmP7+A4bSRqQsoE8bJ8Dk2YqqzfmM163PDKlrYAdIqUDh7nMaBKx02Y33R6rr9rkN363q2pV8LCxEqniuXYnA5Hnky42pgRdNZpy/K3pWDXG/wkjgEul7hJDLs8QP7IQQQpbFkp4TIyVWCDkZfjYi98qSqz3Mue7UNgHBueJFHq/oClKrRfQIOEUUCT+vcT+ZEoc5pi1HHocUhStRkwQyW++XJeSjd8Bu35QUQgiKTpiMIR3ZHL0eCrlQMWFyb/JeZzmprnVjpkgWhJ16LNcyOJ9yThOxazBrpPP6OX2892Y5xH3M6KtT29Y3OUgE2PiAehAqUp8QraF14RKUUnHQGHdtlI0wImqdwbcqXHlAgcAH0r0ggr0TEe0u8e7oG5d95yoKEieMtdZ15YSj1DdHkWZGdAhbfn3JM0Vi9kNT/lDExIwaWM0EniSTIogitsmskY3LNJEX6ddCxft7+GUPMqUQBCBnph7XEePaY71vUFguFWaCiFGWri21LwcWRJx95caIVeeVVbuyWVrbRiROhdes3c5vaaxOmHT/3ncdjN0zT+T+hZEAv0QQsi54zRJCyPq4VKBlDQHhvhmShJyLpV8DhBzLksf2nLZ1zWg/9bmQ7X+6cXBeMuUwsHaWZ+uY8DFl+8eIR32lo56enIfAfu8CtdlMeRgB9uKCfekMab99eX6CfvoxoAqpP4Hs9tD3L82s6Lcd6u98p3v/rb41zQz48F6SveJmXbfXCfX6e8sf+WNvbfP/Ze/PliRZkixB7LCoqpl7xF0ys6q6phcAPUMEAgiDIRC+Gd+Ct3mbl8EQoWkw091VWZWZd4nwxUxVhfHAwiIsoqKLmZt7eEToIbp0w003UVFZmc9hrhxXVUM0Tl6qWArlT/+u5AtZCgm08H0WoeuotWsvUY7ccmwhWq/7S/CSsk1CZwWjftMATQP393+C/3gP7hqgIbR//QQ8PUveCfbgp2dRAGj7D3l8yIszhY6dGOX5TnKRlM8eBnDfi6Kg700eDpPXIjqROPt3lhtCy04msfdWUvtCGChpS+HZ6qOIyq+Fdmsdj+F8vT72T81donlYDp3klwrqHB5EOUNaxlDndDikMi6pKtQZ+/QE8h5eVYgAsrwgRglXfZ1+yNQg8XdvyqDvHEJAilMkKXjc/Z28a9uKcyyUj9oWfDrDf36Q35wL72vG2qVx5tIxX9vLK+0Hvx/HyI4dO3bs2LFjx446bmUcqSVovBVeK5HnLfGenCNz3/RrcDLt2LFjx9eKGYOl/HspIfFCgvCl+5eYeV40TF5KyF7K/VH+/ZpzS6kSqIFZQmH98FGMisMgzH6vBtERrH4lz3nYmPAM6joMPxzBjQM3hOapR+Oc/H3oQJ8fgd9+R3Wtk4UJArLQNjYRevhdFUBqOKa2FXb5Wu6DrWokoxDQ97sEkzZjje/kAF5xFCzefKa9bFZnLahrboG5+740jN1rIRjJqW2BrsP4hx8w/OGI888txo7w8dCg/e1ZFADeg0YPPvfiaGWW67wDc0jK3rXg+2MMtcVEkmA81Iv79TPw+JQckBbMoIaiaoLIqBVcavOx7VinraoeAGTOryUlwexY6fN7+w2D35yjxZSTnI9hx3TMAJEoRdgnZwQQ6i84Og9dUOn4XL1VKibUefr0LA4odfDq71x556BcmShKFtopc3LYUOPgz5zVETXB6dO2ol5pRCXDbQNuGhkLPz9IXdjcWgBiqLeXqs0yR/LrOUd2x8iOHTt27NixY8f3jpcsMMswH2+1WXxvm1Lg/ThFgHkn0nustx07duz4VmHH4kJR8Kp5CipOmCx01FYHyyUhiV7TOaIKjBFTY5st2ziGJMQ+GOtyJwN1bcwhAs0hoo4IZnDfwz32QOvArZN81B/uJD/BuZf/trwve4DrawI6dPIswwRnz5FZ/mK8sF0lx4dPBsmZxOyZ0TLiDdaCa+1xrS1O8l1csH4jl9Q+72VNFVVRDuRGuPMAd2rRPDegEXCnATidQf0ADCOYPahx4FGM1+Kc8zHcE3ct/MdjvD0NPuWooKCW6FpgHEGuCEtX1qUNueSlXZVhmFJuEV8orWa+7aX1otdt+F5liL2YsyTmJwpKkTEY6ccxhJmS/kJtNw1fZ8ZTPp8lh5HN1TH3rkBwwKw41aMYxn4H028r91d1UVSKlOVkDioYn8am0YOOB+DuKN++a9N72hwuGlLrJcOZDWPI8+9xC+yOkR07duzYsWPHjm8VbxZD3L3NBvE9OR4s3mu5LL60UuS9qnx27Njx9WBrrob3iEmZff34pbB1YMOOlI+/JCFu9TmVUFz6XC0HrTCEXzAPkQsM7fL2hZJEEg/3YrQLrO7MH9W2oLsjcKZpImFmoB9AzycxGB5bSZJ83wGnHu5xAA9jXgeXvFNQiNDhIM82YWti2asvfwXB4dJ6zlS5LjDIx5zFb9/bUczdIAbQL9QHL3F+2N9LhfNc+55cm5Q/N2HE3wqxbQQHRj/AnQY0pwZgBzqNoFMvzjhVNDRNcGogMvyJgxG6azHeibmYGHAYQGfjHCMJrwTXGyM4T9tJAKmRW9OITMYoq6AI9xvq3y4lad8aTu3C/lod41QlEhQRTSO/j17GhCH0ZfagJiS+55CkPbyTfBtOSp3s/uV7uqjWST/V9xqzqq2y39aUKW2bnMOlKiM4mdE0oHCOfz7BffwAF3KOUNvKuBUTvLOMDbWx+hKU8+Qrz/G7Y2THjh07duzYseNbxZupN75zpch7x3uqs9KJ9DUaOHfs2PFlUIYrfE/hC7fi1QkEC8ziS8qg97HVa+d6yxy3x1/63Pj8MlSXKEbEmWGOx3KmUEJ06MDPPrGyzT2pa4HjQV7LOEUk7MwIHke4fkihcNoQDqgfQxiicVntUyt7AT6fhZE9lk6WuYTeW77XBua5nrcSwiqWKxolUw4KLacmcNZ6isqRLevBt+izZTim1TrZ4Kgsyk2OwGi+rHKkKBN7BoYBbhhBI6P9/YQWgHuUsEwxWfowRIa/NULzOAK95MtonpOSigYPGhkYxqgOoDb0JSJp02V/i0UM93cO5D24aWLCcnIUHDQtMAaHlTrdZtrJNATXDZ1T0WkGRMdZHCOCcgIQBVmoB35+DnlWpBzMHBxMHHIZhfKG/kFdKw7bwjFqXhA8Au7QgbpOVBvnsziuVD1ySRey44p1kjiKzhdiBmMEQVV56mj2Io4Kl7tDJ7/3vXzv0I5i7hrPySHyErnIG/en3TGyY8eOHTt27NixYxmL4SLecPF6raT+rTesX9LIf6vQWW+mNvrKjJo7ptidWuv40oqtbwm1vA5fesx9D99261h6QVltYt9q0vfXqvtgnLTGdmqcsLALR4gaSalpJEF610YmOxdx/KlpgLaVXCGAGHdN2dkHI+bpLMmGEYycQDIm23te8c7sWRQttZwH106HW799dCattFk/5jbN0nEQDKrkfXCOrDiK5sr50razFNJN/xnVBStqnLV7zuCLK0eKJOfwo6gUvAcGD/f5JOGzTiG8XGjHapTPVB5qyCcC9QPoeUgGfn2chpNzDmgbEI6SbwJIIels8YxTBGTaDaSscG1Maq45SaDtatZR6JOjlBfCNc2qhZbbXZZbxzhKsvGExfEKcuCnp/TuqrQAQOMYQlUVio6mEWdSPyw4Kb3kLrm/Ax4ezWM5jcvXOB6MMoo0LwqROKmaRpwjLG1aw6vxGIYm54Cuk28a2lDWjt5r/p0N2B0jO3bs2LFjx44dO5bxpRe5S8+/hhn52njP9fWW97gGu5H968P+rdax19G3i/f+bbcaz1wzOT/mHQDm2dmvodphjk4CMQIKS1mS+ybDZp4zReLscz+AyEkorabJjJnsGdR1GD/ewbVizFVDprCem/CKHoRBDMTei3Pk1INPp3mWdwmTRDoLMwTMh8y6xNBp63wuDNSciqRknK8ZNCu5Cahtp46iNbyxwisLPWTXg8HwPMFqiKVwnU0QXoYp2joe2BBwL1BS2XdUBQs5AoYRdO5TTpHnZwnhFMIeSdGnIZhUcYJhFFVECI9E517UIn3IOWFzaKhyoIRnsDPOEWbpZyzhluh4THkuNLRcUZ763+E7MOHiEG5rzjRyyZlBebiu5DAZxXFwOofi5cpn9gyCvA95ydUBAOj7UIRcxTZXNh49aBhTbpfQZtlLPLKsfbMZpytltuUUJ7KECYQtnzf1zOlZ5CQkGGkOESIQGnFyNU6OYQwOwhvkSPoC+LodIzvDbMeOHTt27Nix4/VQ2+h9TYbr91TGa50074WNfC3mcgJsue5rfu8d3yf2dvtlcIs6/9q+XY3pXhtfN76TJtGNxkm9PDCUo1GQK/X0GvWmOQ+6Nsb2j2W1yZlNOQGIURcQIx+5YNw0xvtDh/GHA9A6OFWDDMLcJr12GMAsoaPISd4FPp/FsDzH8q7BURZqKpbzhcnRl3LJVI9rzgA9HNQ1icmuypyNTg4iSbyteQnKcGBL97l0LXAlokFY81Usvdol7VcN1E6TTscHXmQUVpXETYQmVgWg9+170MkB5x48jPBPz+DTyVxTqA6icTyohcYxJNwOipHnE1iVC6btZPklDJJTNalAyj5MbRsdLDyOSZUWw/RV6tQ4t2b70iX7lMLBSC4oy8jHpOv2eHRk8Qh+eop1Fo/Ly4vKwtaL9/DnPoTiM/1zqd34kLukdD6G5zGa8L2L56+9ciPKDyA4aXzunJN61b/DN/QsKh9mGX/1eNfJewLiHKnlgJIHbSrbl8LX7RgxTIIdO3bs2LFjx47vHrc27KzEoX71538t2PLOtw4VcevnvBbWDGgvMOTt2PHusLfdrxeXGqW33Oc1x7eFECxXQY1vFSNdZuyaM2zPje3l+Zvr2cVyMZmEx5qboO2ErTz6rMwxuboads9n8Nm807lH83gGncaQLyHlDQA5YbQPA4iNuiMkrJ7kBFkC+zoDPoQAEkdOJVkykEIExW9SCwlkjMw29E92fq72oaYBNQ7uDz9LuLGQ/yAaOUOd+c8P09Bp1nA6DMAz8jA69j23ECJe2g9WmP+RHa9qnaV+eWn5NGk1kgNgVblg64QqSodwPDo2agqMCuQ+toMGJcG5l+eE99DyitGfojODWgll5VUNpfd9fEr9gj386RwVD9nzbW6JWtn8EFReLjhafDzG45iSso9+UufSrpvsftQkh0mm1Kh9L9ds66+FU1n7nTqLs7oD4E+nlGQcYpKOIa6AWGabkyTL2ZNeaLlYz6cw3hVJ7y+5R+27DMa5Wx6vlFMcRBy/B49jUo8ERVEKp8WAa6TuwjcOD0rvcAtUnb8u5kDxMVzhttt93Y6RHTt2vA6+Es/ujh07duwweJNkliuOD3KIyQrf8rk7vl6UG739O+/YseNrQM0wvWDsTnjlRM1X3nvRCD+H7N0qhi9dE2Tnbk/OnXKIjMJyjoVlUONAh4OoO8YxKTMOB9D9fUo07b0khtYwVn0P9+lZ8ouMPrClfQwjw8yJAU0hgftzYtpvCt0TWe01OYAHmgOIeHI4qmM018LptKjksKoI+X/BoFejeDAm06EDdS34Tz/DHztQnwycYBYjrvdw44jxc55PITMcm9wC2fsqnIRzYpt4upYA+jVhQgHljqmKQbUsHzCt88I+EhVWwyA5ViJrf2a9OkkGXy+TqChcqruJk8mUm+ttgzkkQ2cvDjCSvkJNAxw6aV+nE9APoB8+gg4HuE+f4PEcisgYPz8Av/++WAdVVEKExVfN9inBKTd7HxOuLChUqDFqh74Hn3tTJ2ZcCfVmHSu231bVWxycLpD2TY5kfGka0PEQHJoOzAwHFG3bfHPjMJFvUDjktu5nmCV03zDkTspZh2DRzq2TvGjbHMKf5eWaCetmxjJGA6LwTXmcVeyQI7jjMTiVAVX/CTY6SObamu0rJgcWWMZN+vhBDvODKAB3x8iOHTt27NixY8d3grcKL7q2kL00VvIcyo3Dbiz/trF/3x07dnxtCAxV+adlC6MwmPmpMfM9oGCwz+YQWYJ9t8n9N4R1WTASqtGLmuKAGryDYS8L4RMMwfzhDvT4HBnu1HZJ7UGSNBrswM6LYyAkj4aGlVFngTpoDp0w7Dey+LN8LbX3m8vLMY7gpoHTUDUaBqo07pVGQVMvNYJKZHxzG9jdDAr/Qd978gijaqiE+0lJx31lzWYMoaFtxfu91xwEl4TBsnk92jY4KPx8fVTuT20IZVSokJg5bx9L9yEyIbnyNsXnXu7TeXEmhFwSdO4BNyQVghrf+yFXD9Tq4xYqny37lTKPCpEkYw/qCUIv9RSdGttVXIJyUAmHTegs9pxUEaezOEVwkBOd5Njg8zkpJuwz5obQaxRUC47YbIxkCXmVHEDTfCGzyJwoc469UmVlnIH6t1UDnSX/iji1HMAmTNoWxHmpUlfkomMyIXzTfkhzwsbQYsC37BjZGe87dlyHPXfPjh07duy4FpeEItnCFnrpOm5fD+7YsWPHjlsiY3EnY3Q0+pZOfXWOzOFLKCKtIyQYxBKLeuM9bLim6FS5RG2ysOdUp4BVibiC9RyUIhIaKIXWoeMB48c7NP0AfB4lQXDXyvFB2NzcNfKMphEniIbKaTkZifXbOWHba46R1QpSY3XIM1D7vnOqE/YsjGxHIBDYUdXIqsbwLAE2SmeGeW5QFvA4ihNIlTIW6jDxicWfMeuN4TNPal5xBqiSIShHUlu7QpX02rgmAbq51oYMiiqgNacCkVxHBJyMQwUQ51gZ+qt2H3W+NU0KR2XaFfdncA/51o2T/kMEH/LCUPiNn09ZOKTL3n9m7FrtIwsOJOPsiY5M50Deg4PTlocrnWtRwbJQtzzG8ZFZnCPcD0DjQOSkLskBzk/qjUsHyarC3px7zTxgxkjmpKqJThKralnDktPKODez3ERz17HkU9HQfXFEufT9QliuSXE0P42eY8Yyr3l0tij7DL5dx8h7Gmx37PiasPedHTt27NjxFpjZEMn/L0tiOYt9TtuxY8eOHbfGJATgwny1xpJ+63mqYmh6MRYdP5X5fAMRLzLgNY5/kbxZTuKohrC/RSWEGsdKJ4AykSmE3CECuwZwY3JkeZeY+2pgvGRdoonfAYQkBNu/dVAhEBG4ZD2TGCfVGK4GbwDCpreJxktyyDimPBFEQBHIiJ7PKTTZ3DuF/1Pj5NwVA2RMwp0lsX5F0spa37yk7y5BDbPD1ECOtQT0QJZfI14DbFfVqNPAMzh+FnO/7ijthznPdaHQdqNOB3CubNuCrWGdZlj/cw4kVW5kahjPsa1lDsBaWSZ5ZiSsFrMx8GsZ0ORJ3+P9vDipwnkc8hXF87zPc2tkZdngGKr+vhSGrTJ+uBR2j5gB0nCAwXlBvNoO699mORycOtXkWT59K6aoqotO1fK7vNB5ToUzOObQ0XpQlY8DwNsJ39+eY2RnBu7YsWPHjh07vjcsybPfI+Y2RLrojiEaKjGe9zXe+8Ba4t0dO3bsuAavnXPoVve/5NqoHPny42TGxsa63eyym1NmeI4GzMVwWzMOA/bgwUdFCLtk9MrPSyzv9G6GcV9cQ0TwDYlQhgjknBgXVUHSD9GYz2PwaQB19nWV4OFMUuZU13ZNk+ekKQy9jlJiby1XWW2aQFv/PkiIHz6dxKFD5TVSx9FoGcrORCmEGAB+egI/Pa+GDKMm1NnokYfTyb+/Gu+jc6Ssp6V8My+x62VlqLUtDpVwJciBuk7q9NxnbSyqhdZ8C+MYnV7Z9/cXhrLjEKqoTEJ9fydh5T59FsO/GpDbVr5d6C88iqoq9RftrzWp0gttrbX3rYYdC98nqBOyfDaqzttSDq/qDwlbFsPyhT5qx8JaLp/YX0J/9E/PhcNnJm/OhvpZC1Unt5R+Y5Oe23uTHfOQnMnELJGltrTDvFD5u5T5PMIz0TSZ04ociTJEFXIUxgfP82EDV8tSqDK1fOpAHH3uiGyNoxhhrrigmX57jpEdO3bs2LFjx47vFe/A6LIJVacImcOFo2chDvaON8Ka020nJ+3YsR3vxEj+LvHa9bI1zv1rPPc9oMx1oIa1qAa4sm1OQohNT8nyUmQHbhE6M5Tfe2AM3/jQgc6Q8EHhOZJcnUH9KMmn+yGxvzWEVnBkWOcI7LokUz8UxdAwL8xgGKa7SfKsOWkyhj8g53gGq6rDJJWfoFTPhGczRhBTfAaAaUgv6zgCQCfJRxHzUhTPnDjTrCoHmBp2LVmnTIIewuNIcvb6q70YNpn03PG5sm8EhzYzSTBfUxBUy+BS/gUA84kp5gpQOKDmHtO2ppzhPM8xETuN4shBT9IGQi6P2WcuYUN5AMwrkkrE8IQ2f47eZGYfoW2bCNQdorqKmcG9ll/6SCxvI0nFeabc2fcklxwuKBwcFyD2T3JZbhObGyRPLl4pm0tOWDk/fOug+hKn9MLavBICa/aYnjL6WMfqFNFwZ9AQiMW4ttmRtQVzbatQkGhowK34uh0jc8lY9BjwfhYgO3bs2LFjx44dJW5lHPvSRrZLGbiltLpkk2bhCN5pos7vFXMbUxsz2uKt2mW59p/7+63LtWOHxdLedW+TO94AMUxNTNyrIVH4srjsG+wtswbDmNfBx7JsiYcfjV6uSUZ2i6CwoH4Qw+jdXQgjNOZlGTxwOgOfHsAILGg/5vlFeAyhdwqjMjm4Q4eYJDsauMWIS43kJBEHQwhRVFEBWMeFeUHw0IOfJU4+z4WqIhNKC0jG0ZBEftXwXDhG8PQMfj7Bn07gfpiWK4bucrGdsBcWf6YKquUaic8syqSM8lfzjgBLIa2m+VM21Fn8t4/h1aK6RtUNG43+MX9OQ6Et4fL1LrMxOof8L00jZQnseupaMVo/n/JXPHSgu7vQN3xURtE4ppwQl2BtH2AN/FtU7kENE/OtEKW2ZhUNpYNOVUiqmkFw5I2jJARXdRRTzM+ijsykHCkUE9p/bRhCZlBTKf/SGFYoqeL4m313k0Ddji2z98ydI2ggIe76IR2Xl5i/h5a75jBkDtc2qX5G5OOEozQm6bxCBHYQZ9Q1OXxm9onV9h7UhdnlnsEXjC1ft2OEGSg77e4Q2bFjx44dO3Z8LbjVeuXFTMsXGuUuvXaycS4cIfF+u1PkXaAWj7sWGmUulvx7WJd/KZb4t4D38g2/JcyxN/d6fhvUQiLVfp/DkhHwLb7jzcKBmXwU0Si48X46ptbqboZNXc2fEMNMlfXosjAxFPIhRCeFcZKQI9DxCLo7xvwc3DZA24DGEXQ6BdWHGLTdw5MYikOiXoYwoTMHiClfXiyKDojsOzQEuBAC63QSp4h1bGidtB3cDx+jMVHfNauP0xnwPilPzrlhMRq/9RLNHxGcMRMY4yh7Bj08gYaUCJ2fnpJaJCRurs3xmfOsTDhtFDH5s2fmXXUgzLWfmkH3kra+kvdnkijbYqV/sWf5RkAWKugSZjwPQ+EsqOXBqayzSiOzGtlNGYg4hIpyYBxArbYlL23FezGePzyKY4QZ6Pvk7FtADMU1jnnINR0PrNNjjvRUYsbRWY4X8W+7nrPh2wqHBmtOEJg+El/ExTEFzkmdBOWI9uOYQ6TMMWT7rSMQxqSIWhr/JyqfBjYHx6QvoQlqlzEfm62jQMN9Ff0shkmbU3IZ57icl+d1AXvQ8QMoOJegfV/bSxhLeRiiOoOjGi7NK9S101wsazm5qr+V47LU5TVqnRq+bsdIDfticseOHTt27NixYztiyIFXYO1N2Fw0/XfGXCw3fFtYZfva79VwiSPBMODi30DO4HtNbFUq1d5pN0ivY6+j22Gr4fB7w9Y2tnZeaZyzWLxuw1hlDFLR8GQd+xEXjHmX9q0bqo7E2FZJPLz5BmxY1H5+jJWHzT+nsv6grgW1rRjexhFAiFtPDuBkkKWmkXN/+Aj6cC/P9x44HuDvWjjvQc+n5EhgBv/6O/h8jo6RvJiVNUhWMBdzekQj4TiKUTWU13/+XL2W2k5Y7H//xzwMjnNgInDXwJ0H0P/+T8JyPxykvP0Ay4SPSZfVUGwcIqWh1Ybs4hC2yf/2e7hervFPz1NVi5bNK8Oe68mml3Ir1Bw/pmz5sbx9lGVeNTpnN99yTqU91hjztWf6UZxJni/LCWLKxya8W63M1Ha5EgAIihQgG1/UaGzW0TxC+mXXgY7GgQCATmdw34M/P8CfTjNtPL/G9ms6HEDHI/h0yh0VxTtoSLmoMCoVYaZtxMTdeo51Hth7T/IOVpxnJpTT0vuRo5iAXvNmgFl8ggfJScL9YNRmudJFxx0AQXUWvs2a6qd0anmjhCivtaom086o7UJOjzGGvuNwvjpIqAuOsGFmDNNcRl0HnM/gs5dxNKjdeBzhfvoR/u/+IPk6+gEU1Hc0egn39/QMf+6DI2Q0jiQAGGW8Ox6j4y06V3jGobGkOp9zmNT2rvp9mDbz6749x8iOHTt27NixY8eO7agxcW5671c8f8frYouRq/xtEmv8C6l+LmKW7u1ux44vjkuUCmtYcx7UGOEXhPsgJ+zkmCdhLrn4FnwJ5aiqNIBZw/QmWGXIrbgVZAzy1sjPDOr7yZwSEw6fe1GLHDqgEaUFnUaQZ3BrzF4+GBPL8FpI33URjoAmfW+qGPMSWzt30LEaHM99NMpyMNASkRgghzEpUhpRvIQKsAWVezoAaIAmlKHC9p84MWxb1UTFXQuMRTgze90M0ztLCl3DhMnv8mtNqKDMqKwki7VQXbdAOVbYMG/6DjPXSNkufM5Lyu4o5I+xIaNm6mMYgN5JnyACwIAjsN8wzgWH5ySkGsRpQMdDCEs1fy8JueSTI62aE0QTaRdtfAspqnKf7NnxWL3e2bP0N6fh4cS4T0Tg0UMTm7Nzkk/HKmSyHEPXExvoeAR1LfzTc646UYwjuKLEjvWlCdF1PNK8Q6qEmZuXjEovji96rjpZPYO9lzrSvCLjCJzOQXUk17lDJ+NU18rvZ5qqifR9iULoOAJ8cfyWe4WgXOEL+truGNmxY8f7wM5E3LFjx44vhxrL79Zj8iWbh1uyAne8DEtswur57zz82d5mdnxNuFXIpO8FNSOnhTG8ZoqPC+pWY5rbv6sM+tfa25SOnRc+Z8rM3+jhMMbhpftm2OTUSozvyEIGgHGEVwOrfX8/gv0IfkpGfj62oNMA9xxCUh0Pga3sweeQS2QswhctObdMHcecBACYfCxDPLVxYM31URpSvSQ458dnMXI7B9JQPhpaa/TgJvztmqlqABDHjFGM0KETQ+bpBPJ+OUNEqL8s9M7hIMbQ0ymG/yLnq3UySURt8qvMPzOpGaSORPmTqYJsWLcvBX1fTbBdPWersT5Xn2iIokl4I5rpd6omUOO33k/Dq6mKqEQgO0XHxfEY2ys8klNwpS9GRUGJ4xG4vwM9P8/35+AM434lLJc6vebq2jpIKmoTmyeGauqKqIivKRF8TCROGn7OMxgMcqP04UOHeFVwas4qjGZfcmYOJxKV2+EA6ofk7DCq65pzQco5gtlH5QiaJjk59XkuOF1rCEoL7hHHVw15xeqwUCWaKkW8B849+PEpV8l9/AC0LajrQMMAbpyMcdqn7Ts7J21qGHLHdJVo9cK504/b5zLsjpEdO3bs2LFjx44dJV7LmKNYY86Vvy8pF3a8PS5l8+0G3a8b+/e7LUojz6Iy6yuo+/fivFkKoQXkxhc1wl7jxChzK9TuD7x+XXzpthHa7YSdbRwbQOl42eiEio4ETn+vON2FrXwWh0TTAF0ooycxbvYDeBizsFPZfa2KZg0hx0KVMe95miw5a2eS30EMlw2AUYybyvIO+R8iCkM6OQJ1HdC2Yvz201Coswz98M2oaQCN/Y+kemFVopTlfgkqY13KQyDlZk1iTyE0Tki8/WqYy98BY6y/yXNcvKfWZVTZvOAZRJQ7v2pr6nGUEE+l43b09TZaomlAh8PUgTIMYhzvK0Z7Gzptqe1MHNgr4+/MnsAa1qNyz/Y16+iK1xaKZu/AZVPwpfPV57l7wlhBQemFcZR7LNnha+937tN3JCd9wn4XDVM45zjScGChHMycHCwj1r+x7WflIygoSgbNryIKkphfJORkmYRdi9eHuSCUSx03bMbfiRrsC2J3jOzYsWPHjh07dnxLuIVcf+6eipfe+5rrX8MI9Bp19T1hr7cdO67Dt6KULgzhswzXtyiHRXSQGONLaaDlMWcUb8Ss0dk+9xq8lYOpCG+U5XDYCm2/Nsa7ht5RFYFlQNsExTXniFVkxFwgIVG4ScC+5HzicQRO4Z2OTQgzBVFQOCcGPlVEhMTXohqCMTxuqAObrNmqTvS9Tdkn5dSQWqdTclAAwuwmJ0qQ0UsidADUGkOnommA+ztw44ShfU2Oi04Y3tHorUz4kym/3nYhHA/Q1I8tQdnqTDFUkLYbcgRGk9jyCw6Ml2JO6ZQM1Ks3mO8zNheR5qEIjgT9m0jqPikF8jkhqnaMagRACpeUlVcNzAhM+ZDDREMgUeX6ldCBdDiI2kTP1XKdzuDPD9Jmypws8Z8zofWKnDMTp+qlIVAnKhtTl6h/YxuuKqtjIOX0GL28tzomOIRlyvJQ+ZSbxLkQliuEObPlWngnfnoCzmepS0e5c0JVRo6CssMc1PdT9ZqOH+dzHDvkPfL6mJSJK+MLxJkWw3MZx0h0Kof6IC1nxSmiZc8QHSuc+ocr5iH5Y6bGXg+7Y2THjh3vA9/C5nDHjh07vjReS1XxLY/R3/K77dix433hW1S/XcK0f7UyhHqdc3Yvhvm5IJRWMIjVf78hLmVQX3rvl6Lm2EAwNDZICbtLw+OG+8V7kJP/y49Thj05MQTr99N2SATfOsQnjoFR3Q+ikoghXMZ6TpFLwng2ThjXmgR5RNXQmF3qU+ie+CQOBtcBGTu9Gu7IB8Z2TNxOUgaH5W9bqnabJpVjGIB+SAbLuTxhJsxP/H9mzH0B2aQ0DNeef2uU7xP+vajmsGP4FqdN5V6i+Fivo6w/NTkzX5160RmJXFkUVTn9kCXl3vxtxjEpl2xuGpufhzk6RNVhrGHSovonvbR9seVnv4Q4QCSJ6y1mHdmqNFHlVOGIMyG5UoJ2SgQAl3+T7U41dSCH/0I4L66pRmbvEUJoNY2MQ+QkX0jHafywuVtm58b6mkRyOg1BlRbIAMMADUmYnCQe6oUWxYo648JvWlfWKbKEL6Qc2R0jO3bs2LFjx44dXzvem6HtpWzot1Jy7E6RHTt2vDW2hhB8jyhVDZF5+gWSA9TmGcueDgmUF5nL70W9qPfNwr/gMqfNrcpwKWJdqjEO2TcQp5k4ISZM8qW1QjDmas6LMm9AZCTb2P88ghsHf2jArQN1DWj0oMGDxhH0fAgOgNEWeR22jBrqiiSkFQcjIY+SP2TZCRfKOOTtL4bBOZ/l77aT968lymYPDGNgtEtiaFYm+1rZte7aFmgbAJKnhD8/xJwU8RtVVT153pE1J9BmaMgdfb9a2U35L80LVIVVInkX32WiMphRclHj6o4rc37peCNX5HaxyeVr3znmx5BnkYZbC8/PGPnlp4hjX1CQFMnUVx14Zais8Gwucm3EXCTDAB7CO8Qk8UWdxMT2uYIqe4aet+UbV/Y+1HZw93epP1WdfWVdh/GACRLargEzpcTkWudBKZblA2mcUeGwfIeVPVB0HgVlRpZM3buoogCwmL+Hmkbye4Q8I8yidNFwV+SGdOlqXRZOvnGEP52kDorxj8eQqD4cY2ZJUO+TqkT7h38+5e3O5IMRB5o+t8y987aK/t0xsmPHjh07duzY8bXjSxvUarHdbx1+6zWwh9LasWPHe8B7HYOWWKbvCZXEulWW7CQ0zxVqgdcOg/bajNmSIRzZ/1e+UwzNpdf7LFzNNGQX59dW71mJ/R/C2lDXikFQw71kMfkJNIw4/PURGFkMd0FhQU8n8PksRrzuYBw5Y+GUmjHcht949ODn53DciVNkGJLB2L7DXJVpbo9gzWYNK9N20aGHEeuagpg0ekzhsDaAh0GM7BoiCME5ownda9KNIgTbLOacNHNM9ZDnwIbuiiqINfXGS2CN21rn5OaflzmYglGbWZKhw3xTk2Q9D6em/YLN3+nfk7BUsUxdrvhQhPBN8ftpGCdtvzNtQUIvuZBzp4/jYWm8BpDn1bCOJFVr6b/jbzMkrexbF2NxTZG0FRW1A4f+GMvuKHOOkKPgAMFsm2TPMdRZVK4RxfFDf+dhALFL6gmrpFkqtirp+h48BsdIxQFCmdPFT5K/8zCIIyT0Fw5JzWHaBVyT7ruQV2fS30jG1qT4YGmHTRM+fZccRm0L/nAn5Q35k+Aa0OmE8XxO+V/M+wvG+ZB2WxHDnRXvyB4AbRhEBbtjZMeOHV8W30qM5R07dux4Cd7jWLhqUELOHlxd2y6wv2qbqdeojwk7TRfQr8x23h0wb4+vwTH3pbGmNNvrbIq5sfpb7eNrY+SXfO+ZkDa5cbquKEkIRsxoDJp7VmHoXTIAvgQTJ8Mr4db3L50dtfaydZ61THcgGW6DQ4SOR+DQJQNvMB5y24gK4pffgf/Pv4CHAT4k9aamiUY/d0iMclV/SM4PJ/kf1LAa4uRH9ZE6Evozxl/Py++wNrbWFCuugfv4AfAe/vExsM9NKJx479wAzZqTRB0ztdwmtmiOwE/PkvhZjZ4aWosZIA+eSxVUU3DYYzHPTAhlVIR2miig1BBtyxEULXQ4yPuoEweQbzaOL1+yMU/zIc05feYcDF0bHSTwokiS9ih/82NfMbyPwBjepXy+cfwBEMUG+9w4bhESX9M4Sr00DYg4qH3mK4jujkB3AB4e5H2bJigYKObO0XtqLh4gqCUQHD9qJFelkzpnVAkRx1Mzls21RXWi2n56iRKpUsf+8VH60yG0wyYkAPf6DnpqxZmoqi4pYAqXRxzbXwwTdT7LeeoQ2ZrvJ4xxXOvfQBx70HWgQwc0oX8/n9K35TBOLIDaNran8pulR2lIPnHQkHGK8jgC/ZjdD20rbabr0rXHA4a/+wHNUw+nyqKuBX1+BH7/XW9WrwoUDrcLc13F91PFlzoqhwHEITzhBuyOkR07dnxZfGsbyB07duy4Bl9qLLzEAMMMIA+jIL8vM5Gycy4t22w5Zs5Z2rS/N7w3Z1hZnmvLN2corTnaauft2PGewRWDT3nsW8La2P0l33kpZv2SEgFNnRV+zTz1Gu//LbYjoD7m1+Zoy2DXdUVgKkNDx3TdJIQN9ZIng/s+hd9ShG8rbHFO6grvM0dCDOcUL9ugbqlh67ll2CVfYdQDyag4N29qXhKrQJgrmmcxcjvKVADRYBqZ/BuMvHOOvDLk1prqI8vREAz0IedIZsj1/DoKkmvWiqqsMcmoMYYQZ365/mcO5E4FADGEVnm/WnlN+MC5+7N3klicRFERlRHko1MERV3HsE7eR6dPPK6fuNLXACTH4kaHwc1Cs1VARCGVT1KPhAPL8wVTChEFIOZzQXIqxNwgvHHdXFOkZYVN+Vz4DFGWsFGUxH66vI7OlC9A/s1iUYJTy7axmf0ce07hxZiB4xF0dwcAaB5OoFPIQWIVS1q/1dCXNFGMXJyEvdJfrsHuGNmxY8eOHTt27PgeYGXrawvHRadEzTlS/302dvLkeZUEmHPHlzaw79kRYlGGG3trQ9jsZmwm3rPFkmE4Y9gWSTetgadm8HkpZtVAXyaR41eBuc35t2qYfUu8N8fntXivzp9SKbI1FwdznSX8JfCtOYdncjGk4yH/i9Z/kfNgcvrhEA33idVMoOMBfHeIhkHqB2AIbOrTCf50Eqa7a6ZJmIGkrIAxUquBzpmY93PKl1ugdATYZxoDZVxDWTjTbgwbPzOc6vESzABBVAhtC2ryc8Soz6BzD97Mfs+N4uxdlltj0ZFR9ONJe3AuGaQvZeVvRShDpg5aA/uYD4bHFDKOgwE9e+eyn8+VX9fRnNcB9wM4lE9z6mh55TIWg/c4rpedPfj5BHZnUaT4MTkCmXMnlOZoMiHwopJkDCGQbMg8IFMFUXcQtcNKW5JvXnGgEKUwUJeOkXYsMmob8t44czRBvJ8fu4LzS9Q7HBQxXkKQ6b11rtf7XZr/ZsEJ6Z9P8++vY2jTSHlqa3NO7Sm2ybHSz8iBwclZavtBQUDwqq5zBPpwD/7pI+jUg/78N8QE9S7kw1F1TbxF5V3UORtD0dl3pKmyqqgDDQdHxX2yd96A3TGyY8eOHTt27NjxveAC4xGA7Y6GuPGrsAQ3bjLlPjNqlFsYt6vv/YZG81slDP3SyOJgGyYYUGeZlSHY5pwvt64XbYvvORTQe8H3/O7XYs5hUOsfO14PZbLWS+a3L433Uo5bYcUZnRwAKRQMe2PQsrCsczW2AWK405A/duwehpD8eQiM8CUCRSpndDzoXEGUJ7R+a9jcAFgw7KkxvHSG6DVzbcvO1TGfCNI9Rh/UNC9bG03KPZfHJjLJU34P0m+8lFD+VjD1keVW2PD+GTPd5GZIeUPs8Y19nY0ippYzweRqYO1H5Tp77Vkhf09+TSWnT8itkfKNBGVJpU1W26mqvA6IeT6i84Z5et1rkFgqIcii8ycokqZ5TsI8EnN6uPz3eJ4L4fx0HaxtnC5zvs+89+L+KQulN1Z/1zLGe5X3jqeYEHI+tbVq6Dv7XC/jLp16oJfcJkxOxmuimKQ9vmN1f+CS0zuGO5sSruQeG9q1eef4bhub1dftGNFK/9YWFTt27NixY8eOHbfGHOPo0muAYhNRsEBVObLkhClZYNa4blHep0yyV5bz0rjvb67UsMwpTBlZb1Weufp+AarGLY2TDLMRKzdHt1KO6H0yZqIXxrAj8HmmPcbyzB2/QGm14/tGdQxbYdHvuBzWuKv98j2rBb9le0WpfMDMUK65IxoHHguGtKNs/uBxFIOlhu7pWpn71WHRtfKfKiaCWoRPJ2FYY2Y+Cs+S4oQEzJ6FoRxyOUiOAwbX2ljxLjeZE6LCIjgGrGGwVKxomWxYH8/izAhhtLaQUciRqEVazT3gAQ7PLvOObH0/2/9K1r9Vw9QQ14GjfGdyMXcMjQS2qpHyWUv33VrmTJHsUt6LNSJLqTqaDWF1Yfkm6oqgvInJ6cV5xL1VBWwfA1lDgBkFC4ccGsTmezkCUQuM4iBQp0bVyO4LJTCCQ/PQgdCByAH9Wfrp6MH9So4evcfWbzFz7WT+1RwqwTmSOUbTC6V/an6bLijPvM9VZYdO8m0A0heHIYxfReg7fX6JclxZUxXpeaVSUu3itfWsOqN9pUxAnhid+7wtLa6ZISq9X36TPxwBkPxEZN8jjpPT/Q6V4fyYwWPRNjbuEbRdxtBv5AAshHgu8HU7RhTf8mJjx44dO3bs2LHjnWMah3sldu9sgsv1MADbClQ4St6bKuA9hHe6sTFxjtn6KvHAL8VLy/AevteO94/3bqD/1rDFuX5LXGtzeC/zzq1RGpajwaxugENMqm6OcTDom4S/MRRRCN2DnoCGJadIcFyoQyQmTz+fM+Z0mnfGPFQVgsHWCVNZwtAMEq6IOYXZMqGdJobZLWuVrSgNstb2Vw1XKbk3WOtGDY+XPI8cSBPVB0Z39u7eY1F1UkOmHC3KfakDiYNqxYTQISKwVRvZ574E0RGS7rN5zRLbiE/G9ddYK0RVjZYrhLcqVThLdVGEQ5r+xvG+6qTLLjcqqvhvSnlgJvcGJHH48RjaVfjdudjm8necr7ernCNBeUOTulu7bqYc6hBhjqHuyFF6l6CGkf4z86zaPqRUVF+rKi+UV9n7MOXvVSOS1chms6F0ZxT+5jgPOi730/a59j3m+tHSdTVFylK+nQq+bsfIUpLPHTt27NixY8frYmmRshpregOLdic+3A63qsvqQrkSIoE5xb4dxyn76VoFx6XHaw6SL9WmlkIdqBLmrUNtrTHDFBV5fsofU37bkhV2Y0NBWd5aaK7svfz0WouyfOXYtI9BOy7BokFhx81wjQJy65qlelyN/1gf07aUY8t5XwmiodSROB24SSGRgKhiEMfFGFR8bcpxYNnj5htxDzE49mIgdx/vk2NkGEGnM3A6wz88wj891417AJgpxa33DmiEXU0fPoA+3gMPT+Dffwc8wz89S+z8pon3m3eO4PpvWRknshwLajDVU3zKK6Gx+5mcJJuPilqa+A1KyLs54HgAHzrQkyhsMAwpHA7zdN7cso6vjX1r64qZ4zyOwBmJCR8M6qJOXrnvFliDtCbONmGEqmW331qdAgDgXe4cWcuBMhPuaPG6cn29RWFbU8SY+1DbAuRSvoxw36geQSNRpEIOECmjKYf2E8/gyvqWjgfwzz9IG/v8WC/bXF2Xr9I0WM03USKMOSk/kYtODavMysephb2JcXxovhc+n+W+fS9KmCJUWPx/Te1OFBXNWkZ/7te/rTonqrkekV/PPF9n1+63jIMuQ2wbDD6f62Nycd/ovDKgxoGZ4rifDhSh9SYOQd17dHrzi4hZX7djZMeOHTt27Njx5bC0qFpj6Wxh8XwjRoMvjtdg0W5h59aYSt8r1upL2U5fos1veWZZfq4xFi/8ztcyvGvOrwVH6+aN0ZxTbceOS/E9Kkfeyun8knp9SfniGL0Qcm/rM772sWUuabpnsAPczz8BbZtyHwyDGA3PZzEq3h3F+NVKQmObbByAKDg0ubP9ffSgYQCeT6BhBJ/OwaDfx++THPbFPa2jJipRzsCzhPiJZWUPoAF1wUym7bofEI3D0cmzgI3tQdUs1LjgA+liGbN6LS8s51znQN6LsdbPJ3NmDb11OotBMhh00Uudq3Jk+qyZ91v6+9J2Hhjv7B0IKSl4zAnBFypZ1pw0pk9XQ5Bp+LcYIi44p1pjQp3k99i4DiIH6lp5t1HaHaNiPH/JWGHLHvPopPs3//a/kcTZnx8lxNXjk/RRkzxe1VXpnsaxANQTvod6p7aFP4S6ahzo+Qw8PYE+hrB4T88YP32aKXtlfCEXHQyxn685odSBqEnri7Bnq+vDMKZpaYgoz8MSHSYr6oTaGt86CNRRs5ZT5C3njg17dB59puyKKB1EwDSEMlAfS209lEqQUl0zKbOLYzf3Q3Dczb+Cxe4Y2bFjx44dO3a8Dl7K/t9Rx9wCeY2lfIu4zDOL+rlnX8Tuek3MqQsUb7HpWDKWbmUAAl9O9TIxKlwY0qLmvLjVe9QcMyWLbM64sztEdtwSGav421IGVOFsLodXVryRyVk0l9xWmeAbmcgRS+zwiIX3+5a/cQEX4uoDkHn+fA5GyjOobcH/4R8x/OEO7mkA9R7u1IOGEfTL78DpBPrxB6BrU7qtweY78OCnJzHUKvNcv0Xfg/seXuP4FwYzZXHDD5W1igkTNALeM3Dugd8/h3PMt20a0P2d5OHoOnDfA58f5P5NA4xjZEPzMCRVgz5LQ3RZReWM854OB3le24rx+O5O6vTxKbVhH9ZS6kByLhh4Q/J1zcVCJHXKPJ9Ty49g9vC//JrUN5rwXZNj14zNk5A/K5hxMqwa/VW14BENrvGsS9Y+roE7dJkyIBpgM0b/WLdFBzY/NQ50dxTH3ufP0s6Ox7zdrylMymPMAAHup59AjYP/9BkYR1BwQMRwTHMOm411QF0r7bAfAIyx3/K5Bxzh8//j3+G3/7bFD//0Bxx/GXD8p09wf/tNynM6yfXqBDJOSh49yHvwuc/VJkahQo6AuyOGHw4AHcENoX3o4X57hP94h+HnIw7/9Dvw++8zhXd5CLzwfNd0If9MA+p7+Odllc2L9iDBGQfvwAjKE80nEpyIWRtgTjlyauvjhTU+n8/L3zWMbzxoDpAiF44+YysWc4hYpdHynM79ObWB7EBxjWvg7o7ifD2dsvPi37Ohl/P8NclhXuQvRGjzHz/KHw8PoHEAKsWrYXeM7NixY8eOHTt2fE2YM7CvMOffPd7C4L/mTNrDt70e3mO9vscy7fi6Mec8/lbxlopA5oz5H7GP218GyiRvGhBJOB32DNePcKcRVOYe00S73otqgTkxri17evQpJwEABpuwRZpgnJPBDDBG95mk60so2rCw5EPIKjWsG9Z8ZMvbJOlLpIsy5r+y3oOjhTQ3wIg6+1rvY0IBISSWjsnJgRBuagPBgsWhQhW1zkv6c5mrY/rcwoB7ab/9An1cFDQ+r9e5Op417C4Ylm/5TqWx27MoPFQdoUqpcIyYQR6gEXBD+DZtcKZQyOdTKqcAEIV21ozgMfS7mqIYADHABIAA3znQhyP42CQJxtWvatr9ayOMK7HPAMmRaNu79uOt0PP9wnuoaik4fant6s+4ZTvS8WxrbqCNz86S0l96H0N+im1rRrU4O4au4Kt2jJCjm+W92rFjx44dO3bs+GpwCWv1LRwml96zxqq2v98a1zCprrn2LVBz7ry3Mn4J7HWwY8fb4Es64L3GwM/DwtwUtTH1ewuNtgHiQCDQ8SiGwidxjNDffkP7+Ay+P0qIp2cJzwMicONEgdH3McTWJJSWZaLXUHM+8ghGA8KFycgB47hQ1ndITq5sZmbJy6HKjb6fhhAqysTDIM6VwyHcWpn/wiinu6PUXychx/jpCXAuMdyNOiQmiWdRdBAA6jqpTyCExAq5RrY6RwysqmJaN5e1+xR2avKQlQtv378yp4MNzTNXllq/H0f4h0e9IcAj/CmFbUusfSQHwZwitnRcDEMM8cSjKddWlchcrhI1IIc2qkoZ7uV5PI6gpkH3ecDxtwbHX3q0f30CRg++OwDPHeh8Bh0Poo4px/vgyCQANErI3Ew1IQ+XPED9CLQOcA7+2GC8a0GeQX3o95eOtc6tK7+X6uxCREd8UKixJvHRcGP6zmvq0JnQYPKNhuk56oRS56kqwsLffDpFJdBV77nkzF16j2vhR/BpwaFYe2btd6u8cW2uqArOcf/5ITrSL3mNr9oxckkylR07duzYsWPHju8W36LR2LIOX/sZ7/V+79FYtxbSzZ53K+n/EtY2gDt27Pj6UMYeL48Br8Oi3ZExpxVEBFblSN+L0TQ4QnAOTpC+jwZGMdAG42hhyK+GSdsyXxim+iyC8cyyjRfDFWlYHB/CVhXqlvozKDdoAgB5ceh5cbJQ4+Te+mxlv0/i7fspM94HRY2joLzxqc5KBcgSNIRWqojl82fzH4QQUJfa5l5zXcp+3tmzhFnVx4IqIubxUAfJtvwzPAxZjhEYBwuXaqvqfVbauu0PgXGvf7NnNI8Djr91aB57UD+A+iG1bxfaZ02VEUK2saOYKJswTnPbjKM4ThyBR4YbgrF/9KB+BJ03xjiy8NJXuNbWX11xnr7R1XboIhxU1lSYTWhK826eYygvdk5UP97kNLmWHPXe94VL+wZaUad5Dknttz/uq3aMyADVvP+PumPHjh07duzY8T1gq/FajUxLOTe2It5rxUj20ue8B2xlyim2vN+1xr6a4Wp2o15haa7FLy7bUsGGnC3HlrLu+H7wNYcXfE28RGn2JevRfk9vQymF97lF2S5RZH6PCCF6OITiiblAgjqCn57BT8+g52eAHPwQDK4hwbe7O0rugnGsh1e5NlSMCbdSQ3SGlLkuivuzMvgdgdoG3PtYzmTELnKHmOupaeB+/HHyTqSKk6YB3d1JyLBHUSNQ24oi5OkpldFRCudlwnoxGHh+FkNpyD2ymvy5REgqneXfmFNTaH3N9gvz/V5CYLglmEV1FHMxVJxfW0AOwJi3GV2L6PhDXfhWHJwRem2lLswaiZ+ewEDKfUKqttiWfH2SvH2SCJ7zb6N/kyhdmn/+BR8fz6CnE3Duk+NyHEPemxBKS8dVZgChHY6jhN26A9CHPDvDkD9+GOGeB/DIoK4BPfVwj89i1B9G8MNjUTcmD01w6lCWworBLN+CfB5u79VQOFvJVep5k9NWx8g25ioBZKy03yjmVQkqHGkbqlYBaBjAUWnyjkIn3UKts3XsUOdRmQtJixDGebowL9LX7RjZsWPHjh07duzY8X6xJpOvGSjKczYZ95di9C4Y4K/dxH8JXOPAsEaVq55pQkSsPWeSGFEv5cS6zQ/kZVy7/1yZ9lBiO5bwGkz/r2nc+F6wf4s3hThFgprBJgUHUvJoVU7ocTOPlIxvZf9W48a/FMrQ9yzJ17fAj5CwV5wMwZuf54C2lffV0FhNg5D1Xf7dtiASAzSzUaNoPZSpUiohnqJR3Sbq3gplv28JMfVe59ot4/A1eWfifWfaiq2P4MDS31e/gVG6Tc69Jsm6c8Fh5oLR3m36XuxZwtmdzuLYUIeI5vcZR1FmtA1oMAquLKdGyENS5mCx7zOo84hAzKIyYQLaBmhmwmJZVZcxcnPwUQG43BH4EthxyyrSrMNyBtS22f6E2jblCqpcp2PUVDGU8muQ86m/vgcV40vLsGWfMXG81M9lzxJOkRzYAXyBgu7rdoxoJb63QXrHjh2vj73f79ix41vCaxna5sbK1xpDNz5Lw0sko/lSiIaVzeKWRbnGo5eHJvZW0wT212Uxud8cb7H5KZ1L4ZtQ00j1lN/IJWNDZLlVbxs2eSXz1YZCm6hD7P1CPG8NScJpgxj/XnKkvXbOmN1I/v5xy29T5kSy49d7UFJsbf9lKMKvtf2+5fz2vWGubahRvQzfFM7jfohsXnZDjI+PJuQAsSiMw9EgeCtFU1QUST/lIVeYzibw7QegYbAnyd8x6nzopuFvivJS40DHAzAM8I9PQNPA3d+DhxH8PTrMugABAABJREFU+UHm1PujnD+MoGGAf3xMYbWsWkTnPRvCiz388+lF4w5vTVCs93aNKC/0m2fs/sJAu6YGvQXs85fGOCrUIlvLRG75OgqJsMN30vwv2XnlGBt/L5Qn5fkbEcO1AQB5EYM4P10bWcNzVH+MYFUd9X10bvA4gocB3A9wzoHvD8DjScI36Tnep1BF7UHysDwbZ4zi3IMenkBdCz50QOPAH47x9d3opQ5D2awzQMYMs+4DxBHbNFKGsv2+9pgf7120h6VnEsH98FGcpPG3MA49Psk4Wa6r/VjfDpnny3p8w/OLsszf88JrFx2RF36DoF4CKtuw8rna30uliELnnEw0tT1c29ftGNFQWjt27Pj+sG94dux4vygXqC9ZkL1n3MqgdMl9LlVSvHU9228/t3G17CkNcTDHGFpj0K0x+1Zk1F9Nvro5Ztjcxtse2/wMP91AwwO87pTJmLjFt8zqeM3Bs9EBVP1ukTCFaXvI2sG2MBWbsNZ3dwPtt4VqP3tH4Sy24Gtpk3PO0rUQJu+BQfuNI7KamUCWkeuTMx0h/0DMURC/Y1KYMBulQy1nzBKxY8khudZPdW4rjd/Va8y7aM6Q8xkTe5spA7PkWZHk8pIsnYcxhBqS/CzUDwAz2BchcdRhQ5Tld4gJ0pWw0C2b8SZG15f2+bX8LXaNYhULt3q+xcx6cvJc40jaVIbaO5TPrLH89dvMlXPL+vYa51ZoW5NcMXMIBKFIZAnqBToe5R7ns9wvhNLCMICeJf8ITD6QqN7w0n6rIa2CCorGUZQhQSFBeq6Tvi05SoLipTF1oqqaSc4dzp2n9vsT5o3mXwqeYx4gAKm8dqy0KP6mmfmMR78c/k7hmjQeBweebauiOFuos7KO5/r2C+fd6pq+vO8rr7W+cscIA/gKFnY7duzYsWPHt4I15oguotbWSDXjpb1nNTYvLR9/LQSm3FZsktID85ulciGqi9aiHNUEpZsLeaN6mzNMZZsVN0l0yiEBKznDFvJ8ebm2xr6eMI/C32Wc8HjdO1xfvoSltUHyL+eV4a44MfNWNj6p3c+EVLCwZTGM1Ox8a8zgEVwaN4rxIMbb1uOz/TColcYRmYooK++GMWZpjIp/zzBnvxbj9JdCzShu//5SqBkArmBIvsp7aNlck8bEki1cK0NZFnt9DXPxvW8MZQyrYczdHQEi8OkkY9LSeFQL3XeTQt3w270GYeTW/aSihgAgrOaQSBwuKEHM+7j7u/g7APDDI/y5lzG6ccJIL9cvRFNDsaoJC+cYda3k5NDcJeowUDb8FiVXmFc2oW1BPx6icwTPz8DpNFvPfDph/Jd/TX0v5FfReY37Afzrb3JucJCIOiTUoSOg62Q+03oy70lNA/eHn0Gukhw71Jf/5Ve5t5PvFI2oNj/GJSjrS51L5Tm2HPYblPO7zf2xxTBbITtkRmXNSVGukctylfcuj9fmc6MumjjxYh6IZOSOfwc1xMS4fwlTfyEfDp/P4Mr6Ovwjv5UjCePUNJILqG1Bd0ega+E/3IG7Bs0vn6KiidiDHx7Bnx/E2uo96P4O1HWxv/PTk+TI8F4SrPfFGn4cwcMIck7a9+kMfj7Js8M4QIdDbN8leBzBp9O0TsIzqGlA9/fR6cLjKA7Lcv5bcx4sobzuwvv4kEMo5ZFxsexwBHf/MTlDiGL9glne69Cl0FvxpiEX0bmHf3oG9+f6w4ngPn4A3d0lx0jhpOGHh1jGufkt3//mjpuouLfjNbBcT8U52fhdYst9Zh2Pl32rr9sxsmPHji+DfUO/Y8f3i2uYITUmIJAvWDMGWPHv2qblrcagC9+1znqZkc0v3yidb+pAmJrvnBFbvOdseSsb2TfD9ziH3fqdl1Q6a8yu6gboimvsY1/CWKsx0a/BDZhzO3bcHJcwLVf74RsqZByB5vIDLPW1r03FcyvMOTKuxepaLMzhJIm8o8pBnSJ6vUvzPDPPrJPWyx5DB73lPtQz4AANYRMZ9WsI9VMay+UPcY7E82YY/8nJP1UWxDBbNSdy5sQqDbs37htbv0OxD0jhN8er2is1jahmNAk3uSx/zE3VwLU9jKqJeOGZpQr3UsQ9wMI9ihwqmQq7er4pY+PAXQtiBvoQKouDkVodPqHdMrMk/m4aOT8apRfWOz6EPRqNA68JoaQ0HJQjkAd467qp1k6chPWT8YdE2WSdeK/lKN8CzUETjf/qrCUJRwjUyRba54nAjZNxRx2/W1GtKxLu0tb9KLn6uS8ZRyrzyNX3ueF6e3eM7Nix4zrszpEdO75frDLXCzYYM6J8uzzdrlXt4r+2Ebj1mLMUpqEo08VJLbO/9dqVMFFL9yFK8VOZ0mL1PUjHF8JkxXi6JYstOrhm4uluxdZ338oYVFbjNZuo1wob8V5Qsvdnz1vZjG99Tom551IyuAHIDUEzjWs16anFGkN+iSF3DQtuy32/dXyN7/ye1sU6N9h43GX55sq79g6vMQ/X7kuBZXwI5opxTOFDlspSG6duraC45b1eq5+/tD1uMTipc2RESKjcJpa2uZ4OwoLmpydRebgGs2q6OfY+AAosdz73orpQFUTturk5XFUnS2oFFkcFeQDOA31STrIa4jeN4U6ULczAeI7X8DhmoYn0HWLidSZJjB1fh6PhnzW0ZcnO1vKEHBBZ3egzbk6O2LAXyL7LmMrcNKJgOAM8LMy/xZ5CQXdHuI8fwKczWBnv3qw3b+EAKsoe616/49DPn69qH1yg7C76nKoK1KieQpkpoaxOLIptW2HzVoRQcDSO4D/8CP/hiOaXT8DDE7g/p8TroZ3b8ZbpBPKSQF0N/nR3FBWItmfTJpklZBwjOBTbVnLvPJ/Az89aWKAJ+4VyXTaOi7GB2HMeys85UaCMI/is48JMeLVYWeZ3q7As1eRX9h338R5oW1HeGKWcqh6577IAC2XuFLJqPFXdDDJ+8FDJUVJCQ2V5BOVPsR/1Rf0UIEcyfhdOWh5hVDAvnGsv7R9zjpUXjm+7Y2THjh2X471s/Hbs2PH+MGG+zC/aFo2Tb8H43DKWVWI/bzp37nllWIhaObYYoN8rI3ZOHaTH3sqodi1uxYL6HjHXbm/hFNnyvBmHSDQ22ZBtxTlXwbLVyo3arhr5PnBtn39NJ8rcGLxkgH6nYJZ8DPrvq/vse3JalXiP40UtJOBi6FNEEgzFuPdUvw9RJE2I72KDUcvch0efKyjWrr0W3oOdA8bA3lZVR2l0rxkFjfMlntY0dUdMmYtLlbQA4BwmYZhKZOqQsMYK91ok9Lxk7bS1P805LkmN/VpfL0vWnoXQBOrOstfA0lr9RU7JMH5r+CMHycHhDMlohpAkz/bBOZI7UtgzKCh0mBluGKW/hvw38EVbL/o8M8t5QRkWQ8s5E2rMNlcfnCP6/6ytsjh9tI94Bzhfz1ei77vkCC/HhC3K5fL+rwElsXVd4CoYp21waOo7l+2YiEK+F5NrKKhwZCwyTo219jaz7s36Ta0fkkuhvObIP98IdsfIjh07duzYsePlqDhE4gI5xI6uEviicuAdGS3sZicr18xm/JIN5gIbcvHcud+/tEGltjHMlC18W4fIbMznjblC5mI2f4u4hTHwFqzrlxhRthy3LNzs92IDqEaCi1Voa2zWhd+/dP/8VvDe5odbGMK2KjiuKduXHN+2vsfKvClhXCCGIc01cslcUvZBLddLQra8Ft5T+54zuC6Fo1Hjfsh54ABRBIS8MGpwlWTsB1EKOAfq+8zZYPM3ZEx4Ve4OA/jcmzBMmK+7JeKJZf8vtddxDMmJUx6J2LdcHkYpGhUhThD34UPKkdA0cD98BI8e/vPnopy6ltH3F0dTzDswp7bVkGVjweQeBgmJNFGM5O+Y5fBZCotZOnJCrruX5riz8zU1TQittOAEyhQTkLbz/Cz1ExKFrzqRXoota/ItWFGhkubtacVUK6GrgjKrCdVkvpn0q5TUW4/HvGtaN0E5EnOg/Po73PMJfD6nth6UHigIJQBEpdUP6bfDAXQIZehaCQ+na36EMo5BJTRQVI5oeci1qR81BAw+halTJ8FSOL/wvoAx8Gu5u1b67dDX90yl8T+UORFokJ93LeEnOH/o7g44HkC/fQKb787nc8rFZC6jthXH7PksjiuFqnr6PoWQa2fmR0sa0vBopSNJ6yu0tzL/EzVOVD7nXsZ36xy2YaJfg/hm3wFYv/8L9yu7Y2THjh07duzY8TJcY/x7T4aAOSwpOd5L+d9bOV6NdbVy38JhkjCzWJ9zjpBh2Fm8l3r+UrjEafGl6kqZ8rPM5i/wTV/yjPfIJN/xeniN9vhex62ldh0NV0VIzWudPdFZVDeE7ShwzbhTEEgiO3wck4E/QPOQCBPeGUOoAzVAzJdQ+T6quGA0cu4L81LNXuZF+cLhHbLQTBc6H9kziDix8bfmnKgpIEr4UMe2jY9+Ww6Ua6BhK2+Vv2NJYZydV9R5lntjhhBxybf/0mv60hlpwyeVKOogKrXU0O2cvIt3sa+JaoExUWeF5OiZ2tb7TBVVU/arg2rTKOE1LJ3pA3ZscASgkWMagk+Pb2xn1pFTlnVRZWJDZwHb2uKlqJXLOOmTiqdU/XD6FraNhzrMFD2XltubdrBlHFvqG69RZ5eiNsdfgd0xsmPHjm8P33Nc7h3fJr70ov0W+NrLbzHnMFnDHOPoWxqzSgP5Wq6OYkOYsdMse7QRVhmP+QZCk9FTe5S/i/i8QCV8hW7GrXEssCDnWJovYkfO4RYx4JcY57co79Km8lq8JNTWEra0t2vv+6WwxIb+FsaLl+JLjZ3vue63sCpfs/xbWZ1rar4sT9kL2ahbDDv6jN0ZaeqrMFxvaTvqTACAM4DGhL4K8ys1Ov+yGFdJDH3ueAS6Fvz0nOUQoQZ5OeYUyNV3qMC2tdp5foQ/LRjYqwz0/Hy7ZuBxhNc8GHFNsVA29sIkx4ITIuSB8J8fRI3z4YMU/fFRmPtLBk99f03EPAe7bnKFw2qtflfbiRrYx7TuU/XAmjGbvTgPjgdw30t4JyCFj/rSefcUtXqoOdXs2lfXuxpGCUjhpYKqKgsLGtoKh+sIwfnYmYTsXSt9LsCf+xiOiYCkFrF5nJbqkIySRJ0dijKM6ehBLuWWYT9KjqBhAB0OoK5LYwbLO/AwyH823FoNnMLbRRWM1k0/Y/RfcYqs5qe5dB5S1Yw6LB2lsHr6DkEJZOci7od4LlwL6HhYOmwBxE5chsJS54q2I6s2U8UJEPs2j35S5zx6yR9TCVVGrUv7sktwiWpza33fYE2zO0Z27NixY8eOrwkvMWrYhaA1AlTi08r/L1iQbGH02+ctPeMaw+naRvcl2BKeqfb7jmVcEtaqzD9jNxAhHjczT4wItcSUmzHHmLsFXmp8s+Fhtj7nvbTPtfGi7E9zf9fuu+X4FlzDmJ4Lr7R2r/fyXXa8DV5bXbcFS+uItTXGa893heP7VZQdc/MJsDtHZjDJH7AGz5Ds5eWNyPyTwOosAQKDvInn5HkSCiyt9W7RRnVtcskcqo4QqziJ64hirTO37rYG2rnH+JCXwFF0kKhzIIbQWqubkL8Cc3U8UVjaddcGp9OGnCFZDpZo7F+4tuiXUSlQGm3fE2qElWL9Zp0iWFizrudlbMTZURu/TKgtcgRmiu3GOkXqSurK/oqcUS6Y0Ghlv4mEJqkHzZvBwZlBwxAN/RjV0eHrY/9cX3QE4vyd49hRhtkt2tUk95y+Qy3XBrDg0ZyBkrAcAwjh0Yii2iY6qTyDXPE9vYTIImBKzqIi58wM1PnFs+OBA3XBAdM0wPkM7rF5L/0q+6OXoIwewH4xGq7F7hjZsWPHt4etRtTdGLFjC+YYP8DrtKGaEb5cnBHm2TyB+VE1CJMD3R1BRPCnEzCOoONR2Cv6jCBztmy9Te9ZSlldE+IGm/jFRMIQOhyEraKMoEkxKbCmXIUZY5+ZnCvUNKDDIcV0zm54pXFYNy0a/zXGYqWZ8hTfZG6cKRfY38JYtGRIWlyQt0HOPwAsITLSYZHYs+epEsTWNY/wz/X+EPdVdrHMPvUfU25RlgxZu7oZ1hx3l4wp5l2yTV3lnZR9KP3wC7Ao5/reHFsclbGraXJGYIibnW5VYQxaA4Mmop2LpV57bhh/ojFBrwcSm1M38Jo4M5wfDQTlxr6RMTHGxC6MENXEvHP4FsaMW+C15uC3qN8v8Q0tEUKbe4W9nFkSSkNSyE2g107G5qWxbNEh47LcEYsx09fIFUuostHLcDzvvH+9luqudm8Uhtu5dmNZxqFN8EDZPBXH2qYBOgLaoxzTxM9tGxM6sxtA1IKck/Xo0Afj3WFibJ2UV418Jm/CpKwL8yG1bczvYMP0VJn0S4qTbM7L1Rfu0IUwR/IOqhBJpxfrw2wu9eBPn9J84xn+t9+3OUSAuC4QVYIXg6yqZe1629ZvWWclqSo8O6v7BbVXzGkQ6le/uzqUuB+krov1Tgyndu6Bzw/BKF+QWK4Zw6+9pgbWvUK+d4htJ+yX6HAQ52Cxhojn2H8HpQh7nm0bMS9T04hCITq/QjtTZ10IW+efngFVMpX3M+8mSq5OlCn9EBQoYV359BS/MzXNdE3vIX8X7RvM4NMJ3n5vqay8LLE8xXqXR3metluztsqfMUp/uzuKwkr3h4Vjslx3sjdjnTl+kZ+enIxphw5AJ06pO1G3a0Jz/tsvUsaQ/6UED33qr6EMRCQ5WaySZAFZe7Ft1pF82/s7Ue4cOuDxCf7TZ1H19Of4vEnPsEqRa+af2rx+KVy5X0TaV4Z7OnbAw7bb7Y6RHTt2fH/YmWA7boW3MKC8SCGSs48mLCKzMNRjnB2+kCFYXKssnnwvReLwGIvk2cgXNpKwLsWfnmX1lCvJNfbKC+qzWobiHXZgsuGYMq8SS46aRtrcMGRjc7bIdX7q4CgX+Bc5vAyLLDr05o087wolGyr0FYJJJmuOZ/3QA4vz30uUaPb62jhTMm/L4yj6fwllBJKJm62Xey+bRMu4NRtIdkjjQuXeE0eMHX/M+xDRlHWn8bzt5TqWOgB+Osbmxo4i3vwt2veO62GZvLY9fwv1X/S/OJ+Vc/wcS/cWSoqFepw4NMfK+cyZMSSWz5btW/hWt8Crr01LBUSlnzADMDkJXDnP+myM1LAy0RnRUCDrJMM3NdM12M1BDuiCIZMZkvg6MO23GkbX6l+N1faZF4TwkbwNJh/EmlN9rv86yr/BVlhHxSsgqhrmoA6XmC/hnalGivXspnpyV3yHxSKsjNeLjrTCcaDOEnW2NA3Ie3Atz8vkOfVnxLBN1ygD51QxNtdKNNz7pG5JD6+vNTE/vlzV1tnnDhu7rtzyvcMYCg79dEZRNDufT1RG5RqW4rdlF5QstlzOrFtvmbuonLdfcquXRAYw2B0jO3bs+P5wo4F4x3eEOSn0a2w8a8ZF+6y5zc9Mm6bDwcRz9uDnE7yNV3vuwehBh06M1OdepLvXLDQqBsJJDcVEgBTLVDK17UKtvMfcBoPHEfz0dHmZL8SEmU8ulac02Mx9q1vHP34PBqFgsLKMX8vYr7H56XAA3d2BTieM/TA9HjYOKvOPrCkgtVFt1zYB6WpZv4ATpGRb1gzfs46Dgulp6pi6Vti153OI1T7d0BCRxJ9u2+w+2QZrZWOahTWYS7YY/RrT/py/TvGeypzjlRAQbVvfSAamIOmm2ISMiM9raH5DqY4My1zV652yz5yMLxoeJuai8Xk8cB+OOQcaRznXlIfHUb5DSD4sbNdREqW6ZEAE/JT1XGI3AL8uyjkYeJs637o+nXNEblFkhPE1htlYyuMR57U8zMdsmKuMdezW1yxarph/IozxfZkvyr6KhkkpHIq3wnuYU7dgrnwvKXdlLoq5vGbIIav3Y2H+Rz5CmL95LIyGodx8Poc8A8V34BG8Yf2kKorNiucC1LVwHz8kB83pBH58fB0ngLL41UHBJjzOnMNPVZIOwijf+o72fmGukvnLm5wOL3Mw8DCksF5L541jbFegoA5X5ZDmlmtVETMiOtgKZxwz1+fHt3Rol2NxsReYnb81F08kulRIJnqe6YOTelAFSrl+7rpE6NDvzQz2Rq1fkgCMGlDXIMwMBMUHta3ct3EAHeTa5xO4Hzd/e4WqhkRpZNW5Xtq1vhszQMW4Q/k6T041x23yduakFMnq1gPUhb4Xxh59boG4fL9kbuAQqix76ULNvIXMh9CGiEHOKNk0D4kzKmpyU7VlWVZ1EoU6YmbQMIijaximyhtHwMi3cY5kSjOf5v+A/BtjeQy3YQoR9h6an0VP4e3tcXeM7NixY8eOHdfgvW+YS7CPC6B8QZ1ky2kxFfI2vJCFUcv5ENl/V9bf7Mb0Db5HtpFIPy4Yir8S48otUbD14RwYY2T7x2NNA41vjdKQrtfWoNfXmIRbjWNWMbIVr/Etq+zameeuIHMg2vq3v42YOCrm1A0ZHIGIU6jmmuOj5jgpy2GdGua3aKCd23CFdjTXJpjNhi1jurlsg5c5QOxvek3t+crIVaYzewBBJVIz6DELw9iyFqcFrr/npfhWlAzvDXPM7WvGjVuhDFkzd3zOqFmOBSiMSPJD/dpijrNJY1+MwigSmchEIHeeeVVCUhKusOxf0kfec9/6AmWzSZ/DDxfewKyfxhEcxmwex5wEUQsVtIRXHAdlXg1OC21zfMPnMef9UOfpynlVvNRRMxkDXtinX/ItPC/m1wBwmzHn1nhBW4h9SsfYWytFvZd+Ztcq6hDIcsbUHEsuOc6y35W4FpQi1+Z3setCJZRYQ/7cPFzOR5c4Bcu/dQ8CZM6Ri7C2NwgJ6FPb9mktvim/onWO+ugQTWvu4hsxg9CAB7Nmra1H1REUyBFxTatJ4m3ZamTEWzqJrTNOyY9X9PUUfaJi49iA3TGyY8eO7xPvecOz433hS7WVWzyXvTDvgIxxZBdkyrTXYyk+fj3e6eZHD0NYXKXNMDWNsNIe7CLdsj6VAcSB4e3qC+StigvdpJVsrq2bNzV2FoYgapqkHNEwO9UNnYkvPLcJucUmaImhe0ujgVH5ZPc0dRBjJFNK5kcab1gN3CGWNICQ+NFs0sL/42ZH4xKrAS1snjU29RKrGEAqp1Wz8IXGjZLh9NZjQlbn6rQM/SFsKLPNoWeJAd22SW0T7jP5Xb8Vs7BGS9VX24K6Vr7ROcUbjug6iZ88juDnwMgrQgVMHDQWbSt5jsYR/Pg0fX7jgO4gf1gmYtgg2vLwyga1toGOrDlTvpRvKfT/p2f5v543aggPzsuluRH8UH9XvSelbxcZyRUGPnsGUXjHcsyphbFZePcdF6J0NFhGb1nH5W8vHXNnHO2ZWrKiFpkkm60cB5DnS9gCZfxHJDLFZdcZlE5ODZHXNHA/fJRxIZSPi3UEgNC3GriWKrnKbmA8ffMx/obG0FugZFUDyNSxL1ocBvb2OTGz4xtfkjeG1FlhDGnWsLrViVnpvzyO4L43Yao4znNSTH6x8rfa/zwX6sz1sSSbGxZPnHFqhXmoOrYsOYP9mK+jrlBtxTFJy6PkjKZJOUZimfN6YM9JYVK+07W4ZuyuXRP3Bk31kngdcucIn8/SpoN6YpI7BQjfpFAJOZvLZBTDONLeJ6pPK06MGLIs7pU8qBVFCB0Oaa0OpDVNK7l//OcH+MfH68csE5ZL111xvTiO+XxmlfpGKUALVbylTWTEHfIxzHPEar9acC4B8k2Dijg+z5EooLfC1C/352zsi2v0XvbcUSGNTsYxdT63naiq9V2ZgbFYzwdntbd5OpVQ6X0iCm3ta3P9ycwpGu5XnqV7nZfts+zYyheQWXbHyI4dO3bs2PG1Y2lDYjdygV0yx8Lha+IML6G2kZFCZeGAJoagYLgmXYjZ66sU0httZjZdV5aVMZF4x1Mv3yh+VTDS7fh/6xSJC94m5TC03z0mpDSh3aLRv0lGAiSWcMZ23spYKkIMAE0IzTVj5Jxcb5I+vjVh3La3ijERQJ2xp5svjdcOhLoPv7ObGnOdw+TtbS6PmvLDlqvIyTGJU1wJq1X2p0lS9RIzGzK2BrGiPmYZhbb9LPTVOQOWlqfKUgNyBY4N1cASG77ahkuHx3tkyH5P2MrqvCWWVIiK2XEqOH0rxybPsE6fS97xZo72yvzvHHB/Bz52oM8PkmCZCiN3qSrcEuN+x8uxpV1uvpcYYOu/r6AMwXaL7181bhtj5C2dVbcI+2aZ7i98deucv7hv39qJp23sWjZ6qbj4ksjWVy+YRyahX7eoDIp6bBDU+tsJYXJdIwm5gUzRE8ferfeswSqLfQqjutrXsnpdOO/KNjQJ17yyV4yh4IBqH4oq4rDnEKUcg+gF64o4fhZeITezJ+BAvlHHCZD2V44k8XpYO7M6yIgmDnv9NjcPKbiWB2UNtTC/V4wFu2Nkx44d3yf2EBTfNr5F9mzJEp6oIPIN60Tl0HYAmmns0XhBhWFn+0ltgbGlfp3IfFOcYL2UIPFSKWckaTx9rwtJl8ILzMYqd4ixSG25JkbvQu1QMzRX1BBRpsyyYM4YrPGFKgviybp3xhBwq42yPtS2//JdX9InijYS4wMrNLeCVYQAwKED3f0QJdrc9+DTOR3P6lOSr2YbddfE8CpSjKQUWU1qGb4fHQ7Zt/ThubOsaZPDI8VoZjHS1VQjW+p367xT6dOJ8acMQJcl8SYisB5nn4UqUQWJrUOpBC/3cIWh0aXn8zCIEsSZb2pDM3gfFRXZN9f7A2DnQNSA7o5Tp0pQiogz1LybD5s0lfab+0VkrGZO40YJy5SfMyrE+NGaU4RCrGUzjqoixLaZ2u/xu5nzRuSbN8tyVuafOhNNOTPHICB9wRq1bV0QmeN53ey4EJkapzLvZue+cFNfu19V9VGGNDHjg+mzyqBlzcs0id9dhCmqhlEhlGuKjLFrry/LudX4RrZdJ4Pb83/8O/Q/NfihH+DGUVSvY5NyKTjKQ4eMKU8Ze07f60uq/K7FeyvnRAk10w+uWcNcQ2YpcmzZ0JqzpIWldlmqQePPgdHNHmACRg+v85xVc1zzHvoMk6dKblMxpC8ZZA8HEFFg7M+QI2oo15y6DtqyJ5gtzMw8szT/cJEbRNU/xV5h+bEh1Fm4/uK+PiEivE7/q6r5jHMw5kjoTP6IynplNsRcpkhPBKOU/zDklArq7DhOwoyZpu5krG1EJfXjx+kLPZ3Az8/X55sIZCXJb+PS1DaOQN8nBdNWxUcRLoyZp7l3ZvoDa5irPil/qUl1HXNe1XKnEKW9BcS5wOdzvicJ0RpKp5J/PplvsTJGhXLJhakN8DiK2tqs49H3UWkke28APEaVeHyCrrc/fsT4j3+A++0R+PV3qUc71jpK+fPsN9kaBqyCWKeR/KbvdIESpVYndo8d36EBNqYZ2R0jO3bs2LHj28N7Yg1dC1v+jDWuLMvw98pCQhwiiMY+DFQ3Hs4xsSdhoG7Eng2bAvYuhospyxPVA0tKlrKeSsfAFkzqt7K5Cs4ZcgQeKpuSLbhKobLQjt+jESUuqlPZ6HAA//BBjvUDqO/yDSmFUE4T1hAhl0TXk3PLZrpSHstIVqfI8QiwlzAthwPcoQM8w39+SE5DoDCsBdg8HWUbeemYUyz0o9EkbGhjSANVfdjwY5BNG/V9kNC76AThJqh1rBNL3zGoewDIsbadKCdkQ++nIbFCQvJ4P6OGmIU+fyUJum6Uy9jW1aSQ8RpjYDXGgOlDrLPJhBUAJo4VIgK7YHTzbhprWxV40XlrwhWicGqQCxtUSWhKTVLs2I19TMILTURtX7WSZLYY62bDKb23seISfItEh0sQxpYynMolisTs2tdSwFxkkCxVfIhMVW4JY0fA8QD6cB/DMfoTpVAh4R4AsrwMebixMD5+r+3m1liqxy9VxzrvzJEjsvVhfT6IbcauSVxol17metL2imTEvtpBEpyCEWUuLNuGyzJHh3cl59aF5YjKxVuzv8vyLBdieu4F41O23rhK8fKKasCt768OR7veXPomG95xMjdoXgolylXmDvYOEwWGZ9A4rSMeBqAfXq6k0pyTWsZxRAxvuvZtSpJPUe418uDk/NnnXKCSm3VGpn2sOvLifoPc8t6VXFoz2nWioswhMyk+geciRQCA96BRvjNrfpEt73WNTWCpfl4BEqJu+/m7Y2THjh3fJ/aN0reP1/zGhbz0ZvfS+wVDqDLymVlY27qICnFF4Rz46Sk36JrFCjUNmr/7I3A8pPvrglEdJWoM1PdQY+HpLIvfcy+s8ZgUE5fFVvYjeG7DEhhpPLco4jyfApUxWTVfRDBGal1l4cPCfbL/2+e7Bu7+DmAWBg8widkc4/0qI780NN6CIQxMnDwxyezdEdQ4+KfnIqeGYW+uKRVqf0/YoCv3sEYEH2LXLoQQo8MBdDxi/Puf8fv/5Ue4gdE+edDAaB9H0OjhTgNo8HDPvRi9+gEYvcT3HkdRlowj/PNJnt2owVhp0T7/O9QdgMQsJhLHYHcA/uGPcujxGXx/xO///Z/gesYP/+//L/xvnyRhoWFScy/3iWqLRjYYPFbqbK0dLLE/2y5XdXStqK0+3IEPHfwP9/B3LYYfO4wHh/s/P8H98hn88Q7+2KL919/Bf/1FDInHQ+zTNI5gL4YdMa56YBhCfXVJgfKHnzD+6QfAIyYPp8EDwwg3jLIJ1nwvnkF3R/AP99DQAO7xGfyXv4WmEhQ2VonStuBjNzVUdR4U4x2HfEejBx06+L/7ScY4IlA/gv71b3meEesA8Zw2iFE9MRNWIDh56I8/g7tW6toz6C9/E/WLuZZUAVVzksV/B4dVGCsjI/B0AsYR7sMHccidTnL8xx9EPdM04MaJ4YEZ/Psn8OcHuONRVFattAetM/78GePvn3PnTqEGmBjU3nKts9UxuGWsqo6Jb+TgeY/hyyZqPQIdj+l4yOOU5RoIBrd4WTneO2WsV5QgS2zxF34DOh4ztWFcXwR1SPu5h28J/Z8+wP14BJ1GkPdofn8Ezj3875/A53NYI8nYkZXID9kY/qa4to3ue5J16Hrx0u5pVSZGPcjjmAyOo48KKzVQknMAsawJulZy32hR+gH+6Tl3gtcU11ru2t+q2NT5JjDNyQUnTHMIl9FkXRuVFWzCjS4x2+1zzTvEX65RWyzcO/42NyfU+smleQ3Zy3r4hfkI5F4vfG8lmOg3KIzLi+qHsA8BkN7nmnKq+lRz+xFJKEIfVALGeUyHg+yXlGyiYVT1uvC7//134Nff8ucYEggg+7JyH5DIION0ftHiKpEktNesjmy9VkiCMdKA52p7jyoMckJ+qkGdDDP9xe6/4H1dycRBve7yMkZCSwhfJSjUQtpmSlW6qkhCu3b3d7IH/Pkn8J2qU4CYKP1vv8J/+jzr3FFbQlSSxBB8socb//I30G+/Y+yHPKJEGGtljGzAEL8ZM4FSY4qKlFlUHFMToob93lv6YjyncE4XChL2KfzXFuyOkR07duzYsWMJr6k8Wbi3ZYMJc1nZa+E3XYCvPaNtwV0LUueH+k3aJrLi1DAHIBkTmyacP8hiGQBjvC6e8SUGYw1tkDkz5kOIVBGur4ZZqpVFQw6tYSnHyRLKZ15otCStk+yeVxjvorFoYcNaL4D8z8bzju9gHHIa/ifuA0TmTcxgApgA3xEcgPG+geuFzeNolJi7auAOChIO737RlrUIsSH/DgqKtoFvw/G2AXcNhjuCa0z9lt9EnXNLCR5fE7oxdAAIYEfwHYEbMaZwq/+FWNBdJ/199FG9Qz5tHuRbmLppgmEnsNG4kTGFxvDNicQxwQwaghHSIeSPceCGwF0DPjdFsWmi8CHPsdwRzokz1rbN4FThpgFaB985uIbgnAM74xBr7DcODkzdYCKNoVyGCgNSMkznwIdWnEiuyZ0i6mwzzgk5YMtPyenkKHOiRAdrML5x14KA6PDgtpF26Hw0jsTEnEHlNDEM3DLO/y2xNp5YduHXpmB5j44SIHM8Lm7+Z45NY6m7N3lXimNaaOfGMEbEIM+gUZQjHtIn3ODDOsZX54TVOtixQ8dqICoBdR4Dc1AGFs4DSzoxoSzhcsVWlsA6/WjWR9vWW1lIvKiIcqLsKE8unxUVspXxtfr3DZTgtxrLr3YmvqOxuabsn5yzUl+VUL7p2Avq2aqLPddTcxCZ9YeMp9wPy0Q41wTHY6nkDXtLDv1isWg8fe/yXtXiiqKX+5V6KcO3phvMH5u7x5b2bkO32vxHtT6odR5UkWxO1+fR4SCq+2MHf+yEuARA8wQSFfvXLM9GII4FAhPM2phJHb+9JHSfQ83h8h7XoEjjZxzOLhzXdsfIjh07bo8vwVTc8e3hWofELdpdzRCdPeMGi9fa+xnjoD+dwoLzHFkrRCS/AxOjY7rexFkNeTpoCPGDbZiYmCOAizKHBHHnPhosonE0LJqnG8CFxeJLxoM5A35pHAysWPYcGYDMNM8mK5lL53PIaRBYJsX7abzWasxaMiF25kKblMqVWGxlDlYWzsqMJII/hbqP8YUvZMjNsfnWzrHHKDAUNUSWjYEdmMnZJpsl1u7YD2j+85/xx/MA7hr4YwvuGox3DWhguH4EDV7a4yCsYYyBxaVMYgDu0CXDl6+EFIrPH2VxHEJeMUa4tgX9+IOoA0JbJc9AP+LDvwxwZw9+fpbvW7SNGAMZaiQxoScu+QblmFJ8Qx768Pyc3UqPj4BzcP9McI7Q/fwT+O4Iej4BpzOafoC7OwBtA/ybv4usM90ERQeJ9v9W2GlgTmMIEdAPcL8+gO8PGD8e5TM7FrVJTNouDDsCgHMP+u0zcH8EHz5k9ab3zcanYQB/egAdD+CfTMxqZnDbyPdQQ2/4Tu7zE/h4gP/hA9gRmkNnNvRNrL+UXD6oiYq6jdeUIbaenkF9C74/gJsGzubGsQxjy0ZzNB13a2OUI9D9Hegodc7MoLs74INLqjzvgXNiDdOhA+6OsW/x0zmwEV1UjGVMfqqEkKspLbZgbpy+9D5zz7/U8LakHHkpavPV3Hz8msSIEmW5qvN7+Kdn4HwWJ9vhIMSFcQTBsK6Le0VHnfkW4hyxZSjCsL0RMmdHHF/TcRaqasw3pPMha+xz/S2/bOmB73OP8qXL9aX2b3P9fWFdGXPXbSmrOhp0rFXihSpKlRFNLI0trF9irjuYeQaQefB4FDXruZdHWKUxaeitJstVIGuHMKd2gcmux1VBpetNfV5vGPXyDyFr6Kt1uTmP2i6tUxbG3UzdcM33dk1SrkiBp+fM3XfTNzMkqddujy9xQJi1nc0zZvMnyris6z/zTTh90+qzbd6VJcT7BJY/OTGyT86T54g6/pQ54gCAnSheo/pwrv2EPoOgJpCbFvsbS3apXC+PDUr/0cv6tzyfGXMJ1qPCYitUoTUpS7mXHNPcT6K6BgXVuefciaC/l2FW9Xnm+87m8XGyh9TQdj7Uuzsega4D/fFn+A934GPI4fj5GfR8hv94D+4CaTGrh6Kt9EM2R/LowXPqNi1Tgajo1D1D18TfVlHbI8ZjlSgOSyjnx/idktNv+j7b1567Y2THjh23x3vcbOzY8Vq4leGktmDiEcxUZ6t7H5nQq/c1BoX4HF0rzMUm9SY8lxqaq4tKSv9f6vtbN/wVFtgkAbH8mB3Lf3eXLZgnRvbaBq/mYDHJ6ZAMMxGRZaQxYZusXNTIfSeOprIsGh/4PaAM2QbML3y1DT89w/3yuzj3PtzB37XCrh9CuCZfqVvrfLCL+kk/mbZfm+dBbmEYciOLUSSoU9qHAe48s8BXFqYNv7HGbpuDDQGAiu0x3k/DdLH0uZi7Q97TkQMNYwyRQE0j73PoxDniOdYn6b9VETZnwHDSX6gfgLaB68c4bmS5X4xzROpSnK7Up02Tbj4njlt9duPEAUYk/9b3c4TaDpjCe1CVtbbikF1x1vIgIXdo8EAjjqJYbs8iVPMc1DqhfY+I4dwijMNOzvei7tOxIVwXE92HeiJtuhRUFBrW0IXn9AP43Iujd6yMaaXhvtwwXoOXzGevufa7tZNiqX3U6vEtHSRzKMugpAbLCl1hcsYcNPIHooKn9pzX+p5qTLMM96W1jC1eYZxOP9fzT705Xlpn3/v+yfbLufBOlmRwjSMvKIStIgOqRHJIymwNaxPH90qYHxTr0qycVjGS5v/k1y4ceTq32jxZwLJhLxAQJusiy1TXsr5W23ojpdm7xAVjTlXB/lrQnBb2u9h1K4+JWGEJRd6BsX2dG4k1QD6GL+S8kOcbg7ZGJBi3taNLcmtlsKqPrCzFniZz6PgUakzHh3KMKklAelt93nhlpIVAiOGgbpewsohrfBpHWZuyX663impnsR1OnA8+rd89Z0rtNefrIr60Sq2C3TGy4/bY1QI7duy4Bd6SIVR9/gyTYW5SrhlQbvQO7Bl4ekpGDxO3dMJCyViiYvyjpklxVHUhc+7FmGATLmu8Vmsk1pwHGm6qaYSNlMWOXWJC2fJQXk9zbLDyfdgoOeagyg32kcE3u/DKvqWfJlO35Zt9HsXYsNmC22wO4sY3hJMCILmaDyH5uBqTNU9MaTy3i04/841tWedYZy9FbV4vjRHGsF/CPz6CTydQ24IOB7iuRXN3F43j3LWiggDEaA4E1Y8Y7VjZm0ado98aaCaOEOvMECO3Bz88gRoHOveywegkfFL3X/4G9ANGU/8ZgkIg9p+rnCKU1EhoirIW40W5cR3yTZv/9An49CkUhUHNZyljiBktG+Jg5AeikySyu2IOkw506OScvhf2Z+NAzyc0v0BCch07UZwMo3yn+2NyuGg5hxH0X/8C9OfEsNX2C+QbxjAO0eksYb9+/Cj3OvdA18L/eB/acri+IcAD3T9/krKfzpFNm32LIml6qk5j0DJ93v30o7SBhwd59r/8TYwWnx+kTwLSj4ch+z4Sd5ul/5aGXO9zRp3COJJ8KAO1rbRfrad+COz3sMG17FP24AHzxqdb9PUaW7tUhBWxm1fX+teWa+m6W76r/nuJ1XrrZy+WRecQSB27ZmIAyhWRYUwMa4HYp9FLXiT7zazDmhzcXdj++0AimIx7KVzd1Y7ghXemDx9k7DmdgNGD7u8AAE77iYbEc4HZz8GJqvNrWS+h38QSfq9G2m8R5BAo0fHvSQgrTSw800YjeSWETyQKucq8D4qrThSNSqAwjuqY2yO0TWW2xxw5zkXlyCRXgYa/JS4LBJBL81M5X/RmrR4wyZen1xknT5VBn/XtfH24qPRYQhz7zdr5EqfkFiWIjs1bnF4vIQG8NJRYLEN+Pdn1JyB7NzVgL+0fq7fmeSfh3DXjCGFXLMxvNSdJmQejBruvCWGeQkET0eV8TvkQl/bMTvZR7JzskVQFWOkb5RpfHRVU2Rey5thrKK15FZonMCgpMoVI+Z7aT606Qr+FlknnpGIe1bvF3Hwz3zDu5WOEg+KcxgENwXdhXuxaUD+Afv0keYkeHhf3f1yuj9f6nf7fjBN2j6V7kqTOSPVxVV9cumbyTYp18JyTy977gjLtjpEdO3bs2PF94VJW4ZLR/rXUIhYqpfaMyOqB3SgtGZIKw6H+rQ6QELc4WzQWCdpibNIaA6h0Hrw2c6z2rrVvsKUMc9+uthC34ZPSwVRvVqKt9eTMxrd8nhrumUAeWeiPCRvK5syY2SMq+1aS4PmXM2peSnCo9BlNsEujB53D5r9rJbQTIMaJqGwILE27qC3UOTF+b8glkz/PMPZLjGHz1jjJefHwJAbwimG9Zpi8GDUmWc14sWb0JqSQCuZ3DmE75J164wzIDSnxOnWOOAeMhhnbMDjELEY/AMdQr6OX+uFWrgHysWAYYlLxxCpLYwIjOUrsxpfYh6SWHB0QNDK4Qdqk+pB0/fkEDGNUeMQy67v1hUGqrD+fWL8SziSEAwvjYPxCaggL/7bjYoy3zTI2klWN6P2VYWzHROPIic5kz0AzxjGDz+c8VAaZb2eNF6+Ba/r6e2Dmf0soHeLqPNWcBpyMMHToQD98BJ1OMeQGxjGGyGPNh2OIAplCxIaGU6Z8cLSoUzOG2OkHkFMF241YmlQZl7OcPWIIF2YuxDkyMjLViDfKLudkvngrJvaO10WljUWV0zVryxmyA0aeOre1jQdVX1RAmvlDx2TWedR7CYnFhmVfPCsabmM/TwovAIlZvsqynzleW59vqasXrRFLNcJX2P+4GFdeei8gOQ1Ksk553mvj0ufMEdjWEMhNsrbEZWqneA8HIlnzsSqdTBkmpKctxTIhImPelOKZqYwbyREonAFGqZnt0+THeM8sTGTNOeJZ8nfafWbhLOU2OEX0to5kr/70nAg1s4VmVEmLFktrunA9+211v4hb2AdqdXgju8PuGNlxe3yNk+OOHSVeU3b8Fvf/FnCzjTjli9ZajEvzWxaCxwfGUo3hVGOXANMy19i42fNnzocY8dyHDwAQ4sunspILi6g1w1Y/SLJlZVU+n7KFFKu6IiuTMeb1w7ROoPWUYpbH0BgxgWVRV2rktuWdM/ZtNdZlbHuf2PVbFn6GeWhjQJfnWHVOBvaJqTqX+A7BmHU8JsUNIExZIG64lRGmCpRMnQDA3X8Emgb+8wPgiyR5lNQC6nyYsK70/bfWp3XGXWWMmPl+HBL9DZAcFYFlRXdHuKAGUAN7dNwNA9A0aH76IdRZYjHJeXOxtENdk4O7b4A//SxGtqeT9Ik//wXc97GuY7su88V4ltACl8bhnttozCWytMxY20/Ct9CE3dGJYx1EoQ3GGM2128f+KfXFzyfQ+Zz3Z9t2n56B338vXil3FNjfefSmH5XvHIyhNvTN8wn8/K+5QfbX39L9WOItg1nUPMVmu2oIrYV5s78D4ggO6qPMaQQkx4c5N7ufGsXO53oeg5ojtMwrA6Q+MHt9MY7NMVtvMT/Ozld++jc5GWdMHH24Zbb2ZmydP1/6jEnbuEG4mWuuc00+3xiHBOk9gTjGiaPDgf79f4Pf/4e/x93fehz/07+CHx4x/u1XkHOgD/fAMMCN4nSjQ5dIEHpP56KyzD89y89tK8qM8QxqDnB//IOMvU9P0idOp+mcbst4ybuzBz8+pTw7APjxMRibPcg5+GOD4T6sc0ZGO3D2jDj2hxAsQLFue/sUKd8OLjGIkpvOZ2vr20ueG8acnJmM+tg/U0ab5wFhDtero1pa89Y0Rdz80uFdrgFCiFPS9Vb27OCY1KTpWUhOWesh5AahML9xzVE5S5hQklMi4pD3IXnzWFeYXIuZtbMYSs1ctTQelGNkOb+U113CIn8Jtiog5zBLnMvzwCT10IVzxaXf7xbz5dq1+q3Jyd7j7k7mimIvKf0J9TUvUVA/qnK2EcWjMw4CDqFiVZFirs1y+1QcULNjRLmWWyI6hnbujkcAonwvVRnsWfqxK+ZydZCpo5VSgvqJ2F5DbZWqOC97TP/jEac/HdE+jXBnL+Flw14pkmq2fLM5UE70md33lQriS9Z9pf3j0us0f6ANRbyk+Lqy/e+OkR07duzY8X2jMJTMMn0232/jxL914tayzCkG4sKgbg3gsIhSmbMmkE4nFIbYyQ2UMZovQNhrWKMrrRBzG4RMWVGcY+u2qhSZWwwXRkp9f2XkZrGYSxahmxh6J20k29Dlhjb2QSIek93bmNUzC9AY+91taosaDkLPlJArmJeIX4IsTvaFm7raptduHEMuDep7cN9DE50qUzOy/MkYNyg44iDJUjH6sOGoJeIJcE7ybyi8OghNHh1b1zUFyiW4or6ruUe0TORigkYx7CQ1g8ZEj8zu+s2j4y3lHMmdC9KmfWHAKZwRxW01tA86NVB26aBNUl7Gdtbva51SI8QgRS4+Z+Lo2Rr2YuV4DDNRC8tSYyYXzvOLDRsTY/zKuBc3n5X+VvbH8n41R/ylxs4ZB1N0ZDqfV9FSmI9bOjZeA29JUinViLbtlfMekPoNc0x0y/cHnH90IO7Q/uknuOMBzTAAbSuGJSLgcEihg4iToTfELEfbQvMTAYiJXxGeEQ22zEA7pH+rI/98Dm10ee0xi74He+MY0vkxqFmYSLxDSyTWMMetsux3fD9YI0EpMoVvsf4DcmOpOkVs+EhgOjZGVnqT5kUgGkUzlKxyciGvVG38TKrYODctvdvM9RevA19jXCznl0ueP/n7FdTpbzkPrDl+3npO2vK8Wrn0G3ieOgeDWmrxMym5AqM4BL3ue0LuxbKcQCKZ1dZWqDhFStKPhvyKTsXC6F6ShZzpp2H/kdWF5qGLdTGT+H4ONXKmLa9nie7Xe8mH2A8S3naLg3gTIW5jYV+DiPPOsDtGduzYsaOG1x683/nk8C5gmQlzLGtgfeIvWUiF4XrClPCjrG/sfWeuKxdg1DQSHmYc4Z+eps+v/V0rrxo9xxH+4Sn+Wwo2ZudR24U/62xOPp8lh0Awmij7RY0f/PAYWfnWkBnjkhoDakwcGRhrymQFuWlMWzXs2XeeU9mUqMVF1t91UWr/ts+Y3IsiW94y8ahrJbb5OGL8PTDG1TgcoDF0m7//N7IYD3kp8PQsbJ2n58TOq7FnQruJbaEsWqlQUQZiyGHg2vCNnp4S67fC0KY//gz+eA96fAadQq6HXtlEWj+XxYvP2rY1SK9tpMy3zhLsRodaipMf2ctNI8Y6APBt2KDcJ7uYhlsCAtM4GPrDuECHA+inH6Rsg+kf3oOHUTZov32Wn5+fxZnS5CFdbPiYbJM3V1+3YC1mbPzOhCEonGJa73NOMkegwz1c4yRhd6grm/+Gjkdxnum4MAySX0PrPoR4orsj+ON9LB+d+5TbozSYq/OjaYC2kTwx/QA8PkmOkvsw1ngvztnnE5QZDvYp704RCis6xHynPyzXYzTwBkaxMoAta8/8XSIeDwxiDuW0bFyokss6M4vwCaUjKIvt7Chn8tZAmBp7SgVH/L3C2DPzQYS2qeL6XPlnEJ3FkDEyzBdRyaUqI2tMIAe4VvpNHxRtMzkysrm89j0mzOIbrpU49a3549fedwFW/WXGPn1X1vwy6igcR1ArOYDo7gh3/4d4n/7jAb4DPv2HBn/9v/2M9vFnfPiXf8Dhk8eH//IIOg9w93cy/j89AeAsnw26A/DzDyDPoA8fpOwhBxYfg/LweAAfWwz/p78DPNB8Pot6iwjuPID/1/+c4qYDmOT+mpvvWYzLzBwUKmOaAxDaUtuiOY1oHxyas5dyjmH8aIyD24/gszex+zcaibae/5bGya8R5ZrY/n4tMuegKqMrTgAbrscQdQTqBEj5yKLKlMdk6PQsa+bs+UlRmd6nWF+6JuWWA1L7dQSiewnR2XVi4D2dchXimK+rSNf6SnpS5UkgCFBnzHSaJ6ucP8w8pWtbJcRov2IvatSUI2Am9GR539q/AYDHurF7jhUe1HFx3NPTz+d6WVRNN1GGVghdl2Bp7Xrrvh73SGlMv+zagMlctaIYLX8r5uFSSZTC8I4Lamazli++if/8ADw8ISqqsusq+7Xy1rpn9l7yEOo5o+2r5p2N8p7abn1f0zSgjx9l/db3wDDA//4U99PUdmj++HMa7/Velf2P+3ifKzA1J9bnh1C2mfW53SOaOp04V3Wf2smeiO7uQG0D+v/9Gff/aZQ8SKMQlDjktNOcn3Z/ldVt42SvutTn/Ux/tigdq3NKwQmR5woyXbVdm3Hefmsb0cOem609CHWJ9xS7Y2THPPZF4Y7XwntnEO54f9iiLrj63jPMow3tM+X+CHAkC5Gl+25B4RyRf1QcAHHjseBgUGO7nhcWm9QFh0qIj6yJJIFg4FOjTT8g5jbR+K/22VQ6TF4Z19SrLrBtuAFlKgX1Rz00T/itbSRZtybsDMx9u0hfxEy9LKmTxOCcDL2anD3WtYXGoG0bEHchLjbLohm6YTbf7lpcU/dFzOGkynDJKKDnhH/H9hfAMEZ5zo/BOUkMfujC/V0yFmgoA+a4qcAYNhShLaSCWUeor/e3uTqxeAGLUVmnswRsq/CY2QRi9FMHQLgvudwgi0aMjdQ4iVkcchVADakUQlqNHkQj2BsHABXfsWnAx2AgOvfSZw5dYprTmPoNM6LCJ+Q3sXVHWvVbYq+HZLqRIQ8kh5qOdVnSzALs4/MkwbNLIVUs6zerzwpb2NaFjqM61oRzOLvFtN+nJKtAxiLMNtQL7D57zDhrVFWUvbNlQZrnxfPl4jgGEQubk2t92T4nXDe5P5BYoDX28lY10K3x2nNW+Z7aTk3blrZhchRwYejRxONE4M7BN8DwATj9yWO8I7jBAQzchz7OXRuMrg5wDJgcB9Q4cNNILh9H4nAI4wEB0v/bBnxo0X9oQQyQDwYjAhzRdHxZe+c1ZYll5oYxwo0sThHz3+Tec8b52nk7vg2E9YGMaRd8VzuuKOHHhpgDkOV2itdNnzEd70P7bVxS7w5jCpmK3GA5NbyG6+08V6oC7dr1Etg1O8XJ6A3GPTftm1pfwLbnR3XiFY6MmuJk7thrgdk4ImacxS/BhvfIHItRecT1tfza/SpRC8TBMGd0r8/lWoZYN47kVLuvYk752cr1ly2PdwAvhJDV9Zgj0OjARNEpEudZzc+l7z4Msjy15QPkWQ3SnkrraxgQVc81lHuJuTagocUCSZEaJ+vq3z+lUNq6V7dKFg1FpirK6PRyKfzul8Qt+9ucrSbzgxROkguwO0Z2zOOlXr857EbxHTt2bIUyPJecIktjiSo75mJwmgn0ohwCFGKtM4Psashzitsdpe9XGqNjWdYYQj7EJ803AdR2ycjsHCiwQdF1YmhxYgylsNCiu2MyBHKK7+8fHoHzOeWxCOqFyEpTY0YZg3yJzbRmtJirs2lw1vp5c9BFsn5rTRhdhstSQz2F/5/OosToe1EDPZ+QJWOeazclU6rccPtRDIXheAwdNI5gcpILQa9TBqQjWZjb9vr0DEcEbhth/WrZQ/gjMZKJsT/Ghd6yocp/COUPygp16iiLbCwcZsoInjClNOxTUOkMQ7YZACCMKNbkupK/An0fbht+77oUjsl7uC6pC7L43EYxE9lePuWHiWWK32XjQrrWP7PfC9TavDk3yzuhbEPTvPnpecGB5yUX0NPMcQA0DKD2lDaZ4yjtV3MbKLvst9/Bv/4mY8LxIE45Fja7xpDm8n0Ca9Y9PYfv7oHTGe7pGXmMdh+fLa/J2d8AcvZriVqIBMCEWRuKTXT+bSgYvib3Vjau9qnCEcPnHpaZGNVF8b2C86Br5dg4RmcRaV1f6mi3mztlTzfCVuZ+SP3Nrs39mLOgzeY5669Z4ng1vqffyMytfDI5jZizPhMN+TWDop4zjmaOcLkRpQwfAYCHYo6Ym/tvvYcIzNqLcwnNoVQnhPGYmiYoFYODVnMN9ANwSuMzjyP46Qk0jqBzL/P33R1863D6I8EfgOaZ0DwRmhPj+LtH85/+q4xlH++DAaURZ6adh9pWnPwIBh6SNQBGL9/o0GH4+Q7+YMJcMcMNHu7xHNRjY2xPE8Ofvrv9jfLf1bEalSyRuNBElruMGRDFyu/PoOezOG+3oGRJ6zddcqSU2Peor4dZVrDp+4YhbFW8MUxNLQyp+TuGqqudVxp4raPWrudqBkw/wp98nvvAsyyLrOPBy5ycWN2cxkLqxGjpGWiEpMSNB4KyeDFUqz4PQPLoI82zQFLKRKJAUBm/JETwpah8G6syAzCvorDzWLl23tovy/Nqzvi3xLW2L83lFevhMgcLF8byudwzWc6YShlF7WlyH24JvzS5TyiDXdeez8Dvn6NTkQEJtRjXGmlvUOYDoXEEgxfrVMPygsN6jBnu7ihzWMg1p6pnJUpxzBdS5J/RcccRCCSqDUDWyoDkPJkjsdgyxvW/hriU+cp9+AAcOuB0CsovD0IYQ4xCg4chtgnNYRnDYYY9EffDNBLlmmJy6bhdQ8ztkd5qziRleiL1DxTr5yuxO0Z2rONLTiQ7vl3sm44dW7HUVi5wZKxuiK9ok0QkoRwsCkZtZMi+FDP3mGyidHHjCmYnKbM7OEUCCzUuRg9dYuyooSQYoRlIoYcCK12MYYllvMh0n3uXLz2/sM8X28aRxGbnHJOsP5+ypH9L0nP5/wzT3MaotWyXUBZRh6jR0SQfVbZk9g5hAT2O8dsq21/awUZVS/U9FsqvfytrS8tblG2S3BihzRpjKnthK0eDuy7ws3AzPp6rziEAiHlJ+j5f1BtJfMrp4hHj5Ksc3wUHkgkHUzX2reGlfby2kVeok6v2Gc0mq7pf0bY4jinpLFF0bmpIQPIejE42pZqzwNyQQ2i2SZtw6f6TovVF/Su8MXL4og/WwpjMQX1x4Z0mbb0wRnA53mTPLXL/2HfTdudtyD1KbU0/jG/EWKWMR/u8YsN2VS4r7ddq2KttUrO6VkO7vsM0X1KJLOxY6C8xlJh1Gtiiz7bNZIxZem61HuZUBnFsfcG8OmfYsezq14DOwVbJoWPo6I3TWMupis3wPYLTwHcISZ8BNwKuB9zZgz8/SMjMuxDCThWDtj0TAa0ycklsVdZB60SVwg2BPMMNQa3hPdAPoH6A1/40N05Wvl2mdMyS7hrU2gGzhEc893looR3fLoqxczJWVsbSTdhizN0C5rhmmTse/8serwZWSg78sEYjDknhSyVJAVWX5Y+bf/94/q3e/RqwmYfMb6t7O+Mgu005+Dbzx1vD7hGy3zauHyphlmqoqtGtw7C856VtqrLv0xCShFas0j4Rm3TdoCFSCZTC4uka65JvGBzy6gTh8ndV+jZaBj1u5rOoUjH14YLay5Igas+eK2t0ADlRfOo6JDgIq/1byVOqim+asAdshGx2jRNUIxJsJM9Ny/MGmOxJk1PkFthXGDu24WuZPHZ8Hdjb0/eNWy1It9zDGECrsMykSu4GAHWmj8rwA4N3et9gaPUMSfI7w/66RbgHGx9UWZjRWRFix/YD8PwshvNBktyJHJckD4C7F7WBYVu7x2fJQaBM3nMvoXeA+M48QuKgHw7A01NYeF+woHovY4E6RDR5rSOQb6MhlT99iqfGRerahs3miCgcCslYWYRJK8DafhTBuJ0bKMPmcfSgx2dpexp/FmFjbBJd10NxGaulZV02TpQZGvvasNnJ+ag2YIwhyWJg8sxteo0ROfY75tT3ZusgLxebWN3xfR5NHhfD+LdMSr2Pjfcb66JUvNSwtBFdMrrHc9y8M83epzxviY29ButsU6WGOaa5gXh0IA0JoM6qYYhtN8agnqkDJif5RSYHZkJhhGNbyr4IoqiwmhzauFmaY1HOYi4mszrYQh6Oao6NUnFhypkUGDMGBy+GABmr2tAvMT+nlo5JLhQlC+BQxvL9UlnKdlyobMqQW7X8KuV4CBiH8Uw5S+cycN08UmM0DxcaAy55RlT8BaOKC7l9xjGFv+tacVZaFV5gWnvPoHFE8zyCRkCTkzdPwMd/HnD8yxNEwQoJLdg2SYnySWKgExH42KH/wx1c79H+pZeQP58fZO3QdcEJArjBo/00gMagFBk96Okkyr2Nhuio/ohMeukT7scfJAfR80n6UiAauK6THCIs/kUaJMeIGsD48SnkuZkPnZJXP68bYHe8TxSGcR0jshxwNSe6cdoRBRJFc0hKxKDUSso8ysc5qqxhKuOMquDiWEwhjO7ohQGvqkHnUg4tmz+haUDHQyKLzLVRNbpmv1XmNTOHadjV5sNRzg0K5zw/VmXOeC2V3gxBZtN1Lxnj1+79FlgJy7YZtXXjlvupKn2mLWtexYudi+xvM7ayFzIOIOQ6zWVm26rOI8wxAit5cQ+S9znhpXRGEsmcQiT9kDkkeU95JxFyOsZrQ9g6H/YU7mMX2n/KUQk/zueYNGSluCe3r1yGttI19uMTmJ6T0/TpOSlbqnUX+tU4RiV8+s6hrLqmt/Vd6/cT9a6JtFEj+m3Z7yz9voTye9I0d14WocCcX8+ns70Mu2Nkxzy+NJN3x44dO26BtUlRJ95a6CsySdZ5zBcIRoKbwfvI3pBcFgW75LXHVpNPQ8oTFm3jCPYeRA7Msggk54D7o+RnaGaYVLq4sOxhQDacrGF4AuttTjXypdlZysiZMNcri2hVxRAHdcyYQgBtZaVUwuDEf8/FSJ0td7rH7EKPOSyOx3zhq0YFZThWmdmJcTPZHIX8DdXSafsHonIq22CtffPS0WiY7fGdFx2VyWBCzkdm9fQ5hSGlDMmwdeNdqq8WnhPPzxwaX5CxCaxvXDhsoOPvylwvw9fN3Wc0DpclFcONYTehCjU2XUL+v9YhVsKnXBGsqg5UnDTGATLnMAgXFvcPzum5frmGi1iARZ1u7c9A9n7yZ2XMive9YEyM5TFj6SXzyxyj8zUMb1fMezVGeHRgamTFDmDHIjjxQPcwwD0P8OH6cCNw00h+IGv0IQI3BB5D2dSJTg5oOZ3nAeo9qBdiBQVmb5wL197DkgI0pJH+HfKYxNjyQGb8pdHDjeIUcX1IvO7l+bDJrNewO0XeHy4ZSyt99aJQKexB1CYHRS2HB2bWPjXY/kwp6XpmWKyEjJpF00THflVZWaLmJLHI1jY+z2d0iWp4sna58Z7lErWDnn/r5781vuj+h/N/U7HOy/KPLXz3V1rDMofQzeMYiF3J0UCZ0d6qNMJc6dzyWsDmtbGq4LBfreYv0XlJ97umnxKQ5mdd662RnYCpU6HSHqKKPeT7ZA13u9J2Yv3pfK4o1Wcb2mC2T5yLtJHV90JorVuiXD+P2PbcC/vd7hjZsQ23NGrti9Qd7xWXMFNei8XyreOlC+y5el+67xbWEXOFxUFw9/dwf/yDhJ15fJJFWgg5RW0b4nmO+QStjBJlaHuGJj/NmMmlYXbuHebKPPdOqn5Qh805xAR/PskGMKhASJMs/+ln+B8OoNOYFlfMEkv84QH+dAKfz0Z2XA9BEtmh53OKgQpEBUuW8O5LwDM0zI2WNbJslHE+jgCnfBN0OMhv57PkWljLKaLIWI5z+VIKZ5lRCWidgam4hKuLQX54lO+q30+/vWEQxc1/Wf6wiVYjbnw2wkK9zMcB5PlAxhFEFHMfgPt0n1ItsEFJkn6bq7c5Y8my+iZ/X1w3hleM3IsGlWIDugm1uiiPrz2rdCrNreHKOrjEOVSWxxq4L73PmqHk0m/2WoaUCpPNHlf1TX5tGAuGokxzDoHJs80GNBi6NIb0pm+cPe/KetHxibBuBFD1mTJKgzJmPj9OpV5W2IiLCWTfE7I2ImMsBYUIxj43hFpVXlS1meNB3Xr64wH47z/h/NTB/YswztvfTpLT5/4O6A4yx40e9PAkjpAfP4KGEXh8Aj2dcPynT6IAOYkSBN1BntlLLhNuCUyEphVDLPUDcO7Bz6d8nTQ7nod3VZanDVsIma9iqD4i0If7UF0MOp3RfD7BnUfQ5yfQqRdD8zCAn54lpJ9fcTrVQvfs+LpxpbqQmSVMlVW8aog5dQhiYU635Cgd+4jgPt4D/+7fiNPw8Vna50nWvnw6IbLRAWGoB/JKeJi0X0s0Yp9ITBr2sEZMqTk5vJ1/EMdr7gdRXEGNyABgwutN1lxmLrH969J5Y8v5lziyb4ml9dNr7E0u3b+9BSrr/8XzomNhIXTwRYSL/L4Uro85eSyZiRmkSuXotGczX66MCzZsq/ZBDQ1JMr/xw2PV2E+Hg5D+jpJLiD+dY15KZo79e6LC1TFFc0IGxwqfezPm5HuzGF4SyJw1V4Xj9kWkjAvXmZmdYs1mYx1S8bcbtOnyHkv7LOZ5chERAMJWFtHuGNmxY8cO4DKDvRoJ3vOG/FtEZvij6aJty3WXPquRcBTiaDglB0D4HaOXTZc1YKsBnj3AypYMC62acag0CmYJ2za0sWCIolBOOhwSU8wzOCZGNwbkMZSzS3GSJQGrbCLVURQXqrUqypKmUspPUiokbDzxmuz4FlhZmEe5OJM4f0Li7phvIhzX5MsMpJwqmvwPZiMtO0vzgJlvWvt+tbEjhhopWbZlKJs+f5ZugJlBfZ+xo2KyQu+zMAuzjolaP/EckhsmB0eKk12wF2vXa8gtGGPDa2xAbxWuYANeFMv2tTfB1zL6Lvkm5fh06festhPT7i1mwym9khFjC7T/rqkO1jaKS8zMLWzda9YfW+utUvZo1OaF99oy137Jb6dYc8S91rPYJ0c8s4SlUkaqjtNFqL/pvYCuG9CfW5Anyb8cQk5x04gRtgmK0F5C9qCVxKwECOv18VnuNxSGpXGUUJuewxynxiQJz6hhTi56Z/3Jc1wH8DCA2ItzhFJYz3jdMIKYQQ9PkjtK80tZo9kcm7Usx473ia3jwLV9VVXCuh7X3ypzZGRJb9nXmb0Bd5LMOf4WyFAxR1yR5y8+J+au4jz8DTDdHwBZYuXs3MzAXSFb6TlBMUPKmI/q3uVXrX6ji9YKNzCWvvZ88VbzwJfAJXV3LdnkJfVX2TelUMWVPRWQh4OLxxbWiaUixIaM0pyM6uw3jlN7PjsKISZN/9bylONGTSE8Ww5f2TNTmpN9xeC/BO3fSkqxWPq+5Rqlhi+ueC8UKlvbwIXYHSM75rEvKHd8T7iU7XBRjI4FvAcjwRJuzWp5yX2YAdeEcE0z8fdrWHoHktiVMX6+nq8M4OcT+LdPIa61yOP5dJLzghEC3SG/Z0xGHRY+wRkQF0o6gducJhnrtzSaz5SfGdS2aP7x34A/3OH87/+A4b6RpKnM6H7r0TwPaP76SWIMPz0J23IYkgGmH0D/5Z/RtG00Puji0J8k0TgdDiBVCDgCugPo0AGHTuKYM0uoi64DDQP8OIL7M6jtxFnz4w+g+zugH0TV0J+jw8WyTzdLkmv1srboi0nqRBlCELauZV0zU/xO1LZgL6ogujsAf/9HgBntQ8hjoWqhhwdwP8A/PtY38FWDaC1WsGE1xTaQ8tdwET5EnXPuh49SFv2m//An8Icj6NSLcenPf8H4+SG/fw2hX0lRgvPMlssWdeA8pwP78O/etOdKLoNL+75VHAHLuYIq1+V9asUwvQXxvTZ847lyueayNn4JdF4qHci1f9eunYMlAizNfTdhia20mVvNQ9fOa2Udr447G59r22rBJkz/H8E9Ehtwzhk7F4JO589D2vrZPFTcS8JOOhzysio0MamvjCUav595mktEjZEkid+l+Sw4xi9ai71gM/wSQ92l11tjplVc2DAfGu5qxOIY8cP/+L+h+/TvMN416H/waJ+8KD69B36RNsD34RsOnczr5x7UC6Ndfg8OhpBvwZ9OcU1Azyd0w2Ac60lNSyThuaChgrStVt4TkDFb21QkbQCiQB1HmV/bBvzzD/D3HZ7/8QO4IfzwP/0z/L/+NcuFZJ9PFNYvc0zatTV67GfI21DFsPyu1+dfM7YQTNZ+BxYcx5wcFFHBqwQYgAuyCDOlczPHtJJ7AHhldBP46Rn0n/5zWEf24ZEc18/kKF+72D1AyBXnHx7Tc6LBVZ5PDYGOB1nrHQ+g0YN//5TGjzgPzI+BkZDUuHi+OkeZKRKBanUX69aOdxcawd3xCDochGRl128x1OTM8+MLUL2d2DJeii1r9LfAJc/dYico5iUKTmce+uVr7Z56qf/ZMROpbXE/LK9pl9YkKNb1NcekRl/Qf0P7mVlzRCdFIAmGMI3ueEz7VCIhOQ6j9Aftq8MAb/dIk/I70POz5HY8n5cdM3ZPNOR1RiQ5iKhx8GfZK1HbpToc/DRPntaZaxAZjJXxks/nFEp4K+nQkpH0mjnSby0CQDl/vqaNKI7lIQLD3Pr2knvO4Ot2jHzLXt4dO3Z8P3jvzpH3BnJhA3MDA2Ng5kvi6OnhmPhM80yUJx0OKYSUomD5WyPRhP1Rsh6v2Hzg0IHvDzj/oUX/wcEHxwiNABqCezzKmqrvhfWiuU9GeT//+WFaPrPQ0wWdxlml40GSxN4dwIcWdB7ApGG4GmPooZCcvgMfg2GESNg35IQ1CruZfCWDMYDMORKUIylsgTFAquGbJIwBAGEG3h8k5rouzNsmxjwncsDTc/4d46Lxhe+kTKPeJNAjiioc6jpJYguIgevjHcYfDmi6BnQeZDFrHX5zj1HFTzBkzebiyIy1tu6uTAxZe9+8YPWFevacN1YVvPexumbcey9YleW/Ud3eqn9e9MwbfI8QomjRGDaX5ykWw5QjqBXI+5Rs3YTJk3PKPlmwkYE0duh9arB5Jm6BGoHg1u1nyUBuFQ7l8YWysGdRmjZmnWBUG2sM0fEvf8Ph4RH0pz+g//d/kmvUgFmEtWDnZC1w9uIMKcJrRIKCJQiMI+jX32DDcZbJY6OBQv9dC6dhoSQSE24zhjIJzHt/aHH+qYFvgR9GD//wAOoOKQwRkNYQ2spKJ+JWkKuHY7Pf7XtUhX+JvYg1sF3jkFpaM5t1nz5D1oCV55RrGkDWu1b1oXn4gjPZPz5mBsa0dqqsmfRx6jjBKIqxWIzK+zYN0LbgQyfkoxILBuksTwAAuKBgD+G7Fsfq/Eb5t9mi1LLl71qUX4cxhn3S+n2yfhpv8IJ+WXOIvmdcum6I85IY4Xlc/l5RKbVx/5UU48HxN47rIquVNUlm9Abqfd/m4KmRM2z5tGwh5DUbAgJDnEYUnCvMft15ZByriyj3TOqg9w3YVebRMLbwGukIqd6zXIwZOfDGa1kzrtZU8ln0i7eaM96gz37djhGgviDdsWPHjveCS0NXvLex7L2V5xosvYMfwecFJhJ78Ok0H9rifM4Xri4lpM5YUmrQAgxDY2ZDf0Gd8zjC/8tfQL8f8ZEI/r6TMBoA2l8ehSn6dApxj89A38u/jVMgMuBrhh9A3v/c57LjtgWdj8LMOfeIYTaCoYXaVhbMzyfgozBZuAsJV++PABHcuQ95TB5lg3kJSib8FtYZkFgvkV1TMKF8CKU1SCxY54VVSz//AG4dxj/9AIwMd+qBkYCffwSde9Djo7C5wzPo7ii3fz4tL6przgdb9A8fQG0Dr+3ImXBpIdcARg+cTrJpcMB4dOh/vAMI+Pi3j8Cvv67WIbVtCi/GnEIuAImZaDfhrkk5RW6pgJiwgIzyZOM3npTnvYxhr7F5ueTZ1xrmX1Lu9+r0n2uzWX6M2zDQJtesKnfW1BRmHirXDVzElp5c7yPjOKoYNdQieyCwiLOnW0VDlrzYnBXG/3nVX1IirtatfoO5b+ST87p8t5u0N6rcG4C17iVjXf14/HuODW8NDRpWy4aZrCGMuc2/+Qec/+M/SILyxx7u+Qz69RP4+QT/+UF+D/MPwvyFYQD3PfzpJPPToRNihCoNs3K7qPCAMs61DZz7WH5CY+Y2M/ZSYOo6Y4QNdUpNMFDd38mjDp0Yn5/OaEbG8dcDfEtJnRsY8ZF8oo4aAMwUlCM0bfNrbYBzY/nkmrKffS94a8f01ddf2M+Dam1imFxgHVN3kJw92ld90X97iuvIaLQ07ZDHMYXoqfbtJoXsCWsuOJJ2yWIolnVZC/5wBAYPHLpEHMc4Xw/RGUJmrGmCKrzIt7KGibHXEoAKhnmtPnV8q5V1g5Nloj6sPSe750rbeC3F7nvYwxsnViSzoa+cZ8gNNi/aUt2pk3GUfxPEybAl1NNiGN3498y31TUKsYRf9CyOjlpuEV0beJb/miapQyyR4dAJ2ezxaZpbNHt2EyMIwLnJFK/39E9PK+tFD3gH9kb5H3JaLtZeoeQXMtx0PLoqf6et99KRU5wTQ1GbMezNtzLlHuZCQspWfP2OEcV73Xzt2LFjxyXj0z6WraMWX/JF91s2gCXnxvQ89izJVBXjKKEmapuPcmK/0Xf2T8+gYUDz2wPoqZPcJwDo9wdw3yeJdNigTIxXK+WIoZVsfObAXqOxDTHAg6ImboJkgc76t757cK5waOfEDDw3ywvnGyFnCfrJsSyha1gg+jPgui7IrwncOjHGnBBjy0oSvpTHRdhKQenQ9HGhrrk2LNgXrNSYa0QdOUmpI3+Hf6vBihkYBxNeIfzvQGJgOnYpcWj2nMzKJ4v+YLTSTawyqtAIE9mGLYksyqbBJGTW5CUrBuGrFvA7rsIlc8+l12y931eCZOD6goW45ntN1Fzz9y6d4kQuzhHsOYXKsqgm/DUqhzWHTFGGF4MLp8QcLiGmbCyXtpGSRVnmYMpYzrXwIIF9njlFVhjgRAS+O+D8hw7t44j2t2fQ0wk+hNjhYZBcU8GBwcYwi35Ihlxbjsr4HZ0iOo9ZtY9+d5MDKxpNFC6ft6KBNiggo6ODArt3ECNv+zTAh7A/pTIpM2or490hhC1dcCgtYevc9T3jPRh8X4IaKWALQ95RXEtLf0Vu1HRGeTIXKqiWM8gaG2N5aJqDQH8nEkNwC1Enh340Sco+ubbIW6DruWsw9+2jSsaoSgqH+cQBc0kZviUH5Vv3I5faaDbMlWt/P9aP1WDKzp5lL7SGrd9wrV50vnEeGEsHW7n+SSSP6r7diRJMcwLNIRJHVHESnPxctvGNKNdIa4oLq+QHkOUsYjtcvGS9uqU9htDOF1/3loiKtpf1s6/bMVIyDnaD4o4dO94bIiO9GKytLBmYGi2/1Fj2pTZByjyqGQZsfSgjZKuxA6ifa5lOq+zCZSZIyTjhcz85J7vXLcIrlQjKETQN6O5OJNR9n7F0WReBS6GHgGSUtyw4VmWJcZB4L4bx8zmrA2G5NSEe6wh+fAIBoLsj+NAB5EX1cO5FUTGOyejh2knukeW6WAl3EdtAYDrVYkjHWxFAXf5N/Qj/8Aj3X/8Mahzau7u8/pXB+qc/Sh0VDFz6+EGS4p5OVcMhYQzMValT9/GDfLtnUYDw41NMWi/l8clIyZRCoYQwb+5//2fc/+sdhv/wdxg+duAPRzT/h38P/usvGD99mrQdlZuDKJequ/R9pW5cYDSq4yZsEjqAfDf9ZuSiooSHCmPtGticPFoGQOL0ZrFvi/4x0/9j/O8ypJp9HvB6DMPXxgIbdhZbk8+WY6czm6YYFqDyvNeYV9YcOlscPhpne8mBuHB/cVguxPOeqBC8WRtUnKMm5nN0bMbDlIzorokqOMButBfuX7TnLE69H+FPPhq8YnmCGiSG3VBDecmmXp1LF9Qu4bc472Cl/82pMbJzNra3CWlhvg+wrxgws+OWDFG5jw2HFp1SM+sQVVrEudjDDSNoZDRPA+ivv4Kfn5OqNfRDfg7J1QM5w879HJiyovKZaa/qeFeogdf267lE8cFJRjp/6JzhGTyMYtgKayTqRDGCfgD1Aw7/W3DoOELzhz/Af34A9+cUZ15Dnx5CnrPeJoNvVnMuzOKtxqqvGbfcl5TfqGT9rikJLi2Hst01jJaGz51TSwOSO+7zgxgiVU0LpPUWEJnkIMrXQGq8NIrx6XzsY9vVdVfuQPHg0xk0jnDqjG0cmFtZUwKYCyVHGrquaWRM0Os7KTuFbyn9ZWV9szVcnQ25pe8TnL5pzLB1uJJfRHHVt8ZlTvGXPO+1sZkokZOqdAyeVdMRrffDpef7oOa+ZI69Frr2V0c4zD5o5lkcyADUDpNj9HwW0uCKs1Ccl4G0EOadzCnS93EsADBdb1knqEv9ehMCOYGIJC+mU7VM5VR1Ttb66S3IIXGs+MJ9o2yf9u8ble3rdowAlQ3F7hzZsWPHOwNzmtjn8D3GM66hHMNrm6Stk/xKnSam08ziast8YpmypbHwNRnTNgle2PT4pycxrhuDdgavbOGFd7JOkfiMXDETE1oOYXMVmKrJUN0GY3u4vu+Bk6oSGrAyR63CBIhxYbdIsy9GfOd6e4hGP2UlFc44/+kT4Bq455MsVg+HwIKVDSj/8EGMes9nuW4Ywns1AAVpu2EaTVhHAVJ3DnB9ttEuz2VmkEd0xGgb9L99Aj0+ofnpI5hIYrf/9AH06fOMEzaFl5iUR5Mt23ZciTWLtg15eNLCXzflsjG7gfM3GExTmAljtI3M5aIfVzbqk+NAYDtfEDf7tfEFGbprsaDrF1XYuOVNXmttvjbGbhyDoxNgySmiv9UYyEBUkFUr0Bq3a+NbbKsl4SuNx5ljwrb1grkvzyjKMTcXRnZlscHkMTomohogkBIkCXG4nw1HtEgg4Prza6eG90z1tXDPL4HyO9UKuLT2MEba2USitfvps7wHjQx3FtKBJjLPnFlBGRKNGd4H53l4tskpMn2UYV5m72nOtU6RmePsMBX1aJsp+5kPa4EQkoS6Drg7gp6ewIMY8JTYQEwpX0l4J0KYE/mK8WtHjnL+seNdbX1+bT9cbfOvMGcE5rMaGxeVRhpmt2lAJnQPj16cdSG0XXRe14y0K6GfbLhSFEp4Domh2RHoZMgluuapWUgtIsvdsMxJFM8aiohccA7N1XM1pOCW88PYovsNmyhb3+0txu+1NjQZ497BHvzS9Z9Zi2R5HzynXExXl+VGDsoXfGsisy+zZSkdGpVvrREL7DxEoV8JaaBw9teKHiImEFMipoXnZ3lHbVtazYu4YiPI9lwhFFgMV2nK6opv/9K5b8U58q7wSuX5+h0jQNU7t+MN8N697Dt2vCfUmBkbGYrfBYIxJqpr7KZMZ/tZA2eFEawGH3POJL7w0vWAzC2EfH6xDF4/Zr9PDA2vZAhUdnI0Pge5Pz+fZNN27sHoowFHN2/lxit7dzWqFJuEWSdFYLsxjKEv1AOPHuRU+it5MPjBg/oB9HyS5O3HgzxWjRtdWKRqqI/uMM1rkT1/wdFhF6i1xOMT5l4wBGps2lAfE4Ohl9BaQA86neIG1d3fwf/bvwcANOoYCcn9+NNnef/zOavL+K9s7eLFAaMsYiAxogKDNzLwtO6DgSvGhAdk8f5f/4z2X1oM/+f/gPO/OeDjpye4x6e8jgBpGyrVtgxwE7IB5EAf7sAat1436udeVElnYR3z0Kd6Hz0Iwsiirg0bZIrJEKND0RrYVvI+xFA1MQxLvmmfJCcM52QMe3O/KtvZYk1ZFc+rMLRqx5eM9JN7GKtizYC5RQVxKXhjOKTSmF6OtXNlfU3i0gs3c0vhErPxZGavERn55HJlk7nWGvzZm7mlEtZPwxawOj3t+OwI5FoAbUycHUMuqDOjAeBDPiXruAfMc1cMnF7ZzPl8nIVWvCCGw4RxWKtrNdxvva0t90v7xFI/nRlrADPeTObWFeeIXdfMPDMpKSmyrP3ffsWH/xngx2f4x0doyC5tHxwc8/AevlSvhmcvqvjISY4sk/+ATyc51MpaQuezOOYO2+qbuk4MPWH+h/fA8yBrlzBPEhH4//rfYfjhgO7PH9A+PsP/9W/wz89pTGwauZeGsDydkqqpqbS1Sh1gLqb9S/EFHds3wWy/vDFqbT6OMxcw0cv7Lc0FJPloLiHfsObKiz/4+CxdrzKf8nva+WLpPVQxUpl/yJE4/4Cgvg79mn1c61eJWLp2A8L5DHZmHEEjOeli3pPlulgyuFLYf8ScdMU9p2qFlTXXS1D7/lvaUG1P9JL2Pnf9azkRYtjdJjjBpk62q55Truu+IIhI/IBMEjpY+2NsT8t9jHQePJ2l3wTHCA/DvOqkcDgBkFCVRCZ/ljhsqE0qneoakU1OK733wlqTjGJT+xCF3KFwTlSf45hSw9QIM/HZZh26oExNpMQrxt63wNz+6cZl/TYcIzt2fK3YFU7fH0qj/zZC6+uhxg57y2dXJ+mKUXqrca2sX3vPkv3E3khQkTY8pdNqi5rnrdhPFk0IoxITkw5i87LJ1THGpOmTzWDNKWLZZUNYXFsH0cR4Nr/JkecGg44aYpiBxolRQ+vZJne117K/bv8UFpZ1Bt+KsSQ651xqh/Y6NRZquYjAhwO400UrySWNA8aQY8VuxJeM7cxFOKrUNqn06RUhc2JM+MDOG3//HE78DxjvnOQa0XZiw+Go4oVINgsaVovS+xAR+NCB77p8s+A9aC55oDJ8Yy4SAuCALpQjGmt9yDM6863JMsctYx65eqXKmk9Ornj/4n6pvFdsZKPx40KaVmUcqp+mG6PyQOnAnAk/CFw+Llkjy6phceHvt8AtDZAb7rHIyIv1VpxXfOuJGmLEdL6BvVYNvMJ0jocMAxjcV4+h0XKkQmfOw63tdvKtrzQo39owtORovIXjsMaWRu4U0b9jPhETBifOIVvWDpV3iQrG8vSnJ/h/DfOKKjXLdqZO5xoxQJ+ZPcz0JXWyqSGmXDfYMl2qdA5x7/nYyeXP5/Bcn/IRNIThhwP6nzs0zx/gnAM9PoFUkRjmrZgM1wE8BOe+o8virb+GU+R7U39fs4+dq6OXzFsb1YGTdZ4+d2kNUFNAAskwW+RpSGEZ1+fQTeoJVQYHhyeHtWXVKQIzB6gT254DRIVWxna35drCZAfyvEHeT9eCrOs7Y+R9LSdb2abmnrOlnVzTDm29vZVtRwlOGh6OSFQiX+sYVKu3Wu4d62Bb7GOhDoKykE/nMNek8JJ1Be9MG1EVjn2mnQ91GKiOJcWaYI4M4Sjt2cM8rn/XnckeoC5XLJf2C+g6pWJb0XN0nzTiu7ZNfnuOke/4Y7459np+OfY6/PqxtsiKC9cZb70fp4vSS59/yTXvic02x9C0C7oQ+90ysLIFUbkgnmWLJRZqvJ8y5avxfytsGRNHXxaigc1VLqwuMRxtYCNPHBgh7qiN00uNA93fyTmBBTN+fpBwABpuIjCKY1zx8Bx3FOalGuXp/l6cLY+PwDDAHY/puPd5+CZOMcrpeAS1Lej+DnQ8wv/9zxh/usPhP/8N/p/+LPk27u/Bdwfw8QD69RP8L7+K2uH+TjZ/fWC4jcVmbokFaL6PqmcAgNCAQxx+d+jAzMK8q34H0z/tt7ehAQDJZ6GXdC3cn/4ItA3ol4dU3raJsdXdH36W31W1E8rMD0/S92PuEHkPfzrJQjiqfMLmuTgvLpR1UR4MTlJGUatgHNH+r39G9+c7qdcffwDfH4FDB//xiPHYSEiWwYPOA6gf4T8cMN616H55Av3+EIxVHvjlN9C/Dqk+xhFeNxajh7u/Q/vf/KPE7X16TkkKg/Gu+bf/iNN/+/dwZw/32KP57QH853+Vb7LEXmaGdSrFcCoxEWPYGBIBXe49UhZjVCG1C0veNcNh9diCYWfptzlljLLFauHKzHHAGrg5tRMdK8vi2nwUxfEUdkHmoSzvSnmrrSzemrPdGgyq19Q3v4uOmtc0sOjzTVmiEwOY1GU0+HChdigNNVQ4V0onvirXAJQW3qjUGAGGMciHYxTOZwBVR6xlLa4ZkKiijIzHXtHoUhj4pHxh7A2quCx8BfL5lxzFuP8pxFRxz7U8ZlZlBsR4/ZFwoPdiDa0zY+xbcjyV7blyvaofamGrouPDabgz4+xeCnO1hc08juDPn9P9AmPehv1JecfqYyAduhQDfhyjk4Ufn0B3Rzz+3/8tho8O3WcP13u4wQMhPJhvHD79xzucfyCcfv4Brv8I4r8DGPjwT89ofj+BPj0Ia9h+e537mwYI3z7m/smMwKb93tpmoEb394hL1/5bzr+m7so6WmMzX4qlubzm5C3WeOv3z+dociRhB+2YtEV5CaS9TKUd8jiCP33KDKSziotiXaBqL/8Ucg2V64JgELbr2ZkCyn31PCW6lHlVzDw0nVvMnLjFWTExjM8o/bV8ce7cqPDNjrk8kkBZv5eOD5fuxV+wdxf1novkKwICUcLMS4Ds37ouDx1l1OHcDxPHXoYyf5wpg12z5vlxrujHce2Vr/tEsfWchQym+3tQ38t+yZAZszWL7p3OZ/jffkcZyhjOyV5JKinVBRBy+aT9Yhqugio4tudinziryHAp748LkR6aRNb0nx/CvlzWaDZPqez5u6S8B0A/3yVFpw0NdjymZzoC/fEP8B/vQX/+K8a//KVS1+XawaEaXtDW7a3G6UtxbZuSf2BrVLlvzzEC7M6RHd8u9rb99eAS48ElbKfqs17QLrY++7UcKqXRohZWxCgZSgZshtUNnN0EyeJIFpIrib5NHWWGxbiwKIw05UZrZTMwywyfPCcsQpUtrAkgnbD23Z2ERWJHwBhUE3bBa8Mk2cVnyP0R8300Tgwbp+A46toQAoOS9H8Y5DOYd4uy+uMROB4w/OEOT39/QPv7B+AvnSSuu5MwWv7QooE4AlzXwXWdGPu8dYrMLNJm6pKM2gVAjK8bnUnjKN8bqLazjEVd6xeFooYOHfjDnfz7MWxAG9kwsiMAwUBEBL4/gptw3cjCfh0GsLJkQ5loGADyceHMo0+xdO3Gw8m3jiXUMpFhjpGD/+VX4DcH99OPwN0RfHcE37XofzpguG/QnINh6uTgeo/+xwPGe4fmeUDz4NLm4ukZ/uFh3ujww0fg/g7knCzSYz3LJow/3OHpHw5oHz0OjuDOw/QeWx3EYfMQjYaFMSB9L5JvHjcvXby+Cts2amPqmjHzJWN4eP6aU6TOVpf+PAmFF1ExDgPS3iLbPb92MR/G4jtQ/u8aM23zvQpVw1usf2z57L8LY/qkrikY+zKDwZXOnFnDdd5uSwfMxOlR7VfbjX+RQfhWxNOS9WznRTVgEYV8EpSMBK4oYFBScj9M5o/VmPo1ODUETkNVvEo+rArsnMieQWTmtqXza1jpR+xZDDP6PcZRQnJZI3Lp0CuhjvFgiCN08V7sPc4/Nzj9TBgPBNc7uBEAA83Zg4lw+tlh+ABwQ6CRMR4JIMANRxwd4fD4bPIycApp0jSyhtG1AzmjPi369tfIqH4PuGYvsNTmLpkTNj2rGAfnyluu8TKHWWWdWDofas+91DCc3X+6vvDnXsaslVCPtX0JgDwc7cp6NitWdIKGdyocIhrqJ4aQxMJYuNkRV+mTC/sueT9gNYznzJo/3tfeW/M+3WJ8mGvzc2ukix2X6rgOl4UE31loY0BU2ocO6MUxQOMoe4xApFJnwOTe5bxZqiLNsbRWuOG4qvXhA7kpEOYiUcFXHGaVNQuPI/B8klw9qojXpOaNhh5VJ0O4sGkkFDJQGTfGyrda7vexnQXCnBAHmuiAEeKF3r9wDHkn+ypyQFjrUNcBh+TU5OcTcEYW/hiO4H+8x/DzPQ6/Hoq1aRE626iNFpUl8YXeoS3ypfuvgG/DMVJ2wvf2sXbs2PH9oRyXysXprdivl163xhbcirn3uIR5rceJljcUgQXpx7ByyFhCwWC0NIEXIS6iUVXvNXNNYsGkcCY2RIre4+qYufruujjTn2vxhpsmZ2ECKdm1F0Mujx4EhEUUge6OoEMH+vBBFl7Pz4EdxIH9LPfxzydQM4hTo2nAT8/C+ldHydOzLLzU2DEMKXmrreNsE8KggdGcGdw6ND/9CP54D/5wBD2d0fz+AH54CJcbw1MRCmPisFiqTmM8ivFYLawku9gszRqSSsZ1PyS29hPD/fUXqcNzD3ifx4QnB1aVwsMjHJEwt5jBD49J8RPqK0vmN4awBFq+so2dz/WNvHlv6trAnib4h0fg02e40xm4O8I99egOLdzzWdQkwZB76Ef4uxbu1wfwb58iI5D7IesX+kzdePvHRzgO5VeWtnNA38tm5rfP+OF/uxOn0HkAzr2ohE5niV+vap/oGDPvWlVYGAUYixOIkCtPIjNO/451PTPWcN2AoEqTVRboS9ee3qoFavedyb2gzqtxxKLTmI2TaO7+5cZ2C8Ozeq/iPG2rc2qZJdSedenzy+Oz8/A2J6woEXi+LQGosR9f1EbWvsWW77Z0vHCgyBxRMVRF56waE2bCzGwpR3mNZfAqe5eMAWfOKAnTP08ncYA7gmu6ZNQvVT/ZxdYgmfcD7gcTOz+sH5yvztOr75gZgVeYl1xJkh6MMomBbQ2rIfn4UmieNZJGUFjo32zqzpZrDTFhroa70rm9PYIOBxx/GeD6BuOB4DsCeQZp0QgYPgLnHxlgQnMWpwh54PD7gO6vD5LXCkh5RlTBMnoQ+zjvyCvn3/bd47WMTtfsFdTBa6+/pmxL16hq/uakq2Iu2zLmL+5HdK2IqTPnkrE3u44X352aZqYs+T1imFFVk+v5S+2dhZQzyeFuFbrqfEYgFTEHAyrSUiPk+aEm3BNNUtHV5mn7HnZ/NsNEn3OK6LFsTVQlr8zXQVTl5T/Onn8xlsgRa0SbFfAYEoLro1Q9rYQCJQAE8hXrv8311fIC00gW8SI/KXPmkFlTEyz187BGzf7WtdYpJx9m8yLRNG/gpG494B0YY2q/9tEmhDEzh7yJS3YF3T8GBYtVWgOTNZEqelnPHXVNc47fxiqXcvWNrrcI6MN3fHgEnggIURqiMpNDf2oAeAf32wO65172m7Zeda0fcsVR24ninjn4BQmAUYhMxrt3Zme/kVME+BYcI7tTZMeOHV8Sc4s/Pfal8FoKj9XnTkNgrGJLGRcWzqtOES3XRqNX+nfBEC2NarZcZXlKh8wWzJwfF7zK0vKVegibIObA7KIQUoS9JDtvG2AYRJHhBjGgxIXzCPajGNKJ4FWWqwYpnxJ8c0zUnXkv6ontPYNGjslW+dDBHxo0n0fw42MmF4YaUl4IYRQBgH73jffc2k/ChoG9k4VuWHDqwppt+3ckMvZQLgbEGQCAQ/LLLFcIzMKaTd1UyjYxgpO5jzqGtE7V2XU+y3fyHjSMaLpWnF7nM+hwiAwkN3jQwxP86ZSS/AHJKWJZRkzSBfoB3j+l38PGhLVdPj+j+eUxvgsNo4Rr0/Btkc0VDI5rfcdseDW81qT9TMI6bGRz2k2PcVzOJmm8JRYNpVcYuy++/8rGdg5L3+sljOC5/rtkmKqdN3v8BUa/lY1znmvkdhu3aTlWnD3lb5vHxIJxbe9lWMqLU9w1Bk/tx0V3i4YgZXs65PkvrIOQGK7pkjP8RcSTMhSMVedcdt9J0vYlh39pKCrKlP+NVK6L1hzFekfnjkDAyEJQbb7nTH8nArWSu6R9kHHf/6GFD5YIMnU5doA/Ar5DVJOAAXcaRZ2phqymkbUNkcxrRGBP9bj0iqU1+3vBe2Hkbq2rJXb8NfNSed1rOotmxrdlg/YSweCKMtRgSQU2T0h1fC8JXzNzwNq3XAjBSC4Ylx1EdaChW+1YXFV9VBxUsS7NPLl1XVbL6VB7ziWYywF47Tfd0mdecm+d62xox8VnWaKRhw2LmN3Xlmtr3w/OsE3l1v9vfXc7/8a2MuZrL2Yoq5DL9zH1VG2/ek5RJ1vmPSHtZT9E9epElap9iFg8/CEsaiSShev1hokQWFljxnBogYjn3ORZYALggdMZdO7h50JIF+qU6DQy0TAypeV7xI3n8q/fMbJjx44dXxqXMoTeAl9qU3VjRp6NrbvpnSzz1MQJ199sOZfY13ExNiPtnr2+OGcTKgytqjFcjQG+uK8ujoZBlAaNMQaSA3+4Ax86OGagPcM5EsbNuc8WgKImSQqEGM+1acTJovkm7Dvq8cYJ479twcMAGkc0n07oGgL1I7htQOceTT8Anx7gPz9E5wsPgzBg2BeGriLBZA12Ma8sV425GsqGwHSbKAaWsLZ4V1bx6FM5AWj+C/bC3o0xnvWZJhQZF+8a36MsR42BXZxHTXLElUxm8hz6EMM/PgKnU4g73Ers+GGA+yHsLZ5PIC/ncVClKGsxi+VvkwEa47PUvc8dRJAYuk4dHo0Da5sK/6e2ldBko4fTmNqRpT1jFCgMFdWQAFvGjVIhEvO2hCVyFtqtcu/36Bgvsdae9Xit/VlMjhebpkJVFJmsKAzBtbjhxSaten8u+rB1fAPp+6jjdgsb+dLvtNGRHzeUmfF5oT6vNf6VqpxJWYo2eqXjK7Iiy9Ap5Tu9iBzhM6d8NoeXxj97+cRB4kUpMleGpfooHYRVEsIC23bBaScM5aCO6wfwNQqqWplsuW1ZVvp89k2DQUWSJY8y108MhRfc356nCM/rfnlC89CiOR/hO4fmNIIGCTHpuwbjhwbDHwc0Tx3cANz9ldE9MNq/PoB/+Q304R50d4xl4PM5xVk3jGK2/IHSmLZjGyLRZ6PjdcvvwPr9LjF42bHTrhdqY1FtHXEJe9+W7TXbUSCVRMwZlm09BQUIeTs/rqyBKiGwJjmqas4Rm6+iJPaEtZKSuWIOEh1nJu8wU87grI3QtZkNuRuv34BJPfiM8LKotrsEt3S+lvOK1l/5yHI/Mefgcy62D1af26yaKjgm5oz09tlra+2XOA51jT9HSNjg0JIyypqAdY2q0Rr0/beQn5QUQi7lLYzkqfAc3SvY+T2qqbxEZFgqPzlQR3EPxOczMI6yT+raoJ4NuUh032NDZSuhyxK7yvpR4hdR3L9H55DtzxwcME0DohBtgrBtb3VLrO1Fyr3Dlfi6HSPsUV0h79ixY8eOL4tbTZhzRogaCqeIMjiiHDzGLB+jgWWOYTJhZVbLtnZ8iwGNJ4uQ2cWnOiooJJEzElci3XyYuvIsRJ6uBR8b8KkTu2FQjqAJBq7gAEqbFrPJ8GN0vMxtRKhxco5NUssMOp3RPIlCAW0j4ZP6QdQSmjRPHTDncwzVhbDZWt2kZEZ5I91nwzCKG7NClmzr/1pY51hclKU2ZRfiE4bXJaEXtjDhbBgyZQyNELWIdX4NAzAM8J5BQxsTFPP5IMbq00l+G0QpQq0LuU6A2LbiAlyYuRQdGUjtt+izfD5j7IfkRLs7imJEF+7BgUUNkoNrNAaO+J4LTM6yv17ybScGfmeY66HflYnLdUO5VZVwaZluhTWm3upxa1wyTrcZg7hVFcX8Dzb2M9GkLgEkx0lh0Kommp8xPEyc4VrW94RaOKX4zksqlMr3KY1/a8+9krggii6Jh52xdLeMS5cko+bK+Jgdv8DRMvfcW7N5C8PVZJywuV/Yx/xQVynQNjskNn7rEAZnIs+xDNras6Jjs2ivZd2qcsMqDZlBTye4c4/WAdw1oNMoxrqRQfcdfAc0H3v4rgU7QvvMOPw+gh6eMD49o/lwL2Ej1TA7juJoUiJFGYbka4H25/dW7lsaei22jg+3GMOX6vU1nOM3wGoOo2xtEZj7JjzWar6AWpic7H4zvwfnSBaq1ObKU0KS5i7Q8jDNf+61+U+V8yS5EGLZV9USX2j+f4PnlsSBWcy0Iw15eMkUHS7M3+8tx6tVJXnlt9KQzxK2lgBpP41ZY649Q68x/495P+NhvV+l7OQk0bq9T3n7LuWJFGckg/0QnBNNCqnd9/LMrpPfgXyuVfLakoKSlOS2fA41jYQiY9PmLiHzvKbq74b4uh0jFu9t4/MSvAUT4ZJyKEpv3Jcu3/eIvc6/bthNz5f6lmubm63Mr5oiA8YooOEuNGeCuQ5AzAHBw5DF94xlvGSyLdmlukGICTmBkvEO9uBhxZA6x55eY1XXzllA5nBYMnypwZ1H8y4jMAizxEqDIwPGEcYfjxg+dOiIQM8DnHMSQ/VBYnVHg1d0zJh4saF8PI65gRLpW9PPP4E+fojOBzoReBiBX36D++U3+P/4b/H4f/yA+//ygOaf/iJtQtmqGhOZGeh7eOYsnvtyxRXOq0n/SoxRzq5ZQGbkKtptqeoITpgMa7mE5p65yLSqsAbLU4Y+e3cNR0XeS16TpgGViqngFAGz5JDpe2EzhW9NTRPz1ODpGTz0Up+eU+J3zWeji3h1Nta+nQ85LrgBzg5oT9IO1QEW+iuz5DOR2Lk+MJgN80nbR8m23lrXpSOjNGjGRIycHd9srF1iMt1yc1A6XMp3q73n3PBv2bTFBik6OtgktYzte8p0s8+PjDogbUTteYAxeDDKHCg2RJ/kdSjf2/RJIgCNzAMa2mFOifVW82/xDehwCCEOOY6XrOO1c9EpCdfk4+3SmuESJ+sSyjZkxjI7R+WOKpfPu0YtFM+5tBilw2DG8J7luQKyOOPVa5d+KzHncCrWMpkTsAsOj77P1jRZEnkOipHjQQ4q83lOOTLHZJ+ZB6hpjNGimMPs9eHfpcpOQzTyuLxOTd841LnO410HzUMWy+lSH+C+B3rEHCHNp4foJGJmUNeB+QcMf9/jf/j3/4z/6fTv4Q8d/vQ/e9z/l08SupIllxWN6oSXdoiujeG/bsb8fgmuHetfy8i4xrhdw63rc430NMd4nzt39ZwN9fpaxjt7f2D7M+YUgOW/y287jvnYq3N/0adjiKHVcrvs30qEScQjQ0KLavNRchc0dQLF7FqkBvbgPqixUexB1LmrioILrfyTOeo92rjsvEop6TbYm/l4xvEXnB8Yzfs4l8Lkzu0vSpJgrd2Z8qGmBLoVjEMjK+ec8941qa27Bu7uCHhv8o2FvbTmR7G5/TYoX+J+CzoXuni/2A61nDpHIc2v2fvU1hrq3Ix78eBIOVMKcek5Oh7dH34G/3AvYSZPYQ15GkRR4kgUJ7Pv4xM50Xuz1s/3P/rMqTr3ArykfWweMzfYZxbw9TtG3tPAdQts+YCvPXFnz6owBXfs2HE1Lkkmfd0DigXD5O+6UTBiS7mslLRcVCtLSI3e6LNFR0y0bR0ndkyLxu0xe15exun4lylE7CuU8crnDGVfEmtlKYycE+XGOIbk05C69SFxd0h86rsG49GhObZwALgPypHnBmiCk4IZjDFJge3iUPNqBBWGPDY5EOjuCP/DHeg0gPohbFQ8+NOThG767/4dTn9wOP61hRt9WnypoiOE6FKj/MWOQ3Nu1r+s4+Sa722cIVnM18pzZw1Yt8Ycq8eP076rZdVYtJTKzkMepoyHHqw2MubIahbpdpfywagxw1Fu6Dbli3Fp7Rhj+p2GyaJhwMQIahFi51JIKKgG5Wwzc0k9h3GkdOjatlwvRz6GLBp7Vx1vLxz7ayoNU892k1zbMNeVGvncMDnHqpEmF+d9YHKtSxtEYrOpcsWcAMhGMDr3fHquQpNFzj2fp980xUfeOKa8sronhlEyyVDjuA1EI3Gpuqk2mbmyzu0RNhpcq6obIDlbbULg7JrceBbLfqmdd8UoIf+bOouombb3SV1s2T+Zes3GBg2FYY1yhhWtoQHZ+xhiMb+vUURpKMGDB87AYkitrXu+kiBifgNQ//7WkZ/1pS3rwKQGobaVdnHo5D7nszgvDl1+zTAAIVQjxhF4DOvA8Gz34QNwf0RzN+D/+OEX/C8f/wGnpwbNs4f72yfJe2XXJ+PCOvFLYa0ca8q910Dt3m9pS7gWX6J877FeLiTUTdZV6sBe6dbrChWrfuO0j5uks8a0rNGR7rNnTVj6C/NX3IPYNU9gslfXJ1ugaw2rQHlPiq3CKRVVOKOflnWu7CT5LWytThzyS+PPe+sPipoTy5LbNDl6K2GiaBgQFVQBEt7ywufq3pJc3Ql/iTKNeeokVFVWuRcPuSrV8UmuFSfX3QH+hzu4YZT8jX2fkx7W1KlBdcmGoKYdKlvTWyXme20TL8TX7RipNaavHVsYEm/VGOfYHN9oZ9ixYxHXsEiIQG0nSa0PXWHcDhOMnbCUQTr6XGp5iTG/xozVTTvMgll/L+NPlmzP2gSoDD1H4J6LRcAYjfUAhCGrbEJAmAxqCI9GMyOhtsbs2jsRRWaoZapmoX7U+DoJqVIwp9nD3d/D/fQjcsUE5wuFvpf3+PgB3Pfwnz7n912Q32YbjbV44jWjZ7zHTBgr/V4VBQzd3wOecfjPf0PXiVGZRh/Y/2PML5HYVpy3tVCe5uefgOMR/PiUM0+UuXLuxSny+CzKAz+GWN8ecA3af/0dPzUO7V8/Z3WkTpBsY3SB0SrVRWo7WU4SZ4yQ/QJjxiLOwXldrrO2ZwwdJfu6lP9vYCfFewGJoQckg5IPTPvSSEwEf+5BbpDk6l0yUlHXwVkmuBppP36QczU+beirFMaKqDAxsdxLJdH0vdKGN+ar6TqgO4CORynHMEjc3XGMKrOsXRADZ0zbqa6XakqQoi6o7arHkxFBjYQzzuM5Z3KFYV/ro9HpV6gB8uOVdynbSk0xEf5tl2zZ8i2Mq7OGETPuTpMtmjBpk/5n/tZNYvwz5H3RjTyb72bLGYtfcdAoKy449tR5F+et4ttEo3XXhvPKVxnzvpwpxJDX56WGyrnNsfmdz+ep0iG7xIxjWSVtMDxZzBqXFgyydgwFEuvSXsdB9ZWV2WX1Kcarcl1wIRbqPm74i7FxGhc/P57WFyvPNOOWhNyUMdd9+BE4dOBPn+GfnkI/GaNxIhUwf3cbp5sOd0GFdwD//R8x/nSH9vdn0N9+Az+fJLdTPxSxyeeMKaVjLJXX3YexTtcw4whA823ZnFi2r68obcK4JO8h99f1A597MHrgdAqnUsxDRbac2veUeeqHzFinuaj+w//r7/A//un/iX/8zaN9GnH3v/wZ/pdfZf3BwfEUQnbCM9BLv+KQN42aRhQk9rnyMeR/W3OXmTrKFcnIj9v5zra7Wj9c6oOZEnthHXwpKmPd+rw9U8a18nxpxv1LCKavXeatzvm5uaTm6NX7luu5DJozsfjdS0ihxXKa9fCEezP0SV1WuTbufc+9OC80/wKQO0jmCEd2TTMh8QXmvl0TXvr9zLwW3/O92bjYrsvGXAG/ei3LGG33xNa4XZybIZIUN4xDa3P9NU6XuTW9kjPC71kewnhKGNs42TiICPThg+yflGT1fJL/n8/1sX0JaiMlSnacGVsNdYdgLxnSeUU7z24d1xYES8YAkByMHcUQW/Tnv8D98htw7uGHIa4xda+lSuVIPixAd0fJ23XuwxzLYe9sQmrasr6kj1w6PywRgLJyLezNLyjv1+0Y+VbxWoPye2RB7NixFa/M5Myes3WBsHovFxeGdH+ffmdOjEL9fwyTxKKyUAOQZaq/pA+bMDTZBi4YrfTZMTSCsrJt6JKtRmEe0zr+eJTJ2cTrjxOtid0/NeItIzFqZza41rFbKFIso5IOHfiHD/JvDc0QVA2aRByNE8fAjx9BpzOoTJwW36kIwQNjmONaGJqN33LF4Cq3Nxv/cF8KyVP5l1/l2PEom6cgtY1GjSWVBjnQ3R3w4V6+ly6qVJXiRwhDdpTF5eNjNBIxB+n7p8/omCUGuL03e/BwxeLIlm2l7UQ22SV9pzSohbJuKl/5fLNAzzaM+vvW91fDhjPOTCLQOBqmfYVNH/qiOCjNxrJpxEDvx8wJSPf34I/3yfnydAJOZy10MHiOWf+atOuyHqyxX5VkbQtqG9mgdC3o6VkcjuM4Da0HyHvow8rvM+NQnG6mQrtcDaFX1mO5kVhrC3k4odRnpd6oTQlJqUFyHOgGb075sabYWGvfW45XnIKzm5E5hY1eFhy6xAQO4S5mGalBlTZx1AfmHNr/P3v/0izJsq2HQt/wiMjMOWdVrbX22q/zkK7OkdAVwlAPGtCggdHij0CPv0GLFn8Co8HlYiYzwLgNMLsYlwaGYZIhoSMdae999j7rWVVzzsyMCPdBY4zh7uHhkRk5H/VYaw6zsqrKzIjw8PBwHz6+b3yDpsHnjDkpTbT1pddmUsyey49jQJiTYwbyFP29cDP1e14CUhb6ujq2qz98Ah9njc9U820MSKxlyVXPVQkKP2VWFDDt9xrBoBI0m33/yCxd2m6Aqx2wPyAHEuXLU4EfA42cAMJtC7QNxjc77H+7w27j0A0jyDnQ8ajvyVKAMz9vBRwhyHux2cj6CqRMLZeB27X38JRCQA6KaKFWAMpgtQBlNi8rIQbANOvLfF3LCivuj4OHH3ps/+V/gy0QSTBjJZAUZVpZAHqri4XgZU3JZPzisZOC0QvjoQYg2HwDP5sjFrPA47p3xvcowdla5rP97in3PkWAGkD9Porf6w+X2xbX3wobPR+zz7GP+1SyhkpbnfW10P4lsC3vaz4xps/NI6ds8t7lexE6fU37nUqiitwvTSVKz60tNs8W+548K3z1mrrGPsUYWWzTAuAPTH2YEgCzAt6lbNa5e40gbZH9vTb7Np5num+d2/L5an7ZpN5ZlHBbvgdA96KNk7GoEsGyz+e0bjz02RvodOIejSQQSYgWVyn9pmh2Q01cD/L7SWQjebb+3bv6hVXyOK6FRiywc+m/adOBdlvxF3SPz+YHZkAKV9u60paIaxed4/nn9xdg5Odkn+KE/2IvttaeevxeHChdyWbPJn+36UCvXymjLmOs58yEppF4mWZSxE0bMNmYLYIjZzYZMVNEmQq2WY1pzBqsjp+f0vfOrkm7LahxCP7u9DrHGnTtp0zzyPTQvlq6TjxHqblevdn1z9T6lIcR9P4O1HUiA5EtvEQa0NNnQu/vwKOwESO4o4E3WmJWxH9yVrDUPlzo6yVWduF4mTPmdltEXW/L4mCWAufeSw2QzQZ8vQM3DrQ/gjRjBOOIcHsHHpVdYozSrI/5fi/sTMsYsWyhoJtcA4r2BwGTrL0aCOX7vdSKGMdYx+JRzpH1FRdst3KjYFkPtb4tnVgNzMYNhr176oDH9zdnUdulNhs0v/xaNGx/+DGBTqeC1kUdi0nWQHmf1u6YmRCizJR8JbrLJQCYH2/1RNzVDlD2EhHFMc/7PXA4gg8HUBbQ4cNRCrKPyvxnSn2eM2VnWQ5UuX/dHNtYHSRwTcyiPV/qYk86mVIwTvttvtE7scnmEDfQy6zKlXYWSCmCWlQE/6xQffyaEuhTOT7+e3ET9YS2FjwBVr/DsS7NuWOY5+PfwO8y4YvDjDmZZ5ywV9IBkP5G5f3Sc62KmZfB8MnnK+yxgc3a+1393XQOkzYWGTWZNvu8z/VYC9CeA28vvSdbB89lUJ45vir5BkyBz3xeWhOQzQM/2o/UKKC73YCvtsB2KwxQIIINJh2KRiX/cl/OwGRA5ru2Be82cGNA935E+/YI/PAOfDymuk95+0+1ufAFox+nrE9jjnJgeV8yeQ0yAMWu4dL6wpr5EWuH2L836b6jHFxl3pWsF4bbdAmEV4IJQlBwaUVAc4GBC8taCQqMHI5K+tFATyZZJ4fr30buODMPTVjyGVN70qaYfVNpX2m573di3NekDqc/eAJwJM9ClIumMbLUL+cCUmuAn4esX5fc77k2fkyJpIv2mhf83+zScfEY1vYl52OORLMaGHuWpX8qqJ7XkXgK+9RjZDnQWvu6lkkNxP0aoQEmhbNxuv9yv6iYE2e2KOGV+Yp5NtyF7+GEMHNujiz8SGo6uDevgbYBm9TjoPsz1rH5EMCnuGbKOqqcw+TDAczqeNSegfZ3JBdN6vxx3DNMssxLIwVirEA7IBkj0Rcfkq/oPTD6SYbpRIrr3PpwiUXZukcC5DMyzOOIL2YvwMiLvdiLvdgaW8X2Sfrb7JE2kuMIvjtOA+em+99qQDRPsSzOWUP4V1sMVqo0VyMbW2G+cdqkmbNRFo+enU+Dx20r7Avaz78HUn8FSd20oL3ZZVIGNAnkZGL/6/qjuI7J10SHYH8Qx2GnfcPCzAdJDQUmksyIQ5JAyXWxJ1ZKNhSbgWmWx4n2LvT/RD9cA3WmbQ7mqD8KQAL0gdF2HXi3AV9twK2DIwKGUZy0wYH2e4lRmF4wE4gSeBWOR1DfS+G64CXIgeSoWhAGgxTSNiXbKJWl8jEXM5aWrAY41FieNQe6kJFIzibS55ZdYM6s6boyy2aieCepbcFvbuS/d/fZvZ++PyId03mgwiRoStZlBEWkKF+8M2XFn9OPju/f1U7uzRj1rQb0LCvE5En0PefDIYJCEYCx+1665ol5yqSCyHT45cRy3ZOBGZeyAIgSADg5+Yn+zjdLz70BXmR/obq5nIIoT8wKfg57UPsWApynzp0HJ2dJPAVDr8joWKxdkwN5teueY+w+eBNnG9szm7dzm8UaW7j6OzfJEGOmlKHEIdW48D6T7fwwbOtEcHj4sQCm4DKHxKK0/XxOcshroJxgxMc5LV9PnOrYdy140wrhJQdpTd7QfBQ3pnVDY+rT61gGlchE0f0RfHcXsx7y383m0lPzQ55FpZKE8dmWx7gm+XE5iGaMbnt/tJh6/G6jxdV9AMKYssAqpJBYD8BAEQPi7Vyn7NxYdE1aCwz0CMXcQQ5Qpq2V1+Lyd0uWzwclOJMH+y6YD+Le4CPF5s/aufuZASrLY1Het0e25znmo8eCI5/Y+jzJEljTtpIYtLKm5Mnvzq7peUbh4waF3e/JLNqfg5WkJOBk3xKRrEVo0t7fzrMECCyBcmXW0qlj8s+p/P/59ztKzRbrRXXvvdQO54TU0LXgbQvyCowYWHfp+3xqzNc+1/6KREs7Pma7LPiFEyJORmgtAat4nWlWTToNT+MSk/VMr29rfkYgsALz4hM9IqPG+uAp7Uy2+mPsBRh5SvvEFswXe7EXO2GXLGyXmBauolYDNIfjJJgezbIO7gVYyAOxCEFY2jU254Vmx1MzZaiXQciTQcaMtWN629z3UkgzR/6BbMFSJp/X4rK5tnt5/txm2RIF+1UX9qrkycpnlwfFmVnu434PGscsaMHx/tgHeT6dyFOY/BkF3WhnWRSxjUhOnRV+i+DAGgarMVAmVr9v9j76nEQErjm7zKC7g8T1+wEYvbBCNRBOWvR3EjiwZ6Wfi4Oa3AYZU0miLWeP5s9a7nmBGRNPdmb9PHWcAZKFLFxkjWr7ACQGbNNowEvZ5faeTiRbQl1jddKedE/cNKBffw13HIBvvkXohzgG3OvX8uu7exk7GuSX1rrE1s0l50rtb+iQiNilAgWuCFbU+syAjmEEqE/An7sCdykDjI89uB/03LoJzdlaEZxcCD6v3fjaWOFURNLttuKQWw2GrP3kKNVICQ/cXE+CXR/QV3vxCx/WB5NjKuuGMfQmn58ZG+cAjud6VtX5/IHnif9O89W86D1NMgBSYASgZhOlIuO8WLI512bR1OxMRkiqb3E5YzCvySOn0MK/BpwCSS4ql7QjF2UtOQ8o5QGmeFL5LNZzMvm/0QPHIYEXKisVzXyGWCcm0/N2DdzVDnR9BYwj3Lc/AE2Dxjnw7V3SOLe+mzBsZT23+kzsQ71mFgfN4sjWjqVAjf6eRwVxNk3qj5bgtppJYoSLw0HWi91WWaj3URqHuBIEtzXZ7r/dis/bOJAPU5C9ZmdIM3w4yPiy8er9FKi3zBB7hmFMvvAZEsGsHdXsxwuOB4BY46Fgyk7WawOTFoDPtWvrqiyjACBJOsIy806db60USjl3rAyCVtt5yXHV+31Eht/qa3w8u5jscWqdrPU1a+C4yNKb1kM7Md5CVk9T98bsPaYAR6pdd8rKNW4VwPnUtuRfP/c1c6msEgAurfD7LeORsqD3owhq1f3QmTlBAeaJLNcl17V7tj2e+TYNsizAylyt45NbGb/u9jD5PqiqwjnLZRlFKSH+Z919GLkuSlErwHFuDOfP7IK6bWn/7efzdo3E0Pca1xnS/mttRmRtP5Vneln8Kx+/jyH5PrO9ACNPZR+IafViL/Zin4FlAVrYBrbGkBt8DKpH52WrGSb9ANE+SNIAieVxQWDPghOaKQIgBj5WbfYoc2BzJr06I9WCuchiQBzAnAdcVrQ7W1AnoEgZKH7MQpkz8MMo9S8OR9HP1s1/dNZDAKMDbcWxh2P9O8gjUqeFXOE8sW4+1SmNmRWxGPUDnIPafbNKWliwvVJ3gzSlFiHI2Ape/s6zeErgirJNECDFq3ON4HycZ6ny1WKK53SIL7WCDVwCi6SSTWgaUGABLcyhtoAWOaBtQTQCzRBZ1anZPJW9k5ubtkPHBwCgIfCrK2HF/tiBssAY7XbSX/v9tCuKmgpkRQFrQKVmLgEAQgM0cxDx7KZDs7ci8GG/a0UGBuMIHH2S5irbmBcZnM0fD9hsBQZI2d6bDhhI3z1Mx4zNPYGnAbWHMkAnzPvKxv7chvPFPg1bYjV+DHss4HYJUJAFuGZ1Wcr1wWqtAEnyCRDSRnHcVDrrYe/VWWa8tT2CABXpqNkxJVv9zNpfkxOzjBKvDM0SeIi/12CC/l58MyeECJWIApAktvKaGd7WDf2/ZVhaMfDdFny3B79/H9eXWBeDMiksI0DYM7Hsi66TGnTDUt9qsGVJrqnoX7bMUdpM/FBsN2ADz7XQORGBu1Z8CZPRWngWxvLNg6ApwP6I/bL5JH0va5GOa/F/psF9qdcHwDVgHiYg4ETe7KGkjEuMi+tN7qkE56bZb7PfPYV96HmytrZeNM89wXWf0j4VIuzaNpR9XgtknjtFnmWNqW+2CIKzZgfD9rAqZ1oA3FiTTfmx7WPF+WZrmZ99f9Is4zHfUzx07NbG/RnS2sn906UWWPY9+f7PQPZ8fcnb5HT9Dpwy47tMYtx8i6XsGSMI6PVj1i2wOlOLmSWDtLanrLW5+r5esL+aZGmdkhIw4CUACoqkDGI3+c1Jm7W/UE8pslkuBkcWxvgUbLmcaFOznycw8hwL2kMZES/2Yi+2bEsBq0/BITUrArQxOAxl2ng/ZXRnxiYHQyyb8GEQdoPeHzmKQYoZM6isV3FGqmRtRki8j1yWAZhIKrAFbo2ll2UxlAyIvKbIIntxybGrfD5j0a9dtItzkMsZEVNWBe/1nNm1CAOw1/u3ejDKhKK2S7/nMHlW7D1wLAJQaxyWmp1iexngYdeP1wjguztpQz/I2Br0b5PcKh01cqCGkrSW1QRRPXUrhExZkKJeMPvMs8kzkcxZOqc7X7CnJhkg2g8GFJH3CnY1cK9fxXsDkAAerQdismOxLaxjvxOgZcYS0rZYvRn69kc4kwsxf2C3BYUgcnq//gWYCC4wcDwi7A+AD1L0rty0qAQfhQAes37J+tPmjomki90fh1RbaAJ2WcHaPoJoGIYYDOOuBd1cg7oOvN8j7A/SB8xyvk6ldyLAV9ip5+0a0ZtHmj9472fZO4vPHIhBRBvnq5lnNcZvznTMs9w+RTvFUlzyO2ubjk9p3SxtFcv5A7Yj/r9g2y0EgeN7NhtTWLdO5ddd2iQv2Lzwp091a+IpaFJzidoWzatW3qdyfZqcfGHNXvoOmMyPi+dSBunZaxaMerFMxrHSBmpbDYi7KdiQrXl2vkktH5XpdLttJKlI3S2ZK/l6B951cKNlgZh015jqxJlPZxkr3QbUtQL6AuD9Qebnm2vgoOuAtbltJSvOewFgYoFVSiokVqNrdtNSL8S9ugH3A8L79/XfNA3cV19h/Kd/AbofQP+//6j64qNkxF7twJsO/qtrIDDcYQBGyfrltoH/xQ1o8HDf/yDrQD7uzW/dbuH+4V9In/3hTwj7Axw5oBmAvpdx6aRv8iyO+Azy96XiH5JLY3kx0JQ940RO0lpwDtNaWXadmk98ao05xx4/xcCfHFchGeTvx9pMjfI65z4zIG8t834Ny3wy/2WZWad+e+5cn/K69Vj7VO5xifFtj9MyrwoJ0wS0Z4Hm3Ic3qaKQfFALRNcyok828WNkiADL7/GHsiyTLO571oINnCkVAEn68KFxlEuPeShpaXIK3a/HJlDMfomHLNVIhQInG1nHeduCjiPw4zvZE9faVwvyt62sZ1ZrMpiCho3LEz6e+h327Wwc1/zDS/dXdp61vy0P1ezPU37uxE75dtaWvJ7N5KsUm4jnOktMmGZHxxq5TwH2FfbzA0Y+B/DiUwv8vtiLfUzLmSRLjICz53gmgKUW1M8XJ4+JJv/ErL6FTfpaO8A+E4mf/LyFIzCpVbHiPqy4dO0e7HxZ0DgGUSwAvulgzCDSTBH2Uoh8GhiaZzOczhZIzILF+6k5L495lprSK/qenNpImmmRMwtz6/sYXInB6jzg6yubaOY6aPCUpsW4I/M0N9bCpG5IhV1P9ZUFklQCTIp89yIPp2OCunZWPHwmXVI5by3wcJIJVTtH/LebjFMDKEz+KtY68QF01UjGRtYngAayVIYjPiMSoM9kV0S6xINcYrpN5iTth/DjW/m/sYx3W5CehLYbDG8kY6S7vRIm7v6g593qXKDtMjDKNpzMognMWf8RpefsaZZ1Yuwn0gyQmL6ugEQMmpIT+bixBXetFCfERt51ZeQyOWnDpssY3pfPm6RgD1sQTjfYTA7kRq2Ts81uYS7PwhpUepC8YG2OWME6Txc/scF77uBGrvNbu24leB8B68lGpwg4fgqEg/weHsMmfKpnUJvDKK3Fs+yMaNNnMy2WeYYNe2pfcm7PsgCWc3CgnD2fZcxFMLJtQQoK1wrjLgcsMyCx8pvIBi7fn3Ob6dpnpwKrJQmDOd5jvo5JLTQHGvpptlkZfLfxZ6DIbidgsK0XW6kxwtuNZFHYOZhjgWEDRdh70Eakr2ijc6qRJNpWwGfN3MxBEdp04B5COrHnFYLKY2IC4Me22z/bFnR1JZ+9L75nXbeaBvT6Bm//+grbdxu8+o8d+KByoW0AbzqE6y2GNxuQZ3SBJTOWCNw1GN5s0By9APwlIJeBbuMvX4MbQvuHP4nfYb5E9tsI6nNIBAdbr5BlOJVGLvqmwOngSPTJQjH+VFptsWAxMJ1DH7DnmGR5nwoCLb0HVVBwha1sZ3UdXdu+mtVA4cfO70ss7o9tn1p7nslKklzIyUvmw2d7Rdkb1c81AbHXZvwXQdHTjV14R59kr5/5WB/62Wdr/EOSamRNyj/4AASgx8ZaF543BwYRIxaNgo6rvP5o+XwcgZ0Ddw7cdmicA/3pOMmYTcB8Nt/LyeV78yUMjDcf0eIIZ55LJK88V99fQKSpHx9SXGMtKDLLdCxP+YTvCbOQNacXWPcuEgEgnNbuTPbTBkY+NAjyVJPlz2TBfbEXW21rNtS1Y5ZYMNHOTKyRZam1CCyIkLcnAxzKxdFdX8O9eZ0+2HTgV9ci9XPoEV5f4fAXr+GvHA5fODgPbG4Dxh3h/tcO138f8OX/7v+NcH8/axovBe9PWY1dqfdnTB4OLE6ULuTuzSsJLFjQPWefWPqpIw3CZAXCtP9WPatca7NwHKaFiZO8BMrpvYxlaX0Jq1lAKp+UMwxnWud51kzTRJYngMhoFwepAbUNcLUD+gHh+x/kJ5vNNBDTNuBhgP/u+2k/5DriQH2c5p8XG3q324qDpsF8VqmLJaeLfQB8BgIV16K2S7U28swQa+71dcYWE9ABYUxAhHNw223a+IRxeYOi92Bg2iR7Z8mc1goxthoH8CgSMgxI4Gm7hWsbCUCNHny/BxoH2m6BrgVf7wQksaJ7QwKrqG3hbqR4eqk3m7SUC6fW5pIy60bfB/QugRzDgPa7WwEeNh3QtXCvb4BNh7t//CW4AV7/P3+PoCxcBmYatPae8jjUx4U1q2sx1eBtQMTgMcsaCRr8zQrt0nGQMaLtw6+/hvv6K6lHY0WBVbOd2nbO7D1j1Dgp3OsNccoDx1oPZrcDugBqjtLvhUxNXq9JzmGsrSLbyGVgbXyQNXD1TEbF2l3oQ3y2fG48F9QPBTBWXtdqbZQb6MnvK6zkx9xDbY56FAPxkQGHJ/O/a5vcLAOwCv7P53FZW1aMnxIgrjIYK3NjuU7OMimnEgYEH+cVBrJsBGGUzs5bggW1ay8CGwvFQeP90PTvmhWMTQDx/Y59mzEIxXRuiSCQ3UMKrhGxriXZ/GAsZgNADqI7zsd+ksVGd3u4xiH88iuM/+BruN6DxiBz5zDCGTiy3YB3HfzrHYbXHdr9CLcf4Q4DaN8Dmw5+08IderT3X8p6NSo43EotEz4eBWwxkAVIgI/34LHwWZyA8XxzBepaND4IAPPqGty1CK93IM+g44Djb15j/2vC/W9avP/Lf4Z2z7j504j23mPz93cAAL9x4AbwmytQYJBncEMIG7ne5s1rqZlycw3WdY1CAL29BbYbvPvLHUJHeIV/jGY/gPaDZKz+6Vtw38O9eRP9oxwEIPNBzCrgl2WFQrORJ0Bms1EJrwD4LBPKpE+yrFB57wKADMDIAMZ87Y0ZoxOJkkowSp+H221B5lNE+UuOGZdxL/EQWzvX1kCJ54wvLIC08t183U7/L/5rxJyNZmyZBM0wTPrs0QWBT9mHIgqcu8ZjAf/Z3mblOMjncdI9Yc4o19/EehXm99o1Oc2tphowr22xkuFu83f+/0uyOB77HMvrfyx76H2cC8aX/vKaTM5TdurZlGv/4jOrxAFyVQfbz2R7iMn1szk67A9wf/gGpDLKPAzgwxHMDHd1ldQfCj8gb2c4HjFRT8jnsKZB+8uvASKEd+9lbq/USazul8r+yPbGi/1RG/+nfPtav5yynER7krxS6aul9p+yUz4iEPt6dk6LA+nzsHXDbZVgF8ErBnMPvFvXnJ8uMFLp1Il96lqGL/ZiT2FrN56fuq1l7sbfV+57tonGhJmWPkz9YmnCVvQSwBQUOLPZoK4Fv3kVf8PXW/RfX8GNAc3dgMOvr/DdP+8wvAaOvxlBPWH3TYPhFWP3T3/EN//uDb76l1ugAoxMFqdTQeVzDogFb0cLnCuzPOixyniUYMGYFToLMbgaC35rf8zYyqcsMmpXOOzsk153ee5SbmHTScBcme9SPF0275IhEJKDURkb1Dg5HohMEQM7sNuCdxuMX16jeX8Evv9Bvt9u0/cWLNgfge9/TGsOZdIeHpX7yMC7ssaCbea32xR8D0HkOE5oiidpr8q1oMH0thW2pmYBTWzTRXklMm1x60fWwu1dJ3U9QlgmZuT9TA6phs4SCxuxv6ht5bzFxphIGNC06QR4vN4BppveNuDdFty14F0LUmeaNBAYx20j4wXMAgLEoEu6x9T+KSA5AwhYGXOkTN+mkYL3726BrgO/vgZ3Dfz1BuNNi+//8xbcAK/+9RXw7XcZ+FM4nM1G39N6n8b/ZjUEJkWXLcslbvISOMc+gEgBo00n7bvagVuH5raHuz+C7g/g/V6OaRoJtHqsd7adkzFEmnEG9Wk9AB4k6LfbSlAQAAUv49unYuyx4HBeCDSyGRmc6/TrZ3HTlGf5AB93/XsQo2tNIOPEby/Z1K4J1tSC5o8JJn0q/siafl6zf1gb8DKzddjqHFlx2ux3MSMCAOAyIFrA5Um9rzgniX/ACmZPAIA1bbNz5Rvec3KHDwIKK8Czrs+JzVmc37I8QyXLJ5sbJseYL0ckwEMFCOOhTzrbefv0vt1vv8bx6y2avUczBLhjCzp6kfdgxvhmh+FNi/0vWhy/JGx/bLH70aO77dC+bxG2LfyuQXPo4K43cPsBtD+Crc7cMKbsiWMv8yRzAqVHIR7EsWCAyWaDcLVJ4MpuA//lDcabDoevO7iRsXk74vB1h/4LxvCKwb/swXct+n/TYfddi198J75m2BBCSxg10TLWAw8MCiTrbNhg/MUrhE2D8VUHCoytc+CuweEXDuOOwLRDe9ji6tsezd0A+ru/F6KK+lDUCyAfx5xlfFo2iGUz2ftg2Yb9UCUHWTYr7/engQfXxmLQcgoDTqbjMNXWQ/JVl0DcLNuMtlvQ6xv5XVZ/DUMaV4/KJF41T+fvhcp1FkHD2TnLdfIh7TnbLszf1/xr80e3W/HLbEwcHXBIvxPf6xljOR8KHHkuq+xtouxxqcJwymdgI/9UrmGkjdwvLrN88jpKD7UakeO5n085pp/qeo8Fuy65xrnr2PqqBCr5/QJI8hT3Xwb1lzLUqu3PfRnz9TH1SSq+NR+P8H//zfRDDaTT9Vbm9bt9ca38BEHkyCYfptpZ1GwkzqPrLh2PCD7bH62xnBwTiaa5FeB97o+tjYmdyRqf1Rg9ZwugSCTjlUDoWitAIiPITST8JuuHkpd17afrq1m/U2hfgJGJrdVMe7EX+6nZ5+zU1eySSTZfBDLGR14Po8oOyBYLakVz3xjTVW3nNc3etgjXG4TWmI/QdgEggB0DG910BWD7A4H+b1/iV38XTut/50H2eF/FwnbGKTLty0UG+PGoOuT9NEiZaZZiiW2ysABP25AXQNX2LzEIbKFcMw6sFoIx+llrTtg92DljMygxTQGVMVLQKQdF2lYCGERwgwZ58+OYgX6QwIT+e3IP1kfk4DYdmDnplpaSOHZYCVR4DzBN9X6X+jhnO9UcUEAYjEPKOJlo1juSTWnT6DuQPXcLOpusRsbun5gykuI95uMHOvZQcaJsfHMoAiHZWLDzeg8cggRaQgCHIAVjj72cwzbYR62Hkj0XZgaOCuowI9csX6WDnPery7RuOUgWhhvhHEk9DwDUNqAxwA0d3vxtC3YE6gdwJ+BMHJV5YM/aObt2kOBO00jwhhIT3IJLxCUrXDN1IDVYMIySJdJoJhQzmjEArQMdBwGS2gb06kYCcxqco6xWzbmAKWu9lyhbNmFpGdAWIugqWUkhydNUmIYyZ3gQ7F3N3i+P+pz0KdjCe/jJ2Fk2n84pa1hqL1a3cvOv60gMoNq6mveryW3mVpufZs9lJTN39pvpO3c2Brk0bgrW8mw9K4KkkYRitYQq54nScnp/7BVoJQdyHhy0KL3HhDkIIGU+TjJVeXad2E4DwbUf3HfvcJ0HFFoHtE6u6YH+yw53v2ngd4SwAfwG8FvC9juP5k8/wl3v4F7vBKgPARg9MAqwwkSSWXF3P1mP2aS1rD/ysWCM7NGDSfXXda1xdy3aMeBKMz5A0pb+CwZvAnDforlzaA6M7j7AffMj+OYK4/Y1/IbSNUg6gLQuB93twYcDGiI0XYvmTrJr6diDQovrbwLGLcFpjbzjVx2aqxZXVztZo/M+N9+FGXw4yHNqWyGz5O+DrQvAFGzIjL0XQsIZxmrMwrHnGwPImlGpGcbx98wAlBBQA0dsHBpI5734GK3W7ho9cDhGH6q6li82tpaBsf74y9i7D1wrL7yfsiBvbqR+GB2PQoZo2xQc+5DrzKe0pp1iiC8Zs/hzWe3LBGCkd+4xbaK2S+fPmPSyVmg2sKvsCZ7CnpLsseb8a/azn4qtaV8+pooM9cfOOSeJo7nvc9LHPHV+BfpKOcAlsDc2a/oezeIrs9qtCRyX7wvCihFnjz3Qq0SxqXDQCqBhAiZYpmO5N0YlrnImK7e0cz577ftLLPqZeh+onNvAnVN9UoK5Sny0umCTS2brGjXqN1q2aPmcw/r556cPjOQT2Yt9uvY5LDQv9vHsKZyq6mb/xIINCAt+twOHPVhrAlzUJqu/0DUYXunG0UCRgMjCg4PoOzsHYmDzlvH1vzqg/W6fguZLFhf9C9k4pWOxEFTnXEon8FTKR26yItsyv07VEcrZKvCnN3BUYYVm303MAkq5dnpgMHySBKNMA1qzFmZ1VYpzommAxqWA8yjB3CjbYdftpaA1OUoZDllQJ24WOinObUHryOoaiyBNAZhIQMhqilwS6Fr4umQukjLAyEmAeSi+LxybKC+zkCpc6hRLtk5GWKgdZ9+R3WdffJX6xWpPYBzB+4M8x+0WGEeE/V7G124bmaYIQSXxnDASvUeIBb0ftw7FZ+i9PEd9fkzHlMnhJIvEjR43v9cxN4ypCDrU8dbUbwCp0G1uBnC4AKI2FjGHHQ+AVfd5VrNDgxOxNsyoLE0tXEyjBzdOAjrM4LYBOv0OSFlUxkIdx9NTYuBYtL0qrWDgCHNkcudtnTnxWZBwxvg+t1l6sXV2yi/7KfbpUzJC125WC3AknSMLCueBp+CKQBeWA/z5dR5ilwSCJgGIEuCeAiKUraGzczgH2mqmprEus7UiMgj1+7ydEWC3dQZQ3fssmA5bL84Hz0tgmlgIHPz2HehwlDWlaxFeXyFcNfI9Af0rh8Mv03GhA3xHcENA+OZbuC+/gLNnb3PsOAJoJTA/DAj39yn7L4L1nABjII2BKFfjAXMVVKKK9g3cMML1I8KuxfDlDr4j8M0AEODet2gOhOYItPuA8MOPcABCR/A7RGCEY+YN4AYC3+8R3r+H0/ooTdvEccLM2H4/oN0pONQS+lcOzQa47jSQygwKxZxu6/MwiEQXsmefPedFM0C8PG7p57XsWHvWmmEs/RwEbIoZoAqOzBaeBI6w95Ldoms6vPocmu2DsCI4uNjwdb+f+Ms1gPFjAfT5XqyiBsDM4hcrgOlursQvemj7PgRD/7nskTEsm2sZSXbuSbT/jZxk9QaHQV4HCxwzxdfjoxVNz+2pY0w/lZhVLk91acZA9XwfMNa6oo0luWF2ir6yr5x+oOcxYET/Nl/FgvGHY5bBSalu5JIcqZ4jZSQ2aR9V1u5aJLxcaGfXz0eO5/x4R8A4ve9L5oE8ZgDIfpZnzzAnzKmvZMTZEni/oC7lTxcYqS74nxhr8MWS/RQWmBf7tGxBNkj+fSY7wU5xOAqDD4C72oHHEeEw1y0+adFRBFwf0Nz2UXJBNofA5i2he7dDew/c/NFj+9Zj87ffge/2COcm9NwRPRUcmd0cn3buMuCELLOkVqPibMDkhAzaI1hms+KuOSu0rBNhAZNCuioWiVWZohIUYR+Ehd90sQ9AJIGJPsAdeuDYI/S9HGf32zjw4IH7fdp883ShBxDbGZ2xvKC5BYM1iCMZK8qkNSCjHBtP4axP0sf9wnuDipNWB0UM3LAaJsxZgbdadsma9uVAkUfKVvHShhiAMADEp6yEWLyWFZnskdqxkqV0yubSWhos0TbQ0AANR7kvdxzF2W4bLZzrQCpvhYzlElkzbZcCYbV30WSq1GGnAGGiW+ZT3q5JhoUe1w/yt3PToNH1DuFmq7JmIveCYw8cDgjjqIynecaTZZJI0fUU4J31U0iBowmAsjT/TYK2leDZ5xwMebGPY081Vh5wHp4FrXxa48oN5YcONJX3U6uRle+xagzNDBifAbibLq0HtkYGBu22It1o66SBp9asUhqizKYYk2QigMn6uioIVMo8Ng1cSzI/jaMUUu9auH6Q7M+2AdoGfkPo37C2GejeE9qj1CJhk8c69gnk0Cy66BeaXFTgVAvL5nzzQ8o5VoPtNGoGis6dHDjKe7qxQ0eE9pcdqGXAMbiVTBJ2QGhFjgtXOxx+QfBboL0HyAPtPQMEDDeE0Okza5pYywtWe+3mCth0OH7VYdwRmiH1LTuILKdJlGaADx+P8b7tGcnilT2bwLHWlYFb2UBLJIoLCA7mG8Z3jbTuiNaUQ+CULavtPStfYuvpIDJh1A/CWPWyrq9uYwmcXmjRvwVOB+jMPvSauRSX8VOSFB+Okn2TZwmdkOKqX+chbfuErOZbr/gdR99XPp/ILRJOZvlWr8fpeLJscvtJVsPxk8vWfSrCw2POZ+vmYyTFntLi3gTz+YGKeeNi8PaJn3u+V8k/O0f6CxzrjUbL94F2qkhaS4F4k6icNMOIakbGGIXQRrudrhkBPKrSQZVImrU9I0nGOEtqeHEjK/p/zVrx1OBgfk5S//WUROQCeXJyHrbMSyUCNTRf7+1celySeM/iA+5hQNJPFxip2SOdjBd7sRf7CPaQBaIM+hdSDmePtX+OA/ytlyKT19fClm4yyaEaayy3CWMLIp/z/l4WkO1GimEG2XS++juP9j5g880e7v09/O/+cJkGsW7oJtkGF9zr0jmj1FYtELsyEP8kLKWcZQYgBixyRqemcC4WLqsF86mbZ4oYIzcEYXQaUBICaBwl0BBC3LDF56SSU3S1A7yHf/9e2rXZIGak5GbSTQAsZdTuKR9bMcOkEQYj7w8piJTfn3TCeidq7buUGqyOcuW4hXNFuSvnUgH4lcdW25wfpgEKCgZshCjRFDXizYGtBSPYg8+l9c5vaLl9HOqbHnXciCnqw0dZrcFLgMqyMZgFkEMv84S1KwJvAawyatUmGEjUNCBqABdAIGH8zgKJPDmOAHDfCzCjgS44AjkHbh3Gmw4NKSm5aUD6TLE/yNjtGt0op/oHwq6FgCMDFjdZzCwM22GMEjqr9HMXg5qfWGDjc7SXPvygNgkm5ZmF5+ac+O8P8LwokzdcqCM2YV1mEhS2zloNIACazbebrkfjKEH07VaC/cGAb10PFfQ2wkH0Tcr7t99rO8gCHTkgf67P8uBJWb9CJSJpfxDZ1devwFdbhA4YXwfx+QKBG0JzCKDjiKDAL/WDFIE99tHniJmPg4H3WVCFSOd/kYqoSjxykOyYkAHrKpNIzKDRwwFoj9egJoAahm8YTAA7yBrRteDdBv0bIHQMNxAaD7QHBjdA/4YQWgHeqWmEPGTPd7PRYu8Njm8c/BbY/QgBt4jAxKnGC5BlCKpUq0ozRskwq7eT+zpFAe6ZXRrEyxmn8UG7JIeitUWEELN+PWIftJbZiHDI2pMBVuvatxC3WBmkvcjvXkkYu9hOAS7lHg3qw2jGMjlCOOp74DIf+lPIQvjYVq4LNk6BSZBxxp5GmqOZLyBTzWoUiJ9HBo44J/NNSTTKVQMeM64eevxTjeWHggQAYnYAzk8hj7JL+ygnweXnAOL7t7qMz+J+6Qnnk8p8scYiqdDm53wuz32UIlPfMkXYlCHscwPnIxFNMxaGUeSGm+Z0lkJWI4QDg6iQSb20v07FuJ5jwBlBMZ9z9FqT8TLZb69oR4zdKSmFdb9b/qwkAUeyoAMRT+qHzdpxxn5ewAjwstF7sRf7nOyh7+uSI3YKZFnaaLDUNwDupzUW1rCv2ha87UCesfn2DnQcQUfRHcaG0b3r8eW/bdDuPbZ/914kmG7vhWlGTgKTZVGxSZtTFgHYNsS+7jzYgnmiSPfMLPhRXheIQYEqYHKuX8jFdsSAbMkgL82ulzHOpWCmFa3lKRvv1LWBKMlB+UZdAZFYS8YlpwgcJGADxILuPIzTTa5lJ0RGoyzypbMFIAUvcpasMmndTgJC/vZO+smewyhFWScBIUCyCIBsbFaecTm+HxJQXmL4Va41SWE2GbO1ps/JKbuU+x7hmAcAE8tJNI4XwBpgzm7OrxH/rfVjgLk2aSFzlppQA1IWNgFEcDfXiYFqDjgz3HfvdK5QcG63FeZw36TnFFR7fRjSGF8wkV+BjC/LZFrJJJKsDstG0oLsTQNuW4SdsIDbrUO7adC+P4L6AdQ2cFe7+F5x3+t8Wemn8v3O25XVIKlmlDy3/VSkER5rL33w4Swb/ylokgW0AFgdnfQ7A6cX2HMfwBbnnzyIm2eNmAyFEQxyeUkfNODppJYAEbDdCAhgbGevx9s6fXur2Zx6zybz6ZNPMV9ufFxrV2XWWt2JiYzZvM/ZA9AaXcQMut9j/6s/w7/4F/8Bf/vjV3j79hr4mx123xxA9wdYxgf3vQQRh0HkDok0O+SYSR9OiTec+xo5WKDsb/YB7v2dZIwQyXntWCvYzozQEP67//AP6EODf338M+B9g92PjM27UQq4O4ftjyKn1ajSyHBDCp7on+sdqL8B3r9PYAYggNXgsfvRw28d3CjACxR8Cdc7uFyaU+u10aaTPuh7DTgFGQPGdPeaRcg8Gf95htVFVjz7mFWsRt6n8baGUDU7f7FO2/q6JuPkTFsXP8stC8RKczjdx9K1S4LN0p7h0sySGrgz25vV/Cn7W/2qrI0X9+FP0Wr3X47rKMtTy6K/5FqZ75+x94naKbN+IiF0Qqb5IfaYeMBTtOEx440rhL3nsAeCNvVznZHJXrp2mfnwkPlryS6eewLgWqmhCACH45RUMY6QPZsG0jsjb2TrP9JUhEb2mjwyrAYiiCR7XjMLbc0ilUWeWF5vE8W+sszmsvZfBFxied6Xi+gXjxyL+XywRCrM5+3JcdlvgLncWR4TAebZbiWpxa6lsSjOzm2/Yz4jSZ/Zzw8YebGfh70EOX4eVgULso15jmZfwvaw8aMOPY/DXA//3PEKWvhdC3ffSwBUi0ITNgAzmtsjbn68B90f4P/4pwQykBS1m9QFiIvG1MGN7EsLDJSLUbFYnmUIlZuhhSB7kh7QBfKCxZscpXYwr8qMmdQiUUksUXpSZyZmBCy0xZ5JXmTdJD0mepYeGHySUjAQR/WvY/H2/DpOmQ2arcNDfl0XQZGYjQJIFo5mNdCmSYBH04CuryQ4cn+fnr/JM+TBENagvWm280JGxlNmSq54zlEbHUjOXiYbNg2W1wEGahrR+L7aiY8YC7bmTDQkjeP8WnZepynUVu8DmAfuOAjrd9PNQISJlNOMcVcGZk51iKRaU+ME9AS0mKhoujMzml/9EjA5lgh+KRvPB+B4TJlbeaAiMre1aLsV8VMQl5pG2EtrLGdAkWr0dx2IA8K2xfGNQ2ghDOijzlXG+AYkQOY9mI/Tvsnn04X+4cDyjD8WKJL//aF9hzXX/dx9mnP3+NjvL22HWbmZv+QZPOaZLLIrC2JDEYyJEgPx/x94TNiGeLIOlYHTxMCUv6dzZ8xqi9JaDsxt0uvuBCCx+kaRoHAt8wyOvWTURUKDborNDxqHog9tY4302SkzP6G8dQ3Wl8CK+S88yOa7/4rxv/jL/xP+N9f/ffzX+Edg7NB89x58f6+HsQRotIYCrFioFlm39Y9cmPhJ2ojZPcS6K96D393Kh00D4qCZr6yEDSH5cEP4n/zqX+GH8Qb/9u9+DSZg83ZEezcA2w3ggO2PDL8BQguAgPG6AEauNnD9Dnw4gIYhPWMvWSrbHweMuwZ+58CtFXEn8FUHHnagw1EzG0Uqg7pOZGtNTiuESVDJsggTWGX+fIg+c/5MLjatOxePtyzUOJbTdUX6JDt26dp5Ed08i/W5rGxH4ePIP9f3T5KNOeFTL32et6P891p/NCdmZf7XB/cPPkW7JFhdk8Rdu5ctz5UBZhw4ZrFF3znuUfzy+LjEnnLdf5Jg8CPsFMnxY1tJtvjYYFbtPHmWwoVGXRdl5Zh5mlHAqVZj3HuVoPgMtMh8DGbJeMxIFFITw9qbnnsEAYzcmcVv8vtKtSqXbmga+J/4LKf66CmzAs8cn8gdlbkmB95NZrVtYQSCSCYNQQq551mxC9ed+FK5eY/gX4CRF/u526e04LzY89g5RyefjC3AcMm4qGVb6OJDbQvabcG9FMlcsnB3j/Z330kR6Lvsd6YnbdcZR9B2C7JiXqwFuTXwOAn4ZhscSTPPap6UG4YssBIX2KU+iJ+fcDqyAGdk2FVTpqcL83Qjk2maSpRhsrGNQfXIFMwY5GFE6bzlGTyRHRGbkTJMouNgklVNIxJXxlQHpoXVUuMj2Yq228gOjeYauJvrpBVuweXM0eFBJYLyQmL5c/Beinp2LajrgO0G3LUIf/1buCGA/tXfINzfz1iNsa2a+SLZN34OfpXMilMsjktsthE3sCwLhFnAp8Z0XThflN/yXmSaXr9C85e/lYyqu71IkOwPcl1j8Q4GBoTJmECYj81p0KuJ73NeIDw2yRzkrtMsjGHyuQVsYhChfDzdRovzHSTQE0Ji2JEDvX4N1zbwv/kSYdOiue9FDoVImE17rZeiQBGVRc4zx53DKEVLnUt9kBXqjY7qCafY0rrRUJI9aVt0f3yLX9z3oKMHDaM8h9vbCMiag19q957cxORzc9Z3k3bmY+VT0WZ+ansoo/ZTslPrcRUEyOaONRvep96oPwQsLtvwmDbloDpsPc8YuTUgUd8VDqfnz/nniRxhNX8ebK6BUxA5WplJUSusDlT7i1kB0WGMm1rquvnGHwC9E5+Ih143wcMk87KaCXIO6Mp/k4PigaW+GKA+VyJTUBNOFvj+8/+rx//8/n+GzY/A5i3jq39zD/7hLXi/l3MPY/TVYpuV7DHxkU613wAq6LxpUmMhiKTVzXW2zlDMSOVth+69x//qX/5PAQZ23zpsv2dsvzvAvT+A39/COYfmyAAI5AEQRPaVgeYINEeGfy2a6m704MMB4fZOQHwioGux/9UGw7XDuANCSxhv5DzD9St0d6/w9X/9R+Dvv0v+rPq73Pc6RrmQos2yhCegRMWfeahlfc3jCByyrwq/gjYbuO1W1jslyuQZIqXWerU+3zmrZF/Z9cv2Vv8fzzMFSBZZ4HE95jRmau05da38PFnwK2aXQ338MutnTRYLVuxjPjX7FAgNeRtKsN3NSTN5gHWWgV9kHcUafk6JNPne5ynu+1M5x1NbDSi8hKTxXJa/uw+9fs2ffQqzNe9CMI+HEeH9bVxfAEz3KESy97ZaJLlc9KgB9SbLJAGkxha6JDe82WjBcZ8RYIH2qy8BAOHb7xAycD8qX5hqoM2JAKjBNNuw9ixm/89rsE6Jc0v98mS2QDY6OQ+UBJvASWlAZUUJEMDVAJL+DLHAiDZmMROFxG841g8r7QUYebGPa5+C0/BiH9eecwxkiP7Z6y8FTMr0RHKgqyvQm1fA7R2w3y8sWgHh9hZB60zYualposY06SYSRKCrnQQhr3ayuN7eyUZXmeUpCKy6rqQL6/HEbL+mX0sn7FRwK2c/LKTXpzoaTX1htCCHBl5lU5n0hGmzEY1Ou98e4DEsB3OCBxvbD5gCIJr2iphJg5Qa2zTi3Ow9wuEQ74EMMInn18Bv10rhUA7Afbon6lrJ8AAkcO89wvEIIk6Z5MOUrVD2sDAkVEqk68DbDv71Dt//82u4Afjlv98Bd3fzqLt1vTpz1Gifn8viOSepcM5moKGBWy4GyCeZF3atHHxbAEfMQSSimJ3jfvsr3P/VF+huR7Q/bEH7Xn7XDxJssmJ63s9ZmXaP2biIZu3sVLJr9MB+DysgGXXT7T31Xt43chEoAYaiTzPQjDQTBRBd+pwhBAFX6Ms34N0Gx19eIXQOWwDuoJlAlhpsAcO2nadmIws6cAA4S0s23fpTWrc10/RzY07RpkP44zfgf/s+Y0FNxxe1wviO8nB5n5y8Vn5HaVyQBiMTQ5jB5Xj9qfoOz7Gp/BBWBmCA7P8ZU83+n2d0xt98ICbwU4Ica2wpUwUJsIib4VoWxuSYyrxdedeqhc99kPXS2nThfZMjAZGXgCwjNNh5Q/Y8cwDFWJKAyCSRk41vOedm7eT9IQHLgATRL5XylMYV486CwQtrkv1WM0xjcMTkLIvjdv+H/wb/8L+ctmnyNNmnZ7DUvjXB/olfJbWceBzhtM4ZNy5JNBIhbFr4Vxt07wf89f+2BzeE8VWHdj+i+e49sD/Av32HpuvQ9AwoaZMJcCPBjYztDx4UGMOrFmHjsLm/kv55+y6uTdw67H/hMLwmjDuAW8BfMUID3P2DgObe4ev/RyM12JYA+nINKQk+axmyD7Qom7vQPtpsQK9fAccjsD/EovB5ey+q9wfM38cswxlAInmwEX5WrOu5HMmarPniO2E+y7wcyR9rah8yJ9kYm3+gwTIl8sT5YBw1Ey6RvvQfH26Nf459aE5EWksaeI42LJ2faPJ80sc0Abcn5SdyJjuvy/aftKUEBH6qPtwpmxEe6moQ6fuVgOSSnRkDq/z0h9hzPNuHnDN4hLu75e9V3WOidAAk0qRzoCurOaU1RgDpu90W3LiUle9lfSQvMQn/9WsAgLu7lxqKACaZjvbM83keEIchj2ucsxi/eQTpZe37eO531uZzEozRzzHFjVH3zBp/UV/P4kE0jidvL9aKVf+O1H9k5+R5vAAjL/ZZ2M9xUXyxqT10oV8KHjzmvOXxxq4pHAceR+D+oGzxM9fJFwNOhbYASFHMq6vp4qd1KyJL0cARK3jaD8oKh6SCXrKYWTsusZJRVF5Pv68FYQhQlsTCApl/pIwNUGKWTYNqKzYXzEDuQ/pis1wUV4tF0gpmHnsvfewdaNPBvfkynTMw3NVVktQCkgRQP6TMkUlxtxN97xo0r25ilgz3Peg9o/EB199ewQ0szEOiLCvBT/uGnEhS6D1eKrf9JGabrCWbgWPaN7Z5jlJj+mwap7IcA2gY0d2OaO4G0P0RdOjBxyN4GDO9+vqm3zKrImCXZe3M2schgSIc5P0aBgn4aMHfOEb6vpDuWnjWkYHlQA3g3ryKLCMA4Ps9aBjR3r+C3zLcYYTrJcPIxhKCyLidKtoq99dMA0RF+x6kyx08TJ6V2nbx+lHfv9Ynj5mL7TmUrMWnDIQtgeIfyp47OPIh7Vwf5uuq/R/Ak2kff6qWs7Enn2dFzMu+OXWumc2PSZklHsQka90j5TI4Z/bNmqDB6/y8lfmgPocom5xJ5laiuO7l58+B3nge81FqYEMtqFQLBlFqX5lVmAqCc5K/qslWlkzsxwR2H/MeWKalU2AEkOyOo4PrR/jXW9z/2RVYZNYBtNiMXgMTDuwD2nsPoEH/SvqpPTDcwGj3HjQKoEk+gDddzFLhYQTf34O2HbiBSHFtAG4ZoZNaI+17h+49SWHyNfe4AIZTY8/Qn39flmyN77wUlBwG8P0+ASJranics4WgtYEI4vM/JDBYBmJX7gUCgzMqxkNk+2KWT5gSzKaM6CQPOLvGxw6eP+Y9Nj/3Y7b/DAg2ycIy3xactlGOQGjq/l3NTo2tD01G+FzskvniIe9DTgRYIHE+GzjysW1tf5lUYl6TMsZdlJRBBPAOkXQJyDpLBH59I3vwQIDNmcxwtxqNN9C85jdYJipRIpYZaWjts36qLKM151m1bq94/4HYl8wUVQ0mdXPtGZgSweJ5taamPRsnfkzc5y9lMVfsBRh5jL2g3y/2WPtcx8zHbjcVdSrydpG7TCrilLOWORQWYAUQg6WWlrnURvmrYHcFnwL0bSu62ZZtMYzgu3vdZJHI2egCTZsNOAQJmDqXwJFcSqC68EyD/jNH/cxzjIyi2oIOVDMEAAgLn6gi/VO2J52HVJogMtxDyBzzStvtfBPN3MRAWL4pEiembbT4Z5FN4D2C3muz3YK/eAWMHnTsQdwBYQcaxhiK4uMxZS3UpEqiszUfl9Q0wjwkkVtCH8QJO/a4+uMNyEsqMMhFJgUfjtNzxXovBvwUkkmTzX3FCb7EqaoFPivZGHlwrLqZyhiF1LaJJWLMmbYFaU0XDCPat0fJFLnbC1P4cJT+zgv5Vp0mGQ/RkV1wkFiBy6nESQq6RDZL28n3x+y6lElXLbG/FJwhA8G8B3xAePsOoAOa/VcAt3DHQTKPRvne3gfu+1RHJ/Z7xvIzZzDWvykkKHJQpPYO5Z/n48PqrIQgDutS8fecPfjQ9cE25tl4IUfpeeRj+Rww/mIfx2Jq/IWkhc/RD7rUFt+7bF176J7iDFjCwYnM4qqaSCeAOg4Tv6c+tz88s4sDYp2jWbZuxspMbU1rz6wWwgwAmQIf1vZ4/GjrZX4IzzPvCtmk2bzqmlTctSR5PLdpcIX3e0QmuPWDI9DdHrT5Gne/cQABzQFojHxh83fw6G5lvTu+cSAG2vuApg9ShyTL/OGuAbFm+XqPcHuHZrNBaAlhAwFEGiBsGGCge++w/YFTzbC1di5QcymovYbNb8zTppmteaEfQD73OXNf/wTQfjExiaKMCy5h58eG1oNR0pYz6+djyQgRCFXgI5NNqbYpBgTdtJ0fC1xQcEqA6wf6Go+avz+ATaQZfQKuOBu7RrbKs7iW1rKafex4waduH6Jvzl1jDYnvKa/3XFaOw5VZyNRkhDzo+Pc+1i8LKoPpLGO02cme534v78er63gudipBGRh0L1muIQcWS/lxVUiAcwIAXJrhf+G9Xn7ex/qhlfPZP53cNwHSX42TTI/AiZBi8aUzUrspe01q+BIA1vWbfjbAiGtQ1ZU4ZU/10tfO8TLxv9il9jmPmQ/t7OTXW9LZzpnoT2UnGBWxQHH1uLQpqAUz2XuR0zpqkEG1KQFMi0sCskgM0+yUWTbEWsfnwmdWBojze4j3wVk/xE1XL+BRWeMhb4+lz7tWNSSn9R1iUdWTDcyeeZUJmhgEk1RV5liQFFGfMwvIdi3c1U7kto69bIItGK+ZIVYrpKYxPbvXpeZ70eiO49sRRLuCQJ6nY94CUuX51HkQ3YsK6FUDR8rfXJKyW4BbMXBlOuDICsotGVnAW9vMLAXKr0W7nNsGdHufxsQYBDgcRI+efQHUVTZqZDUyak5RoYvP9/tU/Da7pxJQWHrGEdixrA4NjtH1lYzBcdRCs43Umrk7Sm0hZQu5/SC1RUYvY82yYQwcKrNFDEyNDMxsLGcg7kSWYqGfYlAiD9QaO7sf07/X2hOuCxNAOn34ZOefnvdjBSc+Yz+gtNqzeY51+adg5+beJw1OhPWxvTPXPbtxf7J2Z/JJJMAOAJRgzKT2Vu4D5AAxFQQIR6AGKSCR+2UaIJnNeSb9VQa/i9+lGlmYBncn9/Z8xpkECOz+zBoh1fgrguuB629GbH/oRerRwIrAaO4kI/JGD2v3o6xPgPax3LfrBciPGbgq7eqvgPGaBRAB0Nw5tAfCF/8+YPftID6PqxBYJsBW9hyLvXtkuufr2rng7KyjMr9xiVQ0CdKXbZV9gUlITuox1HzRUjowfn4CKA4MDPpcStb+mj1YvnZqVgu5OsnprJmfkLOqVwJWkxpKS+fO/7bz23me285dowYWP0U86Snv7aF78gyMSrXpCr9rsmeo7D9Onv8n5N88xj5VgOipxvLHtCogYvujJs13C4QdHkZQYJEKBmAkOSuiHtUaNJs1xl+8j3tM7hoJ8HvNNiGdH43Am/sj+RwKCAgQHjgvx5v4SPuitXPnbO+pahdEae/NQWp7WV2RHCxaC7pobIkhRdzZOSEVr7TPGhihplEU+zN9kV/sxZ7KPtUF96lsaVPzsZinzp0GRfJ25E3PAYVRMz+OUkiUDwcJ4G+3OplDpbJ0MzKGujTOWntovyxmP4T4PQdkwXK9zlDKZ01lBuJGyVJImWWDnctdaQZEns5fXWTNsSslzwKDOpLsFQ1KxyKlgDDwJmzdFFyhtgW9kkwOHHpZnA8HeVYKUFDTgEJA8OPyeCzbOvsuSOFS1QWf9hWnYARwUs+XNFjB8fii/0sm7SVtXGnReTFgD5g6g9WDdFyHANpuEL64UWDEofEBePdevrPMBc0SmRWFzM3ur2lEqo5Dkj3Te00a+Dxl6cSx1Gnbin4s/68M4zybJ47rVqXyGifAJwBuJTUb+4PIpu22Eqy6P8D1jWSKBK0dNI6qox9S31pQanK/WZHMLOsiB6wWn69KdeRBUwv8kWaq8DiK8/8MWu5rLIJTP/V17nO3c0Gyz92eK3jwKQT+1thT3f+pQFoN2AcA9sLizCUTZ5luChbHWgj5vBck26+U01RgWggJ8luyum/Mc3mwcj1bAJpTbQafgjMPZYJeYswAe4RjSEAQUjCdHMGNAeMV0I3A1R/v4X68Q7jbp1pq3oNu92j3Pdp3BwkWtU7+bmT9Ca2DG4NkN/YDuJF1JOg6NV4D42sPNAx4wva7Fpt3wBf/+i3cn74Xn6cMWgGZD5Zl9ZQASQaOLI6XmpVB94nfeAHTNl9jO4pyKxin5ygBfc59ohWyW7Os1VIK81y7T0mbPtRM2gv2qFaAIwZw1shs0eQ9SVk3K/2M0id4Bh+hOk4fCvQ/lw9zIiv95DULEDrfC80eQe08l2ZqfQz70EH/zzF75lNs0yVWI65mKgbUQPaBpcoI5HN4L+BEXpMJiIoV0DoXfDzKHlvJjFYTFW0jUqUBKZ7hRG7S9rd5cJ8aW5dd3APzxUz//B4K0kL5+ceyGvEOSOuIETpNMjpke1e6EBRRk7pvQtBkMMj5+ry4YJ81MCKMnM/8Zf6Y9rkjxC+W7EM/w49xvXKy/wAOGXUbKZ5sutJWq8AyBZZYZpPNWrGJJpFXEGaBj8wD2mlQPJeRyBbsyHC3/090eU+kej91EKNyP4vf1z7P5ZYCi7zH5IemF17Ue5icawkQm2b2kBZ5JFucXQMBDBr5d9cBPsBdX8dAdgzUb7fg3QaUb77bFoQxPf9ctmghQHKyb1iKcbtXN6CuA65UVm0YAUdwd0dg9KnA61KtlnFMY/Fcyqn11WMc9HwzRW7qyCCToVoyCx51UrCbuhboNuDdJitix6leyzCAVGJqwsys9PmkDkssll7MHfYuRealA21E3opH0T6famBnBYENsMtrlrQt6M1rsCO4vciqoW2BRjJf0LUYv5JU6+4PP4D3B3leTSPvfdvKWBjGVGOoHxQAqgTiVs59s7Tt2jOwmit5NpUdn2WpCJP6zDlrttbPWGTNnwhCvtinYz/lZ1Ns6CZkhw/Jav7Y9lT3eGoOO7culZIftfOe8kGCkwAEM1zbpgLvgMzH+bkVNIlyhmuJKBaAASaSXRfbKR+iBKlnwR7xhybBeIgLQXd73PyesbkLaL57D769l/ndEdx2K7XvjgPgRsB0uttGirlvN2AiNK0wOklJI0aIoKYBdlsc/nzAV799h3e3V/C3HXbfMa6/CXBv7xDu7hPjtmkkaGX9m2UtWqbQ5L5zgOqSfiz7r9a/M98968OCMW/ZqMxac2fGos8ylA2UsuBcDhCcADeqWZ+VjOjFbCSVgXuQsdWfoPkYvgScmbTr9DMrx+r02HPnzv5fy+54oK2WHlx7jedaJ86RhE7ZU+wFTgVjP3as6WPGR+JakoOyWXbjpW37OfgZNbtgDC3WuiSX9jAFwS1mbFjWpO71iBrAhShfDq1/EfeHlulgpAF2klR3P8re/dhHMt/kekUmv62/j/YnP9XxkWfwWMau7adLqyh4rCLTFO9aIjsG8AWFVz9rYOSiuOjngGp/LPtYi9bHXixf7PMwcx4mgV+uj5tTY+oB4412W7g3ryVT4PYuBXGD6hnWimiVG4XqhhWx0CWNI7DphDnuA/j2VjdVSAHaPFA7kdOxxSZcTuRe2jzMWJhTPe56gVM3X9DL88TPpxu+KRPegYiBhlIAfOk6Ncs2spGNYIzQRot8AQAFUNsAbSP97gjUdQKEqIwRuha81bouPoAA0NjK8c2ozs6wPNY08C99Zn1QBkk0s+DVDXjTIby5AgCRVRo96P09eBjqAFx+2/0ANGHqaJyrs/MU824GRnEGMkwC51WWmTwf2mxEPmvTAZsOYbcFbxvQGECD1tjwQd6RflAZrUHBslq/Sx2WCIqopIhcq1u+DyfAB4YhObBZ/1HTiKwaOXlXiQRUU7YLdy2GX72WU90PIGaETQNiwN33CJsW7/+zKxADX/67v0P47vvENLraiWxYP8j9Hg7AMCIcjzLP1ECg7N8ziYo1IKLeU8ygApLcnB1mGTq5jNhSxtK5ufVc8KQAaey+Ppmg8xMGWj6aPRVT8eyz/sT9uoUsg5ktfF/WUopz+lPWu/kQrNLnYBWe22eVc9il+7Il36L4zVJNqwlg7wFcX0ugQ+caMjDbCyAfs1lNznDNmLeAsm3qLXvzkrp38bx1HyKel/PAeWWu5Pq45Pe3+OJvDmjue4Q/fSMZsMGLpOlW/CGracX3oq0eMyC/eA1SqcsofxprS6ms1PUOf/EPv8P/8Dd/g//L7/8pvutf4+ZPATd/e4vwzXcId3epvpgRjezZlDWK2Nffh0uBeemodKxeP2UjnqhnUZUedeID9H3VD4z3FoL4s/Z9cJP1elEWawnMwRwwoaZZHgOlXZppXj1FRd5yzZx19pmt813OWr5nqciwnT62AME/F1tLPHkooeWSub12HmAqnfcp+QfP6d9lc036KB9jF8xtn1KffWg7tffPnl/s59q7q5lfRIxZPTLN2DBghLpW5u9Np8odCpRsNrLuWS3KcVRwn0QiuWtAA0QK+X6PcHsnvsNMaaB8Dy6QOn0Ou8QXW1qraoBovq8zQMRkp5fkrWLMKAMQ7fjZb8Pk+1qsSh71+ppmnzUwwn7BoSjtBRQ5bx9jwv05T/Ivtt5OOQ15ml5uS3PChWOOthvwmxupN2HntIyN8noAqO1Am04Dvlvw4Qj/9t30p7nDzkkyB7HIsk7gtqmymgc2j1kKpk9Mg3rjM1Y+5RsznqD1UWLINluWBZH14aQYcreZsNBmNRzywulA0rlmls+0KDt7L1I9OZvCmAKcHI+ZnXPAiwArnJsWsHQkBc4hAWz+6g363/xaDmUG9QHNfhDZCAfQ0UsWgA+pT1U6gU8FfDXbB1rjRDJMdCMb60LI8+D7A6gf4PQ8VtSTr3cAb9G0UoMlgR4BHAL49m4awLE+tv74UHNsJRvoJCMYMm4paDZECFpbw4M8w+0H0P1BdNIBYe3uNiJtktfdKK8PxPEci6R7j6jxGkLMwIhsSGMA9aKpTm0bxx41jWQTAfJeEgkgBhv3JJuetkFLJJJZpJq0XQMmIFx14NZh8z6AAoNurmG9ZPJnAJLEm9UWMQbtGcTTArXCRs3nlhU+UR4gcRrUstTlGkP6IfOqgWcrflPdGHwKfoIFcT+FtjzUnqrtjw5+qeWbqTU++lOBOivPQ51K41Ul6kLc5FmgcybRYMGQUr5Hsxhje4AozQlH4MMRoR8glSOLefUc+6ECLsY2lCzvXDIil+rJbSXIOvv+zNy/6hxrjlsIaEVSBCBzepexPDMWPY8jiHVNyDfpVo8sBCFCuKwA91LwetKOAOTBr9pzWxVITj5EOs6kQRwA8SuoQQacFEH3SiCS9wdsfv8DMIzweVZgYEBrhHDtWXIAjr2ASY5Ek936VL9nZrgf3uHd//Gv8V988Vtsvwd+ccu4+dt3aL57Dz9Kxq3bbbOMijmwX0o3Thi2zJPvq+tkTsh5DAi48Hv2HlDwaHHclzJsFkyz97KRIF0izEyf1Xz9dcV/c5/XfOd8DhI/n3ZbILCSLVyWuXLu3rNsmYzxGwlNk7ntidfG0re+KCujkuWz9hzFs6yxz2fybh/LL1gb23rIml17bx4SS8uP+1h9tfT+rwWLngA4KeeveN415/qc/c6nsAlYSbN3FEBaJ2KWYUZss/3/kjHHjI1cSoshmfsAUlzDCYEsEmR1/XPfvoXrJPMfPoDv7qaZhC67fpm1qISK2T3Z/8mdJlZ87L3Jks9mBMgY/xilHq3VSg0ci93TbovmizeyRqoPIqfWfXG2d4/fWWxMSX4WiyL7/ZjLMhLWKpV91sCI3OwZRP+nwPR7Lnvpixd7rH3I92uJeV7qv9akFvKFZ8157avdDsNX12g2CowcjuD9fn68toM2HejVDejmGv4Xr+De3oNu72JARH4u1+NBApDz8+VFw5BQdssGiICJLhKnJIUssKubWABpgTcG/bEXSQRtXwgcwQnpmxScifcYszEcaLtJbWKVF7NU1cCRYS/BBy+SUU0ji984gu9KiYSKtu0pqwEiWZ9Jv6mcVtumzaz3CMce4R/+Gt/9d3ZoekZ3x/L37QY0BjQHj9az9BEgi27DYHWAZJNYkbiyja3VZui2mqar5yHLXtCshvfvwc6B7u4FBGhbqbfx5SugdcArySThbQMmghs8aPBwfyJJ1YU+r8Gn55tvLJ+C5V19/8rjdANdBgPt2HyDZMcxg4NmhYxeiqzvj+DvfkjgR9uKhAegBcvV+QE02JAcIB484Bq43XYS4CeVZuOhT02DBikzyS233YIAhH4QgPOLN8A4Inz7/Tx7g0jA0MaB9ntp55dvQF0LZmEf+20LOGD7gwAv4fUV6GoL2h/l3huHCNroGAnmUK/ZsCnwJt1JQBjPP0fYRs2nwKllkJSgTO6wX6rFHjt6xdz7qfsjn3r7Phebsb8qoGpup6STgOUNZfm8ljTYywCXBcQ2nay3+72Q1iOY7cEjg/JaYLDMq/RuRMahgda2idtsRHqvSSxEGKjqHPDuPcjfxuDeFNhQmcCcqFDzExS4JwXTpTi0TyC6yQ0akG59NZlT5XqLuvpngU5r4Ilg2moQ7YSc1ORz7eOuTfVDAPF1yIku+DBoTREn9ZOyrDzJXnCg3VY28xkxJWbX1cZPJaPvZD2RU31SzIlRLzuT/IrPGIKfgTkqkEYzf8yIL1m7w/09wt/8B/lPEbAJ9/f6cy1Cf3WVkS5YCQRB2mN+tT0PHSv+2+/x5//rH2a35gNLdgU5qafWtsDxiElhVHt/NupXasYs2es7jAAsu6dJwEQGOpTEnuX1ZxpAyzr4/NgMHnxcyJ7O/i5Bkfx3pBKa7P0UIGG9J8uWOZe5EGu6VdoT66wxqO/BDvo8aQrq1Iyz8c5+XnR9KZtnjS0FOIECCHxgML5kG5uVAcqltjMDC5eeZOxcGlSvXWeNlb72EhHMTnsqw/+p7dwY+Ni+U77GrxlPJWljYZ05edzk9wtZMh+7Xz4lWxpDE1DEzZ9hdf31k9+wgcGnrqmkzKkUMwryWIrDxGzAXo4d//B3db8nEhk0ZpLvV/W6EyuB2eirreifx9hDgc+aFaAIbTaSWWn1aDPlAfYN3M6JdPlvvxa1iLt9bA/5IATJcRRfnCnFk1hIFuYr0LXESSS+E4D9PvoGFAKwXKJ1Yp83MPJiL/Zin4499yJ/4vyLi8yZ485+P45o7gdQP6ZNoDK7U2ZFFrwAYtCdBi/M/5i+mYIg5H38fDHIkVvgmCmyyjjJOfA4pgABkJiUPusrA1z0e2JaTuu0zTq7eP7Yh3kw1f7tvRYlE6CEh0GDryE5Hc/FeMilgZhBg7I/tltg6MH7I8gHkGeQR/oTGM6zFBcdQ9y4EyASX4fjOkZ/4WhM6jhEZzlEWbWYFaIZRE0rARxzEnjbpXN6BdssuJCBf9S20lZ1QM4WL3ssa2kxk6CyIZixl7NgHiAARuPEyTkcwMcjiKTYKw0pyJdY15ZpUGjGxvovErCcsE1qbMBiA2TBNQMsqiCkBoXYAzgcgS6A3t+Bug5u9EDbwHV6X16fzzDKvFAAkny/T9lTpzbs1s5i3J2TW5ueo5izAAlAmV4ucLoNT2UvG8OfpxUM+JmE2tJv5QcPuF5l7cwIDYDGOnSTRU2jBbhlw0acMeNJARDvJWNwSc9aa4WJ7F4Lctl2K/iYiYBBZXjaFuTcJMNB1psM7AZma05cp4ll3SZXrMc8Ya5TnvGaM9pz1v+5TfslthT8XPoMmAc7lp75AkBi2Yhs/lYPDUqEFNRQFinDT5cORwJata2ST3RTDdQJh/maUq4Np8C8kgULRGAm+gT6W2po6jtowEEAnmbucynYY35mrN1RkiRy4ku8HZ78m4YB7FzSUdcxBJPDsEDzIHXOIlh4yifPrW1BNmYdgXsDWYoAWCEhy8zyXtZAkbXjlEMitzzUZmz0MH1WwPz9vcT0nHKtop15DZOY1ZGBs7bncMm3pPCA+TNvzuQ5PCKQdupdycfMYwJ2a0ClU5aB0fOvzvj+z2VPFbxcY2sD+Y/x45ayOZ7aPsSzuhQk+yn5v4/dw684VvYs3dRHOXW+S94V22ObPKH5dVm23MSW5tF8zrE9IwAwAb4Sqzpz3+n3z/DuLV70ETGz+JsAsADwBCQCEDDfvyoBhfpMnt7Itd7HGi1RJQWlD6wkjq7TS+uaqesdgy9aBz5vYOQxC95PeYJ6sRf7EPYQh+Yh790ppjoqDmq5+XuE8bEH3e4lkKn1DngcJdvDmG+5bAMgm+lRJ/k8gJtljLD9DkhMBiuCbG3XzUwMbjPJpsb645xzYAwIK+YuJ5cADbmpRJcWkJb2GFhTykboab2XY7yXLAdHaVOu15Xf6f1RxibkAD4okJIzOpdsrbNVSk0Ys8PuDUgSaG0rMmfjCD4e4Y4eboT+YbiBQSODhgB3GKX2g8o/gEiyB/aHywPHuT7pOE7YZvEZj9OgBd3fTwG1q530W6cAiXOgTYdwfz8BwKKGp42hU+zVp7KHbELtGK0BA0CKrrcN+NW19MPtnTisrUt1YXwLaOFTKZg7ZNIOQQNL0zmBhz49w/y9tXFhDE8fIsuF2jYCnUvgEuvY4BHA8Qg6HOX4qyugcVLgFwm4iOxbrSEi7O6QtGiXWEER9JLaJpEJfElfA+kZKXPcAr4hT/uuarmqs/niK/287dINcIV9OQUkS3mY+oZzca075VOcCMYnYNUY3pIB6IzJrt+Z1B7u72PNHfbQOdXH97G8tr1XUfLH6l1ZDauGo3QW94NkqOicRFrnAUTA/oCQv+tL645lWpbzsJeAfgSAysNqAezn2myXTM/4T4ptSYBtk7L7SnBl1r4iuD+MMaMVjuL6avUsorRmE3TjXJzTZBnGUUDxWoHQWrtq7VvSRs+PtWxczYIwKcX4u3wcavvQtrIe7rbyG5MD8158r8PhpN+8yECfZHN6BEuwVDCPxlHej24j65zWbWN/VHDDKaDXz9/ZjKgQm9G2EongAPgm1QbLgQ89dnI+kzrxpiN+OShiGVkTedtLrAyC1SyTnZoE2yoB97PysZR+Z8XfhagkDymBPBrMM4k+swywieP+kvk8zz44NZbOfV6zxxJ3PqDVijc/uZV9Z3/nWTufq9UyhJ7zfmoA/5qx+ZQgVNWn/phFJZ7BnhvkIpOwSkXSF1UbrA1ZmyaS4jWbgNCq6mDghj2/3BeozHfUanDe9qNW52Ii/bw2XlbJhvlY9oBnK7Gi5PtOfO4sa4Z9APUD6JD5e0HrbZq8fBnHyN9plc6KKijDkPxnI5by+nf5swZGqCEgzBkvpw/6gGj7i73YT9keyh58LLNgiVmUt+mJFhIeR7iDFJfkYZAinMZEh27oLQiftYn7AXS7j7IDkbEFCIuxxoRU1hpbnEalf9L3LN9laYjRKSAsOuoRyIj1KQT0iIHaxk0WcFnAHNgXsjkGtACRKUuq+0im2035NVIfxhRGk+2wvig3V494bpNNp5c2EpA2gwbE5NchAvUDtu8EEOnupMYFsWSL0J3U/pAFXDag3PfLzopuWmYb7ZD+PumYxU12JmnSZIGyfgAwxGB8lPcwNrPVnzGgJRur6RqPfP9Otb2Qijj5WzPNKgKQ0pMB2dRbJhMzSGUreNPJc9Wi7CZPNim6NrtecsqilqxK5VDjQIEhMUVKUjMWqNxtQUcb25XgYbFRjXJbx6NKfYTp94C8y/YeTwI7laBuKTnEIc4Vcn39XQwMVZ53/t88KB0Suzheq5YZU97zi/187SEkCHIxqFfNipyMyTMZIucCkefMwOgIpOp8oKCErGdZocaiXlXJ4GPvQXxiH6J1tGydjUFvVn1lmy+MwKCZmPlGLpdRiiBt1ob5/c3bkrS3sdzWD/V+1+RCgUQSOZWFUbMaYB20Fkx23wyvGQ0y55f14jgwCJrZamC5c9M+P3NPYjp/ngOTc6BQCQK024KwBXAj9Wbu79Wn7JUUkYH1LDXtACRiQQgp68XWM+8RDsfT78wiyFPJKPEBFDyYhTBk7Zn9rnJ83ldENM041u+sZsoM+JicLwX5LwY1snuLcnWXmvoUc/CH09gzqe/SF4rvIcc1eFX7S+JCfGaaZTSZm0LK8umz+cxITT6k9f6JiGTz9hZg6Me2S9cMfZaPPs+J81/8fQ5cUgKUP3mrjQNmkTluGt3yfIAg8BPHCFbZY0jcZ8/9TPu5S+1DtIHDtKYVKnP/ifnmkqz6cr0np/uuYUiEQ+YkY0g1gskJkPuUfcw581x8YtU6lftsptaQrVWF9GMkQthYHgt/oqa0sXTd3H9xiQCMC+bIzxoYQdcJG3ot6JpPTh9Cd/Hnas/lZL3YT8MuHRdlsLBE0R/DYF363oIefQ++uxfd/4UsgYiCx+A3A0fb0MoG27S+S1BnKqNlxyvLkVk2h5baaZvFbMEgR6kI2NKcppIfpMBIDMham6yIdF5cjLV+Rn5K6xPb9AUnQE2vTPyumxYBtcOspkee9q/nozz4axu0NYGQ2AEFA3myQdSAU9OAALl/CyKYxBk50P6Iq296uD6guesRNg3CVSuB+B/fS7/q4h7vZaEtFlyLdStUw5ys7/JnukaCi2VzbdqZ/t234HGIdS1gqaP5+QHV8+T5eI3vzwmN3BwkW2sToOPMZpiTlruNNVZpNXIOaJXVq1IhpJkhdOwlk+RqoymyDO5Jxl9sRn3MgiQDJDrVTSPZNyRZKDx6kI3HrpXN2nYj17vegVR+ZVJrQMGpCLiMFgwT5nZkidqYoOy4Wt+VfV4ED62YaBzb2XeAXq/23EoQKs+oyo/TYtEcKs//U9l8vVixhnxCz6TGAo3/LLIYzLLxG9eCpmD1BXsPCsZ4GeR/iF+hkwUzwW3bSd2JWQanZRuU1zLd5KXLmGxk1wIWCFbNY/ZOJQJ0rtBzs1xYTmCZhna+vs8kKBfufxFAeOS+Z2lef8A4jGOiJJYACL1fBkfytizep4HU9lv1oViydQkQeagot5hAZ/ZIQBYgJJFhSABWrR32TwPXhjFd/EygIZddoq6VTMOuBe82cD++l2xQBWZos5H6VVoTi/xWskfbFugMoG8k06JpgJbg2hY8DFJfIp/bTz3LybpWrFcmA6dZTGF/kM8n4GYWJKqxao3NCQjpyAfEenBdqofDQxn0Ktay4Ka+1IP2FiGBhpfsLfT3sZD5xO+QjBALnBGauHaXxASRQF0oIF9rb+4bmsRr45Dqi2V9YXJ+WszWQEHuhzkZwu530jdPYB96jTrnq1zanqeOFa29fuW9mX3OjKU6KPL9J5JVciJDJMpWAtMs7+ewpxiLD8kqey77lEDHpzZ7jwsAkMo6SkHB3xmRLPseIa1JJQi+lJlV+ErMJH6E7aFs/LZtkjmfgNMPnFOX7uMhdum+7Rnmag6c9ugFGYosayT4iTSZ+cgiXauS7Sf8lRhj0T9EKikLSB9cSJz4vIGRS+1TWSQ+lH0sgOJT2qy/2OPsKQNiT3WucrP1kHOWweKlcxizu9wUZyn0E0kbH4DGgi16TtMi1/9bOudkAaXERJ2wHPM0zmzzHm8jKLvU2lTeW/rhwv0p248psSR9tkidCqJbV2QBI5PPiufOgABzaOJ9apCiyvhY60CUsiyl3AIg5xrHGBCJABUR3KYDv7rC8asObmC0W834YAYcokxELKxb01fOHCpjD6cCoFn7cmZg6TRl90tae8bShulqB/9nv0DoGrRfvgaOPfhP34L7PtVMyXU5yz6dgU0nGILGcH3Mu7rANI3nJ0rg2jDIczG99BBAYzbeTDvUOcm0AkCDsK15q5kjm0Gk0V5dS3bP7V3KojHbdKBXN8Dowfv9FPhoG7mmOthRskTfe/JB6wCc8B/cNCMl3W9A1JbV7J45u68GZuQM9CYFYPIASybhV2VC5c/BxpLVTGFO72oeFAwVRtBPefP1VPahfK1ZgOETAklKQLSc/0orPp+N4VKa8SGs2BpIe25u09pRpBkbcYPF0/asu74ESAEkeSdjwHtrnwO16kswpyxHW4e9T9meFjxW+T25RJZR9tgxkI/jSjCLmjT/TC33F863w0ARAx/s/syXsjVwlqWRt28SJC58oNIKHwtKVpHrayZP7uN5P2XZn7JZsPrCgIaRN+y5Ng7cuEhaoc0mZax4Dz4cBSD5+hfy//0+ylqBCLzbgMYmsi9jZrCdp18xfimBcVWChWWwuGy9yO+7lnWofURNo/epf7ZbqVmS1QAjIoTyurYmlgSdeM0Lgk757+35XbjuGSmJDcDJzfrc1lsHILjYXms7m9+dv08r32HL3FluYLZHKWVcOExJFfbsVry7n4U9ZXDxKe0xfXsGBP5k7dyzUFlDCgHg5nw9xMe2Zc25T60nUa73EoArzO+/RgS81H4K7+qS5c9gyY/M97KTz7K+zsm05C7KHKhdj7NMBwBxDp7UZly6l3NWEkUfa088PiYKJefWioX4zOTZNA0IXtbBWpsbJxL2Rh46Q0xJ133cvuinAYxcMlFd0kmf0qbzUsucolWD+MVebMmeAtAwuZnHbN6fDFgpNmsn5g/2XopP5un+2YQvaHc/Pcb205MJOy2kXC565jjFaxbHGKttsvG0tqbAS2LQTgOzE6mA2j0yS12HGLDx652HwKCt6mLn2RRZqqkx0ss1bbbG5f21cu6dZYpEeZTscO+BvpfswlG1uTedBMBvrjF+eY3b3zZoBkZ779AeGJu3owQn2haEUepH2LmmDcBExiy/T2NdUpZ2O9t8V54ZNIhBWgj49Su8/6sbjFcObrhCtw949fYWvN8j5BJUeXBnybG3zy07oLYJsUCBa86z5coAGq3cYGs/cWABHroWtIEwdU12zuQeNh2w6cDbFjR40HEAtw14t43F1cIvv8DdP3qNzbsRmz/upMZPDPwz+HqH/qsruN6jebuXjxsBW3jXgg4jnAGcnRTd5ft7KSjb95ItVBlb0pcarNT6MXL7HPsuZpbEPgv1oF7sQ52T8r434IVItXW9BMJqrOfaZo4D3HYLbLei29r39QyTped26Wbw52SfCiPwYxFh8nV5IaAu32XB8zxjScHzJZsz8IoArF138QSVwGfeZn3fLLPT5sS4WTPiwbjiWieMx2HaP1osfVZXom0lS857hH5Ia1xWkysxxDnKTwnQkr3PeUBgqc3F3B19mrisZuur1cBgnoLOgRFlv0w7uswyiJ3AqV1W5wPI6qmJ8+S2W70nX/RZsV6WMoNL60/+/DU4wk7WWWqcgCAx00OC/jyMwmRumgTaLRFFzEfzQGKVrvBXFTgjXesle1dIAtwQqG3gtltdg0SSjccRzc01+Ldfw729w/i3/wnu6koktbYb8M0OGDX70nvg/qC+RJdqeJxiUKrfQlc7+a/6g/ZsDJQKmoVg/ZIH/WtjznwUyjJB0WmdFAB8dy/vWA4ynSJALQH5S3bqfaitwefM7iEEcDUzxkXwh7wHSMeHrtXsMQN/V8cwWFnSBt7WWMr5PGu+fa2NQHp244UBvLW//ZBrUrEGTbNqK78/1b4l//nccbU2PZd9Dj5ZKZ0IwGrhkO7HGACUGPCk4EgeCwNwMahha8ck2P4Af/jEfDvbr30Kz/RDv7eL7cikJs3y/U78rADQ9djZcQ8FHaKPO/Wx4n9rmZgPiTeX6gufiuUZkoD4eUt1UyxGltffjbW2GK4x+U/d0wae1G6RzEYAECnqsN/Pz18z58COxPdxQcmolX3DGfu8gRG74UuC/p/KYvbcVgRbP+t7ebHPz2Zs+syxuOQdvJTteanFYIA6OvpZ7vTEQtlmGVDhdluROVKZJdpshL1uTM/conyTBhh2W/D+AP/338zaBCBJZA0Z8FLZLJ5kKujnHFyUPpicixzAPUopCyk+LRtjf3s3CaBOnBQrbKqb9rjRy5hs7mqXFsg8cNE0Eny3e6oBMqr5nnQiFWCwILWjmIWRajSkscaBY0ZNZOMGD+7t7wHtj/d4/fst3MBoDgHN0aN5fwAdBpHQsDoWWpsijgUdO7TZwL15rQVRs0APEXjbxTFMwwi8u5V/d508u36QduwPQAgIVs9kUCmPthUQoCH4DhiuCf3rBuF/9Ndojoz23qM5eDT/6m/h375bHgN5HQzmNCbiQ6045GucxzI7pPY+zc47vQZ7JA19zeyZ2bGH+4Hl+1FAgVgc99jD/djg+ncObj+A3t3N2kf7I9qGQGMQSS4icNeCGgYOGvzJi+o5Au12QOcleOM9eBBnLr6X45jAPzYZrg5us5HPVPJmIlkBaKA1C4TU5rScCZXXxrHbMqm9fI6hos+zz63IOh2Pkv2yxL5Zsk+dlfgxrQYGPNe5zwXwzq2Np4KDj9mU2xg+wdgvMyLLq6Tvi7UoBusrG+SygHF+HZOwMxmqUB/Dce7RjElnwXqrPxFrHGREI71W3ldWZD0Gfo0Rz0HO3TvVWk4B5Mj61uuw95KpxpyC9CYlBp9lr2REiqVaDrYWrgGNYt9VNo/lhpIKUMv0os/NESUbMrhZlp27vs7aDilkan6KS9ky7ssvZBN8OMr6eXefwOv8ekv3bpkdYco4tbk9Bq+HMdXziFmgC+ctAbga+F1kTcTab/Y7W/9/9RX6X92gudmivdqChhFtP0jG4/EIenWD0DXwX78GffXPwQ7w2i4aA7ghYLcRwIeD+KfqR62RbHJXO4S/+nOEbhrYcIOHe7dPmZnjGPsogmF2biVf2DN3N1cAOfDxmPy9vH8icCKZlaQg0OR5TiRMull9rWlx9hqAVQPMKvPgmkCqT0Xia+eiTQf36kbeZWZ5FkYeyok8k45vpuMnb5N9lmeCnKrjAsi8U860k356oEzUEiGm5n8AHw8cyee0xf3RmfnxKdrynPbcwfRLfYzZ8XW2f8yMd07mChIC0cmzP2QcPVUs7Dl94Ock1zzUPoWY4cT3LQLcJcCx0IdJilhlDJ/qOdpabudHM/l/nKNj7GIlyfASkPxDmu3Vs/5c/q35nuobzvoku0dVPyCiqDIS/eQ81jOpd2vroKyFzoiu3oNUChXmP+genC+Qkf28gRE2rfZLJ+rKC/SpDcKnsJ/iPb3Yh7UHjqGqPnEOjpST1KkNpG0i4kR8IVPjhDNFlsZbFDuNgd0l/XCd+OnmBvznvwT1I9z9AXxzheGra9Dg4Q5Dui/PoH4QmYSugd91OH69w+7bA+i77+eFvhplCnqfmKZLm46lBXcSgPZYrEECgIniRjMWoP7iDdA40PEIPpYbuNRXk6KelU2m+8WXoJtrcNcKcGCs+k2rRVDledK+F/AgXkMkJdyhl2CutfXYx4LbgIwx7kvmQtaeMpVzYLA/pqK4v/8TXr/XejDjCPSD1Iex+hbjKIwFA0LyOhbkQK9fYfir34I3DuNVC3YAOwK3wLhzYAIoAN19wNXvpFbI+OUWNDLaH/agYYS7vZeAwfc/6pjzALdwbQPedPAdwW8Jx18A/orxw/9gBLUB/P0G2++3+Os/vAF++KHyYDXAtGlBRAj9gPj+ZO9gzDixsVZ7X04Gmuy9tW4hgLrl9Nf8OFb9dHSSoWFSIduNsEY8EO7uEW5vp9fK2/Xjj8B/TNt8aju4q11iJR8OoPd3eriy1LADBohsGpFkigCw2jv8aivjsh/S387F39HhKGPv7fvUh6oRT4BInAyjMGvzmgVcqeORZ+fkc6AFijK2OLtRAssmO2MBJZcxaCcBGmWg9wOCr9dJSj+uMOGWwJsXS/acffOUgZsIkmG6BlNWSPjRdSiKQFTxdzz9QttFy3kaTCnr9ACYyEtN/t8L0E+7rbw3r27kN8OYwBHn9I8ApABAt/fAOAogSgTe7yU4ezhKDQStcUKdzKUpvd/m2I1szq52oK4D7zZy/WMvxSQPBwko63EEDawOhZb18TgNDlkdlIfs59eMj8JPsLEgN5UIELW+J1vLHSI4IiBWMV/k/hwkWEANlBxBAgYRCcEAUKDDJ9DK5r9OpKX6f/Ib+G2D7d/fi98AAIcjcKyAI7P7lSwNu3er34HAkknaNAj7w5SQktspsk513czmVH3/aNPJ+DTT7Ei+l3p27s++xvu/3KAZOrT7HdzAcENAe+/RvjsgtA5h2+Lwyw3e/4MWrmds3zE27zyufn8LECFcb6T0t4FuFpSfZSvP20tvXuOHf/4a/StC/4U8X2KgOQKvfvcKm1uPq9/dgvY93Ltb8DCA391OsqLcpkvvZNOAvvxC3qtvvxcJzXGUdTKCYG18JxEYuJf3MTZL66rZnsKyeSa1u7JnzwOma2x5r7GmlgFhtu5Oa9bN5ko7nffA8RhBW7Hkd9JuC/7FF3Le0cs8cHunQJtKkRXAj7wfKidEWPTto6Sdz3yGGaCTBeWW2NWPscn7jYwQUwmePYVs0EPb99j17JSdC2ivud/HAA/5M3+O+ySq7MEfGLgtAXbzh9tW3utGQRJSp79oRwqIY3kxPLc/qbarQjyZxSMWgP+1oNRawgrwwIUe9bH4sXz2h2ZNlMfa/idTg5jVmluY+2r9+CA51pNtTSANNUh+kmZ9AhDFEb+QVThr4Ce8x9K4ysXTTOZvxWeZZ5+6Bm63VZlZy/JQMoqSLiZkywIcoaYB3VzLHvrYiz9xPIJV7eEh68DnDYyYPXbB/ZQH44u92OdgJaMp//ycc1GeJ3sf80LD+sHTtDc7fyyeOFlsTzBqgUnwmJ0DNi2AHbhTtlsQ5h6IRBIh75cACcg0+p2dr2BHGCN9du1z9lAGURn8YJ5qGOff1WSFlph4CjZQCECftW30IqOgjFkaM9kMIlkQh1E20UMOMvm5lEfUEK30U57S2TQAPMgKY5r81LGvFgLOC+PauSaBPiagH9C+O4C7BtQHcOswvGpBAdgYYMOA8yxF3QOjuRtAXrIXaBgFFOkrdSz0GTjPcCPQvSc0R4LfduAW2LwjtLdYZEPnfcT54zr3ntVs6X2oZSpkqfMzh6ZmXrJ3YE4lB3nmFrTQWiNR5qWUo5q1NWmgU8vTbCXTtbc+M9DCsnxygASINUgMjKOg2us1ACmvbZLXfTGGMhac8/y55wGb/CcWhJ3V0EkMdG3Y5GtS9roBKqcD7ReCzi/2+ZmjBxOFT9osYJwmHM7n6EVQrnJ8viZlRapjYD6CIolNzsaS7geg0Qwxq9lh5yFK2Zu6/kTmt9V3aBrduDmdh5GuaQEcy/5ikwkgOOeEANC16g8EECQAZHMGhSDZH9nxT2Ln1v5L9kqWkYnsnl0xd5rs4eQwWt6D2rqw0YyatgA+9P+zbDhAyBv2dx/gMoYhnM5xxXXO+osKgltdKdps5PnnMlHn7CHPjlmAuk0H2m5ljDCDGyfymEQCRPSMzbsR5Bmu93C9l4yQroHfNWBHCpoAFADXB7i3d+C2AW5EUvKk71gbLxyAtkH/hjC8EiIGAJAnuFH8GMpd8nEUQkORvUi7rfhX4yjPdlBJycaB0aWxEP2I7G8nn08BQgnKxIwwPTa+t+d8oFO2CGidtwm4Ej/M+tWCPYASIBjww3wdz65XW/+n5w319b4c77nfWvu+1t4HWt7eJw9Afq72nGBQNhYu+/0HfDZEM4WBmTUO2G7kPRnHeq0RI7utHc+X2DnizylS4lPaGqmtz8GeKfslkioumVtyEsTJ3z2wf9mkym0v6YREkEk48ak6UJ+TPQC8s1qYAq6q2kfQmnoW4wJEtrRt095cFS4oaL6jEZM8JnEHcurHDyPQMBit+gmJiPIQ//rzBkaC6KgKS/IRKaEv9mIvdpkVqH6yIkhnvz2nm7iUuh61pB/BQLDja8dxIS+wxJSfbZJsQ05A6xCaBny9AfkA14+gowcdenDjooayHKZFyAMjdCTfV5rLgUUmAjgfUCrbeKmzmDPTFZAQ4GJMwajs/EkayDakC3OvgQuHY0XyB6qnXbBQLahEJOj/sU9MQA2ecN8n7fWJdm0zB7cAkTZRzXILhuXyJVLQ9CDMpe1Gaot0XWIscIjXsmKbxnDlwMIs/tO3oKZB13XgmyuE7gs4H9D+sJdXoiHwpsXx6x2ao8fmP/0gtTJ6ub9gTELkzed47+SFrbl9GwACulsB1VzP6O6CADsnHGgp3Fp5PnzmGa61iobwJRZZ1JuNZkoFCWyqVBURaZaHBs3CCQk55qjFjjITqutA7U7OaX0GJK3TxoG3GynMq9rsvJNNW3h3C3AQuRcD2XKGqvfSvjG1K9bY4QAgSWgs92PGtO37NJ5DAPfDvLA7CtenxtJuWwnA9f000FSbM178oZ+3PSbQsBBInPoCFV99ArBC56IAaroIUMTC1MYmB7L0fEpB/Mj+10xLm5dU3go6j0QAFojzTJTM6toYLLfsh1mQVgO8AMBWe8R7+U0jWX5htwFvG2HtOwfSeQy62SMIa0664wnAEQMHvK/vhyjLCjo33+dB2ggETUEqmYdDrPOUZ42cOic1LmXzbFRretTC9F2qYTKrU0IO7EYQM5q7I9zYgY6jgNZ5vRIW8DyC8gvMUSt+TYBkH7StgBTOgfaHKdtwcvCZ51SswzWgyLJU3NUOfHMVgTp630pmIgA3Mtq7gM2f7kTqMc+mvd5geN0gtEB3y3Defj/C/+4PcNfXoN/8UvoGKKQsyvfPYZKdwAzuWhx+CQw3LH4eE5qeEXpCc2A0B/URmcH7gxA7Mo11qVFyJc/k7l7WwsNBvm9bUItYLD5KiZWEKvvcCEjeS9tnZISQZO+yzMzVtlYydEYMcXE9j8/YfmMAyOglTjFqRlLbgIOfZ9KWQe7IjC6up1n38yyXJd8vJN8eOled3H8VfsBqRvyKPnzxLepW9vUpe0RWwES2sEYqunSuOxewzwOYTeEbOJey9NoWvNuCTA5Pryu+dK44kQEUJUAC4FFZSZ/q2IwSyOfW64ePi7O2pk/Pge+PbUsum52vX+ZPMiPWXcrjJZQBzKUUF/C4dsVjLWAvayux+IpJetNNf1+bU9f20ccEyTT+IT72BcdpbTpmFj/GMoWHIa6DPHjwpgPaBlNXJS8AAQAASURBVGQqIl7WOQKE1JcVvY9ZbLrWh+NRfA7OfPFcwvpCfOCzBkaYs8H30BO82Iu92MOsYDgBwEyjeg3rqsiUOGlP8c4+cHGJ8hJATK8nIlHgCgxCyhQx9h8oC+QAskk6jmiIsPu2RfP2gLDAAE8XXsdcW38jUycmLxCe11lgy6Ioa3esyfzJHO9Z4Xq7rveTDTtHBq8WPB2GKP8QC+M6FxkYFtyY3MsS087aG4z96xOjg1nSXQFhLFhNkxC0fflz9+l5ap/Igp8YtDSM6N5LUIW8beoBGjza20FYnwbMhPSnBBNFD5VBw4jNO49mcAAD7ADXE7hhtAegPXLMfpmlmVfe0YnE1UMdrTKYiWnfkwuXj9s8IGa1ZHKz4JwVlc31xeM5wtwn4CDxFHIg54Ghl/HWyFiOwKUGZ8gyQezPMEqAw9jomomCRllBGajAzMk5AxJTNLLSKoGJYpNqbJfZOC6licpjK4EbCdh40Jgxa/NnzilwMtM7f7Gfpi3I2z0Jy7c29+Qb0pVByHytRQiykbIgOqBBRw2aOOiCLMe43VaBYB3PwwAOjRAQyIGHQQL8tnG22lj6f7LsOgM/8uLbwLQW0eTWlfSgaweFAIwka0AIIp8TgshTOq09ZYBArfbDpUEpy2A8Yav3S9mG3tZeODefky818xMHkVFKUksyF3MutWma4DULmNy/FOssiRL2ZRE8O2GsoMSsPtwjbJ6JTMKabGQds4wm7gSwo+0WzIx2z2j6IOM7TIEDJoB1vWInGTTdrYc7jNP7JRJZt/z68d/ZmlQYjR7NQa8BAnmguxMQprsd0d72ImF26BHKGnw2bsbkY80vsOAbnAI1asHceJy7/JnxQk0dYwGbNAqvzHotzmFtJptbgmbBDuPU3zNi0qx+0tI5K77VqXatmBdOkzX03k9d69Sz+TnbpfPlWQBqRT8v+INzf/ICQOYhljO6gem6GULMpE4AO8XaiwgLkozF/Zc1H58kg8Sus+b7p+o7rtwr8HT38xh76Jr/0D6a7FOyuatGcqiBy+W5apdfBSpfaDlonbdtjUrK525r+8/kxYjApmSg8nwmRc1B/U17LiNJrMh7AFrn00hJMe4y7cNpnObyd+izBkZkA/KAQfUCiLzYiz3OCh3eKLlQ0ehYlY2xFBB4bKZIeWxkSaf2rGmfpANONyOsgWVuHNwYQIMGRLxuhNomAxX0dIPWJHh/i80P7ySb4mwwpARKzrC4lj4vgtn2/Ezb2YJJVgQr3N6J4xqLalbAkZMbMg089X0qGps3pyjIZaz+uGBqNoU9H84CvfHcHpNzxBogoXDKRg0YOAl0T2TKAiOMvUhbEanu+xiZDtE0aD/TN7VFW4EM7A9o/t5Ln2owjzTds7s/ynVNNgzQPh4mYzQWFlWZr6u/u4O/6jC+7uA3Du2BwY6wuQ3o7nyUmhJTHU9NY80L1MdCxLygFWrvxwUZJJMglI4JRiOBhQstz/SYBAu6RlNtGwmiGfskzxwB0vPIPp9kOHFIz9YYy5ub+B5LsNLHQCaYVUZriOMuHIosthyAAKL8XDWFesU7G/VXI4Neg5JL81S5Wc7mrAmLfiFwZHWWsFRf4qfguL+Y2FLNrMdYGWDNmHST/y+xtorfR6AemID1Is2jc6wPUgMiMHjUTIwOMne+fiXgxv094L3U+AHgjME+jpKxsdMaRFYDqGmAhjRoQ5rW3yZJLcokE3Jw1hhpwYOZwKMXhrjVDhlGkYTUgpC02QBtC+57yQ6wjMjiHV0ESuK8Q7PPVtXXWBH0iaQDk/9ziPVEaj4Z52vZGYAtFqJmjlkDNrdz12r/G+Bc1DopzSkwQCTsWqd/Rxk2rrapCrgwg/f301oVjw2acDGnsmQzUreRrNR+AI/vtC6VjEe6vgI8Y/uDkCi4axJgb6exwAAB3ADOA5tv9mje3iFYdhSLj0C77Tw2FJ/Xwr2NHpsfGc2BNFuVcf2N+BqbP72XbOj3t7IuDuMkW0TOK/VS4hpEbuZ/ztpTjqvcV499mfvxtCgLOMvwqln5bMrPrcYcZF8TwRH7zblzeyXAqL/HxyP4fp9IKdm7Hf2cjOwx8zPTzdlBy3Nq2ZxclmipvXburM+TfE0Gci+9EzNiRmXvtjYD5ZRd+k5+aJb1Y4hGp76r+X21n9fqe1bX5+w8T+3jKbmBTJbSMsCAlN1l87JJJjcN+KYV4pPum2U9K9asYh9qa/Jkz/ecz3vlc3j0eZ/y3OfsKd7L3JbArEvOb75FqVBhtlhb9Rxps/L9Y8ZMCeTUPs//PhWfOddXH3Ieq8XmbF26BFQKShgkmsjhEiCqIcziQzQNeNul83VBSItDphiSnZaZgXGv/8v8xFwFZuKXEM47BWKfNzACXD6gX0CRF3uxh5tO2lV205MwThectmd1dE6zpSLrxQIkxm5pJejt+hE0eNBeswQCx+yH+AdIMk6ATNz7vUo1ndmklmnuk+9OsMxKZ3dJ6iQP7gMJxFgKciyxNJYW8gVWomhzZserNjxpm2bs1JLhV2Gk1NrL+kwADx45BV5gG2hd6FnqUpjTjuDSgrzbyr8PUObvNBAQs2JMykFlHmn0QKNMWEDaEUIqhDqOsYh2DgaQskdZdXe5deCGRH6tBdwIEDO69yPaeyvCnTF6M8ZjNBLwi2LgHFEXf+rIrmEUJwduwuydBDLOB8lOXyPTb60xT00WxNpiwcoIINRZ8RGwsXGTZ0qVm0RjeY5jxm7Rw7UWSSyCvtkgSs2Yc1aTzDjlGBeOKDlK76e1r3YcALfbTesw2FxlP1MpstAPiOnnazfED9RqfbFPyJ5zHa2NpVObp9q4s7lvs4mBFQBp7e2HBIwSAd1GNj4ZaEmNEzkkzcbgUaSXIlCq7xFl67JtvAnQ9zbAJK8m7bYgrK4fktlVzDO2dvgAOvTA4FLtLLNNJ3J9jZONoYIjFOcLfW9tPSnmsSk7v+jDoPO51imy+eQkYLIwJiI4UmQgnDSTAPKoP3ddH6lJdT1ABCjoJfXYauu5PaNGA84eGF063iWZBQCJZLGwE56sWcZehpAZUi2red+fvvcLgoscJJOpaQB2Um/N1i7tN6tRF7YtqNGaKmrDmw53v7EMUWBzC7ijgk031yJXpb4GRg8OIdVgsTUfWH72fY+r7wJCJzVMmp6x+7aHOwwiMdkPCuqMqY/K+1dpOXJZmCECVrTcX1lNDslktEYtBMK0zo1kDdltPX2A75w0W3WNZJb+13fcmKyLfnUOQMQLL/TTJWPzohhJScTKCh7HvcEKQObUfuAxdumz/Rhr3kPOdel1F/Zes7G1pr9P+JWrrSAK5Z9HgBRQoNHa6TVDX0lI7NJeNIT0zi35njPpOX0/n9rXWTrXp+oPP+QdWXreD+nL2Z7yKd77EMfW6n1l7f38WEBpCZDkRivH7Ydue60JjsCc+Q8ngVvN+PFesk8NIMF0jY4k3V5JkW0DDDwBRdAgxVcA8ZeN0BcYDImnIIQ0HyhJtNq+E/ZZAyNnEeJzQbsXe7GfqlXZgo94B6wYUpElEic5CxJYGr0FG4zB/xhlgkvZQedSanPW5JkgZWS9dJ1s5DV4QUAMprr9ALrbI3z/o2zOTK96s5HUwKutShJAgjqNAx9HhNvbVfc2kSmrTPKJIWRM8zxIXTwzoAiSuBSYL9mkLguymuXfG0hWateeOmZiU8kC61v2Lp03D37LRRbOlbW/HPtZUGxSm0SzBiLDv8hWAFQH/KYDXV8n6ZZ+ELYyJc123u/jeElBGQio0rWgV68QGY6jB2tNkcjqsqCgMmdpswE4IOwPoMYhbBr46xbDtUiOtccAd2Rs/3gHd38Q8GezkboUzClob8EWGwOZDj5Ru8xKXrLcCWKG6boayBVrvXgFoeyYS9fn+H/b7PCc9aqBStZsGevz+B7Uxqo5VRZMIxcDkeQ1A8zaywwOAXy/l+83UnuEWQvKXe1kTIW9PPOMgc5eQbZzTM28O3S8W82CGBgu2S/Vgx3cV18CVzuV/hrBh2NkP7P3cNst0LUgvgP3IT3D2bnmgOqj5/AXe16zOas2RibrwTNKM9hYcs18LcnngGxdKSWPqHHCmM/9C1t3D0f57NWNyFHtpGi1jXPue6lR9MtfxJoeGKWoI48jwt197B8GYoFtIziwE/ATfQ/iJOkhzSedG5wCiyfmTA3s8vs7ud5mkwBL14CvdwivdqDjIISKo8nrBNnsaWbJpGhztq4JgBImoDcRaTYjNBNuE/s9ni97FpNCphKlml6HjYVrjNwmggYA5vU/7NRWg6sm2aVZioQGdLOLbEEACK+uJVuHCFB5yri+TE4h/3fHYcpEdhnbnkOa35mRa1On56W+B6lsmtZTo8aJZFu4j+1dZWv8zvw+zI9sO1mrhx44KlCmJArXe4Rti/G6hRsZrk/P6O63HX78bzPaPWH7HcG/JQEsmEFfvJF79Aoa7oVVSdutrAt9P213ZQ3g2zu8+ddvAQe424O8f3f3UmtL15Rg2c5L4IqOYeralDViPk7tusyAZyEieAWp7NjA4Nq1lOAByggEJ4gRJy0nGdmxCpoZkBaBGhsYFRDBgrjMmm06DDF7LfqiBZiU5FeGetMMrFsrz/JQK+dom7fyAsOPvfxPKRbzIe5lYU9FnczxUksre59KH2Amu7ZiUjtJuCvUArLfWvYxNSKJyMxwKpET99Ske6wQEllhGOJczsc+ZnnKPoXrdbgicUr3VeGZwZHPxdbs4cpg/am9wBpSVG3fXQNHnsIiCFZpQ37t6IeWfsjSXvMDWCmZmJMHz/kPObBSPj/gee5jsuYqyAHMpJcXa9exrneZz8HkYnwCQPLxOYDu9lKf79UVHLPUJQscZXQp6wMOAS5IBm5QHycn3jBbxjBdLBP9WQMjugs485uf4cT4Yi9m9mTMqTB3lEyLG4iOSZLUaqaTvlmJLl9ah6C0ShAv/5u6duKkWVbLZHMy22zR9PjtVoEOKQ6FTorF+ddb4O4I98OtbDZDkMBj10XHzzankkboJJuEhC3pVEs610KsSj5EXUad5C2YYVbdnFWsTN3XYLK7koAuWyAmCwhJ97RxsznTz0S+qXvAWLNgCdPs3Oy1nQvOQpRWMqZtavB8XNgxOQsZyCQ7Kr9zWTq4ZYQo6578Nj63yJCFBumZsqwbdTj3+zSuDICpMQctc0EBBne1A7oN2rcHuOMI12/BjuB8AI0qJwWIY6HXoywDworiTgJhHGJ2zqS/1jy/sm9PbaAuPdcpC6kQfbw3PVaKtfuU7RPnAMTnxyzpurHorgcIA9iev0rskHPynnspdo7g07ug/eo2nbw7V1dA4+B+/Uv57sd3wHGcZoGZ3EUejDwDlpRBkEV2VHb/VpOHmGP2Ul6fB4FBX30BfnWN5v51Ak8yBk949x7h/n7+XMpMrRf79MzYWUuECKrMo5XnPLElNuwig5klU6FrkYqlay0FEkIA+gH+9k5O06V1xa7PTCIvZWQAchI0CVltn/vDrL6QbK46ed9HD24Bvt6lW3EO9GoL8gz6D79HuNvHrDy7Lx5GMDycc6nWFKASibpeOsvAKPok74Zea3MNYwr86DqFwKDbPZxJiPiQpPvyukoqG2BnJwv82m84TGP9uba1yRZZ32f9ZPcTSR45yFOSRXTMRAABWXbhUu2Ipc+LsRZrjAROJbyIwK3TbMcmAdSzc6mfMozynJwwDIm7lIVioImduiavybbRz/aQWd9FUkbNaizJtZm05dzqPTAQgIP4F10HIkJDBNd7uKGVunVDyvS4+VOH4f/boTkytu88rr4dUnF2I0I4BVqMVQkZR5P15QSo0by9Fb/wcIxAe3yO5XPO2eKd+rZ//ZcIuxYjiQyYu+8lC+Zun7IoJn2mY3XoxRf19l5UQLZJ/4VJFvCjLb+Wgmt5FhM5EiZq/PnC+jwMse8MKJkBkHLC+XVnTeLTv11i7T7UIjB0wt9fa+V7vNbXfKrA9k8tQJ7PX8DE342fF3P42TFWjkX7uCo5uLAfywO+eUY+Z/sUIL7bkUzZNCIraOfZbeE0UAoAvD8Ax2zNnfksSoo6MV3/5G3t+M6D6+Xnj31Hav6hnXcNUXdNG3TNPjsHmT/83Ja3+Zx/XAFFoq1BmrNMrEfV1l5rs71+mhvK/j/Xnmq9uFCss4HBhyNo9HAAyDLBAwOKq3CpMFLGETOy9iRj2Py6lUP8MwdGGLM7XRtoebEX+6nbYxa6hY1fCpB5mehCxuzsUuFMdBoEPBwnKHJkRWcZJXLqjOVxQfsneuQVc9fXoN1WdL+Dj8EK8lLEW4KUuQSDsl10kqftFvTFa3DXgjcdxi92OP5ii/tfNbj7C8LX/2qHm//yb1KwoduAX11LLRHdFFlxTXTCkDSAhbYb3dT56CiSgSnAVBbH+iOEab8EluwFbXvep5NDs4XL+ozaVoJDv/wF0DRw/RClFxCCFM/kkKRIjsepBvqgMgoPXaCjQ6G69+WYY9Fsn5ktfFdXoN0OfH8Pvrurn1tuXoN2TgJb9nGtZgil2hPUtXJ+H4Qtqf9H14nj7oPoRk9YijyPPwICjNTaZpdt22xx10W8aUBvXsuz+E9/B/Iem91WxuhuK5lHXQtu9f+jBvp8UH18uTZ5L+CeI7C/Aw+MyEzMHQvCMuN8iflTps3X7JQDvOYdd1b3JWO6agDWbbeg16+A+z38Dz/I89P6LPE57nbgYw//9p1c0nsAXvohaxM1jbwH2232O0QgJmamvH4NdC3C9Q7+9RZv/8k1un3Am//z9/Dvbif9EdOO9X2Dc5LVU4IjBjApIEZN9n7NOiSxdqDtoU2H8N338IdD3Qcih+HPf4H7v9ihOTJoZLQHDxqkJhL5gPY/QoCR2nN5SRf59E03Mnnh8jiGl96zpYCVvl8T0L7INJybsMPdqxshB1xfSS2EtgE3Dfiqg3u3B/7tv5dTbDaJeR5PMcLnGYy1tr9/L/dp0nXOyXt7dSXvz+EI2m4w/uZLYdzftBhuHL7/Zw0oAP/ZfzHC/elbyQJ0BL4/RCY9DwJ+86YTKSzntGYFgUyWahgBrmdMAPoO7Q/zwLO9t/f3KSvQ6kGUG9BGfxtrnzjQmICWpYwNADL3dRoQb1sFhzNfQskbfDjErJklVrL87cH2LKLed93nElnKZX/A2hH2B9DYorm5iddhIoRNI5vi6NctnOvYC3C06WQd3HRyX8drkNWeUdA3D5gtgtNEkbwi/a9AVgZsT/pEs0Nl7Z8D3baezzTy88wSA7HHUXwrXbto04EOR+B+DwqMxsaRAWyuwdXf/h22/9X95Hp8lQGB2y341VbHzUYIAOMIsErVDSN4WJ7T+XjE+Lvfx3uNY5koro+TrIcs6EObDejrr/C7//GXOH7JaO8JTQ+8+n3A5r3H9b8Rn5jvpZ4LZWPfCAzgMCdz2LWsTd6DnQCnJcFoZquJHxl5yOTeSLN/rR3k4Da6f8izU4uAYOgH0I9vJ+cuA0jzTJCF97AkV9T2S9X7eeAe0N5J76eg4qW+vmWeUHHsKQD/UltzzJrn/1wAylOf1zL/Nbs97ufU54/ZFkukh9lcRnE+i/UI82POEZ/ygK/t51nrGxLJezoMseZeqrGj19l0QmJQogBf78DbVmp1hgD3wzv4foBIG2rcoGSom4xuKan1oezcM35q4PISW/tO1WIv2dxzMXmuzICYjaPlvc3ifhM47fuU7XhOO0UQqv08I+mlWh3h7HHRbzTCEXQ6NX/wOa1sk/lF5Xp8gmRhINVEOl3jhHntEfYe/P2PU8UNlcnMlTUi+dp8f5Xci3tsu2ZI8xc1AFEDrBw6nzcwktsLIPJiL5bsmRaFWpHAmDmST9IxILMOCQd8ZSF9hEM5YcnoAmQIc87eKiZ40jQ80RBwMcAM58BdI8UsmdEMuuE76DlU7keAkGEmwQEgymXE69vCaIH1EvQo732JEZe1vd4VC8EK3Vi6QbIXEiBi/88Cs9a+HERY9WxXbkhqaaRLn2ftj4Vrz1mt72rOiRlzrO8BBdAIAJOyJocxMnhTe91yAHmN05y3sx+AJogMiwZQJCXVgRov4zIIgznWs2kbYKwUq9XNCWogU2zfGSZZ+dkHdPDPsmPKOh72PpKySZWZNkn/nQX+OT1jc8LsWcSMrcyp8x50OKJpCJu7HZpDVnMAWUAna5NJfdT1xW0uQBaIWnA2c9m1rgNd70S+r+sk0Fkeo2AvDR7NgeGGADcwaAhwY4gbUC4DEw95xh9zA/hiE3tsfZ9ZIfATJn5Bl4IhOkeQV+m5wEDr5j6CbWpqbT83htTviEfbu7fdgDcduJG6TNwAIKDpAQpIG3ebN5WYkC4u7Y7BaJOj0/n+7GY06mBngX1O98OBQRD5EA5NqmkSfSuWw/IAlYdktNTmD1snYf6Lggom59m2QOcjuy76JAbO5NmgiwVNpc/s2rmsTnnvJ83IGUamUSIGHY6goQFaJ1kF+ptqgEvvjS17l0j6068YozXT7J0YzGswqbk2CcbbPy2TVLOcZsGbkNWyWjsXxjVAgK/JuDbf1QdQ41PRc70vBgQssro1tkaNPhJcIkt7bWZFbPd0HZrU77B3yTKLXIjvdfyJA1hLqXDFnyjrgaR3Z/LhfI0vzYK6NZ/xFDmjlrmhRJpY8JVZ/QlM67bFazf1Np1qLy6fo2cARQWQ+eBr7+oMkBO+/E/dXzjVR5c+s9p8mAES8ZxRAnXdegXgdHbWObOAZn4vLlvzc9AlN51rKVceCNA5LMuQBCLQVtsTzGpKrZGAeir7lMdvOc/ldioD7VQs4qdoH3PvsuaagSNh5qPZY/YUmc1qgJnPYL5uHruzY1TtwUguHGWwOfvOR7BED3pQ+z5vYCQPOr7Yi73Y01u2aSgLozJLbQUOrLhGxvy6QFv/MTbZgMoH8XMptq1yC+OYUnhN4iIPAihjxpiW1LZJPgsA2gb+SiSy3DFg9wNExuDbQ7zWpA3K1gSR6COOXrIaTFKkDK5bYDZDwc85tMaGjGzQ0smxjUheKJxcdKRNA5pv78ThVCDENs8RIMnua5HdVpuHtQDsSbYZS20MalvJvojMgMTgT0WsM8eZCOFwlMycM/3ElQBfbFdNEzNwKvplbERApB/u79Nxlp2Qn+9Syx19G0M+yL01jWSm2D34LJhGvbBBiUBtk4q7j4ndGhmz0GB/no2k91r9N7C8rtozteehwciL7v2iTSBjAjZl7DYibccwZHVyOPVlDiyEEBl1i0xZA6Cy8UpNA6d6/ZNxcDyKRN7VDjedgA7c99n1MRtbUdt94f7PMqHs3lUekK5Epz98cQPednBvb0H7/WzujZkzd0fsvtXAo2epbxAMOFIgNJ9DLt2w52NmKVD0MTdYz8Wu/cTsQVInwDSQoO/C4u9z4gEQg+xkGRCAAO3MwDBE6Sbap+wQ7ntEdv7sEgw+VVMHQA6AwgmDm9oW/OoaYdeCGwIIAhwzsPuW4UZtl6XWQ95n7nvEdH9l4lqtA97v07xwihmXM/uaJtYjimCoHWuZt1ntjxA4BduBmDVITSNzm2U3Vp5JWVMkykBuNuA3N/F5xmLywwgcjkAr2T1RUst78NHHeUYaVqwXOhfHTM6Z9Mqp4LDqTVOSI+TRy/N4/17ao74R67kj+9eet/ku2w6824J3sj7SfUgb60w2ip2T55AFZWMRaZsOOCAchfnvSLJteJjWG5vUJTNQKc9oqOnfe1y8MY++ig9AM8TgvK3dbH0ITNoE7xHevwdtt3CvbiRD+m4PDkF1urV9uVzb2kBQLYiRfx7/9orns5AGDkBz0Hfs3Dbd5L/kxsSnz0A0kNbeqrW1aTSrWWRDIzhyTgatfLY2PnLJnk0HjCSECWaQ89OgC3PKriv9VChQm2fb5e8LM2ImRQ2kqX1e872fGRw5my1S2wfUrr/GH3jONTif12rzeN7XT9kOez6l/5E/t9p3p86XGTVC4iszjI1hvkgssvVK14vZ8bV1eanWXDau8zoARFqzz+ZhB5VNznyNfhC/oFXpTfUbyPahKqkz2w/m17Z9MzNSrZFPyJ97yvH00PFZzhOXfv/Y65+yn4jvfc6mpILKXH7BOR4lYf4QCz7BjuX6tMZy8kSmNDOpDQa9r4VaW7Fuae07lVjL5edzIiSfyPIu7fMGRl7sxV7seWyJSaA6+5E9maWXTxnSmZNpk+g5ndNzLK9TVqT9xg163BByAhvyTBFtYwxKlKBI24hckQZZyAe09wE8ODQHh+auRzDpLdsADRTZL+yU1a/AjNQJUQZgvsHMUwuLeihVpo3LmDlFcCJndU5lorL+98j+LYvSLHheAA5nA0NZf9Y/r4wDdZ7hXPX3MaWyZhcEH2LxTAUwTmYhcJCdfM5cyNvkAhjNlIEagzhnmzK/VnaO5CxpGywwZc9Rdfsjs+LYg3wDdNdp85Wn23at3HOvAI8GHazA90mb3HsR1JvcQmXj/JAxcg6cqQSeCJB7ywC1FABzkZkth5945pPrZGzXUASIvY/yMyLJp0xlz9XjF+/lEisCOGTyOF0HdF1WLL543xXEsmArHQe4vejVIwTJbPMpTd7ekRg4fAg4suZePsYm6GcCikzs3FiP44Yn7038bnKuE4Eucml+ChLoYEcpwzAIMECASAYtNkeDqD6se0/zzFUggQqjBw0E1zUIANygGa0E/ZtSDQaz7L1hH0CNroPKWF2t6axr1jRQqWtDvpyW86jO95GRriQJBiLT/1SgJ5IqAJFPBGTe6wcJMhkoYn+0OD2bf2ZAjs4ZEazyCwSCvN3Zfa6V3GEftMaIz/4/CkgCAzUI06LPJhmja2CT9fNo2RFjCqJZRpBzAjRUsw6y4N8EQEpjO6/HFgErkyrzHtRxJSi+whbmwlgHi0mAa/3dRIIDChgYWWkY9Dkp8NUouGQ1snJQpBzLa+bkSdbMiqygwIjy3ix/4ql8iHWwAEznjsk1T18n1i7IfR5jja9Zgyvnn71jlhFvPnrmp0/OGcHPMth+JkC7di80+a42FxftKe0RbOiJ3HG0lUGx3N8vJNk+WftQvsCpPrjAT7I948wCTzMo0gHFdTRQGT+rvHcmm33JBsfp+swuxg0iSF2CliEAnmK7qWetHzVd409ea4kg97F8zueyx9zLBIzL95uXxFrWvPcMlFJZP9dssdIeAdhxuWZ+6L4r4mwPOwVHcCQSGXLSylOsEWUskgiyAVh3+OcNjNSctEuCM5+rfcyUrxf7WVh0hktCvbGKc6msjEk4O4/q/QOop+mWDJ5LJsOSRQXE2gKpSCkLG9I0TnP2FhC1oK2mhBW/xKZTeZoWvGnBWjPF7Ue4231ks+BwlPoOwyDarraRcqNs2pwDVPNaNk8haq2WBWRjOrS10zbAPGX9UNvNNu/WD/kmbMqqoeyZJp1WkBO9b6LZdReDIeeeRzYn5+0hrZ8wKyTpFACpOuQLC3DGUjxr6qSxFnUlF06z8zNWpkm8RRYuEeBU6zP/XbynC53wyW9zdixrQXEN6ut1nOrS87EHwgi+v9e6FzdSw6ZtJgHP2E6T3eiyDJRTfZen1xtb09pbO67Gbiz/nZ1b/poyXo1NPP2pbcr1unp9DnJuHgFYXQ3LUigZrGs1aWvrKnupGUAUZWfC4YgoZaWbUgrZe3MO4LnQqO0iKxBEoKudMOPtmTODemWfZ++s2whwEgNj93s4DfbCe/DdPcLxCHe1k9pI46gBwAwAeyg4sgRyf+iAyKccgHkOKzekteeWM2ezDJHJ90AdGC3PGQEVZWiNI8Lt3TSYbOytO0Ytuy8yTKOe8HDZeDNWvRaapsMR1A8gz3CtAwWGu2px95sGaAHedHCdru/APDtzHGX/lGWZniUEUJbh6Fwq2gxI0fLgNDo8nZ9yixkK9n9yIDdiEZShbG4MYyrU7kY51li3nGUJBAY2nfgsgMwFTjMLmwbUsQCvm40cl2eS2DXL8RIb7Otz6OQ3Nn97sG/gOmUGaiakO/Yyr+cF4tnkwTT43bVaCyQDxfoBvD+AD5J1Sq9uFOzRTFzT9tbMZgMxZkVB84wKII1jrQ8lf5P4iAYe9S6B7zGbtCKnFvvgTNCbvRAvSKXiLCifZx5BAtVu04Cur4CxA/EdEBj+/XtZM3bbSabJScnRk0Ha6XpNm076zt7TpWeusQiRxck+t2eVsUSrlzUmvP3OsnwMTNNMKqnV06Q2jHm2zzIYkmeKRMJUfh8qo8cm15r77uaLa62Dqo/BlfluLfmrXC/Xzofn5vvSdztz/rzuRJ6ZL6epzInlHs78xUiQe4aYxSX7xksC+08VUH9uH8T76t4p1r85ZTZGiSdjemJR81/fQdQB4JLgRkboaSBzuu2HmWVPG3mBLHOcZsXz4Qje70FfvAFe30zHbwYM522wzJSfTBH254zx1d7RpTbk89ClWQKTfdRnFKtc+94v7fOe+l5z4lKePXsxC/OJ2gKsi7vUjkNOovaz2NaqMbPUz8yCfdQUIy60zxoYIbceAfpJ2k8NCX+xj2+FEzeTaTKrghzFQjr5ioCGwGNZgNCYfcUG8iHjOjpPGTOOMoZXHvS3TZYGbygLrMTAhtUWGIQV3vQjaN+D7g+aLRNAzsH94kvg2AN391GqyzIwqGmUuZfYZpM+BDBhVU0WiTDvd/scQGIOTv9ffS55/6jXGBcnNJFlt5oZu3ju7KsFpk8pr5UyZ+YBhNXFxc7NhRYw5OzaK4+nrpXgcS6DZnrduX7uUzjjZR8UfcPjCPI0zYSyjUdDQKvByCFt1PNAz8n+LN7ZPGg0KRJaso5m9zD9vsysAZBAJiBpeefvbQGmio56AXyYqZSFFXPmsnizBT9qwQt797N7XnT6cqZu8dmiTYISD3TUlN1O260At6+uE2jbkGSAGNNagV7krG8NrPEwpDFj/aH9RRb8apoYyJ0UsVzjaywFKD6FDdLHAmY+pp2cDxfWlsmGeUXGSf7bTOLC6mhwHgybMdVLn8Lq9Kx7pyJYaAAMZPz7X3+J0Ln429A5MAGb97JxGr/codlJ5hQNaX5NBb9X3Ht5//n9WIBGCRpR8rKUEKnZJNBcFJFdPCYU/9Usi2GQdSE/LgQQh5iJApXLtKCV2251vtH1TO8FbTv1DZ5q72E+kQXUTAqybUHkwMejsKFNOpEtQK4SLSGI26htidk9gADlzgM8ZRMvMvj1/OQ9aLuV+VZJG9FHzYuzOydrD41R+kuQF0ogQpkpdIlZIISmYE3+PXsP6gcZv5pJiO5VkkebSGe50+9f/HgZTBAGuAI15rPPMnFk/fZbwG+lFp/zIj3b7nXMzYIatffNpfGXaatzFsCNWd767Ko1eMr7sGs1mwi+RfJIudaZ9nkkWpXv2gl/OQ8mTg46E/Ap23zRPLwQrMv/fxHonAWbgXX1/FbOUx/VHhL4/BysBC4e6u/kKgWB0/Nfm4UKKOARMuKfm++BAcyKK3NI2XiHXrPLMhkeOfm0rXb+2vj8HJ/jh7DafuQU0L302adknzJpvAQ2gIe189Jsz0/Nsr1HVWXmlJWky1V+xOX2WQMjQHLiJgHPT2kBfg6zyavQyf3sXpAX+3SsDGTGQNl08xTT+UsWpTMAxU6TbQqCA13JhpvvAmoRZGoaCVqfkyPIFz5FiAFEzWe2gHUe5Cc3ZYTp9WI9ESJguxUmnLLMuG3A2xZ0UP3Tvgffi35/yILOzV/8Fsd/9Es09wOaH+9B7+/gv/lWrj14kaboptNsYi/mmzhBz4Fis5VLbpjDWeirlkWeq5sjCyQBYG/PxfTCL1ik88VIn3nOKktt5vmGugRuLNjf99ONv7aXLXDzVMFMrjD7lhba7B7d1Q741dfieLeNyJO8uwWNY6xBkjJe/MOdlYqTGvb7yXfh9laammdiWeDGObCyRGlUtmPBFJ3oCFcYQVHPO74v+ozbFuScPCuTKsl/V2OQKYM6Z/vGQJONGX1fadOJJv4wiDyY/ob7XuR3yMFt3Exn3/T16foK9Oa1nO/+IPfe93LtTQf0A/z799N2KihC2236yHuEY42d7cDjIL9X9vBkk1cLQBSg0Cl91EWj9Izpi9fg6x36r28QNg7N/QjXj3Dv7sH7g/zs6gq01Zo9h0Oqp+Q9+PYuBRehY8HmgHGUftx0gE86zgSPagHkJfvUfJDaxu9TtqVgmtljmMOz77J5IP98LTMw+x17D2gNnShX6D2q7FI3ZaRGn2INw5UoZVB13XQuIQe+3uHbf/EKfkfYvg1wA9DdBbiR8fo/7AFH+PGfXCF0wBf/vkf3rgeZNrnNVawAumVWlRI5BShcBpLjvAfIWqgSIiASaa5zMoYTIPEB8iB5ptzhMG/37FxaP+7qCvT6VaxnEtfvroPbbcHDiHB3l+6dcHlWqZlJdhmL2ILb93upnbXbye802yFmagTWwusOaAjUjyoNWIBvGjTn0GgZh0bm9hLcASa+imUhNL/5NfjmCnTsBawpA3qmh984kfxqGsCY0MFFf0seXyaZutayQGB1vNgcfjzC9z3cdgt6/Rr06hr+l2/g3u3B/+4/CECZ+5+2ZiMbt4WfNiEsAPMaJ+pDWAaw/mgiDUvOof8CGL4MaO8buB7YfT+g+34f16X8XtM/0/OhzUb72HwFJRepf+mudrK2Z5ngE3Aju+da/7mrHejqSuqxjCPC/b36GgQ4qaGIMa2fsX1Ic9zJ8W+Zxpfsa2pzv71r5ZyckS5s3pr7t9NAXKyLk2WNnyKDWBYAAUAI6f1ZO5aXQJtLg2BloH8poHvudx/Dlggj+ffA49u8VNz8nJ2SxbG9nMf5YK7NF3YfRpTIiAuz67ICuFkfUNeCrq+B4xHh9i6T3SuIApNr01TO9nO35x63q/zD4rNLEf4PHbQ/FzR/blvtmz9RfHopC/DB5/uAc2ZBWlx7zXL9mrX5FOHogvv67IGRmf3UQREzXShe7MWexDLnLWoAkptLGRUM9glDuWZaZEl0UCEbL843VKhnn5hVWJmTQEQh1xHZTSEr4Jg7dHHTJwAIgrAnKXjAKxOQSCQoBg8axqTVnTFiqXESyNWi19w68PUWaBwa54TNvd2A7vbwf/pm2tWa5lYy29bqc+f3QU0D9+aVfHx3H4P0AKabpEdoQqZz0PRvyAYxFtzNA66WyqhjI9d+PssS0A0lNV08bwzuliCQ/d5lKZkXBSBObFoscL7bYfzqRpRQxgCngRoOnAJg0L2rX3Dcs3POrp9/vmrD6JIkVpBnzJsWYdfCHUZg4Di+CRDmssmVnT/75Dqltrox0uIcccI4sEh9bLoYZIzvqjJvqevE2fFeMhpMtiJKlggI4d68Bn/5GjQqQzakLAkAwKZDuN6phE6Q8wNZNtqphnJ81uwcHIBceiYHVWOQ1OYB70F7kX9pvv5KgJtjnzJXyvFe7eeFZ2/gigEWoxSvbu470Niiue+F8X44St0TcqDWwE8NFmrQGYC0afqA4j2RBe+aRgJNsQ0/BV2CD2jn3uOl93/yWR2YyyWAquesbTLy4NnS8Vk7DPjLA6CToEXbSUCyaUDbjQYR9f0yUsLQJ58gpHfFQNpwOE7v00/bsGhlpkhQ0MF7OYeT9+Pq+wC/IWzeebghoDl4uDGgebsHnMPVdxuEjtC96+FuD+AQJmAN+yAB+Bq7tcySyYgJUTd5Uj9B+y9mw5w5p5wokjxOMvwnsd9s/avJETZNmsu07VH6y37XthJoHkgyYG2sqARoqkeUrT8DLl9zYU1gDWorsUCBBqnxpu3absU3SwcBQeZcGrzUSQoB3PeydjhS0kAzncvsOk0zq0uW910E/K93CG+u4O4c6NCL/JOtTazSL02jddlY/ZUGpvcf+/Z4nD/Hc1aC6vrsDIyYZR0xy5gdeuDQwN0dBdAhK3RafzYzGTEzZ2tIqluTmqbZT+0W7qsvk3QnkN6XwAhfvUK7B/idBPX9Drj/9QbdqxbNb/5baI4e3f/nbxHevpuvj7YebzrxA3QNI+JJZo5ky+i8YvWMar7+QsYGDyPQDkkyr5B9tVpBucxr9HksGyivKn9psLFyzyUbeAJqnZAiFrIVZfuzco0o544KY7farFS/YkZeql3nnD32uFNWAi9PRaj6EEa5n1oZw7nVACZjo5ds8vL3S5efgJyTL7DK/7Pstdwf0Cwr0nXaPotyWDE7K0znmqZJgGPpj/5c4nsvNgc3LgE7Hju/PDOwcnZPODvAMmHPSDOaPaT9H2POvPB9nsnoLd3njOxFwM+qxsiSfQpMgee2n8M9vtjT2JqJ0lgBRJikrZqzk8lCmDnVci6zATiyu3TTMgxpTsqCrdz30wyJstnF5j1+vtlIgMSAmeCTfJX3QJvAgQlLHpBNjQZCw/EI7nvR3t9sRH97uwX2B9D+IO07HJNOs53i1Q3w5Rvw9RZuCODOof/6CqG9Brdf4vBlg7s/c/jybzxu/vd/qksY2UJUpvhngVr5uNI/+ht3tYP/x38BCozmd9/IBnm3lYX09jZpIgOpzkqtHdXOnwdspv9VcGa3BbpNfAYTzXYOoEY1oP1xOTCXXY+6FtS2cF9+IazN/VGewdBHRqfch2WsuFTYz+u1L2Gylmwza07TgHZb8Fdv8P6vbtAeA7bf9kBDaA4bYRrrPVrdBvJWEH5By3nWjyEFmgKDh/503yhbmq6EUcv+DnAO45sdxpsWm+9ZgBuTglNwxDJvaBynmQtFoE+CLj49W5PnsJ+4MQZgF4kqOXC26UA3N8D7W4S+l//r+AQA/sUXGL+6RveHH+D/9nfxOHdF6dirLe7/yS/x/T/r4AagOTDaI6O7ZzSHgO4uAYDuuIHbdAKQ3O0T+zn2exlQEqY7tS1wtdN7vUp9Nozwt3fx92AvwUB7eoHhvvkedHON/j//cwBA98f3oMMR4ZvvJGC3NBYnm2EgskLtWhogdV+8EaD1ux+kJsiP13BtGwOS4e4ePI5wX7wBdR342IPHfvq+a8bLUiDeCtlLgHioaKO/+BpnLZ+zF+a5KNdkmc59Xw90lMdtZE7E8TjNmDL5R0jQMvTDZO6hVmtnFevd0vVoswG9fiXzRD9kGVsyVt2XX4D/7GuEXYfhzQZh4zBeO7iB0d55tHuP9sc9uGvgrzvQGOAO8sKQZ9D9AfyHP87qJawK3ljfWR+bDFSeHfruFq//q1sZ79a3OrezBviu/6NkmrDVEglB6vHov3kYwSbnAaQ22vs6CdTnEk3699IcHm+EZuvBJEtX653xUGTHZX7YxBdpFHzW3+dEETnfBrTVbLy7e2kjc8y0gzLf6foa4c016P4IfvsuEUEmhBABzqR+hRRvjyBa3gnnzPzEMUR/DE4zRboWvJGMSFJ5FL69y4C3Efj9HwFAsnczMIh2W1kft1KLS2o/aaZJRopJYwO6nqW5kboW/utXOPxqh80PLdrbDu7bt8D+gLA/xMzBnJRD19eSqWeAfNOAGwf68T1oGOs+QXVcTIk/Vu+FxzHVtura6boGGXP+x14yWb/9XmvtScYKD32Um7RnHY9jysB0kVWlbav1zfoIRMSaWi6tSe/+e3+JcUcI6mtT4EmR9Ve/C/Ad4fYfAMMrxv7XImt39Y/u0PcN/vp/+Wfg/9cP1pB5d7x6Bd5txP9TubC4+eAgtb/ijyug8Kk5hUiOz88RgyguzjPW9+S8vnc0eQ9z0GpCbMquvToIVs7FbQd3fZ19n71bgVHKq1EGDlmNFSrnMG3PWiIRD+Oc9Fb6r2t9g2x8n82gWXMu4PQ5Hnv+C9nMJ20p6JirfthH+b4PaZ+V/O5p3yX2dDZ+axJ3NbMxkmWKxXFl1zUgOQdu8j4JPoJyXBIXAQRrb+2Z6TqMcUzqCgpy06YDba8BvpM57OT7rPf8sexTyFB6imD+qfu49PwPbUst8yPulaZEnVMkn7PnXwCPy1qscdw/NDvWmqVkwmpwf81cc+76p0CNtc/uucfvY8+/QHKIlpPEAMT4iiOR9VtZbvTzBkZe7MVebJ1dvKBp4DnfBCgzDcB0M08ExHlIFxdiYYmYVIKxR+LmdAHUXNtOy/RodHNrTn5Zy6PclFh6e9cBXSsBIFJpK5ZipWkTJoXbLdiQGC1pIwjPyorV7vKyOWwGwI2AG4wdczkav3ZDFTejbQuCslXtWWV9UdWpfoRFxqFttjVwYWMktt/7KCtSv4G0mEkGSia/VDrp0wbIX6yZEbwMsJ2/mXnfcBC98QmTkIvfZs7MqusvgflrN89LdVsCi2a+naYMEGhwazamSqmFWoaFPuNY/+OUFc8ynssAzrZNLFD943ov2R/55su+z+7N9UAzsLxbA+B6Bln6vGe4MYCOklFCQ1Y01eQwFtoZgyCtFaZXZncBhlaNla286UCDsZP9lOV2qp8m91ywRS0by8ylTSwcAX1I75wy89k1qXbIEkN9dg/ToGHMAAshZrc9N4Pqp2Krg2CXMsbs+VayDIk4ae27MT3yYr2JY/ncc7SAjAbwJ78OXuQlm0YyQFn+sCOErYMPQNM1Uu+IMQmUctfEGkhsjOu1NWxs85jXOLAg4IQlHRBUVm5RD98HkT8KXJcOsnc3l+dFWJ67H2LZuSbzZF5bCZgy9i1rr2liQe4oi5fXZtHgdZRRtCD6MCLPhJux7EOQZ9sP02eesYbNlyFygBJniAgwYN9kn5YyoxbIFlbbQ7IFZZwwEdCGBNgG9UvjPYQsIK1gfsxqoSTRBYBtHs2yFtknAkBpoWsw7gjttkEYWzit6US9A3vNEgqjfGZEjExyCTuncluXMzA5ZqAI4YO1zsWsKHK14R7MQQDRq60WD1d/Nmdpa9/H+3cEZxm6XZvGpElmWfY4KUDSaECXIGMR5hulprgRyBMq3AgQE+6+uwYdHVz/I/wiSaaQ5QFSdm7jAG5SgNgyLR4VCHeYAFd2vhxQUP+H57FsxAySMB/nAkI8vGmxPeUlcwBUs0Fj5oi1I84nyceY15BZnnvn/mBlTn1sUPgS32I2Bz8RcPEhrNwDLqwnF7PJ04HpvPH9KYLJtTadsZSldvaHlSYtzPuT47LnH1iVBRjwDah9wItjGSnA5zM2nsI+9aD2pUZuul59wGyhB7+Dl1g+7p8KgF26zs/Fcn/gEf765w2McAComTI1XuzFXizZmoDDie8tlTv0faY9TYmJasUoja3hkAIOIGFp2sbpkgk6/62eL/4bEBar/bTV2hFWxC1no+YbctcIM7TrpCbBbgsQwRl4YHI+SMHROLdocWfKNwH3exAAt2nBnWwa3eDh7ns09ztQ2GL77THNS0vodu17ZafP+iI3ZbzTfpB+V2Yw7/cS/DkcZ4HX87rI5x33SRMCRxkLqz9R3icffT2DsciWic8mk1CgQx8LxMbgoA9Jj55ZAh9AYrY+BdtF2xQOR7T9gGZgCcQPXuSLrP5JPyBKOZQsaLsuMA9qGPtLNxyr9PUrZuOxueuB0AGjbegTsADvwYejsMnDdEylmiL68XYrbOV+mNYSGSuSICfYGjGwAyiz0sFdX4um9/VOAj0+gA49mvuDMIILxk7MAHMOmx8O+OJvHcgDrg9ojh7NXQ9uCNw1cPsB7u0dMHrRMB9H8OE4ZTMHH+cBk5eJjN/dFrjaCUBz/y5jSlcCEnn9JKS5qP37d3L+H95q/Q5998qxVwYSatlF5FI2gDKDabcTaZmdFAXm41EyAPS5hP1BgppWV+QSZ5sluE7OgdtW3qlhTHUSfKXdLza1fM5e+omxxi5kzPI4TGX6srWDxwDqruS9NTAwC3pGmQoLlJ+6zjCCsrV1cq3gEd6+A/UDmi/eAO5LNNsWTd/Cbx2GG3l//VUHN3g077Vwdj8Amw7+VYdm0DneqRQOMcDKXj7F+IysPQb7Isu0WDe5bH95qrbVwuIuBjqBebAzZklE2aiifsElTOnsPiYM4Dw7wIL5WYYGgJl2u9VG434ADkdwENAj2qaR7LfjEeFwlHYrM36+V7qP2Q98dwe8v5UAK0nxeAIAChKIjgQISoF2bZ+LGSuSeRFB5hgYW+gaY0f3vYBl26PwXL5+DW6c3PrYyLzmKNUcs4xIVomlcQCPEhCjzqNpHHjTxUA6AWDysfC8fJ5lOhc2XjfoXzs43yK0BLe/htPn7ZxmEo+jZA82DbA/yPPQLL3mN78Cv76Cc8U7W64DJWs09ouTtdIytqwmXpEtVDWby9+8Fkk0la6LPoYRUDYb+XwYZb2+uQG1qSYX3d6Jf2LrJJm06Ba86dAcAijYuwCQTyAJE8FvVXYrENwI7L4ltHvG9f+d0L0fgT/8/cKg0OL1zFIrzdYyJVUQAPgO2O+Los2XZwlHv4ycZo/55Jd5L7JynEm5jqPKB+eID03HUYU1v9r/LIJlMQNs0nTxN6lrJXM9BPD7WwFEuxakmVwAsqy3BCYaYDoJeJfvp/lKRlIyOa0leb8lcLsCiE6CjjUmeH7s7L3Q2kGxrkytE1fYUwYLL9lb1Ahy6pNHeV4jKZV7hgvjW2kMZnP3yaYtg5RrfJYSRMuzDCfZLvGA7PfW1CIjRp71OimvVZ/NGn3GN19r5Ti/9Pifs2+d33uFOFGt5/SY97fWx8ygJvnLH8QsW2xtJsoS2WTt7z9HW3ovnNUCrD/LCI7YR4EXfdCafd7ACGqOPn6ek8uLvVjNVmyiTn4dNZoLtmotvVpZ1rU0b/t/dPLXbPByW0LwTTdfWXUT/dKifZTVWrCNXt42a/vkmJwFlmmlUlBd5xCEMegggd5R/jRHj+69R7Mfzif4zpgRSw5qpc+dkzoojlK2jFeASIEQk0Q7JVm2xOSc2MKxUUfWMmOWbOH+xKHWgJltOoNk68TrsoypSVaGbcJNf7p2/Yc6nHHhlT51A8ONHJ8xfADbGA6pffX7dov/rqbW1qx0GnPnTZ+7G4MANzaOQ+qnajZLxiybbORrbOXs8/o9ZqBInnVgwX0DSG1Tbs+qH6Jkj4F4HFTX2uaTcYTbD2jvvGaOeLjeg+6Pqd7AsQeOfSzePsmYKKRwonSASY1ZdpL2o2WPVZ9nztJE0u0n7yWIAxmPk7H6SH+EmRMrNx/PBhZqvyOwBjHD+uuueT/IAXRi7nixi+zsPLl8oPydZztlbP8SxItzf3CRhXmWCZcHLypZnRwY6Hvw4QD3/gA6dqDAcGMDcAvnWcBKlno3PAJkTHPLNmjbFJwmk6fJAZKF+87bcIEEV/UegLguWh00+ZB0Lc2kRNViIHGFPEn982IdMLnCMmPl3DkDI6bi1AruKhiVZ4zV90lZVlwG7kfQoVZjRc81KZ4d66dYm5L8KU1ShuYBVWG4p9+IrIoSPAxYtyB2lsEUQXeilNVm1wgMbhtw18b7oiDyklHmzApKk2YyNxnBLkhGETdAaAncEsK2BV1tpXaH91PpMC2uTUCS8lRgCZsOdHUl70xfkVjLattEIDOwPANdozgDJgw4O2e02YDf3ID2Ldz790omKfo/k+CjrlVCivQbnZgnjOw03Dj4LQEs2SCbd17ef0cAMdoDg4LD5i3ADeHq24B2z9j96Yjm/fEkgMnmv8R1lKcEqfkBZ/tk3knZ+5b7CZPz8nRfUZ6CKI1fms8ZkYy01qe3z/J3ojw2FGu7ZmxRNi/G7Pys/tPkfY7vX2rn9Lbz+Sadc9HWyDZNL7D6pzEwGg9Nfv+DbG3AcO395L75A8hX6Z/Fntky8i+1OOevZExzQLW+CDDNKFyyArxavgxjAmAyo8zEnD3ToPWnTl6eolqCkEcYxJVaTNVGFYBGfk/594+1nzPwsdZmgf+0H6x+f+rYz8U+1J7qpzDuLnnGFZDtkvXiswZGIgr0Aor8tOxlEXl+W8FyYe+jJnXJNE/ncZPNOR+OaUNObs621KyLYHJVpxyqPCU4Nkrfdd3UhcOx/v7HYIP8LmYjWIaLfe/DtAaJBSC3W7irnXzXDylQH9nsQTQLjw3o0ImkT4AEpYcR7l3A1d0R9O5uGRjJJ+98Y1F7NiUDuGmE3d840OEo7bNMkf1eArPKvImbnBposCbdsFy8y/MYOLW0yOsziNkJVutAHWPaXos2eNclJuw4gvd7hH6QTXvTTJnwuQUPrrEuXJMVsb2ABaKZReyDBFL6Ac3eSxHf/QA69BJ8H7SOg23aOczZH5OUdsw39l43fsbIX2LcFZbLxZBzksVCBHd7L1kTw5DapGDEdDOdARhRroMTW9m5GJzJ21zNxMpvVxl9VneGdlvwtkuBnXEE3aU+Crd3CLe36V6txhGzsKC9BPkIwGZU8GFQTWIt1m4AmgFVkwyR2DBKGV8GkNpcoEE2vr2bBhnjvVaAlZzdPWoQ8thPg5sl8/vMMy2fTfytPhf5L0vxeUgQcSIHo9kDiw5g/qw0QC3ZQhe+Hz9Xe0jWWWmXBNXJpTGcBZ1zZqYVkg7Ho6xTcR2zoCIhyp+saLsAHwpImzRRbsGDjx5+GEFv34N2W7Q310DXodttEF5dof/VFcLIaBwJkNlqsOIwAqOX+g9tK+x/FpDZgvKELKin/zbQNA7R2RxbrG/n/Mdg75KtvRJIQZkRWtbyULZ68l1ObdRd8d/stxboBupgiEmXGglDweUkkafSlCavRNN2cj/E9WFSS6DoE5ubJt9btl8eDJ0Fq7zUZ8j9u7t7WU+sBtZuq781Ccbi+jp/5plMln1KjZPguo4fKOAcAWnnpKaZIxmr3vzINPZ5t4V/s4U7NnKOrpXz3N1JPabtVuue+fisSccajyPgAL8hjFuAgoP7couwadBBgD7JzBPd+7h2Bk7+SeMQdi3oixu4pgG/fQf/fQaMREDeRZDH+pqcji3XAB3gTMpywrZ28/GX6ZTT61e4+6sv0L0b0d3vQfsD/HuroyKBUNpIkXr524F3GwFGNm0alwaeUSbPdnsHd3ON279sMLwCyAPtPXD1zYDmMMJfyZho3/cgBnbft4BnbP7wI3C/R3j3PmUX14xlX8+aVTqRKDOZqJCtyWvIOJNzVwImxZwSJWLt3VoCTqy2XXyNm/mzOkFGmtRvy99Dpyz78r0xizJ4Chq+uhG/7/1tqr3kAGfz6KwuUTnvTP+fy+CydEjqF+QyZtkcYwzoNaB1kRmz/Ds3BZw4AL7ih56zFXsdKv3cS2sKlJkvS2Mz3vd8bY3HSSMgtT4vDPqW518TUDwJhJ7pa/OJZx/LuJB3wcffTp+9zUeoP5+csLB0/U7qgnLTxFpSDIDg14EjtWvPMnNXjrOz11k4n81LHzP29bHAhSVwKtsPLlrpLwNpDrqwD6dzNudfXHSe9RdcMy6zeevcvFpZ234yMdQ8ThY/y32+hXnWiCdL6/eCfdbACICLbvbFPhP7qbzMPwUrZYEsoJov4rmZ/AJc0sSGBEzBmZ537fynLEsLnjlxtYU1d+SVHRdZ7BYcVXaoBM+1LRbEt/Tfso1RqzcLGDRONNU1AGQBUzpqAL3cMBSWmIIV1lW+gVYphfz+AGhAjLWWgrE3s0W39j5lC27N8V4MrlbOVf1tnkGQFfeL7MyssJl8r5tuK8TX92kjlzPhn9tIZRyci44Gh4D2foQbNEgTFACJQR9GZAbWzlWAIqLJ3sGK1J/NGMnHgAWU8o1uvkk2EMQ2MxZYWDBmkSITwCB/fzK2YWRvLvc/tV3KwtBMEWr1XdLAZ7XmxaQ+QGYh3QsDUiD9vlEgQjXdFSibsJeXHKAM0Ih1OkqZiTMW71FlYuAyJhtLBhFZECXUx8PZ65VjhkjOzWns2P0vB5ZWvCckm1bK97P5GNJ/P3Vdos/anrIvlsZCuUFfDK5USAU1goBtlh7S9jwbqQZGcwB6ZfaPo2RPbjcIDcn04R3AAMIgwel+AI1Z3Z62je8xgMRg13bHgHN+/TVj++IghgagtJhylHdiy1zLArGnLPcXsuczkc6Kl+a5LxTJGtpHKoEmGWNZoMbm5RxAMbk058DwIqmYXX8p02US9LK5Jweh7H7M8o0mMAGPObjpfEL/f/b+Jda2LksLA78x12Pvfc65j/8V8UdkZCaJoYAUWEUhBAkSRQORDSzZZWgWD4lWKkEC3LBsuVG2ZKfsjntAp0SPoooqKFSJKMll8ShwWnbhMhJQmcaGJDIj4o/4H/fe89p7r7XmHNUYc8w51txr7cc5574izpB+/fecs/dac801H2OO8X3fcEAjTKFU7DwEoGngLs7zc6j8m7KNfQyIaz0Zu6+pBY9RAQu9n8rSMAtLxI/XM91D6WwFNA14vZZEswb9tU8AaA0NdoRQEVztJPhWV4Y1iBTcSz4kAF4t0D9tIrDAwakfGA/yqXi7qaWWA+xVBiWMinS48d6++zLzP1cL3H5So1061C8+hLu6Ad3ejveMwBIPdy7XdakqhIUwv6S94p+QC6N3wJVDfwYMZ4z6mgAGqvUANwS8+K0tmICP/8cN3PUWtK7l2a5uwJuNgJkOBZ0j82fH300J4iMAPWUwZYKxtPP78m/2dySBOssAuXMoUf1v4xsS8W4Mzvp4wHg/jr4bAEmKDANm9+voMyabq1fjzfpsA/MmcWqDxuqrjOurTKw1aR+aCGSVny/3qwf0+8uzztTZ5SQmSnGOSoH4h7KCzXES23Rqf3nd/tyIeV7UETvFtO3hgA+a5vjMTHyMD76/Zn3k95URYmwnzvK65+IP09ntDY+B9zsxwgHJE/9hGgSP9miv2xJCYSK4woXzFdFrSZfYov0Ko9VS/h8lkbiPmtN68Cxp4FNtAsaHGYp6+7YIvLI8ymCQQdQmmR0i0GopjARN1jQ1uK5AbSvMkGEQreWo301aJFqRbamfojZvDMpW52fgtga3NfyZFOesmOEue4TPREPZtU1sngn067MBSeuaKsjBaIR0d6nuAy2XEly+ucmP3A/g/ir1CWsh0CmzyYo9BV/BIaPAyvczZRbpZJJnevCnxUJQ+cMgQZIYREv90TagRQu+vEIwh3eqG2FuMO/WejjkLNMBpNVUYFK/V4usBIVatJq7Hs13vsqf63oJys/Vs4nXSs8eg3wpqVHXoCcXMua2293v7rTVSSCpqnIB3Yjq5XiQFUk3lgOyJjFY9PZ5irkQPETCxgEUZF47EvZF1K9O9/NdlgiZQTq585XUwFBbtCLJsenAt2tgG7Xu9eBtxhbVzXjcctSMN3UyqOtAN7eTiah9qOj0LlQqRBki5EB1BR48+PZW3styKX3hKWt0x+tRXcM9eyLftwmuYQCtow+y3Uot6ljbxAYcAeSA61wySNdYXesUWT5E5oyuI1dXGbUO5GBKOean1lK7xlqmFYkcDPp+pJWv9xgFV1/XAftdQTtNOeBl8n02ABXHwhyrIf2s76RAKquGemQDjZLqcUwJu0yCDgnBuw/VeWo/Fgj1xGibuC53nbBH4n7iVgsMZ88khlgTmusB9PlW1oHLKwQNKNY16PxMpO+GGwlWr1Zy7zjm+bqDFqIGU64ncN/nm7yGyk+y1B/TOjvMkZXgUx2zdM9ifmVGp/4dO/ssEeW1tJGAcfJJYrCXu15YlSR1D8gLAwFNrOsW1yCVzmEfUs0MahupKaF1ZlSPf6poMvN4/Km8kvdZcsqMW4p+0WgNNrW+wF72EA9pWxPfqfdpHwLEH+p/46fgmuDWg0gjEoE3G/jLa6Dr4K63IoXlRQaLt7GOWfQheb3ZYfSk9TCyntzagTpZOykyS9gRaLmA/8bH8Bct2l//SuozxLWTuw4IKpMleQkmAE4SJLyowF2bk+NTfUmE/msXePUbG7RXNdrrFuchwL14mWpVUNuKb6Drtffgrs8+QiuyouylPpj6DQwcrh9FBP/xE3z1OxjVrcP26Qc4/+wJzl68EmaZ95kNVteZKbJoENoK/fMF6spJnZYByVfgzTafAZoa208Cwspj8aJBe8lovv05wkdPEf53X2LVDMD/sEL4l9+WcaLtNm08OG/7TpKvCrbQBFoEX7EyfvatyZZprUFrfdcz8lj6vVnZruDBXchJLSCDfcyaKffc9UV2bhXntrCW6nwdLmoyBJZ5ScLMAhD9ao/w4mW+fvR3RvfSRJz+rioSnDE5kZLRNslWSjppksj2kzKf94F89ryf7MMUgW4uAutTiOFD40j9+klWQ/YjR++qZASW5wT9ZyVnSF2LRDqw2n13d7EiGDh7Pe2TknEylfw71neza+mh8wkHWSRtolfbD8QzRPyc1q4pWSNFn2oCO4/HPfdXCUhNosT96egk0pS/VyZT78PksHGWgwnhtxjHHPk093jeOZubT+Xf9iWt7XfLxMnUGrGvHYdiCA/17MeCgXWc2HNs6aMdsrJvTmnjsXPlTYzR2TPYnvEwZWm9cRAn7rjbv9+JEeDtLiSP9mg/bDYVKNbDfXlQUCRRcLtOmb3elDZviWLUAFDxmZEzn66nCMX5tlJrgggqmaOIt5gYSVralQ1IUn42IMtZFH1AbStBiKqKh29GFWKNh02fNL6pqQWd6KUWiSJBk1lt+MIJU6fbPbmIKPxKpISGRQqIAEj6wXsd8TIponYMTVs366MciswQcaulJJd8SGyWUR0HizAjSih+0kBTTGwJkpckkF9hXqJI21aMWYK0ZzfRs7vJWsYDyMGdn0kA8HaTA1vDkAKXB9ke0WnTYHeScgLk3+mQOXP4cFr8kuVzTS1BRC1uq2OcKPVtlgfhzCbZeVAzzhWdqoGx1K6pYO5uAkiQujwOpFNECvc9oMVjVT6nH9I8TrWHWN7vzvtRFK8Gie28T4c3HS8aILaJOpUMq8ZsMSAlkNKBWVlAJjABIErWVTKOHQMu9r32Q9KAN0jukpZNM/UTRt2rYzYmRWKAFjHIwU2szTAMgkAuZdwwEYgx1z6IZtS1ybyX2TaXxe/elMN8Xzu0hu1LipzyPe2PYt3dqfNU9pvORxt8Gl33iITvqe+h/I5JOKY1tDISMVN7fWQ0kg9or2IAvA9wWzMPHIFAwiZrGvCyBTU1HOJauGjzZwefxV103sd1IyVsij7XuZCC9TvP6aaDPPqelJkY1/8kR+gIcDFR4j3cqgiwFeh1KsEfRUCOKgmAjgAmllWyBKh3WfJP1yxl4XEMAA2DBCSJch0Ku6fCrFGn2NTab/9MBDSxBskUOhwQ8AMANMpi9blt/QC36cGVA/XiM9k2A0jFoeeANGn/n5hP5EgSIQZIk/zGeB/XDcDaXJ8wTtYPjKpjYU6kX052Rrpm8iGrCn0jLOL+HBgWFar1BVb9j8Fd3iC8fBUTI+2YRTmaT5T31jgOrCRZYpzUtciW1XVKWPCiwcvfcAb6xgbdtsIlWnTPGrj+N6PaeNTXHWjdAV+9ArUNwqIV5ghHls0Q5/9qBVdVue8UZHR2BnYOi88dwoLQXDKaNQNtA24qXF0vcFsHPOl7SWzoIxXzIMsxTY819gFUcZ6DsZ8RfZ9R7YE947wM7E+yHHa/BAQnDJ45hg6wl7kymRSx67eywNU30o9NrHU7bYis1NG1gSRtl6SNCxCGAj52erysjaKXLc9+ZTvUJ47rQJbVKva/mfeTz2txbFh5P9gxU43uezSrQ5+3PNepTSb8x8nv7Ffu8Z3U53M0Wkf2BoPn7K5+1Nzef4A1YetQ2vX8+D6O/nf5rlO9PhuwDmadPyKpdawxR/89HGS33/n6wOvzc8uERHnfN2V71uMHtaMD8cWZZcp3G30WD//uH8jGidfX9F7v+u7elbPbFJhvnx2TFIes/8R0NJnv/U6MqEP7aI/2aKebnT9TAYMYGE5a/N5n7WrVkFY924jm1GQB91EHf7Mdb7aKcFdE5jCAAwurwrnMBNGAjKKntZkqnWPRzzF4bHVz3dMn4PNVTmxcXiPEeilEJIfSRQ3qG9DQCmKrqQXd0nWFc+vyAVTleJ4+gf/wAu5yDXz2hfTDJiLGtT8B0Pk5+BsfSVH2241IicS+IefAXYfw4tXIeUw63asV6OIc/U98DDCjutxKkedFK074za2gIAv6+47NJLisjrt0Wnbq7UFAEDxNuv7OISGhgJskV0ZVBXz8IXi5AH3n+/CvLnc+b1FhiM/rYmBB+4a7PiWsSJNcXZ8R1aFoux07Sa7CImFNUF5riGg3VVVkFrTCznl2gc2nF2i/uAX/s38xnViZRMHlIDl7L2yDJxdjp8X7ePB3o7aPUNFEcMsFQISw3oAqB/fJx+BFA//sTIJmvRwGaDtEFotP8lnKtMmyZSY4oKgsnV+xb6kywUn7SE0NauodVpL2cbi9lRod+vk41hTdWv/YNxE+fga63UpQPxZKp8i8YdilaOIQyjx6V+O/SR/TYgHyHkHBzppoa9s4f5c54NT3CFfX8lznZ+DBI1xejgOrzKDFAtXHH4GHAeHLr2RNVOZIfP9utZT7LJcyrpQRZRNJxyJ/tM2LFuFbn8CfteieN/AtgQLgBsbiywtUtz3cqxuZC9st4APC9Q3Sw5v3nRl0AJy8wzHLK49VdEiJoTm0IDUS0FY9fopBuaTPb5FPcwfKEu2l/z7Wyu8c+fMsa0f/HpG4IyT8Mc2J9Sl0P0sBHQ0aKIJ3ux1J7iRAQFkPJ64Lo70uXofqOjEcR/uGBnBK738uIQBgVIcpKEo53qdd5bXTiYQQr9fwl9c7SRNaLEDnZ0DXY/lPvm2C+RW4bYQVeHEhP68WCE0Ff76QQu3NRxKwI0gh940XKaThQ2mjj4y43kvCZCtjnGMQkLTwd0zAh1eXWV5P9wGz9oXb28kDNvcd2FeoY4AZ19ey/5yfy7NHnwXPnoDbRuqJ2T3B1j0AQH1kmCTfp5gPGsQxkqMA4r2inJLxabitEZoK7mYLul6Ln9EPeY+LEpSjpKzO4ymk6gSSlYjALs8Dyx7iIH1MbSP7GZB8mVSfqhN2YViv5ffXNwWSPMBfe9A//Z/hqkoYxibArQFM2vbpmjk5ZRIZiS0znsepbtKrS+CmFsaK+gxJcjKAf/XXpaaIgmGUiRnb2Vz2WH5V5U0pAGDEWnIGAFA3pnB5Dbo4B58tMZxXQABuv0HYfuRx9VMN2lef4IP/6QM8+SfCVuaqAt1uhLEIjIPs5AwIopJ+jYxJcgR3dgZ69hThgwusv3GB7mmF208qDOfA9iMG/8Qa/4ff9f9AzxX+9fZjfNmf41dvPsJn10/w+a99gLNv1/jJvyn93n9yBuoDms+vQZsejWeRhPzGJ/L/wWc5zLpCeHYGAPgN/9cfAJXD8MEZuCZsf/IjhNbh6f+rgRsAd/Nd8MV5SmQgJoGSD6bF6DWplxhTwhRDL++M2jaCmwioCHS2lLPC1Dy2ZhCmiWWnErmOBNA1FRmPDBkpZjGXOOHE0GIjVzrHHtYAe3rW6GtisQA5J2xQImGxh9j/XY8QWUZlspf1M7H+Dp2dyVrXRv9tEF+QX7yYD+qTS2x2O/aEZRb3LQWFxHkZ1hvpsrReNJnBE+u/JPkkQq4PaGvK2D1fWeVnK0mWb7ZSZ0jnczxPJkaA1lWD32UwT/kUBqg1SqTHNZcBYYhNSX8hzu/lQpLd0WdPNRL1PaTb0zgRXSLX71KrgA2raSYJvZN4SGfBI++nrBwAs8zCPTY6e2syxO47ev6sKlDVZACDj220+1Bp+yTzkp8ZAViaTLQJxX3ftT9OMbz2Ift3YiV7EhpmHZr1dUfMNvu36XH5Wu1NBcktuIr3PLPaXFLExDd2wLLl56auM3f9h7Jj56OOk/skRu0aUSZl75KknWxjcc+jElwznyvBVSOJUpUnLdbUQwy2qevWtfxqhnRe2vudGHm0R3u0h7E5RI8GRvRwus9ZULOIbkWbzWjaJhoz826OU1FD6nBa9HvZ3oS0jf83SGtENCr5IPT8TgKyCanYNFInxFFuA4dUFDbVnIjIeDhEZD6DBo8QA4Ij+Ql1BOsKftmA+gA3iJwSqdNmC1zajUvvp8gdwhg8nAID8cBjDvyT76RkUKT7xPsXAZ69SKGEtLOH+Pg/TYqoDFPbgJe13Ht0WKHsDOm/lf1SMoRK8wEWOZn6S/8fDLptyiyav0Rua6Igjh2uHULjwLWbPoTt2ZzHrByXx79lDVl5sJIBpZYO0j4FGmFlEoYgh7ZYqJQ5Bh+0j3gGPTXFACufx7InRmPVXK8qAqvpUnHQWsdXg1reHJ6KeX0QmTdnyrTQA60mA8xY4mFIQQkNZrBzcggPJhmQrhmDGW0jwYv4LqiJwfMuzpvAAPzo3Y6ktE4xZfkMsj7REGKghBBqSC2jcn7M6YXrcysicCRDsRs4kPvLu9j7Hkq0qn7vrvaG0UqHWV5h/9+nLHAqwDsln6RjR5JlNphbvJdgxk9qD4//bgK46e97lryjrQwW6EHLmeSySfhYqcpk3gPrjRTPrmtQaJIEHIrPy7zT5jMYFOtChLzfMacgmQRG3XgfKS35APZgVB4Q3f5DagijNUkk5yjvG0HXXM5rG2KCBpBn13sFBjTsH8y8ifsQ2+cz7ZWxQuM9wrMw1kyx+vwdXZ9jW6rIMDg2FkdU7FkzAyquaaw1QJIvAYzqYaRnCpNdnWrUlYd5IK+BmljSPSiYfhy1aerA7Xb6BEBMNDlhM8bgtiZORgkPH+AGlncZt7L0nhKja7xm2vv4ljCcA8OSwYuAULtcoDv6gbwv6Kd9WzmAJTGJqpI26PhmqaFCnkEBAAGhBoazgIuzLT6qruFB6LhGRQE/2D6RS986VFuYPd30TUw+MMSXojjmmAgIso6FVphh1PUybvxS1rWaQAPj4rNBWCeDn9+btGZGKOpcxXdHLox9Do/xeDvFNDltx7Td36aYsMBx639i5c744FPmXE6SqG+o65YmJodij50LigPyDs6W6d9idR6vh9pkx6GyrPTSds3nkPewiSCbMHjGfZaZui77g+U7tD9XTkAWKpumf68q+X6UpGVz36n+SP/cdxY4JkCq4Lx9LPUDlgLefGQQ8T52aG+bs2NliPaZPU/aa05+lsZ7UwS0pffFAVDOqM77fX1n94ZjmC6jAPKJz3zKO7zDejUpY/3DZqf0+b61b+ejhezrVFD9XbYfpsSXWhn32WclK/DUtu7sLQcY9jP2mBh5tEd7tMlFixwBjdQeEKTrzKbiKCPNFWGoju1MwCwh4zX43w/jg74i/9XsdXh8YLDF4LWWCC9b0SCunRzqPnkG4Bmq732FcP0DkTO4XQMX5+CLFWjbC0qx7wVttdkKEls1ZKuoG9v14K6D6wdU/QC+XQuKqthwKaLJsFqi+2CBqguoKwJtBrgQclHsYvFPsj8QdJarKtRXW/nbthOE/XqT2gjvc72BHZRakRBJQa0Z5EApU5QCUm70d2FWmMOHykS1TUIWo6owPF1iOGuwjIFkRe5zZ+pHAFLTwG2FJeNcLi6ttQ6qCmAH+H6EZldGQH5kAhoN0jMYXpBsQJRBCWlMKrIbgLQ5MkWwWICWC/DZEmFRSzAjBW8KeSTblwV6ZYSmTohhj3B1vVtnwzJFzPUoshCocsBqKX13tgTXDm7dS+DhyxcSRF9FdlRk09jAw2T77HMk+S1K70bfqWrDK9KyTBCpJEiScmNzP0WDuQp8u0468kFloPQd7EsgmAD+nMmcyRrs1hHS+iu83YKvb+Q9r5ZAPyB0PWgYEBQNaNk6OiZWS4Rn58AQ4DZbQfE/fyLz90tJiCYmWmTTpULDpxjlGgpaX6D69vdQLxao1h/Dn7dYf30B3xDcRtgifLuWd9+2EoSubsADjd8BALCP58wKxFowtUlB+yTBso6FcQ8kdBJbS3/2fvrdj750h6DTPjt0vZmfD9WpmGUlHWqO9yJrZNGptk6MJgfWm2LNHfcV9528Q0DGfIH056Efo4f1WsHvnvnSWnI4QTeqVQKY5HmRZICZb22bE5veg9frHOwPkARoFYQ5QZQYHuh6UE+otkMOeth1VBHlgNSqiKwLjjJSGGSsUWSOgE2B1rL9po9GDMO5QxoHqTmhba2qnXoWTmt+2HuWie0Y3Bgl8UcJLnMAtPfXMaMIXE1gxyStU5bpemOQ9jS+roIT+sjEI5b2lMl9s0ZnJlVMDMT7l0xUDi7VXaO6FqQ6AAyRZeuc7LW9uUdh1NZwn34ts2JCAF5dA6x7spe1TZkcSRoy5DbNBLVlr4LsSYs2JhpDYovQaiWspcjGSICCyytgnQN61Ae4LicFXBfguiCJ6baJNUCahOYnH0CDABZo8Ng+/QjXPzUADYNaj3rd4Px7jNX31vDf/1xqcp2fm33fyXvSPiISqTEAqFiex8oZDQPCi5egbYfltkP7wQWcX+FmqLD5hDAMFb70F/BMeDGc45evP8V//y9/EvW3l/iN/88NqtsOylaqr7YAEfzFAtxUGM5ruD6g+crL6HQkIN6YqOGKwHWN4ZOngCP4pQTh6+sO1A2g730pAKS6loTOIIj8BEaw7AHIfsmAsJTiekNU52RyZH+lILufmE9TFn0dZ1gHCbhQJBWPkksqrmsZDJlhObWmcBH8r8TPrCsZo86ltU3AW4OwYfS5iWQ9CpE1WyTCednCf3gB8gHVixtZDxeNfEQT8RP+k5zvIsvbAqO0HY7E73Qus5XaVgiOt5GpHllwc2CmJAWaguU08vnSPhn9VlqtgPMGuL4Bb0Ia60lKcC5BsS8Abfdj/b9eR88hk8lVimvcSs6CWuut+GyqH5gSlwHMBIr9Tm1jQDcT57Tc8fPPsM9G/nwB9pqyY+9TIs/3AEmkXiHl9R/xzKX7cdx/eOgTyw4A4M2+lNwVFr+nquA0WTiVvLQIczbKCYeALXvOFCPWxhT6/sR3lPbVI9eWeydE5to59ft9geodMMndnn/3ugUYdO6+5fl6nynAyPivo2uknw8liKv5dr3rZn19a6W/dxdgwUPZ3N6Y/u0PJ4/31c8tARBmfjOz+IBH2mNi5NEe7dHmjYOg8C2dV81uQhV2D+ilWbS+Oh2FpuloUUtIGxtwO7C4GQRnEil3kMKZlUMVg/bgXAQ8ITCHXFBbHeckwxFCpF1LAIS9Twe+Ur8/IbCdA0cmSkKRutgPIS7URZJnp/8CJ2YL9YMEhUZtDLubeZEUyUGW/ZtiWbvB/GG06SSkcLymrctBytapK5BnuC46q1RQ2UcI0SCBPSAewj1GSbUUgAoFmj0zmey1R8g1Daql70cJLSsVFlFhpBrudSUskSoiJr1x0g4exmcC+PquLGOk7PfRdYpgZGQ1ybUkOEj9EAv1DkDTih63sdG8Gf0h9p32ieqXe8MQIRod9jVgNdm+qWe2Y1CfPxbQ1cLee5MiltFg14QCUTJCg9gxY9lRzDl4D4BqDbYJ8ynV/lEku6I52xbUNAh1ZJWonrYPIolnD9b6jA+BcomOviQ+A+hmE9/WAlwBoa3hVgtQ1xfBWEVJzzvHSebJBgssEvdYRJX219t0tN8lKxP59k8aaNLPHbxW7NtJ2YyZoMq+a+39e0BC+ic2YC5iSpERxQ67zAa1uH4kaakQhIkFpMA0RmxMHTvj52NH0k9DEcCPjDXSvT0GUtL6NgJU6N5vkM9mLz3GfxCpFqSkRlmQmLtOAql2X9J7qzSW+X2ZtBnfr9j/vbBR2BtUdqozIsXDE5MCAFumx4jtZoJG3oMH9bU8duTTyvaQA+8ZNyIf4/MY5ThGjln3yK47LgWDmQ3SNwIFVJpupyaZacfc+0xzTt+J3WuYwbEehtt0o30yBfJ6j2obBBjhSArEd17YGSmgS7IlRr+UvQcNgyQtGoDOB4AJ7B1oAKqOQb0JKGtSxFUQxqF5gEqYoYwhMYyT9KnGloYBtN2C1g1c26C5arFYOiy+dFh/sEDPGTRy3S+ALxdYfElovrgGBg+OtUXIM7iCzGNH8K0DE9CQsJbkWZHWCWGRANzEWmksdUncugettwg3N+B+gLs4FzfDJs4tgKIMgulZwxESoMGwQIVdFUSC04+ZDdNjbbrgdtqjT9m7St/P+lDHfDf9k/LYiXNgzDALu2ywWGdvxMaYkkuxt9Qzzd52xXWFnDyKzsGp71WVjEOVfS3sqLlfsgTi99J7Vgm3nb8DQtmSdYDNPD1oBWt4/nMHfHtlyUywF/Ze3+U1PF3nWKH7Y836HnPsp7vYAyLsd97XbO3DmMhTi/NkhwlQWmKMHPHcRWJxtp3vGrvgIZISd2ETPZTdhY20513tfPTQuz9mPD/k/HmTdux+9jae65S99p7tm0qK3MUeEyOP9mg/qmYO1aLBO3b4ODB428FKWSWkR98jGMSPIk6hh6hDt07o0W5aakHlmLQtMRkwXww4HjI60Rqls1UqNJjUSuKB2D19mpIgfLvONSv0Hik47PK1+6jlj7j4xmAF1zXc2VnSfM+a7DEhYfqDhiCHUC2ivt6MmALpXXQdEtIIAF2JljJvNoJ+jCj+Un8+XUfrR1jpErd7QBjJGO1BGmhQnBRlqSizph0nXRT9tpB6Me7lDarBg9ebGIgJKfC0czDuB7CP9WgSCojTwSm11zbRe4AHUNMCbZ2vDeSkmkG07Wjfan8tFnDPn0lf1RX4bAl/3gJEqG8GuG2PUFVZE7fo61TwWwPrBcKah0EQqTEpk/sU8/3uovzAMIBdA5wtk+QHMackWRp32y1Yg3UxeI8pGa0iCMEOcjCNYylJ28WxnpNSRtbAVTnpZgO4BuXjVivR3+56qUvSSVKE+2G3fkOB4CqTo6PghhkLFmGb5m/sW2oIbrWUBIyyIIIHc0BYIx8mOSBst/IsWtunbWNNhHPwokVY1HBEgtYePPDiMjJF1qNnn5VaOBZtVfRD2G6B7Rb07U7WmH/jCfpzwu2PLVF/0GL16w7u8jYj6NtGlhqDbgcwZlilfmQpoGyQNjvFXO37mXM05xCKh5Bod/37fe0uKMqp76Q+G7Mc2QPEWow2r13KxBkjlfcEY8q5cQhtte8a5bNYnd4IEBCGFAEhytgEzhr/XtCbHGW+9NlZExZxbeUoR8Qck291LXNuvU5zedyUuCZ3mQHD3iNstwmBO/q8+gx6LWVqKMPE9pWutWaepzW3TAYUfRzWG5R1MXaSi6Ue+DGAjSNtxBiCrIdsnjsFyCObgra5r2ytBiwWcJUTlt5lrGsWazG5JxfgzUZqf+kYSPPcgzToOyM3kuqNdL28Q6014vYnVWAkD2nwwO1a1u7IItS+Dje3+R3YvrX741S/ahL81SW4aVIQOrGdfQDqGuFrzzBctGi/8HDbPtfsiW10r66xCAFci/9E68jWjT6d1smThFBkfA5DlJxiDGeEb3z9Jb7/5TOEr1o0N0B7JfcKjlLwm+oaWLbCUI40G4q+VP/hmbAwNkaiNfkyQZhD3kvdue0Wy/UWi++2ePIvl/je5gk2v6fBmdvizHX4/u0FPv4fCOff3QI/+BK0XGL45AnAQLXuk2QWFkD3xKHqCIuvYu2IgOhDyxiorrbCLHm+ABOhueqEbf2dzxA2W2EwI/qxQPJXd95X6c8V9dXSWmMY4RwCsNkiMOf3NWOubUQmV0FEZXLNgC4mk2xH7hUJPKUJvonPSPLBsM+B7CvHdZUGL7XXQkjzMN9yd5wjBAEgBUb1am18tQC+vJb+LBL2O3J5KiWna+TtOq7rsc8jSIaWC5lb2w7Mw+gaChYZz1Pjp+k1NBlbyOYliVNA1gFldmvNGWZJIg7INZSm/Nryfdk1S+XKEPedmKDiqgKV+4PZG7WfqXLA2Rmolzk3OkNEoF1KZmkiq1gzKbJ+RqwZbfsD2M5Z/i5WAjysrzB/4wRAUnCSSq6RM4lQk5CfquGWQHccpBlJhi2vy6OgtYI6TF2T9B4P9Wnwoz7aiUHszN+79edd5dd2L3Tk2WHq9+kdhuN89Kn7nppIPrZ9U/crP7uPJTD67pHz6eAZxI2TMa+bRaLvaO4532U7tl+O/dwkSPCE5kTfPDGedV8K7qRrPSZGHu3RfpTtFFSIMj5s4C1p40ZWiYNBbxTXtT/PSWxp0CEUm/iIKbDfUr0SoqTJz1XU7K5jwURlJSxa+TkiWlOBTpJixUkqSJ3/6HymwwA5CaIWhRUF6RJRf45G8tupkOUEpT92gj6ItHGIgZ9hQCqmPYW21/eggaP4blJgeQpZqr+3e/LOISyk98sOcKnAukvIRlCUOjFOB3W9HPSsbFooxttUwNWibkubCpIAYzYSzPsxCYDJMaSowsgk4lhbRIMQzscAkDrsluoZ+5pc/D2QEwYqneP3HG6tmaD4iOnjCOQcwpkUKna3nQTCu16C9EBOThVz47gDgrzTnQOr9m/hRNripWmsk5NkmX7G/l4vZZNi5nqj8Zn6wuWxVXw2HW5DSO9Uv1P2QZJOK2VuDFNIUZ9USxF21LUEAZwT6Z/KwW16UO/j2uCNvEtxCLuPQ75vHY4yX1XHcH08CzZ5fgPYjw6NY3RkNkDCAVJn9lgn9x1D0r1JswwmAFPU71TTJeS6Aml+vYtINJOU36nTpMnpOG/tHrhjO7Uf4noPBhDG+4/LNTQ0gAogBzHjvcfX47xepGWE0/6SgmsmcJLehbbnGItMstmDdvn3qc/cx9K1YnBRc9IVRmNKgx0cXJJt0UR3SgQ7sy+paV2DpP0P86wTgTFgd/3QJhTsHdq3DqmZWiuaUNitq1PUJpnySfYY+wCCkeGM9a0Y8XFrB7/ICeHkV6n1vSQkok9DCrhxTuSkZgJeuueEFvjG+SVe3a5w0zQgDzSXgyQBtX99AFMAVXE/KoJWudD7eB9PAX6O/swwANsOqNagfkC97VGtn2DpetyGBf77y5/ED754ih//fED7ciuMo0bqV6X3oYHNALhBUPpMiGtDDEj24htTCCBuEJqVtLsbQOsusVep2LdnazodSPrmuSuAD62vYoOgs2bAQBwTF+T9Tg2Mk6wEC9jfOTeuBzRjynpJ7NbI0KDBZ8m3Q89mLbLS0ziJDPiDQLL0fX0HeW8aFRHX9T8mpmRdKWUDx88++ps9x5VrQ7qerb8zSP8oc8Wy7+K4P0luSJM/5jyhbMgpFtqobfkL++/xuoOmo5+PQP2XvuSEbzyyMhg9kww/aOX7VV+CWNqs++aorWP/icv5NXqGgkmqZ92pex+yuwBk7mInJBR2xvUDJ87ube9KO/bZwTPYnnPWHtb3e2nvw/vaZw/V/ju805MSI7/wC7+Av/E3/gZ++Zd/GavVCr/v9/0+/Of/+X+O3/Jbfkv6zGazwb/37/17+Gt/7a9hu93iZ3/2Z/EX/+JfxNe//vX0mW9/+9v4uZ/7Ofzdv/t3cXFxgT/5J/8kfuEXfgF1/ZinebRHe62mSLtQBuQLpyOiOyiiiYjj4bHrwIEFjeVisWobKOr6ydoiIonAGclv0GGlvq/4UAygn0Z0TaGxChPpLEJY1AhtBRCiVnQrGuHbLcJ6jfqTjzB8/TncdgBterjLa4QXLyXQW9eCGn9yBlpv4a6u8w2GAXxzA3pyATz/QA6y8ZkpsBxWaqmz4VsCeQduKpHFul2Dtx3C7W1sf6xFoYjYmHhSRKhDDAB1XURYTSPud5gimqjRYt16EHDm4GGD/Jg5kClCONY+wNM21hOJz/jJU4RFjeq2k4LRiq588QphvZHvTRyKU5A9FaKkdFDRwqgjBGySKgrjZ3f5kLrDivFeHHMd7sV3U52SqkI4W8I/XQAMeQ4f4DaDsDOWC6CvJCERJUjIRVbCMGRUNCDI/Q8/APoe/ssX8rum3g3mm/7VuUbLRXbeyIGWS/DZErffukBoCKvPNqhutuDvfh+83cI9eSKIP00C9YLgnUx0mLEyqmli0SpF/6V3pEHGxULGqT7rojXJBBOsv10LwymE9F0MxXsj0f+mts0sLUDWlbMV6PwMfHOLcHUd+ycyYuKBmUIAqtjeiMbkrgPf3sr/u1yDAHqwN4lDqmt5vtUSdH6G7pvPERYVuqc1qm3A8vu3cNdb0C//qlyjbcA+SE2RkilRJij1vuYd53+X49AVn4/vvm2RGFp1jdVnazTXDYalrGfQAq1ekja6XsxKFGibC+k53mxzYNAe5PS5mA8fxo+1U4IMJbvhoe5/F9ScjtflQn4V98Fcm8GP+okD5u9j+3XK7oma2mvaRqLkC+gamJDPFgBhExVm/06mMijKFDGJTkHpm+BrlBBi71PyFyWLxlqRRE0M0CmkN3P+u/mO/PMAQnAqAWMYgJOfPxicmvjuXNBnrm1TCTeVJhpJQ43rywiDcPxO3dmZMAy6PhaOl4ClWy1TQNUmB9j7XHcLGEv7WOajYfsAyPtbuSbmh5D7XN/k73u/W9vo0Nw4MCcUdEJVTMjpcwUGNTX8qkb3tMLZtxl8fRN9K5/mOd+ukwQcgMh6CMkf3kGux+flQfyD7XPG//7T/xZ/Z/E78P9dfAvDP/kYzT/5XxIaH5rQGwbwZiN+9GopP3c9cH2L5nucpFNHsnEa+Nb+7CPbJbJsqK5Rr7+Bn158B//nr34P/j+/+NvxtX8VcPbf/oq0u6nBPqD+4ioWlxfAEDuHajPg7AdI0xa1QyCAeoJ7dQNsO4TLK7inT9D/lucAA6sfvEC4FvksVBXckwtp2vWN9FkhNZsC8LGmyCTzGchrBGLSyEri7TPdNyJoJ8lFbbepPk7qOw3U7rBFJoLLaf+sUg1Batvd+mRmPOTnjcy2wEky1g0x0RZroKXPej+eV/YsZc9vTYMQi67TZis+9+0mJxrNcyYfw/jyRE6u50jY6ywsKGYGNlswTEI83lcZwPq+Jv1te5+uB7shs/um5PDgQXGN5vVa+kd9f02G2UTPnD8wEYSmtgUtl+M+0X1Iz1FTgDS7jykwLcQz2egsGvcz3TeVfb3HJuv+TYJlxknt9L1yDSwS2VQBwAQ7Z+4ec74Iyb0Pun4KGJsA3CXkdvwcgk/zR9ubQEbWd9Xfd9NnR3tmApClio8xop2Yw9E2+66KGMQx/kEBBBhd477sgalE1yl+5OtIEKFYh7SJU+2b8uXeRDJrajy87gTDQ52vdP17nxMiBxNb+/2/tGbr3xUYVFWScO8nv7ZjJ2Ui/v7f//v4+Z//efzu3/27MQwD/sP/8D/EH/7Dfxj//J//c5yfnwMA/vyf//P423/7b+Ov//W/jmfPnuHP/Jk/g3/33/138Y/+0T8CAHjv8Uf+yB/Bp59+iv/mv/lv8L3vfQ9/4k/8CTRNg//sP/vPTmnO/ER5tEd7tF2b3ViODzyNHNspKqNBAwJmgVKHOR5E7HXI0e6GZJIkJ7FaTHKCPIOGIEWfHWVJ4IKJQtoWm1CoaymY6yjXINGNR2UrANBqCf90JYeEGPhlz0BFosHsCPVtQL3xoE4Qg9z3uUAzUZLwGRUSN5rCKehmEWBTyaGCKbLbNxMBIMihk2NeZMcMmphDDEjpPaKsBPkA13tJJmxjIsGg6i0jIDGCDCsgyTFZnfKJgrW50Gw1vk5dS6JGHd14HXI+BUX2H6jk/ZL3Ue4sgLZeAkh9rOdSiWQBu0GkclLzJg4nsf2TCPzUjhj81oKjO/0e+7eR4pXEDDcAbgjCXtg3X/c965QdcgYto8gm1yDPT5o00MTexIF5NvARa1wQJDCj39Pi72lO6Lv3nAN5dmzMPQc5qRtjA7CWWhsDSVxXMmcJIlUWkBC7mtQlBW7chTGxB42U5peyD2LgN9c6aST5tO1THogdxbonTv4WgowVZuzUbkj9FNetUZ+6LLnxNpkghxz6h3T473OAMCjWEQp/7lCXDoLY/Q5skGQmIX2Xd7Lv2TSoMKXFG0IueGxRwyaoRSz7X5r3wBj9XMX9UZHPGoSIyRZlwUlTCFK0dTwvdgp/ax9NSHGl9egYJmmZgHmbB0j7zCe+4717Wbweh1jMm0JmsFYVqAp5XWGWhL82yXuRHWwauPOzjLTuewQFhcQ1h0wyDECWPRox+Ob3W+56qFTPJJsqSWXdETWbvkcRtaz9LcE3t/Wot1WWISQCq0Qk4r5mgt3sI+ggVClxmOpkje4rAaDFS8Lf+OJ/g3/6+Tfw4osn+PQlI6w3+XMUxuuEGQOSBPDJ9xgF/KIfOPaP8r85yvQsXwX8Hz//A/il7/4GPPk1xtlnvQBxYmJop80+gFjq3lEfQIHhNlHaCxDfVn3XfgD3PapNABjCXLXySxrM5vG8HBUiBiLAgjJDoZQoKl/pXecruVkfy/q24z/FZI5lUo0aI7LCdLaSsazzq49ScsWaNCVlyf0AaIKtkBO0Bb1lDk4E20MQX5tZpMyGQYre63llal0cBcqDfMflAtisa7d+LjBALEoAHLIfNiE3s8PKtf0+kRSx7dnpf3iRYgKQazLuWffmzrbK8lX/T888lQNVee0r2SPpbKJzxVVALWchl7+UE8qRqTca8yoxVbKcPXbfyxQbKV4jXcuZvirf4yFU9D62yN6vHTnnphjZVGfZRC6So0Bqs6wLhjWu/kHbim8OGDnlMPZfrJXKBwfsqKTPURe6Qxxy7hz6Pth9fPG5sXofX+yY9pzyjg4xrB7t7ZgCHABMTlwOSNIsO8y00863xHf2NoDPP/8cX/va1/D3//7fxx/4A38Ar169wieffIK/+lf/Kv7YH/tjAIBf/uVfxm/7bb8Nv/RLv4Tf+3t/L/7O3/k7+Lf+rX8L3/3udxOL5C//5b+Mf//f//fx+eefo1WE0h67vLzEs2fP8Afp30FNUbLkfc6SPdqjvW4rD5pqU2iM9G8niEKjIx5uhOXglgv5rAYbmjgPe+PgM2d00dy9jp23c5liy2xRrVcA7tlTQeBpW1YLhGUNt4lyBi+vEC4v5fkWCylu3TYi/bTdghYLqZlxu0a4iQj0foBbLgTNvlqBn5yh+/oFrr61QNUzqi3DDQzXSzFL3zosv+jQ/ovvZnRgP8gBWRFXiwWqD56n/oJKI6SAQe5D69iP+kUDqSaYTPYAkzrBJB9sgcd4YA3rzS5zIKL6E/q0qqLkkMhOgQj46iV4vcmoTJNwgXPSl1W5UUW5qboCv7oc12vQA1XIh5iRRrBqIke0I61W4NUiJ7a2HWi9zY99cwP/8tX80FospFCoizJr221mKWhQumnAgwff3iaEoB7UkhZuyFJRWuA63SMeOMN2mw9nTQv34XMgMMKLF0hMrKoCLRegtoX/5kexCLwkRNwPXojOsybWzDMAEOTmFEPHjpcpKw9lpo3U1DL+vc8MEr3cciF99o2vYXi+RH25gbveJMZIqjESWTZ6j5LdRKslaLUat8+RzMfbdRrL3HV5/ti203isa9LMrZagZ0/Bmy38F1+Mn5Mc3PkZ3McfioTaqo1BhiEHHQYPVoYISUAs3b9EvO8kxywrb6LftY9rYeAoglHHk3v+TBCpUY6PYhCPF21KSoKiXCAA9+JaApvp+iEH0rR99kAZEXqqrz9ZjNm2/5i1+tRD0zEIcKJ5ZG55nUN2Xz9RE3clU0T/XGc21YiVZNcDO1ZtIIszS/CuAWGqY22uhJgfM76czleVmYvPw4PUAXKLBWi5iHWBDLxKx/nkoTa31S2XoCdPpAD17a2soWYfRl3nn4dir9F5HMe7jiXSz2kh5hI5bsEYbJLrOlY0saO1SMpi3ik4x3fu95E9JGDr1HbYxJcFHyjLT0EEi1ZYrVE6khcNaNvDvbiG//QDvPhtF6DAqNeM1Rcdmn/yL3P/VRXoTGSUlMEQrm/Ga7ImXy1TwzKLy0BakRSpnj2VgO1mO95v1Y7RHU8yYOIjUOUSO859+FzGeby+Mi7TXCylvYBR8O+QNF796dfBHz4T+a1+AL+6gn/5Mn6ZZV+1SSkNgrMmGMf+Q2LSDkOqmbVvLayePQW+8TXQtge/eBVZCF1iedP5Gfw3PxLg0NVaGNbLhYADage3GcDf/u7Inx9Z00hdNiD7RMX8UuS8vndaLBKqHs7F4uxVmue8EbZDuFmPfBiKtex4GEZr2l4/B4A7O8u+J7noj3SRueGF/VrX4zXFmN5P31lp9Y9/C/1PfAy36eGutxFcI2Aa3mzz+1MWkJG7UpnXfbXmqGmlj7xHuL3dXZ8iqMp+f+SLjFipM+CbdL+JcyFJrbgEzjDrtIxBTij/SYayMiyrKrHdd9p5bEDzkD8b17xRH009X2QaVB99AP7oeZqf6GOdI03uLVrwciESeusNcLaC/+BcwDJDABzAVYXq1Q2GX/21yWdXFQA6P5e/R7a5Pf8BGDM3zfeTlRLI5bixfiSw64++7toFxZ6Tfh0lphNLJ+65I8BcVaUzeL5c3Psj2IrWW6l9E8/FySJoSYBxba4TNQJBFePf7AmA2YcO1B075vlHdp/r2c+f8p2p+8Rk/yQ75i4+zqnPMfXdcl4e2cc7ksvG9iXUJ9/PhJ9HhWLROwWkOcbuOmbeZbPnSVcJYGeKYTz1vcIG7vH3+P+OV69e4enTp3tvey/tqlevJNj04YcfAgD+8T/+x+j7Hn/oD/2h9Jnf+lt/K37iJ34iJUZ+6Zd+Cb/jd/yOkbTWz/7sz+Lnfu7n8M/+2T/D7/ydv3PnPtvtFtttPvBfXl7ep9mP9mg/WnZXRAMhO/J6oJn8KI+0pUut6Hlk4wMv3uZ6qWhsrG2AyoGqjGZLRZ0poh8rJ8HHugIFSZLwsgVpENpukunwHMBE8C0AENzACCBhFpAgummI0jtJmiTkPiFTpwHIgRz7PFaKaCaJlRzSQ3U5bFLEBJAS8jcdHkzwL0oSkAZDtB6H3oulIKMNVicHRh0NReXbhAmQ6nrYwJ08T8gZ/0jTJm23y0HHNK4dpaQIV1ETe64v5kwDOB0iMnLIiRlywMIJS0KDc6lvoxZ24bPJYcAkSBKabPwOE1tnxsgzgCC1ReLhbSSDpePSsiEe0CgF4B1gip3nw5oEAlT/W9rAmMVbWCfVXkMtjUUWwLHPYxcuZPmS8vos/ST3cKOgIJo6o3/LtdAEK2gjwQtab/O6Z9GTtm8PIfRKs+2dW48tOrBMUAUW1GgQNC8qB26bGPSZOTDY4G/gEShPpPTMevAuWyED8lbNjnP9WU3HdlnPQdenIthBROBBkP12NO+glR/S4n5DKunCZnzEeZtQuiY5nezA4Tp9X69Zxf/ba+naXE0kY4lSget0KHIxKOwIAOX9ysVrKyo3ykNRbMedkY2v41D5Otg/R5gye0QGCjHwHv9z+dpMGpx3CLVDqOWXFIBhWaFdLgHqRDKyqkBpH3Zg9Eh68gXzgRO7tgwyHAiIOIoyP27se+0zMy9T8DyyEAjIPhKzSAdN7QnWN9o39sv2F2vC8IMvQF98GT869hfS963P7FySLcp/3wW1pNosB5Dc/tUlYMEgrhLQBZDWfBqCMDC9B8U6LAwHQg7uW7mhUbLNR5AIMO4n6+OmPqtS34u/E69R1+IDar8osGkCDc58Ym0JIPn5tm07LAqTqEmfcXa/mQAjpe8SuKYkm4sQi3qHkCV+lIlEQ2LNpWfaF8w7xpjBfTfzxwMMAaLjgpKU5ZDk54j6t+fBObZpuRbcpb7LfdbiqSQ3IZ4poi9eV8IWbmphFktjBSizbABm0EbeMTcVQJFZ5Rx4Eb9btjXtZ0WfHMtoKPzjVDtL97s3bXcNhs+ddbz5W0wCkwIr7ffUB6DcD/aK+2s2vib/6V22U+M89/Qt7mzHMJymbO47h97zvnsd6oPS33+0t2+jBNsMkGnqnZ4w1u+cGAkh4M/9uT+H3//7fz9++2//7QCAzz77DG3b4vnz56PPfv3rX8dnn32WPmOTIvp3/duU/cIv/AL+4//4P979w7twUH60R3tXrUDTAMgMtDnHoUxqqPNb6tWWBbILtsBIZ/UuzJBTTIPnUQokHaa3XULXOy81I3jRgJcN3LqVQ/vXPkL3tSdZCir+F84XGJ60aAcP/ECYHW65AHdRkuD2FvjBF2hXvwn0ky3cwKhvA8gLY8R1HtW6h7tcg6NW+4g94zIDI9VfiZI2HCUUgkkGT/eVOcBZNHLZN4rk01+ZYDoH3qnFkBJGWlS+EcaE/9YnUkvkeisFNzdSCDyhxYr2qDyCtojseEnFrStBsSpyD9hB8ib2jMq8eAfQkA/a1TajjConKElT0HdHe7ZkF2hySvuuqVFdnIOHAWGzhSMCnZ+lwBEDsS0M5vH8oGos28QewBCyQ2/nAgdwRGRSXYMicyI982YL9/2vpK8i00TGyvhAy8zC2JljFdl7l1Yc5nbkLiJjIQXoFYG8WoKaBuHyCv76BvXNGlVbg9aSwIFhIcyhCUfNWG8y2yGNAxM4SjUwChTkBFIwyb3FscVNDfJNrtkRAzA6z/jqOr+XwAgFGyetZaUMUtmeVCX5wBpW0IG1Dg41wi5IdZvWG4Tb9Q6SCYj91DYgTa4isoV03E+g4XOSTvpqCnV4b7vPdSaQXQlFadhYD3Lfuxz2DWptB4GnMjwccvBjyj9V2bK6BpPL2ulTzzYnR7RnPx3V6tGfbTQmSq8lqcMC7Uu6HpNBzvsQA6IzwTzbHhMwVRkSNvsYeZ/ZpYB8r2AuJoZIsQ5QDFiP1rgRCjmM18Ykv8HjMX9f5OSx8/vY3+9bGznsv9/UgdDWHCESSRoXg0oa2G6aFJymqkKt78R71C9v8fRf1/Ctg18KYGT4DV9H9eIW/L/8ak6cRYAEVRVcRENrsiHVNolMr4R4PyYQzCGx2RRpfJDNU/i67uJc5tj1jbSp19pgQXyGrpNCz20jCZT1epeVEp8jsRWGYfwuJhIxABLoRsEgFJHNso/ExEvgkXzSGOjhxtcvQB5pXs31pQZzSl8jvhsODNf3WeJ9GGT9in0D53IttdTXMcHBATxEX6+K7VfQT5xnicnhYp9Ef1BZzBTkPfFSfAvadKO9XvfozJjuRn2tdSn2zlsi8VHOz+RZdC0o19mdgtFF3++7x+BR3Q7CIABEjmzbJcmxdB1lnvABhkVpHNLecFA+r9wTSsmRYwJHO9d0Ui+mriUhOgwZ7BSvsVcRANLfKVENGJ+jSCre1W8w4zOBCcprG0YGR4Zs+Ool6PoG9M2vY/vjH8D5ABokWaLANpDk9el2I9cJLKztl9fgsyWG5dl0gqmUpwz6zuVzckagtJ6U7AVqxgmRKUs+rz6j+X7ul3JsT9QX3Wfl/fcAenJ7cv0wXW9zk8bvOCWmXSWMf73cehvHWw3aulwv0Iy30bMOw+4Z78Dc2mEs7nzghPHIjFJW7uTrWUUPZjN/j0zuKDNk7vx3nyTR20qg2PtOySGWPt2BNXs0zybiXxmYSRNz6dHeipV9r3GWpo7vX8/+D8uKu3Ni5Od//ufxT//pP8U//If/8CHbM2n/wX/wH+Av/IW/kH6+vLzEj//4j7/2+z7ao/3Q2YnJRC2oqv+e+n7SCD6ELr2vzWz4qqfNDkb3PIARqbeKmOyHzFKABHl52aC/qFFtHaqti9qzlRRtryLSd5TMiIVoYxDA9R7OQyS0BgYNDOcDXOfhbjvQpstF5eb6Ix16FNHGmGIXTFkKAs+ZMk3sAVBlGcrDls3EmxoHcDGBExFyyQafAw7WFA09h6iMNVCkZsfMM071VYjvOP0sCQfyXtpSRU1iKxOmPxft2KFSm7YDFdBgt7iqSolFlDI7pPmwoyENjA8nto/VCSY3HfwgRVf7HOjW4LxhOMhleXzQPiUpsvMZw1hQIFwMlKo8T2IP1bX83jCHSNt2jCMZEbHs4gGwDGLqZ9Qh5rCHKi36y1oDR+WEKKIAuZYgXZJ206CLWuxbRdImCaGYREjyaDCHF/v/hzAeHyApICXBuExC62MDEUWvz9GPE9Kl4+8RtZ6Lteio9/WWDwdvA/23j9nDffGrmc9GFkNaC3SN9yExIY5qR7lGz9kUws3+LqKmRzr4tm/DzNg+sv858Bj5npqQ2z9ib8W9GRjHFkbfKRN4up8iz1kAO+CMneTgsfIt97F3DayliRLVXiaz51eVBHMrN5JfoU2H+qaHGyqAarhe/Z+YuEzoehbWjrKQ9H6IvzuVtWlNGYIW5X9EQkT/nZioWqdK664ZZgB7Dwo14MJu8iVZhRFbYWoe2oSI7jF1rA1m2+59DN7KXs3erBtxLwQgYJKirTvPvM/n03YWLBYrG8MDgbZbs+eH/D5n9nD1ceT/IUnxpbEz0X+5fuAEq9GgwdP3A8d3pdBy8zz6nWP3AutfacDwmKDlUb4SJV8sM645M9STX6nrLE8zVvYYh+PPAalNr3ufTgzeE/yH8rnf8F4+rqcV94ihBzjAxSS8JEI4kaKJGYn7GBkzFGIdycDA4OG6QtppwjgmWlAwxKY/bMBlcxZZJwcLh78ulPshJkYx1238ICV6nNQWS+PGUWaOAVl2WQEjNqk4uo/+02U2JCbOdPvs6LXkDSYHHvjdTdf2OTHxY/99n/bdwz8axaGsPfA8OJmZ+K7Yfd/Nu25Ta2g6+z/sre6UGPkzf+bP4Bd/8RfxD/7BP8C3vvWt9PtPP/0UXdfh5cuXI9bI97//fXz66afpM//df/ffja73/e9/P/1tyhaLBRZGgzAZBwiM7T0dyI/29uxtZcHfpO1ZKLNcxwEUrpcieOl7VudRA3aKLL1LwG3qnid/Rw6Z8Mgow4g+p7YRneFhAN96UN8LbTcE0GqF7UdnuPlGjWrLqLd1ZHtwKt6uGvyktY/qGu7JhTBRbm6BrsfyhUe1DaivepHP8ixJkcsb8GaD0PXmUKDPpwg8c3AupW1cdTgggPjMUa5J34ckb/TvRlPdIiyKQ74WAk+6+IuFoEoXrWhC3/ZwnQfdbED9gPDyVdTs9gVKKiYwlIWhiQANTujBvutB602WA9AxFN9p6i9l12jgQYMGfS9BtXiQVjYDd31GY0a5EKprgywx49nq99aVvOcQJHBQRaaNixrsPsQCijEIZAICPPRxKpn5ZNcYRZRrYkFrlzy5ENbN9Y0cIjRIr4cBRV/r+Cv0u1NfHRoj6bMzyarcISNEMS0XkgCJGtl0diZtb6RgOS2XUoySCPAsGtsl+tMWOYwBYinE6CVQTy4mMWqg6xAGKw+xP5ipiUGqWjhNiCxaQTkuW3BTS22hvskBMg3iVYJGDtc3RR+VQeG4jsbg4l5WzqhxMwimMsGjaEplsJSoZaeB5DFqasQOOcQWkoZPO5B3YU88lJWHrgLlOLs9TQX/91m53x+baCgPciM0f77eTmI0JfTkQJ9QlMre8z4x3tA2QE8RHV+wR9L9JpCwd0ho8TAAt7dj/Xz7dx9EU92P6yhNXWvyHhxkv9v5TE5ehJmAOSOvFwDGyQ9glACZTX6U+8dUG+9r+w6gD3FCmwveTq7XR86DFLyNa4D3mUFitOHZe7jNBjUzuKlRny1AQxDUdD/AnUttEd5u4zoa6zItF+AQRJNf91gOuRaWHmCxx6exzVV2g0Hb7zx3Ke8EyL5lgAW0WESGy7if+OY2+XYWLFGuN0lKauf+blRHLAX/lgugaVP9tCzlGlHnXQ8OGqQfJ6xGSevEHHT53iPJp9Pnvt13eBjgL6/hlgupx1fXWY60qXOwX/saSH72qL6SacuotkH6igaFGdy2kvBnBmmQQ0Esg4cWyQaR1DXzfrwBHLtP6ef6Dtg4qU/QRQlSnUeH1v1yjZr6fFWBawfqfa5VocwifWY9Q5XgqGPWCQ7CZLJMq7k+KPezIEmr5PfepeYBh1RrL4FEuvUo2H3wEbpOzo8JCX/AJ72rxflUmq3/NwI5Ia4t17dof3CTpXoDZzCDXjoypt3lWv5WV6D1Fu7FK6lLMhWoVTlXosyMiOzLUW0cDfjr511mAMva5GJ9KAKV7LkZH2Znfs4CPPaMgRKMsVOjwe75Y78yMaBdPR4n6n+zpJx0XaflAv4i1yFzQeqK8c2N1J5MFzZMEcOoIEcxuW/W61PsDn7U7t91bGlS94DPNPV93VPMs7HHcb6efhYoEuL3jMc8sOkZeG+9QLW5Mx/RvIKA/f+eNkxKk5eJyYfqr7dxvnrX45s7DMfj2jvy+++SCD3STkqMMDP+7J/9s/ibf/Nv4u/9vb+Hn/qpnxr9/Xf9rt+FpmnwX//X/zX+6B/9owCAX/mVX8G3v/1t/MzP/AwA4Gd+5mfwn/6n/yl+8IMf4Gtf+xoA4L/6r/4rPH36FD/90z/9EM/0aI/2aDNmgzeyQdztOqleRJhB272pRTkFLfNhHCEjIInrfEgZsjOqDttwVmHzIaG5BtgRaifId7dlVBsvhx1FhxWHE4oFkV0X5L/eS3A4BDkAd72g0W2/HNoAysKwp1qJLtfrAfOHMg0wGMTj+Josjm7XAz2Btr0kJbpOHNFZ6RDKhypNqKWDWzwwDvGwULYR2B/kscjm+G4Y8TweTODMZ0fasgpmkU86rkn00UllvpoaTF5+BsChTsmRWe1k47C5tslMmaqS4Em9i6IcoZpHLJ/oBNixcV+kzFT/lkjUWH9n9HsTWKC6ksCulaAw+vOziLo4XxP6VNcRc2Act6NIjqW2xQBS5XJx1xjgSW3svRy0AKSaPdbBOkreJQZ/phzqhzIu5CD0gBy15gWli9HBCcB04LC0d91R3mcHD4VHPteUM57+PSFdsA/dNnfPQh9cP8s+gIjH89p7cNOItIwdXzuXLAK2unYdeqdTf4so7x3ksv1snLcH5Vt2GpoDqHPt4cAglZmZSJAwkPcKU1Dd/pxkM6YORm/KBzmUYD72u6d+72Aib0/gsWAQiOmeaPq074HNNkmakQ/AZgu2+9GQQQP51hQZbDEQqYyNcg+gA4AcyJpGRJPzIe2hEWRg95wkQ6jP2tYZTBGfm7XdKktpa0rQnnkxegTa3Yv0Go4yU4VIgv5aL8WN23LwnVqwC49r+d3bbDLd7ruxft5BO8YPMfeC9yJfq7WABi9IfQ1GW8bIFEvmVIvyRawBaTuWyNTx0nU0AZIm7l8axQDvILVaqB/GfWZBTvpsqSuODZbOsZiONPVl73HO0/lCoF3f8OhrhPH4esO2t75J8HKuCUHWO/WvdZ46l+uIcGR/DB7c9yL/ui+4W9S3mfVtgd2g7M7fZ/a412X3fU/KjK12x0xZKwTOITQOYOSEbKxVpOfLkVyu9dXKfrF73Vw/A/Pnv4ewu1zXylDf6Z579hGbDH5fzwDGJmMFczbRn+8tI+QUex/e8zHjsfzMFBDqNczjkxIjP//zP4+/+lf/Kv7W3/pbePLkSaoJ8uzZM6xWKzx79gx/+k//afyFv/AX8OGHH+Lp06f4s3/2z+JnfuZn8Ht/7+8FAPzhP/yH8dM//dP443/8j+O/+C/+C3z22Wf4j/6j/wg///M/P80K2WfvGm390d4fex8Wjn126iZXBmwmkMkHTQ9S9ldzTsqbtLRRKgIvtzFstqCuS89Ka8oH6qrCq5+q0f5vv8CLX/0AF/+qwuIF4HrC6rtr0P/0bQTvQW0rQdvrm92AUtejfdWBth7udgvqevDtGtBaJHrwdFXShs5FaClLPiAXBLT1MSZtxgHKyYBp6a5JpBE5uNUyo5et9Z0oxqjzH7VcQyxGX6JzlXGSmqn1Sc5WoifdDznI0vcRTSmoUp6qp2KRin2UbQDGjnJsFzZyP441W7jroDJIialBddY71sANWxSmF23bupZ6FFUFVznQxTmGZyvQEOCaGhg8aNsA2y7VgRGmSe4PW9jVrVZwX/9Eft4I0pZXC5F7u7qR9scAUlhvUt9R5UQrHYjMHBuw2YNIKtFe6fdHIJki2wed6HrTxYUg5igi2jcboO9AS6kxguUCtFoinC2lGGVfg7yXvxHJAbI8PJr5ChLmWmL5zKwj1QfPgI8/BC9q8KIBhgDXDQhtDX/WIDQOflnB9QHVxqO63sJ98UrG1fUNPHOW2tluxw7VkYiegwin8vnmbB/qc0/A8GACJAV6xmsy1bUkoQ7pmr9N5ki8P1XVNMK1tPu2seyrnb9b5Fjus8nXYxLAKVBb1M1A3yPoemfHXmRXWNT+uBmUGE6j9XaOSQLMBARM4iUxQSaSME0Nd36GcHMLbATlPkIdK3p0334/mzQSAEPJKBlLnaCQQcx9NVtj5uTEzZ723eXv5Vr7uubPvuBwwfwYBYDUdHyGcb0Jamq4ePbSPk5I8c1GAlTWJ1EfRdHMlTAH5R6a7I9JlbaBVHKP1/YTCOvSWBiRrM9hPq8yie7pU7l2K/sMlIlVm2QEAL5YIVSVSEQBoE0vAflbQeJT7NdUx2mgjPCf2VuTlKQWC9d2qWzUegMsF+DVArTeAjzkz9ikqO4nzFAGsbzDWCR9GFJdNQDjPrmPWbZNYISXr4CmgTs/E99ovUEYhvEabMZR1mIP49/NsRriz2GzzWO08sD1Ta4lolZVwiYhygH9Un//0LNpm4ZB1s2uH6P0ExBoLKupTNxRjYR0sbHPDAB8u0b1xaX4s5uNgF0Wrfh1UQJIfbYMeDkhMJv6wCQSNcg5xyYvE7Yp4FqcF09YM20NProQNhGvN9m3dvX8fLmrL/RAVu4ZpIlbyJjlroe7ugFvtvCRnQ3IXKWmBp2fA6sn+QI3a4TPvxgj1mcsnae01kbJ4Bi9KzO/Cj9/nzzqMc+8891T+zytT8b2xR/iGOWhl6VP5xtzQvuPPn62RPe8RXPZo7ruQde38J9/MfJ3WAFBU7UhjlGrKBMHh1iwd7U7XteyD3dqAB597zfkt98D2FHWwNtrE+N0pJZwzBo6ApkdsY9Y3/qh1qY3eZ46KSZ4z+ebBNoc+Z3y3ZXfH8Ut8lqzwwh7TX17UmLkL/2lvwQA+IN/8A+Ofv9X/spfwZ/6U38KAPBf/pf/JZxz+KN/9I9iu93iZ3/2Z/EX/+JfTJ+tqgq/+Iu/iJ/7uZ/Dz/zMz+D8/Bx/8k/+Sfwn/8l/cr8nebRHe7R5m0OkHEnTlP9NIV5ek4NxV5twgNgjL6ysCDVB31UdY9M1qNYO9ZpRbxj1OsDddvDX16C6kQN4RH+JDnSVmRVBPku9l8KL2w6ISCLdwFPNg8SaMMi02MaEWLPFY49NfhXSI/nR9QBr0DY2yKA0cxgnHkDJtqDY3iT1oyyYRBvW67kcCASkaLcGHHxIMks8+IjWNAwBPegZGxcC3+MAKftEkY87BS7N+yKK+sHqnCni1PSh1YSOqFeuXEwaOFDFI0ZCQo5GdJSOsRTUbBv5vj6TRSj2ksChtgGFWp4ycO5L25+mcHa80W5fTAXPUiAzHOdMQi8f+0H/szJtw4BUjL4aB98SOukQcKFEmE89jzJF6joV++WKogQXAQ5ggtS/qQAOpIpXUaJjkOSV0tTLwLT2D4B9SYmT7BiH8wjUdLLXdYhL7TiAzt3ntO773Ju0Q4kOII7/Iz6nnx39rM82M3dsUmSKCRGTIrRYgEYygNIeXeu0aHQKMvaDHAa7DoQYADD1FA7KYU4+V7HWmj7R2kES6DXyf5iRYbuL7STsDSMKAMI4KTXtd7yDtg+1+aaur3vEBHPJ7vcqL0Mu5MAnB4DdSNs9AQlsok8TCc6Jb1RVwhx0Lu8RG5+R1+UzHPWsE4NN79s0It21aIBFCyYS34tVz5+zTr1awFgeKjUn1oiw++zEfW1Qff5zue/I+mIhznMNxieAx7hvOHAu9s4MeGS/ZSqYdMg/LMeKWTeobUXGc5TwJAnqd904eEk6P3XN2Zf45DxOJ9Zaecb4g7KOdq7jAKe+lyaLXFzmjgRgUWbZyI2nvzPSq1dJMGWxzjLfpG08DKDNVmR1ux5ETnyUUCQJOGQf3PTlyWv31DMe+30LigFOmIeRMRIYqZ5QCba5d6Lunv0we93CB7VrohmHPMRg7UjCMq6JeiZLSQ4FsJkEl6AW0s87IAczDvcFuxNAYMf3OBT8Lc+8RaL+IWxq7znk5xqfydYBzd+PYzJExYXOg7Z9TGSaZNCh59DEzREJ9zsFc9+CHSVh+j7aqQH00Vd5fP49BtQEjNaWoxj/b4KR9bbtodaG+6z/J+1fE+19jfOCeKeSzbtvl5eXePbsGf4g/Tuo714//tEe7d23GfTVUcFzRbJG25GcGAVYMjpjdP1D7ZlrdtNKbYFSSmru86MgOHIQfx9abO7Zj0V+Aqi/+Q2Ej56Cbregm7UwGYYBvNkibLdwZ2egi/McPHBy+OE6siGubhG+/GokgWWRRO7sDO6D53IzrRthnT5FYyoSwrINZjvLBLIcgVYrub8i4bW/rBV9QXUN99GHICL4Fy9HSDlSremIEnVPnkiwro8H5lC8i3h4p7OVMAX0d5GCzlfXYNWtt99TubPVKiJLJwLWjqIkWR8fg+VQ3zbCoijR//Z5Y1Dd1sxI+qY+BoQcSSCwadIhEF0vTANFh374HN23PoTrPKqXt0K7DwysN/BfvYiPSzFgk7Vyqa7A5yv57LZDKqTtc00RBIZbLcG/4Ztyv9utJJC8l7HR9ynAzz5qTu9jDsT5UhaDTt+x88mOCzIBWsOoUpmqxO6JbdPAmTs7E9TuB8/AZwtB5Eb2B3e96ASv1/k+ziQIyyRFqUVNDtWzp6BnT+R3gSWgfGt0h6sqyWjx+SoFZqgfREc+zmUtxp505YHRnIVlw80lAg6tefXYF7HFbkfXSR94g65XuVaOgn3m3ZvgQUIqe5NUs3J7Ku+in9O+VJtgGB585qOTwWacmzVL38GoLoUi1QInxFHab8q19lh0chEcqp5eyBqp12ukJhBfXSWGBDU18G/+r9A9a7H4Yg263Y6v4wgv/82PsP5YkvRVx3jyr7dovrgGPvsC/tVlXs9i8iUhk8uD9NyY1UAjTCBW6/u0DWi1Al+sQOst+GYt80cZgrbmyEOM3WMPZ6fea9919/XN+2iFL6D/npIczF+hXDNA52/01cJ6M9pLdU1Ie+hyKXvv2RJoGwxPlzEwCICAsKhQX/dw/+Lbsv6rTzO3Fu7z0SzoopG6Z+7pE2C5wPDpc4RFhVA7MAFuYLg+oPn1L8G3G9DFmSTsr26A7TbX9okMjBDr7Oh8oNUKVDmE9WaasVuulXUTde1ljXPLhfRLfGb34XPgyXmsOxHZIcMgic4ImpmSiRHfpp1+V3YtNYyTHZ8ZAFwFt1xk36xygCoyeA/+9BN88bs/ADGwfOlRX3ssf+0V6HYjiHitlWHehTKedVwltqzuGwWzy6m0ZWlFEiqxbcqgsY5DTVgoOGkYF73e8YeKem479T3SjV0hd8R5n4v3n/UJYruprseSP/pshf+VQVEZFDNKOCK+x0NMSX0XCvLYd1YgynUDi9qQibV3aC3XfXZKxhTI8/vYumvHWpnUmDuX6ufK5yilV3UsxM+k81z6fHwuHQNNCzpbytztepk/dZ3kf0ftKZmclZPf91IfiRUEZllDFqBm/UY7Jq1fas/qxzKXbR/Zvjt2/ysTYHN2ZACfmna0ZqYk7WIRawoF8e/t2gOkdzli6JTv/H3f08sk8jHyvvuuY+1N9ckcG+CYNtj5fkwicOJ7O8xju2+ewjZ8X8fQsTa1Zh577jr2+tYm1myqm5FfmHygubNyeS37DKNrmzFk/UdHGLjH3x3+b3j16hWePn269xEeswqP9mj77CEXjNdlR7RxMmCu6NGT7xeRHnsTMjG4bmmPu43Kf9PDPIxEkx5CJ4pi3ivjbdo9fO/7oB98AZ5y7vX+ipLSpEhTx+SIAzGLZNaU6Xdi8b5071EAMRi2w4n02eL9zeotzhwmKCE89UDYZH1sYLItoiPusiQEsBtETw5S/H9MNNjgvA0GOCI5gFEAlNEDxGs5EA3pnkRFAfaqAsIM8lBNZcIiAhEA0ujRsRdlMaS4OmWNcyAWXTdoVO1Tva4GZJtapBQAOfDGYCMPHrgxh3llMWjfOQI3knSj3kstE23flkfPdgziZVqW5wRHOzBQx37mkL9KDlRJDCwd+roOBIg8iWczvsN4fke0omqzAwBRHWUnslPLwaWXI8ENB26bWN+mA2828Nc3+Rn14Nv1or+ugZiYWEqa5doOF0br5V796dyhh531ya/NaOSnD7zBvaW8z975UtQaYpYxoAcPZUs5lzXv479HiMC7nO1O6I9R8k/bpAw4DdIBo7VqdKuH0BrWgEXB7tJi0OUd/LLGcF6hua7hhpAkfkRJh9CfEfoLgB0hNIBfVagXManLAXD1Tv8z5fpJcnPMj9dyz09a6pSDOiaYyux2EesPNWYn9toHvf6PmLGyFK0pS7JIwKEWn4R2EpfjIFdCz8NMbCKgqRHaGmEZ59vAgANCRQi1k0+Hw3Izx1ra8zUJ6wihcgi1/I5DEKagD2MmwjBIsqLrZE+vG9lTwnhPJSDvmfvWe02scQBz3B85gkWC2fe81LUa1c9Q26mf4WAXyxx8Nvt4lX2WEQsivp+Rz8yZrZqup/5Z/ExYVOgvCMSA650sVFO1xKbeg/p/tr9sv6XAlBu1IQWldW1MySonLLG5IEdkklGA+IHl32c2Gu1H8VmRmWjRz6Z9Rx9HuZ7XzFhIElypTosHB6knQ8gJklEtE+07s3YfPT+S3065fcfaaP4XUrT7/JDIJmKPyNItkq54oH10rq0HPysJOxlLZg7ZGkAKaHMktVLi98YM7CqfQXwco0TyrrbbVIAdQNwXTfJCFQDYXHuOWVoGaE9KPtzhrP4QVrRrB0yZ5v0Bf9aumebaYb0Bbg4MZhdZ4gOfNj7eF0v99hrYCseeM+5zHikTmfe59lyCZOr7zOYwb75b+kHHshMefc/72T3m5t5aWOU+eVCNYipZduA7xt7vxEg5KR7t0R7KdCG/70J5X5TwKQGtyfvrAhEDRXo4iJnZg6jmEmE+OgxNL1TkSFBvjqSmAnOUWiiubbQ0VasafZ8TB/Fvk2gk3uMg6d9KHd4JlLRroyyDD6AoE5X0iFk0aMPNbWYbGHYBAeCbm+k2xD4ZBSQ0YKzOuKLv4/MeXUjKPIMWs0307iNQzgntOHjAhZjEalF98Byoa6mz0Q8AtvIOug6kbIEptkjbxDoGlKUZ7HPFoEROKtgi6I2gg1IwfTeJM0IIkpP6F94L2nm1BNMWYTvxXQ75sKIHpcpJgVgXJQ/6IScwYpCQugYutjusN6DrG1SXFyK5YdcFItByAVqtED55LolAANQNoBeX4/cVUauKHksIvihp4q630r7Lm1wgmTnWeYnBHe93kUQF0mgSsWjvhzjnS0cjPk+WkYj1WdqloCL1UNhG1Nf1jehMdz3C9Q3qM0HcUj9IIkwLWVaVFJ4HclAAAC0XwGIBiu9WmSgUEb2KtKO6FnbW7Qbh5avEXhAf16cDLmuQT6VKrMa3BmtSIEMPsvn598r1HBm4OMiOmExQ7jkwvE4E08TaKX3gQTH4npC2gPRflMZJzzmVbI/jahJpO7Uml22aQn/O2CgQHEKWA4ptS4jcYGokaMB3DnVpA3t7343L+5zuC3UNfnoh4/x2I3JzbQun476q4LYDmmsn8oubbZbcifPvyXfOsbiqUG0YbmDUV3kvAnMOcraNrFtbJ/PNexBlCb6kq18yYHjMWOQu7kFdD7iNHB2aOiHbEdl6WVN95r0VfbOzthyyu4zxuf1/R0rBjs8fsgODDaiQ2w342gSnBstdlYLTaNt8jXpAFWt0hbWw8nR+ha5PUpgqo+j6FnVFKYBIntGsO6mzFsEG5AbxOeeC3nNSrDHQrBa28fm6HtQ2qBctqlWLsKzBRKhutqDtAL6+Bm+2wl7V56trqWcRa1iFzmdZsdguZWa4xQJc18nnyAV/zVqsc0iR3HUzQjlzYLnXtpN9MOS9iLtutBZRReL7GsYED4PM78UiJ4S0W/oeiIzJlOjQeZnqvoX8+xAQWOTClM3LXuRfzz/zYEeoeka1CQlIwCz+gTtbAMwIm226Huu7c5T29XItTb6G7vWrpfhK+oHo82CzHUvOGiZcvtjEGhyf060aUFUhrDGuIZLaaBIzmrRPUoRBauu1jUhh6TMmxPbE3lYaz51NDNjDIyY/ov9kEkSjguz7GBc2IaLPU1XyLg4xNTQ5UHyGYmL0lHqGO2tL8hEeUAZrdF46vIe41VLOALfrEUCNA4OIRd7WmXfaNqCmkXmkrBlHO1JavNkIy5sjsyeyoIlIkiQqKaxsLGB8PorFw3eBiLs28mPKM7L93LG1GebspITTRFK0ZEHZBMmh5IieLZDXVKkbcsSZNyaa5T6Uf3ff2Mgx9rp98LlnuOt979PO+3zXstjKcXpM8pfNvpUSI0WM55TkSsmwPMZOef73FcizL2Z26nXu+tzMiWGZfjVSjshJtp01pmz+RIJktE7Zv+9ZW0t7vxMjj/Zo75s9FEr4jgf8gyjm0y422vBGOrpJ4qQCc9hBGQGQg0pCo8vfuapyDYgwRtKd2rYR08SitpLzkQ9PFFhqFpSmThmQg1h6uFHnePL+EwkxdZo5/39HN/MOlq9x4L2WaArDBiCiXMehrqE1MrQ+S+n0J3ORcWESBhr8F+Rm2Cm2l+6N8QF6pAmtTSbK0k2KjGaSJJZzoL2wP+TrBxZpfXt9lRIZ31D+00N6DGpQ14/HkP5/sQAWLcJSggTEcr8kDxFrq4Qkj2USPCpxkA5myH0X+2gkXTV3ALUyKkXfMXMMukygcCaYX4mJoYHm+Jw5qOEkUaHSBOiBEJMYUTYkjfHAaU6nhIWOHw0k630BmWOagIxBYJlnoZDyMYcHTbIhzlESlo+VqZCxY967sglOYme9puDuu2STbLNivISZfowJhYRenumLpK1+F73zQ6brlFpcVw7pzO9e5/BanIsIxyCzIsN17WAGTzBVXOfhth60HUBblTPJ47m+kt+5PoAGFlZJcVimmGAi52RuVSHOH5/npRt2Dw0zB/E0PzyQ9PF1LY//HZWssvezvsHrCC4cmxT5UTJN6nGQ9b4q3rfu08oSAkzQMK73VRjvUSlRGYO93iVpRxoq0BCkxgez1FmLCcHRtfVax/g4c2MlJko4CAPFbTsJzitA4XYL6geEfkh7ptakIkCYBhZlH/feHalXR4L2936XiSUdldvGnA7qpSQkM8teaJIiWvtsah4oqyEzY1z+d6pdpPXRpJ+SNCQg/hDs+orsTwUeFQIHB2DwqDcMrhjkAfITbYrSQ1MSJbkuDe++2/j35FsR5WL1BgzAV7oHT7PRyvOC/LkAECl7Yo7FPsUWtG0ta8sUEhwHbc+aNipSH9/JDjuV9++Xakky0vTJqFbN3H576Jx4LNrfWgLTPRC6vZzzFhxxqP2Rrc0l6CKBomKAbd91JvxAmTe26HlMdlSR7e5Fxkzrio1AGHHOaWD2wc7cD7l/HrrWRN9PMhJPvW151j0BBLP/A++h732MP/U6au+8D2aZq2VyRH9vP1tKKCmTEzjdJ3yoGN27bA/A4n2QNsyxg9QO+Y1z77j82REOCUNYe0yMPNqjTdldF8ZyUR0dTI90KkzGdGdR0INgVeEoTdp0TcvoCPmyNnjBEw56ef9IrVYdZK2PAYqOkwaKFFV2vgL7BXi9RggsKDMjixTUUVJEVdQxRh+DxRr41MLWh1CrBjk/KgZeIMBGSMD43aypbA5ZGkxQh1cdYItq2GNSuFDQeFpfoqzXkA9HxzmJ5uLYS701fUKOsv6+F/QcDTF4pkjCbQcaXGZ/3FYpKE/AbuIiSNCatlvwEA8lhuGzoz9cIMJTQM44M6UDzIA57HgwU05U+QA0PjNOprootjGzTIb0XqDvo3LAtsmBiGGI6MkAONG2dVc3Uuh1tZC/AeBli/Dxs4hKoxT04KpCeHYB6gfQqytw3ydEIkWd7yQ/tmjlnjfr1EcMFoZJRHLPMkVsQoQUtSafc1UzkjpStKQNYo+upWNbJTeUsdFFNlJdg5wDth1oG/u1qUGdA/tK6n50vaDNayMdt1rCxUK9qER6LhXljQmXFOhBZO9ootJLLRbcSu2fnbmfAlRmXJCRibDONXtJ0NrvmX4c/TxlD+ksHwoUz/39REbFnU2RwUCel94LWpTcvGavvoe59Xm0NjcS5OoHjKSf9j1bsZ6l5KIJ0nFEultkbQogHWMJMTyXhKR0fb02AJmvW+R97eY262VrQMEHVJ99ibZppPaIopTVnENTOdSvluC2FqnG3kvQsq7hVqsk2ZeS23UNlZJTO7lsYNxHyAYu7TzQdWOuLybWIbmuQXvJhSbuewc7JSlyKnPlbdixfuG+9nPuY2FjhgRqoBDATSPycipVqYliK4XHDK5MnQQgJ9V5kGunAH8Qqagh5KR514NfXYrPU8VEuE2Wls86tR7PWYFcD59/merjAJCacIZ9sNM3CRxRwdUEOj+TvebVJUKXfQhSOammAbno68Z6a7JWmaSuro1DsWaxl/2+qG80QtNSrvsQNtvkr9JqJQzmIPXFqGmSfCufLSQBNAyRjROZCH2fa5ckprUTP8b6Bbe3CeFO/QDXiWwoBWGnCSimSkkarT9DZ2eZbaQWMtsg+ezFc/F6A4aHW63Ayxb+g3ORDAVAvUd1fZ1YPJKELdYHW/PK+sj6TiM4Rl6FSbindxKT9cpGV18qXiNst8IyHUliBZwExppFfednScj40g7tdRY1q3uNrY2lIDSg2EPzNdmH8Tko/d5nJjFr4L5YKyfWd63RZWtE3Mc3krNG9Clg/FJFB0/1kb2f9zJPqkpq9SlTMvYR1XVmxwFA1yNs47ilzCxO7CIFIQGTZ0Zypv5FYHAYRnWUkl/CefyNa3vu9tMo2aC+cf4jBDF1Qv9OAvzu8H6Mf53OyFNT41TAiY1tHEwOUP7sKfd6KHvT97M+/kMysY69912fN/oWO35iPHudfK3yGto+NdvWtN6+Qam5Y5K277q9ibG9L1YHpHji5N+Q4xn5FzNrhm5FE3WjkqTm0Y1+TIw82qPdze6yiZywmM6iTHTjTAfOAxdKUiNHHj6nnPyDqCMaBaqypn8sasmM0Esx5vGlp55PUWnx0Bef8xQb1zGI7SFF8uhhIx4elfEAzDM3osZ6ShAQAfAxaHBE2xQRZh1tRRiHPUmRY8fYvnerFFd7sI3XlALksR1ODtLMhfxXuscumyMdGGK/yGEtf+4gzT46NCmQU6AuJ53hAinCST5Cn7dMTEaHjSPa0kr8aPHoICwXTYzY4orkIrqx7yUQoVrDPgA1A7WTArC1jNdq6wHHAlRjFpmGyJxBZCilA64WdGTOc0MPoEkKyk+PydJ0nqfH41xzIwW/6OCZf4fVxVGiSpNqei1tU1WBmpjE8F7weUQJpYoQk2xNnSQIqGQQWcSknSdAkvk5WNzTBgZ9+buZn/V3d/Vv3zSy6C2h4XV+jaQ05p77QFIEQN4jpqjuBwJFo/o5thaKWaMB5JoBp5yVjtmbNclsUNwA0vikYRD0qiZFNEmMSta4zQboeynyXARxyRF4vZG28wIIgsiHl2SLJg13+qqqADfE9mSk+WRP7hmzk8HrI/sjtUPNyGuM6gfJP46//s79TmjbQ6HiHiJxcZ/r2s8fukexpybmSGIzIfZLDJiHIPtaSogdWGMKP4X0uszCjFRpnmpx+Dqpveb5SisAL+nrXQ9GD+rk98EE2BXBTZYpUfabEwCAJIxMkijVNRMG8ahodgpYGllKj+l3okzjuJ+V+7hbiAQnb7dZxin90WXQRtPIvesK3EgiiJoILqorWRsQ527BcEmymNp3FqCi3cuAG1jWmVG369oa1x1yowAzK9jEviNdeyKTJT+PrEthUSM0Ds7ruFT0PSbHdpZ2NEAHG/RXH2en7yf2K8sYsv6+viP926HxeIrZgN4pa9HEPBztc3Nnjhn2hzJ31Lcb+fGJTezHPvfMvMvPFY6Ldx4EgURwA0/UkTzF4lgSQI9t6pgRzppITFJ6wjJN5zqdd/r5neSIsJOt2c+MzjL6vWPZcqUZeb2jfc2HSorsu8ahdzr3/bvsd1P3/2G2IwGX76IdLQX+Pthdxvj7YK87ocMnrleH2lSCOI+9ZpEUOdXe78TI+56xe7R3045B5p76+2P/rh8rg93lwdAgz+auSVUFFxHq3HXZIQ4uf28qG2+t1ChXU5p428oharkwSIcYaK5abH7bj8EvHc5/+XPQq0tBkRkEnQ2uI4Sk2U51nYOx/TA+WJZtN31ETS1sGkW8qwY8EBkDiqCT5Ige/kbFz0uq78RBhL0HFGm4z2LyIxXl1IPyMAhieA4JY5F3++7BnBBS9rspYBWRVCANwgfRzo26+6mGCyB9R4SQ2pjrvYjsmc+oKJgxuN2CLZK8bIsNepenHxPIKRH+h9b30TgaXW/332QdnYLurgEQ/TQPQ9ZejnIb/PJVDg7EWiKoKrgXr0A/9jV8/ns+gOuA8896NJc9mu9+KSjWa6lBQ20b32mxyZdJnLUwNDgFemYczdhHEnDNTgC1gsRPqP+INEzPX1UAqvxuiz4OXQ9yZrxp4Cu+Y6hEWOw/ujiHcw7h8grh9ha+H0ZJXbq9BaoK1Y99A8OH56gvN5kdE1gCQ7dreQ/xu/LFOyYB9q2vc2ulOl/7aL1zSZVjrHSy77pHPCRqrjzo2gRqGCenFI0rScIDB58SZarJciDPVU1mGlTlbPDAXM+1DejJE/lc1+egHZAZefHZEhvNMLkOtnvfmHMyz9zF+ThB0fW5RgcAOq9iHSMdT5qplDXOX17n+VrKuACCuL+6Bq2WcE2TdcoXC9AHz8C3G6DvkoTOCF2qeufkpLaJ1hpJMoSmPkzZvwCSjJa1MLMGFXtMqtmQWHgiN2KTWK6WfTYnhPasbTP3077ca3v21JPn7FTbHurcsS8JCBQHwrD797lr6N7AhMTI9AGoIrBD69MMg6zri4XUgQhaE8SM2SL4rSAIWi1FUlGTDiHE2lLx3fomAi5i4JX73Tbu6w8dX9EnGYE6QkiJEB5MPymbg5wwGGPSISUo9TMuAnnqCvT1j+X6l9fAdjdBkVgTbQtqWySmqbZVa9IV72oHsJGey0m9vd/0G3D1m5/h/NdvUf3Pvw7ebhHWa2GDmFoJbrEAzpbgpgLXDmHVwOGpJH8qkoRG1wsyPgJTFAAitd0AEEvguaoyg7Su0F9UcANj8WUH2vag9VaehyPz+2wl/W4ZIc4Ja3bwqT4Y7J4dWS9gFiax9+DbjbBStivQ4NB8/5X4oE0D99GHQDwTqM+TEfteu3PaLLOxqkRO0yxviYVj1uuc0M7vi+LZA25P8dcpS/N0Zl0ZIWFn2GxTATjj/1LdjEFNfW+eI/dVZnTMrCkhjBLlsl7rD9Z/HiehlKmf6sJk5M3uM+57/hlj70Gc98Pd89fEfewaHGsmpbq6yurSc2U/IGBjmpT7W8+c8qMAgCbBerb+Jk8khEYgrrD7Dsh8Zge4ldmYCQBYAghKVtC+Pex1Bz71HvexY5kQbyMo/abBTqXdlyVyn4D+fZ47nuMfNLFs7ZiY3Ois4TDJ0jvFHiiW987ZlF98qhLBXftm9gw+vZ+kGNihpFtinuQzFdl9ngjg41Fy73di5NEe7UfB5gI2xyLJ1fEimnb89t5aHeXiezaTq0Egg0jXw2z3rEZ/Rlg+O0fFLNIfSgPngHCzloOl96KXziySD3o9DSZPOaRT7dVDtAbx9blHfRLZKD46xAYRPWl6GE4/MhRpJNerDizaMWinAWu93iEn6FikUbGpUJQgSBR66zCQy/1RJKck2GYSROaaVoZprLmNHGxgGv1tVDjroEM/ww455FydcpK1NQfMs7MPcjjWv2nCBYhJgJALq/bAKGnVdXDbQaQnoi9GPkhAJgYGkmzWVMArjA+B6f72HRybTNUgTny/O8Uy9Xn2MYyCBtQ0EK5tisUsXXQ+Yv8lJHvSqvfySlIgDeMCocw5mBb/neQMdI4rS8yMWxlb2D8ejumnA4nknfFdJmPLax267yg4ckQA5eD1YvBvyg4dSvZc1ybXdnTQZ7808y5MUmSEMjZ5gtH43nd9m2CJgS72yLryVrbCuSTxCMTAWNsAgRHiuOd+ptjsgURcKnyra6uOb/2Arq/6ucn+VxAAUsBrhOINpjA6UQpSAgAtl8K4SvNXA1Qm6WTbwiQdHvfk1IcUg25zpnu9rpE4fChJVHUiSQjp/maSNnpIoRSAnA4an7SenxoEuktS5NQ9+CGtRMvd8RoJxRxl7pQhwdGHIfsutGB2BJfsC4BSiLXggMQCTAXBJ9tyQh8pM0vHje63KnujH7PJRXIy7imyx0IYFUWPDyjruz5zFeWjmkb26hhE580mydPpvoqqSrXNch8EOXCPJJ8UIOTHa1jVxgRLg/6DFdYfO9TrJc6+fAZabwrGlSQYyUVGakUC4NA5VpGwVImk72sjgWlZsTZRretX2wBNjVATiIFQOziuEZ6sQH0rfnqsAzZigDODndyXANCixajAtK73dUxCtA3gq7QHUC/11vjmFthuQefnoFjAm3wGL+mcO8gSBZL0UK63sbs/sp4pAGhS5OizUJp/xRowA8BJ9zjG7sAkSPvB0V8IiMX1dn0RueBOm5IMn0lGy/gnsN/jf+yzOR8nrU93C6KSBRvpHDXyYMoi0WdLdXwimzrVzwouyc2mJh6LgJ8DZh1rcZ3fSZDoM9pzFLn9+/ex9jYSAG8iafOjbG+7b9/RRMGda/y87STZD6sd2a8jWcJjzfjMO/VjT2kinyxI/Pbt8vISz549wx/Ev42amrfdnEd7NLFjN6b7ohaPvZYijuzHD0nzHBP8I0pMFEXupftwEIT4xx+Bn57j+3/gY3TPCM0Vw/WQQo8s/686xgf/6NcwfOe7+dImkE8kUlyoHHjbjTTbR4F0RfTVtegJk5OgdNdltJhJbiREvQatle1gExUFQjUdKoF8qAoMWi4EWTcMEsiKTJUUeK8qCdbFQ3rSmg68e3DWA+EwjILvO2jEKQYJEdxqFe8niFA6PxN05ZcvpO9MsCuZi+8yJpMACEKQKNVCCdc384dUV6H+8W+Cz5ZSTDgEQW1F7V/0Rk7GMn+ODWJbmwsqKxpa+7T426TZ8eMquFbQ2RZRvZPY0c8XaGm3WoI+eC7vOBaf5e02H8LrGnRxLn2wXmeZKWsalNe+0zo0hxhJtp8swhYmoAPkWgcJeVsEpvfVVIhBlZRocy6NJ9FwrlK/cUSR0mIhCFvzM+oaWow2If2Cz5IW3ss8Xuj3NPFISUM9tzcmtJpaWDJdj2CQtlPPQXWTAy6xvxIysmmFDaAHaQ1Sx/ukdgB5Ds2so3dxwkfsCpOUS0VsFf1inUpNtsV2aZKZ2naXjaBBwin5Ku2Loj35oG7mwUR709qo71CT0xqAUlk4u/5YpqCand+uSjUEaLUEPbkANlv4Fy/HLDGzRrtnTxF+448hNC4F8PqLGuQZ7csO1dUW/Cv/UpIj+xgB6SHzPKfFQgIpXTd+P/HZ3fkZ0DTgRdwHv3wpKPDNFlZHN63RtUlymHmvQUhdK7Xvq48/As5W4K9ewF9ej95L6gdH4/kY9yIJ+DaSVJoaA+aZ3dkZ6Pwc2G4Rttt0jR2zSfg0Dk2AygYfC3brqPaUtr1cX++DPLzrkeZN3ecYs31Q7mOH9s8pBKDZI1zbiF+l16qqxCDhGKBPa+rVVb5u3CeTVZX4P00jY3PRwD9Zwm0H0Gdfyhja5zvsabtbLdN4Gq1x6434XW0ja8Ozp5LIuLqReaYM5whKKNcdZXzqfkTLRarhgabG7U8+RfekwrN/9hL0ne9ncIMZG8wMd3Ee9zfjN5r1Mdzeig8Q17Hq4w/BHzzF5ptPcPtpg/XHDpuPGdWaUK+Bes1obgDXM6qOsXgxYPH9a3DtpN5QReDKobrewn3xCny2RHh+LjWI1h2oH4R50XUIry6Tz0JtC/fkArRYgM9X4GWD/sMzDGcV1h/X8Auge0LwC2D7IQPEoIGw/ILw43/nS9DNOqLwSWTG4nPyokH/6TOACPWrNaj3QD9IskxZtQsBTHAjTLLqB6+ERXt5KcPnm5+Cl60UqTcAJblHQPj8S3nfOk6l8/NQadpUlwV1Lcks79P6I2yhfuwfztnEnKJGklh6dhjJou0DNdmEQrmPRuZFTl4V614eZPlawM5+PvksU8+gNdvKhGWU5ArrzciPGSXsY92NJI8GZH9e59WI/TlxdjT9AGDE3h99r3z2mXNneY/qow9BT5+kMUe9nMOgY/DyCv6rF9lfL/tw6v5T942+tb67yXepH7fSb/KL4tph/hkPmd0LLJNlru327+Ve8P6F/l6fTc29d9FOAVHt+94p39XvTzFY9/lpx/hwJ/oFo3uX3497/2j+zcUG9pkrzk4PydT/YbcDPvQOA2QfUNCu2TY2dsR9d2JnjjBwj7+7/b/g1atXePr06d52PjJGHu3RHsLKBWHKGbKfPWaR3YewOBZFrlTrGHjdCeYdkqeYu48z32POcgIhyjXEA5FvCb4F+BmBPAA2iZEtBL1m7qMSKMSUCimTHtp9IU8C5INDChy6qBM94egYfV5lwWgSYuo5k/QIC1siSYEUB22KOtDKUJGikAD3LPR+DabZhEhxH2kfIcmcxTbaeikAMs16dAEJ0KVDUCOJEV40cug0AbJ4w9j2eOhpm/F4jQV9mQyrZc9447ZBWLZwRCKxQAQMLsp3SJ9wlFy4l5bwvnlTjov06+KQMmq4QYdpUsQkq8a1S+aRC+FmDUTJLH1nFFkUkkyI/1mUnP7b1kQo2nS0pWBigTSzwZzUB9lhGGkh77s2Z8mKNL41caPPYAPhCZ3qQOwEubvdAloY2zlQzYDG2CILhVQaqWlkzHCfHeKKd/tGn7uqADoigWQYbZOmwQNNCmqgWlGaOi8LZGGyFAQ4ol9RBLZj+7TwrQ00p08VwRGVTRqxFZTNUO4bbmLdsDban9xu+3V+aZLYJK8TkwMQBLWiNlOy1wTHTeJntigpidSNyqBQ04AXLWiIa+lsgpQwXDTwrQPXhNAQunMHNwDONyAfdvt86v6jx6b8PABCP4wDElFKEqkoenbEJy6Wi6frGqtI+1DwdCLinLWAOes6mtfkUaF7V4kkSVUhMRrTemP2v5l1Mt22H0QCJyY097Iodc+rkIJkI9kjR6CAiOSm0f47e83UVxNr/R72ws73X7e97nvd8/qpdkN5PfbggaQ+hO5PJhHMXSdADrcE0YRvFBOgYasFwyuwq5LPF1aS8KspsxZPfZZUw6dM/NnPxGQOt03cTyrwAJGpAsB9sdanNdL4hhxkPA4AVguEtkZ/7tA9IfCiyuuuSolac8K8IOcA71DiC6mrZc9Tq2uERYPhosL2mcNwBoQW4JrhV8CwJvgl4DpCtWE4X6F5Ve+OdS/yk7RopV4HAOocmKP/1/d5zupeEFkxaMQnHFYV/NLBN8CwJHTPGcMKCJ90ADF4cOh8IzVNgDxnNTEyDKC6wnAu7as2jUmCh8QyCWetJKgrBxoCqr4HbzZJMpMrJ/JecY9NPRgR/btsoGLtUDZLpUyVWvYg3aeB7L/cgeSQrh/ZBRTC8WxKYychlsvntOci/TuwG3Q/9gF3khAzwSn159THMH6Y+GYc++PQvZBBFDDvxjJTbLtOXfdcTGrG5CmznGlYmUvXFghkklVlsvbAfcn6Zsqojj8nlQTLyh892wTz79QkvG3n1FdHQesHYJQ82rtnc8mBo79frC0nzrdd5tKJbbjLdw5e0zyDgq2mYiSnXE//mZ73NbT7fbW9MRjaXeeKc6WOAZVnfrC1qkgWT8oTnjDWHxMjj/Zor8Os41ouqg/BGDlyUxsdMINL0jrjoNQRm6VtiwZ44r+BHCzTb/JmC7pt0F4J/d71EvwhhiRHAlB1AJhHiPOdoFsMlOJ2nZCmud0msB0R5rSKiYSpZzCor5FNPm9ES8VrpwCZHlQQEw79ILq/KtlggsaI0kCk/T11CInJGarrLIUQdbPTgUKTKlNob8pMEbSN/H8hcjJ0dQvue9GaLuQk5N5SlNw18j1tP7YhSW0x88FDHXU93K0DdZEx0vXgEHZQm+n9HUK76j91LCSHh7GjY6oH30m0XCOIP1szpLwX63spEmn7NmyWdiSZqOJvKkUFZqCPQfYuMnb6LM8BYDwWVTv9LqbjZSqIo0yR0TOWCdIDiKk4lhUtl8ai9/GQO05MhNtbYF28Oyu54bpRoD+xvbZbhM0GScfdItGjvIiVQmMAWPNOIeupZ0ufMUHC9HjeC+JU7xsyOiWNfxvgmHSUT3Py0u01aACf5EAYnBkzav0wTiyo/JVBYYLDTp2YUZuP2nvsezJBxMKSzI0iKolHMjP2e6N3VjKwxhcVlPNqCTQt6GwZE1U+7xVzTKdhQPNiA3feYv11YTQuv/JwfUBz2aG66RCszMyUFftcCi7GBL6tRQRA1hXvRR6mj4FSCLJdkjghPRNVlTBfmhrc1NJX3gtSermQwu3rNTjWDND6RollZTTRteZJCvCoJEkIUlQ6db9Jxlq2nmUVmD2fhx7+2ptg1hFjWuVvgBg44iRlpHMJVQVatHEt7nP/TtlcQuR12z4gSvm5t2iTTFJghGRPwYsJCSD2PtXT4JEEFEsyzntQrD9mx4pKK6KqhFnU1MIu0nF8eYP2q1fgwSNcXY2SeLnxlNoxadHfUJ8Ii0X2BYlQnQnTha+uweuN+BwAgq7VNpjuXGZ8RCS8+gHu6RNgKbUyJDkislXn391i9YVD9dW18UldTo5qUvP8LLEdaPDZx1agDgBnfMHw1Qu49RoXmw+x+PIC199a4PrHHOoNUK2FJVJvGeQ51f1wr27zNWPxdXd9C391DffJh7j6yRWqjtFeLVBf96g/F5k0t1omP5R9AH/1Ut7VzS2q1Qqr/ik2Xz/D9t+oEGpJxixvgOWvtKg3jOVXHtWmA4YgCWndP3UNdA7c1Kg3HuwIoXGgikC1YYwxg7YRJFXH5MJyAQdZM5WFoGySnaSol3pprm0yS7wwZZdSLYFxWi5AWAhLSdkih2zfOcowWa0c01FmZBPTrzzG/t7UuXCf3zlC0DZ5zmq7irW8fI6de9kktb5jLzU/NMHEISZIUAMIiUWbzlL2ejNmJV0T+zX5AQeuofuc+gxFzUs6W8I/O4O7XIOuY+06ZmHwD4Psy+m6JnBq18Z967nLoIjRGYoDeDC+TASTaB220bOVoKX77h9TyPep5Mucvcn96y7JrkfbNSr88DsB6O4R3J8aW3eRdSvZwcfaXEJwbywh+qTHSuKlr+W18NGMHfKNY1xk798U6DX3TgxbJP1fY2mHGJ/lz8euhxP2mBh5tEd7CJs7VL/NTLNJMDBzZiQAODWIt2MalFNkoiKX9bJBDoxVx6g6xMQIoBEbCiIbIP3mkIqEatNt0K0Izu2gIRGdbxdga4bcZ2Ecy5TEIJFBvCZNY0VDa9AqmEXcoGqPD0pivCmMHnImgUOmuLa2l1mkrLp+d0Mp0L6lSUDDOC+HxvBgnn/wSV4iJUVMomj/c88gRI9Busz17SGkPB3YqPfZvvfJIaMU+j4VtB/93X7cSisw42DdmsIsKm+2hsixiJ3Z/jUHy9GBNiPbR4gmnklW6OetNFNEtiYpOvt7mwDV+aYWos79Mc+17zMcctLK2zmc5216xkPz+NjDYHHYyYhGmwgs1iK77umQSY9gg+D22U48RB0bIE4fzyjSkWl75lgCU0mRFIAUGROOEh6kDB796AQKl30AdQOojZT6wKg3XrTte1mbjjZDwc5MCyTWW74ncuCsAzgCBsriy4nRV1cSYGzqWDzZSbv1XhsjwWcRuVMJ/dKOmAPHM8QqUEO5ts/ee1b5IBIYo2K+yOPjPu0+aA8VfJka+68jsHPqGqE/WmkB9cHMOnKwK00AVGwiUcg8I5+W91JlbKT9dYis1CtJKOyAWE4xzoFXciTJRmV6qLRRU0s7u24EdtHi4mia7KONLh1/4xy4riSpEZ+ZmFHddHAbykCGxIiLAKMIYOGYqCAAbN9RZCtT04CbBoReAqixMH3VNGgALJ7U2HzgUK8Z7Q1HCa0gUrNDQLUZQJso+VdF9q0PwLaTviXCsBTEuhscXB9ZIbXID1rfVNnCTp9z2aLaLqUWKQlzu74BLr47oLkZ0Hz3lTxL28h6FUJKzoAZXEc26MAQykpEztfW1yK4YZDPB4C8JtiMRGyslYJ9++oe/00T8lOfPSqolYIwM3NRGUVhokD2sWaD43rNuc/sa2fpD6f/73/OfC4y50CYeWLbZr9DnJPcwey9MYmVZMXu4Defot6eAGnwsLVIMqiEwFogPo43AALKinPO3Hj3jHFM2xVwNCUtmoK8RXLkXbK3lZg4NL/ue+3HhMuPlh3NitsDSr7TfR/H2UPanfaMY84tu1/CXetXvd+JkbvSER/t0d6WHR0cnwkSn7igjIqeAkkGZq/E0JTTYQ/F9nBOwkKhGMDiPqK7+gHYdqi2jHpNqDoWWQ39agAqTYyoxJIieVIwinIh27YB8SohdHdMqdKbLVD18sxNnbTcuetzrYC0cc47V+wj2o0c3MLo9GoQE4CiL/nqOn+xPCzsy6IDI91ujvVaRn0MCPJtFmEZD91uAMWaKbqJ8GYjwd4yqRCfS6W0eL3ONQJiIH9coHwu6RClNLpertP3MUDY5wD3MRrEpSyAPr+OhWNlCMquGXpgPYHemvzwzDuaQ7hOPUtiIliJNkUO+tTn6Wf79fSPiGQ7dp7bxI5JEOzUmNBmzyEfCyrqJIMk/X9q/u35m22rvZb5bOhi8LtEhth5MJEoYO+B4UBfHbnmTtYvusN17v65XZTp1M87dogFsc9mg0IxQK7sJ/snlU/SYF0/gLFFqrnhfUJwAxjrctvr6/11Lapi8fS2EaaIynkMXvTzt12uZVPS2zWA0w9wtw6rzzYAA9WNJBq4FZZGqqU011c0dqQVqU4a8GzbrGMPSDAGMfgf5QIRzNoJ5CLwTQtetOBlI8j2isAVp4Lk8FGex/vM8lMUcOAc+Nnj96qMlgb0Uh/H9zD6eS7ZrIjeOdmy4h3mNSUn5nY+GrRmz4S+/qn2ug+q973+1PuZOqQfE9wx7zvp2nufawmplJsjYIO9fZsYlFEK66i2WLaIo5S0gyNBZF9dZRkumxCZ2h/t85TB3kJygZlBfQ90NbiuQeetJDPiPORvfV3m480GrusRvv+5PFMshO5WwuxwiH2ioBZlrUWfBZUDapHq46aC20i9Do7sV9I1Q/ceff66EsZXK/1Gmx7UDwjLFfxZi7ofQNvOzOc+1f+g9RrL8wX6iwrVNqDaBLie4Tphj1FguJut+G8kckbsAzAMCMMga2w/YHEV94uKECqK8rW11NxofJLE030zbLagfgB1PVoiXPx6C/LA6ssB9XWP5jtfSeLldg0sFuBvfARuKvATYd/READPcCSF4F3npdY9x/fq4zuv4lgaAogji5AZfH2bmEqp7p8ZJ+Q59mVk4akfOWKb5nGq65NeITFbptjBM5b8ZcLOuOXAqc7e6Hd3AemcCDbYvZ5BwBo07KS8TQkm0UQHcttZx/SOdFf8+2AS3Y5ygmGK9Tlndt1Ss4CBY9d/4/ftgCGuriWI1Q8CyIrXZR/yWXT0hQPnsYn2l2zkWR9a/172zWhffQNB1kOsvDdlr/P+D31tOz/flf57R21Sig4Y9+HrSISdKiN2Klt1BzRy5Pd+VOyY55+Ks9i4yLEsnIJxOVr7DbhitkalGYsKDjjlvPF+J0Ye7dF+2G0qgHks6huYRlxNae0fChyXbUgJDBrVxUiX8x7EkgyhAJAHnOck/+IGhuskgDRC9jnDfrBtJ5eCU3uX50hxTkXXNZigNQj29d3UgaIxiMHKARHprgFA9iEXeLR1XI4MqqZgB3OSGBnXHOGjNnLRvY2FmrUdvUkGTSXaEvoqjApfjopMTiVVFHWWJNp8oq6n7ylbZF9yZYIZc1R2/4TA873psKegTsqDj71/OpAZJoiZc8fWM9lrlt1gk5+jz+jP0wfto57rdViIcmjpnoYGLf8wzk5ZHO8B2rbzrt6CvYuOdxmUGf3NMFs4iFyNqTeRP6bBlAK9UyRF0DQSSFRpv7S+xMLxFhGKiXWNWZIo1KO6lUAobaUQa1jURxEIdwqa27aqjr6VgCv3y7TexfGq0h8a4IxFYVFpkJnBcIKK173QxVpWBxLCs39PbL+ccE6Hg4MdcIdDoM7Lgvk0Ni8+x10Q0++TzQFapn6eCGJOX3OaQUopYRd/b2rhTF6mErCIMCEOJGoO+YGB0zzfmxA58Eyz9RdCRKxrshHI6wER/FkLOEKlbIamAWnwNjE7KjA3IB/33FhPhS3jSxMftZP/Bg/aGqR5ZORCu16TUADgAAYBQWoi6TzgioS5UTlps6skwE5OgrVdB3fboV4HuC6g2ga4PsB1wrolzwIsimsvewB9J/JQJsjg+uxPAwBTlp+VhASZ+axI/wCsA9ztBu1VgOsYi8+uQbdbhC++yjXPklwbIUQmiAuRGVjldZkQExrWBuNLVmY9UUlTZYIDsozbBAnHZ+/7KA03P56EaZflstInR77Unvl1aAyyQXLZ39lrn2L3SY7c1eZ8uyl/c+fM4vP5rtjrT16zDaPizgnxqct2PbDe7IK4gu7BM/vNMUHSGdBWvk6Y/vlYiciHtodGyj/au2fpzPYo8/Ro74HNxcEO+b1TcQpr6XdmHkzEX/T7rP7qkfZ+J0bIATiwwT3ao70pO+T4Hn1ofBjnWWoORAdJkwyHAsUzqMFRwMiRBLBi5pbN4qRBeQ1kdU8cNh8QLr4bUG0YIpkFLL7aorrtwdc36RCqBe6kmGZmekCRs7Gw7CRaIaIarearBKZcKgxKTZ0lGiI1W5Fitp6FpUML2rdNB+3UTV0nBUyTMy6HqMlio3uQmAASknbExJl6B4puiwXCtc0Ug23UNkBghOub0YHILQTxZyWCUl9XFWi5lHfa9YJuBKaDe/p7i6wgBm+2ud6KLcx9gClCjRQgDl0v0mtaPL5MsmGGsq99Uo4Hi3IlF/++h+Wwz1Ix9vKAfHxyxv57pHutGzmztG8KZXHs9Xe+H/b7znrPZOUhr+jP0sq23rV/ZtuXD3kyL6pxQm8qcXdfOzBPJ7Wd3xUzY36HWVPWEbCJuZMC4HmtS4jSdB9Z98Nmmz87+q6MtxSUjGwzapuYdK5AZyvw8yfgwYO2HajzUnOjH6RmR4kOsmy7KP/HL14KUny9AioHXrQAi0QOtrGuTd3Mjx0rmaUB11jYNwEBej+WbWEjFcUTTA3zOfiQkNSj+d8PUlx+GOKzjN8LLRfgJ+eg9Rq4vcXkgYHGbRq/M4wCwqMDSqn7vM//sPuQXdtH65xhnRnAwFtPPL5Om5h/oz/bwryxZgVHRP9OPZnSiuAmLRZwsd4FNU2sIxYZJGdn4qcs2t19a70R3yDktXVuT6XVSpglm23eSwLnwtmpaUWAVW8XigNrwcRKPkhdg5xLQfDECItgEyYSn1VrsAFAXcENK4RGindjCeCnfgzOM+jllfhTz58iNLWsIyoN6oP4OgD8tz7BcNFiWFXgmlDfeklSbDqEr17EwtPKLgsRZFNlBjOQc7N2PA8B1Tb6I7FuFtcV3GYhLLDrG6m/NXjQwKi2AfVND1r3cNe3sj7EYt+4OBeJspLdY6zaBjQ3A9zWSxJJmeERaJPWOfNu2HuEV5e4+OWVsGO++Coxfqht4T76QJ7/eiOF0zctUDupB1ImhocA9+WldMfzJ4AD3NUaXFfY/sQH8K1Dc9WjWkuSi32QxHeUQqMQhImS2Dws67hKJ5ZAIzOe59bwUd0NfVGHkiNVXLYKPyoxf9MvinYkhu+h5OZMwvTY5KjuuyG3N+3n5fNMBexLqdP0+wKkU95Wmcj6+ann2Rvgim3mgF00HqafncbrBJBrXmXp3yiXSTTaK7nr5Twy1Tejdh3X37Ostn3XOLnuwgPHsI7xUx8a7HSXs8u7ZKe2/22zCO57/1O+Z5D38R97xv6hGNgdz2s759UDnz3l93N2KkPlR8GOXTf2JZyP+Z7ZX9PaHyUhAYzPgsa33JGAtePmhHX5/U6MPNqjvS92l6TIMRDXg7flXVTr7ofm2zEKkIqDS4pMi/+Nrq8II+8BH0S6ywHOA66XDYa8BKroNlP9s3SSkdByJE7eqfsSx6CNtqOkyO48qw24uoysTWhByswTvU6/W0B2kmZf9uGUFYt8sp3rmc2BXE4iRMkZaZ9PB0aqkD6X2qHPp30dZTFGrJ0kBxYDrPouvM9o4HSgkgMsA2OplLkDlwmSpCSYizr25NLvch/sC9hHtCwVTpPdTCtNdu19A/vtGKTfsSitfYjc+yIKd9AShR2TtH0oh3/uOnc9kFEepwBGshCj+03ZMUGLO7XpHQFlxHbsBg+iJeZFXD9KGapTbQrNownIQ4fyOMapEi38lHRuG2DRIrQif4PbIAHfmBDhfkYexaxtzCxSio20i1phoMj+EdLnKdWBcjvrK4CRfNvo98AkgnmE3Fc5wvS8AYklFtdUqR3iAMfShTEYqHvmJHihrsGaRAJMIn8ciLd78Txb7IAdQtHqPnTsOSPVNtsjYfY+W7H2zLIelWUbmR1s5o7KYTEfsRY5J4FlZ4P0QdbHRRuLWtfCkIgyRgBGgfOUwJnyMaNsKKfPKaI8Bt2n3vsc+t6uTeZzKUha5QCn1DQw4BL2YC91PKCSUI7kZ+0jBzAqhKUcZeuuB3U9QlMLA8RXwqQYMHpPflljOKvQnzuEmkA+1qZTkImdzz5kH0gtzuNkmowOMWkMiNxWHQu2+5gMVQmpEFkifQD1kghmRb4HSVBgtcxyRySMunRPImFhDwy3HoRtosxf5nidkL6f/OuY5OKuA728BA8D/PWNXDIy93gVpbM2nTDw6giWiewPTQTp+GX1hZUFF/vZtw6h3Z0L6ewQWOS3hrgu6H9xH5lkzRVr62gNLxlVSWZqOnmR5OHmAuhTSd/xBSIwB/uDLhO+ySxL5Vg7dv+O++1O7Yujvz/jf5/ip5aB1PK7U/6X9TEAJJbw1Npq2xhlBnevc08rk3Ovcx97E9d/tEc7xRLY9AGTBK97nD+0vW/tfV12n/PyXZNNO2eIEtDzsGPz/U+MaIc8DtpHexfsodDTD5EUCZEZoeyJkVZvDG4M806/XGQczKC2jejGXg5nTS0HP0XzbbuENAy3t/jgn1/Dnzdov38NWm8lcMUMLBfRYY8H9dVKEIGRiYKFaEpjvZGAuymkR3Uzrrth+lsOO3UKQnCUejikjcvBAUHQkFZTGt6DN1tQy+OAPXMKOlBdT19Xx0LJuDBoXg4lonbPAcsRiGrQYiGH2LNVREBXSYOeQ0B1YVg1RKDY16mXrG5yYCmYqig97ceI4oYjuOfP5Bm1BooWJlWLiNWdAuKFUdMKgrLrUvDDHvQ1oVIeGKmp4ZpF1t0fsW2K+itE6R261RK0WoFvbuEvL4vGmMNyyQoo2Tn6LvfZqWyCh0K1PLQdOvhahHmRpNqp/TF72B1fb6evR2YCyz4HY0YoavZwqxXcs6eynphaPeyDJDF17kbG2Gg90PtMtW8KqWQTIhaV/abe3SSCVVl2msx1Ir2iMntATKTqPN7T1jLQG9cCkcvZfUdp3SqDHzM/u8UC9OQJ6GwJvjhD/8EKt99YYPnlgOW/+L5o8V/fyD7S9fn7pj1kCz8D8nOsa0QA6PxMfr/egi9WWP/kc7guYNkPgii9XedaHlNrt0r59AZ1HRhhvZFneP5MgogReMDPnojz/tkXQKzZROTAg3w/rDegfoB7cg5uMEayM8f9LbanH0ZIb4rsANRO9hJXofr06wjPn6QgJb28Qri8Sn0Am5w+9J4n0P2j7zILwyfWESMiGQY0cUCJ72e0hvvi+nNrzJte++46b12VA81ADtZF6Ui3Wso+t9mOEGwiMYkMQtA1aujBPq+p1LSgtpE9tdc6L7IOUl0DfS9MDq3pA8g4IpJxst6Av7jdaTb3PULXwy0XcM+fCXDF1GOgSmrcpCS0JiztmIiJu1T0vKgBMedP5vEg6G9li2rtjwSQqaqYvDV9xkH8Rp3v0dfkKJEHIElKDZ88AQ0B9Xe/At/cRrBGyHUoVlK7qP3uSzRfNhg+PMewEj/HLyp89fu+iWH5Y/jgV9ZovvcSfHMLUsaGzi0AtNlmBgsgvtcg9Tuqpgafr+A/eQbqBlAXmbSbjfhT5+fAy0usfqUff1/3zMDClLu+kXewaMHPnoM/uIBfVBguGtTrAWe/fg3a9qCrW4BjnRcg7W10fgZylfh/fS/rAxFc9Ad1XlbPnsr7biQ57ZfCEPEfnYtfVhHc1qP57KWsU9staLnE9jd/HaEiVE8W4Mbh5hstfEsIzTNUW+Cjf/wV6PIm1ayj8zNUZys5OzCDrm9BzqXaSaxnh67LErX75ma5NyvbQ7/TLKT/9LP6sbi+is8xIbE7B1ApfufaRvaZKI+W2myvU9xb28n7Cs7vszI5af3XfQmIxCAe799UN7vX3uf3zq3ZU2vpMYA7C1qb6i9N7KiPUZyLg/fAOq/DrBJ0B4FME35n6dcB02eZ171P7QMmzPmoD3H912WTIMt3LF73uvvw0PMek6yaCgifco90jSPvX64p92FslG2f+owrEF3HMrSO/fshm1in37i9rXlx7Pi0Ma19zKG5yyQg21jdJcXAyvpThq08Hot2jyhkuOfaDsJ+Hf5s73ViRHRd33YrHu3RCtPF413Z+JU9YRaeHVTxsaZ68EB8znyIBiAHJyIok6B6cYPqpgG9uARvtghXV+DAqL/+iRzCNbAT5Uo04MWN/J+6Sg6NEWWnyELZtAvau9b+2Ffsb/adFLRplethzlIJU4kYIrBF0O555xl9mZMWIzswXhLDQgNlTSNyMSpLEP/jppZ7+RC/I31CMbDA5HOQw4V4qCvk0IzkB7WCQqV4mGZAgnrac0lSbD8tX68n766XzU41qA2acfcadf6e7csZCa38tVoSbEcU48wI2gIV/cPEon2N69EoUAhgb4Jv/MX4vcOfL+skjFCXVQUsFyJHBGQELw1jF4FIAuIOhkHBeT051Y45hL9OK8c8mcJ0gCBvVXaiwnTNKb1Okeiy/06I9nI+HJjz6dr2/00j0lCLFuGsRf+kweZDh3pdSUBwvZEExJSEio6XmVoK7H3+WwgJNe2XBI7SWhQY2G4liTbFftAxFZMj8B7Y5CB2Qv5HLX84B161UpBYEechSHH1QfpGZJI4S/oMXpDSMZk9YosY+RiqKNUm4drBVZFhd7aEf7qIDw00620s0uzHjD9N3J2aiLXJkZhstmw+CTbOsG7IYbKeiQUxlfeI99nbpoc2C/446WuUxwDyvqx7KFVVDN5vx0htk6wl54xfMg7wplogVhaAOTJXXZQpjePQ+7xXS2PAw4BwfZ2/N/UMTQMmkV9KIIeqkuB4+hALg4Io10EbBsDLfYk5rcmHfJ8S1V8yQ3ckucz3ODhhu8S2jlhRbry2+FUFCoyq78XXNAARkEMVk3u4XYO2HdxZi6qWpAhXwOZDh+0z4Px7DeovoswXIHPXQYLgmli370cl8ADp04sz+EWFKgRQhywTRfHdRoYItW1ktY37jn0QQM65+MW8XKB/2mI4q7B95rD8Emh/7YX42ze3O/2LWNuE2ga8bOOYpSwNq4kII4uLRRuZRlJXxC8rqRFCJOtc14M3IsfmIIwQv5TPhYbQPSEMS0L/FKhvAbq+hf/sBznJ9sFzGU/DEJNyfWIiwwdZ+22CyNqx5ynzGTJ74chC2JXhOjb4bdesNM/l8wST4DyhnXe20bnkwD3nkhTKFmeOiFwc7/fe5Rnu4i8VQTC7T4zaWSZX9t2n9DttcmkKeLLP3sRZfyqB9Gjvlx3z7kpEvQXsAZMxiNHP9z2LPAAg96DtS5jOteVdOYifujbc9drvkk2Bpe5qpXqBh2FumvO42rFJuVMSfkfYe50Y2bHHTePR3hV7W+PQBB3IJiwAiO5ADvqMPr9zMAjjv8fDt+hhu4TI5ctrOSzGz6XC2/E7fLaAP2tF4qCqQOs1uOsRrm8kkBOLdob1BtT1QFhKwAmQQ1TbiA59vcla2qmwt223QVJ5YCdYM5cUUfRnKUsFSCKmbUWeoq6TLjIGn/WmkyyL6c8d1JRpW/m3I7Ld1LYZJQ1kRLC2fxlriGxjgqKPqMYoB6FF68FRbqbvMjsk2LZnjXRyQRB3lRPEvRbODCz/j4kqAPOFV4sNleOBeIT2T32xJ8DqvbTB9BPHgJDWiElBByNVgq4XNkxEeY+sZCfMycP8qO4p5cHS/nuC2SFJSeSAw7F9pkXXD3xex+hcrRnuOvDlVUaWaLE1rX0DZNkMi4w8FfVS9gnz2x8fNuAKJJaFBE8jOjsyPkK/nRj7mlwJ5nnsXMNuIAk44pBHMbhfJaYhVU5YXKsFONYHWbzYornq0Xx5g/Dq6qAkF3sPdEjrrk3KUWT7hcsrud+iBV1e4+KfG7BCZdaeEUU7QLXYE4BAZQvbuI/G9Sy8fJVYe9Q0oN4DTQV88iGoH4CrG2C7BfkchOMhIPzgC1BdI+j6GftwVGMhoahImJRtg/DsDN3zBZY3T1EB8OdLhEWF+lrqE/DNLcLN2qyju3NktyMPJOJN/SZFWLvlAnR+Lu+n6yUBZIPrOqf0nQP5OSeLKRdsStP3O8/x0PPsjjWDSmanstioqeFqQthuJfEW98Uy2a8sorl3FLoepNJR+ntyUXoo+lfMoFoC3/p+sO2AF6+kJoUNoBT9FjZbILzMAX5A2klO2BE6VlxOiOZnD3lNTSxX5L247NMJFCazkfZRKS2TPNo5GLNH6JA+x8MAd9sBnsUXBBCWDUJbYf1xg1ADH37nCdx2m1g7o3lV1+APniKctbj5iQt0Fw7NOsD1jIvveDz5dcbq166Al5dSB6YfkkxosqrPCVibbI4JEtp2qLYNuHIYnp+hairQogFeXcva0TbZt1y0OWmqQwEAnj4BP7tA98m53KYLcDWh3hCqbcjye3G/k+4V1oVKq/JmA7q6FjBLU0vC5cXL3G4iUDVI3RBmkA9wtw2odnDdAG4qdM9aSZR87QO42y1cP4CaBn7lMCwdKAAUpO+GFeHLDysMZxCATpPrxnFM1nHcn0ZgKgU/TYEk9gWF9/hntFqBzs8k4WIYRzzlg1o/cs50X9TPeFkDsy8e6xgaZtGs3YUtd+r6ZxKCk7V/AOzKIHOeI9bXmkLq3tU33hfEOjbANfW5Y5NbQPY77bVP9W/mbI4VU9pUn87Z2wbgPITZfnnbPvObtmMTIsDuOARm4gp77vMuj5U3DYB5SHsf23ys7WOklYGRuyRJFCAGjECNPHkuwMP09R3XzR+uxMijPdqPis1l3cuAs3OjBU+li/gQ1cpusCWToqrk0KNyNN6DfKH1rpdpKnDrJKnQD/lw0nXIFGmkwt3psOQcwBV4GQNqUYeYvE9I32n6deHIK3tlpr/KpEiSkFLkUB2ZGXV85sEDFDLSag6BPdWXd/m70gxNu9h7uXfXg2oGBkVI+xwQBkCIQQ1FZ2rwTenmwPgwXuj3ap+IfJVLaMlRkMCgmyfbbjTKR4UcT+yHSb1pIF9/R3OSRkG9Y+5xL3udzt7bSs5MORWv6wA/ZZpsnQqUlgf0wBL8AJI8iwZsE5LbBr2PYTrMtOedtRiELZNTSdOdw90k3+5DKdf9QxO7WvejrgSBzaKRX91uQVc387VEymaZZ+SAnOAGpB+6LtdK4A74fCv3fXoxz5qZus8US8lDAqZEqBYLoI5BzUDgRQO0NdxGWHipxlFMiof1Wi+EHek5IL+zilKAihoJ+vplhbBsUS1FuoYdSfK+62Nwcbfu1aTNob/mUHvKcIzjgNoGPJDs/8ogjIkejnFNIgPKUKS/smjsuNTnZx4hlrXvS+aK7aO3ZhPBfrEo72YZmIcOmlNMLS4kTu1YsXUtopRWuleUfUuJ4PT94h7BI2z8GLgQ13r2udDxqK5a+m7Ia6r53uhec89dPD9zlPc043W27kKUuOQQ2Vj9AHJOkpBABI44+AXBNwAvG1DTis+pSTnjE4ZlC3/Roj8n9OeAGwhuYCxe9qjWA9zVTapvlBJBwTKUJSGlLFoF1AhLl0GDB/UevKzBrQP3NWgIidVFELZv8uscA8EGqYUlFs4X6J42UqT9qkfVEcLWSU0RDTAanw/qn5H0U3pXUVoUgCTuInMly7ppgpmkb70DDQHsGe5cEthhJQw5TXaEmhDq6A73QHvVw/UVKJhafESJzcRdj1RY3RGIA4BqLHd7ih3aj+ta9hmamDt6iVNrfdizjZ5HNMkNWdP44Pr7Gv2Imfl38nMmxvQRSOG7Ps9dv/dQ679NHJXs1Ie6x0O+67e97z3aa7WkgvBab/IeAv3eFbZIaUcxgN7D/j5k93ke48dN/f7BmCnW7pAceb8TI+QQKwS+u5Pn0R7tIW3fOFdEE4BEFZ5YELhc2MogY/k7IMsguZhEiNIgCZGnKGV7YHYkqL4+RKYAgxYLuBjU5xQcyMEj1YhnkqAPVot4gIwoJu/lMO0cKDQSoColJ+aezTxfSjYgBmi0EHnbiJwEsxxyF60Eu5yT5AgzKAiSMiRH2hwiAMzWKzikyzj1d02EqE62HtQB6dOqz8kPDRIk9k6IQLiILtxuow7yMELOS9Al68KrHJkyU5I0T6krXpphFwHIOuI+I7HlkcaHS1vofed6FCVHwmACZC61Ua/PPrebtLjtMKQ6C4dshHwFcpDxmMMSkWg1WwRt+tuEA1A+o73PZOPuELzfN8am2rHv3sc4d1MIvLIdd3USj2lrlO4DsDO+80fumBAB3q2kyAwqTFhUvLOGaCBs/95Rrjt3eE+lYxvnKTUikUjLBfjJeZRaZNCmh7veANsOfHUtknxTa+BoPM08g0ruaH2hxSIGdh3gA8LtLairU3BQWYk8xHVF96CpceORZXPIgeo8p8P1DWi9hgNAywX8R0/AVSX6894DkTUha559roKdpsmCphVWzXIBNC3oyTl4tcBw0cAvCf6iBXlha1brAe5yDby8Aq/XZq6a+5QAh33JsfQdDQBX0/2tQUyO9XpGQfe8npMyQDRpwsIeclrHwlyb9LsaZNRECpDZjSWj5HWySQ7ZxFqm4I7ZAORUEK48tE35BypZFllNCUzSdaKxD+kTttcozc6rfQjmVP8gMjKL/Sz5CKUsKN/hYJuS1hPjsdjHqK7zHGWGU1+nE0lOFwLctsbq8xZhQZKEaBtgW6XEBQeW+dp12Pyvfxy3X6/hesbyJaN95VGvPdrvvAReXiHc3qaaalP7hkqZaZ+TG1IyiQG42zUcEahr4dpaGGU+AE2D6tlTYYpEpq/K642C7ssF/Adn8MsaYKBae9RfXIEGj4VJ9iQ2jPeJCaF9yjY/5j1CqgcjaxH3Q/TRQ2QLhAxOqitw24B8wOJ7ciGOEoG0XAJtg2rDAMuW43pJcC9uenzz/81wfQBevBrViRrVoCMnbAsnz0JECH6GeWzGy9TYmB1emyjHmBiUcX4mebV4OfVvPYBDOvjW7Hql89CM18n6FWolQvy+Sd9Z39SZf+5KYZbSdOV3XSvfD1q3bcpHuM/ae8x3d/ruRLDOPr9zCvhx6vPsO3Pa9XbmLPpDFzide64ftud8SAum7pC1Y88rx66Z+u+D17vjOelYmxob5ePbtfNdHDtT83nK/3lX26/2ps+2Gqfct2e9juTICfZ+J0ZwByTEoz3aD7MdkR0VlNjxTi05kzjQIHyk/qdA+9x3QwAYUK13VBIsY/RZDsm2IxQMFMQDmTJfFH2sh+Su373p4QfKwXVT/Jv0+nUNrWeCWtkaTtox1bdGHxGIfvYOEtQmDaZR76NggzUtBOz9WPoqBhSoPJRZJK4PmdkTAzdlwVStKZICFJpw0MCUBgP04D0jZ6TPp+jWlHBiBgzy7Og120h7jRDwLqIQDRuKmHK7idJBf1KyZMpMMHcfw2g+4UBZkmf0CGNnaacpd9S5n7UD19N3w7w/0XOnILlF4AH5wH/sfcq/nWAp4KNj3RR2Mx/K7TzF3qWkiLWptX4ysDpx+D90nfuYJkZ1nmrdp0KOkPpBCkVvNvDXNzPXmgmCTLU3IpCJKBeRBgAecpFpb+a5yhPtXAO7fah7VcGq464DDwBtNpJoaZ4jLITpSPqcjoQcY2S1dhKmuny2jSSSViugbcCrBcKqQagITEBoHMKyATFAnQdtOoTNJu/BD/guJ9fooMmQsNN3I8BF4PHfdW5WyLr8KPZ+YukG3c+U6aXXHmngc5GEe4OHz7TXURH4MuCIKb163c+mpuIxh0HeTaal974vyEa2TcckmXOCjMvkWHreajLQmu93z4DOVCDZUd5eB2HNoouFvAHABzTXA0IXfQ7LDFPwSgQ8+JVDf0FYfcFobgLqtUd12wMvr+C//OrwXmHXVIrvlDixEtH1QNPnwt8qleUoyWdx2wgDWRMdxgdGXcGvaoTGgQLD9R50fQvebOFfXWZJO5U244LFM9XkHQCRAkogc8t78XH1c7XUa8GNSDJitZDv1RW4riT5EeewGwQA5bY9lp+/AroeYb2Rdk0WUY/nBstIOiRltc+m5n/fj3nxUxJXZeLA298faA+HlMQdSQmm7/vptdj6tfrZUwNBDxhU32m7tSR1NzyYi3qSlSAb618Cx/mY76r9sAN63/WA8EPbQyQ33/Z4tb7p23x3bxP0clezChlqd5nfbyNhespa9BDtOzYhfuw9jkr2Hd/e9zsx4ghSMznLtfzILcaP9sNj990UjdM4kkUyAf1UxBwmgC9/GP/fMiuMFAqVslLF/W2xQ0Hzx0OdMkbqGlxV6fBVHpqU5SAoP2FwhLMGtNnmIuhACswITb/N0laKoFO0cgw0cddLECuiuLhA91MTg+7DAO4oyb5wE+n4aiEIwrnvU7BNJKdIgs1aayEihKlu4FZLKYi62UYE9SLXYjG1Q+CkyKiVW8n3ZXBkTWjtGHryRP623Y6CUvmgE0SSYbORgJYiIG1BUiBJidFykfoQISe8UvvYavo3ueCrmiYqNCARpT2EnYMcVEM8jHsPVkmIYhwlqYeqEmmSgWN9GyN31vdZ5oviGK8EIRq2252ESpLbSUGWeFBmNojamcPwoT1Fk01TMgrW4XDV7t/1mY+5zyHT5FNE2JaJITs30s8PiezahwaxB9tDQZBT2qBBnm5Chuk+wZa5Nr1LSD/TJl2rpwNRM/YQBzGbFI11RFTjPiVp+wF8fQOs16nOUNBi4wDc+RnQ98JuKa4JxH2IwzgBYI0Z1LRwz5+BlguEZxeCbr68ATuCOzuTNun3hyGxRUZzYKY/EhtnJjgUbtaolkv82h+6wOZTj/NfXaG5ZrTXDNcDyxcDqq1HddmB+pgU0vngSDT+KwK3NXzj0D9pEFqH+saj2nqcffsStN6i+7EPsPnaCmffvoT7wQuEq2thTc6x4spA0rGm8xgYrVnMDDISQ/qeFUjAyPtruA15rU21f0JOTum6ZJHXgOyDlQOtzmUtv7rOSO+dNho7lQ13rM2gvVOSOdX8qNO+pfugrdHBm21Cz+9ce5Qsm0BmF0WH97fPfM6+x4lnyP+eSQTs68so9Zau4cbyaaUxZ43p2etavxM5mM/ep3o/RATedllWFUjyWs0X17IWvriUAuddlxOS5rnP/9U12pdLtD+4gbtZA5stuO9lrFnJLJ0/JfJ/EjiQE1es61jfgLZ1CqAjAjd40SI8O4O73oC2XQ6wbzthf330HOuPGyy/HHD2r74C3W6kbpJzqC7OpS9vbrJPtadmTXrXU/VfXK4FJLWbIgupqkDrRth9+m5DPF83NagfcPYrP5BrRN+eb6XGEQMyp3VdmtuLEiPMT46Xk2zffhemfQAt+poZ1pDkls5XlWidSzQFzvtJwWIbJT3s/fIPGBWanQO0zMUzjtzfR/5u4N3xqwn/uaCYWeNpyre4jy905wByyEFIf+A6U8HmN+m/7WPRvemk/j6mzX3aUCT/Z5lF9vPHnAHeN3uIZ9l3jVPG7dSZ7th3bPeJ1zVXptryrjNEDlkJXAHeTL89xGXnADtT9hoTeNmnPuVLesZ5uPXkvU6MEOGHP+v+aD8adsxCc8Q4L+tEJFMUf4DUxdBD8775o6haPTyoNInKSpnrWjYHAHHCI/WevUHD1aJTrKyMEd3fJG8Uace1A9cx4F5qBGt9ECAXTY/ovCSrtFqCFgug2sg1hgFsYxPqnIUq9kkM1sUgPJxLheWJGRQYrCi/wCMEsdQcQWKPcIiFz9sGslR1uc0kkgsqNaPvgbXf7bssikanRNVSEHwhJj6oqsYBJiAfCssi8eYdp/oqsRiyvquUWND2JhR+k/XHbaF6RYarHJWP/VQhI89M28KchJbpz1FgLxb01bHIPZBqAJgD6A6LSd+frSfjnDmUFqi0U415zH6yfzLSI/b/o78bKZ+yzSe3JwV4C4Tt+Kb5HQae90Lu6oTtde4jY8zjRO/nQLveR0f6PjbVBxOMhtHn1Q4kAe7WHlMHwcWAqWFLsQ9Ryk9kmGyQ27UNaLEYB9FMMF4DWPvKEwFIElS8Wkgy3QdUt5Uw6hpN7poAVphYD/fZ1EFe96xeZAbX3xzwyU++wJf9R2guHbpbQrUFfNugWVdoG4dqGyJYgMEVgYniPkfwrfx/+7SCXxDOgsjS0Ktr+M+/AH3jOYaVSAWFy6tYSHtP0Db2317pw4nvpN8RjdeswCP5Hk1WT31XktYZLFFKbJXSWaN9S6Uzy/a8KZtBeud/2qBzDrorQyoxpQAZy46SpM/OPcpEi2WNTs7zPfN2kkllDrLF38dBYOAg00P3Y7Mny68pF58GJmuvkbKGOWBSNkQalIAfqfmBx74QIH6cTSZpguRaQCW82QgYxofJpGH14gpu2wM/+BLh+sYUaNf1wSTx9bnt3jp1CLfglD6O/TLxWtdJqio0Dk7rYZlAdeh6OAB+Eev4fPECoevA260kMc5WoK5HKGvJ2DZYkJQmlbE7TxU8lNbkwGAfAQZ9b/zMWH9GWX8hIHzxlfRbbySwiMaJlqlxZP18rQW2zxd8XYEYyoCx/CuT5E/yuHsCLhOyfuVau3MmS4mKvHbsrNEP/LzpbDLFZCuTOabd+o4S+MtP9Md9g1KvOxA6lch51+wuffBQQetyb7jze3wHmAY/CvY6zmWnfOah7J5J37eeQJmbL4/j//52JxblkYzoI+y9Tow8jr9H+6GxU5z/IwZ+Chin4pH6VfPdElG/exEBKjKl2h/YdiIDsDgDFg2qDz8AD14OT46AQe7nX7wE9wPc5Q2qtgFXDqgXcqgiAp6eg3yA+94PEG5uAYgjrgwPTUzQzQZ1N4iWdGwTAov+euXA/XVum30mCLNg+C0/jqufXKZCkcuXAe2rQSRJasLqOzeovveFfFfZDkSS+ImsAmekDni9Ad/cSMHIoZfaEm2dAjtUVUAtG7YUm60EVeYI7uJcnqlp5PdtA2y28F+9GB+w9MBPDtQ2cE+f5EKSQA4gaaCpim1uakncdF0ONDUN3McfyqW/fCEHnbOVHJR66VNarVLSCBF9yJCApaIRg2GKSPIIcsgnU+ScWWrKkBlPWlDO6tLrs+7Vug+JzUGVAzVncM+egi/OQF0P3mxBiwWqwODbW9EE9w5UxUAESd0PrW+QAqNWQmyxAKon4G2HcH09f4BSFLBt/xT60qJ6zXflte4JVlqpkyl07zFWoKWlz5GftTaJEGA3gF6iuB7qAKnsHxtIdCRrCmfHkmLAKKFfYZJGc9d9Uw7Am3J8Dx1MbV9qwqGUmaNY/HVKN3sfYtBcf++eUKIDAZF1WSzA2y3Ceh0LOHeSxFwsYsAYwHIJt1wIivt2nRKyiQliA+NGyoZRjdcU0xZlyYj81BK8bIEQUH/nSwnaGXYDrVYIX/tA2nx5C9p2MXgKKXYOO09n5sEoQEqjecW3a/ym/1OP/slzPH+1EWYIyzNQH1kFQ9G3MfHOjTBG1CFvX9ZgR6g2g3yXhPXivv8KT6+XoKtbYLEQia5eg7rTwdpZNskR6MQss4j8nIaZpQWIR0WVF4vROmtrgnA/IIR1+nnSYs2ytOdHJp5el/sJZti+6x14xtKqJ0+kJsV6neQj7XOkotXDMEZQq+RoCMJk2AiTMyXiYyDbrVY5GB3XvrQe2zWvaUF1JUAMrYWjiakYjB7VW7EShgcDDorW3/eZcV9R3cCdryTZsF5HxHy8TkJwi8QVxfoZiSESpVipqeXZv/Zx9meYQettmm/cNtj++HP41gEEuC5g9S+/BG7XCC9fyfNf3xjATqz1oeuBI3NfArl63K8A+KuXwKv4jsukCCBMipTY2h0nMi8o+VnlNWRcCEuXKifJAh2/2y3opkLNLPXRzkU2L6wa0BBQdQPYAc//f1dwVxt5huUiJRyUpUDLRWZSxSC77qNoGmHh6RpLGdTEdSVSXRcLgAHuPWjbw331CthuEUpZw8CimFXXoyAqta0BxhT+DRHo4kL6QseKjkvto36Ihd9nkPOnAlaK/ZGHQdaSqZpExjiCqcbz3DBw9t07zds893KykdMZatxOI7kGpPZKIiY/R2rzMb7OjO8wqjum18s33k2YjxI8DtXZIid4OQiozYCAeOjvz9Db92y6B5ukpPrOI2BTKU8G42Pv8yEP3f+uNpF42rEjASplkvhkZlh5v6nf36cvUjL5yHGgZ6VHO83eVPLwTd0TuN857i7fuw8IspxnwHguHrtG3/X+9jp27ZhbR469vp4RTmn/fcbF3HXsWeWY86d+LsaLAOwocoyADuSA7XFNfK8TI4/2aD8ydkdW1I5+rGUdnEJl1XoNPoB8yCyO1VJYIecrMJFIXvWDBA7YgzcbcabPlkBTIywaQR45QcO5z+vx4tVEBKqi3bZ9TLaMn5/qSg5qivxnlvvo80V2wPbDFtc/5jCsgLBgdF9UWHzlEBogNIDrVzh7tRod2OT78nw0eLm/HgisJFcKiLgkWzVCyCoNPbAkRBZtTLrU4EUDPsuBrUn6qiPpj9US3NTgZZODa4OXYEIwz+sqCCWIk8SCIwKfLeXdXN+CggedSSKEtrGdq4X8vIYcusmBiEXyjFmQiYZlwH0MEE2MEQAjlK8kTgxb5YQxxyEmWdpa5NDOVwhPV3BXJNJskTmCvkvOdkKRRvQutY0kcBaLHLBSJ6Cu5XBfvvvRQFN5IOlb9sgH2MlGFwf7kUTK+NnubDPOpCD8NFjj8+diP2XJN47zk0frQaLTHkqKnOjMjuQcYIL39sBeVUAjBasZENZXQmwW9qPKENWgT2LlxWDKW9H+NrWE6hq0aLMsHfuYm67yGhGTvHy2lO9FNkFKHPfDOGk/+rckumfbUUnQnJpGNPK7HuHFy7FES2xvOGtlLdzGZHpM0mXUvgkYz80DO/7tvOo6uH/4P2LBnGT7aLGQtaNtsmxiTLyDCFwJaplCLW2Pe6wrZQoBWa+ub0E3a1nH6jolJSYDcLYvRwmtI+evXbdUqhI5IEVJniWM3p1KJyoCPQUZ09iYkIuZaK8WuE6BQ12D58qKTSX6pn4/95y6VreNJGmHAeAOWh+rrJ01iXKfCJZzEbSTwHWbA40azC7qFVDbgheNyK5tu5Q0JiD6Y7oXFcHAY9aDk4MC0TdbLASYoP1lgmIcENm2jRxCp+5VVUDTwn94jhB9SPIBVVsDPgbMVw1uPm0wLAlcAVUHtF+eo2IGLq9iv0tCisuDsDKFLZMFSExetXB7G5s9fRBPkoBqBQMmgS2UZWES+no9ZUyxd3BNI+Mnzm9sO5lPsYZdWDUYnixAnqU/rreoPnuRQCpwFaiRYD9vxb+mShJCFIJI2CmTR33Ns5UAkmJShFtZY7hxCIsa3fMGFBj1rUe1rlFfxwQGbsT30n7hIHuNAofSu3QgjswoMgH1NH6FgcxdB4Lfrb1X+ijAYd8jvYCJ5H+xP3LPxwXtI1tmxOw4kp0/Hl8Tc2pynk34NXOMyEPI2anEvb2vrrllraApecUyyEeQvjRSulIf0syr+fKSr8+UpWfaa5NL9nMjH/LQO53bF+8Lwjn03akgp733iKk48Twl43Bf/cBHe7R3zd4UyK1MbJx6cJpaM/exFKb8z5FfNBHzObotNPNvs1+c0q/Hfu6+Ck32HUwl/e+ZJFOAW7qH+uxVlZnqR9hjYuTRHu1dtDKBccgOoU4qlTfK158NzprgfmpDDA5T5aIMQDyAnsXESEUgz8DVTdJXprYFLZdJkxj9ANcJPT9cLHJgG4B78kSCR4NIVPHmVoIAH38kdT7aRtp1u5HPaKDpbIWqcqmwuAYrqo8/QvjgKUJDaK4Zyy8B1wPNrUe9DggtwTeE9sUWHBkrKo2VgvnDAJyfCaIvBNAgQQnnPbjrEDY+62o7Sk6sMjioqiQZdL4CHJIkF5glsNJU4M1ElEcz4IGl5or3CalFGowJsaaClXCymvnxsMd1LUG7qgJ9+CwlTMiHLD+hSadhEHRqRCFyfBcaAFEWQjqExCQWARkZmx6Bsz5xqSk/N0Y1QKSJiMVCEmDRwtkC/qIFggAY6WYNfnWd6xLodUxtGUXdahCW4vhmHySQulqAevMOdKO2KKgY0NTEIKtW87EHnikmSbqfkbuIH53sp33IdSAHRuecjMByeNc5orJn6e8ek/ImU885herc0xeJvRayXFyJUEkI3zSHT0Di/LDYwfEUD8VhGP0uIXCHXqQu5hCFR7WhlMmYOqy70b+ZWWRXQsjzt5agYbi+gTtfgc7PwWdLhIsFqKnhqkpk9vpe1kUXA991vYvwtewY8ywpCNq2oGdPZJ358gW460ViahQIErZf/f1Xco2uB287U7vC5+B7/Px+i9fWwCUwRrDqfNxuJTDedbLmJyk/kyykWDMq1kdKCGb7Woa4vxXzlmOtlIOJ1qk5e/DzIenuw0OS4sqWo1xwelSriynXGEhB54kxZe8zNe5twJ0Jo0DY3JqjQfKZ9TNJ/CijsvxIlGnk9UYCyF23+xzAuK9TbSoerV1jEMB4bQ7rDajrcgC5qrJvYJ+rbYB1Lb6Ijgsdr7rvF8G/2XHwEAg/w+hKfTKF0OMgiQe7jptEBQOov/dC/DplcmoNutsNcF3j7FkLv6wQWvEriVmSCDsJvuJdMwHBgTXKPMVckh+0wYnpApPQBEyAn2j87Cz7J9mkyIH5x5utrJFAlHwNAjKKkmsuBNQBUVqK4W7WUrMjMRJ8muvoe5EqI4rjIbKa0poTBEiSaj253G8OCG31/2fv33okSZosQeyI2sXdIyIz69L1fd3T05zZBRckQJAEfzUfCPCVD+QfIAiCIBdYgNzd2dmeme7vUlV5iQh3t4uq8EFUVMXUzPwSEZmVWV8IUMgKd3M1NTW9yjlyBFzL36Em9O9q1I1D9etG9pnR8czxnWCQvSwPgzzD8SjPfTjMASF9XgCI++qJ1Ja1EgxZcjzFZ5/fYGGMx/WR4NevsZebcT2TxruAODYBRs37P0sAsgxXIK/pNkJF94xrbWLLuojIEjJwBGAxinC2z5MzBhlyj67vOjeetZeIyij3uaNpJzLPo2t2qm/RDy7dr1/6+VPKWrI1J2dcG/VdnQPuTkbHnLO/lT3212YvMT5e7Tp7KWLd2r7WgtKX3PvUvvUpdfoS9qX77YVn2JwDt1g3I3nsUvv2gZGSBfG3yiZ9td+nzQ5+V05E0dmfmF76+zWwvESfgczA05D86NjhOkqABP0NA4ejHPxVY7upJVF7jG4gH4DKAzebTAImJwy3ppHNnY8SJ6NoLaOuUnLaxJisKmG5+7ztAAEAAElEQVTbNo0cwoq8EnyzxfjdFkySXmT7MaB58KLXPjJC6+BaB7cfAOtYj04K7nrwsUO13YA3NWgUh64mZdfDIEU2HqoKFOUi9DDKdQXebuDfbSfvIwERCqacfH8hHkAEmMnvzycQKUkkWacah7xwEwG1Q7jZiF7w3jxvBFlAJCxkBVYmjh49/OlhzeYYqYAqyqlYORDtS+q0DSc2C6bt0TQ5yqNtk541fEiJid2mAvroeN3vZ4c8kd6qIxPX9Fu9B0c2ZJSUmGnkLzmDK5ODZum6c0DJqmMwTJgN6+PyDOvtwnvnw9NyXoB0GF97zrW6rbJmphuUVacBh3UHyqtlO3XIV4fKyd9f2EcvsaSVHrJzLIIi1LaSfPd4BIKA42gbhE0tUWyhlTGocn5EKdFvYsGbvjOTolMJrQh48qYFdX1K1D13pkn/4vuH3L8VUChA0OkjGhBCN93IzTxzMBVyFjl5dJXK4yJ6CgDQtlmqSp2NGoWYypZxaIEVTsDOFXY1i0wdy27e/2wujHjNzDG5BKxdw2rTNaRIoF329Vm+jGKuVPkjKwWWrqPMiJ8QApaeQ+8bneipL5TRMUX9059DDx7N2mid8ZM+5jNQp0m2DfBCLsTE90Ui589pdv6mIv+MfUYLPhGlyDGR+evBHz/J+rzdpv0TQpCE4nWN5tM7VEMNv6mEcLPmALbrb/osTKSNFh2GlmFonKiTQ7XurSY/071Q3DPp/umEKfCSIqAUJALAo4tyXzHfiJbXDyIRS5QiUxJApiAS5ahPK0/KAUL8AGSfXu79Y8Q2ALAjhIZAI+Q+dbEvCNk5m/plLyB46Ie8f5k0UgFEnVvTJ4z46Th4Sp++ykG8EEVx9X0vjhRZ+F5Bi1Vw+An+jHN77DRPmTG19psI/Kd5SIlQx87MxxfM4S9lp0g6k/XgGybWlPtvJSIsRU8DeQxeCgC92u/TvuQ4/Fs0u9atzdmnzsInTNacL+i/LvvKxfvwog2ea+W+rtzPveR59Qr7poERIiyDIa8TxKt9i3YJ++dCKyUFpgm5ef3woJNeZLZS2+YEjFWVHf4a6dGPQD+I034Y4Tth6tLdG9Gdv9mCaxcjRjjpHIebBqFxaGO0BR+PwoQ7HMHDCNpu4Opb8Ls7+Ns2Va8a2ym7UgGCYZCcJtvNJKfE9tcB7UdCvR/huhHcVAi1g+sD3BikXpG9LNIHo7TZMMjGv6rAm0Y+51h/IAIgkuyc+gGoggA12y34ZitgTu1EHmWwjFp5F9R5uP0R2Ee99UVmfjwIl44cfXdRfiYdkIcBE3mk1EYcQSmfnQzMAoQElndn2zICLLM+oswG7VeuEg304DF1tPvEDD1p5YIY5Blws0sa5RhGaf+dJJqvDx5u34MOHVjfkTo5TMSJ6tJrpNHM6ipHs5SOxeI9iFRPG/tph3SoXHqectOweuA1v7GSAFUFoMo5A5YsARhLbP6VDYXKYThCelehqEcRCXDRxufc4V2dJMo8P+cEeF23122tbSzjaHWjaUKXz5W3dE+KOXsqlx20KiXCHEEtmYsorhMp0mocgY/3Ej3X3sJ1I+jxMI3aiBEVFEFnNomqqargdgIuqzwh1TUUTONxBP38q/z/MJ4YN9HhyJwZr9ZBH4GG5Z+utFUxlpO+vd6vAJXlzJSj/PTXFPNzlLkQ5EsLJDiRodT3eE6TV59trc7X2FkWNJCiI07d66kOHHXGp3xR1cQpvBgRYH9erqOFBZsc/RyzTx3S+qyGlZ3+Lhy+cxAtzt9FtF4qM/CsP6jDODmQy/5eOqmfcgA2dbeRw8ws0QI+R0CWDL3FXDdsom5i9FHAUfYIUVIqRY5EwLP6eIDb16i2kr+NHo+gY4+guVbSc07fU2JXVwttsfDcKVqs/G4F8EnjzkUwp++j5JrWad63l6OHZO5KBCLvARPlxr1EZzAAxLlx0r7BCVFozWKEsyTP5skzuc5L1G3j4AYG9oz66JOUm6l4rEsfQXBTB9MvV6MQFJxe26sU9zk7XtL15xw4J+aXU+erJZDnzH0W15unzGtP/f7ceVHBWwO4pmjFc6ALxxxIdvwmcDjMx+ES0FJ+f85eion8Le4jU5TSwnthRkaXF/r3qaj0V/t67Vvsp8+1tTPrt2Jr54unRvdxeAqWct6W2rkkJT2p3CtIk5eUYdvl3Pl0iQhjbI2oc61908BIMhs2+aTff+GwoFd7tTU7x4y71NR5YsqaRROUFq9N2rnORRZZDWh+DL1O14DRC7hw7LLcR2BJMN42CK1KOTlQkJB+rpwkP2+dRFkgHgRpTBIorr4F3ezgdw3CTvSnKbCALFyLQ1sPchopwVHKZSdgDABUjwPqIQiAM3qRcqnEIU7KzovAgh5UmTnLExAJkBIcaFieJ1ijWGIECG9qiXCJddAEvOIEgURtDCP4/nEarVK875Q7xUTCJDMSH6zX24gZqzvOLO0XQZF0UNa+YCSv2IeinxQgge1XGomk/cEewC9l3E20JmWD4IgkymgYE2ua21oO890I6sYowzNO61dVwlTXA52tH5DAPH1+VrZ70e4zc07GgD9xkLSOJA6Xsz90vKujWR3Pa8vZE9eoxDA2dS0dapOkoaXpBmhprbyU1fHUaIa1zdffCgHigv0JVZVITKQ52oyr5Kx9IiNJ14XKmTwwHhPNea2bc8nxQiQSfuw9cDjA+XcIUcIFXZ+lYeL8TYBIwAAALDDiJHExB5CPgH/TRAa1zF/hU2Swnkg8yoFTkne28+4SoHnikHOSTRyjQYiV4Wnm0BNjIeVGKnNNWT31BIjmiJOzzOYS8PzcUhtfYDzmhNsCyGuEysnImWJ9nINFJxx35tpJDg97SCudWmY+zeOPp87E8nA4sygbU1zPQaIOZv09AnOp3y09BxV9cuk5te4ql6nRKkAGFItoLmpWQL3Z88VniIm3aRyj1JzLBBwXc9X1A9gLKYaOvUg5RSKEaknP1tlyb3YuUnVxvV85XGsuORiAJO4/AUxZn2tOB2akfCwAwHUu49hN7sNWgtRGlZ4ye98gUSOsn7Ps3WiQuZvGAAqA6z1c71f3bCpTRHavVM5H58DOkkm7CN4v3fxakOHUHq2YC6H7oqc6iPj8nuaSMp7z/SmjTIwjF/KaXJIlTllgpPwx2v/1bHJpNS7Ne5R/gN8FSeYav5Ldo63uYc4DWd+ck/nVXs6+9fHyLdhzoySWxmjp7L9gH3rRfZaKKCNTnp0z5DPN1ZeC6KfIFuQWo34vsW8bGKkq6G5KDqJPfDm2Y75OLq/2W9vS5Hmub8bf5JD6Mcs7AXkzrIzxdGD00zI0MWB0VKV6dL2MN8310QuwQI8H8PEoesghgHY7cWz3vXz/9gZc1whvbiIgIAfb+r6L9Q3mkM+o7m6BtgH/4x8w3rbgyom0VesAAtwgk7DoPhN4HBEeD3B3t6DvvxNQpG3EkQ5xgqcEtSHAHUfRrB4kwoUe9ghdL3VvYh6JyJBzm80kQoTbGuinOtdEJId5opS3gcYA8gweCOGmQf/DFlXnUd/3ID/CPRyBrkd4fFyODIgHOFI9+nJecwuHSk18rs4JcnA3NxLxEyN6SIGEyIylTYzEGccoXTamZKIlk5pSLhVJdIyYQDk5m+xvVA5GmWYrC6/Ks6kcTmI/Nw2wiUmSI5uUmwru0wG0P4IPBwQF4gyLV2XOKAI7ymb3P77B8Q87VF1AdRjl/QwBbt+BHkQHu/q7H4FxRDgc8zOo4yklbA85V485vFDTwr29y3Jm3ksbM82ZdmvGQfyfVTV/33YueCqIr6wU62i15ZSslahfP3WAWCZx4ZhdDS1+Yn0nzyxj/yyL+yn3+ZpM29cybS8x+25TO4SpcxbxXV2gnb5ct/jeifK4BKYSP6kuXqLoiFLeBjiC/+EOD//YYrercOMZ0Ig97+G6AbxpwLdbgBmVZwHduyjJE+VjuB9knH66T/fWOZi8z7lFFtlGIUcN2H45YWMWDtzYrhPQcIGxnqS9YkSkApEzcOSULTGPS4+SrtH2fZ8ad7bsZzrZFs2WeelYf+YYTbkP1FL+Cpf63yILbY1ttsZqXmjDRQeffU8kkVUzcoABy/KYrKbzpy1P/9VIlEl1ZTwRpjKQKV9FXFd5HGOEIybRSKlPngPMlBEPnJVrm8ggEsFtt0iRWYs/MONLFr4UrYqqEmJNJRKqxCyRZV2X2yvJUXlMJWbMgV/biENOPn2m70nScevAd5LYXBOnpwt5lsxzcv6Mc8a5PH6Ss2c0LH4p25JMiGokeT2SaDna7UB3tzIHjhK1HfaSl08iWGIZFCOCIyEJI+D2DLfvUX+SfT6GUSLWul4A4wTAZQc6RdIJgJzrKI4zlQhL63Tp2C3nsaWzjdzQ7FFwucPI3uecmXUx5QOy91zaGz3FXsqXcKqcSwl0jpK0nIJt6flXZAlzeQacLaMa41o0qU+5Lmq/pnjtqTY5xxZeuvZr3u9d6twrJdzW3vlF/fsrbo9X+9u2a8gJ36LpueDJZ/QXAjZPkRMQ52S797y27Mk8fSWoUq7pF59xn3BeLeWKr7BvGxhxDhQyA+KL67Sdsm9h4X61r9eeMkmWG1WeM+KVMbR6aNMylCmkEgmjJADnrUgKucEDXg6s3PXikAJQ3d6Is3LocyQDAbyVqaba95Jc8hijAQInKStwAHZb0G6L4bsthrsa1TGCDLXoIofaoRocGAGEGOUwDqBNC35zC960ktS8dilSg7w41shH+YIQQN0gsip9L/JNGlkQWcW02UjOk7oCCOCKAM4RLsmipJbqRANIkQXEDNw0GHfyef2JQWM8gB6P8wTB6SW55PxIiTontpAfonyHhJxnY/TyLiMwomAG3ezk8mHIAIDmGTGHJpVlE+AnRk84kmgXReQtg9SCNSccA8pgU7m2BMzUFbiJDhHEtieSHALvP0jugnFMzgVtE1LpHnUKxO/8bYP9TzXax4C2IpFR66Izth9AdSVOhq7PSelZnot7dRLoZ24aOUIi7ULbKPXTdaCRIjPdgSp1pp5hMytzsXSUrTnxyvLOrTeFw3d2Xfk3Yc70sxsrdTyRcS4s1Sf97gwje80haZ0YKyz+r2rdf46tRSmcc14AZlOe26FMQpfyELz0nsREr8nfImnl2kbGdoyk87sG/VuCGx3auxYUGG5ogDHAtQPCpsH4bpNACtcHVA+dMJxjjirEuSscRIJQE7ZTXctYdH10dC04F9hK+pzpLxOyTECac81vJuMjJVXXCDpCzv3wwqwqO5ZPOppMpMGznHwn2spGkp1r00udhWtAhgFxoc5MIyvGDuIA5IUIS1vOuXtP5qKFZzpHUIlSkww/Y6yVUSRUwYAVOH2vov4K0ierqrzmbzYie2X3Nt6DR000XU2eb/3+ZSJ5TNbdxZxRFCPLQgZWzrVhzsXjBVhSwNIBHEgiSwyomaKGbCQkzBQZ+wWjPBuei1o0bQEAiLk1Js5zpEjjtfwiScqW4pxjwX3mPFfDJyk10q3M5F1UKdF7CCzXxGhsvhEQmYZRzsIWOErVV7Z/bLMghCCZS2XPxyG+YxPxne6vz+xISEJpD1QQqtjLHIz5qz5reo9ECFi75pnz2NKZagl8fO48fS4y6ynlPbWcki1brF/y0fq+LH9nxgFg5mIzR08IBCYCwv5uzRaieSbfLYL/v4/IEirWh9X9y6u92lPt1R/5fJudkZfOGAVQvPS7a+5xjV3620Qa8etz/7n7XEvcXitjKXr6ufZMUAT41oGREAAXN+DPDgl6AaTOWnmgeZ2QXu1Lmt1kOjcNg4c50M5+Fze2MZm2q8XxhKYW6SHngNGj+vMH6dO3O9DdDejf/DE5wABkdhERaMiHM24qwDHc+3tg9PD/9g8I21oiOUJAqIVxS31A+2FAaERTvfnUgzqP6tdP4P0R4d/+AcOPGzTNP6D66QeM393A3zRRHkDkolzvJcrgYZ/yo9DhKEDA3S347a0cOB8eU6QEbTdw796kaJvhp7d4+F/sUB8CmnuP2hEqAK7rRQ9/GCVhKCBM6phwXllV1ccN3vx6K+BEJ3IQ4XCMjnNh8lHdSNNHtjHioT/p6Bv2dX6n8W8OKUKDnBM5GgUu4uGcb7bgikSCKsSoh8BZiqofMtNwIf8Me4CY8jzWdVNGrCZzRARFNNw+yZFFgMAD6SCjTEOuhP14swP/+Bb+dpPOUOE7qXf750dU//mv4Me9RLaEvDBzYLgIpklumQbYtuBNi+G7LfrvW7QfBvzd/+MXYUYe+5TnBgBwdwP/3R26P+zgBkZ1HPM4YAYYwL4H/fIpbyJiv3abDdx372LS+KiFHhpwVcFp1MwwxHN+k1ifk/Y1zr7Enl2yUuLHVdlxcY3j8+LrpD7JAWYif1K+EFPV6t1b0G4HHn1yviyyjGPy2Ekk0RJIY9bjNbmLSW4BCyR9rWvtWfBqGSSd/N60jUS0ZSZveHiUMRXvkfTzX8I4RoaoY0zNObhtBEt1w+2cOO6OHXA4gkeZE9r/+Ff8/eE7uMMgOUaIBHhmBvkg85eOuQAwIeeXerdDdRjgPhBQ1+LWLdebKs4lMcJLxxvVNdx378DjCP/rB+mfpYM0zsWzCCR9/FkeIs0VEPugSgOVkSVq5EDVnIyQ+nUEVngckyN11ufJzSPwTrJLnxIZZMHmledQoHLGDI9zfV3NHXKmnLXD2KqkTQmAjMbZHpwAImpOohUAyPpjIx012i+SOBS04wiGl0nXtZ4zEOCcKalEZUUR12ETbTRJlr7klF0AizXCEoFTf5s2k0R+UlML6cOMgVQvAO7778H/8CNo3wHvPwqQstvKGBpHoK7B2zZFEcD7SJ7giUOcmSW6NpjIUI5AeQQuV9emNXZ43BeE9x8kMiJGdMJ70HaD+o8/AUQIf/1FCBIr5J5J+1wyXia/L8e+/p+fXMN2PBYgZPX3f4D/43dCAgohSsEGid7thhSFyjGvXpLO4kj00Qi0thXSRdfJHFnFftwPwC/v4+PKXi5F7bgKPIwIv77P9XUuj5/y+ZX0Yeqg7Zgii7wHP8R9rr2mWKcvbuMyunFSH3/yPE5NK5Kjth7QPcqZvmbr+rmiTJ8691q7xKl2CXluaY7Rny/NZ6uRgQX5JeYumZRVlmnnbSvxd+KZ0vo5I3+V++UzbXxN9Mnabz/XPrIofzaHXUKEecH7v9rfgP0tvetzEVcvdUacASVFlOhq5Ppz1oUVP/clZVqC14yAeQHIXIDf8+IX1pMlMCndz56XCoBklRCa/UdL9dO9fvq9y0oHxACO649n7dsGRtas1DN9tVf7Fs1ufJ87kVdVdpZdghJHh7tECFQSKaIMOXPoon/8e/CuxfhWnNiuk8gSAEAEJygEgCUhLTsSR3EECYbvt+i/q1F1AQgileU8o34YQIMHv9mAHcEdBrj7A8KvHxAeHkD//u8x3NVgt4O7azG8aRA2hHofUHUedBgT0zg8PIK2W4kqORwQHg+obm8QblpU9xnEYO8lt8ndbWr38U2Dww8Om0+AG8TxTcMWrnISgYKDACvaZkss3b/EBaWps9SSfZ+RYaqMuwTixMTFfDhm5Ns6A+voHB9HUIDIThBNIkGICL6tc74TH0GUUTStOWr0TxJqzhZ0I6+mDiQFb2IEkuYCATDJ+TJ5Rhamanp+7Y+VOFKHH29w/LFB8xBQH0YMdzXGG4fNnxj+rz+vOEFEAo12uxRhw7sW/m6D408b7P/g8MOHAf6/+//lqmy3oNsb0M0N+M0Nxncb7P/QwI2Mqq8Bkn6q+XC37xvsPj6CRpedLdFpwW9uY7vGNouAGkdJL71eZb0wDDGXS27bxYV+idkIAGlfEdsyySOtrHdr5Zwzy+hQEMxKPJXa9rsd+Ls34vQZRnnOITrpzXvjcQTF/BGahPaczbT6Ib+zchjfhJ2VrZg6QhcZlGZjSW0r0nFNI2PxcAAPUyfj8+p7Yu0xjjZsNjHqSwBH3oiUoftICXRmH+D/9BfgT39B0PmubeK4lY0sJQeujCd2hLCpZCxW8l+zbwRAsaHYIYCPsuOlTSvzSj/IXAWkcUrDCPz6Yf15mcWpD4h8yNKzr7VJHA+rgRURLEgyPRPigmzoRVIyAMQ5Si/dltL8mnNcnOn3T3n/5Iw0FcWIzNJ5po794l4kOS6oqdP6AMAA5ZF84BbqbVheNsrCRuFQVcm6Mo4ZtHDT6BEAEq1AlKKLtG9S0yAB9iFIdKpzybkPIK5dNK2nAkVhJRKlNA5gNnNTXPdyO+Xrzh5E7fcaETmOwDj/bfLzeg+qxtkXqc1utjj+4RbNpwb1oQM2LcLbG5G26wdw2yDctaAxwD12Iml37KfgESC5z3yMRtVIC1Z5pTNtZfdJ5XMyiywUIA7YmHuE6gbh+zdCQPnl/TT6q2zPErSbRCGuMdAvd5jMny9MxnR4d4fDP9xEKVekfB7VYUS170H9COoGUFelKGVwL32ZYwRpIznHqG3AwQNdJLvECOvw8DgdMyZSkL0HP67ImOnjpggP2/Zh9i50/8f9kK+RGxWNcuE6vBYZMCnLroXT66mJEYJ9L2NVbSky1zpiLBBzSR2eY88FRZ5C9FwimKyUsZp7Z61diutK8Duxj1NEFMkeLc3fcc1Y2vos7HUsOJ/nljNOt1m5WuYVINVT2/5cmWumAA8wcRaelNR6dn0+M/Dyaq/2knZtpPE1v3lB03PqSQnNz2HXPmdc/6xU5kWmoIj1CQBmr87TKWUJdC8AkXzvct22+0OXc7eei6ZzLkfvm7pJeZfDHd82MOLcRDkohSY/x17CEb2w0X+1V3uSXT3pFSwimxxXpY3U+V3aWmgbc44AiZJUypIf/vgW402V+zxBkluH+DsnmvT9Dy1CTdj96wFu34MPB3A/oDqOqA4OboiJIGMOkVC77MwPknSddxu4t28kUuOxw/avhPG2wfC2ARioDhEU6YMAMl3MpdE2IldwPErEgZfoDffYgY+StFdyaESJgk0LbmrwpsJwVyFsgHFD8FsHNzJQOwEhqqW2Wjh06YIyWYjsIZ5jIll5B8lvQiE662rjZIqHP41IUFPnE1GUz4g63XUN1w1AT8JW9MJaxDgiPO6T85q5YH0u1X/BEiNV83AAScdYD0pU5/bgwPMImR++w/jDLcZdlQAJJkLzOKJ5BGh/NM44dRqapatpJaLJRNzQGNDcj9hVNaqHXtol9mX2ATh2oO1WcpcMAdv3PjoxigMgA/WDROxg08K9ewvue/j3H8F9D3f/COy2GH96C2KIw2MMQLcRhuexk3tq5EhdS/LqvodNcr/qSLIslwWbbcJeav3S23svgJZlciwAMazOs2EUdvE4yv/rvKNWRoycAoRsv7t08/Y1r7UXO46Mw0Ejv4DMQFeWzWgivvTva+wcaJbAMcr3P+ak5awb4uisxvfvEL6/S7/lmy3cD9/HHEY9uB8QHvc5H1xkKGseIWJGYzfbzoFrGc9cCThOnx5Q5jSBj7lDLFCrcxKkD7tDlxzlp8xG3CxfsPL5KeeH7bt20w7ked05qbeLeRGWTBM/W2k5dSyX6/ZTxwGbvBJaXgGSg43jpnzGCHil4nye24hIojsW83SEqYRQvIZN2ZwAVZ/65oTNT3mNTHUnl0B7JgHP0ji5f8hAt0l2nfNChVRe+rsEL4H8mbKok6yayqLMHcip3ufYjYWRSk6urQus64lxthlHNjkCHztsfj6AepFgwjDCfXiQPd4wCEgX1y90vZAz+iH3jbRvkXc7i9jT+54wilG1XAI88fczx+ixk1xEHx4A5xCAtI8AkA/Augcpx3py1p4hIFjgeYERr/VJZU7uked38j4SaWSuIpZ5kpQEsSRpqNG6kDGuUSMgAjUN3Ju7TLzQKJ01R4TtHyWTVS9ZyxtT9mt13q46zYv7rrUpm3FEbvrZyXqEyWesUmBAzk9of7M6R09ziyzW7Vq7NjJh7X7luLlkr7DUzi+070u20k6aV6YE8GdWVfkd6VxImAOXJ+vlIkhdzfvsqed9ylqoff0l95FLYwJY3TOsglYvVp9vhEj0e7DX6JyXsZcEOr7Au5jJUJ/9wYXPZ+c0Sw67lNCh50eeSqpeBOQsRZyU35ekCdv/LSko3fOyRprM+6eeVc98Csj7mGvWhZnP4pR908DI9IBJ05f1FJTx1V7t92J2Elu9ZuGQb80Vm37POeweAOoa/bsGw61DfQxwI+DhQJ7hPANMgltWhO5thVATbv4FMbeH5PdwvUfVB7gxRLkBBhgprwRcdLw5JzJcu42M+2OPygcMd+8w7hyax4CqDwKKDD4lV5fn0MSeY0qozcMAOvbRyRAAaoSdV9cITQ3eNfDbGuOGEBrIfzUhROYyOeSQvdJJURzk0gF7bUOqkiDw0XnkhD0dgZeZk8BKf5jv2fvI8o0LwCayuGM7UB+jFbpe2uBwiOzSZfmYWf0ndZ6CMtbJP3muRba5iZCpKoTbLYa3LUKrC738Vx1GUCeRLak6jtLvU/3qSiR5KgGsQAQKjPog7eCOPbxxELH3wBidy7VE/jQPY0zaLs9GZi1xhxFcRafrbZ2BKx/A+wNou8H4pgUYqI5OmLYVCQNX34e2T02Az9E3AhTMm+jJ9lw22MI8MJHIsBueSR/wc1DE+xw9pOYLZuGpZ1j7u6xX+uArP3xcUz/jmLN6+lMHsMwDQSVYziRInpZfOlVWoo4SOOLWpbmixA79+D2GN61IGPYe3NbA3U4k7KIEUHYKe7AXSRiqKpBvZJz0gwCmTZNluUgSB9OxB++jRI8yiDRvks9zZ5qPtG7Mac47a89yLBVM05IdBUzmLQBTWbIQMnhgLTBQTd/XJARdDznkchRWOT7PgWD28wvyIdnns/UhMkBeiE4mzbHQVCmKZ1KklcrjQmLKkp2WkjpP/lY5R7uOxX629CidJiYv9kmz+5xoD0NymIIiLjoBo6ObyEg7ndl3rd0qgi2r9VhyBE7qHveEXQf3aQ8lrmCMgGfwMedWLTk9fJBccREwSYC2taXIDHWYlmYBmqoCKEzTwRgnfgkGgyMw83iIUqBhmmNFo6mAKGV2hSOliEQEZJxS5dI8orm0xDRxqWnvCRAhBCIh+SBHUMe6kTfXr+QoSWXp+65rIboA8tkwnF5DbTEaAaavRMfYOZDImnVqLLRXusb+e8ouiZYqI4HM/lpkPo1khp2TVsZrzrm18P21AMdanS8FzpccpisA1snyzgApazKkZ+uXCsigr/zt8+fs8zhdM5cjELUuT2JTp30nrz7rrN7X+IAmc+Zn2EdeMta+RCTTUl1e7eXt1a/429pv0MfTXLsWBbFml/aVa+a0i+57BQg/qceF89Ql5a9Fn5bXXAr8qF8lngMBiD9NidoX2jcNjAgYosiQN3ItT/cLvYi9Ljyv9luasimNJnRi0q4diowpkkx1Dd5toq51PPyPXpiFMbHuuCP4ltB+YlRdPAw6YLipwTVhuM0a4HXHUT5gANpGyu1HVPtKgJEIvhBzZgrb80odk59XDvy4B8YR7d0GwBb14wjX51M2HTrJSaG/VdaysmEPx+TQc7td/FGcSyqCv6nRfdcgNATXAVUXpbQYEpkApMiLSbsvvIuUfDN9Nj1M5gSi6lAKywcO+y6dS4dBBVSSNMIwSpQNHcVRoweR6NxIzg552euO6okjPDoelhYezv1sSV9Tow7Y1J/qWiR46gquH9F86uH6GqF1qO8HySfwaQ/sDyKT4whUtekdJScROWDTgndtBB8gfezRw0UGOt8/5mcg5CTt4wh3fxTZKwX9AiJgER0izKKzfv8oz+YoO9RipAcBGHfq8ESKOiEf4ACJpDgcpe3aHC3D+k5VHm1y+F9zXGbnTHpNjsAcf39yE3KdY356v+L+ZVnDCK4HAT01iauVZ0s/PwGKFBvEZUBuGo20WJdztngo/QrW7NLZoWPOx6iIGGXDY0hAxYQBe7EjsLiP/fxcGQvfS66gAPd4QPN+KxKG/RDXCgE7eBAgfPr7kBy6HPsN9cM0Gs/mu9A+BaR5N/0dGOyQcmlN1jvvJTGxzc+xBAwB8416+fcSuDJhZRswxAIHGs2mjlCVe7IWpaJsPrCUd8BD5gkFwIr6lUmoJ3VbstIReMnhbAHogUpEmoiLNOZ1LbB5iszfSZJpqd5W9uZU3ZdsCTA59Rub0+Ap84CyoIEYrcJZ7otjhM3aeeQcSMKcIlEkp0fM9aE5pvT+6d/T8wAHkZnD/WOeM7zPAOMwAtWQAe1hwGJurFkbRGDMRoNOHoMBVFPymoJHNuxf+7px6ApIIXKBvM97OjQmYsSO+7UztmkXamJ+Gc3LEccv1ZuJRrVr6gw6aZRuCBL1acggKeeOltP1aD4UgtYUo94OHSZgiql/urRtQXe3sk+qqwS4aJ4/6of8+7W5rLSU76GOkqj5d9ZZndeUEiBccGJcIjt0DixY23cWBKO0HipBwFEGnZbmCx03S9E+X8poOlfO6lGsxRPQ+SIAoLhmYQ2/jA2sTreF8s7d3xf7MbuXDbJ+JcC8vGbJTjjJRFLlQgnVS+fyp+wfn7tfXNrra/u/tJTXq315+xrOE78Xu3Yc/0agVLnnv9iu6SsrPqaTRtN6JYB6EoVxxXxjn/EU6H7l+fzqCJZTVkq7E4HpbwUYoXzYTAfhSej4Mxawl0TmXu3VfgvjzNZkh0mofrK1RSSGQKNtBJDYS/JHxFwKFBOy+1YiKtwg8lVujNrwLWHcOhx+cOAK2P0SIzoGnxJ8Ug1gDJJ43Xvxk+mBcXQSLeKchMXVUVZFdewfHhH2e1Q/fIe6rVE9dqBuBG+lvhhG8MNj0uFHlC/SMR2OHWgYRed+s4kH8iCgS+0wbisMNw6hAqqeUQ2cpBG4juCrsirPvgfG9PC/Mq8sMIPzTzhN9lQJAs7pHUOciXYhiA57VCG9Yx6GiRMksedWHdUnFnm78JT9qixPnR2Jfeairr70LwwjqntITpmmQnXfCbD18RPCx0+ZhWvzsADSF0jyeXBbS4QGPHAcQY8H8LGD3+8nCWNFosIlMJ32R9DoRZojxP4dQs4ZEoGRlEfGucTW5OBS2X4TnThB5NZorEBeoqcwjAgRTEn1J01I7zKjGicORQuH3bQRW2JtWiN3tXTB7N5Lzgp7iRdn+AQUKZ1p+vtToMiS8xWY3PdJoMi5zfJvud4vOE/S86vzDpi2nbLjrz0/L4AiKfrgqWQSFo183h/g7jcCiAzaD0KKJrLjUH8HMo4uj/SspZatRrbNnPC2AWIi7hngYKXrZk64UjJn2v7aJjlCQ393BsTTuqstAd1llPNCuRNT+ZxyPTlnS3OEHc8TYKeYxxf6yaRozYXlI2FCf2ekHikSK1IydAVKUiRIOd9cMLYvkfWZfH4GdH7G2J+0iwJXprwEWp0arMXh1Z5h0lgIDA7iyE8gnEY4XMLEjv2GhxHYx4iRItpTwEcXoyfZAI/nJweV1ZlEDel3SpwAT4gAM0enmd+YKZfZtgAA/yCAjru5mUTQMDAFF05EDoBiHpyqinslBlWxjZsmRqTEejStRKRGGVrSdtD5TPdl42jmBidSrffH3OfiM9OxF3CLSPYva2SGmFcFJmIu/caw8Mt+M3HOFOWmSCaNqgXSu6fKXB+lixLZQi39f1gffy9hS2WbdXHi0FF54JNlZdLO4jytdsliWgLKpTNuaR9RvJ+lZNsTgoMF2Vf78Mpeimi5DpfYEkBe7EfmPBkDTC39XucWIEoxl8+Rrz8b2aLrpfbPtSlp8R2slP0SpJqn2gzAXwGnyns/Z5/66tf6fPYSUWev9tvZS4yvtTJfutyr6uDM/M3531kk5meo30qZq3vVa6NtSlOCnILyau46sPnbBkacAyFuHJllowcfD1oXNuwSyvg6qb3a78HI5Ylm4kxccaSSmTzDCCaC28fE3zFXgjXetvj0XzkMdwy/aVEfIE5hD2w+erSjx6d/7+A3wPY9QCNADweET/dyMK1r0bcmAkY/OWi4MR5mmjofVPUQCoC2GzgA409vsP+HLZrHFlXn4SL4wtsW7u0bYLcFbxq4mx3cMCJ8/IRwf5+c9dV3f4fw41twWyM0FQ7ftejfVhi3hHEHNI/A9k8B9SGgfhiSTAztu6xjb52N1zC302syh2cg6c1TP8hnVSUgR2Qpcj9ER5NhQAdODkGrlW6TUHFvgZEwd0YU/SDVrTioMsu9Zlrslzqrq0rygsQDOpoaoa1Bg495BB7BDw9AYLibm9QGUHBED3+RTcl1JQDbvgPtj+Bjl5K3Ul3HyIw+tkl8LiAnRvcSXSKAnAB33PWSsLeuwV2fE4/qc1onU9ej3suz10cPGhlV52My2xE0+gTc8+Eg65bq8BMZmaErZBSSnET8yLKyS8fnpRuCJeecdW5WVWbYlhaBkEVQpHDmn7wn1g/Ik0M4cL6f2UOg3QBeAiZdYy912DQOLclNwCkC9uQ9n7GxvUhmQx3xZ8rnrgPdPyYnOY9jZpxbJ+vkR2tAGzCRDbNREwtsUQVXiEWyaNZX7Gf6TDqOwvn+tzguTT+yuQGSmd9Mch4EBmEQULRgipdAe57jy6hDLvqdcRTN+sXCu5u9U2mHlNhYLYJbVIlDVSMvU128OIWttBEfuwnrXub4Bq6lCcDvNMJx0jZmXVqxLEcW67DUhwPHSKYlZ98LHgTTWD3tKF6SIywlMmfX6t/eQyW5lkHzhXd/qi7eA90C0Gz2i4tgrNbfmnkWSRTe5nLNfi1FS7mi7XUfomWxB1yF6qcfpR9qZMbhmPuJSnE1dZL4IYrrUlVlZ6wBVyeAa1XB/fQjeLsB/eUXhIfHJBNIQcgx2G1TxDRrmfE/CizgRiSa6BggnyOPeJB8SKnNdDx4L/m46gpAnfcxMTJsCvQy4DADRbgRgJia2NbapsYB7d7cAX/4UeQHf30PHiRPDFUV3O2NtGnXCdFH35POz86lNXy5A8W546m2xuwt9p3U7uRsP47TyBwtw/v4blb2spNxoXtiUwc7P+Yb4+Rad83nC+XPkogvRYro3+cc5Dbayu5z7KXF3HgZeDq9z+QMUO51yr1Y2ntqn4xgq+4BTkS3Wv37mZHDnERw5l2tPddz7HP7hk6V/yLr1atv67PY53Quv9qXsbV3d+27tevUNb+71pb2tmv1KfaoKQfKtUBv4R/gYW09PB2csETCkvMHTaKF03p5zRlbo7aBCVGHrtizfNvASGQbwV3ZcKfsdWJ7td+DRTbumiPp5G+AOJkG8EGAEe56KSM6M6iuwW2N4z94uO967PstqgPBjYSqA3a/jKCR4XfAcMtgR3AjJ6e1u7sDVSLNxUTCMrab666XA+R2I1ICytBTCa66Bm2B/rsWxx8c/IZQ9Q6b9yOqwHLdbotwt0XYNqBtCwoBNAzA/X085HrwzRb9T7cYbyRCpL8jDG+iHAMBm08Buz8fJTl8P0rESx/zkxg5KvlHpVRWHFFLi1DJ4Daa8zyOMqFv8jRN3iOoc3rC4sw5R+yhisnBRdkW7vupw2jJrOPGHqrKA5ZlmV65CRCWsZGHqAioJYcAHTrwp3v4+3vpI5s2JRy1iYpROXAjUUvshOFK/QC+v5c+djyCmhZut53luciATvzMB5Fvi4dt9APCfi+Ome1GnApLbaZ9aPSoj1KmO3pJuq5J2IdRwJYYoRI0p0JdpwTT6lRkJiCcSRBdbNKSQ1aTYEbnTAZKzr6OXO4aKxPIEWRLOVFs20UG50XyToapfpFdEyWyxuC0sjNPlStY2ig/df+xwJjkccHZvfSb2bOdqcO5KIdTdonDte+Bh0cogM3jeD4h/LlyyxwJC866yXynG+kSxF+qh2VozmTFXNHfwvz7aSXi/0zzNaXxaQEucrJ2LNRp5riyc3xCdSk7au2zLNmljpb4jKRMdbVhlHqqvJmO9ejATvOERoJo7iuV2ALyb+ta5lnNI1PXQCQ05Uf0IDeeZksDyeGdgX/juIvPI3Uz77aMXHuuTdpvRY5roX+lXCQK9s/mVD9/byeiH66ed4JfeXx5/0kW6pzp3K3vOkYYAxCgICDLXik4ULL9U1F6EIaU9e6NrO/DCBpGhP0hS3E6yhEYETRg/TFzys/GPpZFZg8c197w3R383QbNwz7L7OkzkwA8vBWJTm6qHM0M2fvQoQL1Zl+q0R9JtnREiADhJDeMOr5VBsoJ+QL9gHAy8iHvlbiWvQ+1jZnDOEVgERHo9gaHf/MG9eOIZn8AcBQJUOeA7QbkM5hAKtdn9p6WOLJop8Cy8vNLAXy77yQnkdyVy6BYAf5xYBCd2GuU8/a5uZAoO4yea/ZZbfsEP/m+jBTJ9SnXm+W1O9V1be4xUZdiPt/r3BzIJpJqaa+w9j4TOBIJXuascM6WgJs1sGT2rj63c/raufbS+rxGcXx5u3bv/Jz7AL+P9/vcNjpHPn9JcvpvOKYukvl7sZtdAQpTceabqCtdATJPyja/ObUPMOUmidQi6jlZGVloI9vPreHl2hZVBFzlcDbnsrFvGxgB4qLvppJaDpc35qu92u/VOGSZnjX2+OpkFjfp/SCMNdX/U+d7P8D9+Vf82//rHYbdBpuPI1xkytMQUP/lEygw/rj5CX7rsPvTEdV9Jyw1dbD2AB72OcmlZfmq06htgEBZtqDrpc6HI7jvcfMfP6L9eAO3H+D6UfSbVdN+HEGPe9QuO3T44RFwFdx2A2obDH//Dp/+XQvyAAVgc8+4+dlLhMjjiOr+CPf+QRzwTYxQuNth+Mfv0H3fYPvXHs1/+JNIjkUQJ7Q13P0e/C9/FrZUybIvmOvKCE15OCwTtmDupTwDhoHqdrs8zwVtuypdw8dOtKnLBdtNnXjlwXTaj0yfWGFJr/puYrSBu7uVBKLqEIrRHnTo5b9eclRgs0FVVUkqi3Zb8G6DsG0RtrUADwzJZTDEm45xrt9sQHWNSvPGAKDdTv62OQoSKOLBmgTdOnQDS+TIgXPfWzF+fMTmP/w1lhdymQocMYN2W6TcKtFJxOMI/vAxSlksy1/kh1hmV5bRRotJb08Zmd+Rm+ZxsJe1LWjTptwsmj8kMdoDzxOtXwCKAMuH4alZ5/AVoIha2c+Xrr9mj7DiCEg5fs5FYhWfu404okM/TOtYHNyobqbsYP1/nx16sQKGWWs3rqaP8RnQZek5l8zMZVTX2RkOgOo43tsGvGlB94/wP/9qHjwDeCq1xEN/4l4utzHzFGCsKnFmfv9Wrh3GKP0o/RTjmJ366vgNHNnIC20eAqKW43JddLzN+prLTmCIg3ExafY1UlDnxoebricA8hxr72f7jrluAjqX1oYcRXc4AE2D6scfpvKAFKPhojSle/MGmsgbIcTcVk4A6LqGu7vNTvQQEgmCHx+X55+CPKDSVEQZeJF2MM8QAlx00vNkrlc2WjW/z5n5itpWnlXnv0VHLCS3gdHTT3OkvV5lseSBJs9X/fAd6O42t7vK0eleQu9lZbBsOWfs1MH9Ym3nJUA7BFm/qwq028WIfki9lVjjzfpEMYrVMBqpkTbGrx+kPYK8M+77uA7HCK+6zmspcz4HViTz/VH6pnv7RsgNbSN7s9sNfOMQ2krIOn//Pdy7O1Q6X0QgkI8dsN/DbbeyT2lq6V91BXZOJFt3rZAfRpGRTL/V/zTiV+eDqpIITx1zTR331g7UNKiqCtz3CIdjjNCSfStpXhkgg4iOQH/8CQkgVaA11tH/9A77v2/gmxbhf/dfo+qA7QeP5pPH9j/+Am5q8I9vZQ/16VGiXyL4xOMIIoK7u4uviYCmBr25k32LI9Awwv+Xf50Czpr3xhKczLued7Y8XmLni/9EqaRxBLGbrF9J4gtIUUryI1pe8y5awxyokt8/W9vcgtZE0zaxkRTQqtr9UjEmT+ylZvvYFZPIH8zH6qVzhTmbAIhnSQjhyDnw4TCdR7l4nhABOxvVA8z3GSfyQJ0Eqi7db15ixXqZQKuw3tbUtHBv72Q93O/n15t3nshKS/P1JXvQNaBR7ZnEnFk5vyenfmlra7fa1VECK9f9ntruJUCRtO9dA7JfwF66zS8cb5PI3ieqh3xWs/us56wHV/4mWSQJpeiVGdExTCOVJzc+70sgI7k6iVQGogTj30rECBA3H2vfPQEc0Wt/z4vCq/3NWNK3Tk6xcgOwPHgyezkeTpo2TmohO5gPR9z8X96Lwzc6okPM6eCjA+Lm/cfIDA2pPHXAKsOcbVJa65hyDtiMcohkzg6CwAiHI3jo4f7n/4L6zxvw4ZgiKayW8MSBYSfQzQZ0e4Pj37XY/5HQPALNA6P5xWP3Xx7g/vIe47/+CYEIgRyqd29B371FaGr42xaPf7/Bx//a4c2dww/v3yLsGoxvN5Kb5M7h5i8tmg+fBMjxHhO5lohqJ8Q8eKimdmwkWNZ/GApmsVk0qKpAu618rNrVyVniY3FDuta2cf6bcpuV7DCjSan9aO5YqWI/WjnBRAcmvbkD32wl4mb0IoHlnMhf9X1mMDYNEK/jEMCbFuFui+Fti+GugusZbghoHga4MWQmpyP57XYj7dD14L6Xz5pGHAdDjPzQ/AdR6ic5aMyhhUdeZHWXFvZ7hP95P/3QHIaojbJuTQO+i4DNMIKOlMeSa3GRFX1Z/t/0rSTLdQU7mlySKJtLcUUWatuAtltwZAfTEJ2DfT64Tpx0L2XXRIkACxvwOXC3rPP9AgSKOJ4IcbxfQj0llxNx9yciuZgnuvhQBxuROKgDZ3a0vsM070yZ2ZN8P9ZsslrdN2HlWmAGqmkknz4X3e7Atzv42xbjmxbtnxvQx095rm+aLNvEIQLa68AIaYQViT4+VRXoZhel+Wrw7Q6HfxJgpDp60BhE0i5IHivrRKQhAiL7Yz7A2MiTJL2jG+tio63Pr4zw1IZmDjWM3ck1BjhJf5dtvHQ/+7n9bsHhlnIRAClhM6wkJbOwxpsaYVOnLkLDKI5Y2+6RUBD6AdV2Iw7SY5fyRgCQSEY/wlVb0JvbKDU0iqxZXPMxjKBbYaxzU4O3DWgUMhMduwRQL7GeNcpCIx7ZI4Jibv4OAIkitMnsmWd7Iapwnt1ngb82AsMPjzgl1au5cBQ8BhlnGeJaWiFHKegzVpC+8vYNxr97I5Kd/Sjtpnl7VL4pjm/NiZVIEXqPtTEb26CUj5s23on2UBB4iUHOAmDQdgNsWlnfiXK+Lu9BlMk5rPcyB2OqBMwKHz7O341hPqa5xh7UnQGndc94dwO+3WL8bgu/qdC9qxAaQvMYUHWM/vst6N0WzgfAM5pf97IfeXiP8LiHa/ciA3d7I+v3tgU1tZA0NpGkMQa4vemDCloNQuJJayYg77omoK6lfdpGiDRE0k8dgWKEVoqw6fpJrqbQdah++B7+H9/JOB6l7irlxbVD/8MWhx8d+u+A47/rgc5h+6caN3+q8Mf/JKBM93c7VENAM4zyPveHvG5UFdx2myT00DYY//gOoRbwqdqPoD//dSpvZgHHc6CIMd138qh9IcpqDAM4VNM5L44TVmJABN+YCUSMBJydY7+aOqU8NlgmhZyu/MLcbT6jqorr7QIIm/rLlXucS67VsuP8MhnvEXC8+D4cI8zSPBXPHFUlAOIp2fJIqlrNq7IGqlxjL0l+LaQB4QP4RFtR28h62PWgvp9fz5z2VWl/WCGSijCd366OSDkRYXTR7wviRLIV8uRv6Qv7UnVYIaCd2wP/LvyES47/5zzfrC0z8fLi89HXaMmXtjCnx0jq9PeL3/sZ78Pun075a9buEdfma9b21TKX3r22X/m7C541reG6/zOyoMmu8E1808AIEUHjfSVSJIdqT5wf13ai39Nk92p/0zZjkM8mKAuamIN1kAMItU1kQLp4+CBJhq4MNnVOzBBeQYY1p0L6WJ38OnFF+Q0LiFiGJ/XD9IAcnQ2SQHuTD4+kSbXlALqokayHLq2X92g/jWjvK1Sd5EYB4qE6MhKprsUhst1IdIP3qD4esXnTYPsroeqB8fsb+G2F/l0N1zO2v46oPxzBhfzDlEkeD3CWQbW24C6ZggGBxWECZD1/m9+hvBZIG3V1pPI4yrteWOTYAYh9ARrdUjAhElMissnKiBO324oj4GaLcNNKPo/A4pzkDD7IIVyYnSASyQdI+/bfbcAVQAFwQ0B19Kg+HoCfP0gfravMmhyjY6gfMtPUsm4tuBffz9X5Ky59P16cGRwBGTrG8RjZwPLckfnOLIfNEDcgth52k5ruEQBERmLIY3jGQlx6loLFlnQ51+SDhhHsemDoM6Dkc39gD4l4Osdeto7GJYBi6bcXsT7XDnlapAG8VuSWLjK7USs3bQZEvNjZGqPCWIFQ2yZWdoMieKxOcHV623k8hAgSNHAJMDHAXnr2S9rzgjZSJ4mynk3uB3UqoOvhKkJVOZnLLShgI7UsG37FdK5LzjoFH0KUfATQfpDoG3cYxFnY9eKYtaBTZEXDB5kfjFM5tecl4fCav8B+pM9XskSXIkZmjPuVtrZSKEV0waQM2x9dNY1qITL5F/IYp7oGHU2USz+Aj8dcps5jx076z7ED7h+yhJBeFuV4QtfBfRKpykmy+7jP4F6Y6VTX4uwPATh2KcJzNh9YR6lh452TgdMoFgB5zk+kCWWm23nygsPXktOkHCcJXA7rc6Gy5oq5lj3EiXj/iMpFeVGNGhljNMJaxMg1MjUXSOis2iqr2+xZovwVdb28Vx9ExgmYAn5B957KqHeJYJPAp4X2FeBJ1nxWoEgtkWjifPL+I9yhQzN4VJsG1aFFaGJyeZa9BIKAhBRkjeWYZyf1sbRXzeSi0FYYb2tU+xEusOwZK5n3aIxnUeP4Zh0vRCAvQG54d5MADRpGcNeB+yFfq+Sg3Tb2hRHYblG9ewtUDu7jPkazVFmuyAE0BrAjDHeA3zLQO1QPFbZ/BW7+GoAP96CbLYA3CJVDeLOFqyXKhsYxR+GxRGeo7Gl134kYBTPo2MP7kMbAyfO2XS/X+g6VYzGSsBQABOZzg0ZdXSMJae8RGaxgEsmNwLm/XVPOib/TuLjUgfRSVhBoJkQxa2ejabMzM4H8uo6cilqZOM9ipI/tH7TwPp9iL9WuJUgFBSZP9wWqKomGBYStPK7I7i79VoFEOy+fcgTO+toCgPGkPe0JkHzpvifLWgbMX8R+K3/cqx/waVY60HUP+CWlppbsuUDqubPt53y259Tbjk2795z5BE/cY2ktf8ocfO4d2Dot+eOLz3gcMhGqJJ5BznWrZKEF+6aBkWTPWWDXXupsUL9Ojq/2DdqS3MrCQX1mwQsjWaWPQhDAodD/S7kNwsLEw5zkNvIPpoco0sOfBUSA7GTse9GrjrJKSb5H5Qj0WpUu0focg2g2l9qJ8d9wPAJdh/q+R3PfyrlMb1+RHIIj259udiL74Rwwerhjj+bjBtv3FdzAGN40GG8cujcO248ezYcj3Kc9xijnsMauLAEQld84u67admKTW0SdP2vST7FgZXinA7CWubAASTJSlUrhZWepYUqQovbWMbDZgJoGfif/JRZs78WxofP3xoAi0UGBusJw16B7V6HqGW5gOM/Cpr3fY/zrX+FubuQdSWNnR5I6R7zPSUY1Ssm21VK7vpSpk6YfxPFSZ1Z/YlIDaVFPh8glbGyhfjY6CkB+95ewVlRiTwo6eT8exwngOJeTUWffBZudcwexhfufLTP9PY8UmZf7DFBk6Z6lLTEMdQ9hANDElPVeWPMJfObpPKBzJkdWsOYMUid3sf+huhYnXd9PdeKXGDmn7EwbkaMEUgjIapz10XlC3QA4h8o5cf5pW+gtbH86t48z8l8pSiUC47w/AIFRfdyIo7PrE/AhgEqf1yjNg6FrSSz7WX1Cq1i+WzcHeyYb93LOXYoIiZ/b9XGWW2OtXs6B0z1pvldWh1ddg+oq5QCbWJLMY8mR5B+mvwdS+/EwIny8z+BVyA4xmde85KFpapCCYv2wLk+lpg5MWCedu2AshtN969x7XwKk4+ci5eRinzTvbTWHhylzjW0IgB8fQcFP5QojuLMqZXCu777EGWZp/iazB1PzXoAQH+A/fpq3ceGs1T2aRPLGyMn9fpnQqIBilOEUCUdD6KlCrk/w8O8/gqoHVN6j2rRwj62AEjctQu1EflUjFbSYpk77v7RnsM8fIjCyc3CDExnPygCitp302ZV1H3PLcFNjvGtRPw4yRw5jJnIEedeag4Q3TZTrInAbJbyOMbn7dgOubnL7BNnIsgPGO0ZoGTQS6j3h5ueA7S89woePSWSBa4K/aWWOvpd/0TTT51am++Mhz6ljloclOwc8xVbGA4/D9LxSOGXSWoAzzv1T9yU9izyNqXq2fFbSVvXbOASLaLtJ/iIT+TWLINOo9hTlYOZb51I/u/h5yn2tJeQ918ozXvrcOgIv2JfaaxWkWMutouVVFXgbc/00kdy0Vh9rKk09AeqvAOXW1r3nRJ08xz438PcSa9cTAP+/WbvESf6kcn9DQAT4vO857YW+4kgYK199CQn0a/J9mzN0Wk/NPMthmq8QwHrk/Rn7toERdTI4Bpgk2Z9zoBBOJ467tOxXe7Xfg13CZF5xpAsjL5i/p0zRdKk6NRYZn5PKTM5AyTms8grl73tMdZpTMSFKylSTpJHsPRCTF1NTJzkZqgxjytSpeuyx+9VLZASAeu8Bz+L4UB30mIyWolQV1xXc4NF+8mASf03VBWw9Y/PrgOqXe2E8WvbRKbPMQsOqOqk/rL9Li3FmxK4x9BKjWxO/to0cWEpQy8qaOZdzpCw5kZYYg00TozhqAa9qATho8KgOgxzquwH8uBfpjd1WADjjeGYXF8HRS+6agVEdA6ouoL7v4e6PoluuAEAEOiaOpHjAYSZhWxqG7aUazZPnXLKyrRfKE+1LibzSPotNG4G9e6m3IxBIDlfGmTiLHFmqgj3Ypw3tGVaLXsPRgTuJZlq4x6Dgm88RSUvtsGaFU20CWpwBZU6Wt1amLeraup6616ly1saoVA6TaCrNHxSjfRicDuEpKkuLKMKE5dacI8T0kB3rxH0v4/YM23H+PNZxcb6NODolCRDne1MDVENzd1CMUqBDJ9Eih2NcI7KTX+TbCv3xJXMLc6gCIvq7cQTd72MbDEl6RnXzAeS10AIiFz7vciPM1zcpVkLVJ0nX9ScUmagLkoXT57OO72nbCMB0htFqIkZs6bbtk8U8UGyjEkorGHHy/ov6xSg25vkhRfTXTcRDXPfTnmJtLp04MOMY0ggp6B6CsvwQMFnDyr7FJrrulDNtsl5SnJs1Emd2nZIapoe1pXLjQ+T7l+y3YQSoM3mv2KztV4Ah1l7ycKuRZ0By6snHBrjrZW5KshlFm+ic5jZCokjrIxFsfq5FCzFXXFXlCEYbNRwj1thnh3m4fwAda9B2K/uTiuDQZBmqGLVMhy7OGUFyFsWIUx6jnFlTgzc1hrsax+8qhJpQHypsfmZUhxh9ZtfgEhAKMj+7rhdQ5DCAjr3M5RGslWcMEuXmvIC8am0D3jSg44DwuAcdj6DD0dyCgLqGG79DqAEEQvOesPkAtB9HVI+DzNMc0H7swQS44wDqYkSStn3MEUQ67tJ6xTl3kMq/pZufceyujYlTe6hTwKUykGeR4VeC3GUU3lJdn2mrEl0vFaF86t6BJ9F2FsRNc6ohuAEAXJ0/pyzrm/d/YX5GWbv3UoSefLD+3Cf209MyVuZb+9tLfTll/1UpxLVyAYCD5DlkTvr2dDTyaZQjgaUqxTm2yn2D4DHJfXUOsE/1LteWK5yZ9nmtNO81Duxz7fs1OFfP9bNLr3/qdd+C/Z6eZclefbpzOzc2V9feM+NpkYDNy/9f/vYrsG8bGHEEIHom1RbCaF7t1X6Xdsnm0YIiS3bO4TqMgMuSBpPDm03mqnIVQNxgrR0EpvdLTo01h6xq5Bpmvd3Akx3rziWJH2pqQZX7XpwxCgYo2y3WhfZHbH7dgR2BK0K1H7J2eoyY4U0roMixE5CkrkBjQPOpR9hUGHcSOdJ8GlG/P4B//ZAlWhS8uEBaaGZWSmeh7RIbLDoaZ46Tskx18MS20OSlHOr8zCoLASBJnK1FoSgo0tRygI6yZ66uU64P1RkHIHryfhCJjb4HHw4IxyOqtgW2C5Jv0YnqhgDXM6ouoDqMcPdH0Md78NDnA5tGiNjDjLaFkRa7WE6krEvZnpN2Nu94qS+TS8APhyDAfdtMHZMqU1ALSEXKcl6SV7PRB2olS6U8OE3+zk65dHA940yYyMNc63g4BYrMbnRBuQvvo5Rvy+U9g6F0zUaNF+ZZU8+ZFAWQcgdl56Jhvtp2iL9JfV3BhcggdxrNFsLV8jpLz3D59SaCA4iO4zg3jyPYVQKa9EN2YGr9VB4FON+n1LmQ5iEDIPXRaRid+nh4SMBMigzRa5/SZ2fPfImjBskpMgvQsWvjJcSyk+/wTAHKDlspi4trRQ/fr0c8lWyzC9uiTGLLAyYOJy4dUEtznjrAgAxsxP0Gew8G4LYur1lqNgInfb7ijCyjuYr1EnUdI7uqmNzeTfLHsMdytF+xB9Bop+w8M3r7rDlUXgi4+1y2JovBLGO67zGLILbrkM5p24206+2NkCEOnciHWdBoAYDmh8cJCKbjnNpWplGX+zN7D358BIjg+kFksu524KbKoMgY2/7hEbw/SO6AugYfuyRjJlKFDlxVGG4d+ncErhz8htA81qg+mDqGYtzGPpBA72MHt+8F/OgHkRzTvF3ajqMHQi8ARV0LkQVAaCs4AOHhYbLH1OSjtNnADQFcM1xH2HwgbN4z2o893GMHjuuI+yQ5RVJ0nW33QRLQMyA5T7SddW2J7xChACbIYT4AViyt12cc20ufFyDt6m+udMp+Fv37NSfQU8b0pYBBuneYnz8mUTgKcMWIEN2G655dz1tKyjhMI67P7jEMiDqp97WO6pP3uHBNvqLNlfRx8vki0AmVBN60II4yz4hnVyD9DUDmJdXB1/URkDZNwITZQzzVLnnW2Vg5UdbS9fa79PdKBPq1/facPbW8l67Hq11m5Xn1tf2/fF80e+hZPZ4wR67e4xnv+ZrIypQv09RZI+MpxPn1iVjAtw2MUMx5UEV9eRdWwq9PvOzyRa5d82qv9jXZxKl6fjLLjqXi9yfRYnVEOcAPOUpDLbi0uVN2vvzsWgfbJRs4dYIgSk9HZ0QZwWLza5iDqF43q9vhiPrDARylEKiLDL7I0uM3t+j+8R2q44hqPyBsa/htnjb7tzUOP1TYvfdo/3qAezzAd91UuiwyumdJmSfvQJi2EysdwDO5gai9vtJs6oxNOQBUOitJgCwclhxJxIzWKwhzkgCEY4cy7wG57ChyUeKH3t6J43+M2tkRTEJMeMz7IzjKtbjtVmQrzDzMlZPrtWqDR733aN4fUX18BA4SLZISpg+jgA3G4SrNk/tBzABp2u7CPrrg1J85v0umVTkeOQizvarkWe1CHp0d2gaLDty1w//aRsdaYtobpxyiczH5Fi5oCz3grsiirIYP2/axzrTFe1wHiqzmKDF1nvx7jZ0Cw1ZBXLO5NHUsARF1mlFTT6KXaGnzsrQ3SfrzBHJT2brkjHSUpe9O1Pkis47dwhGn90qRZTYZNJm8b1a+zm58aaFPlcY8cb5x4ATkpjlMIzCSkzrk9evU81sH0Mk2cPO6X+t4AHB2vJ4q49w6P/t+4V5c9NH4GVWUHTrI62ua95oa1DbivO0HTCMkMHmH7P0039CsDnEfohKchVRR2qtwOY+WwEZ+BiUIyP0Lh9ZszjLjMj4biKJT3eU1e7J+QOrKPjnbQSznjSRHc2peK1jpqf9Tbo8YVTZxOC7NtWWkiXmuZKfm46fOBbND78p6ygaQVAJLZFPDe1Bdw/34g8xbRsqTBg8+HhPBYlaulh2cABVkfj95xilgniJWgOTcJyDe3+dX40MCb1HXAjB4j6D99HgEbndARaiPAe1HQvsQUO8Dqn10jsYcPSI1VfbdvP7xGOVEj0IQ4WM3iRTkYRQ5sfhbHZN07FF/OID6AW6zmcmrcdxjUWCEjdzPt9JG9Z8+CLlH+zhz3OPFf7VfxQjiGTiXXkF8rlJ9SscB53d60kpyyTW21P+vAVdW6nOVnNEpO3e+es4YvKoep8kilmxBFszT6LsYJUe6H9foLCUeBJ6fS1brHtbbpSQJvcQ7mN1/xbFv9zJFzo/T+0sZIy7lSozkQM3BopfFvUmWv4zrnDrvFHxHfA+6dj7XcXrtXL/W5mf2ZpM9frr3yjt8Kef4S/vkPlefe7Vsl/hav8T9P5c/1+7p9H7n6vNb22x/9UJ1euJYWs45Oq/jWQl0VeBQCzz9+4x988AIiBZzH1xll26ynmpfQyihta+tPq92uV3LYjaMIGY6nWtkyWLodIhO6FwP0YxVCYOJREl5mNe6XGpLm6f0rzKNq8yyHOcH9NmjsdH9Nv2fNREskRwY1fETD/bh7Q77v29QH2o0jw186zDuCFXPqB89+juHwx8Jdefg7veScF3zqhBl4CAygiQJ4dpzL3x/ygFsHC6Sc2AexUCVi9IRDmha+VcZS497aagUhWP6RMgHbrfZyELT9/K1PUxQBFyiNBfVNfjuBqGtUX14ECZm5SRBaNeDDh3C4yPCfi+5QaKcV0o0qnOxc5KoGeKwqB96VL9+QvjrL/nxlWGZcjKsOFyfy/6zByerlVxGLADzgzXJuwuHoyRm3e3AFaf+lxxGKnGg8imxzLNM97UDpikj1QvIeuG2zZbKWbrPUjsq03zJub10YHpO6P5KpMipw+spabnFsiefmSg1Cyqv32z6Ox0f6njVSJE4PwigiMTSn477BWBGbxPn5DTuNBF7jJpSpjsDy+/kCWu/dTCm/B5lvVSG6RoA8tKxOXH0TqNiJtEIrsrj/uQDTcGrksU5v5wAuMgi1T53AnhYs8/pDLjmkFMeEsnlvF3qxDGa8tQ2IkNkQX8441il7Awu1toZ6KTXDPHvEmzXvcqaLJUBYOw6pCDZueS3k3FZVVn2cbeVCEedI1UyCBBn8eEg+wKdk3UvsjR1zcBxTjm4Ft8FABBilAOwHLUTNf+Z0rOXz6SSRxPndOl0PKV/f+n8cA7I1CgDAHCVOPFZZKSobRG+fwtUJDI0PoCOEinCh+N8DpmVH8CjPBfVzfQ7R1OwJMo96TSTHMAkEcIUz5AJJGABR1zTAJsWGLdwTuT+cOwk7wcR6kePLQHNJ496L5JYYAYPA4I+w0rdAcgz94MAInq9eecaNZQilwBgIPDhIHUYR4m2GUagM4QkHgQQ9wy0AYEAv5V+4v/1z4D3cG/exDEmSednhCdWcFv6yWTfHN9vbt+Fdaok8qydAcp1+dq5cake19jSb57rHJ2Blc90br9AXVbnHDJzBvLapw58lWVLcrgA0AbAu5xvDsN5Z/dV0dkL0SWf2SZzZyn9dTYiRgARkduTfRxVIpmr+y8lCqT8gjZ6UMkjWhe9PkUuvVB/fO6cfuntbL5Drf9apP1vaXbOBwDC08CRc+37GqEytd+6HZ7jmypBwJeMKvzSduqZn9Nnrz1fLt3rEuLZyfrH92MVbSoAfIb8ZuzbBkbixCYsn5dGkF9wQvutJ4PSvrb6vNrzbWVCUqmcSdLa+DnOhb3r2JIfmHvljc4k98CSQ+q5fW0NsFxjsBe/TYnGoxNE2cw26S8+3U8mUZujovrzB7wjAsaoJesgjqLBA8OI9sMOu1922PxyBD4+CKtQnXOxraiuI4Cj8kgrh7gVhlJKsN1scv2sEzYl8nWzRUUTNnOIuQCCYTMpGFKaMr4V7LJOjjQvBtDmBtTUKRrHbdoEbhAz/A93cptPEkmjshQcwTTtO7TZiExEVUm0CDPQD8LEGj347S3CTQtuatDtrTgQFJCzr7tM7vhSfW8iB1A4EABQ3YiTIgTJo1AWo86apgHd3Uri2LZBaCqM//g93BhQ/6efpe8AU/m7a50HS9+biBkeximYoM/QtNmpdiq3zWx8rwAGa0BDyeS+1BYid7S85YO/GUvlIai06LCkukYZdZTMSFmlNjqXZC/Jo0mkFh+7VL78fvoOVhnggcG23+nc7dxUn38YEAJLZJp5NimK4N69BW234PsHhK4zuYPOj5NZxIaz707k8tybO3GeGycBhhEpSfys0OgEsNEup/peujfN93tmrF606S+iBvLX877EbHIwPYVV+TVaagczxxmZTHYQB7JKtA0jmDqZ29tWoiY0Ym9p723Ac6pruLYFvX0DPh7hf/0Aqiq4t3cy9jYt+M0Njv/0DvXDAPrv/iMQZXySIx9YdbppPpf82cJ1rkL1/TtZdx4eM4g3ZDAxgYoKknXyvCnqrhdntXv3Vj4LUQLMgNkAcu4fjWqysmFl/y4OhCKvVfSxpSiNNSa4N/ewESgvaeQyg3wtiqoYR6Hr5J3vthJd+ssH+SL2rzRfLM0TtrwCbCpzN/CxA1VxX9HUOUo2RkEoAYM+PaKO+UTK+V73ilw58E8/ALWTiGLdB/YjmgeK+c460KEHxb7EzFA5h1nkhKk7Hw7ybx9lRVfOr6zzedz3kfeJtZ+IKzc38owxHwTIgR4H/Ph/34E80DwG7H4e4O5u5VnjOkcP+wx+Ek3LZV6XtbDvIj3TGeLAqbPGpSD2qd89Zf61oKHtt58TvF6zpXoAec9UApzlfVb2DrPIvwrQaD8pZzpnkIuECh/AbpSzg3M5mjBGRyT5w7XoNVvPS0CrBNQvRBF95rU172eqyWdShxxZnUBKE/lLNzvwbiPjpRMgnZ3k8XFxTQldhxTlpmNGiQfAJFITCnhP5vmVPU0R7bKYw8Ve+znbUSPdkiKFPZufOUN8SVvrjy8RWb12v1d7mn0JAveTwPgzZ4DPERXzUm3xuQHSS3+7sp87ude3v1u5X/J3FSC/fHk5kPXNAyOzsHlgfXP9FHuNrni1b8WW+mo8bKckiWlTt8JoK4zHYfpBseHmoS9/8nyzm5eZA8CM7VOOSd00RlY13dyANq2AE+MobL1xBPc9gkoWLJj/1z+B/vpzzDdSg/tBJKUAccpWFbbRURRUEseyOh1JOPraHGIOzctRIZFxQy6xLnHsUvm6WUcISJqLk+ZicBgz8ONFZiH9XTqVyeV8MbrZ7fu8wKhsElFKms79J8mp8vaNSGBFB8Tw4y38xuH21weEP//VNKps/hXgIUAcEY0kaUcnjgZ+eAQ/7uHqCtg0QFOD7m7EQdUPIHUOx7wyqX4vyfpbOrDZ72Ib0s1O9MJLYCS+O4rMZL7bifRjRRjfbPD+f7VDc2D88K9Vdt5g4ZCTxsEVgE/pUGPGhM1trqPtRoCBw2GS0Dk56tbuH8uc3U/rXDrylt7Pxc9THPZtuamssuwzfSFGdSHq3VNgieiw7R8Z9NS22eHpPbhbc/SEDIrESCoACP3DlBVczl8Lzs6UaNrDSA5pW+Z6oarAjyZyBBCns7LfKwd8/w7+3Q0qItDH2M+GERczyK0T3RyAqZI5j97cwf/dW1A/go6DOAv7QViQmoxdnz22Y9KvJycb2hKU0r8V/DW5kBad8udAkRIQKee/Mnk3ZHO9uM/8LWxpbtL/P/X90t9Aao9JYnRA5Dyi3I5EI3J0ljpgswF1HYKPc13p4E+RH1Vy2NKbO/h/+AHuQfJDUdsIULJtMb7Z4viHHf76f6ix/bnB3/+PG+k3Wq81hl5aO0/IRun/NjXww3fyfg/HmEA6ymXGPQ4dGxmzMYqPj52sT3F8YYjXvX0jzrB+EMb9IA5EdTLz4SBrgUreRcBvQmiw9bd/l7mk4jtKl0RgMEWxlaDLQtTaSebxE843ksuiSes8LAhUzFH6DrnrgKaFe/sG7APGP/8V4BCjUfOYm4yzS+oWpu0VDkep32YjbbTbQvPQEZDIGeHX9/l+QFr/AMi/dQXUFYafbtC/reFbiTC5/c9HNL88oupHVADoIRI+NMoq9QMHjWRdeo5wPALHOYmibOckuxWN+x7Udbl9txvQ7U2K2OXKAU0N93jEH/9vD7kwZuDmRv4dJbl82D/GfCu3co3Ov/oOq0rODUsStMC0r56cdxdAvEtsof9PSR0vxNh9CsDyUn6B8hljbirr8J4k5F4tZxkImexFJnO/RAylXIjIl1tL0e9rdb/G0TaJXFs6q87XkLXxc9KuuV73xKjSGbns6xYQsbl+wAza7RBut6JaQATyQeabKMeHrpP/NCJYQXhL1kuEm/isibBWrAUzMMzl8x+QpFgnoI58cFlbPNUWCQsXzg2n7FIH81Oc2woGL4DWF9vncIC/2tRe0v9a7pWfWu4aKP3cctfs2n52LoLvt7QS8C/tzPnNRp8vRu17L0ojuh91+azMfzPAiGUscMhaqdfauY73Co682tdia4yHVU3PYvOkTo4n379ghnwhs4cEqQbjLBsyyiIQIMl/OUxYcaW2+fz3nB2m260cskOACwze7+Hff5TrwnrEmko1JGmb+QVmQV1wGKvjFtbhGTfOxNEBFR0yKhuRksuH3C+Cyp6E/LdaAk0Eabf9IzEWkTfcFCW5KMpN0O0taCftw9sWYScHdAqSMB3DOIk8mh2yg3Gw2L6pAI0PmSmpz6BRI8oOWGOuXmszx+GJtUHfnffibCsdX/pbJyAS6lpYZXUA32zgxoCbnz2qY5BwfDXL5pt9diUospQ7YWk9Gwaw5mmJ95smWT4PMEz/XgFCngKKXMQ4NGBOGYlxyumvwBUZVvHaLWLfmyTJtfXT8WqlpkKYAE0XPcOCI9R+nqS5mtocfhfmkCKaR/KxOaCOB/xhAK/Nn9pH1lhQFjBUNvPoQYP+F9n40QmHcZT5T6M9dNzadjSOysU20bVnLapkjVWZ/t86m8rH4ew4suMAWAZhPhfDsLRTa/3EqRaWv584JcNyG8R1Y2JWTsvsHRAY6MS5PHFSntojK2BQST5A2m6ihCIBPqB67LH7M/DT/2uH5iEmuqYYaRVBBWn/C9omtYfZM6hT69CJ83xckHsjyrlR+giY6HyuUQXaVw9HkTPSvGVFPomUsLvsN5f2mdlYCwtzwgIoUjx/+tyyus9GAJ6pWyRwUDF+F51xKs9GMUdG5WS/EFjmrgRyZmm8Gfh7jghwbm0IjJTMGEgRfKyRIyozqtEWHkAFhLsb+HdbjLsKXBGqgYGeUX86gt5/Ar+5Bd9s5LdxP8XgvJeBOvHdOoFnDdRkzm0Hcdrmc64SaCIJx3vwIEx1QhyjEazj/V7A8bbJkdIRGEl7pxCAYy2O27S/dJM97az/Xgp0GCB98btzDqaV+XqSy+S58+9vfa5fGpdxvzVJWn6O8JPWRhsZgtV3NYvOPGenAHh7n0sOhqcAj4K8sBhBd2l9l4gDq1XSMxrndS3OYRwYRAxQyHKlLu4Zx1HUA0IAjREIH0cZV+M438/o87t8LtQ6qqyW/Itpnq61sVKWC+S14dJ2WyMhrkXfXtimz7JrnMGX+OfKa14CAP2t547fu32u9v0S/fe3slP+i6/peUuVhCW/5uLccwbsTT4XN//sCvu2gRG1KEuRHBfXTICnnKKnvn+1V7vG1iaAF2EduXwIKxiHVFX54AfMtYSfal9okp0xoDRxnbLxLFBirlc5gOTcOAKoxuRYnxwMigNY3hTLIZq2W/CbW4S3O8l9URGqnxvQx0+yceZ8gFxls6845Ca26sB1+ZmA6HiNAEeSUBA274SoYyVvOCQZCQQG3NTZkhmtPD0Qc9TzBrLkUNuIY2PTSpL1uAiFuy24qeB3DbgWYIQGPSD4eX+zi9zoY7SJ/C7N6aPke6ExHjx8kENHrK/KAU2d+E+0JXb1uYgEyHsJh+P0/nrYiexe2m7ls64HhVqcKoPHzX/Zg/oxOtfWAbanAf4uOTdZpSyW1jOOrFQbJVTmNrnUObV0EH8qY3TpVuV8AEzeyVWgCPT9SOTR2XwuUYt9FiVXOi00x4eWpeNW5VWWHGGTup5wQClb28imaN0W35nmQWAZ+9zEyKy2ESbj5L4o3mXhXCivtWBMlAqkbhDwrx/EYReTDE+SoFsA5KUAzaX6A3Mn+Yk5eZKAtuhHVzu3n2snHB+z/z/x99SxWE2vNd/NJMRsfhFN1gykKEuVc5vIF6opkMoEojo5f5hI8kpst7JWVeKApU+PcD+/x81/+0mA+brOMnFBJb7c3EmxFmGVHlfGoebh4cNB1o1hnL8/dUZ65D2SrusaNat/72OuEXV8BTPvx/o+uU+vnkemwNdJ2RSoU56nTvk1Us21xjmyIznT1aGpkSyjtKfmUQIANA1408o7b9scUQPM5Qmd5pDDaeeU7n1LRn0EAYgDkqRVLBcUYi4XL32xbQzBQu7j325w/LsWoSGwIzQPAfXBw71/wPiXn1Hf7BDamDPAB8DFvmGJJVSwvif1plQH235iIe0bGIhSWmZvb6MOB4l+hlOJUgeKY9S//yiSPiq1pfu52Gd5iJHE+33eKyPuL51LefYWzwmnzg7nHBzJEbvkGM8g7yT3g7XU978wO+tz2VLftmQUSzJZA9nSWhz3eG7u2rmKELcGfMz2Jnnum+1vFst103+LaOMkfRz3ZCW542Q9V/uZIQ6cAxhstIa+AzL1iGcZqiqJCGmbHDkYgREeYo6rBZm+ybOVbeJIjnW67un6Oq7XmQMnECxJco0rY/OMQzhFeGrZGk2cPrDzGnBV9Po1dhUocgYwLMt90jnqBQDYV/vbtC/Zd74FX3V59l0keSF/dkXbiWS59WmZecE5gC/3Q3zTwAiHIA/L6ugsHCTXOn4n0h/fQCd7tW/PfgMEV1liS/rpyc7V67lA4RNR+hnYoMU1eiiVAy3RtFwbFs2BI0uuYFMXYEoa/4YZx+MoCdoh6UX0WejQyeG+kH8o2ZzMLAdVr2zdggl2yRyl7EuVoNIDoerd1nUEO9zU+cHFvTTiIjIjc84EJPbnYvTFpM2i5A0AGqRPcVMDlQN5cWy4Shw31UMHOg7iSDplMYqHfAA7w4xcctgqcPNcEGTJbNuVbMczzv2TwA8g7ybmFkEl4Bp5hvv0mFnHBSD1/OfRvnmmPKJFFvJT7yllnmF2XPvulgCq4lB0LSiSnL3WIb5k3sshFVjpk6ff1TS6JB7SzzgPrNxTmutWfsPjhQ6iukJoHHjXwvkbAUaOXaqPRoKtyUZJv5zfS3Ph8Ogzi74ARSZ5iiwz/FzExzW26swx64i9X/koFFnfsV5XRaZ8bnsiuLi2fk6KXlrTFUQHMpCO6HyJUlMT6R3bJiZnD5pGnEeO4I4jqI+AAjtx6I4evD/E3FMhRiLW6b6s99fxTisgl31fCog0OTF3kjlaboBYxglQ2qwLPI4yF4zjnGQBM39/rn5ydk41+ddWr3l+HWy0UNpLxHumqNII4tKNAFSkiYqV1KBlLbybi9aic45TYEo20Pey28IRpYTI3A85kgIANw7j1iHUADvCzb+OaP5yDz52cCojNiooFmQuIZfPoGt7qNIBoOtBIjeZfhTzOKzuB2KkQZpbhzGCKTEpewSsF+WQTL3LduYoqbd633N7k0vPCmfArvRnBGi1ba/wbyyU/UKOqi8JjE9A0Qvrr7kqina0ZI1JDrvSFt6hleXLBLRcR17KV7jwPNOIDCVf5D3PBDggB4n4WplPdW5eI/HMxhuW9+kaocWSz43Y5giKcwwt359sJLuuhbo2hqLeOl6rKkk00qZFIiddCfYtru1JOWBhL35izKUk8UtWnCvTZy9tq5FI5VmU0/x3sT2lvq+AyO/XvkTkyJdca76FvjojTZi55ByhghfOjQVZTPO7ScL1ClYJgHBmP2LsmwZGoAnAjBTL1SGipZ1z6Lzat2FfG8o/2Vh8jg2FOt0XvlNHlDorZr+lab//nODNpW1g2itFPqijkNTpIjk/yHuA4qFJx7+ytvsBSd9V758AEM6JVVcYtzyM8H0P1/egLjLFOQgwsNkIe7YIl07MPT089EM+MMf3lK4to3wW2mHqtM6b15Q/Rd9pF/+1STOVYUbCviQWSa/JISlM226VOc/iGOVRxhZ3nSw1uw24rSUJaQhwFYEHB/eX9wif7qOO8ZJjMTN0OQRxTut/1pwDU1zW1Ml/hjH7ZFtj1dqFeOmgeuodxsWamxrh7U4SuQYGDQPCX38RUEgTf685YK+dOxKDMEzPWvp8p5jJL7KZeyGnnJmbZofAks1/VbnG+RJYHOJrSdy9h3iQCr0hO48UdZU/Y3lLDtkTTqOkaa2M/c1G6qaJzGOdoQmQVVbOyhoBs/bm2sFvHNyt6PrT4x7kHjNps6lF8i1KAVmHFHOU1FtihBYRIxhixMg4pvw/E8fnS/Wxc1EVhZ3vJ58BrHmK/caknJmsmHO6vEZpyTa+8wD0/dTxSjlnD5pGIi4jQOG6AXTsEcYR5Amoe3DXw3/4ID+tKgBOnNWA5OkACiZ7qZWv5mSdhayLVFWS24tIHN6Bc3RHaZfIwJh+kKT0rFQW5/3Jydxn5+ylDtKfS+vU7Mmm66DLcyU5uF2TIyXrGryNYFo35ITjkzlhYU5J7+VEmxQO3MkaoU5JdYaasyHtthLtauVvDofU933jMO4IoQZAQP3xgPA//kdxZjYCjLh+FGBP85QQp3vMonUmbZjXHvl3vq7YpOun5ksOnEAQ9h5UN3BAAks45tRLbUQReJyA02MCtxbrfel5YDUC8jqzOuIAspyfvmMFr+jM3nmtft+SLTr5z5xtzZkBqCbzpe77r5NaKiTNltbYC+ecZUc+TUGRBLLKnoxQzaMgbF+7sJ/lJOVu9jlVLkeRUcyvlfYD2p9NpFZgOY8ouKTRxN78y7wgDRplRxH3hxp18oS8uJNcafbzKqoYmLPKYv7JXJA+1DQ6Rfez5Xxwbg4oQbWlPnyuHFuv8rNrgJmX9rl8CWf6t2Zfm6/tc9olz/raR9Zt6cw82S+cGduzvUnxfYoyjfPe5IIFWfEV+7aBEWtfkzPn1X57+xrf25rT9UXKjgf0GXsmb4wAzDdqS8ykiaPvmYedwrGZnVML9zpRfgIFYog4s+hcl450UhmOpPM8Xrb/jwfxGetcvx7HLD0D5MSUTg+aZrLXMoysFxElJmxiAi5FGaxWz24uXU5qW2UpHdWtzT8qWVQx4gPCgBcJCMP2LHMnqEXwiJo6H7JSglHRxWUikPcipaMOrf1BnEhRdiXXvyjfgDsakq5gEumB2CEnOF1jCj/V8W5/a9tvgcUJICVh5AgOrRrHg2nbwv/hO/hNhfFOnCr1XiJkCLE/VJW8QytP85S5ovhNYoxbOYES3InOo6cBDBfW8anzsdksLR1oZwmHT7LiCvagms2nAERnMGZJZ1fla3R82FwMayG9tp7p+Uz9IntRGe+JAeMq0A93kh/k2Gd9+MDpIC65kDbT+zIjxCTSOp+PtzX8rsb2wzb2u9jG6njS+UD1rlkiaqy2/aKxcQZwyGz69Kwn5rq1frTohFloz0vtUmfQbwWIqKNnoT1mc9FaNFvhsJ5FRur3keXOzvRZlSl0yFFUzCKDBQgA1vf582HqdHXbDdzbN/Nn6wdQ12cZHwD8uAcAuN1OnGNtm8FJzgC9rpupjmXbaHJtfWc20oXzWmLzJy2217lDr2XMWqb9UlTAUjmXHJi/FSdD0cdkHxLfw2YD93c/TCJYSd/7fi/7jFD081Wm8HVEgNTXQ8hzG01BkXQ/IunPXZ/zBsTfdT802P+RcPMnxvaDB+07iRpsG2Czkd+OCti5admOThO/475A66fSPJKvhOeA20kneI6Y0Xlbc+S4zQYpEjiVFfKYTfWdytGurpPnAL+ynit7q1TPkoAT91tJ2tLW0+6vdbw7uo4P8znPXy9ta8Ski38f9/rE8wibayPazkWDWDs1x5koKQVtZtFKeq4zdV08k6wRfGZ90M2i2SZfN3UG0qtK9uOp/JWoOwWHta4qoeWFiJbAkbXzlFbVe1Dwcq7huM/jmANJcyqesAR+xXdzKpLqZHQQDHCyxuiWBz4/fsoz5yLJ7DSoly1M+ozOX7M988XlPcNend3r9q20ifbH59TX9uk1n9i30h6/pZ0bTxcTqFfOQHbuDhIwwb6QwD5h3zYwUjaaOgqWJtBzZZxbYF/ty9lzFqGXPli+dHnPLWvlALm2eZywLcvrCgfzrH4vcJCYJCIGclLAlFhOWX16TcnWDfMNanQis2XpROcmNbWwcHRzes5ppofU9P/23ubPgnnnNhug2qTE5wCy1I51KHkvB9W2FQkGlUuCFymGWN7afWf1iqAIqYxWEUo4ccjOyomOIiakkzs5cUgB4GO3yBZUBrDbRUdqZK6nZ6/kPxoi63J/yIzQdIApWP/2ndrQ+RDEkdV18tuqyt8n3fv4XzDOg6fYBGRZKUPD0u24qSrQ7Y2w4hUYmQGSeezQdoP9P+4wbhx8GxO5AnBDFaNkTJ+xGsfWzm0gTH3l+vw8NjHuhDVn18jnhMevARIv5YRI5U43QXPH0RnHeyFRlRxS6nC1TFW/wNZdotzpwXstGg+YALXyEwJQTeWltCzjGJKIsDhuKgf/0zv4mxrNXx9Fyu9wBHOUpPEe9OaNOO6shQCEDwhdByZJ6jm8qxFqwubPO6l7YHk0HV9NneWM1KlpJVsWjCMjn8Zx4hxYbMdZG64wH+1cof/vPUqHSnqnE5D0BHjyVKf10m9e+uC9Ao7kfrsApk/Y9UU7a5+1zk97vcqGVFNmcYqiAlJ5RDRdByf1F4IA3d4i/OF7kVXsB9AwSgTS8Qgfc3K53RbwHmG/F4b7uzcSVbLdROf5EfD5PgkcB3LOE3NfqENZ9zpxjUhSV31/msFfEkHW+oedd7St7e8njhyalqttpPkwTvXBr9HOnY9iVBABoJsb+D98BwBw+x4YPejYAV2P8OlBcrYsODBfxMo9nEZMlnso3Ud0vexX7PruHPZ/57D/tx5v/plw+x/vgftHmeO3W+BmJ9fpb5pWIk5OzI+TOsU6UF3Lb8YgOSGaRvYD3suwDRce5EPMK0ENwAGhG0BtC3d3K7Kn/TCV1CrzEJYRJFo/I2knc+vK/deY4eXeStdfXWft/h9mjmuaKOmokZBhuoZqDhS9z4XkqrPflc/0rfoAUt0DwLqfjPYUtr39HXB+LV0qp9h7IZFIzP5dAWfz07PzNplIJyvNlaoq/Vv60kLV6hglq/VyOTJ9BiCWpqBmjIrFaOTrlnLRFc9F2r8nFXJAE59Jc2utFyLglyoQBLMHsOVdERlUlj+/55Vj4jlOY3P+TzJuYTp3pX9fwq9ybn/6qiLzPPsa5tTf+v6fy76Gtr3E1pQ3rF2i2jRb6+Nap2dFJeOqqkTfg6+ILv22gZHgwYESa/yq5GKv9vXaS4EHL9EfXrpPfekJLG4en5074FIrGPcTGSzDzE4yUHe3knPhw0eEw1E2o7PQXeNwCJxlXgDDThbmK/pBpAXUosOydKQJAyqXO3F2lBvu4FN9tQ5oInOwH8CjcY6n+wrb2r19A357J6DBwx4Y+nzg0/pUxmlFOHl40aSc0ER5ChrEgz5VLgFDvMSumZUbEsNwkflq270fgCrEryjVwd1LDhF+3IO7fgbSpfrav2P7CrsygB8ec4RNPyQJnovsOZtW29aL7CZhkLpmM/041nHKrrSsxgqubUDv3gJtg5v/vAfXmnCYUX86gg4dvDr/bm7kd8dj1Cm+lDFaOgXW2NAnAFTzPa5NqJgO4EuA3meac06969XDjcsRT+pkUQYty2E4JeEdhkywmJRx2nGZHGOBFyV/9H2eVOyJzD7S+sGBdjugruA+PMJ9JNCj5GSgWtiOqf+/uwNvWvjbVpKsx9tX3U+gMSBsazSfBpCvERqHcNPC/Zs/gn75gHB/D2obke2y7FwioI6OKx/nCmeA5BJYi85lIokkO2ul83/yXclYzpvdJVm1kyDpOYfQtX31pZ3Y5fyz1HcsKDIDQsznK1VLEo+1Ac9sslXNc2QAJjLsd071MHWMwKDbbWWua2rAG6BXra7hdjvpY+/eAj6Ajkf5fdtMI0GMkznJZkYtdvYx6iAy/AHkaLvI9qd3b+XzB8nfpHNrIonYHCkKqCjjV6+bOdhNG9vPbVsAhVNq/iJO7sNegIjyYubWWdaT70Ncq/o+7wnGEdVfP8qzxET33HUpcTGABCKnfjaJIgjL99HfUQbHpvKfhgwwjssglf79uAd1dSJxWKkmDAPe/vMIoMburx1okP2fu7kR8Hd/yPeNeUl4nMqrVXe3QAQAwSxkEpOTJuW8sTkJdB9WRCpO6g2YPdl0IbFru7u7Rfiv/xFu34P+5S8S5bUGUtv7mQjzBEjqtaXElVZLP4/XJiDSlKfjh4MQTaiqUP39H0TOrB8mETd87FLi98R0j1HXyXSsp0oYJ0i5DjxlH/I5Ha0vYcU5a058K8ByY4vKAkt2Yk+8uodZ+g0zqMrzo8hQmb5kz4YKesU5WX7VzHw7Zd4ZAlKUUZoLOEqG6bgspKUAxAjIwVSVZyoExY0zyGNVGAw7OdVPz52LUlSRaOIbuKQwUAHwKQp4dQ+6RDKbXKPfX5gz8Mye9MXsHAFwycy8MT/bXNiPL77Pgq2dq17tevvcfq+/ZXL7t/asp87W6u+zKhfpO57+OymS4/nUzIdLSi4X2DcNjAiibxYn4GUmMLu4f2sd7m/d7Lv72ibKkuFwbR8rNsMXmz3UFwz+s+Pl2rqVrOxxAI8xsS9RYoPR7S2wadH/0/fwmwq7/29MYuf9apUS29IjaQmmTTAxiAmh72UjHp2GRAS0rUjBxMOs2AL4YplGKu8UAQaqa4kSiBtv2rSg7QbsPcKxQ0o2q2H+REDbIPzd93j4b95h837A5r8X3X2OdQQgm2HLngIAVLJZXWPm1nWS0kJVSa4B+16bBuRi8j/rtE7vfKrtvSYHlSJSogM5Pedmkw8wzoHffwR3XY4SKfumzYOijN+kP14h/PwrwuPjQgWM046MWmQ6SCxLXV1sS2ymYoHm4OBqElaZ1qkfEPZ7WImwnJhS2JuSr2EH/ukHOXj9t/+9SI3F64M6H4MHbTagu5s4LwQB27wXybPxymdbHa+nHcOUxtP5ay+/5wuZZdE/sR52fKYE4zq+opQZNY1EVfjDuiN9ad7VA7ImvI2/4ZiEOmtmnwO5zOG6Mn3/zQ24qUD/03+Bv79PQGP1h5/Au02KEhl/uIO/bXD4qcVwQwgxZQMTQAx89z90aP90D9dvETY1xrsG/OYHbEcP7Pfy/LtNTibKeZyBCDQMyQlDlcvOwLKdKEbfzNiQCw7K8pBfON9SLiQrT1gckhcBkZckV1iH5Dmw7Dn3TXP4gjOqcK5QJf1K+lyOQNDPZ0VHBzVVOSLJ1j+tS8VzcAAW9ymuyvI/EYwY//EH0OAlSsDbdSeOvTd3oJsdxp/eggLDHST5unVMQQ832ndiJBdt2kQwCO/fR8f31DFEcQyH7+9knPc9MJIAi6n/EvjNrfzd9Rnsm0gq0ZRBzwt9fPIyFt7XUl+5hKjwNTDaXbUQLaCHS5+/DwwOPu0h2FWo7lpw38P/z/9JqmlBKHUSan8AklyMypFO5hONZgDAfbxus5nkj9E9Y+i6iYNf9oWjRKdY075S5K9xO3mmMI7gYcTd//tfcPsfZL9HPoiE4d0t+OER4XFhr1PuH9++gf/pOwFVhlH62rFLUXUcc/Po/SVyZIWhXu6t49w66V7Mk30dvXuL9//rO2zfe9x9fBDy0TiCiPMaH+f4SQ4Se1vdZ2qblfVSB0a8jmp5h+HTvYBgdp+rdUQAAoM2Nbr/6icMdzXqvYfzAfAM8ozmX9+DHw/pHjyMsr/SqDZDXAKZ+S4CnbKPrky/vXA/s+a4PXdOs4zyyfnqSpLJqTos3C+dsxxl2TSVzYxRlSf3xpfca0a8ucTRvnKNrlfBS55DU/8kZ9U2CVzFMCbyFZVAmxLVIjCZIge7XvJepXUx9h8lYWk0dgRXmRl8OE6bRfeHK5byoSg4o+Mn7d/iXKXnx6WIlzjuaMj5J6lyEi0zdOlcuyRvN8/BswKmByPLewm56nPZ4vp4BUhSzG2z7669/+cASn9P/sLyWb6VaITn2qXv8HO1xRop5ku0/Zd6x7PzdHG2SmBnmMx1mWhxah4I4st6gejjbxoYkQnTMkMuRMhLW5qkvyb21qt9+1b2paf0rQmYUjBHn1qPsvyn2MKmLcldsGzQqalzTgxSxjZjuK0x3Dps3tzC9QN838tG0x42ZvVUzdvMDEqsEnuZSmyV7J/ZnHGiDZU55xxSUnd19NsDil6jm2VAkhGHABAQagLf3QgD9uExsguNzFlVZcZ6dIwvMYY4shNB9rAQnWJNA64iy4oIVI1ItHFbxlIC5QUrcwqkg4yXgw32e8BVyUmwLjGyUr62T3n4Kn8bOOvHf047NyYDi6NlIepi5pyN74m6fsqITFExU4kbHAWcYnXOfakIL0CchRrZpfY1bYRfoC4cWMYjEdgbWQ4gjeXU9rqPWHJuTGSIopX9XnOOrCTHPGkaCuzE4UR1LfkdmBNrkmqRXRFNas7/AQADmw8jmnvCeOMQGkqf0xAmm3/XBYAhDgjvxdmwacFRM5uGURyXFYHrShyihikJlXZK7aDOtpCZ0JOXcO5w6VBG2czMMouXZLOeu4atff5SUj9PsQUwSZMzL7GBJ/Ik+Yv0vchMal81zNmltouRbwmcMsxedY5rOewIFADaH6X8cZwCkE5AZbcfZN7vB3E6a4RnFZ1Mtp9H9rA4kcaU12FC7rDPGALoOEzeJw/ROa7rZtcjRTN4n51rUQJlwqx/Sbt2PKid65tPKfMSm4BDJiIsfodCukb3QRptIECIAmzxep1DNH+Sdcobpl8CTsocBLF/JOBGo370d6eIEpYg5DR6kBJDO0UPAcAwSC6nEMeKZZFr36MTbV05cONk3xJcms/BQ25LzYGyKNE4BY2zVFAjawKwDqTEZ037w6YGjXWW7jrF9o/3Zo2GWepjk0jAAIprokacaRTN5Fm0/Lg+sPdwQ4AbGW4Ikm9tlH+5FiA0geJL3V/PQlU16fMSqYgI2l05hicg+BXOVNuvluypTtMzziqbY0Kjkdbm/eUCeP0eLzy3pPUKyHterV9waX8jgGUELZmlb6UgGHN/Bd6JRMou+Ayy1ga0RZyX9D76t5ZPBLTGDWb8P8RGWcA8uz0XkYv7pvRzno6PJWJF0Y5cV6AQ93esedkWgDkjhSvteGKvZAHtr2Evv0gUeEa9rnHkfilf3tfQzi9hT92nfOv2tT7n7xmYSs9VnOEUHEGxVpyzFzqnfdvASAiigzxZBEzjXdKhPoej+NW+Hvsa3uG5RflLTHwTJpN+tuBQekoUi92wqeMkak6DWULnlQmkDNUQQCGge1ehe0e4+XGHJgQBDbouRSuw0YeeyACUh0n7GcXIEpKQ7VNJ6QAgazSvvCfL+K5r0UM37PPkwImH+8Q4Ovag0YvMb+vgv79B5Qj0cSOsps5H5ynJQfDtG3HW3N8Dg7JWUWymc/JMxgDyjciROQdsNzlJsiPQWCfJATBnRru+t7PMCDuXRuYuUcwfEEx+jScsRoElMoJNMlCrwV6CJKUDGMAkx8g1/XXp0LF4bXEQ8R58OMyvK+8f2WDoe7iHPXj0mZnaVklOQ1mPRITwIBEzfDgsO3yXnoNcZpKfO9yeYh+mx/gMzsCvxYIH9yHrV1uWeduCmRGiRI/NyzQ5GJebOMMWnkj1JXZi0eanWKTmPWTHcyMMyvLSts0JgIHMOGSAPGPzLw+gY4fxp7fwNzXAADGjOo7g2qVr3WGE6waRkxlHid7aNaCxAqKTCl0P3jTiXIugdmJK+jA98Cp440OKJlkdn+W6oYDQhXYtCDtvxJKoUERQXjunvfT6vVJeXhf9ckShymKszYnBLzNYV0wj34hDAkYUsEPTiORhJ1JEXEnyan7/cR6BomSCwHCalHuUXFUJsIiOW46yOdS28jz9EJ3hHTiE5JQuk+oq+OnuH6U+gLznw1HuMwxICcFdlTThNUcPj+N0Djz1Ts+sG0+2tegTYLIWzZz/SX4A162HS2bXgFLTvZzz7Jym0QMhRuCRkbhKYJeQY2jTIhFpOOScRPF5NdIkJAZ8vK3mU9psBLC1sqQRaEgs6ckz8eTfFL0MQPOaseY1A8Bdn6MTgIlcDjX1FEC35atVFUIrDk+MTuZPQHJ+WPmwtQhpywx3lKNHY84EMGP2hou+43Rr0EruEjrG3/VncpfEvXQ4ziOJE/iloEV8Vmkjn8kjtk2KSGX2HuQ9XDeiahxcJ1E51HkBTKsKvNsUAAykbAe5JkYrU+USkSi1lwVllkg35579qaS10nRsPEWm9JQ8rAIxRqpY3+lEAvFc/VbrvUAGOCl9cmJvmcadjMlJFLopWyKkgRAj8l2UV2Qg9zVLcItSinSzk/3b4QDu47mxbeN8vnDe1WhWtaaRuUgtRowpsCtyVEbSxZwzE/CyEZndpSiTJA8GpPlpkmMpRr9N5pFg1rNU0JWgCHA+l9WX8I08N1pj6Zz6NRKWvwY/0+/FXtof5qrn74l+a/uawJGXiMAqbQmMI0NyucYvsTY3LpCE1+ybBkaYcd2C/2p/G3aKCfNb2LnN9pes56pO1RM3G0nH2eXoCqIchm/0uxODzQlTkANj88kDVIF6w2LVA7gjuKqZHJAmjM5UBZrmTjCIM3uA2Gz016LKygMUxYOXzV20wr5RpqHqRisjnX2A63q098KOQ9T21Y24hv1R2yJF0QCAykUwpza0WrXWcYvoiAQAjjkUJPLEZSZkZJNJFI+btkMJfkxerWEqRscYO8wdwe70opUcqWqRcTVjo+r1Nnzy1IKYpLSukC24cqwlxpUmMF1ySJVGBKobea9tM4l2Sc/sstMDQGLbvxg48TUeHn5rs2M8OT8pJmbjiWMOON//rFOfKuSNV/w8Rc1p3/d+ua/Gd0V1jAKJcoNoG3BTC5gR5w03bERGxgnjnUafHMzusQNCgNsfga5H/WGP6tCkfCPuMAD9gGqIcjbHPsu21TW4rhCaCg7Rv7ppknY3xikze9VK6YdTxpo81DA6K5rfZ1Eq60pAZA0ImV13hVP7c6zbZ8pMLOGSwT+9KJejDH39Sp0l8fOJvFHKFaD91qzjqIA6r8si4+gArgVg6Ho0f7kHHTuRIyrXaPjsyO0beafBREWSA1OudwJM7GMNQ2QK639KsjBtFjhFPKEXdn7K7RBZxjSMgPPytya7tnPvc8hU2v6zzy7oKyf66ARA5JxjJ0utnHCkPsdmh2B12lmwpkqRtMLcXom60QgNBaeQ9xUpp4DmgdI5MUlUFs+WZHikrMk+7QJjjsmP4+/suky65xpNRBZz7quXRHN6D9d7ybeTfh/Snk5zLLBGLGn7yENHwD6C4s4JABkiGNi0ArIMbXIqp3vo8zU1ureEUDu0f3iD+lMDeniUHHGX9pWFazg4AbzApi8Y57cd88qk1/U0kZpYzgPHEVXtpJ3GGKEYIiAfQgY24z2owhQc0Ygbnbt0/2z3rKniV46/NVDgIkJR7Ntr97iApHLN+2GPCWCZPkt1udLM+emi9XAtumSyxymSr2Pab0j/1vrHHEEpV1kw41DvGQKgcnQRPFeAJc0FhSIAuTCPmNLx4EM6481yHZ0aM1Wcg2L+wBTha3ObADmayYLJ3oO6YXo9YJ63BKTisyzNQUsOwUVgwQB1wOfZx6jZvnSNab2XSGxP7dO2jLV7PrX8V/t67Vsh+1k/4dfaBxeJO5/J13pqHV2zIrfnU/OOf9PAiCwOC+j6q73a1zqxqD2HmVRGflzzW7VTjNlLmJLmGpVXSRJTURMcRCknh8ovpUOc90B1xPYvR1THFtVeZAtIDzla3maTQ5UdgbpOGD2qJ6xRKCo/VTrM2IMTUmwcn2uONfteNAJEGTzKStMNGytDWpwAvNB+/PCIzV/2slmuZJPvbm+kDg8PspltG1B0PoJiPotRHQyVMF01mTqQAZLYJtz10t7bCtxQYkFSVQkL9sNHYVJuNwm8AXNMjLrQl8wGmyokrWj2XsLLi4M42zJOHCBUumKVoau/V8cy/LKkpB6wEus8MkQ/0wLNw5ijWoDl5zP3pqqCu90Bm42wNfWa4AFPyfFhF3Gb+PiyQ/xnlvb5moDllzY7Pk2i5xlTco1ZP5kjTH+lqIfPnJmCzmXGY1VJn14ERyQJddLPdxV404JbATZABLfdyuE95k7i/WES4eLqGtW+Bj88ypzw+AgiB/fuDXjTgo6dzJMxp0JQUIRi3qBNi7ARh50jAlcE2jSgbgB1cX4tWYsngg+IaM5qXmhDcfZnIHt63cL+7uIxMnd0LSZ4t4z0VRmeK51sn8tCZJir89g+F7kpGzV+Tm07YdvyOMZ8HLWsz8GnyKkJQKIAiBId6jqXXVcCxEMcoLw/IPz5L1OGlx1nATnZtDXDnFWHdGK82oTeIUh/1zwUvJIbgQmIkYwJECnWGdZ+Z5zdV0ceXmPP7avlXG/67KJ01Es8gwGscrm2fTL72jrxWQkEZTQTmXUvRfpkEEzXV9puMqAcWPJK2H2AyisoyKKWSCwFeWGtLXQ/WuTBoFrGBXsPHI/z3+lecInFbD/relSPfeprlsAieeHimuF9JMgomF7ltUDzmsXyiVk+v9kCnYMLOTKVC0ku3rU4/EToOwKFDba/VLj5s0i1Tsgkp9pp8TOf96Hps6VceJTmEwWF2NvoSwHwKQTZ64YgIL+2UwStbF9nH8dEcAkc4Rg5AiBH4q6Rn0zdlj/PrPzZ7yfj81JwRK+Nz3EqcuQpLFx7zUtnzy4d2muOZY3yPsXsjWuK5vQAAB6m8205l6fcerp+2TpoxBCAcDhmkCDup1MUmTkD6vyTiAE6H0XCGI+aDL2QUzxn6Syiz8oCzGjEJLkM9laVkKSUIMMRnN/HKHTt9/4MCcXmwDJzNLnCnbdyFpvmE8R633kpJ23pd3hKeS9F9Lp0LU595ys/A517R1+7o/1L2Lf07N9SXa19bn/BhWWXJFwro3/NDPJtAyOlPQUZ/FY74qt9W7a0sXzOBuFSNs/Z8hbKeMIkpyy/pAsLJGd6cvoCE316CVcOcKPRF9bvYnn07g34Zpt0nunYSvLK0Uf92biZbAHiOslFzSQxLt1YWdAphmsnPfWmTclmJ47wuhZgwzCFdIKmpoHIhgF0FHYQHzvJd9C26T9Ubr6JUSY6tdOksEmqwMx33qeEonrQ5MiYdbut/E5ZSbrxVranKUP+xeqmepJwvK4y0LHWH/VAoGyq+L7YzyNWKDmY4+FIdbyZY2LOeJDS5KU2+bNtt3Nm3/EaI8vUiY2TSICxIkIpHn7UmZSciABofwT3Q5ZX0gSikwiagKtAkaV6z75/IvBqf/97s3OHhCvZbTkvi5FKgDkj6zsHQNGZzVUFhLkjiWK+EGYGuQoUHc/cVJK7gSFzROUyw90e5AGRIFRNfCA7G49djlqqaxBHVmN0YtLdLWi7hd/WCDWBRgJ7wHkGDVEeRfuuOqmT80HHRUygWldgjqBsBK5F2mkNZFpwvhZtPLv+nK0xf6cNPv1/42hevTfwvHFx6bp67jrbjwlJjggcZD0xUiFKVECUK6IoHySfu+SokYsjyKf3NxJFzAx0vcz52w0wetD9Y3TMDssg95otPVsIAtIwZ8e4mvZvK1ViAJzyPamTLUn7FPVK5UykkF4gUqRcU57RV2YAnpp1spb1f+Y9Z/cx95s408klqRupLKX9BYZh9p6W2OLpNlZCC0iRAlTlCGQG8v5R65VIOJqweJD7W6LEycczOQ+0nkDen9r+f6mZcavjguLnZABpzedETSNzcDFfiXzdFnR7kz/fBlTjLoNKREmeS/abDLZ92DOcFzktCojrR5ThW5rXnnMuWfut3fex7N9S4ndAiDmOUoQIul7mqHL8p6YxfUijjCz4GoHOyXi/4iyTyi/WglnE0rVApxSiN1n53uzXLnEkP3ecr81lTyh3cd5feJZ5LiC3vi9IxWSwYzKvFHN4AszA5oxZtN1S1CnrmcT0F6kgch6RE3mLgBz5qOcqzUcU572kolBVU3lRrYauV5onZqm+Kbq2iHixc6qZr1bXYus/0H9PRlGcf0dX2cXnmxN79M9hLwW8fG323HPgt2q/x/Pr57SXBD9f0q4tt5TfTMXwVUX9LoCRixhCX9J+z2zbvyVbWlC+pgnkKeDIxKlCpxlSl2zIdcOWEpRHcEMPiP0AHrKmcYoo0dwcYxAZrWHMSViNU2D8wzv0P2xRdR40BFSHQbSIvQd8AD0exCFIovNKXZeTPxqn4SrjaamJtE18ALkoa7Dbgd/cCsihzLaYCJa2EtVCm43ccxhEkqGugE0rvoR+AH16AA8DwsOjRBVsNsBuK3rKehj0AXSIWtcqfVWJVjUNcnDEITpEVLYiPh8/7PNDBEniTkSgN3dyyfsPEv2gDPPtZtIfgs1BggV9Wj0wRtan22wARwj+MTK8isOjZYnWdZajUkDDvhMFK1RqI/Y/gjhiVWZBAZ+w30/fa3p5F8y90bEj0QK2DsvSJepooaqSdz0Mk35FdZXBJ+/FsbHdAuMI//MvUkwjCb514U7gj4Jv6li81C5lFJ489Ni2MnPJ73Ht0oNpwayd2VUHtzj3kThz5R27PC9b5yaxjOMIcE6cAsnZI4dUnTfCrkHYRJZ+4OQM1JwgaSzrAV+Bl9jHVHsdzoGGAXR3C94KuEu+AR+OEj1wewv+7g38XYvQOnGkBQaOA9D1uf2cE3mvPoK78b5Ux3Gx2Uj0G2QjSvpMHJb95bZ/rjl6bftc8n7IjtspyDFxrCUJO07fy89WHFov4YiyEhqXXLd0X/3eOO8s47W6uRGHqs6hyqzvB0kovYlSbEpkiIA8DePEScvDIOtxTQLuH4/gh0fQd+/AN1vQxweMf/l5CiicAh4tkGEcOAkkZkboOkzyk6nMlc6NKRdYITXUT4kCSW9/QWIIwDwHwiVmHPx8wmEu3z+h7KIMOx7IBXFqR6da/hvXO2yX7j1b57louwBUrTjfPeDaBvTmjXw/9NCE2+z9NAKDKMkDpsheayHmu7CkGb2vEgsU2EsMac6fN0JAIIwIfZwjo4P0ZCgbkCOvUjtM99ETWRu7z9Yoz9l8Yfo2s4Ai+xhxEoKMp35IjlNqWtkb9r1JVC9rA202oNsbhO/u8jugGG3cDaDHg6wFbQt2In2YSSJxTmZG1QGuB8gzyDNQq/yd2cct2GpugnTBwpxU/H8an07k1SgwUMWk2tq1jgrkR6LM46Pkl7i7xSRBt41G1txdHMBjATa8hJVRkLr/U3DkUlCEiutLh/QSGWBx3rxgzbjGbGRSur0t+xLigY24X9k3lusdBxmXOl6qKkajF8+28pzsw+QcOfueSfZYAOB1XaxyX06kFx3TcUx5D4rlTiJcHU0kmBej0hUQ1lw8cWynSER9zrZJfZe0zSwJR9evCO5aKZhp25ho0VivaRstr3fJdG03EbqzPVgq7ELfwpfwdRV7ns97L51rMB+/3+q56Fus99fc3r+HKJyvuX2fa8WzJVUXvxDZumLfNjDCAayZlb8mHbnfa4f7W7PSsfg1vtfP2e9PTZ52g22kgdLVXQdUFaq//4Ow+urImlHWf3TCjLct/K4G+Ru4XQsHwB07sMoYONFl9a2wklERsMvvpf3PI3D/kKqVDohlKHR5KE8OTFreHDrjyBlH4NjFTW0sUw/m2xb44Z1c5wU0oV61laVs93hITk91EFFdZ0bg4yHXQw/RurlWnfcQwCxOgCxpEkO0u04Y3aVjfRhEauCYD+jpnenfxoFGTXRGJKd9vD5KcM3Cu08lADTG3oP6/G4WpT8SU3+uFc2Hg+xTh0H0uIdh3i+1/S4CDEKOWNHfxs9znWGSaGvkSsiOHAUWVYNfI3LGUb47HMSx6D2obeF++F7K7XpxgER29Ezfvnwm20ZL3106Jy1dP5vfTswlZV2+9OZwydlwpa21MdVN7BNnHELqrJk4Mgw7WYFdbZ8CBFt71yozgaaR/rTbgrciH0GDR/XYZ+B4DegiSjkUzAPLV5sWtNvlSLdhzImGncjtoesBv5N5hAB2BG7iod4c9BWMmTA+OciYVPnEkrWjsnerQHsA+IQcx6Vr3AooIh/NnbJL5c8ku1IdX8Ym4MBaudZ5tvS6izHAzBIpoklgj92UNQuIFKPOTWOd+mSa66OD0ka7xcJlztUopK4HfXoEHw7LY3H1mTiDT8bzyCSgCKW51OU6aYJl53IzVFWUopT+JFEwfY5YCCFHqNLCeD9VR22vE+/F6tUvkS2eLOl7zvFTlpuY8bw+J8zukcGd5KiL63qSilyrQxDw16m8kwFEcv6W7GhLSZZtDi01ZmAwdTaRorTdAOQyezq+UxsBwIGF9KHRcYGl7zCnvBZhH+ZyXrYp6nru+Cv0qQFkQkOcu91uK+Njf5Co1bX33Tbg3UYAAeZMDjH7Ohw7AYLU8cpxH9F1IH8z6Ys0BlCIa4APQqToJAJFc2RJYnSJGOOmAhhgBww3DqAGFH6C6wOqxz+CHo/g//QvsEnlL3Y+WsKLlQPVuuo6o9ExEdSa3Cu29+R3CoIB8WxfjF+OezELoAOYgWDXnInM+NEoonINuCrvmyXYlAC3/e7Sdv5M57urk9ranFTA9DmWAKD0HZv7+Vm+x5NW9KvVa+x6XwKYUV4ySfjpGhT3WymyXs1Gb9vnKOts9qNpnllqUy8EtbQvmkh8yRyeIxzjGosL+9u5te3EHn1y9in75ET2DdN979J7PmVr6+k1jtm0R/wCZ421dv8afT/Adev/t2DfwrO8MEj91fatJVvqb79l/Ys25BiFWp7vZjmjztg3DYyIrMtvXYtX+13btRuBz20vuRAaZ4X8fd3mn9Rpr7r4RCCMYB/gPz3AtQ36/+2/R/d9A78hMAHtQ4AbGO2vR9AQ0H/fYtw6DHcV3MDYtjXcYwf6yy/grhcHXUUIjTjsBleDHTBuCaEi/N3PLfzD44IzjRfra2WR8uYvTL7nwHBtBdptwYejRCfECAWRi6lB794Cb24wfneD4x82qI4Bzf0A13u4fS+RH4M4HMOHX8VxdXcrMjZVJc7Pt3egYwf/L3+eTtyGEUttK23LUbtWo0ccyUHbB/iPn/IzITsBkyOq71O5k4NsDCHXw79GgCRdeU2A+N1bcFPD9TH5rcplaGTOQr+a/Nl10QF2Qss99kWCl2tjf+TA8nwfPp7tjxdvnpmFfUY0ZSaWDsfYD0Ah133szH1d0j+2jFlmTv0FANzNDfw//AAwo/rlXpijw0Ny4iW2qLVYrxy9dMZpf+JZtbwJ2znNaxfKv6j0nfcAITnXFjccFx7OrjEFE08yB0+8y3S4snUCQHUDd7uLjNU9VvsQkcjHAEY2SNmIHhxsdNo02mH2O/uuFZCMeZmoaeC/v0Voa7ghJvD9018RHh7h3r6VaBJbrQRQrLQLEejuFuHdrchijV7yQdzfi5O5bQTE9h7001twDXAlQGnY1OBKkuPS4MEhIByOqU+SIzCqJJdYaQSa/qfRX9ExuNjP47uZ5Yu4lqnnqvXvLNMYyHPlzMGG8+Ng9R4XrMkcQPVGpKkORyxGLtnxahndcd4O/RQUVma7u7sF3dyA7+8R7u/X1/UkBxidMJb5Tg7udge6u8vyNxEIYy8getjvgbL8su5rprmxym2Gk/2D2wqwowBjAp3dNhME2gbjT28BANVDJ5JeXVxvfUyY/fgITk646jyTNrWNAZPWAB/Vqz/xfLMyr+xLGhWibaxOxfhHBGf8ZX3VjifdV1Rx3aokgoDGEVwNy+uRBaSbDej7d0DXw//8y/p4JpdAugQGG+kbAOmdTJzqVQW6vQUAhL/8nB2a2gYWwNzvZRxpOVGOlLYRuOm6nNR8qVl2OwF91XGvbRjBGE2UTDEKDl0HDCPo7k4ippgRNGrOvoO4p6DdDv7dDWgMIgOqII9Kwj7sET7dy0+aKAELDx4lwpre3EmOpzFGe2gESggCYnad7Iv03k7mctpuQLe3GG4agAGuge4HwpEI9/+0lWhAf4ObPwd899dfZB6ycqrat07020nEsAI+gOwXXYwwYwbfP2SZVSDP8S6SqSyIzgHYbSW3lQ9Znsi0q+w9+Hy/v3bPYYg5dkqegKCXlEcmKjV9NgUA8hnkgjF7yT2vNTuPLVlJ/tCPVTpP36dGcY3FfilFvxbll3O/fcal53VKIAggDHHNXuiTCwBdkj8mkjkgrh0poheQnIybFvzpAf79+ylAsGBJEktldOO18zPBdG1gDyERrFnwMo/Yxjn3zi/sE7MIzfS7fP61UbT5XYZJv5VzoYvznb/sbDJpzwyYxx9OP7/EPrfzdan+34p9S471z2Uz4uvSXPEbAhG2Pi/dt57yXE853xhA9yn72meZnTsW1QTiHuNEVOE19f2mgREA00Z6nSBe7XPZ19S3ToEjz6nnC4Wr2g3qeFthuCWA5UwDhjj2oyOjeRjhhgoaCU2DsOmpkfDj8aZGfyfJFtmRMPAAMFGKnF60GcvFhMPr54bZpRvE5JBQp3khAcGBkxMGo4/OS0bVB3Eg9lFbevTAscvRHyozoREPfS0OnVGklzRXBxktf2pq0KYF3+7ksO4caPQpd0h+PrOhhTnQJScE0rPBYwI8yPc+R4RQbGN1JLp4kB99OtRndmg4zeZK96iyRMFa/5ptml/I1hZUdRStScnpZVZSoygzOevZSIJYgEaZs1UVczUEcUyXUU1LUQwlA+6cNMgFllmCTwBD47Vn9ZY/0zyp4+6UjI25WP6dbZanwCGA3M/DiXYw7zGByZPNWe4Pcn9afq8ny3fRUZkTC/ttDfKMuq5N2ZkZP3Psr21Wux60r5OW+6wNyRmmLgyAoHP21JGz6HTXg3ACRlz6+2QS9nN2SX9SZu3a3MEhOvxMfddAkecCImcYwSmqZy06TOekuAbo/EOxD5APYAuCa1Sb/l4lh2Y3zk6RiU+M7ZrhxZHZ9RIR4H1+b2bef9FE5bbeUfoRQAREKI8N40R1XYx80XW2H6ARL2mOKCMTP+eh8TOVdXauPfnjBUeBmotAIQeg9xH48iYKpQDSbG4sb6Itl/q43qfMC2PZyECOQNMtmAIkNh8d7Jo1B9+ZOUW5gkNeIit3es4xfc5GGkH/BZDyVYwjiEMatzwMoM7lCJulfQXinmnwAmqo9GqQPHoYI9BIxTpkq1jXCJsa1LBEi9QuSdVS/C09PGaAXts6SuK5IcD5uCMkyTVSdQwagebA2L4fpzkbzDs5KTlpHZ46Rp0Zs6btZmuqXZ8cAdsNuG0EmLP93BHARf814EVu5xU7Rx5bcuzoZ0tnoCv2SEvj52p7SfLb1fc27WujMcoo0LV56dQ6PLluxUm48NyTM8alDrkQ8p5GgSg9z5Akgdez5GJbl/NV/GwyHy32lRMO9kvO1y+49iTJLDUFNCzhQs+P8x+n+ujcR47AnMdgPmcu1NkCLPYzO4a/JpsQCL4hUOT3ZM9p90vf228FipR1+D30sS8NjgBfbO74toERDpDsxPhtOvyr/f7ttxj8l9hTJ9c1FphNNCj/s/x7dQImOQZz0HWIn4UUTXL8vsLxe4fNR4brGW5kuCFInpCuR9ONaBzBv9mCKwd6PEqOjU0L3NU4/tjg+KNDaOSsVB0J1cBwPVD15iCnbBfdzKu01zDCMrunbeEzMzfJShAIPoESGPqJQ5WDRBvw4Qi33cI1NdpPNVw3wt0fJQH64Qg+HuE/PaR2UFBEowrIB7i4uabdVtiu1GW2Ux1Bkbsb9D/dioP0vgYdepFp8kgyEvN3u3B4VH3a8l2SA8I4cSJQU2c2H5EAOFWVAZnovEgOBdMvZodNabipo2Ll8GCTVctjGH3nE0x+KXPhe3Vop815ZQ43sY+2rQBD8HKfckhZ8ILchC1FTQ1sNqChR4hROSLLROJQqSq4mxvRQX88ilPzcEjJioWtWjqpjVMZWJcru3ZOWnMolIfOE7+X5I80PVidq88FLMv1e5rfBonKOGkzZ7Mz/0s5OXrJ6lOgaoXxTW0LUjaoOrULlmTKPwPk/EbDlLG85kwk1cp3LuUaYgKGtxJp0uy2wljmqKseDCC55GAvxmD4dA86Rrk9YMJ4BCCOxJjXwY2ccoyIE08Yz8mxsNSPdA6tnIDXmveCXZaPuNSes9Yap0yZM2QGFjyVUHMiMmUCsq5EYq1F9agDKuXgUnbr4QBmH6WyWkmWfgjZUV1VU9DukvwAi5Eq0bkaJdYm4MK5cfdUJp4hL7AH+HEvc+Zum+daE8EoDlOG+/AAzU/B3ufcDdHBP8lzcY1dw15VAPCa3y3Z4qHZfO0KkNU619bua5nrNgrVgE26nofH/fLaacpBXCdlPxXlLNnst8xvJ/KjyONQx6ZrXfqeA0tUDzmgib/bH7J01pJ0IuXxTACw3cpcsz+AeZQxcQl7NOW28Lm/L0koHQ6yb9Gos4dH2d/1vXE6VtNxxxHkO0bgLgJ20IimmBsutdXSfqhtMLxtZR4eJWcIjds0L1fva9D9g+wph1jfQZ7HMYMOA1zPQEPgCqgPjJu/eDQPHu2fH+EeDwiREKN1SNE3TQ0iXl9vjUyRAt8AwNruFtxSKdIUpY3UJ8PbG4Rtg7ofgHCM71WSr/M1e4wlO0vYWervSpSpMAPkLrn34tw63R9fROy49H6X2lJExtrcVewdqK2NDJU6xDm5XRbtKrLNQt+fzHHSf6bAWbUQkcIS4WWeS8Z0Jn8pWEJVBXiX5rFJVJqtv3HuT76z56xL+pk5MywmnH9qlOo50wiogkShcoMSzUeTqK6lemh0vRDBGsnRtbaPmPxw6cz9hX0pl/hv7Hp5SY6dV/u27LeMFFmrx0uAIzPQ9fnkyYvvZz/7ku06u9eZ8+8T7dsGRl7t1f6W7TmTq/ndTH/9kluHnASUNHG43bzGTVjVMeoDoz4E1EdGfRjhOp+kBWh/BJhRUdS0HyIb1AeQCwgNMG6F8UaR9Vb1QLMPqDp5fvf2Dvy4F5kRqVzaUJfPWh6y1VmQgAB1Gib2c95UUuWEMRk3x9z1oEONqq1zRIAyay3rUZl5Voebg0SINDVQRwmaRg6F2GzESRrzmIRa6smVsmcjUGCTy89e0ILDe5HZs8AO1UOGrT9zljcoWJZnpQEuMSvzpYdi7+Naf0mUwPL9Uz/V5yt1vkOQe6a8LUW1dKGdHPSXHdyAOfjqc7SNvLNhFOboWg4c/Y1xYE1kRq6RCtOyLvl+Cch6ij1lQ2KjeYDrDtRny57KBACYspRt25fa56XF8ZA008+Z5vIp779Sz/TvdgNu6pjnQ9sGkp+pafNv1Ak86z8LEgU6rzlKjmaqRqDyGdRWSR0fQCPDeWElpwi40UukmpWmidJsIEk6L1IVjeSFMM5JkaR54SiwK2xVKiv9ff14WmPyX52fpAToAs+VYZsmgU4A1iOblHV9DQi1YKmMtWg2a3b8qtQJcNJhv+aQjDeXdXsCjnPSgE/7DMQ5sR9ScvZZ0tvPbZ/rMKhz/ilG9gX3n8n5qMX3y7HtZs462891z5MSCFPUyA+za+19F/eTJjoTQAT2Fp4hmLlrkexgwPkoCSe8F32uHuTcFGxYYTSzOiiC2a8lNjRP/iUXZD+p0mBpTdZ6RaearXvcD85AkSHvAVKOt4X60RjAFYFbJ4AIsUi1Dj46reOa4P3kHbL3oNqh/07ka6tOhhVIAG/3eJD8JmEa8bt6DigdMGU72siT+B7yHpETOKL7MPaQKLhuhItzAlEE3bwHh+rkHuuzGRc5hKy9pHPtSzqS1pxZac49s14EFllCXXe4/HdtPr/C2V+2bRHNr4nQU8S/rjVrZWvuRDWNGK3yfprMbxej0i4Fwi4xNuDKWp/+bOuJaYdSboxF4i/d+YI1JZ+lvrBD9Kl2YR0X816+2u/Hvsb3eU2dlsabPeN97rVyyZ/0JW2FuLMcsft8ewVGXu3VTtnXOKFae0r9Coe/lFOECZ8rN3gwKrhN1Kq28k6AHNrqGpuPHm4ENu8HuM6juu8E/AgBFBjh1/fgroM7vhMt03jw1A3cuCWMd0D7QVhvm08BzT6g/TDAHWNSu7/7AVTXcPcPwiIdlf0mIMeUETSNLNFoBpsomR1mMgFJlzuyjHgYwZ8+wQ09nCZFdiTtMEpibdVyX2IJK9MVzsE1TXLMU9OA370R56gP4E2DsHEgD3DlwLWRf1In+6zwAvxZS/i7BBJZqYsKUVc4Rs3EdwPLxOKVzb5dyDkmFgVWHfxkQBHVC5fkoqq/u+YoWlmwKR+ilDXlWica3Or0UOeEypYt3wGkh3zE/uG9MKuV2WolqqIGPdWSSJt2IoPGjwcZM8dOpEjKd1FEOqVxSSR5aYrog9WDuj30pjYqHOWxfVLOkYsOr3kcpTKhTuILJALKetty1dFcyBZc5Iywm6NJeyI7jiDvWtuQVOrqHBPe/BYeJkHxCsBYHMgTMw/AouScggtVBaorhNsdeBMT5zp5Bo7sYdpuUm4fHsbFxMJUSVuwR+qH8rmArNQ0Mq4KBzxpkuvAqLogwHXnJcppf4wAZZgkbKemliiGtpFy61oSxtcVOATQGBmmbjR98rR2/ZPNEgReWqqiGC953dTypo7Us5v0JTDQMlPVaRPnX4qMeCnOlKfgtTppD5J/INhEsk8xDhJxsVZ/fYbS0W1Z1ksAbuoDYfK+JlE29je69nof87FwZO5TkhRKskvX7l2+RluKCJl8f+UzJYa+AZMCA/Bp70FVJTk0xhHcKTCSo2PTWtw2krtjHMHHo8yDS3OuuU/pZE/vOe7tdG5czC0UFmTu4jUJjNXcdsyAF3lSZgbuH8DAfL2cVFD2h2TBNC7uWbwDjo790Meoigga6e9TpIGup5pjTgFllXmLUqo8xjk8zqUo12EfUA0BY1XBbwnkCVRLtLU7SD4YutkJYKplB5/2puGmweM/BriesPuzRI2EigAG+MOnnAutJDMtmR3r5d4iMDB0k99zP0wicATEQt6rRkIPfXoAda0QRgDw4ZiTpwLLe9tJveKccmodv3a9WdzLmj3KNQ7/a6671JYizK6pRznvMuX5eGksj7KesJkXJrnqynpZQAPAWeBlsmdfmDM0kp8cqIrFhbiP0P2TWhk1gumaycwigRyvTf+u9Z+lPcVT3qeeC2y5L0VIOmVL0rGA7PWIZG+ZcvycWOvVigiUq4haX7OxGdev9vXZc0Hp5/bRr+X+a2vZS47BS9bLE+vFk8p7ii35epa+f+K9X4GRV3u1b9meMgEYR8zMsXOtjWNmxBlAg6I8y+HHGv1bwrhtUR8ZOwDVnkDHmMhbraqSwyM71BntPWP8lbD5wGj2AZv3I6r9iPrjAXTswZsGqKOMTWDQbgt4jxAPWUlCx9uD/5lNkNWe1cM44iY7HuozQMAZFLEbTWnU0+26xLwkksMuEbiKTlI13eAu6RjTwgZYv9MoBzIbwEv6y0QmK4IihrG8ytC1C7nWAYjRRcjyZraO6RnV4WKcuhym695aBJB1kNrL6yY6cGth3qtT38d+sdsCb25F9qLLIBaHIP17U8O1rThUhkGSjCrbU2WxtB5RVojaJjvmmQ1T1EQNTSpZRIpYZtcaS3yVrYepI4PnAMjU0XHhAecprJRFxqIBD9TR5U6MlbX3vXKtyqdNDu9mzMyAnHIOLfrtTM6mNA6QPDrmuYhmjuzZe9ffBRYwYRgFENk2YEcINQk4Urs4DmoQRmFvA1nSIDoI3Js3AlAcjwlEScDdGAEKjom3kxSizik61qWu5E2UiPdRHiUsgyLK+g28rOu/Bp6+pK2M/cn311oJijzl92vjPEphpWTXMGNyYbwrmzqtY/bawsH7LLvm0LP4+zNzSbH+znLkqJUSkYbdnhxfmsdiFh2xUoe1cf5bOnfKfvtcJ5wlvZg+uwzcxfds9jsWECEiQCXdFBxVp/fJuRCYSLJGtjQp0FVVAsbCvMv4rBNJKysPEZ9LZXwEQAzAoOuuE7DXROslp++SeT/Jtbaay8Q813TdqKYygTPmYo4UsVJaKeLE3q+M/ov7SY0cZCdJ2KsuwA0edOzNfB0jegDwWDhyiWU+JxJy0ocR9X0nwKedR5Kz2OXPtB7pcXhKjHBm7fDpIqQcRzoXUbF/sXOdRsvouqn3e6morxKMPWcn1pAn5yv6FuyU4y39XYzryXdFcSsRlU8yjdZVghoTOEripv1TeT0i8UPXWK2X9rU4bvnYLRJMkp3bUzzVfuv+o1Eiep47tWdYagMb0fNqr/Yl7LceM7+l2TF4zVn4a7DPVcd0TrmSqHChfdvAyOvk/Gqv9jRTFotbmAJOOhcsWyQgPB5Mom5KeuDUbsF3N/jw3zh0f/SoPznUe4cf3BbbXyo0PzNokDwMXFXiYGti1ERkwdI44u6fD9i+b9C+70Q3+cM9+HBAeHgEDyPqf/9P8N/fgqpb0N1NZMEA7l9/gf/l18QsVLYkgEJ/e40lR/lglZL4RT3a7QY4HBG6TuqpyWGtKevRMt9t2wOJtYgo0QUgHRa5qeB3Dbh2gmEtsRnVCaA5QWKegHTQNfUGAPRASgxtqxSWowbYh1wvPTTZQ67R6J62W8EwVGd/04CIEMKCfjW5xGQSFteYn0ETlapjTGU0vJ8fbCabCOmrbrcFvX2TAaxUfwE++MfvcPint6gfRzS/7qUYktwqdP8IvrvB8Md3ImPxcS85V4Jo3Pv7+wko4iIgQrc3KVw9SZcMQ2LgzdrLRorEA1yS0nLKWDTj8sShdNLuyuI8dsbJlFl9Z3O4qAXRI7bv66IDsD5bdD6VzNOUdFyd78BymfZ+yhhcWP+pbuB2W3AER5NZh20hGyN5YSKbN0b75JxDnMfTWvtER5dTh1aITOao3byY9D5VKyb4BUCPB9DQwL/ZIlQE31KaC1jHeOVAfAvqB5kDxwGubWTs//QDwu0W1ft78OEIOhwzM7nvgbaVORaQNte8JoBErwEIjUMdWIBrjX47dtJ/HUn/3m5E7q9twZsG1A0iYVPLWCVl/wf9byHh++zFvYCTupyHrilL812Ead8oI0Um4PSpOqRcJGbjTpKXSIFTkAP6XvJLlU7/SZEsUpFdl8dTvDZFDb7kweAksPFEgGgScaYSSGZcUZZHkjwDyCz6CIpoFIA4dcoIsThuEYc3YerwmUSjfWYt5mvtOWCUHTeWDT5JPLzs/OKQ5yhtf6priap88yatXUoIQD8gHA6n61nOsfr/RDGSTeYEt9vGOsTcOPpuR5VN0/wbNP07ymvSMIB9Br8VyJG8M+K4o9plEKfoK5OIYh3TC9dNnqvsNxTXCIcZmCOJ0GM+Fp//ztGieV6Y7GHMOAiNExzbSe6n+r5HdX8Ef7pPeeg0/wuPY05iHrxIbwUCWMD1qgO2/9Mv4Mc9/H4PkINrmylIA5FWI6rlmdKzTx2hibiRyBuyZ+NhnOXWIhemzcYh79+aGtzUsqaNknOF3Whk/J5P1pDohvPF5PKW7jklkf0mtnKGOGtLQAeZfVtJ/ljbBy6N67Juk7XST88+J/ZO5V4u5XJU6aYgcp2oKhlTPqTIkUm+E11TmAG3gdOccEoA0ZyJcZ4IhcrBRe33Je3aNWFtLUhfx/OERlrquX2pHBuJlVQE7LtfIPWd2zd8rY7cpbPE17ZH+FuxU3PPb2W/9f21DmU//S376NfSJk/57gL7toERDjidBezVXu13bs+cAGZMucSiu6Bcikxm5zK+YBhgNIx488+M9mOFZs+oOsbuLz3qT0e4/VEO5X/4Ec45hK0wj93HyNKPh7z6lwdUhw3o4SAOuMNBnLyIh+UQQGNA2DbgpkJonRwo/80bMP173PyH9+D//K+RGVc8szUrgxNlrNQxKM3BUUYrs5HczQ3c2zcI391JPbpRZFDqGsQB1FdIbH3bpuooamrQbovw9gY0hsyiCwE0AFUI4LZGaJzo/nce1EmEDg9Zrove3IkE19tbKbvrhb3tSFjfv35YABDy+06SP5rQFxDHfDx4qx75TMoltqO7vc2J08lJ0nplrvsgf5vkja6qwH2T2adan5Cd08nO5SegmBy7bec5V/Q9T9jVSFFJ6vSmQ4f2Qwd3HEGHLv2GOokGoW5A9dCBBrkWQzxQOSfyb6attB0TIGId60th66X+e5W/txFYCcTwOH/I0HGpdQEyg7bQbp6kb5lELhkgonAw2oOrVPQyRuaqHAeztGHb5oixGehl9L8t+BaflX2Ygk5czGuAOKsXnkUkUYpDYmCgognjcLXdychLeGRWsO3bp9qlBOxYEqA3+wAwpF9q7qXA0teIQIcDwJUAjm0DhADXSRQJEQG3Nxn/dA5oG3BdSWSUBThjgmB3GNB8cnD7HtT1UfZlTOOqevsO9OYOcC7K+glrmgEBeIlSBIMyEVnHwJd2LJ3rj6XDRp1/JlFq/J+V8jPgRU4ADwCAXwELtc+qc2IYM3N1EjlpGNQc10JTlwlrO312Yh1Pl60DGpMxXqxRkzKLNrVA5zmANCVVbxsBjX0QqcRxnCZLrypZL9ROlVvMV/l/9fNpUt2ZfMzXZM+tjyUD2H5CImNJ5HKfTe9TIjPTu6ti5G10QKY9TzDz8VPrmYDBmMQ95V2L80MZXWuBnclzamSlyyACkFnQGjkyuXcRMVmwoGeJndOtimvKdU5BGSKkWLlzc1y55q7Z4Yj2lwO4cmg2NarjCPfYgQ5dAn503yFJ7IPIDTl539XHA97+D3egkbH5GLD9dRS5PZVDxDS/SHpeLdfmHijmkiRJFMF0Xacn0T42UmhBdpCIBbyPaw/r3m8pd9Yz7MXKei4z9cTeYXqfM4D7Z3Awaz9PINIlJAU3XYdmErAKlkUQUMd9yvNmAcvYHyd7uibWKZFX6kzmMEAd933KQSVzXywr3iPdJzjJlRLJLimadtYYFzr67fUn9gjTv807vLT8a8yWxwxQ0f+9mfeBHCG2WNa07pMIvOLdn5/zquW5tKzzb2Wc+8yr/YZW9oVvLTriS9hvCc7/Ddm3DYy82qu92vNstkG5cOJVp2LbTrWJjWOaHx7x4//p/5MPv6rlTA6hbUC7LR7/9/8Gxx8qbD55VIeAXT+KU04Zsh8/LdbTbbeg3UYc7/sOw083OP7YoH9LGG4Jn/43A/7NP/2Cn/+Pf8SP/+c/Lz836wYtbrK9bJypqsCdkRxI8gBeIgmqCu7uFvTDd/B/+A6P//YGzaNH++sRrq4k4uVIIKu1XCxorm1Ad7fAD9/h8I9v4IaA5tNGohI+7eW++yPcdgPwO5Bn+bzrEQ6HxBSmuzuEf/oDxjct7v9pAyZg8ymkCJP60WP7/7yX/ADxvYGHyfumzc3U4abJmN/cCbvsz3+dJrZPbSgOBvfTj+DbHbgSFmH//Q5+47D5ywFu32F8t0NoK1THEdSPoOMAN4zg+wfRle66/DxRBml2yALSRkkP1kB0uL19C3z/VpwGx06YTepw9D4+c0ziG6N85PNYXtej+vlXMDOCOoydAyuA0vWg+3uwDwjHLtWN6hp491YYm2/E2UfHTnTFuy46/4z+dnkIpizTlhyzCtCpTEzqMCQHGU1Ye44tEqNzUoTAMEydh5q3wN7bmNttZRzE98KRWZyiE2IfXGWQW8eT96uOZn0XbrMB2kba0PuYK2i0FyLlb7F9pK5z7p9DPBAnFr2ZM1TLfVbNOIfpeLASIFo/IEfsEFBqUifpLnUULeQUOtU+aEz+D0egMaDqPJqPRwHjfv0oERlNI/2obQBqJXKp6+Bub+SdPOyhcn8gQvjxO4SbGHVGhPG2RmgI9aMXR9thAB0H6bPeAz+/R/UzjGyOvAMeRnnmP/4dHv+rd3Cd6N8jSNtWj3VOojt66f+GLZ3aTxnjS2bqvfr9S5m+cyA75ePhWIHOzIaWMcmJXTrP18RMqG5uJNohRoCE5IDEtM9GC4fjtB+pA6jaTJzCPHYZUI4SanLPGFXZSnJ2zZekjHRq6gx4a9tqFFqpy66/VcY5B5EfbOoY7aNMXJ/GUnJyWs1xKw1ZkgDaBvTuLcL3d3j8d29BI6P90MMdR1QfH0Vm8HAQ5/ztjdz38QAgz4cTEMYy/UsnugL8KkO4JpfyrR+2F5jWAOTdbzbRIZjzCWnkWE5ibKIVKM6lt7fgcUS4f5D+sJZv5inOPXJwtzv5WdwbTUAxUzbZ9dLsn5IDVokIOk8fDhJptN1MSQr9kMbPLK+UBWsVUNLIvNK8AZE4R31QXcvcy/0M8Eg6/moRcJCoKEzXcPMuOTDGP/8V9NefQeRQQd4p6hpB16O6lmg9H6KzN0z2COE//DP+4b/EfW8EoryV0NJ21TaN12n+l2k0VwESDaPc72giMqcPHi/Mc0RJsuAxwP/1l8l1V4/Hc9erw/NSB/c5UOKppmeKMurbApgGNDpJNFn7/IlOxPm+7EQuDPO5axvZI8fzjdtto+xenO/jHjw8HsBjkHHftDL+AsuefxizHKju76o253O0bdO0EpG6aYWQsWkR2hrVX97D/+XnLLWlCgiBZY0t2nJCcin/30a8aATxasPpel3lddZKwlnCg4JEGg1nI5TP2XOAsGKfOovStwCHvc9qH5P9r50jUyTnUp4WEymaIsOdi9F+kTjztYAkp8bVVWvcZwK9vgVbmoNeqj0ueQ/faptf2kZf4vk+9z3OrVPP/f6F7BUYebVXe7XJ5lBsLaTahpUvRGvpwXUrUgkhJkSfLpReNkqGKRtqArVODntb6xyaakynQ5rKDby7w/j9DuNtBa6k2lXHoKPDx/0ObwaesqMXLDHnop4tqXNamezpOsNEGkZQPwCjfBYqgt/FqJfRy2804iQwUMgQoWlAmw24cqj6APIMGoKUxyxtE3yOctDDQ5gy/aht0P2wRf+mwnArn9WdaEq7gcWPXot8C8Pqd083wpPohMgkhSaV9yvOBDUfGeIkSTbdEJ0YzEhJdKn4b+1dWIbhiiWWv0d2gGukQTDPqMz1JGUVne3R2ZcOUyYqYJJkXf8/hCTbwd5HnWNpQ1IJqH4AxSgjzU2SHIoQf/qEtVqMtxThsWRl/1WJgiVnlUaLhCASXGVZBXPcHtYn0ljeyzNazXYPc/gz0S8n3qf+dvKbBWPvQWNmGU5Y9NPCMihSST4XZRGyPrs61jSKaByTk9A+f5YtI1CA/H9FUKAUkH4A62AOJo9GyDkOyM3BpfUGMQdx6wCM8wYNxsGsmtiAOODqCqx9pW3k/e624LYB9VWeuyhKcNWSVB0hwPUOCATXe9DgAW/mPZv7RsFcm9Ni4uCLuveBZd4KQfo+s0SfxLxT7HPui4vyx8Q2iY06v0772nM2xLqOrMibsT4H4rs3UT8WkJ2Vlwrg9b4LZFB2hU2qbOw0H+m7KCM+TP05rg0WxKNz7RTi9eo0Lq+1Ulezh1iYj0qzkTfWARgg+RL6gOqxi/3QpyhRMMu6o3OogpymD5XSZllyUD5K61gxb74kE/2rsVN672Eq08SWjW/fdxF5kebMUxJtT4wA07GhYNxq+TqPKRCR3n1kf7NE1cEV/ddH8oqLuVEmcy0yEcA+R2kWGD0nAajFkCSInjDWE+B6pVnQsXRUm2uSZKGNXIkqRlDQSZ9lbS8P5DaI+18s1DutcfZ3q/Wf7wkm0k1clPO5HBzp3Z9xPNnrPlNdVuce05Yn85hdY+eeQwEjKvZyVxgzm2hUA2C2dQbqLNlKn80+Y7mmlXsBjTCxUljMoLivIN3f2338k8Zb0V8vieqKv7GSb2RIVXKNicywY62MjvsN7SxhZcl0nrj0HpWcd9N5bF6J9TPNb20vDdb+rdkF58NXQxwDf0Pybc8FgT7zOPv2gZHXiejVXu35ZrRmAayyoxOzB0gyKSm02ZEws+sK4Yc3cuB+/0FY8+VBKTqA3BDgBgffSLLh4bst6org7h9AXTfVkLb5F+oaaBs8/i/f4v7f1qj3jKpntI8M+sQY/rnC8fEtfvo1OgZKqRF1RKmzSz/3cnhWJmBi2A5WLiAmdx9HuLsbVP0NuCZ0PzaoDhXaiuD2NVxg0fbX6ASbnHm7Bd/uAOfQfDiKlNbjURyMNgG9bfdRJAcmr223w6d/16B/QxhvAPJAdQTqI9A8BLg+iMzOuJFoCXjMnBpRBodVAi1IQ/DDQ3zmKVtTowdS1Q4HOSTdbMGoUX84yBejn7Y9cMGhLYIyMI6a4hChUQLcdQIkRbkrPh7Bh2N29ETmNo0jKGqPJ4aaveUCC8F+xuZzrWJyHgMCgB07MIcUpaJtpP13dmBLkiCUcw6oI8vKupWJlSdOnXlbUmTyQZM1W/YskJjUE9kLGAemOprUUWkTWBoQR4GhJSfK7Bntwbtgq6c27QdhES4xJs27UFAMVYwAaVrQppUx244TVjxVWyk39mNwkANvBFASs7iqxKGljDZ9FzHaR5OdJzmaKC8VugzGMROorebSL5P2mDIT5f4arRYZuKr9vmvh7zbApoZ7L+APv7lB2DQil+WDMOtvGP7HNwibGq4XIJWrKHUVI7iqTwfQsYPbb4Dagbohg56AvOehzzIXCsAaYA8kQLbrMhBcdx7VvgcdehkDJh9BirZLchYLgILpJ/pus01lkGKHmf722r0fEdxmIyzHJaY68yTaZ6l0tg4OQmZDOpK+UUY6leve0n2L79O3a87n0rlYmX7nirlTrZDgUo11zXmSIkf0e3VcL8l3zSq94GSP7Hv9LEn69QPaD72AIv/8r3JfnasPx0iYkLkpdF1m2hpAmWoT1WPX1GLdtHPcWSb2t2jG6WBBbVIZu76XNtRrl4xM9KNzKZdIihR50fqGJIM6y7U1uY4TQFnKEXKIa9QwSL9RD50C6qNERlbNneRuU2eq9mGbZ41Dzl0ykVEMwlh3Krtj9sDah+yw9j6uR42woUez59T/0qMtrOPxmVHkvpo4lThMQRofEoDIY5xf9f5KWtL1rMpAMGt9J8+co/oQXJZR07qYtp/U95RxMW+bCC8uJXwIs335i9nkvjy9T7Eep9x7Lz1PLL1bQPYNSsjQOf3cfUsn48K+MhZ+Zp8d61QZ2cJrQJnAIk2VcgHJeY5IZHSJCBxCJDC5LMOna1LpINc20D3AmvTj6IEwyPAb63QeSpJbltCkUb4rDscUaflUU4DJRnfH6PQpGcTsoTiAxwv61pd0Jp/qJ0S5n1pJrJl0Z3EWsfVvGjnv7vcpV93FkoJfytba+/e0X/it7Llt+P9n7896ZFmSNEHsE1Uzc/eIONtdMrOyqrqru3p6hg1yGk2QwLwQGIAE+MhfwH/Gd/JPcF4G5AMJAsSA6Gl0V3V3Vlbncm/ee5ZY3N3MVIUPIqKmpmbmSyznxskbAhyciHA3NTU1XT/55JM/93dwD8f0F2vP3CFi9uU7Rl7sxV7s/pZYuDPMw1NYHMpuJQ8N44/gSJILAzOAsP2ujFW/j6j2jJhjLwakeK/nlKIMTVhuIcwUhMESaqmrY8L6B0Z9AzQ/7oZ7zm38FYif3MMYSUm2Rw+YLBrO9uy0a1F/7BAbj7BycL3k9pC8K07kby4vx2WrBFlsamGoR7ufgswhOwTHCNf2GRN7zJ4FSZJmrgDXAb4FfCtOIr8PcF1I95y1Elg3R9CSLTLfpO5kQHlqc558Z+6+Ry07yLImTYe2F4cIsrw0odARhvafJAeTH/h5XPaxA0LpUAkBFIS9mt5XqZm+VCZLzgyLjkksc+v7dp1GfXDsZ4uZbacsqohUXzlFQAHDodSRRL9ElxihZQTJhB0W4yi56tksL2O/p6ieYWwedIoYwOEHwAcmjWLO0yzPTSo7O4CPciJYf4U4c0ExySul31eroZ2aBvHbt4Lx7PagXQv+4/dj0PZYVMSsAwDSl8kluTUKEdj3cE0lcwmJEyVcNAibGlw7kVDpa4AZYV3p/KMgRSXl+62Mf9q3oNutAJ8wubK8XbKfrS/HLIIkOxBTBEjnKtdFiToxQJp5YJqbrNNcmyy1x8z6M4piOiTZdKKlcXbfDfYcuzSv28FrC6fmXD1KQHJuLBwBsHIpoGEe4AE06rJ8UZGhnvCZ+irwwzT9+yHgxiK3RjmrSADnPmjOnDBEraToBM2hZOQAi3Ao26jML5E958E+8ed6wOYs/5I559sM3M6tBN113jFHAJjnr5u5533revL3YjneB6kpAsZAa2mVyhMGJX3Yd3NArpAhy+cqtrWBLM/UXFtm0jnHcqHNXXsKQ1Tfk+1hUoQUD2MkrYFFNPHxsmfaVXOUjCLq5sb6uXPvUoR5Ku8zscbz+9jvP4WV++L75jgoc32M1ssz2vLcKAYbnxQHuUmnKgCckSRsLxzC4EvMyT6l2X4zRCGiGPnOnsv2IZ3kc+S+z9YYqUeKnIoWPnVPO6X9uIyGlYhy+ax0/pzR146tsY9kB995GXE1+52sjfO1JccVYhwTLJ9JtMxJ9hyjWJ6rvbTT/ewxogRf7FHty3aMlMydF3uxFzvfsk0Ml4dRYHlzwIy42wtAsV4NkRchAj+8l02jMZNLULnvgJZQv9+CAqO7qsCeQIETEOhWK9n4liwj50SG6mINt2c014zughDW6iBoga/+7S38f/oDsN0J8HeAkTZJjg7Z20toOJRV68DRD7JaIYB7Rvz+T6h3e+DNFcJXV+DKEhNrcuKmBn/1Sp4rO8THpkK4bGDJldO5iFmSlqd2CqAP13JA2O3GurxEgHfoN0D0wPoHRrUD1h8C/C6i+rTXsuPxTfYc8ywHsO2dLV1r/3KgIoFy2XdC4RwpD4hJBoWHQ1cZ5dO1Y0C668C7vUQHtK1IWgADsMgBHDVqhywyokgsvgRQAgmEG2mU62E2JR5diEia2AgQlUOcsPM1v81mg5xZS02jYGaf3WP50CRJnWnsgHBxeIZMdgPAkLBV+3OqZiVSJBwC0AuzlhylSBLT+Z8FM0YA7gwYMiMZMdF/H7WZ6hTXlYJ49SCPZgdsR5p7Q5Ox9z3YEogvtZdGclHlAVcPzqO+B3wN3qzEgbDbI377Ft/9d+8AAjY/RDQfeqy32yEX0my99RCfEiGPD8YmByFMeQ/31Tug8iLL1nZwFjnkHPhijd23G3RXDr6tQUEcwsQAe4AdYf/aIdYKCjDw9j8G+I9b4E/vEa6v4Q1QtuTrmvjWIgOY+9lop+SQAkCRJT+JgdttJ+UBAyBrEkhz7zQbf6M2yeQwrG0MGE0SLtZP7injI+vRESZ86bA4wNBNklUq5zbrULY5ayRHWMxBwHTeWFhvZ20OaDCgtstyN3kPbLfSX+0dcERsc0b8dBzPaqEvzm9uGKd5EnUAvNuBYoTzDtT14LoCdX3Sgk85i3YY+t/cumRROvmfI1LE40Aq0LY/VaLmS2KNTvplNkb6Tvq586CqHvLD5OsYYooUoaYBXWwywkE8PsbObZNEajgNqOQQZOMQh3qDXNqDWETJWP5T2eMq5crrBuRkLaD9Xgg8RCq5OG4zk9qSR+Mh+XjqUzOkAUD7oh87JJbkALP7HwRsSyef7WHyyOzOa/4UXQez5OUG1pLtx0iTz9verHy32dyTomHzeuQgZ26Wa+gE8Dg5d4r75Q7OIZLkkaJHyn1eLh3FcfT5pG73jUo8Zg912mYOzXxdThZVijZFRR0Zb0m2bUYZ4EAd5PsBcM3IScl3d/IddWjIXoLTvtwiiCdnLuvjgDgWui5JFnMIoFbzWtS17O90zyX73RkH5QnzzKJT4FzgfqJCsPS9I3Uq+9xTrztL++3cyj1rLqlnxAcjNNh4snXb6p/v1aWQ1PalQ/ont3L/QwvKGS/2dPZYDsEvxan1nOuYv4tz6rnU9vct7zPbl+0Y+Zzhhi/2Yn/OtnT4OSU0u9SM5Qi0A3N+0SKDdh18PTCdLUG3sfvc119J3hFjju724BjBmxV406B947H92qG/AOIKWH9HqG8j3LYD320HBv/Z7aFM2RASuDRiU5IDoFq3+z3o1sN7LzkAKidJxrse8c0ldn9xJc3TCcva37QgZvibfWpaMoCyzw4MkQEEcIt0AB4DbConYhhjFLDU7VVCq5PyuA+jfC4js8NESlibvcOABDpbZEH6LLUTJ01y6vrUPpb8nY0pHJwCuTzkI0hNPf9+RjrG0w9T/ZMufyG7MXpGba8ckBUgxA/A0dw1+l2TmRoVzTMH6lP7mm26J89VOAzSIeMIcDqSaMjaNgRIOFUYsfRSFMgCUzAdgBT4yKMtluo6fcbTGHIjhiMwBoZMdiqXvjKzPhsCRDokA9W1X46qY/mPMkm+FIFSefBKkrCTOXO9F716QLAaAmJFaC8dwBXW33wFt9kA7z8McgppHs3miUwiYiT1MHpnMeVYsCTuaTwGkcPbflth9zWh+SgRYRRkzDc3Aa5jrR/Q3DCqXUT1cQ+62UofULkiyYsUhnFrY5GVaeklTwn3w7ulqhKHHSR/EHWao6TrZSz3evDViK2Uy2BuHOZ9wnLFHNvHneMImetDZ4O4ehjO7lkmTzcTKUleTvA9fPEA8H6mk2euHO1fbrWSJLgmI0UE4kqciVU1OLgMVMuADpnfZ9b5U9uQhrFVRowI6N6CO3WkhThEjJRz0MJcSlr/SX+Jw3gaImEeoU3zz57xIW5iGQCVon0SyKPrnqsGpx4gEloxi/h6qD0FsJyPx6YeHP35OmzzbSJB0OAMIRbnma2Dc/NKTj441ocy2R+KmO4zrW9nZZ29F837npExotPI3DhEReozjcZR7mS2veupIOQRYHwccXGCc+RAWaO9xShyPU6+e2/L936QuW6yn5mp27Mzyp9hJudVkj07re7z+7oTrrU+YJJaxfw5kn/N6pak8M4xlZFj70UqLpcXsLGVxvU92df52HJnRs+k6x9on6O/3WctKyLLkkUG40D+OLuci3wwc33gvmSXz2Vf2h7gp7THbKuHlPMc39cX4hhIdujccsy+4DHzZTtGgC+68V/sxZ6VzbBFx7rA2aFlwrZTkFGdCAnEX2KUKeuIPt3Atx2cMkANNOGuA7zH7f/yL3D3iwq+EyBw832H6qaViIza4cN/5bD72z2aixZN06P/f7zD6j8F0N0esW3T5jwxjctD3AEGl4F8ov2fsb/JgWpdLCIj3t0Bd3fA938arq8qYL1C/9df44//G2HOugCs3jPe/L3D6k9b4N//Z6Cu4b56K8+8y2S/jGVj1bFkmhngRz5LxGyvIgLVbS/a/3d7cVbs90MSWxhLJ5NyMAaugSS7fXr+ZN6niKAyWR/v9kn+i6pKky5HAVSrCq6ppeu0vehimwOoBGBGmwaNNogHDik52/BQsljTyTcQNmOYkfeqxT7e/I8Oi8qCnk0Yey6TKC+fNIlsBigmsFBlAYxNfUq5lAE1ZqySY2ksFvVYdOiYrnD+O1PK9WN95Gh9LEdJAix5DH5kLF/QmN08eqa6Flaz5T4hB1pVAsYrG41QIYEpNnYzmS1arzQRZJPuTVUlTpHNCt0vxIFJXQT1UZKU7zuJ2goBrpXIrN03hPa1B/tvUF8HXPzdCnS3A1/fSH1omCvJ0ZD3xZqmzCGkTqt4fTN6Z2Qa+QDcm9f44b9lbP72I97//WvUn5wEVPXAN/9TwOqHHbZfXyJWwOu/u4H7zR/B19fo2w7u8gLu6lLKvbkb5mRz5lgOoaaW8XsHlaARsIBevQLevgK8g7+VnCK0b5PkEd9twdttSuA+iRTJxqn1jdFYzKOZCgfe6JqMFb7ERqKqRoo+0Pd+OBqp2PTb+PQegE8MddpspnOkyYWFNuVkmI2uMGNOsmSJpZyvjwbmLj1f+k6Wu8fl6xKBXr8Cv7oAbfeARXNqZKHMKUEc+U0DauqUL4dZmcZ5Thg7FC2BnyMHIKV8K9Q0QFOD1qsBnN7tET5spY9pJKjloRnncFgAWpyHu7ocAyjl97wHcRzWfYuYO8ZqP+Xg95zOGadGtrA6OjRyJI051XxPTu+2Q3z/8Xg7nVE/qiQvU4oyzfv4XF0nZWQscBTjynm4168kQvDmdtgnMYMqiywcO0dg+0tA96mdzFc52Odo6I8zDtuUqDg9ps1fDnBRnCN+iCoe5SGz/VTqj8dIBePontRmzAAHlfGMQ4RIGrfZepqx5419L+Uc2Adk9z+2T05zOhfRIIdIG3NW7DXI65xTStyemZy2zJs2ni8xC9w/ayuJBTwmMMh3ZuQmgQPnnIHtf/bz2xmOaSI0NydNLP8XeVVGdadxFEwcogZt7LD1L5P3TM+b78nzvrjwTDqO5v52sBms3nk//1zrwkOdzcmZeeJaVraR7svNqThSLrD8KXNDNPJoHy7SnS7tF5+1lcoZ6e/PZC/wXCwfF/b7Q9vo2PWnRiw+F8vJBJ+r33+O91DeD8j2b5h/1mf+zr58x8gzb+AXe7Ev0uY8xSPWlTJPmwbGrk7mMhDL2LczRqppPWH3Mic2a33dYVOJxBZFoL5u4e5asBd28+aPa8S6QVg1uKsYX/+BsXq/F2Aoq7dkVT9/41+2B1uoOuRgzKno7JBFwl6iyPDbDpvvpRwKwOqaUd1JsvDIDJcf3C2J7kiPVRmHZX4MdUZRZNQ3jNAQ7HQiB2Zlvpu0TX4oT+2im5kktVUw7HPGISCAA1HK75FkLZg14iWC0Q9t4P0ASDCDKyeh972G4SuzU4DC4V0lFpvpDRf1zUFBk4ghA0LKRMIJSI1AdPq+BoYbZ8+Xvqd1SLd1ynaa07tfsnJDkg41AztbypU6Dcxqk4Ep9MJPuG/qm5ND6RD5Udbj1LLTdcoQPFwRHsa8vcMRk3W6MRyF6Ot3qK4S+ERE4ixVMNqYkpYgnGIEF0nr0z2t7kGlGmgA2Rg9qBPJu/JZLSoCURx5vmNwBXBFcL30Ba4I/S9ew91t4PbiLHJNPX136jSUXwtmo9Uzz1OT/iYsO+46XPzO4Y5e4/K/OFS3nBwjzfsW7tMWmz+tUG893Mc7SXRZHjxDhADcC8By1vdGc1kM4mBVZ51o20eVVItZ5EnEJFIkB0CKyJm8rfP2EvB2cJTklsDCJZCsBIQs0ivpfut9Mm120hwy6dnz+hRM42Hu9dKXAIw0+e2wluozHVsT0OgUYD5PfJo/q4JaKRGuRjiiH6KBKOUXCqA3r+F++Y32yQh3twPf3Aihoe0wRNKVt8oc6XNscZvvnVPHNwF9lYBptkhI58RpUmlde9GKHzlIZsCIQ+zutD6V0aHPSaLjsS3rl4NU0OFDcC5FM3KOTpzm2Zi9r4TIETa+zYV2nwmJZmkM2X6h15wFRrTIo5a9B9cVuKklWtWR7D8oSt8DgLiW/Fu2l7F7dDoGynkpzW3DvCDVycZCXQK7PAF2T96DZgQKGXvFdQo2prWk6OscdU92KJ+DPtfxumRzZzb/uddX8rutMxaNqnWK2530H7vuxGef5Du7J4iU7ynSz3nUcx5BBSDJfqYItjNAt8/hOM33VWWbLO3tTi77/kDdbNTJktl8ro5abg+0sXNw69Vor5T2NIWDKL1X+x0z6+xjGGeOyi/VHtJP8z5Y2gEJwWkxM2eU52ZzGMiLzdtjj4uTHHfPsM+cYp+z3p8bHz9lrT8Hb7jPtY9gX7Zj5NAk/WIv9mIPsxwcqgtAS7WV6ZUcjkyKAV4OZNHkLTJwM11HlBi2aQJsagHOmUGkwDUz6v/pP6Ky7zrRpo0JhCL88j+thQFuE7E6AoIdRLNklWWkw/3aQ8ohVwnIoCCmyTLBSX4UA+zdf/wdfvmffz9+VgWG3cUFaL0CbyTJM1nEzc3t6JDJeQ4DZWOSd8LIDQGvf9Oj3zjsX4sTilhBots78L5F3O3HoIOCgnm0Bfd9lgtBnTW1gMXUKWv61ZUAGgqExk+fhIVoYPl+L/W7uBA28kZlXYiAGBGuVoiNR9P1oN0+OTY4P+QAw7siHhIZOi+RJ3Wtkioq1ZLkkFxiUHLXDQ6hthV2dsHkXuwFM4s6BySA46AVzPgRU70EmlgiMEAMyvJw5FFCBzcXJXtMtdgXSZWPwW7LNN6PlqMRJkNixoyJrwlwS13rUY6TuhpkgaoKfLdF/PF9Glfi4KDkGElMwvwdZPfkyKJ/nTvXdA5D24EAUHsl4yeyRIv8+BHcdeC2g2s7NNcRvnWotiwOiU8BsXH4/l9foNoyfvH+Wu57sZFtiUYxxZtbqcdqJWDAfj92fthBvgg2SO8yAPHDR/zV/+X/J+3R9RmILDreIQSsfyORKTHLK+FWCixkcoBSGRtXw9jj3X5wcISQ2olv76QN3r4B/IU4Nvte2mbfJj3wCXsrB/PzqML0uTq8QhBA0sx70GYNajuEm9vUPmRJokMA72c6ujHkUwSWOWI8yBiN9rmtS4BET3z1VtpE5w1c3wioupa5GZpzgFa6fmnOHdSVOEc0eoaCQy4jMpk3Uq4jA7bHXojJ97UNabWSfEP7/cD+LqJyZB79BNrtES2CjkiT4gpIuvvv/1f47t/UaD4C6w8Rl79vsfpNDVzfIm5/hGtqULNOwDaHCG5bEJRJ6/w4+odp1Ne47yWC0nud4zXnj0Ulrdfov30tY+xiDdp3cB8/aQ4t6X9pjrH+Y3sGdexNkssrcBYV5JYPMnDssQ5T5WHtJyJlDWQAjRJSKUsgc5LMAU/1Cu71K4nmvbtLEpipjYjS+7U8TnF3P8cIeZ/GzIRg4jzcxYXMBU0t+4e7O6mL5jeabVuLRHGE+OnTQM7I5jTLm8KXa4SLGr5y4D7KeA8qwVo5cC1OPHezA7oeruuF2LFvQbofSk7GuXHsdH/khNRiMm/JEbjdgre7kTTZCEAmdTTOAQA5+QMAeV0LssWdQxhyW+VRKNl+IFq+B22bkYP6WGRHQcKRnwcnMm3WiH/zF2DvJMIySpSlvF/JIeR+849D/zk0Vmba4GCU34HrRvcqGOzShsMia3NqkqwkB3gna1rbal88oQ7mKA/hcGTiQp+erfuSHWoTw0Nmo/rPAEruMc8dTeJd7P/cagV4jxg175c5IiODEAB7N+uVzBGaF427biRbGbc7cKtEqzkg+ynm6Mcu89xIkPL7x343K393gyPw3L4pZ16ffgaGdzsaN3kZutdMRD+TPTxGtPocttT2XxLx+qERRQ+1x7rvqeU89r7uczi2v2TL9wKHInXOXOtHfy+woDyX29x+76R73sO+bMfIi73Yiz2pjZhWTvM5TCJJCOQcGMJuBps0ipbBWa4IPSwbY4RjVKBNGIApl4j+474fDoAzTPMYAoDbycY8TagWJfBYZswI03ae07RVhqAAZpkkViZlASiw28vhmyIr07cf2LPGBLRDVb4wpQZguF7+VXvNPbDvQLtW7tt1wyJmQGAuK5VbkcjRcjpYXcbSNzwwlC0aw7SGYwD3BOoEwOaLFbipJN8IQRJM22EHJRq87AxIWrWC0I3fSXKWuWkbncOKzMs85TBZfCdPKnjw+9bHEQGeOTQfq/MhUGPy3eNs4rPsnI1rzmK08Rvd9CBdADF5REFyhDGPIrZyNu+oqPQO5semMJs0VwEJuI1Vg7CpJPfPVnIcmdSPJKIn+P3wvlwPVLuAHupICVA5uYzNaFJLBojps1u0AWIWXTVUvqin/dkloGtJtiTuCqCNCczKljZgz+YrHcdmRCqHwXHybphZnKNdN0QjqHMkRYvklrP8y0hCd2AyznMdWZRb1h4cTas6q99kLVL5MovO0Ygb8k4cdebwsQgRlc2Bc2BHQ64nZVpTPr8zq1QaDfJTRAM4z5mO/0w7jspRPfOh2kfmmrzdDoBQHAKQJKpimufzqENigD3Qrwj9xqN+tYHrenE8O5X3i1ApqikbfRQNEBXYcJTY+jZ+kwPF1sqc1Z8XOQJPsrWutDwiDNn4l18mjPyjjOHFQ9rpzNefykjJBkC+l1pwJmTOJf3iaG5K64N9puvRvXKzmZURj4VJbp6Ygfpn3uvIdWwOCiJ5nc4NTpoIxKYSIk7fwOlnRAHoaBLtMteuRLp/Mges7Y1Msm7nJnU7iVVf7l0swg5+cP7nbZDX8VAb5iTCc/cWJUM/nxOSo6f4/yH2VOPuxD6W3ms4Iqs0KruIVDzjfo9qj9125zxD2U8yK6UfTy4PSM7Gk+o4B5r9XOwez1zKA46sXIdPPEOQIzD8tC/aXuqBkWAv9hPZY54hX+zLtYeM20POFCOlZmvIWdGIj2gvjpEXe7EXW/aaW24Bj0TsYJWKArOwrSsPVMKchXPi7Oh6oKeBAWih0/a7TX7Gquu6gf1vESiZTjygh78CtEiAX3EgSdIpGnVwEuM/b4sjh0wBoKQeKXeH9+COk5azacnnLC8GxjlL9nu4qBrQu30CsCbSXJQdLqBgSIgJuHMdY/1jQHXbw333Hny3FbZ1HJg7FmmS5DQMuLL6XmyGtmeWhMtEqV7m4OK1gIp0Ww95AUxWC5AE694D252w+9/9Fdp3K0nc3DPiRQOqPVyvrMYRGDy8g+F5hYnHbRykP3yvOVb8cNiqKpWNieMk0KVlOv+jNs7fWWI85dILS6w/zWGS9YXRYWMEFDfCfOja9MxszFQDF0dSYKf2WTd+ppLZMXe4PJfZsbQhKtsl/z0/qKaoreU8DNQ0wjwPklOHVhpR1XapT4xkTubqlOYGpHcj0hxAiiaw6IPNGnh9hf7rK1z/dYNqx3j1mx7UBcSPnyRHzjdfg+sKzYc9YuUQ1l4ckT9s4WuPy0sPv4vg62vE2y3cZi3jZbtNkRcglyTAqKlBsUJM0WYZcw9+iG4qDvkp+bQBoRoNNQIIs2uSfItGzuVgFhnIHGNqD2mzod8P0T1BHNC3d3AAeN+OIxfy+2fRGqM5RqNDMHpWjMA9qirJI7NvEa+vp2BfzBjsuZNX65uYqI4kx1Pfg2+38vFmI/knouRucZcXUqTldXEEChHx+mZgrkPnMx1XZOuX/b/Q70bvYck4m2MAwFXDXJcaZDoGpc3b6Xi28d+2Q4ShjZOsPqsf97j4fY1YAbEB9m88wFdYVw6ubYH9XiRwcnCwyF0wiopTSUR7t0QOWOu7XDXinOnaQW4yBlBgoI+gvTrarK0sssXqS3owIpHjI3VAcS6XZ3/L5oLFqAlrk9RXF+bMrE2HB52ZZ56SaXhoD6KyZdx2wzoyN19b9Ieu+fA6t7QdYlsQJjLSCYcA3m7v91xaj0RmmSuDo+To8U7l/ZDNI8V7m2vjcySp8nKIhDSCDv3XG3SXFbgiUFej+kTAtgXt3XI0aV6W9ymakZyT+cY7iUhpKrh9i/hJ59/RHkIlQGERlZj0uzmpUHSdLJuZA2u0xzi1Pc5leqa/DWsqhwDnHNyuBwcWyckYheiie0TqA2LpME8PWDgPTiWhzNXtIWNQHbYyPzpYDr0UjRXjJNJ4vh4LuRVOsYc+w1x5uZ3arve9d054sd+BaZ+2iCqbrzVX3GSfa3O+yp5iFSUSvO9lLQnTfcODn+e5AL4nnDvT92av1/Us3LczHrin3Te790TqjkmIEt7DVTTKawnnwBbJXEpAzt3r52aPFen0c27DF3taS0TOE/rYfebUdIYNxTzjNGL9CPnjvvedsRfHyIu92Itlh7f5TdU054KDZJuM4Cis5DQpRVYJDT9O+GhayTbBkhtvlIiSc8XYyIkVmW+E5zZT+f3z38trH9lyGYqJNM6cNnRZb4soiXFZp780A4c1YsV1ERQIftvDbXsBLnOpMmNR1wqsrpp08AYwHDIM3LL71NnyYABr1IMKiXRL0vynrM52qIlRnDBtD7+vUlJr6oIcpu+xgU8SP0DS+E9YYmRJRp/6zkw7ZiGb5I4caAvW/uGKLXzPZMtK1kO5gNv4yMs6c4E/2m9Kuw+78SEb9jPBD2Gua36LGMZOQWD+cDx3nxHzUKMSqkrkGuoarNECgHRj6oJGMyE5KqkPoH2A7yMoMFwfQRoJ5vcRfp+NX5O1yRymZHIr5qBwBsSGESi7NFcl1nddIWnie68bRofJhjVn4NiBNbVFJpnnhnkgz6uRLK+PAhrpwFvKZ1n7mlMkixBJciW5xYGVniIa8oi5Q1bm/rB75PUf1YNS1COAcZRLZNCuleeYyblgkR0pejJgfpw9YEM+zbGTOVOBIeIizrwj+17pWJmrT4xwQcgCMQK+Y7jAshxXlaxFIYhUGPN8gtQMyEvOLufSfDvKH5O/I1sXaVL9pUYZvhhZ9hu580SfJ8+hcHAOPMRqP1Shn4LZehAgi9O8IEDxDJpbw2fznTo5j0aCPAVAO/ncJElD6tsnRT0ciwjSPkdclKWRzCmyiwjsCKFxcETg2kuuqVFk1oG+b5Gz+RyaA9wpMo8Wx+yc5XPaNDJ7YT/5Ofpnua5atHRPg0NEcxrBognvE6l7n3o99HrdS7NzEimHbO0/ZIVD8cF1+Jz2mADqKX3S9gLH1nW2c2HUXEDZOH6JMFi23Ml/hj3K2bgYAyPpbLtPtl6NIqhf7MVe7Muxz+V4ewhZ4hHsxTHyYi/2czdj5wPCYisnl4LdmnDb4OHbDqiNdSgsETAn+RlAEhJPmFdapn0f1A8OEXKJkTyJnjiZQT8w68667tTvGuBYPM/48Dijs1qUz5oLZJbJV1xn4BlRlQ4aHCOqD3tQjHB//BG8bxE+fhKAynvAN0POk9VKonvWK9GG1gNtnv8FROBXl4MkhDHLWVlbwCAv451okRONtPW57wbJmbZD9cMn1NtW7mf5DvoevN2NQdWSEWXOG+t6BqL2HTg4kI9ALRE63Hfjw8FSFEohF5aDFbMhm0cPx2NAu8xvMXE+Zd9L0UT5+Lgve7DUnp7z+Mwc4lM0VhlRNdcXaQaAv09d51gdVn7UtlC5DstvYTkopM2GiCx7hlGUz6hPiWSRyCvVojW/WYtD5NWlsM8rDzBQ7RnVXYS73oG2e4koiVHGZ9fBa73d3VbA9MqD1is0H9ZwbVBWb5/yWFibu81aclFcXEi0we2dMOa99p2+w2IUDQ26+rRZD0mLFZTmvlcAIQoLPE6B8QnoDqT5w+owOtgqyJ4Osxbx0vfA3XYYb3aPPHrDJHsULE/lT5Kl8uAMSQncg8z7cwBpPi6cT0lZozqnLME6WflMMj+9epU9X+aEub0dqtO2iH/8XsHamUitmbXvZDtjPM/pdqf2zJ1Fzo9ypIzKCG5+7BdW30ZU24j6toe/aeF2rYwDYIg0CjMsLXOGc1a/GjJONMcUnNP3MDgsRuYIiCRrUKDMoaayX+NGUQCdhhxhExm+EyJFFiyXPjwJJHpshvc9LDkmC4ck1dUoBxh5lYyrK8lPE6NE3mlC8uRQBe63T3rIMwTJC7AY8bJwKB6tk/mckrUBdI6kyCm6Ltm+BccoTj8P9LX0eRcagAj+RuZ2yZs0k1sESHlMqK5TpAicU1KGONE5Dg7CR5VyBVIfTFGq/Wfqh/m+lTnNGWRRX5bj7fZuzBZfKEfOCDN5yx7LSXAMXOE4luczmd9TnfNmS9J757BX5/bBB++58L1ybipJC08ltbV0xinn9tyRDt27lRGvHMAqx+svL8bnAZMxzm1pP5nX40uxezCeLUL3pP6al38sh09+zdJ9zdmezmjZPsz+pGez3AYS4U/gFHyOVhI7n6M957o91P6cn+1z2RzRMp+7z9ybD2XFwyTjJ7AXx8iLvdiLje1UJrkCSQSopnOmq6wHRjmAH7iXRhdYsnW2CJH7OEVmDwq2IbvnpPzUZlEJBYAv/w/yTgCmwE0UZ4XbtZI4dLcDtx0sqa+wRN04UsQ7sCZEZ5PS2bcJjCbnJDdIVMcIDwCZgbCcwud5AMqcE31+ihNwjne7UYQLd53U1w6f5CTBaCZpkrNdBUSd70SS+NeB/Gqe3XzOqzjEZHIzmrmZhFYyAzLtsG2bXRpfK2BfnHdEHrL7HvhoBqC+j53kNFw4sB+RJcvZ8XkkASlINZSfRWQVf5uvTxElQSTzUyVSbJKIl+Bbhm8jaLuXBKx2ed9L3QwASomOach5wZyY2QbeJRkUA+tyJwFl42vJrM1ySRUFzilGiXKxPD+HcncgA90zKbI0vvI8IalupBKEGJwjkUU6aWY+TsnOgWld8ug0Is2T2g/zQebAmWyey7nQS/4Q0qTNBnwOzpjikG2MbZPisMiCIuHnbPL4x7CTgTFlyk7meJGRGhyqg0RZSvibASIpf01ebv6e+ohqJ7moXM+ARovA6bqQOcoOHUZGcnZF7o+Dpkx9y+sy5IRaiMDJoj7JD+1wNHLgTDurjOewj5hxVtk/dkoaMGlSQHICxTBKBv6odg64NQeGHYsUKW9nYGD+NxvrkcG1R1zJ3oECiXxb1P1lCIjeIdYECuJAGXW/UhZodGPtrzZ35k4Rm8+tvkYsKe0RI5jP67dPDCzoHMunOBVmo7aeEBg8VG4i/xhgzOfPKY8VQXiuI+WUv5dOxJ/C8jEBzI+LObOowyL6MK07S1Fmn3OO/tyA9kP24I9t2VgZ5QMo3++CxNqLqb04h346ew77uT83W1JtuK995uiyF8fIi73Yz9WyySsdBEr2kys04QtPMO/34thoqyF5rneg16+EJXRze1CnN2nNnnNQPvGZ5HHMYXM4kmBxI3kApJvIdhxjPc6VNXPPxBC375g2b9sKGGBM6yBAh9N6xBthQdNmI+CZAZzrtYDAVxfgyolDxEGcJl0A//47xO1uzEL2HrRZy/3aFogB8eYGIJeS9Eq0iAOaWiWtBHSgEBNgQY4QP3wEPl4nWZvk9LJkwKsVyDdZJIpqPDe1AM13W8Q9zQMKkUFfvQFeX8Fd38q9MmfOiD3NPDhiagKiymlZ5AYWsJCqAq1Wcr1Jw9n7qeskMUTeS5to5I1J+bA6rYhIks4zizxUCEDbKUO7ABKW+t49Lc9PM7EkWXPkcP+AzQlpTg9u2yz3x5D7x1i4zDyA9BwlZ09578QuLPIxlG2WM1wjwzUu3QeVBzcV4qpC93YFRMb6hxbVxz3Cd98PSdcBeecxKvDuJdqEWdjXzomECAD36gpcV2kcuqtL0aC/vEjgGWlC7FOSkFpOoJz1jcorIOA0r1OfwL5pAeZEi/oOaumvZl5yQ6HrdYzzKCcB7/ZQLwbAYXBOFv0ytemcRRaflPMpFxVvt+Aby0EQl+dll0mH9R3cagV69UrG2KoBuh7u5nbIKWJSXGYWXdD3CJ9u5vtQPqfTTLTFUzFP55i9M5EeIiFnzlWCu3oLWq+GL1geGyu2qUFu+Jx3+5SThLyH+3iLy3+Qfh9WOh9UDtHXQFPB7waH4JyTSvpGNcgUBplryXvQqytZz/f7MZiV9hTiSOdapOvcSpn9lTpz2hYT+RojDmTOtVF+l9H6u/AOR2VhPC7m5sRj8pfPwbK5jupqyK1Dsi6naDd9H/Hjp+l+JbeH7LeMIIDMwVh+5773WdiX2R5nJEMKSF4qR2jfNGjfVqi2FVzHaH7Ywm1lzua2RX/hsXvrcPGngOo2wO0lr5T10eSwIx2XRVROyn2lCdfTniqK05o0mnfSn3XPdsp6LlKSQiIY5dOyvfdcWz+FzdSVbL21fyEiamRlLm03W5xFimjU0LF7PciW+ttctF0eCXkKgGtz06H7HKvHE1u+Lh+MxATuV8cj57ZEmIhKolPyQsoBmHKaFethfvbxHmggkVja53m7lz3LqXXW9W+U8zG/50Pb4THsIfed29uUlpMEz7nfpM/IeUIinfPPNDpbc4LNOhfn9nl/DlEjRpy79zpqe6SFvcuxfWjaxz7DSKnnHgnz52yPNa+d8g5tHBcyx4tz7kn3zfDI2bPBTD3PKX/BXhwjL/ZiLza1uUSkM0zvtPlRfWEC5Dt9SKw6OwiN9Jbt+vxwN8cMzK416ZicmTKbVP0cVkq5oShtLlH38PDTa0vJmJH263mHWGZOkTSIGYiTM3QQxgcE0lwG3onUAzCApl0Pii69I66cMCmbBs4Y7xmYRauVHCiaZijbgNoUgeIH3W4YU177islKLR2SczBenQzp/jlD3hbZXJZqJP3jwI1II7lVI33RwAfnwLe3Aoym75+4CT8gWQPo+wkBtFrBffVOw8pVTqKT5LYcIJsClWkgroZnyTU2ypDT+9ghBx8wBgJPvcdjbmpjPs7jKOIjHdqzdztJ7miWR+/YJsycUOY0TGWaU8CLU8CiN4hAbQ8HoLoVZrHb9aDbHaIlAs6TTKszCy6A0RT1UfmfVSOJZy2yJI+iMJtlys5IlBUMyRHon/TdLSFpGANns+VjuDb9LO1t0kmjZOn6XKO65aDFSMYmixQp5pBhzIYhwoaH9zpyyBdO5pTouyK4y036jkTwuEHHPs8xFFTChqwti1xG+TpWtg0wjQw7J+KwjIoyy9rNv30LNDX4biv1svY2SbGUr0Pn1LlcSVpeki7MI0JsrUjfLZia+xb+Zg8KERRkLoqVAzcO/dpjkztG7Jny9Z5ZGPapTAF/815t+vCcGL3TdZLy5dA5yblzzBYktI7+7ZAtOUcm3/vMB/v7zLukzlK7NhEQMufjU4FQurezaFWzUWL7RwDxbT9oxA9zpqdcJcpI97uAauvgd1HyQXVBIv60TSgwKACxIoS1hwu1RA6GV6B1A/rhw9gBZ/e3tquEuDE8P2TO4mGunOTCyuXa8rl0rg/qvMbeSyRu3vftHX4up0i5p4XOPV0v87nlFLHIw1PqxSbnxufvSR7R2IgKn8vJ9DmNKJ2VToqAmZtzDgFNpzj3VMaTmSShuuVxsbVh9OVibiI35PzqLdotDpGfc3Wd+dtEPte+m6Koyw/PALitHFnwpp+fUk7psDjn2sn95phdpLfRuqoE9GKE7oRAMK3Hwf7EUUlnJtdY1OvPESR/rLnjMc5bz619n1t9Xux8y5weoznjSH/lhf3/SQ4M5mFePdeR8kCFmBfHyIu92M/VFg7JE3Z5Ll1TOkfYEhUObH/uelDfp6gDuroUkJ4oMcpID7Dx5jbpOcM03rNJ1716JQD8Zg2uPOjDtbDvFfznm1vE/X6ou7KsU9X7fqphXD7v3MbZPlutQJs1eLtDNF36MpdI7iG3aAdlMRr7mkxHXwGLkRd9znRBYQyb0FTPjGXNAeDtTkDE1UqYu+sVsGoQ3r2SQ/Xf/1YktpRpbInZ3WolQPE374SZbe3jHNgTwkUDREYFgLfbIfJkvRJm/LoCO4K/3oH2nSSjtgNm55OEVzI74Gv7lPrfdLERp4uBsJVGXlRj5wRbbhp1WqGqEDc1dv/kNXZfe7gOcD2jXxP6C8Lb/7BH/f/6d9quwwaWHcDdDKCs9/JXl6Cv3wG7PcKP78e60wZOEqH65bf40//u1/At4/Ifd6g+7UD/8Htw2yHu9mMQv+3EubRegYgQswTdyN71xI4whWgOhAdS3z8UtZWXMzkU2c8nHJYOGc/J4iUmroA8bA6JpbLNUdU06V2IrFIj0UWbtRygO81xY4mk2xbU1HCvXwF1BV410ld//x0QInzGWswllSxnAnkv+Pr1NUBO8lt4L+OhqcHegSsgfPMatA/inLODPCDAEUUQZUBa9p4nev/Fe0zz23Y3un7oiwttpvO7sZy57WQe0KgQ3u+Fpa/5nNzrd6CrS/Ddbohw8l7ltLKohKqWqA1jP+s85DYbiY6xPmLO67sd+Ppa5hUaQKiRdF5dDeU5L1FpdQ1aNaBXV+h+9RbVxy3if/jP2XpUjN0k60ejXCwApHwMwKYBYm61AjNrdIx+T+s4Ynubs83Wp2LdtPFn45ot+sGc2CGA6gr7f/PPsfu6wqu/u4H/eIvw7hKxqVB92gFdj3i5Bq883F0L6gLc3U7yIoQo60UIwsy2uaiYk9hl8+0IjBBHZHz/AXR7B1dX8HWN+It3aL+9xPVfN7j5a8K39Tus/x0G6TZbZ2y9svGkEnGWEyRFUHWtRKk4UkfiOFoEAKiLoD7KXNiLDByRSDsmHfqSUZpHLOV/H/3+QImox5LDeagtkTHmWLYmcde2oMsL0Holfe/jp/SuJofTnKyRM/mWALJDpk7uNJ+ZpNdmDURGvLvL5M9omBOPAbBlXQCZe1+9SjlEAMj8QKREhMEp3vz9H9BYpG2MSUosbncARzQfWsQV4e5rj/Argt97UABcv4HrGe/+3wT+8GFST2aR7+OLNbp3G/htB7fL1tYYQftO5UKL/jjXPVP5wx579G5UanbSJvcCTQ/vIQ6eB6yI6MTJ3bYI330vbZ/v3U+om0XMSM4vGvePQ3mCDgHxZX/JHXELa+MoYmWyvzkRWDnFWf6QOeSY8+FYO8UwTCG21zp0O4uSzXIv5W3J5X712Du3+4cAJgfqe7ARHA686ySVd7eVXISZ022WpOYyacnsXOVWK9BmI3ucdshnlPbLRr6wqDNdJ5Oz5Eg/sEjoPGrNrktkuEPjzvY+k3bjo+dWK2NEIJpzDJkCgUorp4+UjJFy06V9W6ESManbgYhMDmAWYgrVFVzjZQ06lgfpSwfPH+zMyJzjc3PGsfPXY7ffHAh+nzKe+r0+JCKinAsfu642jk7N5fPYNiF/nUjuOoCT0WolmJqRRko80Ob2lHOIJ2WYjRQ9lvr1nJLG3Pf0s2FdAiyyTX7XP5z4il8cIy/2Yl+y3fdAe9Y9ZLIbMUDKSVYPVYkhZGyyi01yYkjdKgHEE6DrNCcFzx8c7ZnsXx49kEsemJl2OVAw1O/56HUF2mwkEuDubvxZnmjbNtg6OQuDux0SECuARMwjFtX8oW2GMZ+x6mbZnyZnoYx4rjxQiQY3OYvW0XIVgI5an8lRiYVNicgavaHRJ7WV64UhySzsL9JEut6NADBhUlFikTMgG2ZlSg+MSmX12/vN9+MjhwiP2oUssqTyiLXUiYnAnhFBYF88Wal7G4txY+1ofct7eS7nBmeWtk/eVmAGE8TRUjlheXoPUF8s7FEO/1lywpSjJPXhMD7Un2o5Oz9/vkdi6j7YDECb29CfAkbouEoOstGGWKMEnMMol4tFVgBDPgNNts7Gzg8RcbsdDrjZ/eYcTSnhO9EgDecoMYbT/5QBPsZktmiJ/O/6jsjFKa5b5JdIj3vMIVI6ba0/enFITCJDyGE0+Z7YX6ayR3Gc78SKiQpqGDs313BnTnlDGACSJF2TIsa4knwBXPsjAJyML0Q3ODJOmPtHCb/zqAZzovDMODqV5ZxFSabcLgzAk8yl+UbfQFfLeWARPazzvUbETIgERd0HUH367GzRdNoPad/DtVHyjUTStXkhgsLGhK0nOl+PxqW1SdS1oMw/wnE4nJDkG6Gs7gdtzmn7GLYUNfIUh/pT92flmLRrzdjmDRrvecw5EIJIAx2Sz8ptaR455SB9SKIx+/leuWDy8bgkQZj6rN4vsjgmcla65VaxOjlK8zY7ACxLBzsg1HT42XOA2Rx5Zvdl5pdOiUOg/lPZ3Lgyebr0axxeqzptzsoDeIqd6xSxz8+99wEywZ+lHXu2UyLn5vaTp7a7OR2Q7V+OfD9FUR6tFulZcroeTs5TZiaHa3tHZlm3Fg+iszeWvYsRJu4xx432GUXZE+DxeGGnffdIjpd01n/A2YHyefLFvlz7HA6Ox7Bz6/nUc/2p0chfihmxSff9J0vljT7m6XefwnIy9z3sxTHyYi/2pVs5uZ/jRbfFYWkSTwdRTfoLk6mZkX9R8FO8tfJ3p0AkepU6MCdJryHSJv2k9R55kVlZ2yzRBeR90pSWaykBpqNJ1sCYPAH2kpE7zFzabBB++RbeEfDx0/B3Za6npL9VJZEtVobWk5pGWJwxShRNxjwmYMzatGYsHCJTdta4rsZgR1NL/oOrjSQfrZykErm6BHeNbuAjnDKzJXcCw13fisyQgfx3W8AR/Fdv1QnigFUDvlinJOvURbgfr+Vw/OpSHDJ9AJzWK4FnwqKG96C913B4OYQQoMyoQYaBDNCb67eFJjE1DWi1Qnx9gfZtA7ePePXbPWLjEBqH1YcIv49o/ssHhO029amSSSHMxaEPwmmfbGrJBWJ5QJYW+9stXv22BUgcTagcSPNLYLsb3q85xWiQ/HGbNVIiyax8GQInsnUyqbmReRoOo/bRIbbXod+P/f2UOeecvxeMJWoauIuLFFXACvwlqQVyMv66DnxzO3xPxxeFIJu5yiOuK6Cp4Joa7uZOcud4D/furcg0/fhBqqD5YKJGE7jVasi9472MiaZGbBzAQNX2oH0vDH+TFwEEgItR5oRsnrJEtUO0j/UxY2didEa33D6zOWnyptOoOWMw0madHJvU9cBqJXkdum6Qfguq139zK5Izpo/PcbKB5b4bmKNuAB/i7XYc1QIMEQdLyXhJIt3c2zfg3Q4xBLjNWiK1mKUtNYKNc7aj6YXrveV/Tox07udBPsbgOKCMwZ6iDDmbvwCZw4nUQeVkXSOMmUn5O93txzlxbGw6mV9W/+Uj6vcrkfapPNyHW/g+gK9vJJrnYoOqrsG7HdD3iG2XHNmzAKQ5QyxSspb/43YHbrP5Q9mcsOgh1iiDHz+i2e3xOn4N162x+n4H12gOnSSzNrBJqanhLi/S5xLNN+OUzX83B2XM5lBH4E0Danvpb0CKGjlqT3FIf2ypj7lDeunUPeU+IxKJRvGok96IAVRVaf3i3Q68b8eRInmESB69eIiccei5snrlzGuLXGGSPQKAaaTVXFm5zbEsM7IC7/Yp/xjIqQOEZU8JaGRVhKsv5DtR1lbe7xH3e2k379G+rbH9Wq6p7hiXfwiob3u0byqExsk8OarrkJ+KvAe6Hn7byVRdueHZvNP19kwgPwNxE7v6iHNmkjPhvlY6HEeOEJJ1MJf3W5K0u8+4yaUzl/ZYS21ZOqetvWyuu689JxDwPnU5dM2h/VtyXKAAlsJACCmk8s6vW0EuMODf5ijtAymqaLWS80MIIJ1fRLZ5HClhkcPELOuels99D77N9jCTSBOX+raMp/68tcCR7KdiALYMVunOg5FPo7Jn8hBpuQQvz7m0d7JmtLPL3FzLsoYTq5Mij4TN65k5uMt3fejsM18hc9hnxMXPQeD8KW1ujjrbUXtPAkNeh8dq03wOva/z4HO838nadYTQUF77lHV86Dr0EMvb4Zw6zO3ReJhnZ6VZD11ffvbgqO7D5U+i7Iocs6fai2PkxV7s527HnCO55YwhctOJLi1U+muMknBYN2SigY4BeDtmFqKcgXjpHiGbmJeY8XPMy3Nss0b71RrruzY5YATcpsS8FtCxBq9EKoeiSoVxTKxnAkbMwglLebLA5Bv5DASceT6JyBlycrD+gyORk1XtfwGxROdX2qvTjXcEkbCIExgaIMkOgXHdHIBOwQaVLAJfjDcdOUg/OggRyAk4mWQmnLZFCRYVQDvbgTx3bMTswKOYpWsDQBCJr32Ev+uGnA95ubp5t7YbhbNbWzk3HNwPbbZiQHXXDc/Qx8T2njyLtUmM4mTyDgQSYMdAHFbQds75+FB7ygPJfRhuJ5VLQzRRPpTtIB+iaLsndj3Pzy0Fi561P6aIirqSHCEGkhsYBAxRDHWVcu/Yc7q9VipifrM9ikyamaeWct6UIILJ1Lh2/gylEjxpXsr+LsnJI+A1l0hVqYO5jLAZ132eFZQ5b2J2mE6RAhk7PAfNJg58HYOWV8NlIGuqu0ttTJ3OR8piJo+hD5T9bnYekfVt9Ex5RFGqV1aO/p1izByNSw6+woEUWepokXfOgfYtnOUiYgbt2iT7JhJV4vjifTuw/ufycJXzmDlFDES39WVpLJojtu+BtoNrA3zHoBAHp0fxPOk9kUR5cBmXztP+Y/dme/9EMj9b77TnyKNQ6AnmvVPtqQ/Kp4IMMw5JkEmN6Z5mFA1muWrimA18IJrjXhEcqVxK4xBAsU7GkYzU0aTPS+UDI6eI5OVSoA91cd9D5BeargcREhULACzSm24f4DqP6Iv6EoHKOZo0ShYRHDXqqZz7Z9t+Zi/6nFnVFiE2+pOA0g/qP3N2ilNkJJH1hIzTx7QvGQTO1sxyDJz9/su9T3benM37xzzsCwDZ4NtZiglEPKz/5X2yOpI7YT40OzX/4JxZRP49o0YmOYlOsfv2q2P3eIxI82h7soW1/EseFy/2vCxhWC/96dEtW4MP5rJ8DvZI7//Ldow85w3li73Yc7Bz2Imzl5NePj7w2WaTeTjAAhjYa1E0wfn6RqNEfAZ8jDWhWbVOOQd9DFAJEYQsV4MCAaZxmECj7JCeksEamJptvqesSWOmz2u1tr9+i+//dYOvmre4/OMVeLsDW/QBOdGvfXOF2FSImwpgaGLbCOquhEG+20/a355V7l/LBt8kTgpn0yxjyACwuhJdf8u5UleIF5JINDYSMZKsqQGuQFsBFbjv5Jn7HiP99roRoC1GUMeJ0Ys+JACAIktbtC3c61dgy1ESoxxkaujmm4UpX7GA/96Jrnx5EGCWvtP38iyV6oP3QUBDzfeQz/mx7YC2g++CtjuLY0TN73r421aShGrS1uS0cZJcni4vtF6aRN508e3+5lTJmNmJAU9OWPwhoPrDh6FuXQ/+dJ2x0f2Ipc0BgOYaASnYvtnItdutJKm0PnMsH00GTE2ASv08PximrjXHnpkz07s/xhpLrOQMpD5U7iHLnWp5xFTbpc8HgFD7cVcPEVnK8jdnAMeQWOvUB9A+iINWIyNSHqGLtfSV21ViHgMSkUVNDXr3ViJONg0QAXe3A7Udmv/8vYw9zeGT5h07ZPe99Pv1Wvp92+qhn0A85MOQyIAZhosCc7RZy3f3+7GDWNvLbdbi4LO+rvk/aKU5WADp6yuVqWpb6cu22XUyPlG+6zmgumDkcISyqR24j4cjWsxZrJq1aOqhvRzJe/50Lc7Jugbd7dD8p63ohHsP8hhF0QlAYvN34UBYADgTsNf32neV1WiOkATYZ+Mkl9LLpfXITXOPWN/UudvVEm3E2x1o36Zondi2WcRckJxDqbw4qb+BRJYnJjkqtG/wXnPGMA9zVQ5axyGqJjmWWaQAY6VtY/3T7qnReZaTKiVVj0HmurZN9ZjkVVANc9J8LrRagWsHBB6AZOfkJLJaSfRJGXX02PaUh+ectX7fe5d5AYDBMVDXIKfRWhr9g6aWdt3vhTHHLH/Xfgpg1FeBbE9xbj21j5d52UZ7FM762JLNOPjkPxufLj0jgGGO1HxLtF4BBI1UcUP+MkCZ35LDJndu5+Wvv9+C4hr7dxVCTSIn1wa4fZRDsTmMy/Y3p/vFCu27FeqbHm7XAT1Ln47qXARmQdaB8AAABcAwAY4P95UkKVpV8wzOBwBFKRpp7oztPYg49bWjbN25vYCtOdYf54DamQiW0fWzFX8kcOwJyB3PGrRLdZsBveZkSQrC08H3AQzjO8+lxzE7f2WO2qw8amoZ630vY9oLEQZ9L2Q5DNFa3PcY8qJJpCNV1STf2LSKGqlo0aGj/nbEQR9Z8moZoSAnMZzo4B+RGZiLufQEgkA+xx/6vu0VQpAI2IDxnh0LDqpzzPZY3ifZzsn59bnjduecXR6Irzz4+rKch84zz/3dHLKD59MBB/rJcn58TnusNbB0MuPEaLhz7XOsjUR4yTHyYi/2YveyxHSFAPizh6NTyzLJFQCASimRbm55GjUybNTKSJSYMXDjhMV2yA5t9iwEW8KNeXDQ6OQfG4/QAP2FyiNFBswx4h143aB/vQY3Dv3aCzjfM1wX4YhAelgeSSVlzCKqK5FTSszgAzP3DAuaiATotFwHlZc8F06iMJgw3XxZaLO2azIDA7w0vzkwRrlasn9sCRGNeW6OkVTfAqQ05rQ+gzC/dJG1NmEemO4l01RB8pxBTc6AKL1VpZv/yAKAbwVETokH7bDvfQKMeVUjrhtQF0AqmwTo85tUk7VbURfUylzd7VObch9S8mVSh2BKKp9LR+TPahEjthnRvCYn26l6prkW+1PZY7DNUlHaQupcMqfLNL9F1jfTn3hcD3OOKIgm7zcmoJ5r6Ru02UyiJ2jVILy9krw9nkQK6VYdd/tWGfuVSMGli4pDijpMLEJqdAh36lg6wHymzQa8quHutogxB6Y0aqCugLoZxpgXhy9Iczlov188/ARpj7xtkzN57nkKW8prka41R3QuSWN1tQiryADFwRnrnADxrSQzpmMHwPv2PZsX0vxUjKWZaJDZZ0zVoPnv9b1Elqk8H6u8mq2T4nAtDh552xnApEnik5OpqmQu6jq9hBL4MTLLy2TlVlVKZu16BvUFQQEYRyXk64ZGgTKzRNSodEbK1TNaY3SurLz0fTAm69mp+TB+bpZrO8sP8v7z8aNj1xzDo2s5YkIKAe53GM3njlLK6IHvjrK+SamL0mivNxpPZT6yUTXH16U2IUl2bKVQhMjvONk7EAPUT/cdWcEiVUdkarHjOhxyiqWyluQsT2y/Q/txmxcfApQpC598+fdyf/cIYMZDI5eeyp6zE+OnskeYm+ciTw72gVxad5IjxI3ODXP75XxPMiH5RZazzuwZ9Iz3X0YEP0ShILdz2/tEKaZ0vp3ZK6X3k5xh9xwHJqH6HMf2IRutb8/cmflUNorK+xk+/4st2mye1S/Fzqjzl+8YeSyP64u92E9hD+2/M2D5vctZKGO0cUxAlh4W7XQ4tykzZq39Pgf8Z1ImBMG3iRgWwZBkYUwaxjRSVXd9JOeQRQNwlntgFCmQ69NyhHv3FvHrtwKWdr3Ifmk+FO57iboIQHtF2P7Xv8T6t2vg/XvRs726RPurN/j4txvECogN4FqgvmPU24jVewVQb26HjWaIKXEuOMJdXID/6V+A7vZw//BfRBPX2JZL7FP73QnYFF9fCJM6RnDlEBsvQCizJvp1oOAEvIf+XlejdgMgjFNzZBmLStnI8D4dTqgPKUcM951GP3gB+yy3Aschx4H3AtJq7gWqFIjeq4xMJ89MQUG6vk/5GcyoqpLeMG93iNstXFMLCOccXGCElUO/WaHaBbh9gP94i/Db3wmT/s1rYYVXlbCeV7U4jpxD+4tLXP91g+Y2Yv2nDv6ug39/KyDxbidM/iw6wcAVahrQxUZyAXz4mL0e1e/3XvJiNDXo8kL6714Y4vHDR0kp0fdyEMkPEJmj6KgZ+8VVw3gY9ZVxOSPd4NEHC/NQDFjUoZ85OKRD5QOdIyM9/b6De30FfPOVsO1vbpEzTi1Rd4rQWa8kysiizKDvRBPykjrxUgRKU4M2a3Rv1wLavtsMoBfEt9BfVrj+6xoUgfWHiPpTj80f3msOJJ2vrm9lrsuZvMxDX7aIuaqS8WXsbwPwcvkrACNmDjm0//xbtK9rXHoP9+ET4o8fwF0rUUt1DbrUXD/7VtiVdZ0kiijEFLEFmz9HfY4Rt1tgt5e+rY4bG4+SN8pBEyPN9weOKZIvT0iaWJsqxSQs0HXKA4MQwNutRDto5AT1/bgvW7SgsT9tHSgY8YuO9VHncqBan8/kpzRngc2FpBJeKYqvU0dwP3ZgWyQaeXGQRutT5mgxZ7M65Szy8SDrKq+7k7XPbdbybu2d2bqoDl9e1fK7OvRkPpW1lxAGueimgXv9agCUXl0iXK5BDGz+sIP7dCc4r/OpH1jeEsvjgCBzPO/2472BOpvp8kLWgtu7UR9wlxfgppZ1KbKQBqx9+oD44eN8pEx6b89wrz8XeWfO7TlwIf/+Kc/BjDynM38omAABAABJREFUDUIYoqxMj3+7S/kzwIOjd9bRdG7b5W2es7+z8mcjGs8ElZLDtJFoVVqv5badOESHPF+6xumckuZb6zOa44fWK+lr2z0sJx13Pfyb16CLDe6+2WD3lQdFwHVAf+URV04iRnZhmLPNIQmo03wt+5AuoP7UCpnCSC/50mvg40zE2eIaeSpDuVjjh7xrticf2nSUs++Yje6vbUYOhC77yozj/1i9Fz4/OWqJw+nj5rnNDbnz8EsAWm2cP1U9Oaa9RMqRc2AM8HY7rPHmmMscdOkshQLEtzJjAO+DnJVsDnU0ivgkYKxY4L2umSeMGyM1OAe3WqU56mRWdUaMSbKtus6X+csWq7A0jjJigkSpt/qrrhOV7nlYCTaFPOqkrKPPIv1d6hOmZ5FU4Wc8BkocJF/zDr3PQ/jL55ivRiSaB4zfrB88uG7PbL472+H5c7XRWptHv2F5PnJZnt+l/W752TO2L98x8mIv9qXac2Qn2MHT/reFZCHq4thiY8mmQRmzBxn7cVRYwUZky7cwbNbzaI6kHzu3AVOpFPJD3QcmrIN/cwm6vED8+jX6t2vRnI4M6sIgx8SMWBPqGzk8R0/gpoJbr0EXG/DFGv1lhf4CYE+IlVzDdj5VBm5iMqkEATSpM8UIurrE/usN3JsVqnUN10fRndcoDG5bhO++X970Tp4bcJ1usEMUx4wxxft+1AalHEYCZq1s58bgnhpXyqx/9Qp+s0kAdgKrecy2T4eZdNDVnx0NYJuxxUMQJ49zgIIbrqrAq0aAXmU4+6YWZv96hVg5+Ls+RcpQF6UNuh7cteD1Cq5pJMKnGqIDkJI6Ay4wKADUR1AXJS+JJai3BNmJSVlITOTyNAYYaRvDmL32/VUzOEwA6Qv2HkqQweR+TjkcFUyv/O9SlQc4Ts+Ylya5JY7ZOWCntU92ME7PlQ7MnEke5dEiAwibwLTc+Rb0vRfjigngWvoJdBqjwHCBB5Y2IKDYsU13VPAsBImCyJ6fiOC+eif9257RwP/9HvAeu4sK3YVDfLWGCwGu7cBblx34pX8T1+K8rPxwUNJntHKlrdQJ6j2wWqU65smcAQCdzB3DvFs4HvLDY26Ufc+iCapKc4lk7936eOYMlH5k87C+ayA9a0oOfupBx43nusUoSC2P7XBokY3mMG6aBKTA6qO5guQxFeDQSDJyYYhwjFlZp4AMwBBV40jbzcATnTdMTstk0CqvjnBajhofRRSQ5E7pI3zbi1ziajUw7pcAybLdvQet10N+HoxBVIssAbOsi5ETASEB14ecItKYp88rT21L/ecYm3/u91PnV3UqwmuuEWBYMzVZ8aPZgbJSXiCKIpt3qIxz9rRRo5PzeSRFkpV7CsYceWBwIEUlcPQSwVkCrk7+UZC1X/5Gsg9oFSQlSlFaRtAZRdsCSHmlrCo8rVfKH2AECJW3PD9Hw3DfsQRRKUPGo/9PKS/VfcYsajyPHmcHTKSCzgVByuseE0Cc63uP5Vg9y0nzTOarc+wpzqHpXGnvPPt7CUbnl5lsllmZm/I+UQmFAyU5FpbKOTav6phnI7ik8X2alNZyuSf0nXy+zNtU63Gw3KUo82PXn2LW9x9SxnOy57LvOGYHxtLZ5fw52ed4nnJ9eY5EnlPtnL126Tx8zH3oT2QvjpEX+3nYc3E85DbHTnjMOpZsJbvnofoAAGxTFzJAtQDRs8gRSYKbHcpycCMGcAzgXg+YdnhL0iUGjCvgY0ANpExu2zHAs7SRUycOOwiDL/8sSwhs97/77/4F/vSva1APuB4Ia/lX3QHVLdBfAt0l8Oo/M779/9yK9r0jxE0N9y//Bt3VCu3bBnffVti/U9CUAb8DmpuI1Q8t6t98L4xHS+bdKIN7pf/XFbZ/+Qrf/+sG+68Z1b/o0PcO3Ye3oL1D88Hh6h8Z3/7ftog3N0MT5A6NGOGut2AvB3YXIvwfduAYwTe38t1vvgKvPXDdjcBc9/pKyrB8GW/fiNSJyrSkQ/6ffgTf7eFeXYGbGv1Xl+DGobv8FuwIl3//HvT+U2J3pv5hgEPbCghmr6TrgH0rzOLLC3EA7fcIN7fS0779Gny5wd1//Q1ufl2huWbUtxGujfBtFJkwT2hfe+xfObz9ux3q//kfhvZZr8GbVcoFQ+s14ht9VgeASCJrVhXCpkJ90+Hr/+cPwL5F/HQtzG5WhnjXJ7mzVH8Dl0OQ6AVjuVuCbvu9rkR+DZBonaoCv7mSe//1NyJ9RiSJj//wHtx1EsWgEmVHgcLccl363Gg8fheZbOmAdQZbaASULtx/ycjANTcw+DJwz/RMAenv8eYWtNV+bXkhmmYABu3/HGgf1VWv6zEAsXrg5shw2y0qZdSNQPP1CuHbN/C3Hda/j+LMbHt1unXDfaIDNdbGA2sfzEkWylqL9+3gyLHmuLzA9//Hf4bdVwTfIjlqXQAufx/g24jtNxXCCvj0t1eo9hdYf/ca/mYP+offI97cAt9+Db5cZ85P6V+0bUFdD765le/ZPRXsc1+9A19uRJO/60Verq5ShAt1PVzXgz9eI15fZ2UPsk55vx+1v73ProerKtCqkb59cyNtlLFAOYTB0T6jA8waWTLfn3SO74t+axEXlxtwiDqPBoC173Erz6hfj3d3o3UiORa9l0iXf/bXiE2VWOLUZ+MlMiiEIeqQWaNtYtIhBzNoKYdI1l42NtKaQQ6IYYiOWktuopRs29pZc05xuJEIQIus1PvwdovYdSkKhJpa5rebO8kH1jTwv/6VRHzsdgNb3+QSdewkySwdR+7VFeKvvgZutuDf/XGSNJ7bFvHDR7gQ4NcrGUd3uyHy5FhOivw9z+rgf+a93RwAke+3RqBTAZTbvJdAvaIfFOWSOsbo1RXw+gp0twPf3mq/6uR/zQWFfG+Qg37nmM7Nk3GYMard61cyjj99ErLH0ri1nDhLn1u/NAk5rXd4/2EKYCZZHInkhM+ihc1x+eoKIEL88f0gU5fLV263AEdU24Bq5+A6JUQEcdZV1y3crchvSk6dLKLM2rbvwesK3esGzfu9ElnU6bdrJVIxhMGZ4twQVWJ5fPoeCO1Z72S8n9fcCzEDjvN599i+gUTec5L0OZf1M+IR/OAUsYg/AEz7Yb3NLe/XwOn16Pvx3HuKA3muSJOT1H1BciKZjKXe5zRG/9jpnyKbVNKVdc+wWE6+Ft9njjo0xxy673OxkRMjG/tz+8UZRxv3nURpj76Tlz+zFqhKAPns3dm7t/6qUaM49g6JJLICGDn985xa3LbDPhYY8iLp53Ff5JjMz+JG/stJIbZmHzMa7mf7E5Ab5wjLvmfzYVp7LLIjJ6zllsJMafh/ro3cMB5GY4p5XMZD+upjXJ/bfZ2wJY7yHMffKfU/dN19n6l8Rw+d+865b36/BTt5j5mXOSrgyDqm+7rRfPWYVu4BynrpOEx/PgU/KJ0a+nNSlsjW9tHfqKxDxBzZdnKWKqNX83dnc23m7J7sG+/rbCICQHjJMfJiL/ZztiIfwgioOonJJRNdmtjyw8992Od2oI0ulZecGMfyhYzqWzLiB2fLQSNz4OgB2RNiDaAW/D6sGbEBbPLs10BcyX397R7cVIiN5BBJm2IWfC2soExyINYC2oNoYFmbabQCmlqiG5oK/YVDdwV0bwL+xdc/Yh8q/L56jd1tg7hdIZjkS/k+c4tR1imVyTFNfm47wAeVLoEcNMgBblhIhzJpcIrUlejge3FuUFVJ+ZsV4uUKYVMhNg5hnbGDk745j+oFIMvRQcPvxmrM3x0P36cQERqH7oLkrOQc/J4QWwf2ABOhu3DoN7ro3twOB1YvMjCJ9ekdYp09qyd1rjjEikRX//oW2O8FOCU3XpBjKbadPZs9O2uE0pwEVmRwiCDPIt9VOYS1Hp5Kxq0xqJ+KobRUbnpm23j9BAnqymiNbFNloPsgFwOMnLUcwazzyiEw0EB4zr7HDA5ek/VK/o8EdAOgfSeSK7fbFMmVOwEklwzAsYg4SRvWYjOXR4vY3Occ+g3QbwCuIJFfgRB7IKwIFFUaL0qEU6yk/7JGeXFkcOXBTTU+kACgzifwa3jmCKCWyCyNNGCbR+pKHSNSRpLVU3CQRJ8vlWMRVLzE+tTIvZRTJ4YkuZXa5RTpuMVIgnxzP/PuE+s7v2a65qQ+wTz1qwEg1DK3V04+13+U3jOAqHN/5hgGMGa4HxvbmfxjitobPScN/4bKC0s+xBTlgqx/l8/piCQfDZBkJHm704g8P+SXysvPxk76xOqn8xqRkhlmQHDuepFdDCrFaGz+lEj3UJvkBJIZNtuzJL7MMGbzOWFumiqA2GQaTWGsZE5zULZWzEVs5Td5VNKNzi1E4KXTJp24NwP0YKw/5xF/S4xjk4mrdJxwNja8E/C7KxwPFvUQNWopaF6dAIlgMseLyVyludlIPS71//S90f+6dkfd35hTxN6b7nUNMOUHy006aQPvhbF+7NRfjCEDMWROjhIFEsd9JkV8u5nxpw6fdN+0ViugEXAclCE3Jkg91PJ+qcz95NQYja0z9je5U4SG+S599jnY5LPRmF8Ii/0hNuk/B5zic/uPvN0sb5+BeKRRd6fMi67oo9Znbd/vlICX5VAc1+Pw+jTK5Xnqe2UewNA8B1iKTrVxmc1jobj+EezBCduf2srzM4BRP3pu+4ansiUnK/BlzCWfKwLjvhEPKXLrwNz8hPvUe4/DvN4Y1rnyGew8flAlpnDcnFWnUT1+Avwhsz8Px8jPZWJ7sfvbc+0jhzZ155YzAjKKw/J9nSPANHpkToM0t5L5U5QpGrMMYgXqs00h58BBnJkgJwzb7BmzHCMIcTjIeCfsuroB390hbne4/Pc/oL59gx/+1RrX/zzCtYTqjuB3gN8DzSeG3wGbHwPiuhb29raHu9kCH65Rr1eoLtZo33yD9p0uApEQVgSQR6hXqN6/g7u5Q/zuT6KHfbEG1x5xXadcIO2lQ/c6AnXE7z+9Rhc8djcr+D80+PX/2GP1/W7IQ2FtmyVSTpI3ROD1SpxNmxXQB/jEzr6TayzPhUUlGEN+s1H2pfYLzQPSvd6AK0LtfwEExvV/8wbtpZPk8gG4+EOL6qYFvf8kTOvcEaSMPQBS/1xOysCCrpPEpxwVcFXQ507yDdTX36DaiSOkvSLgShKeug7K9GSsPzD8TYvYdvDvLkCvXw19w3lhIKwaxHUlslmaPDsqc5MYyXmSnDRJLkj7f98h3OQAU4maGuAdEO/u0t+468F3O/m97wXE2O1B3IA2IptW/eY7cWRt1qCmAeNWxoAC0ILznhg1klsBsA0JtLOw+wx4SvkEFOjhUyNV5u6r7PaD32E+Kv8yYe3rpiyB8qUDZJI3Zby5S8nHtQ45M4/qCvj67YgJSDd3cmD93fdAiIjb7TxD1nKHdD3YOdCqUXBb28INTgQAKYrI8mXwnehoX3wf4fcOrhOgzncC3G1+v4Pfdqju1oiNS+zm+rtr0M0dYtuBHCG+WqN9txLnLSPlcRCHbkS13cMlhv4QkcR3uzRvcqVgWQgC8gOImxpxtUbFDJezeHOGskXslGxF+VD68W6PmGSTps6/U2Xj5myQusv/SJONeQID86i4xCS18TDT92MA7/fwP3waIjWYhzwPKZeI5tQyp1nfw/JVHWQpG0io0lmJnW1Olpwdz8JMh+UzSVJDUSJCtpoXKR+DymijSnMjffMVwtev4O5a0O0WvJO8Tb6pQe1KHBVZvpQEtBAJkx4YRwV2HdyHWynLnrMED6NGl2z3SSYSXS//521THoAN7FxKaJ9/93NauXeb67sz79ui4SbPUTACR3mWQgDvW9BuL3mv8jbLnX4hpPw2DB7a/pz2sbl5ySxySx3+c8zExBy09afvDtfB9n99LxEpV5fyt7YTh+VujxFgH4LO5073QXWqe+q3ZfkWZdjUcF1AfRtEcpMhEpoM2Z+9WsN/vEYMQZfJqHP14GB21zs0EXB72UuRRoixRd05ArkhjxsBY0eP9yDXIzEwj0V1Z/tx29Oa9Cnn35nbM6c2cKPoiXw/BqIhh18YgxusxHJYRFI7H+mS9vAn9rkUKWLO3Fxi7NQ+O+OgSHmq8rnfZc+qZ4P7cj+474f8ZEed3LrGPHR++hKAy/taPn/OMc5zO4npP3NujQ6MMXGrlNdbLledHraNs7kHSGSHkXPEI0VSziYrLu6bxk2ekxGn74fo8lLOL30/SLtmxJ80CuYkZo8WTmneWCIcJclqve+T2APPP/Jjvr7me4ms3x0D30/93nO0vK5E437wlM9xatlzpLKnKv/QdRMsrTzvaWefRDHkzoADeTzv+5zZPeauTVG3p77Xoj0mkZUBAI/3UgNxcphnDjqkjxGYRj/HNC7TWl5ijfftp2euwX8ejpEXe7Ev3T7HAnsuy8gmPT3QzeYxOFdDNJtI04Yq8iCfBUyBxwNmMhOLZp95r+C3bPLodovmuwr+X6wQa4brSNi/AcIOb4F6K8xCrpzkH2DRreauBXMUpjADvImytwqEWHuElbC8eV2B99V4QSRKslfi1IEy9Qi32wah9+CtR31LWP2wh/9wJ8D5kXbOIy+MuYtVA2o7ATEsebqx3XL9+LoSQFQTNbP3QOUQaweuRD4MAPo1IawBuiNQx/B3Hdz1TqSBTFrK+kgYNvZEcijJ2fTsXEoOPHKmRE55PaptQH3D6C4JYT1cWzHD9fKeSBnbnCKBnLA/AXGIaY4Pc4iYU4Q9SRSNLpgC8CyMDQMljm0yysVXwcD0M0dQlIgeCgzaDwATMqmuB1t2KFgCE0cOhtLSAeKezpFzbG5jlfV1zsC/8rOR8zcLv72XmdOk8pKA3f4WovTvrpPE2sXcNxy6lUWf+kAWHZB07+0al6T0AMiYY4bfMaqa4TvWOYjFCbnrQW0v4621DSckEX3bJUCfa49YqzOAGW60p5WokOQAzB1mvUqDXawlmi0BZnapzhUmDZOcbLqRVQkzi5yaNd30mvP0YFTPffqcOdIzZ8fk/sYEzy0HOJhxKHk7Rwbv9zJvmYPMxncWPTT8HtP3jiYaLus1l9+D9P8kV5iNE0ti33bzzimTF2kaYLMGrxuElQftSaNM1ImtuRkW50KXsWLTvK1g474Tebm557JonhglWsTWC2vHA7Jis+2T72WeKzhxTr1yAMr6qUVARgagbaakhlnnrP0t3089AaDK6hAZRTaWoEtGVkkRFYesjC5JTmV1vuWkHmPtP8Colzxk1EvdKEguO3EqZ+M4xmHvNHIIa3SoRWkxD/mImEEYO+Hl2my9NXm8Yg07aPm8ZvMDOSCeIBGSO4nN8Wrl2P8W0VIyQjOQghCG/WMR5Xcy0JyqRGnuSGv8Y7BFy/PKI9vZDvwnZAn/WdljtVGx/o+A+/sUl18/1+fLyDZd9x9C9NAbn/S1JNlXOrNtDM89+2P3x5/acbcAzk7OP1mep/HcOwNi/zmP2SVA+6Fl/pzsZILxGWXMlTn3nk5p67OdiRnp1tbl2XKLPd+hvvQYkY0/wdzy5TtGfm6D8cVe7CF2H+cIgDELB8OBIyvrZGAyAw45D7uf0wU+YsaA5b5fBtsSsCeMWVQV4g8/Aj/8iPq/fad1GoB2GOAeGXBQ2aMe3hKZA+DtDvHjNdj9NX75l+/x6W6N7fsNYiMJ2/sN0L5doQHgr68kv0TXg0iAKIbTnBmA3xKwq0DfVWg6SfZ+8ceI6rd/kugJ5jHwAd2Qt90AsHoP2otePm8acEXA1QWwb8HvPwhTtxM2pjDaKSUzD9+8Rmy8AKYOCPXgRAABu2/WIhlWizNh86cezccW1T98h/jh45gNre80n5dNc5ONPemNXS2sWM41sgF5j31E9W9/g69/c4Hv/w//BB//ZYTfE9yeQIFQ34oUG1cA10NuD1zfCvC3WYEAOO8RX1+gvxwvdWRruyNQFxDfvx/332gAgB9AuxKoyzU566oAQPWwNJfYsQ+ofrwFtR3CVtj6pNJCpCDMkBvgxLE6AVHld2rkXSPXFwYGxrx+n7sezAPbmDZriSDYbsfjamnTlm+Szj1kMEt0T10N+UKAAkyOsBMeeacgjB+361KUSg6yRRapHwNj8nqpjBbXXp2eCnybjv9kQ5jpZBMBUO313X7M9i+tqkTu5WItZV3fAH2P1fsWrqvg9+o46wV0o06ey3+4SwAdRQbf3IrTxkmkQXdRo73y8C3DddJmroeAfVH7RFUNkSoaVRBvbkH7PfDt32D3q8vReyEGqusO/non+vnlYd95AePLflK+X3ufpYNghvF78HBQHiLsWn1/I7Zl9lnc7sZVSuNNP59jmZf35SjzcV6/zPkxFJ456Y6B90U0xKi/GEAbTIKMwSUGmuZcAaonThHNPUFVJfkSvvkK/TevkgOZuiFy0GnSdd5pW9WVsN8tWsRymXiX8lsAEMfzfi//jKWa59HQHFZUVTKn7FuJHmm7xO4+OM+VUW/Pye5zaOU4TJHmsMrYeq4ywkItbUYE9CR9+O5uiBSNKh84V36f98ET2u0cIIhjiliZzQNhEQ2AvO8S6KZsnOb9xfI32HqFYc5I36vqIQI4OZyHfFF0eTnOszKqk0TfoO9Bux6u9nC9OngiQDHCfboDdtKXU4Shc+I4jjxEWtQV4qaG13xTKZdQ28m4qDay9o7aLV+rGPAdmAmkLM88SrVsr2G+dHCW78TIC+ZgzKQmT7EU1ZPJ/4j8qEZulPmadL1L49kV8+8cQ/bAvJdyLnkHwI0Z9qcQM0Zzc5gfi2a5dO+pljn4krOIi8inU/Y2x+5x6Ls/B3zjKZ4xJ6ekiMWBQHO2o4TjIP9ZSqMW34vtCdr++SUpysPW8gUSxUJfGUlbAhPnjTk8J2WdCq7m+9yyjHxtPjTvPMU7tvsv3Dfl3LJoHnOoe4sQdigZ8aevgc9sXN4nCqHcg/+Ulr/LRXLVA9t8qfzybHGsPRbypB21vPy5fjsXUWL1HpUT589Dp9jcecvMzgm21wcyYg7GeMTSfUvZ/fJeB9dzOSOkHK7AYeWJJ7Qv2zFiLLoXe7EXm4K3T3KPeQfJQ0CLPAx5jql20Oa0iWOc11O1DaOTBHUi5QPwOiL0pInYRU7L5pVYEbBycMENTOrIAkbWleTwTUlDs9sRNOLCpYM69QFceRBD8lqQOF+4kgtSpMo1o7mRBKO83888X7ZQxWHBoRBTnhGJTCFhp1udLBl0VaXNPQEIK4+w9ik3Ctt5uWMwAe07L04RBtwOqG96+E97xNs7RAPRDm3MSueaOsMGxnAcP5NuXuL1NWi/h+v+WurEgOsB3zKqvdQNJO/brVaDI6IPQ/Jjp04eawaGyGcp6GsAdDSAZya8VPp6dsgaPixA4qzP2fcMTFFZlJTUug/puSViqOjr50RAGNBEmtSZMABtSValZHLTeOwo8JMOjE7ALbYIgRy0Bh79YEAWvmuM0TPZ4Ke2FRvYPDe3RAY5648aQZRHAZzgVGaWBNxglvwfEUO/MtDP9Krz+UQjGlzPcG0Qp0gXNa+IMpPbbpBwYhaGoEYmoK4luquSMcIeQE9gyiclnm3PdBCvHPoLleoKAEApfwbte+2z5aEgAy7vw56ytslZl+XGP2egl+PwlDVi1H/H75CL0O2jkXkqozFyhsyN1ZMOAgWwWLBOcxa3zCPZPAkMc6fdJxb1MJa4zj1EBN6s0L1u4PcRrgvSn0wC0YDSybPkjhadU6JmFrA5ROXC5DEogePiAMj6jCWLNofJQXmx+Xcxiqr4qZiqj7HPykDX5EzI5gX5nQbpSRYHAAHz4P+cPRWAc0qUT6nJPwKU7bOQHEKkUb0AhogU2yMAup7b3Fn0jQSoi+Mu5Q9It6PRdylGcYr0MSVGp8CyDqaE9jOARHQSjWPj3/KLmeNUf07jbnR9Po7O7D+FAzV3us8nQD/w3o9FaC/lv8nL5gCGH7VrLnn5k9gJ55+Ua+uU/YI50+SC4R4HrznDwfhiT2vZ3kJyUWZrBQ9Em9PLG/YoecL0kWxgdn45uY4lufBcR3bkqVNylM/Mpei+n4xc8JTjYhZkzuZuiya2teMc5+jPwZ7JfHUoWvtLsKeKUHx0m9lX2/k75WH60u2B882X7Rh5sRd7sbGVXu8l4ODciWOh3KkGYHa/Q/cowXLTRs6jDo5FjJAmes0S+bLDIBNgDJEYRXImZEl/SQCIm187/G//1X/AH25f4/3dBrf/+AqXv/UCLt4R9q8dwgrY/OBwsZVr43YH/5e/wv5vvkF3SfjxN18L47An+B3BtYALQGwIsdKNdNcB2y2ovwDWDagL8Ne3oL+6QPM3N/A+Yrtt0P9+ja//54j1H/eIN7cSZVKwK0eRCiGI3rwlTgdAd3tp+0ryeri3b4SNt2+lLa6vtbwId7lB+/bX2L8RBwIYWH0KqLYRm3//HQDgj//nv8Lum4i/+h8iLn9zA/r9n8A3t2MW9qnsI325zIVm7cTJoEyFtsXmh4DL39a4+C5i/UOP1fs9/Mct6GYL3m5Br64Q/+bXcNdb8PUN+NM14vd/gtusRX+3FwY+iJIzyrUR1U0L/+MN+PYOE4aiJjWkphbpHNU+N7Z9KQNjrGs7jOXvjOoV6M1rxIs19r++AvWM5gfJRWLRD3a9RT6dp7Pt4F69EoeXJZy1ehr7ghW4NH3UFsJOvrpU1n8rIFFVaTSJgnaV5B4xNmdyhBoQPpkXZlg3i44yDN8lBQVZcw8Ze7ZgyxobOgfGhzD5DMQopVmMyWJgW3lADAG0Uyfkbp9ka1jnDHIkTF1gzGy1+wGjyKgEjJHKctUV6PJCJOvytupDcn7GtUe/8ah/3MHt2gRY0b4VSa/tdhTeLLlCtF/GiJhk4qxKnBwzxCzPc3s3zgsACHufI+Jlje07h/XHiHofEStCrAl+2wE/vEdUSTHOD+QGcJ/KjD3gHCFHwrKeO7ianE1eHjOivrM0rxcAFpd5Nio3OBABIIz18qcyMuP6ctdrwta4+J2J5Y6dYj1OOU80miLJcOi4TYmavZflMc/jpOVNolMyRymtV6CmTtd031zg0980uPp9j80/7kC3W4SPn6QPNY3c12S57P6Z3A5dbIA3r8RJd7sVpvx2K32q71MEp82VFALinoY8GZHhIMDSEBU3Hr8jJnvp1ErvKXvuzw1GLoGvp9Yhmx/yqIThZ5K2MMdn1yHu9zpHFpEWuZPOxuJ97Ny94BzIRiQ5vVQaELnjSz8f3rU5f4b+T3UFWoukJH+6TnPv6PrIEoHSS/QtNuu0PgGQKLzKA3UN7MZRYqO8Gm0HRwNBgTKHM1UVeN+O2hhNkxw4AEA3W/iulyi6thOHccj+OQ809RBtZeNIndxwPsnfzOVombS389naK2uYI5KIV6KUOH020sOKWQBuynwyRCqneijPjBQ47Nv1d/nP5rrDfcocgaNcXwdyGcwXku3bSkcz7Jl1v5Cv+yfsrdx6JfOdyROGCC7Wl5P2Nofu81ODkseILucSYcq58ad+PrMiSo8jAzGbWxavY4CKsaN9KIZe5qzNZiAG2Hh47DVpbs3Rv/HtrZBwVo3MvbpvnUSgmFRjEdF/8n0P9uMD4ykx5BdyLty3nZgBFO8vJxuoFKX8wfa6M9//HOSKJyKULd7rOYy7c+phJD6Egax0LILkXFsqa+7Mmv99VM/TxkMi7mC6v128x1xkSPn7sbXkUORkjt1l62U6qxoBx/aUp943t2yuGfYDB7CMvI9wHJQZHmNcPmAcvDhGXuzF/hztBPbUoyygT7GpyFnERzbspr89HPj8eFIHBsBp9Dc5xLsO+H57hevdCvt9BbdzKQG7byNi5RCIILpMkh+E6gq8atBferAD3M4BDFAAXEfwe8B1gN/zINUwurf847oCGNhva5BnhF2FZkeorwP87T7b3JqcU3Yos+dnliTmgAACgMgyEYEVaEZVyeea7HrENIY6CgIQacht4PcBfHOrzhfZV9bXAe7DDeL1DeJ2e7jvnH0gzJ4t20BwZNTXHdY/Vlj/GLD+0w7u450k+b2+Qbi+RrXZgFc1eNcpS7ND0pElAgKj2gWwI0RPwsrvIqjtgX0rIEvOVplhvRpLl7z2L2WMGSBxti520Aif9PgGNudMrxPM6mq5dmxDkYBYBXc2G2G42eYn5SkQli5VIgWWJHDyOihDNwEM8gAn1O3+m5vhfShgUtVwmocl9d8gm2ia1MUPIFYu8ZY7cqx+yBi/lvtguxvdI1nGIJ4A6HID/UEZiqTyHcD8htpY0emdI0VopO/lc4eBz3kibmAMlGe3kXE9yHJZ0vNZII4ln5LXecvvAqgiyVe071KelRxE4xL0zI3GbZWSSM+BbSWglTO1LWIiB441uoaZxYkHyHsiB7hqDMZaPbUeSeInd8AX9Z21kmhwD2Ch7NPZB8UlGQtb70MhpMiRsbRd8R4NhNC5ilZNApsBIFZOZCJ7Bu26BKIQZUzKuShMZfOTc+N1VFny6Zm8FzDRxl9PoL4fEtLnh5+87hbdAgzgcwb45n8/ix3/3GxhTybgey3ylsmpR0A3frYUCaiRiPleZ3k+Or+O4qDMHCDFu1pkHpfA+0KkVvZAA5NXy04WGbMJTqNLzsLJ3OolSpdUMjA5bcsx1vWyP4qS9ys5LFITSMQJZfus0ZMxD7l5dD5KjndtB/ZOJfBkDmOX5TUD5sfZIcsZ6UCKaMxZnucywmfzglh5p5wP8r1G+feTKxGnThvb4z4WoJj341NtFKn4E9mpwPS55Z0DWAJTUPu52CnPkwOsxwiDczaJZs3GYWRdp+aJD5/DOIQhv12aq2fOzkfggIkdwg/ugy2cBZTnhKgTKz4XRZhFwNvcPImws3OAfDitx9zfX+ywnfrOcrtvNNNSvyrf3UPf4RnPNI5qPiwxfNDM+XfKOjQhBsz06VLWyq7RsVKeke8dYTZx6twDK8rH5bEy8rLStRhfDwJOnX743Ixpz8A+ffqEN2/e4L/H/wkV1T91dV7sxZ6/HZvUH3CIfrTyljZTS+XNfT9njQNwV1cCDPX9GFQ09uC7N4hvLgSoZhbWvMoxUR8kP8XbtaxNUWVu9h3iRYPudYOPf1Pjw/+C4XeE+hOh+QRc/iFg812L5j/8Tg+vAbTZIL59BV55hE2N7lWN219VWH2KePV3nyTBKCDs8B8/gNsOUSM7ltoqsWEMBLME3pZL5O1rdQwYCO5G78sStlOnLGQDGdtO2ss05L96K06XP/wJ8e5uyvSdey9L7+yQGYMhl4XiCP/qFehiI/Xp+gHs0I2u+9UvEL55Ddr10n6VF8aj4WnXW/CHT6JLvllrLhUHMiB830rugL4XBnp2iDJAnt69EXb/bjds4Aqgl8PA/jdghq4uBXi/VW34K83hsN+Dux7xTqJV/NWlgCkKlsftDuA4zZlQSBlR3YwBwwygtL9RU6P/X/9LtG9lraTIWP/hDu5mD1LWN9YrkXnbiaMofrpG3O2FEWds12y8SZ6OMD4wHuoPx/qCRugk1nOxEaz+yV9i/8++kbwIPcPf7OF+vJaoidvbIZrHgFeznPmes2KU0cxBcyyYdjuQgNsRuzT7HJANZIoSGv44PG+mBU9Xl3LPfStlrVYg5ySqJ0aEP/0gl/03/xzhaiX5gQKj/v4G1HaIlxvAAfS778HbHdyrK5HO2m6BtkuRW/v//b/G7a8qNDcRfsfiRLxp4e52QNcj/vhe+tvCu/CvX0tUS6eSXcZQ3u7EEVq+Vj84oHIwn9YrYLUa/c7rFejTDfo/fj+SzJF3r1F12bsYJ2KWz92bV+BffwvatsD3P4jD9+oyRdPQagV+cyWg5U1WX2ZpewBUaQ4fkxXseukLFgmTA4znOkGAgw6i4U+Uyk9zuDXFxYXMwwbI3twitt3QHjS0FYpoGAAiKVjXEiVSVeBffoX+3Qbt6xrtlcPVb3dofvsD+G4n4yZm44U1YszyN1SVsKX3e7g3rxG/fQt3vUX84/dD7ocioqP6xTfo/vYvJCLyZi+M+ts7KSdFlnRDu2bgo+WZmCSGLgGNEuT8HGzmUw7Fxfif1E/nuOSYNKkek5H6p3+J7psr1D/egT7eqDOyTU7ACcHC1p+lPrH0HNn4mmPz+XfvwP/0L0BtD/pRc4htd0AIQy6eBYdcWi+SBBEPkR+jttI59fIizccWAYLIiJ8+LUv02d7H+xTxiL6X+eoXX4ObCnS3l7nzTz9KvpDVSvqTjnNqmnFfL+4zmh+sr7MRBwjul98ivLmE/3gr/buXXCNR13X/9VfA21fT5t+1ad7mtkWKnJprU2vX9HOR1yMbK2lcLe2T7Vp9R4v3SA2QOWBtnB/K4TX6/QhIXDJoF6PaFxi099xXHtyflI78POqkzIFUjvOH1K2sY/4njeLLZQrlVgfexULZlu9mdhweqLPkOMrYv+dEh6Z7PCHEpJFUi6zkfC4+BJ6eWs+Zvj7KL3if+yy1V9lvF8qwd2Tj2s5ng1NYz1UWzVdE11JlkdAL88eSLcwbE7N3dKzvzLWt5tOyqNfy7Ce35PEcNVfOnMRRHgGoa5DtPwEbf3W6XyIVAVn03kI+mPKZHhuUf+6w7X1wocd2Qn1up5ZFddqZfSGK/SRbwsKyiKgy+tFdXICaOkWUpn2z9tuJ7H3pLJaCx2tdvgYfixzJMakZm1238nfkPFxTT/f5dm/73oH7u81mKLMg2PXc4n+4/b/i48ePeP369XI5eIkYebEX+3lYOQE+ZrnPqawRu8cOYDQcIskBmXOEf/dH8N/dDQfNpkmgHgNwMaICwLWXBOWegKYS9l+vWvyMlLjddYxqG+G3HeKn64FB29SIFzW49uBatPz37wjNLYH/7d+D+05AE2QL16mP3Knkhi1KXSfgWJ50j2gs40Mk7dAH8MdP4LZTOZcBnLfDVPyH/zJKgPqotgSaZwth+PQJ+PQpq3shRcIsjiUHcYo0FbipYElV0QeEj5/g2jUoCvhn0TUpKbWBI6M6DOAA19VAuDKnmqPRJj3XNefIgxZ83yug1MGZY8EkN5gBks09RYzZZ/qsYjNtT0O/jpZc3doy21BQXaG7qrB/7eACQIHRrGtQF0B36iSo/JBsOZC2XQCiFz1y3fQkgI6GKJkUnv8Q4whwsdnLwYmmRndVJccIIoPuGonauYWCcQ5gEva7HeSBYRxkCdEpAkw0vDMewIeJEyqfN+3dzPSVWbN7AikxNlWV1Ku8xqKIKj9owDNLskjn5LkAzRnh9P8CsElzkSZv73oFt9sJ+JdM6xeur4Gb2+K5jmyGc21aK8t7Yb7r79zU4HUN2tUybuf0952Td6kMqbFEY7ap916cGwBATsYlheT0snFPdTXUmxkUBicyjBUVwtAXlp/w8WyJXY1izi8BQx7aYxy1pZazpEz+r2mAqkJsKoTaoV8TugsCBUb4w3eDw1ABZgMWyMpxXqJDDFDwMq8CGJxkBTBOjoC6Rlh7OEdwdx1QaW4TiwoI8/0p9QvgKJP+bBbbU+x7UtkHouJS9J6sE/aMxDTk2SocQbERSctRja2P5jlngGEOOtCvZut0rN5Vhbiu4IAhgsVkDhMIOf8OaKat83VxAJT0d92LUQbCQw/Gi++Z5TMiPUBTHNZkq1vlkyODDUwgQrRDd6dyMxZNyzw4Z1I7zYBvQCb1hmF8jOqXAws03uMwqyTTsE7PRh/atZOitR9xFGk9yhLdHwWsByBQ7h2Xx5qBHDGqNGQE89JerQRyi/645CgxEHMO+E2XHohOOtVOPFccdT4DkzpO6ncOK/6kShkpJXfcHHgXc9eTy+YYSn3o1Dwr0mc019y5kdFWB+DzAJSP3f6lzZ2j83n4Pve+zzU5SUnl4iZSy/a98tK5d//UuRHIAcQ4elDI5grK9h4iSyv7E7boWbPyue0dpTlX5ZlK56f9bGMsI2Sl/Uiek0TX7lTPU6KDHjPi6nPJfj2GHZjTj17zFPW4jz31XHLIDjmrzZk3t/ZY/r/8TBYiZh2Dc/fK++lT7ptLo/F4HEmDnrr+2/lnbt/kHIZEs8ftxTHyYi/2c7GDbLTP7F0/1Q45dJbqagczghyAb2KKFiA9qHIfBg1v5mHz1LZjZiZHuH0LrBq49SoB4W7VgPoG1a6G60TXv3slkSMgOTC7iw3o1RW6v3iL2Hj0F+JYCQ1h/8ahewUBq+pqyCuRP8OSmc54BiJzdCCN8DC2I+/2gxOAGXSjbPEMlOS+F8Z57vhI5erGuyu0eI/1kWOskNFCPP150QGTb3QjpM7kQDe38N5L4nnnQNtW8qzoNdy2ApC0HfjHD6K7b/Iy9lxVlZICl/VnFkkimHRFVYEuN9KmyvyMHz9NJG6YGc45cFWl6AH36koYHO/fa2SE9u0YB4eI9b8cyOgXGLo5wJx/nh/oY4TrInzrsPm+g7/r4HadyCv1vfz7eCPfteS3nPUtJjhL4GxAnw8AZ7Jbhw49J84pE/aVyZqpzI/rWKK2ugj2hPj2Ej5ExN0ebkMgr+80BMDXKccBd93g/Op7ybORs8ys3y1pqls710PESMr9YEzFpU10jClaAcAQ2VJVYOtD7+Udhtcr9BcVVt/fgXad5DyJLJJvmYa0gZQAAEciMeYIxIDvGH4X4XfaX7we+Lp2HEkDpHkkMWSLyA9hGgHzIdkKsEDGoH1GBk5mjlrqA3C3l0g0yz2xXiVpL7uO8xw+2QGZlSnIN7dwv/t+kMmLQaLrQpDIIe+lzUoGaQiSByBjNOXMwwlru3zWQ7bElp79bunQcBNGlCXX5rZN+YZsfZI2l8OCHNyr4b0Zk/31K4mKWzfCnO8jVt/fodqusHrvUf1wgzgHOpujs65BqwbcdYg3u4F1ttvB/3ANvrmbbR+R7ZL1sbpuQV2USKW2A+92kpulbacHuZzJnjvtM6d0+vs5UlFzbO7J7/fc84yi5I4DFWVkJ5pG8ls0MkdZJCR9uMZq34K2e4lMtBwdyID5EFI+Du6QRdeFw3Wx+UnBaNGZXwDy9nv4H29Fbmqb5ZFZYvxl7zDtLRRoKiMw4ZvUJmRRSflYv7mV8Viyr0cOC8heTK+3PF0AQHc70G7oL+y9zDXmCDEmouapoq4F8+BEZes3uhewMZjyjJj04d1WVFq2O1k3LLJE1xPyLuV8S21v83EBUhw9+Odgnf3uSOZKjRo6CTwwZ0qSHaQxeSZ/p9nceLLl7yrri6UzbHSf/P/RZwss76cwXd+HyJCwDEKO1kA3jL1RefcA1E4FEo+tT3NzGsfJ3uYo013LoqYeR+5xPHztEvv4uZ0rgfsDf6NniQD8MP6W1pSHPn++d0l7Bl0fbc4tIjjL7wsZS8aj9Hdo38giOOdurXN0iigp5uKz3vEpY0Pn/ZQfSPfveeTeJKfWUnvn7yObgDgOn/HMni0R1wqJwoEYcLjNkp0T2XXM7ut4+yntp6zvQ+99zhxrl0QG+dEfHqcuqYyCNJb1iZRHNyNdpKiLMpJqae7Oo+uKNThJjT+mZeM0j7ahEMAO4G6Yz46XJXMFz5E9YhzG7An24hh5sRf7udqc0+Gn9JIv2T1BKlINbtIDqzlFpMw4XkT0Phx5pDWNdtgADdEJEUwEV3v4DnAdMKJ4MtLBlZsaYV0hNg6xVuYsyXdcC7ie06IwCRs80+xZEptStd0TY73Xg18mnZKAQ9OpRbbxdjT+3udiEJz6vnWjAGXFU+VFDspyN9hzjxxILA6klJw8Khtp5t7588ZsU+qyfqSA5CRM3H5WHXR2bmBnWz/j4d0vWXp3kw8MjMre0XwBgHNwgeE7RnXTwt21A3PbDhmahJrdapZxISx/JxiAixMW41k2N8eULK/871AdeGbJlxEZlH8tSQJItAADEKkqjZBSWSjLj5CDjCdVt2CXPVh91KJb1GE5AogcSSSPJlxPlyioRsFACh6AYoueChLBRkFz6ASdq0wuaYZJmCe6HkV+AMP9F0GimIB6RDedL7J3SloPuZfLgOuiXOtTjiZAOPc9cLdFkuoxx4pJCoUIuB0sKgiAOnUzx0edgQTWjjnA/chr3yR8vfh5YlEO+6zSjwcKHr8zA06aGrxuEDc1YlPBbzvQroMH4NoKtN2P3mVaKzDu58aqz1lnaDuRdpoD8TInLXUR1Cmo0PfDO1rS+M8dwAsM9txRO/p/tm2y8epofJB8KjvWb8zxQ5rnJnOQIkTAs0RtmiNX9yyjuSbGISJidN8z9wtHruEQ4NpOcy5FcWrNvbvc+WTvsHx/M8DQSJpxcu84Ho+jCzMHgbWj/Wzf6fvlPpTNgQPLOoJ8PpcCgH4v8tDmflxX21dyynWl72VmjmWiibx/HkVzHxs5sI855+VLo3FATgFdllxpAIZ2e6w5cG7PeMI4SV+16Jhzrn8sOwOEJEeS8D4Hlo5edB/nydB3Typ/dOnMHH/ourTX1YikyAPgVETCPZl97rPol3z2RTYPlM47c9ylfllE655yD3N8Z8DoyOF5QhnDWnzi2OJhjsKSU+QUcsQxSb88r2ShNjE9I/jxtZ/Lnlu/fLFlizwmPzzmu7O924w84KSvmlNkKZLqkJUObgD3iha8r2V5084xmytKDIOZz3oNX7ZjJAc6zV4mkBd7sZ+vJdBGf9dDLe/3Y6Cp60aaocP1yibMjUgYgZnMDG1XcNsNLl6tcPVWmOoUgeY6or7tBRharxJrkCLD9YDrIqrbHpf/GPH1/zfA3WwR5wCwQ2ysCUChIHnuAAgQ7WvLZZBbzgIItnjy0D52oLccCo/FBDq1rLmy5+QYFIyI+z3cDQ1AkgFPdS0sf47KKqUEAqZn1aSr5MOQcHQEwEi0Au80AsXyTOz20mb7dh7AdKIPzesGFCJoqzq+O8n3MGIxG6uVSBjWTvNTOGXgJumqmN41Nc1B5oo9h3/zGrRqUP+4RXXt4b//CL7bpbZMYFHB5E7ATWL4r4FVI9d2bXL4GKuUmHCyvMMxpuHc90cAIeA/7kB/+B5xrzkpmgZ8dSGbotttFn5PoODFOdC2wszW6IRhvBzegOUsIAOtD0q9QPuOOsNovRo2eo7SvGCAmUVP+I87uJ0XQNI5wGtf9SKtJQxr1UEOIcljUVUBHvDbHs21Q33Tw+06uA834NutMPZLtj4g2s3GlI0MrEV3XxjQnQDv8Bmolm3Elxylzkmf2rfiyKkqkWPTxOEWaYM2y+kRI6I6nimPWHIEokrBWXVkta30y5wFKS8JIB4+t+8Uc6XNaZPovCfaN872kQNMZA4DW3Jkmp+C6krft+Sm4LZLDgxmBi7W6L66QH9ZIawdNn9k+Jst3B+vEW/vELJ+QF6YrqWkVry9G8vsEA0RLG2b5pZRfoyqkvwQANzdXqIN7nbiGGlbjBJpa5mLTjkWQDrpfmdgSGq/g4DImOk2cU6dK0mxxII2W3Dmpu+b06CupX9bYvA0ziQajHc7hE+74V0YYJ0DQoDMuW2X5Ya555y7NA+HAL7NIkU0T9roO3mUSPb+RoB9Wa71mfxd2zxgxAM7zOfXWTvmxWl+I7I1koe2kZwMQgJJc2U/de5wgDg3WrsVAYXkSoryyYgOcA5U1+BVA9q3iOb4K6N+AZW0ADjSkCh+bt5c6tNl5IRJwDKLE+icPj1yiLphL5RwjyFCa5KgGFjuZ+XeryQbHYsAXnjHto+d/ewRLM2jIYiUbdPInGjRP8cAXI5I8p/53vwha0nWJhxZnNG5Q+Rc0lQRbTSaAwHMEhOyvSmt16DKI97cpihQ8kiyoIv1B8aA87l26nUKns/e/3NYIjk9wR6iKG+JODfaA02A0nzeduO/zxEcZp4hRU/Yd4u5/yiAmY/jg9/j8V5cz6Q2b45y/x2K+sxJP7rPT1ExC884cZJMHIRZ/sODZ/OZNl2654sdtnMdlUvfP3ROvo8tlDPKTfUA+UeLml/sa+U4mXx+IAffoTXcfpzLE2ISsPfj7B43Hs4k8qvK+oYAm9/lmQ49Nw8RXrN40emOli/cMeKmG8Ln6PV/sRd7sYfbobF9YCOdvMh5wjZzihwFOTJGYKZBaoxHf9Ni9VFyklBk1LcR1EaRKSICsUr/MAGR4PdRktLe7YH3H+XgcypINzfZz0kO2AbYErMayJU2CNkhMy6wM+faYslyxvs5151hKaImbwPrD5EVKFKAt64k94KBb7boEk1AgNQ2mq+Bqnp0MEzPk8lPABDgJRpTPTs0ZPVNsm3eAXUj4FIeqaDRIgIqFZsRY1+T5pdwJqNDA+hv9QcGgHuowCBVUlUiL9Y6Sbq82w1fO3IATYClggjkHbgXUIWtjhql8WAz58/CZpBYxhiFKIl1r2+SRjuqasgDU1WAl/wIxKQSYBlAo/kskuTSqYcYA+9mALDpc2SWAcDyeQGOuaEd0ecgWMF6qcQZRV0n7W2RXk0t4Gof4Vph61MXxAG33wv4usjWpzQu8kiL+9gkIo/lMJtKjCExlEspK2GkZv2xZF2Z5W0/mSszB19+OJgD1Z5ih38KeHfKehOne9qUj8LAPM0HRSGAQza3Oweus9wgkcVJsdshXl9PQMhFrflcW1vraSCzXUcmXWh1sup2Ii2U5sdYgKOzbDQsr++nRtvkbXXMnlqvu3Ac5rkrqKrUYc9D0nDonkQjmybzcrb3SCz/h9Y/b+/cocEM0oiliUxTAYyl/BZFBMixqLokmZdLocRszOb1mpGgSxGMKfosexZ1sFhUJOfgZWl5ZKlzSLEdRrKwcWDlOzee5/JyFpwiACTir3TwH7O55x7d88SyynuWBJs8osrNREQ+NALi1Geem6ttHD3RfD2J3FFHieUBOmaT+ehRwbcZQPlY+TPj+eT5MP85yTS5UQTWJGL2Cff8L3bATnF0T8b9keuB+XGcr2VP4KA8ZiO523Ien8P/7O/Q/goef+8YRrhE+rHPDtkk8uQJ9xgvdtzu65i9170eYWyM+k+xZz6JAHPAKXLCPcs8W+OiP8Mcb/lTIgZZ0zPG0CgHG4Y6nyvL+UU7RhKolGs8AhixIF4W7Bd7sWX7ksbHEhtgtKnPvh4CQDxEEo/KKg7fC/dIOu/2mYLtvBPA0f/+T3jTBTn4WvRB28mhvJM8Ac3HG2WlKZiuIH6KyIBO4Et6pEuRImZFwilqBHQxR4E5SEq9YM4Zh/l9kjyG/TpeoCbMc2UOTxw8yUGTadPeR3fYNrkGvlmIddTDY9+NGEGJAa3vg/t+xIBksIImAtD6V6/Af/ktaNvCfboB90EjOzrEvUrPlHIT2oax7WQdqoQNbAnrJXLFi3RNXSH++htQ24P/8Q/K8q8T0Jk/l7yTKOzi7BDqLi5SuUQkzh9AGOMA3Lt3AmrcbYVtnd6JPsu+lfJvbkcRLukNKNjkALCjgY2syZxRV+BVDdIwVW7bJDOXDspLjo28X9m4c34AZeM0CfQE9A4Rfh/gbzv4H2/A17eSO6aqQZsNaNUgrjy49qBVJcE1CoqhqUWaareTNm/qDEAfnF4p10/JhowBnMm7zEcBDHPJSG/fkUjjAEM+je0O1FXA1Ua+39QAarRfXSA2Hs13rI4g+d/dbsHeof/2NeLKo7ppQbse9I+/B9+0oKsr8MUaFCLqmw7+tpX3neX5mBweyaW5gWz+WNg8Tg+jGSMvPwD6WqJfAKQ8IyGA9zru2lbYuADIZQxuG9+skTzmPCSRPsvni4PyUpwxA0vm6mPYIdDg1IPwkTlvwua0SBEDqFYr6S9NLY6ybS3v2sD1ygEMXPzDJ9CPH8HbLcJW5MXcxUWK/CBPmfNV7xUC3FfvEH/5lThSLdro5jYRCch7uE0zNElTA6uVRBdc34jDZrOW33d7BdcztuaBaIPReuzcJJnsUV18A7iPHYZOXX/mIkVOPaRlz5kcSFa/d68R3mzgtp3kD/rxI8L7D3JZXSFJdub3twg3dZwlB3/ZJ7P7jrSlR9rR+Z4pDuNY1x/uesS7u7FDS/c9KVLRnqdgDsftbpA6Ge0tdC/QtpKL5uu3UkbXg/oA/vhpGNtzwHy2B6C6Ar16BV7VSVqMvZOko9dtyh1nuYPG/U/bRh2zlo9t1OZuaIc07nSOTPlPtltxHu2LnHSl2Uf7FrTX6C5z1hyUDaPRGJm1GbnBky2T1hJZLbUwHT/LEngFKG7kjhjGn6d7nuA4yaMMckfXY7GHS/NeJSN1rbI9eRpvRxiqc/m3TrGTQC6WPfgDohFobv0ffSFzeuSR5Jpkmu+2Q98fRdMUZTyV9vy5Vr53e0dPcc49di57TDvU147dv6znkgNlCUTO12xAo6ZlD39vdZ25devQ77NSjgWpQv+WM/dtTZG657lgMMUAJv0mK/dQrhAj4JVzdeQhl9dT2J8jCTyf+x8yp5Z78iXsqLzuAcZ9NwXy7/EMKbdO8feDpuSBU2XtxtdmuUqLvQaRYAGLEYKFDTnv8j+eNv9K9LqRNeQaU/pIeW7n9hQj/G4+Oo0DwD+riJGlv794al/sxf787MhiNqfpXgIkQ+TBwmHvCPNGylaphrst3Hs/sMmBAYSPYQAJul7kvGYkRR46X01yAyRd+KBSJwOYAWCo66ImbXmDQsaiPKi7gXUu5fN4k1genPIw/nMXcUdjRvWM1mZi2vU0SBiVMhr5szsC1x6IFaipUz4HDnno+UxbcBTQHB6uUSC8rmSjDAz5RyqPuKrggMRQHDFtR5tpBc8VdCKrsjEpzFtVKYBmIMbFWt6x6voPESUMgIEgkiVzjj4AIhUV9FntRToFoepapJ9qlRVxWXvMMGVnjYaoFxAGGR4EOYTr5owB+Vu5h4lRchfsemArEj3GWCaNEEnD2TmAGDDdb+/AlZeoHW17kywidcSIU6sGwtBus8DsfTZ9CdDUcrpO3qJJZlkda4fYOKByQPDqFNAImciScL4ixNrDBQZZXTRfCfWaV8TAxqxei5JO0Umkcpob+DDQZ1aOA2CILAphGO/GvM7yOc0B1rMg9n3mxKc6KJ7LPJtj1Z57HZAiRZKkj+UVsn/egSxXDWTtoT6CbrcIf/pRneMBqJvh8E7DeEOMIjXJLH2hqhAbD9dLUmuQSnQZgOsqAbYB+d1kobJIONIkkMO8u/BOyrwic4mgzZl9QqTIo9pSVMs5RSRgO1sbKplHY+VAtQc0Z5I5eSfa1OWhzw7NOct/bs9SMg6Lz5xKQrLlXyJlyBs7PzmoM9CbBgcBStDe6llGdOVtkZtzMuexRPON8hMdMjf0e7mnzin5PfP1uihvbi9IpNFqJgtpa+zMPgdB2yREMLSfmwO+fObsnVDkId8OMKwFuYN+XNExaH1GNM5RS44GcThNox6sbkecvQl4KoHyJwDsnhoAtGcxuSjt4yctQU9Zt6PjoXB8lM6kwpYiBBejznWPZHtRTmXIPm74/sI7X6jHs7C5uj1nsPk+9SqJgwBGMo9A4SBYIDfN1kcd1p+jvUom/JyVEl9xkCS1/j3CB+xcStkaNjcPH7wnDXN1Imo/whx9zJ7rmHoOdqpDPv/+Y7yvR3TCnhWd8VgOnkNEopMd+cO+4l62KLtZ4D1mx8bBqB4Op0pbfNGOEfLiBUbmYfss4T4v9mIv9tPYnNMiO5gZ08mAH/fmNejiYmDU7vYiL2Og9d0WcbudL3vp/mkz5RH3e5AC0QnsBsQR0nYCtG/WmqdhBXS9sCqBYfN2VKN1oV7GKrToAjukq6Y7hwB/dYnu3/wtmAirv/sj+PYO8eZ2kBErWTJJYzV7lgUN22QhFHriCoJ32UY2Zx3pwTO23fh+S+VHAc8lz4PlPDiwSdbn4HaQJjnE4og/foDb7wUkcCTvaL+XdUWltSTqhjDO+o0U+TB6/M0G4ZdvEVcV2rc1XMdovt+C2h50sZE8JZnEDAOgWttts9FyBQAilVyJHz5qolgHWq/Av/wKcVWnZ4mNBxioPqyEmXq31ZwA+6nG+iyIlv1KBHr7RpLZv32FsG4QL2rE2qHZ96DtTjYwmqdnwg6eeR/UVKCmgTMnhjrmuO9BXSd9uKlF9qeVvCE5+z++/4Da+qH3oMsLVFeX6lCogLaD+8fvkoY/AHUMCjDJVxt0/+qvEGqHsPGob3qsfvMjsG8RP12DVg3w9rVEjawbUBfgP1wr832XsagPM8eGfjH8TJUH4MHbnfSjm1uRbdntBSh9cwU0NVwrfbT9agPQBkxQuSRJOt98d4NmuxeZoiBRLLRaSS6h3V7alkjqzAzs98rwnGEfcZAhQUMyaG67FEk2K8tmfUXf90jDmhmuqkCXF8B2h7hvpVyTNwsOVF/KHJgnLE6SWuY80pwXphVr/SSXPfwpgItD9xytCUeuzSOlgKmTPGcqZrJL7qu34PUK+PAJ8cf34sTzXsLNAXnnXQ9iRvNxBb65BdWVgrm69rWSN8atVmm8pWptNuDNCtju4f/9P4C7HsHmKGXCkffwv/gW7d98K7Jtux6u7YHtXiJSWJxylpdixNS3Z8IMCJc74kxaDRhHHhw6nBUyhBOWdJrfwvD7MbBjdB1Gv0/JFzP9kllyFjS15Geqa4RfvkX/qkHzxxs0f/8HiSTTyJq5g2SShuRxLjRxYCy0ibLMU66eVPUBzPRffyURkm0Pdyc5r3i303wbWdRc1h5Jys3KDRFAHANBmVMkMXQtGs+kGC2i8vffyfe8APNxvx/mAmCQF8zamqzvOkL8/gfZ61jUk9bLIlbc6yvNbxSHXBxzfYklp1xyyquj2r15Lev0vpX3ZNeZA7Bt5RqbK+f2cMZ6tX7S1NI3e5Gai/3dtN/k+6Q8msrMxkq2/0nzyanzYuFsm603MOyrF0Hvcv9YABb3nacfDaQ68pW+G+2DbT1ECINGee54KKKNHqWuo3ex4FhYurSq4N6+kbkjinRmuLkd1hTm6RwMjOaxQc++2MfZ8xINJJua4FZvhs9DlLOE3eNzOBUmjoyZOdq+ckp/LNbbyXjQiM28vPK8Zrm6To4eOsZ6XqrjiZ9TVcFIQ3meMKqrwWlgZwvn5GzR9yPna26x7dIZbPQMk7bP5q68ekbOOOMZynllNtfQhNSXfZ5HnmMEEUzrnN+vjDwpc5RY+eXz2DqVS0+WESkz0VmTPBKnjqHn6ry7r90H3D82po9FCDxFGx4qc6mvTfp+HJxthOPnnmzPNOwFZq5ZchiZIsJc0ctPc7guXJxrTunXMSBaLtdUXvEc+RjPLM05Rmoo86Q4B8ctcH3aY3zRjpFkJYv4xV7sxZ6vPeUGuthkUl2D102anMlANu9BzoF9e6CwE8wOyqb7btVQCZHkLLFFzvPYgXKA2HnUdPGcbGjT4T8CdYX9uxrsCM26SZJKB2W7SgDomITJBGjHFICgQRrCFi5yPVK0gAE3B3JMjH8/Ya4vnGaLX+tahA8tqG5SIuwEZjga3o8xQoBxGxkr2Dk5SFceYV0hXFToLj2qbRSgN8SUtFzAvzB991nfgPcCzoSYAY219OHaIzYedlbhWtgQ3FRISa61zkM+nZl2XWB2JLmepkqRDNHT2KnBGdh0xFKC5qoSh4uC48QOHE0qyEvCccsLkx1UuTUHxkqcS5UHN/WgM6/gHiyfCzAc7r0D3CXaVzXCmtBdOMSKUH+/ligeY72vGsSmQrhq4LoA2q9ArQP6fmAkn2Jlm+bJe4FBMsYk095cgVVKiCKjv/BgT+AKkqCdWZxrbQf+dJ3lx2E5tLcd4PrBeaf34hCXGTipMvIeSeuTgL7ywGnPlY8HvT6Zk3w64ghRR0FF6V1S5VWOLQK9E0Y1UeYgIQABhCFaZlR/6w/PldV5DODAMF8kIg/T+DrK2itFijhwU4M3DdxHQjRnr4+DU6vT93+3TcArSCMBMhkmIgWoq2rsUKgr8KYB3e0QPnycqXkEqAavanSvKrg2otIqO3OCabTQ4IQ9fb4Z3yo72AGH53pbV4AEnien5FzXzw+dc2tD8f5G8jKFNBS5mDFPizra4UznPFQeYVOju6rQ/C4ifroe5ac6JPs1P3efwOJzmmOpeBZqavSXDVzt4YI6NyzX2QGglmbAwzxx+iSyMm8Tp87VppY+cr0FR06RK3N5m3K9a3L63kyeUCUhDQS0nDqJCEEk+zuV/GIHPSN2Beimc6X1HX0majS5eoiZ1JI1Pad5M4+YzOs/du7l4BidBgLZPikDNq0dU4LRrM4n2dzc9BAQbgnMfEw281OfFco5IN0rc4SUknB02r7ybDv3Wb2X6D0jQ0DGTFpTgMV3MpL7tO9FPYwkyT3IXJpFhVFTD/ejmXn5GazNi3mz7lue16hJw5jyuS07B/B9MaglRzxwz/JcijIdOVVzh4nNxYA4TIxENDt2C3nSpSibQsZqsAeMlZIscorNnUnmwOil8rLnGCkhYLlvJZnFE8lnE7LGz9mee/TLY89ppzxv7ohPkZsn9JVDkcLpc0znlaecs22snegcOddG+0QlPI+SuJOSTPiEs4fal+0Y8R4UdTNrCZZeJpoXe7HnbY89CZcTrh54mEkOz8qYZkcD467txEveZUwQypwBc6yP4hlGQEAIw6E8s9h2oI/Xyp6uE3CU7nnISVGa89mhhZK0yihXyWRDRujXDqEmdL96g+piBbq9HYMtFvWQJfzOdbXjdqf68gsb+JxJpWWOwu1tkV+thDFaiUwLez9mpoYISdg8D+JzZJDO75QxAkod9EW5spk6jwHrDthGiWx4fSVge9uCvQflhyHvE3PVfqemEUfCegV2hPr9FtW1Q3XTwHURdLcH7TvRbDa2vALRkiA+Cz+1sGwn0RDkoso/ie5+3O7g/uPvhKG/aoDKI769AhPBXW9TFERKSJ/1YaqbpAc/Ypb4JiWqZ5XjIiLQH36Ajwz362/Qv1qJ/BMRUIs0mETWZFE55Xszxp3JAHEE94DlV2F1BqQ+ESnp1+clUVWBLjbCctP8CqgrcSDUHo7XcN0rBSSzdx1iyvERG5Wi8kC/Iex/fYXqZiWRKHqAdG0P90M35AratynHAkqZgXLeKftYjFIX658KDpoUUdzvhXn8wwe49Qrhza8QVh5cETjDrPevJRrosg8IHz8Nh3GVbZPnhLTjjCybVC1zPALT9xTj4ECbezboOOuX2Uu83YE+3aS8N9z3ytaWKAAXAlKCZZMZzCNHrB7qeBsdcO+xYf5J7MjalpxXc9/PHD+WV4TqShx9TY24rkCvLuGJgFUjY+DjDfjuTsZ63w3jRts6jaW+l61xXcs40oMK9wHoWmDnxXG1Lxhbed0A0K5F86GF6yLcneQZotvtKC/TbDTf3BxsgHLJSysjApfa1Bw7GciQrxHLc/4BsIl5Eq1w1PKoSGCIyLH5SudTv+1QNQ60bzVaUqWxbG7EALCgy/YIBsTa+rbk5M6rlEcIFk587nv4jzuQvbu2k3enkSJcgPnJqV3XAq5xBMVucAwA46gfjcIAhnWaO5kHqK6S1CZ5SJna7oQw7TZGNqlXwx9jNv/mcl55n2k1mtHk2Uyj+ohZtCL6AKyge8koc1rXjfdX5tiu9bqY7f8iSxksUogSuRIkJ8l+L3N/aQm0k30Q4Ib6J0fLuA8fJa0sPugj7MGXAJ7H3N//VCB7doYY/qb9+tHPLwtg1ex3h3WZqgp8dSF94r1ESlHTgDT3XQ6ujSJDAI3+0n2rIxBWQGSJik3yol6i3apK+q1FTgNAucc2ewrn2Dl2KLrgEDC3RKLiOOQCAsbr0tz68kh9YziHLjjwDxiHIPnagBFpzn7nupJ92X4v+/3dfpCWJRo9r1Yiq9gBJ052f3CWu2qJhHDSw0zP9YvRKtm6M+v4yH/Pn6NQNUh/n1n/Zx0uBNln2d/yCBOrRykvlPY4Cw6cn6P9FGsYcHheKAlLP6WdQqg4tob8lMEDj9F+M/Uf5vvs/JuduRkQ8tgZz/5lO0acQ9o8qj02W+DFXuzFnrEdC0HODu/ElNiNFumRy8zkbJfEBj1kk03NnNZyBHcBHLwktuZc9/Q0tv24zGyTmSI6FiZ83ZRGSZ+BcFHB9Q28MoesnIGZLN72lFi1kKmwe04iVJwuIwqqTFjRluRTGbRU+UFz3UDpGMWHYjIhc4xYloShI1aSypHJhtml+44OtKMmWVgfyNoygGIcoheghwuvTDwDsozpqkx4rFeSh2PTyLPc7UGdQ9ULKEKdgMQpuTqgfZOBOeYdMMhA6c9Wdw4CkJOThMpoatBmBXJOACH71xXRUMacKJwOdiBKmz+rVwjguy24beG+egO3UemulBcj1+Ke78cjSRDrNzFIn7G/5Tr1ebSXo2FImU6/9wIIOycyQtZGlRscBfkGMvIAwBKGCBsCwsrBdV4OikBi/5KCeOjFiWkggzjdikNesWGeygQVh59sXAGQNlYpP64IsRbnDTvABa13wn1zSbdCKgFQBwPPjE8a2KB51EVpZej/oc9njEMA7fcJkMwdHICAh1TOWeYs4eE9jRwif45RwGV/AMYHcmBgdaqDJHqS/l55jeSq5WdzcpqMYoggP7Q/ASNHY8rJkwOskcE6Ry2uJUC6l9v2oC6IU6TtBudKJq13GhN9BmAq2Z5HysnHW5ofbX31yNaHI06WA+WO2J0cIUl5ZkASM3UkpNxHus+gtofbVwqYx+E+5ZqaOzTyCK28jxxMCj0k1rbfR+tlCOIU0XVCIoy6sWMUGIAicqO5fpTfBMAQPVG8twxoSvln7PPMEQQIaLcItuX3tufJypkD8zgEzMxgRy3lj8tyxtkecvKMowT0NC87YetpWlfDKFJovhLjeySbmScn3z/pIe95Pn7uzF6zUwCkU79fAqxPBI4NEQcH5MvmQLrKA73Wi+OwZ8+ZxsCwZzOniu31NY9UmheIVEZM6+H9QDQp+17Ojn9OfeOx63PCfuQsKbvPYHnuJChhhkKQCGQ7PykpJeUQiw7sBsfGUFixJywkoSZLUZKmY5U//kw252TIx8yJNoo6BcZzPjDfBygjNjjM77OzdfgFoyzsnLGz5KR4iPPiOTg+Csvz4oyjFk+s60EHyvN61pNtaU0EhjUJw5mZ7JxjzskT7Yt2jKTDhDFqskMRgC/35b/Yi73YaXaMOXl7p7IuuiExEMCcI7n8QdRcRfkB3Vji+b3OYcrxsKGOyqRGFNYLlwBDumd2UDMQNHMGCMClbK8Yh6Tuqcr5pi6guY3og0NYOdBljepiAxeCsMMAKcfYYRqpIFVWoPjyQkCGkqGpIG38p79C2NSoPuzgdnvwH/+EeHMzMIZ4YJATAGZJcE51LVJnduDa76VM2PnwMMBGTQ1qGvB+n7QpOQRlyNXjDX7e5hNt2izSRN8TffgoB6IQ4DYb0KurTCJInSH2ii836H/5BrFx6Nce1Tag2XWgfQv+7k+yLkGAazYNzVyihVny1FjbcgA6BTvfXMkqryCpU/2a2HbJSUI9JekcvrlJ97CkyNoppF9EHjO08/6dGe92w2ZfdeGpjwmYRdsBoRNwqKo0sWz5gmhgcDvRNOauk7pGBtuB2yJKNBm0HC7GIKCB7iZLA8imhyOkfYgkR4KC8hSiRPzsW/D1Ndx6hdX7K8TGIawJrmU0Hzu4XSeRFjECt9uRfJlpL4sjR8FOAGwJ2hPra0YOJ7I4p1w/yMUAI6DLQIjYdvBNg9tfrbD7igAGXAA2P0T4bcSrjz38PoBvbrMXZE4SdQgleSQqpOCctJMDyBXbPZv/ImdRbDkgPACRi3NVZtz1iHF7GEho3QDwaTtNwPD8unMPTKMynun+b9TGmdMYSEBvmpM1Es3d7EDbFrTdyxi6vRPw4fZO2OfkhgiKFJGmTldzYjqnchpysLJIKnNQ8+12HMFnddU+RlUFjhHuZivOw91eIhM059CihFbh7JxYzsa13w+9uzyiYxQx4KZAzFL/WrIcOJqp4+j3SXiDsrMblWRcNSId5z0oBND3H1D/MUpklUbLpeLMOa3M0zSX5hFc97E5Z0MZKdJ1o3dHVSVRbazrizmgTX4UBWhmOYNGbOqh3wBIEYLUNHKPtgVCSJETXER0WMSUne2sX9Jmo/nhNJJG80GMIiOz+qbIqVF7zDiAOYJ7znS6I0gd4wIsyjqXnBreS7Rmya5O7SLXj4gGAE7KKaf1TPlYEpGniHiak3A7UuaDHM3atlTJeracv6IcK084D886EGZygSxdm++tOXMMlkz1J7QU0RHimNWaP9sElB4io6gPmkssi9iuKp3jp+u6rC/1IMUFDOt/XYPcQLzi29tpvzFyhzlNf0qzcWv1yp2ZZT9UVYDFvcVcX2Ie94kSiAMO+qjvZRb1ct9+l56P1JfPowiS9Dy2F024WRYRnNvC2mORjrJeLUTb9Nl6cGwsloSRc55/6bs2Z5U5B6D7DT0XJtUEi9bXs0g6s6d+NX1OcpTWueP5QgsyyKlO3CKP2sQh+Vz3uqfYsbqXfWGydhcOsKXyzsFtTq3bE5qRTA/KwpF7/tH0p0bd2N4ij0zMrwdm5+fRdxLeI+M47attH3aifdGOEQDP0tP3Yi/2YjP2GZhXpXGIAuKm38PYIZLLayxt8stw2/zvqeC5w3G5mM9HQczeTyqrv44BIGJlmXoFhCflFMloe4ACgz0QK1LZIj88lzFcm1oZ+HqfXtrKgOjEdM9YnkSE/tUK7ZsKxICvHOiHYlnJD51EoODBFNP9KCrDOcphDhYKfmS9twgU9P2wgTBGr+qrjw4YzJilkc7oBHM3Zs5K0mgWx02ZDNV79JeVyDTVhNjpmtQHhE83AADX1ImZZQeVUf+JDLiY2LgcIshATW3ncbRBtmGPKtdBktA+tl0Wxi73TIDkUn+zHCl5RBX0gG3glm5AzaHBOQhln2dtNnsPvY6SXIi2bx7pMQeeZpEfsxvcsh76DClKp+vgWtVmJwe/j+IUsfccooBvTiSF0PficMwPOsbGtGcP2mcWopNM0gAhzj9T+qK8k+6C0L0iuA7gDqDI8G1E/X4Ht2snoLUdZnPwEU7zSWCIxEpjrLxtfn9zfCyBZ0tgdb7/ypP4zXyXIw8SQTm7e056aaGMRVvqE89tbzhTzzQ27UCe/rlBJ7zrQfuYGP5swHLbpXktSSvmQKyZjQ0rN1d9tHYKBZM9Aw4TOK7RBmi7wcmpoO1BUMAAyBkbk5lOizaZdV6ULM/S4XK00KWD8wEweY68YPmZ6kqi2bzk0+HdHvHmNgH+NiYn8pf2LDN5N2brfGYfZ+aBhDAbKeIGySuTckr1yhybtm7PgRYJaNL1y/qx5VsyMps5RMpotaKvmFNg9g1xXAYHckZ09nwj0DQHF2z/YM+u/WjkrIeux/Ysc7e2NSj/F+PpfTJjLVOERItp/T4b23gJdFtayz43SL4w5w9zw7ENpBvvrQMe7jy6r+VyaedYCfjk6hl5FFNZtvewfHgANJpAIwuz8cddP0RGAbKftNd8qtTgU9ohB1ZJfrIzQs7mP9E5Mvq5HBcPBfVLOwUoPvQ926eXpL88ggRI0aQj8tjcfdLv0/U29bG59b0EcE/Ji3WKzTm9Spu8k8NEh5FTpHR+nVLnc+e+e8wxo3xnAcv7lT9HO2dMPcd9/1NY7lw7djb7qeycPqoqCKlvl47oz2hfvmOksHtLaf05eF5f7PHtJwDz/2ztqdpvbvJMYLge3pXZNwHhRptbk2rKZC6AYTOdJWTULwybwwKM4hCmG81yg72E/GdOmKTvjQFAEWa4y76eA//DBs81EgXSbwSwX73vUd2pFI8l3vMe7puvwOsGsdZD0k7Btos14BxiUwGeJGIgyUT1iZns9gF+L86BsPJYdb9A9foK8ccP4O1WGPPOCaN8u4NPSWlVGqkWyRF6/wncZjr5c+83lzIJAdS1YwDJZD9MKsDYpPYuytwjZim/CsMcK+lrFxeIby5BXQB9uk3OA+4lIsGtGkRPqO4CVr/5AdjtJccHM9x6BcslMnrFIQCksmPRGK8Z49lAM09A1MO+c+KgAeCUyZYkSvowyq0xYnPyDEu1PDReXqrzR9i/kqOkBf3lrxDfXko9AOCuFcmdGIbnsvYfMRyVZZ45LLjtJOrl8gIjmSXrt374XmJAWv2aGnR5ISzs2qd3F9cVwqaSPnjLoFZyg/BuD/74aQDtvCSrj41DbCQRW1xV8EEdKF0n0WUA2HS2jYFp/cRk3+paojDSc2egMzDKNcSRRSrLnBQAojk48j5bV+gvCf0G2Fwz6hvg8j/fwL2/lnq13TT/g4FsXQ+KEfT6lYzr7Q7cdSlhvMlvGft5YEBqP9ak5xM79YB+6jXGhMzqfvK9jtWj1GkvmUSPcZ/HsHyOBlKbUCPzvHv3FrxuQPtucFK2Hfj2NtMCH4OrItk0lkJM1xa/02aN8PUruG0H2u6B7Q7x9m4cNQAMgLbKLDIzsN0OwFvfSz9PzplpFN7w8yAfMZvMfG49XjIa1mRbpxOQPRd5Urb9TFllPctrp8mX3VTCEUgEA/6Lb9C+W6N+v5O18uZO3p1FR5jTtjAOUaMwM7kNY7QeaIvZj2YYsgn0CZrroozyIRoIEquV1NEYd7ZmqxObLUrE9lWFQy2P+EhyU9Y/mZNjb7R3yS0KiDd5QnXiknfT+wIpGbs4fEKKRCnPhG61kn5t61fSWOQh+iSyJl5WTf4w3t/Rfp/GALOxOx1MB5+9G/LbdZ3My6dKaFnd7e9JEkKlQq1vnGOngnxmZXRC/rd83cvJRVZf4OlBjYnDJmN9n2AWBZccu/l+5FR7CPiUMdlTbp+yTYt5dJCi1L85B26crP1dN+x5inOOODgoXQNA+vbFOo1p6pUMEwOwA3KCSXLMmRSs7emWctw8Jqg1N0+fCyzrfv0gznOKk2Tue8d+X7q+rMusFPMJ91+8x8K4tXWyt4iXhciqST2LaAclTyUZTz7Qtof+Puc4ObUN58rKnYVl3ZHtmxwB9Wo4o1iESBZBdkpbc+QJaUnyNdLh+f7QcxyzyRz3SE6nn8JOcfQtWd5fjpQzyj+az71l/38qLPjo/rPYM+fnpfJ7OdnDyo26j7E9aun8tTb6XP3kPmcvi5ju73l9WYXsHf98coy82Is9pR3a2L040p6HHQIN9N0kpv4JSUuBKYCTJ8Ir81sYaEDMKHNF8LmHrMkzuAT0A0gyU4l5mdXPEp2nsF7vBeBoak04TZK6gwFUHlTX4rDwHrxZIW7qAQzrgjDoa2F5xk0FdgQKDNdH0L4XFrxuZilEuC4i1g5xRYgXDRwz6PZONox1rUyAMOCv1qaOgMpLjogSzDmqpc4pn8HofVn0gSXE4zg9R9H0/VoukdTG9nnlxTkUFahhY6HqhrgPoCgOovjdnyTSoO8B5+E24lwabcZT/QcnTwI/5vpzvge2kGrvpS6jpLcHDmiH+iE50KoBb1biYIlRpHoA8KZBf1WDek4gD3Iwy8LwZxhYuQSLPS9RJRFLIYhzJXcoEg1M3SJU3KKDWPsK9B3HyiE0DmRyCpGlbxpga9cSAQQJUiGoDjAlhw9rX5I5Yj/fZqrTXbKH7XmHth4fSDlEqZN9bM6sTA88f++uBepthPt0B37/UeRmMieYlTsGpDR6rPID4y3r12x5Jhw0kmpGoqcEhk/dRJ/6PTusP8GaeZQQ81MxgQ9Y0ufO26OpweuVOLXaTsHjKNEGu112cTYulOmb5ryZ/plMHd0UWOatHQ1RAwYcFVJVlsOBNQKLWgWdTWboBKfISXamIy6t0+YAvE/uhaJfLCZcPxRRqteR96C6Qr+p0V1WqD6ROFA7dWrORG2N83LEscPn1P5ajL+RDNWS6Xwymbs1ssNk/pJTw/5l+948AtL+lswNfVEbaPz+zEF76rjM299l68oE1HBD1JQ6OGYTJuu7Mikui6yctQQqZmUoKDiSuErfp/HzGrhsoPKpxL0EeBRROfe1h5aRyXF+lvudaaO9+Ql9ihQck77ygLXhQc6RPJp6yCN30nM4N5BhmloAJY3qmzqFY5IXyevN3sv+spL9JPUuSfWOzkt2liok7w7W7zGdI6nO+R7lHm1+6jXPhY3/kL415xzI2u9kAnEJqKbiirX/0Pt+rL3XofaYc7AAsgefk2qlOpEO878PeS5PuP8MDpTyjMRsXXkEZ/FLXpITrHw3RbvL/GqfZ3uPz+kwOMWWyLuj7yw4MynDhOacI3N2LsntmD03Qhpw+r4Ffw6OEQOUci3hhwKSL/ZiwHRCsgnmxSnyfOzIO2DT2z+0MRstHMr207D6EfNRdUcBJM1pOBImpYJG4sgQ6Qxj/bExaoFlpp9u6iY6p6R6845AtB6eOQSJrqgq+L/6NbipEV9vxNHAQKwd9l+vEFaE7oLAFfDDv1rB9Q2ufreCaxlc/RNQZKy/24H2nWjY9wF8fQOEmADber0Gmhrh61eItQOuVqDQIPzFW7B38NsO9Y87hKtGPmcGVw7hv/orcOVQ/3gH2u7ham2vPgjIvt0BN7egq0thuvc9xuH/GcBl7ZM5T7jrRYrDNJrNUs6pOIAWE3YWC8PQdHLNwaVOJVTVwJR1Dv6Ha8lZcbdFypehjg/e7XDx7/4ItB1CyhWiTAVlCc8CbplGc2L02QFUoxPcjYChsROGNn/6JJcqs5devRLHUi0yZHR5Cd/UeoDlgTFrYHzTDM9l1fAe3T/5Bu3bBq5nUGBUv3gDt+/BtYe/7cC1B3sH1jaiuh5Yz3aYyNsUEDmwApwTJ0EL7PdTlhWwzIL1HrxuwBcrhIsGYePRXfrk7KjuAtwffxzeNTn4q0vtDwTuOqx++wG8adC928B1Ef5mD64cur/6Gv5mD/r4afws2XtyTQ16dSW/9z0oBOkj9lxZW48dUstMFe6Hgyrf3OIv/u/fI64buH0nid9v7yTC5u0bEJFE8eTMTyi4s9kA3kl+mY+fBIjlLAm7RhPQr3+FeLFO0V7U9ZIIOo4PbtzrXGbOmJwZfh+W/+ihn2bNPEnb+TFYYffc8Ccme1knM2Nf3t7Bdb3kCTIZOEukrrkfqK6SQzgHT1MEADBIclmOBXWU88dPqK5vU9mskSJWR/fmNfDujfSNPLF6iEArz265qSZs4QV2szzqgvPilDY0wEOBnTySMyV4NTmmY+XY/YwxSA5gGpwsGs4PYBIJQ35Ym/MybY/g3r0Fb1bwt3ts2h7+h2vwza1EZ0DmiJRro67E2RX6Ccv9EACyKDuXmf/2G4S/+lYIA10A7XvQbi/vs20lIm+7LRwGWofI4ii726Y6C98jDM4M7YvSRtkcnrMwdY7J90spL0HupJg7qzFLxOOcdMtmo9GmFajvEW8gkR2m8d624I6Heiy0F++zCJ5EhPFDbp/VSiJau06YmGFcT2Ye5sj8HvadrgWZ/OF+rxEWpA74GeC62P9RrZE7kfUdyP0TuWSuDyyBO86fdibO64BsfGdSo+NoqTPXgHLOXfr9lPJmgJyUJ+HEMvIo3hSBFF0a56O8NYuFPHA90zZMc5EjySOnc/coim8UcSnrO680fxkRUHk4vJO5/W4r9c/OHuAoOSd0Xaemg1uvhExh++S6Bnl1krPmxMsB9ZJ5f46joQTOT7027x8j0skJYGY2Jw1/K6LNlgDGp7aHOGmWAOC565hlHwqPlEPTEdyqGpzgzCn35vw+Nvv5kOTWg52vmSN9ac+W59vI1pIhVxCNHI15301/r+rReWt0VswtJ4lkNsnpmZEeRvlLy/V18rxZGXm5M9EAB50qXzIWNRrfDzxLLDkBOIuUt7P5XI6spXLLe5zyvWM2s+856ftGgkr1yRzqug8+O0dR+d2HOobv5bSOkit2bs21Z14qN8dNANg+gPN99RnJoL58x8hj2HNhB7zYi73Y49s9wq5Hc4IlHq0qXXSiHKR89nfbXJKA5mAGOw8ydiHLYVJkEIr7ZWyGBMzYPcv7xChgFQAOksQ1Xl2ANzX2X6+FER6BWBNuf+HBFcAEcEVo3wKIhOrOw/WM7pJAAWg+ePh9J2DYvgVvd0OSUQDuohPHxbtLgAwgB7rXDWJF2Ny1cLsWcV0JSVXboXvToL9woD6iAhA3NWLt4e9aYNcB10ES0TYNyDkcZEUyy4E1O5TbRoCqGqhnkusV4PZsP3DFe1anRpIrq9QZpm3CfS/RL+YU85KPIn7/w8hBn+qgLOyUsLQEcO3+CnikGkdWiad++JwjeG/lCdDKm5XkAGFWwMqD0Ui/M2ecOQcxAKaSn0a/U1XoLyq0r6RfuMBgv4Jra/i7DhSiRGmAAK8SIeZcIZN+CakPi/wIzzM0ogJsBvqa9T0QM2dLad6lyKJYO4SVk/4bkQK1+G47JMV1JO1i4zgy6NMNqN/Ab2pQH0FtD3YNuivR0/dzDGs7WHuJskrtaZFcBprGCD6gcz9rdtAnJ+3xH/6TfH21GoBtZ4m4HehuOwYarYyqAnmHeHObkhkDsikkR8k5xZsVwps13L4XWbxWHItkILvNQ10vDtZedbkBzatCIBR5D57DgWzu8Fz+vPSdz2HmdM0c65wi7nQuVw1w7PfSvprfJkVlAEMy9qoC+cxhleeqsPnHxme09UqAN97uBDzOZeIyMJSaBvFqA7S9AP5tB45Bzu/ei3O2kAWcPu90HI0ieu7jFMnLTeVnknDnWA6+aG6BcSToAVbynIPbIhhWjUT7dAG01XVUJatG2v82tk+1cj8yepYZVuB6hf1XK7iO4fcBru4gAXKkzpIeMQcFC9Amgf5AklFLzpElYDJFSRgI1Qlj0cCmEAXcb+oxo/3QQZcDEIt28pIXgbhOczMjDHKjbasH6wUgyubbov+nsn229mdrh+VTATDdg8zN+1HbUGUdy8jJueceOR7S+srihFcG/0RmdFIIzc91x6Jvy3YonQxLds78X0pz5b8zj8H3+zB4z5wH2KJLjRhj87ERk07Ic/dQyx2yqR5KwmJACUoLUVmARLwSibwcIDKMnRPyRm/ymQ75fhnAsM/q+kGujmgkx6oVxFi28B5WOkO13Nm+eo4T6pR1PJ+TgEH62KICnlkU6aLNRfOOPp9pu9TWGYEpDnK9oz0m5OxBiQhzj/otteUp47iIsh5+nu8To/1EQSi0SI1S3UHy6IX0eyIOWUReEaWe32uYE6WuE0fG5HF4+ZnKsrPPbZwltv+o0AP7gPvYYzq0rLyf6jxwSrsYPmPvzlQGzmnTfJ186sXhYD2G/jGbU+uxnTafw2zP99AyRr9nyghnzPVftGPEEgCOkuvd95D0Yn9e9liT9KHF47mF373YYIVHHcD8hnLu+woyC8tGP44RbImMvTIr2w4wdpUB2d6DoTk67G+aaJV5JheD1s82X3mUgmjHOwFkvU8AOKEFR4K7uACtV+hfrcCNg2sjYk1o31SIHvCtVGH3tTzb5o8M3wKra9186QahfV3Drzz85QquC/Deg3c7xOublBeE+h7+u49w60bkXoiwVpAefVQgQR+nj6Bdh2rbA6jgWmE9Ux8FoOmCgv5DQmmuvDhHLElrkrcYFkpjr48YjCZFVciUzOksT4xjOiCyvXeL/OlauU9VCWO07QZWdgdx6GifSSwrK9PKyvpTmfNDKz25LvXCUj6trgXgNrabyiu5tgMTgTeNXF9VEq20vpTDwG4P6pWBzjwG5DgmAGfzd99j/dsGvNEcHpYPY1Uhriq4Tu5FW2XCZomXE6OQ9ECQomaGMcV9D7RjQIiaJuUSIQCWYL10aFmESqwlT0hYOYQVoV8R6i2juQ5w+17GR2QBI82BWVXiKFFADSGg+v17bX6Gi4zqtoa/azNpmWHDTN6D1qs0FifOHs2zcu8wd4uCcpT6ArGyhFX+gndZbgJgAO2MmXZ3BwaGRNxWtDFfNdrIf7pFFaPkr1A2KWd5YmxcJd39LNpuMTfTc7Vj7Lr7rt3l4fQYWxMCQLirS8B58PX1EIlg5eXFtzKuRjJVZgHg/V5k6HJg1+RTcodd6eSzvpJLsplTxPv0jrlt4T7dSR3aNkUZTNjLc886mpeL2+dOkVMZeWV51j8t+q2MSDlarpaXz4G5bI0dmE3vvwC8J+uP97D8JgxxYlPXS06R/V7mIWXh5veL+71EEdjak4PQc5EEth8hqMQNZF1kBuaS0LYdmo+tRosEUCv5ZLhtxXncjeeJfA5K8od5H49R1kfnJBG4nbtyB5nVr1FSSAjilNVcZsm6XtbLY2uzsYINyGT9//ZOHIPrFVAP8p88akur0wlnwXLv1XWytjW1gG+W04ezdWkCek3PCDJ/c3Jsp2T1es85ScHUDwJguWDyKJ2RpFbu6Micm1JGNrfk45sPzHkGSmTtPm6mDBAqmdCnzKNL+3H7Pb/dIZA1r6+bcS7OvZeDYHsE4KcYQnTnRUTcx3TM2B4nRQYmTGNh7Z2zKOX9/9n7sx5ZlmVNDPvMPSKHqjXsvc9wh76X3SRaBEUQAgQJfBME6G/o/+lvUE8CH/QkgQDRIkWqu2/fe87ZwxqqKjMmNz2Ym0/hkRlZlbX2WvukAefsVZkZHh4ePn6f2Wfi5OAJH8f5+j27hmVPk7ZT18s5B8hIuFJeONi5Nq7NuYAAv1rxU+vnJURJ9TeFTr86H50jZr+ErSGCQjusWDeLsiN4n5bp22OCkONkZI7WPGTqdGWtJ5k5K3MG8KfRRCfqEp6nZktgZu13HuDMfuIJH507o0MYENbVLAJFzl2z2qR9Ij13eqfG7DfZZYkDQFnWGQvjqozEWrzgiuTI17aHf0l90nZZ6m+6VwiEWr6vPAvKP3csXtt035dFinh84dza+a1illy8s3OObovOIetu900TI7LRTKRVLgUnbqTIzdbatziZ3CzftJ2SMtHvS08m730oOVb95tEmAA1zIEqYvXefXqcgb7ogn9swGZMnLFWgyxrx1Hcc8ktw0whJsTFw/jtiwtQCbAhmlHu7RjiGzQPDdgzbOTAR7IbBBLitaA1zQzC9hdlvQcygh8dwiOBhBD89gYYB/OZOAOMnH26/2wihAcgBbWJPhDDM4OQz9bqcSLzgJgenuvVABPiKfAv5+4qEQuk9HBLTa+RO9pqXN+RZSDSibrgmilUQMvPcZg+GpweFc4lQa/NHCmwpoKKHleBcmhxSrfVJvxGJlnECminm3bBGvGzbJiZ/NSaSdLWqTQ78k5AF5ofvwFuJUIAxcLsWrjWwxxHUj15+SXLM8JQkLU3LU3kbqbjUfUySqTs/ZjwYhwkIeUWSMgABZAJYZ2QMcENwDYEVwxk8IGAs4KL8kICYlP9PJaq8HBr1FqafQENFb18qIHX1UWHC7OXA1lkZp3Om4J/+rdEbRIBxkRwrcxQogBIkf+pzSwANj50cwlQiSQkQba/we5cDMpcCX9/CWvnSQxiQH8TKz9TUY7WRRL8BlKnOBy5KpU3TbFwJUKtjyINoKhkUSLPcEzKYc1nkmNaNNHeEdmGV0BoGiVpRkiYlY7JKxTkwIzDWHvRLO0WKzCR8ErmktcX759W8KTVg52wyWp2zTZOvN0qcdx34cAxJuUsyNUiVVORprmE8jjDHURwQul7m7GGQeSKRTktN5cNqpEj6b9Y9UNmXQjk+wiREv+b9MyMIlhyNElAveNBrVNQ4CmG824Y1alaWX9cX88Wk9wv/lPvouxHP6WJOvaQf69zsHV1I+wJ0HJ+4lhUgj7nMFqVepMDwX4kuSPaxQO4tfRaMnd8jtGNNQmuN1TywkeNQ5zywF4uuyPVdbI4jEaRe9S+JkLjEPDET9r/DGPPcrS4j7/spObfqmvTjcTq/l02tBsQVfeykBFt6zZewXxvULO01gMoaCQkkZ1olkf1vE9lmANGRb1ZuRR7zHCmS1uNaHvbVdaNYU8p2Te9dEB/r7neKSBOM4LmWrlXVqNpafW7Y5dzWtkvRtmfzE8Yffj3zB3OUduXhr69P1M5ZqaVOI/r9X42UlnrxuBzguvggX37+NXT8m73MrvUOlw7It37yTVndi7XQIIWfO12+iRKwOnpB5trENkaVKEiiutvekzfLc1LZ1AVvTSUXpglMEt6MFglpYMDEEcRwDhgnND8dwK3F9GYD0zvsf5T62c7BbQyYWrABbC8ySWDADg67/6/ky3j8hz3cjkAfZbGdvr+Hud/BNBZmnESuiQj4y09wj09CmrSteOATSX4SDAImGCNgvTEY7xsMbyzsk0SNaJ4KGkbwg+jUm+22LiuiYF1tnPmNbdDMBaLDLRBka9iNOWhdG6+Jdis7A0qkbQJAyYnubqUeAcQO79Qk/6yvMwF8qz2bRpI4Bh2OCMlkNWIJAE/i0eh+/gW038H94R3czgLjW/EUVm/T/VY2UbttcjBi8NNRtKj7Q5SGMwb8dAT1gxABhmAtwfQtzFOfgaYhymApUpM9GOPXaFJgWJ/DP3uW78QngM7aWonBtoHbWLjWwLUEJsCMQHNktB86mIckJ8Mw+DaWyBpSObOQ+2SS/kEEGkaY4xBy1aTeqwE01udTkNP5507BqlMeLGeAqNJ7LejZK0gYJFgKIqaM5ijqIL9LIkGOxxj9VIsIQQG+L3hc5Z/VPAhXeHt+61Z6T6Z9JomWCoDDFKMPq5t07wVJzQJ5TzLeCf69BSLaFZ7oHhDTd+v7sOT2iURA1OOW/qfJw3magMMhRIyEpOuV/rUU0ZFXP92XrwQblyJPEumMrOxz5Sb9ViXLGHlZAJLovYV+n9aLTFi7yDtBuE+fgU+fY5TIUrRVrEz9fkWd099z4hEbP0/AIDIio/NwAI1CjGieGCW5Uo/JkNsAiKRIGm1UkhheFsz1Q3ZPahspa9OG/GogArZbqe/hGPdSZcRB+Rza1iphkslaecDO57kha0DbbU68l56hWbt6ecHNXsoeBunjfk8XyvBrDk2tSMy4ZO71zikA/HjE8lzHvg+cmwsTL9AsMiolRVLP/yx6z0XQhgyopRBpQikYvTYSo0b0p1FVL8A30/02VbZ9WfLx5wKpKeF4bu1VEsQtJGh+qZ3aC+j40whg/ckY5+qwLlvr2wX5cwUHiglwiQMIgJOya+e8bLXPeomW2RzPLu4VqnvYwpSMNogkXfoca8p4zr4iBbUvvfZL2GvUx+8bZzl3SisI8CwiDkmfS/b4Ifdmui9eQ45ci/w/6bBw5rNr3ze1Ipo1uy4h+oGFdekSuxYAfm0M69ceW+ecsxb66WrHtis7sLzUZhKHKeFXe7c1R65vzcq9rrd5XrQcjyEvjVkLsK7Zt02MOAekWnzP8W682c2eY9/qxPLXZGc2bGlOj8WcCGqeLIm5QuRaxhQ92tWUIFDQ6pznddA4pux6BXBnuubpb50DHTuQa+HuRLaifZBIDk2evX1j4SxAEwCG5GUYGc2Pn8GGwP+4x9QSYDyevW/ArQV1O2Cc4N7tpZp/EhkQ63XwibzXpkY1HP2GvBHZItcSpg2BGwP2uSnYetmXrpODks/bkLWNiQDUWc9KN3/HZH0bmTMbpfQ773WkG39gEo1pBRNOedHp9UtezkDsWwpUnPLeVHJk8gt9euu0r7GDOxxgALAlTBsDs29gGgMcACIX5WFU0cTLQ1AncmwhGawh8coderATKS0iAh1FoktlYthHi4T8BmX7Lq2tKlfiAbMgS6Pf+eeR8VK0tQfGJL+IRIuApD+bgWGOg+RC8KBdJqM2AU4lqhK5GAZAk0hr0egEREzfHRDlVcp3U0p+vXQtcMlmLvQ3IwPVzwM6n2Tz1DmZjVAvf3gdEumsINFSRCwtya0U4PDs6wzQ+roOEK9iS+C99hkdo/o3sxB3pwDU4Plo59/5dxiAMuJImKqldfERJwS/frBqxftDuq8Xjy7e0/h6KoCupMiJZKulY0FW7RopsnKszNo16VPVfCXX2I8trdHlu9Z32koScPjoAn54BA89YGwmT1Yllc7VeckDsEYoZFUVEo66QfrboP9NSJGUdNY1qkaKpFZGlGmf8M9KPjcHNY187/NYUWMBNgLQakTNGokiP08HUthHooQyji7Kmlorzii1/Vs6FyWEIDWNRFUqST8hq5dEaPqIl3HKI1n9eDkJPC+14wqLoCNngOVaOTohu5Jol6INsCRf5O0sUFTO8ZcCLWFPtNRG64CqlNytffcSB/UXg5d5ZbTQ+necRk5rmySR58n8U60XcwR8ynnBRwtleUpScwyYZB/jSd7Fs5C+u2K8fFG7tL99rWf1a9crXVfYk2hnr0lJ8PlecmkcrVI/CD9eWMvW2GuBuIuE/JXuV42kks9WRyjc7Hm28P5OS7yueB8v6cfXsrR/Kv5xSX/92s9na8dfSYqkz5W+p7URbYV908QIM86DA0sXLnXwq0yKXzkj97XX75p2jkV+7vV/TW34W7LU8w0IHuvEnjEAwJk3XrH596w8MwEk0lUhuqD0wJniwXRRmz318k0jURCBXNFB51gX71FOmtDTgwf28xEwBtNd1PVmQ+jeGrgNAAc0HePdnw9oPh3Bv3wErMHupx8w3ls5L1uCcwYGDrz1uU0UR/nhOzR3e/DTAfz0JJu8poH7/fdwd61EhBjC8KaB2xKGOwPXEA5/3MC+byWx9+DQOoY7HGHe3MNsfW6MVFdfZTNOHbxSkKL4DfcuRh2sHaMpsO/ff6ZRu2Tqnaeet6mUTQqOJNJSwYu05gGY1Sf3JIz39JrU+mfTgByLdBrLtdxaYALMLw/AOGL6+9+BW4vmXz6AHw9wT08iubLdAnd3yX1dyB3CgE/+6ckVIPZRkiTrrp+yqJtYTPRmkaS/DJ6GGC3i20cJEnYco1CSdgUgY2nTon+/Qf/O4vg9wXZA+8RoH0aYnz6JfI2/1ngPYnc45GBYkMBL6mB9hJMCbiplphFc1gLtRgA+YwQA7ft5ZEta56Ww3sXfJV782WUuJIcFUOQkQAJyyxgKmtA1zyB2gdSqESLxpnMAl5p2mTxO+7v3Ns6kXC5dIy+JtqnZEqlTgtHPjWpRD3mNPvKSdgoMm7/5A7htgA+fJLpKice+R4g8q5GsiZd7iAop7ul/IOMbEA8ofWz/XsymldwLSjxOE3hI9sd2IwnctWiVb2Hp15rkeUacVZ49WNpvs6iOBNwDVrd1KSuxKDNxFlzP60kK1r99K6TSw2OUCXPp/J/3kSz/hrUw338nScR9HfiXD3CPh+ydxairpbl96eHLfuqB7PC9mT+/vhd11pgccPQRdEl+mKyMmuuc8Xrzep5yHIF/P1dHGTAK6xBZC9p6JwlrRaLw7X0sd/CSmzoWTq3pvkz7/XeRdNLfTw78+CgOIxud82J0oLS1m4OCpeMDJsDsAWNh3r315UhEpK6LPEmS+kAs6Zrh1wgiU5c8ShxWVKowS96u6gY1gkLXfE2QHMri+Gzle/fvU/v2vD4JgBAiSSDts+TsUciDasR0mG9CVMtlzENY38pxXBAHZ4HDYo2gxu+FJgf4/fjJfrZUrOYMSvfrLz3nKam98F2Wew6o7qVivy0+7nvYv3yUP0YlKqOjEozPF+HHHVnEKLZUnnNEiJxSpxfXdXENQJzPyO9xFzGXYv4KkWT6+TjmffkSu5Rc/i3YKaxK17c0ChRYHjvp7wFkCgV6XRoBUp6Dw79Lp67kmiW85NyaVwK2mbPZBee4tZatnbS8b15ZVrbe1yyROxTLfx8c/C6Ifn2x/dbHTmp+7xbMpe/sGyJZK1jUzMJ4OhMtds1nudZ8fGaeyCKcWeW8gTieCqJLZQOZwH81UlqlhNbXYNecuF4K6p8q82sH9q9Rv9did7+VNrzZSUtzF6hMEaZiY3jKq78kSBJgnNPN0lpLZRyASLZ4QoRSiZ10Y6ckz6EXeau9B238Hsu1wLQlwPMr9qkHfXoU4Nha2MMINoBrjUSQGJaFpLXZGOL9Vso/HoF+EsCADHjXYLprMW0lMqR/ZyVSxDfjuJfIkfbJQZI0eEDRkIAfgBzsUsmWtQfjE+/mpJ0auxeDpdHzNgMNUw9c7V/6b4o61rIprgNoMz14kv5mbJt7pTsGTUkfMQAcxQTK1sBtxfuVj0chEhwDb+5BbRtB766Tfw++/TzwpAkZLzEBeRGlfJR8YM4Oywq8pIkTQ7v6dkBj4baEaUuYdpI/x/YMc5w8WOafW8mM7KBio1e05jJxJgfdyr0EGSj5Q6mWPZDLiHFxDRIACJVDam1NSg9NIaIosYIQiW1kI1BNPnl7CKWekxNBWkvbdI0lkjbEPsl0eJSEACSfj2d2/W9ojUwB6Fo0mjHg+z3ctoV9FIk6AYJYpIdSIHLRMSeJgsvAgeJezq89QHzXzAA8ieUjvtj/NtzW2gh+q2SjNT5yxANoSECSon/Pnr20Wv9dazPCsJSluIBgIZoDRdqPNT/F4VjNtxHLiE4UEiHi2/ZuB95vJIfH6PMsDX18hmtL8CQySVm9gsdCQlYZkjkukc4qCV8F5ksiVvZDPtqg5hSgMoKARIqk5HHIGWVkrr7bibPJMIb8IBqtePKxtcz9LshuamJbokkiPELUFIETmanMgnTUCVLKkBBcmrONCOisjFk3BZBY5cMyWTGWZOZV5w29r8pv+f3aWTmt51j6HssolXTe0Hb1kSQXnZtTwmZp7J/bT137LFaJdiIAq5xZsrr5/QEQ9+4TkOVqeamdeu9L+9dTDnn+v+yj1AB46TqTS6YCMfoaEAcTgxipw7FP8zDENSEhAKt1OBcBn1gmlZoSg+Vz/lb2CF/KlLQ3FPcLYf+ZOJYVvxXiHNl6MnOAyMiRC85Iz/VGD+tScn2y17pWapLTdXjh/LRmb3Jqb1Rrt9m6srRn/I2PneeeIYrr0uh/Vl7/a46eeKl9ybPXl4pEycgtA/CJ/XtqKWa2wr5tYoQ90HbNcPqX2mvV4WsmCl7DrtGOpWfVtcoIHmhfQX/7a7DnEISpp1YtnM4x2CA5tEfJgotkYfTQOCEnSGoH9aU6Zt7BETznyYHcIF6RJj1g+DbQ69LDkSG0v+zk4DROsI3FH55+iMm5nQM9St4K9XwdrYBdwxshRpqOQBMw3lmAAdM7kd9ykpTdvr2TZNVeD9/++An2n3ohOazB3aYF2gbjux3c1opUkWPYhw506MF9D/PmjTzXMIokCVH0zEwTvtbG2asADJT/eyX4lh0uJkSdemAZRNDfB09PPdCvOGz6PuP6ASqJg65D87/+CY162Jb3sQb25wdYawFm0N0epJE6rSdYFCBsJfokJOQO0kDe41ajSWqRB9k49YezXgA68+YetNuCBy97pWNNvY31Ms0TEsav13L/+ID7/9Vi+2aD3c8b2N7BPo1oPh48IcChvpJYvYHZ7zP5KZ48eKmyL7st6O0bDL9/A3L3sG/vBMh7eIoAHDvJzUG+jWqJqEtP+sQzVgAW+Y3ZbgFj4I7d7CBKTQv7D38n0QZ//hHcD9IuhmScOAdzdwdqrOQMYBcAQy3L8Dabx8r8Iav3Saknsj/M8TiCKJK+Ugx7IGmK93uOvfa+JHlPwbsYCv6Xsm06x+YkhvF91HnJNrPZSD/abKRd7vZA00hfnzwJ6qWFwA7WkxH09o3Md0bmWurk3boPH8EqB1eCTqeiezwQHwBqQMoZxnx8+jY2338H94fvQIce1PWgYyf9uzehTTJPusIrPTZJ/s7SPpcDaivmtBoJkDx3RhSdK4cMzE5yYoXIGK3PphVg6HAAWKIWNQ/DDJgBYjTEppW17Q8/gLet5HDqR9DnJ3DXS06jJDol0zu+dK3KQM0oyQXYkDvL/PA9+P0bYJyEOOgHqccYiRCnyd/Td8kFmQZkEV+S8HsKnwNCfrDmm3E8i8JJHlpktHYb0DiB/vnPYf5xGmWXEc8lCSZrgbmX3B/8ywfAMZzO657U1nWP7vYytp4OQshqW6f3UWK4Yu7xADp2wHgn77brZL9FJHlR/HPSbid/+0gVAeO99r4bZ+Mrf5eetPHEihCVjMXcDOl1PsdYmL9rc0DhnHNyrzph5v0PY+vjc+mZ0oibtA7nTPtXiAAr9uWlPNPC9XEe9+sSC4HHQLYuaTTtuei8Wf0di1eptSC78ZKCVwJ7Lj0vls5ZGsWq65ffy7mHx2zdpcNBLkv2VwDyNTrMqz4vkjExL1vYK9UdKHgc6ucpfcbCmFnkUwE/jgkEG/a7Zr+PTjepQ4nmQfPrWEZyp8D9a0QTfG12ap5Ih+IUPw/XGQv7+9/LvvHY5XtXlUDW8VLu44xGYk3LcxAkQhttG3NrBSK+nD9OjO1aBFrqJHLKyv1qVkSx9y3rca2+c4b8zCSRa+241Fbp3PdccuBc/dLfXoGAuDo29tyyivec5Ve7RE1CbbYOnfn7S1rqQJVGzlZ/+4KI/iV7TntefA8WR89TuFx1H3Z5vb5pYkQ6+ZVIka9tcf1SYMFfg12TZLlmmTdbtqX+f8nikwA7qq+emSdHUAH2snD+tffkSJBcYqVkSKyfgJwxjD16x4XNlkvC8fUw1DyGcskQ6NNnmMSzk3Y78fDc7wSIJUlmrfkbyJGA9V6aoTmQgOVEIGY4ayQZKQE0Mtr/+CdMP/4UvEjVk6/9u78B3+8lGoQZ9OkhgMy0acGHI9wwgqYW1DYBRBAPyzPkSGnX3oyde+cVEmB2iDx7pk68FQFkEidnNtoKiIiX5CTtD+Q5DojEg5AI9PAU6kxNAyRyOrNNrUHwNs88/vxvF3MP6HhLNi4hSsEaYLeV+vrDsmrRi1ybf+6p0mhE4MMB5idCe9jBdkJ40OhABx/h4orrFKhjBg0DGJ7sMRamEe9ZalvwpsX4RkBrt7Uw3QQLCODY9eDRH9KJQB7omoFaiSf9zCspOdjRZiO/6fvotZe0v3u7B29bmF8ElMGmBRkTwAy6k/FKCprpQdRL0IXn1Vwr/v6L+uI1WzpkKpGs0TgqH+i/W+XxdvK+Z0joa43vJConkFbZ17peFNdoLiSVtvORFgLoJB7ukwuyJmT9XA0LVoDqzR1414ZoPPMkEj509NELEy47uOv3nuxLwaR5bhAD3m8xfLdD0xgYQ96rfwCsH4tunN9zKVIkjYADEk/iC8DE8kD3QgvgoSYCJwpRIUrA8ueHmKzbTQIAKTCTSBAEsqlpQG2L8e0O012L9scnkVk6HMCHI0IEnILYSxEvzzGfIwDswlzM93v0f7yH6R1MN8I8+nxdvc5R07KUpJ+jq7lhlAzWSNVk/uJx9H3e92OdTxIyGkQSUTpOmH75iKosUMVixIMnJQC4j58qeRcgkVKQuRuNvGOMntjS3CaY8vmuMrfw0IMHwFgLaqdA+MOYnPRrfGTjMYkq4AVio+qA4+Zr06wBakC9qwOdNUudc5K6VCMXg9RYAkiW5LDep5Deefb8W4zvEHmSyNlm0TRViaZkbxR+5ve7xCE6OazBxmROKtXy0vsYCgCwacjnynkGsTm7zwvPMWkUqs5HPrcOT04kbRNjVeZSMoWSNRqIz+wJdZVqPQsgp5+plNIapyXHUIniYDqGnJfuazfy3zTiyXSARuGl12FaB5b/NVkyZ+R/+/Xwfi/7Rg8O00iR/GKOZwZ9n/q+THSWOBlB1bZyngNkX+84PwOfATFPOZCtBVyD00YxB5MFMoLl2oDwWjuVoxLI5+Rfw8J6sGJe+podrE/U+2R08CVWI4KAZJ37EiFORX30nxphtdAOr5bf5trjaWmM6vqzeF2xNjxzvH/TxMiL7K8d2L5FPNzsa7U1C+8l/dd7GKV5D2JkBs8Bn/TQtDpqJK3X5QBPlkDKe8FlHuFkgI3oBWfh7hUphxRQYMfiUYpBPIN8ZEbwdnYbIS0mxv5H1R1mEANmdICDkCAA1NnUHgbxmj0OoGGEezoIyLffgawV71Bm8MOjJPn2Hu7Oe9fOPNp9hAAngKtqI8cN/MqN5ZKckW/DAGCVHk16XfDQ9dcRlgEmaeyFF7rglTjbRJWRRSXYcmKjyoV3NgDVhQ/5aR4F7FFgNkR/tJsI3BoTEgjDeo9YHkL5BID/i3/A8N0Om3/+BPPxM9ynzyLFVq1Xpb18JFCIxFDd9fS9p9ENmtR304L2O9B+D77bwb3ZYnzTwh5GmIdO+nbfS1++28f7GUiHnViABACAPHPQpz8eQW2L5kHQBDM48QTvB5HIGYZkDIqHeSYHUx7sHIMR+1pprutihEVlzNqfP/uEwJO8v8MRTr1kHIsIXdMUydM5i4rJ+m76PvwzrLbkMBnmTGdESsvF8avPW73fJVaLPHqOZ9+58VJqupc/CXNnsSbofKGeuzvvVT6OgBvBHz5JdI+CiUOSDNrEMU+PB1DXx37lgVMexkBGPsumAgwunoEaIZ9pcmgeB5jDIKTisfORe0M9Z44CrDo/pu2iMiw1gPikx1o+78a5uohGCOWs6E8K2pOR8WKMJOT2BIl8Pvh1qIvOEOr970kMMgTa7GR9vLuLuXWYYT88wT42oA+fRY7QR5yUUnelo8JFVu5r0rwlPkeQ6XqZ/w5DiPxhzSkyjMue8uEeJpufJFLEhXWAR849yBPv8QBGa74WT/bCRzuRNUF+8WwbkJGcOECI1gj9y8tbqYd85u0JSOShksIhP5nLo9aWPNu13CBDaOKz+2c1jQ3RLxhl7NNmIxEpy0/kK+f3F5PNnl8dPmbz/0kniJWemCWwVnhbx/0lPW+ufslZUdfDRMqNHYOIc3LEWiE5SomTEgxZ5BpoLie29CwK7hub9xP248CDxSef2s85ZwmU57Rdev5I/wvEfdQaqd5ESkv2CPl5ZjUhonbqbFbsiwBE5wH9W6ONdb/XD36LHddXKGnWbuK8YihJ+L6yrl+LXRNrKc44qXNwFh3k78eOgWMHmvw5K+TGi/tGcs6nJuR8/kzz260xJYEvcY5IIxdNAUemkSen9hR6hqAoT5x9/ZI+86VwsqVx9Wwy+hnkRRmlVt5f22Kts87q+16pjc+SzC+8zzkSOCiUfGFsNXWmOEMan4r8WmVf6tmee49zeMpK+7aJEXZCCX8Li+PNbvYt2a8ZFrjW1kzSemDMyJH4d2ZLGqCX6CdWDgfZ52X9kYP4QArO8fx79a5Trd6TntoeuErlALxnXDgwGQNigBzQPPSgieFUIuswRBkLAGwJcIB56sRj9tPnINsC8gnBVc5pHAU46vq4wS1DsqUCchhG/J6MSM2Q93onJgQJkBrJENo8B/HioZvBo/NRAk0E4svXEbwYbeJR/oxNXu2zpI7hXqXN3NdXbG5nmzUP0kHazSVAFgCR7yECkQGjkYOrHqTYASg9LkQbvf9hj6e/bWG6e7Tewx3HDpmUwclDs/PkSPH+Ne9I8DaPz0PWJ/dtRZqNtw3ctsG0tTBHkZHhfvAgC4lHuHOeiItRVuwBE9JoKyXH+gHoe5jOe5RPHPMGeBAyRpO5OXAM5CBjRhBMeb4ZJTJr70yvfXwSYsqTg3wUeRcehaRyh0TKqiazslT2JZYRE3HOlEd1WQRMRsJcwds/q8NLbWn9Wnuoq5GszHF+aRqQMUH6Tcmr4PmaEMAhPwVxlGUbegGDrfSfi/NRldVOSX8oaBL7JVkTyGbqRX4JQyoNV4AZJSmSRkN5WaOMEHlOHyjX39o4umTtVVlD9QwkAzZjAN8lb8QUiQMf4RiAJAVJ21ak9rYbibDs/Lt6Osr6+/lByH/fZhdL1S3WP/HarJQh40zeG3VezqvrgURGi8fKHJWWnVplDVIixHkSaT5+XAJeGpGFU6k9Nj7Kbp1nZvCClxtn0bD+B/H78rl0LvVOIim5rmWflGUizR1FsR2MEZJlmqJ3/ijRd9Ivmlyq65wtRYr8WntqjT5aG8n00v5clJWth6X5/R6sj2S4dDp0DGhOPA/6nrUi0jN7yjWAsK79VBA317B0Dz/zguXFPewpI6IYxarSa69JMijhmJJVgWRNnGIGAlTGTtebTSvyTxrZknr8v7Se36pTaHle9ESAqBQk+1DyZImSI+MoXKLuv9WxTol8FOtXalnZZ2TpgLmTRPzixHMlThdpLr8k8uRsrhGWZ64Cw5f0mbPnty9IlPwapIj++zln0a/FTmFXX/v7e0n9OJKkyxEXV1zTv0YLeN/Lnu/bJkaA3+4LLu1LMKo3u9nXaDXPvzQkHDjdtyvkiBTryzh3pnmWB/SKsVbx8qvfngFMgI8snyXLUyvboqhD0Dn1+sTwmrPNXz6jaZvgcWm8V0hI5B3C8QXc5mMHdlP0mFWA1INtZcLXGYCaeUtO8cCuHj8uT/KcmUYStJWlSz2gUgCPPBHENoKDXqtdnysAm0hkqBpZXMnnelFt5QxwqR0qlzZjKdiMlefoF3ppZvrDo4+YgZXD8TiK7IpTD3ev5ZxGUJHI0JBzePqbFh//cwMz7HBvCK1zsM7r9A99pocfvNhSb9l+AB6fpG8U3si1nAakiXyLsW/6Cc3DAPvYgT8/Rmmj7ACeeh86qM5GkAXzeR8IAPoB5t//GbTdgH2OEe4HARr7Xg7vCobVpMPgEi1mLPcP4Cz4zX2fR1wVcjg8jBG8eU1AoxyfOk6WZAJf6qXzJfclMzI1+TsFTT1Aox6vtNvKvOTHCT88go0JhEh4t+kc7Y0B8dj0MmpyOw7fAYjk4Ez+irI5dPmwJ+M9esATzCbx1PWSJQBCVBR3XZGPZOE9LEg8yr9jXz+r31xEy83I4TLaae0hrmyjrK4Mfjpk9SZDYNjQZlq+8Ym4AcSk22n1Pn2Wdz9W8j9cc3+unuyotAVkLjXHHnQUUoQHiZrTOp+KHNLnpHuZ65xK6fi1Lsy/rZdlS0mOJCqHmkZI641EnGof4dGTbqf2TD76IgXCgpSLjxAhjYxLnR4sIvGjUaYqgVVGHNb6TtoOSuyQ7BECga5gsZcjDOS4m2RtKN9zMWeExPYaTZAc1NUz+6KDOxksRq2euiY1DyxTmofkXHnXBMJ0rkvHk45XZ4KcbZm3aLm8gjhhGf9p+UReXo0rZWZ9Yn62EAmuoxCfa+1SMGbNbxNynqdJHIT0u5mDUXF/ZoTIGh1nmudGMe5zkX1lXYBK36rsaVJSx0s8akRXJpNLFElVJaZUKgwAGyryzeGyNv5a7FqOHmn0kJJ5Xk4XgOxV9JaT/z92PurGhTWiJPSz/C1V8+Vo1JetjKkkknpWTm3OLPYAq8a+yumdJF+euRaX9y+jyLJ7vIJdg+x7YbkzZ4LZfPLCNaHmLHrGGeTZ5f8a88TXMDeV55ryu2+cFF60ped+poP3t0+M/FYt89z8BjvyzW52DVuSQyiliM5N+Ck54q9fzO2BhU3iFw+RLIDV8czh4JzGpYarsxAReugwnx5C4nQAspFOIkXC/XVj7cPbA3CroIDXdM6Tco9n5zF2LFqw6XPrwS2LlvGb6bYRoE8/C2SDAw1DJES8XjjrvTUxNyg+KxkBWPQemptDPWG9lBTYV9DLPcy82E4ZM6pJnS+1c/0v/b7qLZKQUNMEdi4QISGiR8eJEg3TBCaD/h2h+4ND92eD9rFF82EPPB4kX8YgY0h0rxG92NJbD2MgWjLpmcrBPMiAqQehT1QNAJgYtptAh1687z3JIqSHiSCd84eo0DQUc+w0Fuykrbgf4D58kMTmu02UHEjaY43WuABrZ7zbz8xPQVJuXACqX9J3XmJZPU5FqH0DtjRHlqSI6m63rQAOSdJ2aLQRMJNN4gUwn5WULyVSzgKUCrheEDkBhPwYmXRe4wlxn7Bbo0VmnsNltAhy4OIapMiSLZGK9YfMywzRoDRft9KoJrIaKYL8QOUJc2aJkiPvIKBgXkoCJxV+lf4/I1jTeroJ1A2yTnspKQW8FqO30v5mLWi3A1MXieXstx7UB6SPFOWQNVn+Ffh2CpGiGQBeX/uz/gnIvYyJ63KZ6yM4TyhJ64ntJCfZWZmIJXBH9xls8t8yZzKFi6RIVpR/byrHNE1glaq81NK9lTPL+7pT19f+Pje2Xss7OO3D7ABPToY8Nsavo+ciIZZAkFRCNp0CZnOOjKdZXjD1imcXyeKzz3SCnLimKbmVOAxVCdBT91cS0idBr8nwzixt4zNzd/1yint4P45CWbruOJNELXDYs5MnTsK1v2U79e6Sd5D1WSWQtI2S6DvJ4eL/1L2krhFp1A6AkPMn+czfTP4b9p2RHJk5Syw5xyzMJSfzirzEXgyuV/o4PWPu/TWsQojXf1f0tdWEdDp/X9jO5f6v7GcviThPy16zH/tWyQFgfd1PkocvuPeXsprDGlAfn6vPCoS1WsXfNjGSekX8Fu1bHbw3+7btGhPgS9j78gC1tCGvhXueI0cq5b5KMqoLbZUczcKzBR1uV2xGF8ABieRgIR+cl3exNoZWq153qlkL5CHYQRrBxk3ygiTSWVuQTgjSPWRAjUpf+ISNSQ6S4EEFgNGG3BVQD83Ek5b7QX6rwEyjGzUvTTZNMXlvQyC7E4kc7zHqus7XownRJFhKxpo9i3plrW+WvADK/7sE/JS/LwFalQjzHppsDMghasVrH+j7oOtOFmAC2DL6twaH3zXYfNyjPdwLsHY8igfwdus1pCcP2g0RMJ4mwCd9DN6dJagARI9kjeoxNh7oRwfqRkk+/nSAO3biGb/bisxJ2SaGgEEiPujuDvT9+9AvqB/kegD2/TsBjjVxtveUDvJCCx5vIaqgmC+pHDcrjYck0ip9h0B1DkxljgDUpequ7WDxte5Jat5oNatFGlKcD8zdne83I9Jk0PDRcfpuysTQ6kV5ch7I3ss5kjshItI5tbaupmX43FFB73uzkblyHCXR7tCC2lbGdxotkt63lCQEoJF4LyJF9M8ssiyZG8vxcq5tijExk+rRcodiDkzfHUGIdqKwvtHdXpKcqwykroeQtfbq0nFpxAtLInfSd5bOBX5ehOMoWeWBrjhXLbwDdpJnZrOT6CfK5y5O+5Jzs5weOkaobUD7HfDDd4ACmKN3HjAGTCY/kp14h4GsBuJ/u95/LTknAomuibS1b/qxmHk/r3knfgyZ7VZyz/i2CWNB9xO7Lfh+J/sN7wiCUIU6UZn157TPax6hyeHkXjOZk7QP6H6LjAPzWlCk3BdX9rlr9snn7IXrivbt4BQzIUh/nvUOnxXmZoBtBP7roK3mOWGw3xMaULsPhJ3rOnB3Yg1XcudkvV6wXpZ1r+2TSwBJSVsFvXUdU9P93QpnDyl/5dlrdp2fVzTiYxgiKJ9Gv/lo+JinzZMkLLl8Vu2hXiNa50vaufN24qyhluaFCk5i8kXcB4Z1JSF4FyybP2vgdfo5kMm4UdOI9Jl+5jzNtQjM53JZZJw4/VkrZ6r0GdSh5NprblafuTNF9Tcrzlez79f85hr9kRJyC5eM70iIneR+rhWNkUQe6UbhLPG/FtepOW1dw74UkXJ2HtB++jrOOIv3vPR3S2eA587RM4cKzM9Cl5Szwr5tYuRrta+dkfza63ezmwHrJ79LPQ603JNyD5d7Rz3LFJDXeoX7X7AghbpWvKCXAHQvkcMThCygMUvqDkA84IEKiK2RG4m3Hfyh9jle7bXDK+A9mVzdezuAJuyjCjS5uJnJMwXZGpXECL890cbkE8C3bTxIm16kcIwJoAVhEMBimpbbe83G+5SdqWewGYBf32zOInQAyZlgTU4GhPduZRNLwLQD+reE8b5Bs/eEhLbVpgVGL2FRehqrPInWq1LfVAYoRot4DznH4iXc9eDHgyQ/HgchZDatvNPSA1LbZpJIGfdmB5oEVCSfR4SaBrTbRXk55w/vLpcbKNs1O6h6mYroke4TNk+4bF5yU/x50mdm3nUBjDdZdBT3PULyWm3zL+nl87XYWnI8/UzJuLu9zIt0lJ95qSD38ZPkXQjXRBAhJxEW5r8zHpRVq0loZXJ+lWgrHYs6BxqSCKmhhzscQf7ArFF/NSC9lqdJqlC06xpSpGbq/S+hZhkp4B/iRJsk4yIhWLJcAV4CJyNyKnIYZD050DQhLwyck5xGTQP3dBDZSE/wBsLcjeuf9ZxRlKcK8icajTE5pBGXQUKSYyLdND/UWQ9w4xOIN00yv5pZPgbWqLmkjiATZHFot8P0bi8qgv0IJgoyXMSMIM+4+Mx+3irzewCSHyr9LIkICe8glU1aIkXOgU5tA9puZe/jPMmikpCGwK3kszKTv97aKEVkLQhTIedUgIqFxWdY6dFKRvY70+TzryXfrSAf07G0GH10LXvueTIlKIpcP2dzCtTI0SAvxHn+jZPrgX9vE4DNxu/5/J5mHNc6mL7cTu3Vz12X/hkccBJwu+Sb10SKJGVngOslERxkotTdotNUBL5DHwBindfun74lTONCQDxzwDFx7lNyhHbivCFzWTIf6t5Eo/9rTjMAQiRImDPOVEjBbf2vlygORLYhiVhJIzLLZ0fsS4FQJpYcQ+n5Te83q/P17axyxNo+lp73dA9+oh2u0XfnkbKnCN1in7U60uKZkR2ztSk6pcZ6nyBF9L+rnAJeqX98ifnlnOKH7v2nZ9TnOb+/xM719+fUobQSD6zhg1d6Rzdi5DXsa1+gv/b63ezXsWt5BdTKvYaXwazcJBz74jKXALLoQTH77WtZrf6XbMBUpzV4rxVeY0vJUD0hEbzKCp1ushCPfNvm17WtHEA1Aa154SbPH4TDs0xTOChpJAuzPzRbKzIwQPCCcv+H/wo//9d3sD1ge4YZGWZgNI8T2odBPC4ZcHcN+rct2EL0/plBE7D9qUP7v/wpykcxx2S2j0+gTSsRB40F7u/CoZsMAbsdaOgxlYm5k82xffcG7t/+o2j7/8//QbT9Q4LgFQt7CfYn3jaZEYp+mwDjtXKNAe12Apw+PsGNo5eTMTDffycAweQAa9A8Abt/sWieAHKMw+8bDPffofmHt2iOE+yfH0C/fApAAlkr3uqll30iV5FVZb8PntrUND5fTQ90HfhwlO/e3kdQUz2YN5tIbHjJINzvJTH7wxPobg/7w3fg/RbTvRwgzbgB3t/BfPdWIkT6AbzfovvbtzCDQ/PLO9CxA/70I2gY4HrkB4dU1oKMAFcuEpycAuj+XZlNC/qHv5M2HaUv06HzUl4fc4keN4WxGYBjQxHAVU9Bn7g7eLo3zayOoR+cGpNlH0zn2iWJhF/LlsaLAmoqgTf0+WWlp38qmdU0MN+9j2OfWfo9EHKIoG1hFJgmE8avvJM4d7pDnL8ARKLYj1uz30WpOAgILbkMppjLSOtQ8wwrPfuK8W1+9wPc796BDj3MsQ9lA5D+Mk3gx6eq926cW+akSLA0n4qvz9m+VXqgZpJHPuJuLZBJRiLEPEgEAMYK6OO6LluPQtRDCVrrWXu7lfe53Ur/uN+LlNOhkwTnRF7aqU0AVP/sxr4YZKZ2E0lUxz7HyQ7m9z/Avb2HfTpKpJK+w5DvgmVenFyYX/PnjIBHlqiXfM4oL4epeTSCVBR8v6+OeZ8ceb8DpgnmP/4FmheEncvXszDPL0evcN/Hd6gAbNuA7iRC031+CFKdKZAbPMyR5GCpvYcArheesz4XFh+OoQ1URlJJBJABjRNMJ8ntNWJE5cVomqJzBpATcABCguOui+1bgn018/tPWdda0HYjUWxNI3uGpwM06XZw8sg6lKn2AflPzH9yNY/TJTBkCVRJ5+rs82StSq6lps33pem7TJybdD4kICcyVoPqnpTTPGujl/0cxvmzpISTRnYpEaP77ZUkFG23MG/fIDih6HvVSCggPH8afZu2U4ywNUG+Dc4JaZrM1WF/zQ5Z7pWl+p3zJF8D7uu1qYPI0u9PeayfOlMQ5f3+W7IZuVdvoxBVoQ5YQIz8AYMPx/zspg46+s41b4uTMlSOTfNsBWJe+2uQXPZ7iru74IimkeZSTV9/zQeofRDJGNDnTB1IVApMnzMdO1OyVpdRsq+199RzcC1xuzzMwjWny1u0V3BWknGe7ssWiJgyyjYlUmvVCu9A9xJ2ec1drFylLmGu9M6PS+P33N4y/T6sCWf6zKX96EJyevX1ZR113C2Wk+fEO1unpT7wGgTTl5p/Z3uH15kTbsTIzW52s9cjRa5l58iRZ5f7ZSbai+pwyjJPkwh8hKSKmUV5rFP3Dokd0wNd2tZKhLBPbL7dyoFNvVbTDWXt4F1j9pNnyTT9jQkHgQDm8BQAgXDYSzZmT3+3w8//Owd7MLAdwfQGtgc2Hyz2PzfhtHz8zuD4e99OBNAE2B64vzP47sM7qaqXzqDHA9D1cA8Pkn/i7k6iKoAIVHlgnv0zhIOdegHrn/f3ePzHezQHh/0/bSNIEg7Z6Ys7BzQWUQQzENuiCgZq5Ti2K4gEfGkb8MdPcE9PoO1WCI27nUiJ+HfXdIztLwSahGTq3hG6dwQzGcC1+GFwaD98ju/Z2gBUEBCfl6fqpo2aRhICWwtuG9CT6PlzP8AdDrDqza99VPuMNcB2E+7LbQN3txVQ+OEJ2G0x/e4tuLVwOwumqNJN7ximm9D89Ah3v8XhDy3MxNg1hOahhfnwKSTOBhdRMEqOmMIjMz0wJIQf7bYY//gO066BGRxocmg+HiV65fNn8BhBOU7LYCeybeTz3iSSd1BQvnMgJ30XgJd4gxymz43/5NBay7mUHRZL0O3XmCtLoK9AU0K0xFgAdT43UMjT5MsSCbgN+N29fPRwiODDNIVk6hqpRrutHP49+UWbVsr30mvUD14f3QMXybskQ6DdViISFBRWj/V+ABmdF2K028wq4Fj29f0eww93aB4aGB1H2m+9t2nIDVUhXMO7T7T3M/ms5zoinLBLpSwpTZJOQhjy5EK+DK23y+bYOL7CHOijJ2i3BW9ajL9/A7YG7T8LIB7mGE9Ghtw/qefeC4ysr8M4gt0o6+ymhXt/j/7392g/NTCPLTBOoHECjp0QCsMYvIMBJJF9aeEVIAoQSRv/k/K9nvWONUZk2Loe048/IpBUQCRrt9t1e45hDOumvItW5r5NK3meNIKjtDRPGrAI0FQ9URXMtibmnSmIS3lOkjbvR1A/iLwXc8xDogSGbxNA5lwAMvcY37YZsbMSSPLEpEQHtcB2A95vQU/eIcTakFeL07qn1y+Mzyxy5KXOSuU9AQQwsNijxH51og2KOrNjmI3JIzkXouQCaVZGpF5i6pDTS041jUarOgkkexy0rbz7aRKgOInGDRFgC0ZNA3r7xhMZU8jRg9HngNI1YpqEGCnfWeo0oVKo6f5ArwMAKpybznknh2deeF8hz9IS+en3/GsjyMu1qCTZru2x/SXPuyeJnWTvtTR2da9JNUKRgaGiFODLDrLBhsDO5zxKo1uVOJndM96LNq04HGk+Kj23KemmDgR6XvN1S8835RkPJI5pALxjUeE8sVCXVzXO94YvcgrS/p/OjUvn4GvYyrVlMfrc1NeMEJ2Q/tYWc9tzx+Y5QmqNnSIAat+/Vl86hUMt1bE2B58l3NbUZaGPlX3xmvaafftXsBsxcrOb3Sy319g0vmTxLKM4Sg/UvwareHWXIdbZL0L+ixVtpB57tfbVTYu1MO/fyqb26QAeIjCTJfNbPPieAfkcS/JNLdMxqKUoKYIpgBrBk9kDDrufBrz9n3ewHaM5Aq5huAbYfGZsPk0Y9wbDnYGZgPYz/O8YriG4FmgfHejYg60Rr9VxyqI6qG3Ab/bBE5ScP6g3Fm63hWks+KefEzC78Ko2Bt07g2lL2P/ue5jNBu5Pf8k2REHnPrkm03p3SRsjAtblhvasV2p6SEmSNcp3BPPmXhLztn5rMDEAxvaXEWa0oAlBS5gchChxgOknsEZ0MMN0ktxZcxng2EWgq9YX9J2q9yQgoKVj8RzdtODdBny3A354CzoOsI8HoLHg7Qa832B8s4HpJ9jHHpicAN6bFm7TgBsDZ0nqOrno0MUA70Qubf/jAJoYzcdOiBVPBLKhgvyIc1Lu6V4SB+oFOYH7BvaxF1LkMICmCXQUkNNNMm7UGzo7UKp8jbWSB8VGD+vMO89NclB1LAQJcyJHUWnvZGOu/SDIqyXjK5Vck2f5lefc4FlY/4718F4CK6kEiLGwb+59ORIxRB8+y9+Hg8ybHnxEGwElIslXk93ysfi7zNmRtD07FjJru4ne/+w84euWx25JXqVengUoTodO+u9TBzp24KMk2M7yidRIkVpzpsC5PEDmvb9Y1+zv9DBuZ98ljbNcZlJ2ALwTT+HgSa+RaWNRT09Q0mYTi2oa4A8/SATX0xHUD2j/5aOMw4cnIWWPXbaGRjL7As+9ov4laBtk+wx5Hf4J5tMTNsZIgvXB51TqB5lLD8csyqP6ThTYBeZRP7qunCJFauu4trlNkq8rqKZSLT4ipZpofMFjVcG7QDD0Q3CAOGUhorQ0k0aSDOffkUb+6HMjaTcq/gcBAfkUABA8s6+0bx4nIWuHJArRmBDRJvX269EJUDX9+1XAoVPj92y0QPm5EBLMLOCpb8+qFn0aPZu+x7XkiI/iw3YLfnwEHw5SxJTvt86avvfURyhJgF29tbWy53R+3VIJu2mSdcZamO1WpNs0+jZEZsm8Sm0jc9l+J59PE2D8ntUY337pPFH0m1mlynG64LVfRho+1zPbz6cn7SToKHNRAGrXOm18SaeOtfdaIjQbvwfR6Kn0O0Mh8mNW3DhkDlphblbCxJPLIX/TQj15ciAao2MAEM8qxo/TUSLY4rq08pmdq0dbXdNqUUVLDpEl1vCce9Xsa3Q2TdrkZLszY6ZGAFweNTvbG14JSE/HfG2uUnvuO1iDXZ1c/5bmxi98lrpkXXwtuzbB/Up2I0ZudrNv0b6RCSaza5AjwPM3Ld+qVcCm8F8FFSiCCwGoKBOoluVlnhR5myoIF4B3a+De3IFbC3s4Ru1vvfYFfTHex2aAQvAuSmW2TJLs2h+am48d3v7HFrZj2OOE4W2D/q1B++TQPI5wbQvXEsBA+8jYPAiZMt5bHL+zsEcB1Yg9qKyee3o4thZutxHprWESjyjnwK3FdL+N3qLZQyXtYQjjHYSIebeHYQb9aMWb3Le1AE3J8+mB5nCQA3MgRrRcDx6UXv7lBr9mlMguMGcgC+124Ps92CelV2Bi87GH7RpJgO44kiPDJHk7APBeIjeYCGYzCOCsfXPJAzirl8wP5ImC4AnuZaTcpoHbNZh2DeyxhW0kAgQGmO436H6/webjCPvhScZAK3rh3BhwQ2Dr5dPGvK9yK23dfuzk+R6PIsUVqkWJl51eVNnYzg5XCSg+jDCH3pd/SJK8J8B2EUqtnn4aKUKNzz1gk7o4Fg9o/2/48Zp57i01dzqukBx21WwuESNAzwsj9Gr9cslbtGblb9PfM9dlAwsinQzFpOpPT3Lgf3iUMd11GeiaeoWz78eaYwgAnJexIE8kziRP0noTkjwVCVGjoH4JXIVnTEhwP08GYpMdeIz9jvse5vEoMm3HDhj606RI0kaZTnW5btSAtVkZuRd5BlxrP6utR+f6U+mdnskuAq7r6vJl/togyRg8VklyiLy/g9tYNCqX9MvH2H/SCJFQT87/e6kVhAUziweves5OTtbsxwNMKuvWD+BhEKImkWzMCPPSlsY0ELzQV7+LlIjVdUPbUj9PIyaqxEiRHFbHmI9mCWWp5/w5oIHqYE6Iulsah1l99B52OVlt8HD2/8OU77NOmSHARxUKOVEhJGfgTULOACESbfaeS1Ko5rEZ1qO07CuZgmVrf3tx+R4wpZxkCjJQRZmRNEnIkTP31f6H7VYk3IYeOHbx2ksjIz05ov8+CTbqPKR9ycu1cSKBRQpgOwBNI+t5ur6plFfbSHRR6pDjI3bhIyhdf2LuP2elBzawbp+51l5wdgjOUuxi976mXNzJm1/5DL4w/5Df7zHzIjkSIsWBbK7I5mKVwmqS8yNX5pbSvMxgKsvJKt+m32sOkyTXXlHJ+WcFgZwpFsgDn64XsPwOqnsRe34Ps2QzR4HK3PDcsVAr49yzXzo3za5PnKqyuiycaQqCPUQDPidqNp1bg8OPeV5hmcPQC0N4T97nxFi/5Pxys2+ijW7EyM1udrPrbnRfw2oHv79GK6WUgLxdQlj/SnAx/Xvm6Q6wMzAezDNPR7BVKYmFjdWSZ2h2v+LQovdzjNQrmicHwhA+D5rOQAYM0FOH/Z83gBHwcvNpRPNEaJ4mmOMA01nYniVS5GmCGRimn2AaQnM0sIMTcsCxHCY7n6jYWti3b0Hv32H4YQcmSMTB4GCPI9iSgO6thbm/y7w6S83xu784mJE9kVBEeThJoghrRdoqgH5TzHtQBZRjhM8MjEquEQCgie9F81X4QzOcA719A/v2TZClokMv9RxGwDnYycG2je9fIhmEcfIh9ATeb8HbVsBjS+DWA2eTk2drhvMeRvq5AoTDkESPWEz3G0w7i/HOwjV+Y04EEOBaA9MxwADfbYHRH+L6AZv/9S/gt3fo/+aNSGltrY8s8e/LEqgfYT49xXs7eXYFK6ogRzpusv5cBxzJR7igH6T8ToDOan6FEgwOAB3F72vEpkYfMNfrrNemMhxl2elPE4/dAAxeIl+4Zs6ueZKdBDUjgD+Xa/E/CVEwJhAZnORj4MdHuU4jQDT6IHjX+vlrHONcpuMG8ABWbIPgdXnKfEQLhes59jHN+VE8X3wg4/NRUJQUdJV+2XWgR8lJgH6QvqukSA0Aqd2rqLP8Z+VBvVbWjFR0838vve9yHLCTqAnts7relaBKKF/GAcFHZlgrOYmaBubhCEMkkRneSzsl1qLX+DXBL5eTCmqpRKSS8kqeDoOXZSpApOcC3eql6+uzWBZR9FZmTTxuQCYheILmfcylAVTAuqxcIzJJakki9izipDYPpGsa5liISJ35uYqQ93kFFmvPvQSu6f+c9+LXurVtzGdUuTY4OniwepasPbvHHHCKVU7qaAgYkpwoRZtkz5n9fSWQeNEbuhxzJ6L61liyd0n71FlJsgvHA+33kmNN5RGtjSDdSm9eiShN5qHJyZqjiajjD2f15mGE6fqYM696AyM8GXN0dlCyF/DjxjtLqBxTSgqkZ4H0u1PAakJiziLjyv3HawBcl/Rf9rk30rp9Kce55z571v5FtD4w6ysqYRzOPmFP5t9RiPhYeG7vTEP7vUQV69jyTiDhfgt9QqMadR9Mhvy9lBhxYFJC+8S+U8077s2jHq9IZpVnJt2znruHXrcmmrV2jk7bkGh+7Uufbynq4tJyyyhR/1n+d+X75Nwfo3ex/t1VynyRs1XpSFCzl5JIl1x7yT1eC9Na3Eu/YrRI5rh84qz8jdiNGLnZzW4W7VqT9WtM+l87efPaViNF1Exc9MKG0/+25mFXteohCbKpNkbyIWj5qdd68V7S8O2y7oAemCthzTxldc3A/iDlERMX69/U9Wh/eoTbt5j2LezRxUiG0cEODrZntJ9HbH46yn7eCCHSHB2od/GQN7B45/a9JOe928O92aF/3wgxwoDpGYrrsBESwGxFrz54pfv2Z3+I2f00SKTFMM09TdlLRQCJR7mLh+BaxEKqL35iU1rVmQeCJIomO6Q3d+C2EeKLSHIT9H0AV2kcY/6GycE9PQnIu916rX4LbFtpW/KEkTEwg0iTqYf7ou62yqf498BTJCYAgNtGSJG9xXBnwFZIKvVaZRLCCgDcxopX3Ghgjj3G//hPsL//PeiHO6A1mDYGZiKYbgAbA7YSCcM/f5D34EEG1rqcAyFXenfx0yGOG2aJNlgCrMOlFLXD9d/F/JdGbs3lj04AH9onNDnnUrmAyH0gIS7X2OwQdwaAv0AiMcyBPvoieH8HebBIiMCQyJCNI3A4Am6Ce3o6c4cU3BMyiJhkjAOBUAxJUM95qKuNPhLJz9Ex2e6UtUGaD4Mdx2g5lWtRMqCQh+B+AOggAPMwxKiHReA3T9CdWUmKnDv8Vkn7PLopFn0GlNb6FWWwY4mEqdkigOE12qdJ5GV8Umt6OMi9vVc+j2OeRPxaYHJRThhzfm3IcrcoEDx67/FxlHkwiV5ZCyKl4znkB1tjCZBKngznCdHDPQF+wxqtAJdPXK2Eio5LdhzBFCBK1JV5IaZJyGkystjW1ooZaZi0MftrNPl6be9jKnsX/VPlA0kiH0nLT7z5wU489JvGk1iV96C5TCbncSOGzCNFXY2d75d0P7DwfgMQWgJ//tr5Bc+Yr58LrrwCALKmvz9Hgoc2Leh+LyBtZV1dXY6SI+qR7/dWsDaXXas4UPCxi2Og1i+9I1K4R3Hf4ERj6mSOngVm+WVq+vbp5+H7hQhMdtebI0/ZmvJdnK/kmi9EjLzECnKkSgCX64afJ9hfG5xWtIyaUZyvadMCzp9RHPsoYz8nnej7PIxCWivxAZuv8T7qhKd6tGCIzEotdSq5hBRZ44SU3zze/0L5yywx+XNY3udgIGscRMJn6Xxxpn7pb1MJ1jTi4tT9S6KHDFJyJMvdt2RXIrQvMp3TXnKPBeeMq8x93xhh8NXaldeiGzFys5t9i/a1T6hrDlnPta/92a9t4XkTsI5M1P9XMEUXh2t64bBECLB1EhGRlB/+W3o4qddoSJAbPa4BgGARkqfq79NNJBWb7rQd2AHkdZW3G8mFMU6gT48w/QbmuAFbDyIOEjFgn1o0OwtywHTfSrRIN4qfycQwwwS+34v8zMMjME0w+z3o/h78/i2mN1tMG0nazgawDYFcA5DIYzERtt+9kzwlj08R2CCf3HyjIBCLd+A4wex34LGBU+mGSSS62LcxbTYCyryB1CfR0Q9eXmm7lKZgvAeNiRqE5Lg+USJ7UBDswO078H4jkSLDmOQm6IWkmCaw6skzx0iHXrytjXsvOTyGCTSNed0aG4gY+WgBEGUhpdB14Z56gBr+1Xf4l/92G37aHAw2HyUSqH2S/DSuIdiB0WyNSH/904/Afgf6P/43GFsDt7EAAWZkYOIINEwc6zJNcBpFkIItlAAPl4ynBGzgrptvqpXwq3rZiFcgaYTAMIBGmr97Bef1PWn0QU2WCYgSXep1DwRv+iwSyyF6C04XHiwSUHsG8td+blfKHKTRLpBDO1krBF3bgO597pCu89EBW5m/Hh4yQHEGRiro0PtEy7O+KaStghHhYJ9KW5DksSAiuH6Yz71+3FCIDuAkEbp68sqBnLZbTyROQph6OTUMYwSkS0KNPHihkQ+BPFk42F3iQbZGQkuJnfQgeo7wOgEEVN+Ri3Ixxs+roa0BgAzM3S6Ri9L3ZED7Haht4d7eA5Zg/vyLyFOlbXWuXqesQgSmSWeVaKT9XtaEgyefOY8W4mkCjsdIDKvXd0qG1eqnIHtJgmv+Md+mYb1dAyYTAW0LszMis+hBNIke8XI9zoF5Whzba0DrTALPvzNpu40WkpcVAFwFdMrQkRj1ms1FS3uL1ByD73aY3u9AzomX9XYLQwZ8OMD1E4z1UWjsZSUL0HJRUkwtjXxJQUMF1/08rvsvJWZSKbXyeb+IvcRB4KL76B7TLPf3xGYRSmvaw1hwEyVMde4K0mdL91VgmijZ0xJAGxgl/PwejTabfD9OsW48jMDTIXjjh+sAULuROV/3HSlxw34O1PnFsZcAS+YGv2eQyCUZC2SSMXGifUhB8CW75ExRAyZXkABny1TnKb+/vei9P+M+V7WzEV7F346DM0T2felgFdZzl3xEUXKNSPaGx6M4TWgf1blr6Z3rXFqSyF7yFgPFnGmVuZ4dQxPHpzl4qtKha2wtIfwcS50JTvWplc5Q2TtJr3kuuJ4+75pnLp1fkLzn9PNLcYJyX0cXkEfpuLoCcZERvkt1fY4tvaPXJErW1OkcecbL7SFz+5lyLr1var8WNnfl+96IkZvd7Ga5PcfT4VL7kovJte3aG+ZnLTpJCGkC/qjG64ukNmb3dUGWKNdcT8qvAPWpjrj8xP/Gek9OwB8gOW6qio3uLIeGghBNE5Ju08dH8MMDMGwlofV+6+WUJlA/gA4DmkcLbgymnZXIjYdJ8j30HmDdb0DDCPf0JMmuve709G6P8a7B1BLYAs7K5p4mCSGeWtGA3rwRz0PJCQJojgtqWzl8Qx6TPLAJD3zCez8rAIpBPG7R+MScjRVJlXEEBso2tdIeZzaj6i0NRKmuphECwsWcDNRY8KYBPR7lPR+PPnF67wHcIj+IEi/DBB4Ao2DBGBPZh9+oh7F6SVc2wsFDdhwlkkLftX/vhz9scPivjuDBgDoL+2Aw7gntAwFwcA1h2gK2EwKr/UyY/vIjzL/5R3z8t/cwI2PzWfKjmMEJnhawtQQkdC6C4/qcqRelEoFS6eV2L6MvCk/3kPegFv2Vlp0eNEuJvPLw5RN4n8slMZPPyspMSEw3+qpcOJeUpEiIFppCmXmV9PDmVp2twpwS5jhJTku7Ldz37wTM/GxCXiTqevAvHySaQp8xAavJg7/h3S+ZkiIqAzGvmNTDGtDkql50PIokEvf9ctSEeuq3G5DzYMOmFSCWOlCPeQSZtrknWGMUSuUQV0Z2lAfctL6rIjsKcMLnVogEOeKalN731AHPvyMAYR6IIN8kZSgI2cdoHbIE2u/kWtXrH0d5J7sdsGnh3mwkGmCcBOjuurjneenansoiKUnh+4TKYdF2A+y20hdCP4ggFY8jcIjRRGonc4r4+9FuG8jrsk1Jc4MAGRER5YOQjXPSKKWmkTprewMh94F6xD9nvxGkgYBAYmUErAJ6xgiQxxznD91TMEVHgZoncUoGrzF2ABPctsXwtoV9sDGSk0gIVx0n1gogaCOARg5CuA9DzI916t6UyJIF728vv6Vj3xNnnPaVeoPG/14MuJ0BqGqOGEvr4Dngd6VlOe5OWDqPkU2BvzPtoJEWSnCEdWXFWpQ6Nqi1BDIy78R9lUbZIomeMuJhPw7Aodir+/4QiHC9B5l5RElwSnLgfor7paw8/4ylY8PCO8uA0lPPvdaCR3q6xtC8D50tZxn0nM1dadnPnctLJ62rnvcuAPMzgjDZo/p9S7o3yyIckvJJc0MRgWiKuWzS+qh07xrwPrT5JGcdwO/vXN7vsvnYf17ULSPNL3lfMynVhTbl5Jx8yglpNmfVnYqeXb/ngNELZcY6rigrdUxCnBurqhPnrMSF9Gz5nLKyKr4gx4ivhy9ofu65Bpal7+3XxqzC3t1V3sXCeSSRJr/afZfsW8TyFuxGjNzsZjeb27UmuaVyvuVJ9KV1Lxe05x4cp0mAgfLz50aKLBxoNd9GqaOfb2oTQKixERCwNoIaSSJuKThZsI3VQpMiE1BageS2CQkngyyRMQIi+rJpGIEDSQTI0xPMOGGj+VG8JzEde/DdDrzbeYJEns28feMPp1K2eezQtAbNsQFbwtQSbM9onhya44TmUyccFbNERex28nyti/I3o/yOJk/q7DxRwYzm/g48DHA/f/AH3F4APZ/bQCUeaL8H7QF+tPFgM01n9zsCJnogt+/hnMsSAJsfvgNvN5je7eBaC9M2wOBls4ZBANhSbiF7374Cxw7mcws6dkDXy0E89V60BnR3J57QjueSWtMkmsf9kHlYEksfePs/fcbv/7v3AAPkgObosPnsYI8TmocerrVwOyvfs5Af5t/8I9x392g6hu0c2k+S/Nz0E6gbQB8+y72bBrxt4f43/+ilYgiuMRjetnAbQv/WYPfLhP1/9z+IBFMNgKIoHxNzE7j8v4mxMzAb8VaVcTX3qAzekF0HjGP0UE0II3kFHDzKV3mBOwZssslPI0e07hPmWvY4A4Cqd1rbiKfsNIU5Q5LJetC6NPWGLg/JfmNPmw3o7RugHzB9/JR5IFLTiiTK3R4ggvnwWco7dtK/u14S3KvEyabNACajc4iTCKLg4avPqwfJthEgIuSgmbczWQvzh9+B91sYD4K7d3uwNdLnhgn4T3+Ge3gMIJ5Gzmm7ziQqgCwCgPZ74M09bNcLueml7kKOB8enSRH9Z00+KwFGV8lnFeuFzjUzT9AyesRaEDE4PdACQdajzF+hnvnqLR88XPs+i1qkppV528+fMpd4Iss58c4eR5iHvfR/7VtTQrYAy9Jj56wALkjXKgXxd1vxUn97D77bghoLs9v5fE1j/t5cfthfc7iVSJMu5jhIiLzwffFseZRM8q713SY5y6ixGH+4h33sgD/9xROdutdIrg2grZey8+9OxzIAYBjgKm0sUkQW9vc/RLku54DOSKSVykxOhQPISpAoAISNeOMvkcj250/Y9yPo06PMJfp+dA8U2tIlc7EFtg2MkcgSdXoICYmTe9BmEwmzbO/UgDatrIUPPg+SH9czj24q5vBsLGMOFJ8yZmRrUAkGpW2oZb/23n7BUz2tSy7tOOESkI6fDuIks2nFEWWck/bxXnNQTAjMQ/xNEn2ZEXy6lwnRY7IPNPsd6N3buF5Ziejlfgg5sMJ674lDappszPLDY3SIqj3jlMy94cMK+B1+P81/8xJTEP1kxMgJ0E2j4NJ1KSVXtA/U5uyXPMM5su855S8BtGcA87APTM9NQB59wcn8UEhPuk+f5fzm14PsHKdrfg2TVmcDP1dWyQwgi46rzscpOVEr45KzavhdQjIuWRoREfqNn7+q+dZM6GvBiUP/TsnWrB6V+nmyMqvfS+WcavfJ6l4nrmfR2lqv8vEvaf+K09dFz1bc69nA/Yygd8XfVyBF0vuccgj4UnhWOY+mc8cCcRXHVxoxeEF9y73B0m/OETXfkN2IkZvd7GbXt298YryqnVqcn+tFUi50L7Ha4TfxjOeum5Ev2XWFVwpt2kiK6KFFpb40mbgHFTKd0po+bZLLRPIGSD6EIIFAPiHspo2essMoYNfhAPfwCHr0+QSCd6B4kwuBcwfAiTcvALq/k9+qFMHTEXbToDlu4VoB5W3v0D6NaD4cgf/p34P2O/Df/0HK3W4AZsmroaTXOMF8OoS6gghoG/G2bYyA9B8/wfVT9Gr3ORCo3Uh7vnsr1zrncyVw8Ayv9h/dqKhnvAdzueuycvn9Paa3O0xbCzZAs2lAnY26xGbM96wzT3UPuh07kDE+0mTwEjUxqaj97jvQuzs5kAyDf/exH/E0CaHiE9irdzT7xC70P/8H/OFffgrkGLo+6HPzOKLZtAIabzfgu514/P7te7iNhe0cmqcJzcdjiCLC4Yjpp19CQm3zx9/j6R/vMW4NhjvCtAOOvyNMe0b/hxG7f2rxn/8/tvJe0k1gekBvxasYPeKmFKhKHkmjyLvJPCqBeGrxzy9tS8BmE6+dEIEY9U6WhqsfNMvDDDNIwZS2jflm0ugzjVBxfBJEzLuDB5vv9uLJnwL2m0bA4cL42IV+6QuJZTWNlPW77yR5/cdPATBTz1rabcH7rUR8/fhzkBMLpsB000RiRnPrbDdSPx+lFBKcKtjUy/VmvwMcC6mxkMScrMH0u7cY3m4ExDWEp79pMW0I7ZNDc2S8+fkj+MOHILmlydSDfItajeAiAu+34F0LGnxE3NMR8MQZBiEDzkWKlO08ex8VgKVWlwzQVeI6rXsSgRKjIuS9MeI9IhjhC1PJrKH3uSIkt4obRIrObD1RkvYZYwPpxUpKedBSwXgeR1DfwNzfgRs/L7YNaGyQEY1rQZCyPXw7BFClaUQyS/vaZgNsN3D3O0z3GxhjJDdVPwiZf+xkLKeRmUEbfQVBxQ48TAA2mR49KTmiYzG1GiCh75ZkrWZmkXZqLIb3GxCzyC2WUYRpsdMkxJ9tQUpqQfYGADB9ekBKcgVzk6yN372VCManTiJ7ACE3PVDMh2NYI1aZekUnJDDp/Mk5sMqO4X78WdZkPydyiD4aIgiZ5qPx96DNRtYn5xLZu7mEYJjXAGS5YN7cYXp7B/vjR0w//nT+mYr3l0mmhPlkJUFSAuYzJ4h4jxd5+K61tWQXomxkVqVT1xPBPT6BDgdxOtluwP3go5gW5s4yyjXNSaS/O3FvhoVpyJOyRvLX/f69yI8+HsCNhdttYZ6OkRgBIjDLHIhGBXrd8Vh9tpJsjlEKNVICy/PLNbykVxOXxb08SR7yHDGDMM2Jli9l6TgoQVjg/PxclpFFap4oR/c74U+/vgSyoQBu0/HOE1zal4DohFaUF+rK87kKbRulKTXfVRGFEJ6p1veXHHae48AH5M+aecbzvL05Oj7M9hr6zOqEYw2YCaR55bTvlbJaZTulfTcF0Evnj1n9L3lmV52HsvLTvhQizUgiyl4Dk0n2eM+7fgXovrocb2W01zXKrNm1IkjWlpP2K+1/p8hgbdvZ/PAMy/r0yrn8tdaTL2A3YuRmN7vZzWp2avPz4rIvCKc+Z8+tz8LBd/bZ0gE42Zyylx8IYIqCGCorNU0JcOYEZAiRAcnhNvXIcyygkm5oW5HLQWMD4UCTA00u99ZT786uF0/VTSuARZAvsjE5cz+CjoNIcClhk7YPW2B0oJFhJ9ajCIa7BtRv0Ox3Prpiijq7kwtSVcFzNvXuIBLyhghsSADdsHlJAV2RRqHtBrxt5TrHgcRZZapPDA9oJJ5bPI6wnw+gicHf78GtAT114McncNfnuvsJ8Of/kddXo3jGxic5zg96PCrwNwqo6coNHBCTmJbehU5AhD9+L+cg5wRM6nvw6EE3a/NktQbgRr3DgAzrUAAsjbjqB7SfJ5iBAViYkeBaYOoJbBtsPmIOmBaHFNrEhMLMBNN4qYOJchBPN6yDJH8PXqTqsT4gjgUlQJ2R957mAFHiMpEwWD6Aav9zAJNIHWm/UK9s71EYnqEs9wx4EiIGpinmiUmr4Ak9AJmHa9Cq1mgBjdiyXiKrbSO54u9D+32oJ4ZRosM0SiD1+NM5aOnArtJWCowG4smDAPpONPrg1HxtDKatxbQ30k8Z2P3sAWEGaGSJXvHzDKeefNqU+72AprutjCntA0YOuDROwEGAaYwSZaUShzwu5B8IDxtBhJN2Diw7ZW7uuZrLcbk8TwIn5L72Z40uaDfh7/h7nkcXea9iJd348Qk8uVnkCXuymz99lsTIh6O0m8/lkc9tF6zLCqz4hNtI+qrUT59L+hBtWhgimG6IpEg/gD0pgnTt0HqvqYZKZek6k3qRpwSlWq2veNAsyNUF54ge5tCh/TzAPPXgU/0sjd7Rj3zEldRF1xST9bXsOScnkZzjJFKSCnpp/+IzYzHcOIJ3xAQ0jYBfmicovW8aUeWl+TAMPvqRwYkMIKlM5jhlfRn+HQfSxFpJ1H7swCmJo+/CxNwzAEDdAGOOpyX90rpqX03G9QzEewnwmIJ7+tWvBUyXpoCxzy8SP+bz9WMGbSSyUT3ixTlA9h+5ZGwBMF1ipUNCQqTwMIA6yTmHYQQNo0Qyd72XUnNAZ2IUYEKInJwTPAGd3X+pPc71kTA+nytzswbsW6gD82y9mO1D0vVjya7lyVy24XPOgyWQXJZZ3V8l6yhy8rP6Xs8QgmqzHF0L18n+LEZnRhK5du8T/eyaZ96KZeebSn1m+WjCF8kee3L5b9dGYdcs3U/WiLRw75V2ioA41e7X5q9L8um55FZZ5rWtrOdrWPaOv0Kwv+YgdQ2CpCwz/Lsg6E4RN1+x3YiRm93sZjcrbeYRTvPvgMsn+prX7msdOlbW5xRQVtXvrv8QWc4TIx7oKj8TDnoa0p16ti8SL3rwlWWKGgvebUJdyHsGA4iyWoAA5prY1k0AWvHcJR8lYq1IJxgSUsSDUjWNXWLxltW8FGZ0mFqD4V2DqW/Q7rwHuo9SgZftgQK02gbquadFe890gj94BDAjAhKShHkD2m7hNv73LoatZxrt1fabf6u69yoFwp8fQMMIe7fBZAn0dIT7+CmCNemGOwWyQoi69761EsVDxkhSXmsD8CvtMwBdPSoor2C9L9J+h+739zD9BNtNMFP0jOJxAE0+EW7SfmwIPuAkJ02A0AfVE4+7Ds2jlAMA09aAjcF0BJgIm08c22QmP+RBVY02sKPcT5MTa1v3ufcOe7k0IQFyj/tMasyPES6AbX2iS2UJgna7f3ecnpxqgOw5b3VtD/XKdi7mU9Ek2L4dQmL7E0AMWSNRLJrboGnyw6m1IlnnJvDBjwdNVj0OWdnM6g2oQGgxl48jNGm9lg1g1k/P6vt7m3YW496AHGAGxv6fDzCHAdP9JtwP0LZNQVVPDG03Qvq0jUSIsU/urL/xUoFBcm8Qr+WQpPuMhFbazjPzdcm8L09ZCfKkskqQuaYGQoRIsjAWCsLRR0qZ/QZwc6/o0ktbPT1pI2uD0/WmlfGY5gxiN8F9/BwlaoAYBaB5r0K0xIoDf+FtGghaizhH6nONoxAMmw0MkZfQkgg6JfVSebBV+V30O40O3GyiIwIS8nR2QHX5O07InfhoMVk7jyP4eIT9fAQ9dXCnwKI0ek7Xas0V4mX/Qh8LpFHyrM6TOtn/8v69mixK5NF4ZBlbSSSMtsXMNi2w3cjaQBOg85bu13yeM4mGiXMFD4OXkkw8/FufZ6KYm8KzpjYMIOfyaKhzz2grpMC1AIgauPRSYPNaQFIAZ22IMhNbt58O60uIJjLLdVszDwBx3lgAi3hM1iZPitLoSe1xjFGw6gThp76ZdNxaSyNHarb2HbwUUDtlJ8qVyIQTffri89eKvlf7zTlA8FTZNSC5Zgv3mBGeQOhnq+bBJXC4bb2DUWVeSt43j4Pcr+xDxVlpsU3D5yk5kqw7p+p87j2VagUm37uW7XPy/FGQbOw0QmlFG68iAPE8oD7dYwN1zKB8F/rxmWigk5+fsktIh5qD6bmxdWldTn13bXLkmvNgFs23Egf6msiFJefaa0vHfWG7ESM3u9nNbvYcW7tA1TxHsAAc/Vq2AJRFmZ8Th23/fMHLZvQb4EkkMIL+rHoeTSs3m1n9CDxOMbIj+VyAY45e7urtrda2AqQ2VqRTJhc89IL3cZLoNG0TZokmscdJck9YOUSbgSVnSNvM2iUQPx7gYSP66OAk54LKeZDKeJTeaFHKJDwnIN6njs97lIa2EQBc29tsjNfc9+Db4Si6+4/3ci9PXpH/N6fe0xptQGbZ85hZvrMWZtNGuQkfGaHyIrPnVfAtgF/F96MnRLoR5rETAieR3sra38u1mX4CNwbOMJgIbtfAHAE8JUA4+XqRAQ0TDBEagnj3G2BwBt33/rF9CPOMSDSSS4CSZNDZAWxJ/zt4pcEnh97KOzMGNAzgMUmcV/OQvNQDT+ehJEorRFQkdUr+iNfVjNIDaXIYY06iWaYC6D1TFjuIlIE362XdSqmjrgve/jAkkSi1di68AUl/rwfnjESJxBoVhylO82IsPYNzaJ5GcCPjnUaGOQygQwfrJfJkLNhIUIZr/X3bNsxT8MQIOwZ1vYwdfcY0J0UagVczfe+nPFXTn18CvtU8QQsP14sPSMZKf9IoB2PnwFhKSGw2IadGiHJST2NgPj9PU46dJmSlWEH4nKhnzUJekZBzRYlRH9nT9yEZuwKiIWfFpaRI+gwFuT4jQ2qkZ3KwDVEi4fl8lBI0QnOE+fmzRBOmHrALoEz2vRJ3ST4ESsZheT1NTgiJsJ7z/LdrjYyAq/CRhkleofB90ndDvXRfUbN0/piRf1GyLBA55xwCnEQNsO83QVLzlL1UxuScvaYn7DXK1DlN9yNp5M4a0z3JNAG9i3uVJW/XpTosflcBi9LoiGEAPj/Gsa5jZMmJ45I5IXGieNEZ4yVRR1+DvcRD/1J7DYA2JYFDv7bJ+3Vnu3uI5NUi9TzW9/GMUKtv9u/zEVirrFzH1xBOJ+/p98O0tPe5YBwkjgFZzpTFe6+t4zO+C3UqI05M/HzNHHDufq8dUXGJvQb5mpwrvjo7F833Gvcr16DFOvH59T9t27XP8JoE+xXtRozc7GY3u1lp6cJwjc1DzSPn17KS5Q+e3r6ORTQAMMUF9aRXUOpxk3guJ57982tO1dMDX6nH7RFxEbYSoRC8P73udynhQ00D3m/FC3vTAIce1PXgpwOmj59AbRNyCOSHUvFWpd0OtpvgNhbcCkiuxAi3idwNEEHKtA6awHaaJHm3f7Z5GyakWQpSeSCJiaIXa9/Pga8lSzcuKRjgjE8mbtC8fwfDDE706GE0saWWwzHaoABDRcs+vgfxnt6CDxxl1DyQWDtssGOJ9Eklp2JjANME008wT71PiHuU3BTqIR+SFZNEXzgIMcIA+0TjbtuAJpYcLar77/NYwBCom2AnBk0Opk9BTwsQEq/S4t0pCKpSWgcK+s+L7yghKMgIGWA2myTqxIi36OSJRt/+eaM9I9IsIUdOFnHB5jX12IuX63iogDrZxQseR0CU8tH/JZ6T7nCM5U4oEopWPNLYk7TjWJ17Z++pyH0gUngOvKRi5+cg+zRIJJpjkQJ6OobcEQryBlkhHYtA7L9NA27lf2j8OHQAPR1zL3IlhTSHwYr8L0BOYFUfozb+VljIFeXvUQUU1qx5Gm2A+E5mOQ2S6AbS/FKkOXLyKKtqHc49XwoEnfCynCc25RAphiTpOgYv16URTYejRHuN8f1JwuYKKXzpIdLF+Th+VgCtFQcAfZaw1mrftFZAJyV2fvwpll1G1aZlFRaifGZa6wtzg3OgEZmzw+r1LrUgkTTFfU5Rh3SNS99pkHTM3kfFCWBWd46RLvrsNWIkvW4Y4bouzAvZfBYqmnqdJyReKR/ztduVgJEZ4HshmUjWgIzx0Vp9lGB9qbNSAsSlicPFvDMUT3D9APPxk5dba2Qe132sOi8owbYUCbQ0P4U5TEhm5hPe4uH3Fbu2d/SXAsVqa80lbad7jtp1S+W/1Jbq45J1D3H/TBbriFGVVzRxzx4kJIF17+S57606Z5343aX3yeZBJO/uTLtU2jrmGGGR2K0Q3mftXB9/bjvWnDZq9yrb8TXJ7TV2SVTJOYzhRfV4gTLHYpkvaNv03POM/XZWzlqCLRCERVRj2lfKiMeld5KWN2G5Dkt99CsnR27EyM1udrOb1ewUmfGSxVCL+AqiRQKIkchaBFOgSzeJpfb6DKgtNmNLn4dN67pDbPDknqZI4HjggoEImnjv6SA7oHIiuy2m93eST+ThIPkIHh9DPoKMyHDFJoAI3A8wnw4CaA4tuLWYtlaiQKx6K0rKTjIGMC4ks+Z+kDobidQQqZPoQZrJvST3hLUSheDBcnrqxIu+H6JnY002Jy0DmEsCacRGOFwJuOC+f4vhux02RDC7LfjpCAy9B2iS+yTRBvIqKRAXGMaYmFFvq23jny94ZM76jkOmXU4UJUJINOHpMESv+QKQYvaExziBhgloWCJ8SGSxaPJElkpW2ejVTszAOIpX/mRhnAO6EeZpgO23aP9o0T5FkDaYknbGg7lGpDhot5P+NPQgB0mazpUonxSQtBbYbSWiiVn0x53UK+3L/mHr73ytFf37WeUuHXjK/rYUNZBsyqmRiBsFiOR7/366XqRpng6ZF3Voj1qkFYCzB6wkYkvrESS6gNDuUhTDdR00CX2SBTV5UE8IPhzQjE5kA5kFBNd8PfqsmxbYbuWZGyttoXkM3t0H2TwAIAfJAePlASU6wsRnOOeJLg8Zq5kQGKXNoghWHbgKYDIvsPi7AC1qB1Uf6ZEnkeZsXjCaX0a/nxwAJ3JHnrzN77MAaMyiG1ZGYGnZCji1WxibyERtJck6HzuZD1O5M0jfpX7IpaE0YuQ5pIjOlcYfOHV+zBpJidCF/qKkgeb1ub+TyKX9VvIgfPwk4L0nJPWaSIIteB0XCd81txeAsFZr1BzIwOx3Mgd4eUkeJy+txnFtXojAq1lJNPEwgoAw32AY5J2lXqXp75OInlrbUWPBZhujfpJnz/JJlNFyJIR8aBsz5lF2a/tg+qxrZFNeYr82yHZtC9Gifg0n8hGyCRB9MVC7NlrFO06ok4ZfH1JCTJ2CcgnPYs+c7q3TutacUJ7zPNd65wF0uxAEVILnOYD5ub3NBfNrtcxLrVanpQi7VdevkNJKie7s8y/gRX/ps13TTj1b5VwfI0VcvV0vicp+iS2Nt1MORM+9/7XIvUsJjVNE7jX6QVpG6uRybXvufFCM4RfXYfVv1RGPAGqTfu7bPXMIOtHPkr1HzCd4iqD/9uxGjNzsZjf77dlrHOKuQIbIZ4WkyZc8cCb1OZuEN/4QIWld4hFa1bMH8sNa+nf4HLnnwlI9dSHXfOEs+T5CZMc0nNbWV9tt0X+3xfZHB3z4BNf1cI9PORCiC7xLvPZ8rgx0HejjZ1DbgvoteNeCyUeYWAsyflMxSr3jAdsFfV7abAT42GxCfUO0gidV0vqLNFMDbDdyaH86ei/xwSd3H9d5mhRtwkOfeXtI3Vr0v9vj8IcWxPdoNg0MAH50EWxLy0sPt3YjYNfkxCt+GCMZhLhxit7tJ/pMUi6levmARIw8SR4J+W3haexYvms9OQIARsbWuDewPYM7Hw3TJJ6mnnQgn8AbjQUGK3Jrxw6mf4/t32/QPsUoJSURAynSNOLp70Fu2m1FCmYcpQ5ei56sjWAZM8hSBkjybiMRTcwCuPk+wsOIXCrgil5Vl4AD1ffmPZZ93pqZ93d6eKh5JgHSB/d7aaetkkiDAKLHIzAMMc+Eyhct9H2yiaffbP4pIsk8AQl2kZh5cyfXPR0SsnQCnp7kfTRt9tyR+PF9++MDzKELIK77/CDvXPvM2zeStPntvY8MsWCiQKRM91twY2CGSSJOOgfqBnDXwR2OMMaA7Kb+js69yxPSO4sRHqfKrHj/z+pTWf/Ui3rxTOim5WXBWtB+J+X2Q0aIu67L+lggVjnxtK1ESkQPXAVHkmepkIhKJmuyc3N/J+P/eJR5Y7cFbzcSlejnwzS/BKume0rivyQ3BJkAsqfSdaVlc28G9kH6prUyn+22cD+8BW8aTPct7OMAeziCXZIfJiN149RdRo9lkZMKRBufR8ixREElsn50dyd5wPS9ZjJjCcmytq20L6VANDNouxXnBQjxqEEXIdGzAgWa+yUlStM+7R0YWNefpK2zXDilGRPWBUwTWKNzdD9TzmGlFdr6uETO4hK7xjrzJfa3+vyX3MOQkMw+8kwTr8+8ak85n5R7+YT8DfvrdK+hxDSZrI/wWCc25vc8t2fmOPepQ8U1ALyXms61ZeRKrW+UbX6q/dPvS9Lh1HVn18qkzco2v1TCtFZueiZ6TjuzO+2pXbPacz93TJ4inWog/pL04qlyr/Z7J0AwTpwRNfJT86l8TfaS+pwbO1r+S6LPr2UvPYssrTNhTn4FZ4GXEFGvtR7Wxmb47xTO7CJZPCGLxtb1I3NMqkRrp3kIwzq4Yv39RoiSGzFys5vd7Ldjl26sXtuqh4AKK/8VLRipvn7qraaJ7WIo70ovj8qG5aynUzhAuAgUTFP2fmfePQvvmj99xu4/tKDHA9zhWAcsSgkSlRUhkjwiWwEjqR9A44R2dJKn5OFJQO27nSTR1CTunhAw262UN00CgHqPb6MRIe/eAI5Bh0MAYUJdJgc8HkIyalgrXtGnvMQVvEsA3Jk8jvcMCZEfPbD9T5/QftrBPHZCbjx5T3fHdY3/8A7Eu5U4glYaLRP6uZF8I7TZiOf04L2na+C2brK0j6mn2ziCH59CYntJqJwctlTOykeDcGPArRAcu58HgAEa4zNQY2HevBGwbRyFdLMJoGeNALAA9j+OaB69RJtG+0wIeQ2oaaS+nhhhJ1r2tNuGfsyllzMpIDuBmKQerYXbNrCjk77StgLc7bYSNTBo9Ahed17zOR6yfsMccmPMvLAdA270UgRW6pe8W/J9Xco2UVIoFgAexZMb2neG3kdc+T645GVVzC2ZV7fvQ2QJtJV3ocCxgqIZUAuAH7zUXdch5EoxBPO7H0CbDaa//R6uNTDdKM5VrVxnulGIjJ8+gJ8O2XPBy/gQEfDdO7i7LXjTSB81JHkFINOp/XwEHWUOIMeSGFXnBSAmZ1dpLk9Kkicdq4Rp1k903CMjBapte8pKTzwds+U8UR6e9R1UIoh0zgrRdGkf9HNniKKDzI/EPmpQv9c51lCUYOr7vF940FGjLEzjiROtt49eqLYFGaicIG1aoN2E56LdTvrvppX30rbA1gnJ3CdzouZP8aTBsyJHCwcHnlwgaxlFvpnac3DxvV9bqWnAwwDz0yegbWA+e4Ln2MUk9unBuSg75k3y7R0O2H69e3Mvv3s6hMjFVM+dj0ffdv4dj2OQGcuiYMro1aXnK50Amkbe+6aNc9KUjFNDgDMS7TNEiaUZqaQyf/p8qSOA/q8GGgVyrAd/+hw/9utiALOBGThejlddP/wfef2usTas3NeVuvxnr78SUcKOg9OMzD+e5JMvz5bPByHbWaO3hhjVVSVGZwUUc2A5ptRhQN+ZtTLX+MhSjATuckAqvZ6dEWIwf+j87wVgMj7HAoBYgvslEXOBJNlaq5J9ayM8SyudK8JNLgDRz1l6BsnKv0LbJCTWxXW65P5KvM7mjaQe1XusqUdi556jtje4pPwX/i7sOZbA6fJM/lySuTwrPXcuLsilWQRtOIOHD+O1l7y/cJ9XOE9ckzRZY2fn6l/ZagTua1vlvaZr3JITWXX/SEUfzNaIV44++8J2I0ZudrObfft2arH5tckRtRpJ8iVCmpeqo95r6klckdMiInA4uyhYrUBeof2+ZOXhR+937rl1kda8AMwBBEu/R/pZ5V1PP/8C+vgpX8zDBtiDSKmeuNclD6C8seIBPIwijTM54OMncD9geniA2e9h2j8Ao4D2ITLCeE/4aRL98ER73hgDbFpMP7yTWzztpPxPn4P8CqYJ7tMnkLUwv/vBg6CJJ2r6rEl/IkMSbUIU5La4rwCWrIDUBPf/+V8EJH5zL97Pj48+OaOJYHftPXuPXJ6cj9LwB/+QdN16L+896G4PHI8AdUAv952ZglgKPAFRc72vRAgp8BWSdBuwtUIybCxMP6H5cBD5s7sNMPk2aBqY9+/AXQ/+8DG2YXjnBm4nQO3unx6897dKr8V2g7HAditArLWAJZ84OCFGmEFjCthTaDt5FSTAtq8zTY2A+f0GpPUJeQggANArzhnUemmrfgAnm19qPSh97PK8J9ovTCPjpowG8O9f+oYFjkfw5ygrpvll4DzQP44+f0wih2ctZgByBvAUQJAm8PY5K+jNvYynnz9Inx0VMB3lWTd3AAD36VMGJFDbCLn5u+8wvN/j5//6DtOO0D4yyAHjHmAC2kegPTi8/+8f4H75EJ/Ng8mSx6aB+/4N+vdJxIchMEEk3hi4/6ef4f7lz0K2JlJZ7tgB7IQsu9uBeit9yrcXPEngcJSxnrZFavq+qBKxl8yJoX1PWXb4X45GmdWj0EwHPHm2aeW3ur7onN87mQP3OwHMdVwNg6S/Io7RfW0E3/H4BIyjbztO7hX7RTrmyUclYG3C4u1WxoNKLb17I6SI3kdl8fy/0Q9BumlG6l8ynguwX8F0gsw/6Ry1ypSs8m3IXY/p5w8hopGBbCwCiJFzZeQeAHYGpHnJCrlBur+TeezzQ5UgdY9PIEMwbyDX61zvx2QW5XrKk5bjvJHWI0hTbjZA46XQVK7QOf97J5JhS22ofcmaSA6QJzh7yR1R1q+MsuWuw6Q5g2r708JrU9ucqGjzpTH+mlaCdp5gCnNm8CZ9hhfypZbMO3l72ZzMqpg7HIDDIQdDzwGaa6IZSsDbkyMpaav3DGSjFq/rnJsATiLnlubixejzBcJgRmYh+zv8PI2aq973BLlVBduT6NBaDqK0q9RA98o+d17ISlLkkvHxmuNr8Z2eOa9eeP+ZI9jMefCFCgbpPiwtJxSvc19xzVL5156/kj1PUqnsWecOImf6Uo1gCXO2LRx0LsAf0jNNba1jh5QgDxKaabT2l8Y7auvQNcD/547ZX8vKdl8aR1/iWbKI/HLNSvJW6m8zKdHK2l3Dq2rrYK0N1jzv14LRebsRIze72c1u9mvaF93E5Ie2GdjgGGz8QT+tVyZbZMK16+5ZW0hf4HVVHjyLjWQNNJh/lnrYuGwfEDTPJ8kVEvJPAJL8XJ+76UF9D9q0kizZGtC4FYBFQQ8POJl372LkB+RATADcXQs4hv3xoxySFfxnFq9x3YSr5IJ6NaayDVLpCJQlCcUZEHCuFi5deoA4AaTJjhHMHgYhPTQaIwXzfNuF5+w6kR1JPS/1Z+MYv9dnrNSFVOdePfn14OITwgeZMvKbN++twtMkMjbO53cYlaAA3P0WcA72cwdyTvJ4kCexQp92MSE7k7z7fhAAedOChhFuKp5dD0KeSHCtBQxi5AkVkQ0l8By+84ROQubQxODGS3r5yBQYI/9dizc993AyTV7azc0/V+/7yrhVgjHN8aBRJHo9hlEA7XQjrFFhAHA4eqDWe9ezRk+lN+LkvzWvfsrGguQuaaU/GQLDxjqFBNkSNZQfMP08xwzzdIQ1Bvufdxh3JK+WADABBDRHB3v0h+OmifJZWp/tViSKLEWgjJP51/nn8Ql4Kc09kfY5n5wdzGFsyJiQCKwwPlaBWvWIiIs9Ys95vi4dGBMvUnb+mYFABnHxPfdDzOsEyJyosoqAjH1AvP2BkNtl5vGmuUGUFElyV5xM8K0ErIL9jqPUHxGo60HDCFbA3OdcgvP9ftJcGQm4DVy+Fuqc5xKJS18OTxesy+XjEUkkhTWSZ0mtFuFTPgOwCHr6wuV9hxxRLo6xZC3T+V/zxmj/53C/BQCuAOY0ii+QX4mTBU2TRPcZ8jmxHDQXVugD54gqdaYIoJ+LfVGdK2ptcS7SZcm+BnmXBcJUI58ywC6VTXrl/W0aYfYiWzP3XfAs7FgIwnAp+bFkPME1B5MWcwAt3f+SiAkgWZNNdj91BMrWm2tI7FT6zMXz02y/n0Q8LlXv1wQlv3abtcGFfehs+fMowvXXLvz2GsBp1i9d/lm6jlT3RevmlqvkDWUGqDibL61H7EQh7Ln3LdeVS8mIc3u/l9iXIs6uZV/TXFOLLMzOTamtjY5c8dtzbbDUv76yd3ojRm52s5v99u1SL5jfss3IAZsvpM7Ax2Yk13iAMpUvuPh+yd/nPAsWvCiri3sCWMnP2B+YNEJFNpqLdSo8JNghehJNRqI7jm3w1gaReJseGpiuA+12cJs2egePU/D642mQze337wQwU0mwYwcQYXjTwHYO/PmzeKlmjxtJgix5eQJMB49YvcZrZqNtxGseEbiYtWVq3jvWPT2Jd/bbt8CmBT8IYUCbNiZ7Tg/vClhNE3B04i07k/JxQrA454mTMgl5Qhqo7FIibwQABBKZGv++iAvgRdt1miTHCBFomOA2Dca7Bs3jAPvjJzn877fyntSTXIE5BQMNAeME/vwgpMfbNwKcl/Jfqpnvk2hzK0A8d5P0BStEBk2VEP7k2RUMdK2F23gZMMfeA55BwwD2QK5KO53EKyogwiWmJNnsgKuJiJfMTdAIk5iHwYSDJw8juOsQpQASL3P1Cled/rVg8eJB2oS8CRIR0gKTzwczuZjkHRAwtO/BzIV3ZST9+OERZpxw988bTLsG472Fawi2k7a2Rwfb+WdvmyzZNgDQfgfa7cDWgAkwDIDh1QgZMOz/7Ukikr4TpLF0jLQNeGs92UkhSosA8AgZP2Y8DRiVshYzD0V7ucf3EkmV3rfiDRkiDjmRltIIwTSvjpvgPGlLWm9tX2tjuyXz04yATYk6n1cAANiTvwHkXvDGJ72mbWNk1DgGkoWfJMpAoxK472W8+LkjjXyI7fYSB4GcKAjSSs+NJmtbiXKbPGHhCR3mSEzk964QCEo4ps9oTCQifVvzOMZ2SABYnfs1p0hGVCZ9LHi8j1qGFuX3AJuNTyTfyrvxJBkfOzAg0o7GhOTXQc6rjIxZMlZyJwJXkfTy+43K3Jsmms/KOmXFb2feyFm9vtD+NqlTSkzMyInFyItngu41U/KUqdrmy9fNQb0gFXkN0/w2OucRxwheIrlP4bm+RD69GCRMHU8oOuiQrndt68leJ45RvDJqbq2lZ46y71/SZ9PooNRBBqjvsb7Wc1/NUeDXsmu2TbFGPPse585/z7UakF8jTJ5bNp+Ymy8xF6N6hQBMIiDTW+pc9QJZ7pBTqdy/fa1jZ8muVd8v/dzXvl+xr4+fn4mAvaTs1C4h09LozK8sSiS1GzFys5vd7Nu3pQNF7Tc3E/MbwvIAFHKJlD+vyX48dyN5boHVvxe9HJKfeQ+4k96+aw9ges/Ek4iHEXQ4SlRCYyXJdmMlD8VuJ4dKLXu7AVsBxuEYtBkFJFMPY38PutuBG4v28wDTT9FrVavhPfjE41UlRRLwLz589GAGQs4EKEhmLUiTpXHRntnGKbYPa1JcTTw7TSC0AWAmBZqGQWTWnPHespUDqoJ3KrWVSffE35G1GVhNWjdrogf+OIYoEklun7SDAlPDADp0ErVjCdQKgA1AgEtAIkGci/lgNBrGmJmUXLAyR0hST5WKEU9xeDmbWD+2RqJYVB5sduBT6Ta5jK0BNywESPpugQhSLlmxGT7lRbtYzqVeqLM6JJtxH+Wi/aianD2zFxymk/tnUnhTlLiTOs3bJANq0/trnX3EGA0TjDWwR4KxBGcJxEDzMMB2Hng9diFfQCCIPHkGZpiRQRPHOcMBNDqY0YVcIuoJmHoykpW5x20aucZKXyIAsE7IEn1mJZ6qHlyVMVh647+WVFsZdcEMOBuj3LK6KlEpnwfQPDWNPgAiAZx6X5fRCJ7MJPJ5OTRCQPvECYmijBTJgGF/367zEopCSAeJLSVrXDF2n9vGXp4wA8mfE1FAlEvUTRPQCUGY1r2eEyZPui4fJXPVpollAtK+nMy5On+X5OuUtH0SKVK+j1DnIjdCiFjQD5KE6Bn4ZWUNxxjzzWTr6toDvkaceJm0k569Wr/nvKuaZ/CaPe9rWUXCai51eCJy7Rrzi0b6cjGmLm3fVAbuWupfJamqbeTXlBBxdq4dzvbDlaCaRj/6HEAYErm3dNx6UrJKel5i5/bia35X2qn3em4MfMUg3G/CTvWVWrtf9N4p//drkSNryk+BXf37tfZKWrVafpjZHv0Z855aeZbKyl3R1mva69IcQuH6C0D3a82VX9pesz6v3DflHrx+XH6J+lzBbsTIzW52sy9nz/WMWmu1Tc/XbL/2QlHx9A2HwwWvxgCgnSMb1r6LVFqluNeqBVfBLiUPMnmNJGqkds+0ruU9FWAbB0wPE8xuK8lbtxvwVjTKsd/5SBAnuS12DTA1MB4ETUGecB9jwPd7AEDz4RDls9JnN42P/NgIAHCoJ4ENALB6BCaas2AK0QxRE74Af6jiMcQO7ukpbx/jSYr7Oynr86OQD8xgJEmfTZQpCodrjSTgBHwqAfy2kQTZKjdjJEKE2hbYbUHHbq6VnL4rwEs9AZg+g8a9RM04Bisx8vlz7B9JQnBqmiA9Vu1v/m9pp+TWmk/FCknG1nuOGwNYjuCcJ04kMXLlEXyUj/NlcOPfR/JeV1nSpgEEVkuTwAIC2i8BWskzv8h8e6aJhS8+3Fwa2g+ECJwA8jCLlryTsUcJmK5Ae7Vv6edEwEGuMUf5W/PIcCPET/PhKH308RHumER+aT9rRW6PHMOMDjT6uYEBYob9dAQdeyEkkYydpO+RT+ztthYgwAxGhixRIFnIGjCZxDN9uT/PH/YaYOWJvuTJiTS3BwEhCipEG3h5K30nIUfFRpOzu0CIVKWp0vw3qXlCJESi9YXk3zkP6baN8wSQgeOYJrjDETwOsNaCsY1RZtoHVRruhbJImo8lRA8+uyAjkRVTTDzNx6PMmSHpuZuPW5WoAySvSWnGlwuESEcFkPhwDGMvSOEk+wRpr6SspTnDR+6RT9Ie3n8RraiRYLTZCPnBQl6Rn7ep9RElLLIlQsCfi+BIiOphECI0neOga0Myd02IEQIrLc0BdxKo/tIESer9DwDaByrkWTUy5NqesbV6aTtfAqS+JkClAKpu87Cw7gJxHX/OfFyLvEZCzEwTeOTQt6jx+8ykr4qMrsvGpVz8AmBzhYPT2TKApE1s/XugPsa+cg/lzL6mOj6nza4xH1Wch+TzK73H4Bi2sn8mzhWsUYEAQmTgcxnVJbBeP59F3y/cxzvxXdoumVTXK/W7cL68tI1KXKCUcbp0blpD0pQk3NqyX8Neio2l8/fFzm1n2rYcg1/DGntFuxEjN7vZzb6cnQLLr3lgeumG/rWtQkj8arZIUi15jl8g//GMjdrFe0x2OfiUfl4+W3ngLJOU1TZP/l3xNEmkBIu+PzcW7n4PGkbQp0cB8JQQSZJt836L8Y/vAAD2aQANE+jxIL9zLAmC1StXQad0Y6wyUZk8SR2QCgfcTRs9o5ljgtRZEvbEU7ymi65Au98I8bETUElznnjgT0kjASq95zurV2ICeqWWeNSH92UIRD6RepBfGcHjFAFRzbWRvDv2bUR6P2aJUhkczMBgQzB/8wfw01ES2tfmoPSg1FhJFk8esLWuDmQkOQa48REjHiwHM8gxeCsJjIXoqHjyt60QWIBHTBCuBzPYOZ8g+MxmviRF0iTWxoAVlXGx7S6S9fHjQ8vPPMmZM1JMCDFOpN+ecfBKx+O5A7H/rfGSbwKCFoSZq8jkKJi5VHbad8cR5tDBOAdubTZfUj8IWWItqN2EpNLa9nAONDm4xmDaWjSDRIrJHICYg6KMCFPzUU28tZh2NtRNc0FQ18vc5FjIkQnwSUwWn6nejgmoRLjsva0gsGmzgfn+O098eGk6fd4hIULaJoDrwbw0HTTiK0SIVIDjpC4h30R4F8l3lOTSCuXkawY1bZJEnIJME3cilcXj6CWiVI5pAo0JKXIu0fpz9ie6doS/XRibZ9fPdBwnJAWALKoxa5PyOv/bMr8DT8hUK0PEo6FIDmgfZQq/nbVNGPf+c7/eZUnMk9/P3n8ioUeARKwlUWGsuaisAagNEl8AYvTI0nygz3OGuA59K5UMgwJF6975LAfcyR//OvvcxSiWX8vp52vaW3u7SJ7rOfU/5VVPJn9HpGSbRu+ZGD1XSqVew14qm3bizBidepJxlc6FL418eQ1b66jwNdjaM94lDhjXsGuSI6tA9cSJaK1iwkvqd8m1S+fWc9cAyXkzGaO1sfaCZ3l59NkZh4Dn2NJ7P4VPfWmrENwvLuel9tK2+bXJppX2bRMjX0sHvtnNfmv2mhNYyTS/hifPa5X7NdtL39nXxPoHj54FSZj0p5oItQSf0kN6AuiCE33n1FTmJZAFOTnCfQ/nQR10Hej9O4x/fAf7CXB/+nPuda73tBb2b/6Ap7/bgRjY/cXAPvQw/+mzeNOqV3vfe2DXZJrsrCBgSvpQIgujliQqB3mJL+slrJiBzSbeK60nM8BTAA8DAFgkP9colEy337kQKWK+/x705g7UD+L1Pk3g4QRBmbzfkIfCsdzXy3Xp+BXZrl4S1mt+AMBLPvgNvZuE9GmEEBJSZAQNE+xhAhvC8Pc/oPl0BD09ReJB31Xy3lg9ylXay0cj5X1FDt3pDoQtgS3BNZK82KgsjDGy09J8MWMCxJN4wovnMkDsJZY8OUI+6XRo9zTyKO23KXiWvkf1jE4B/jJ6BMi9txcs5mbwpMBIMScICQhKm42AjKMHWYYXeNKl4MY5D1oS2Tm6v5O/pwnkBABlZqDvq5eFsZD0t/B39kPJ98GfH0FdC2p8G2gyaT9eBYx1kTTSMeQBJ7e1GO8M2k8McxhC2TSMUe6r8g6IJNJi2jYY95KnxHopLUMEfGaRcmI/hphBsP6dFrrXJUBbyuJkMlH+/67gOUyGQPsd3B++A0YH8/lRcvk8HULEBVkD2u8lWmwvUXWpjJ165lflnWr1MjYQGUFyK/1dyGdRyaPh52/abaN8FpFE+7WNyNF0o48YGMKcpn2KNTn8c4nBShtKwUnEU43oT3X3a2UkcmahLTxxxJ70n60V6XVqPhpQ6qU5PwaALUij8tqdfK7JyZX88oRFIL/1HYzqqV5Uu/RqD1XgeduSjwpqGtD9XoDfv/wEd+xiW/lcVNi04I2RiDIvccRpdCXl4yGSzp68J5PLuyXtCWs9oV2QTz6iS9qlMt6LuWdJTuyrsRqh/mvXdWkeX/rda9dlCXRcun9Z/7X1rM0HQPQ8N4njAuK44mPnc/8Mlf7oy6wQLmcJj+dE7ixZsk5pPqWQMypEsE0ybMM6VpHH+2s7F6p9qTP9c+w57+Qazo+XXncNp4aXXr+wTw17+HMORPLjENVI1vqzFM7Pl+fqU9o5Z6tzdi1yQM/MgD8zXkDUfA3zxZe8/1I7615oKZpwTZRJcHi5Mvl+Zfu2iZGb3exmr2O/9kJwDfstPMNfgwUSy83Xy1JWK70m+U247sRGLOgrA+IFHCwm4g2gogKqSqAUXpt87AD7iOYvLejYw202IWKCrBVZKK2PNdh8FEDIdKOA7E0TwH00DczdXVbnAEgl9cj0yRXsbuNzMDPIATAOfDhkByH13J/rgOeeQ9Q0Pum3T96uMlwK4PhktRqhYwDwZAWUBYTAGEZUE74X9w3JjH2bc9/Lc7GTstJ213onEjo1IDMQAj5xsHk6SgCHtXD7BtxamO/eC9HgE81jv5MoGN/+vJN3R86BNw2G73ZoHgfQv/wZ3LvCg9yAnw4gIpjRwbEJskbswXN3twFGybESPZ0jgcfHDjAWppvAlkC9g+lHAe5SADgAZAttW9MLJ/IJVSXPBW1aAUE41xHPxl1xeKLtFrTZiCxNP4ARNdJTcJ2IQrLjADhPCyBf2gZLlkQzZXJvFSCRrIXZbkHv3srzfvwkX2028vthyOWYBh+BU0bOnAKUAZEaGvoc0LUW9P4duLGSzNaQ/HfywKohya3AjPbDEfbYBumsrPztZp5DQ5tictKffQSU7R1M72D6CXQcI6mYRhad6itAfOaUYFVPe1+GePY389xGab1LyUU/nwcQ3Qo5Ye7vZN779CTlPT5JxIV/F4EU+ePvAGtkDpic5AQaJX8LxtHLByak3EJUTBinqUweEIjBQJotWEjkraTA1keKANL3yecAsgZAm7fPtb2ugTg/+SjD+VhyCMnAzx3m2UluqFRKAxpVI1F7DABe2k1/E0DHNN8F86wvcT8ANIYooLCWssyf9OYeIVcVO6AHQA48at1LAKqoL3Q9F1Imm1dZIhvVWQJkZG1J+2bTBOI7RHptWvDkZH12PJdMS63rwM47CvR9Pk9rWykxNosOKWQzZ++G623wpe0ciJ+CIc8F+J577ddi6TOs8bReTXDkfY/sPBoi/V7KdnGPqF+row8KQtPPF+qcU5XMS8uvOSYoWVI+1yVAYgaWufzfabkLY0KSU/u5AXFOUuIk3MbGfSzrurwE3mU3+Ib7Zmlf67OsALwzBxlg3he/FHhdkoRXcBhZZUukc/h3egY+te4nv3dGiMR0jbpWG750bahd95K6rbm2II2vct9vxU71w3RsLURlh79PkmSMEIX+NZBNJ+zbJ0a+8ga+2c1udsZu4/flVni9Z/Y1tO+5DeSpz4gq0lHF5qXUYk3vm2ymeRRZqZDo2znRjveAaVhPpkm89cfRA3ttFjHBXQccj8BPP4PaDcz7t3L55CQHybs3AvYd5eC5/YvP2TGJd7iAbEYAUyKYZi/gkU/yzl2HmWa6go1kQiJiBf1CZAkgoNXDowBH+pynEmpq1Ib3jobx/20b8G4DbgyoE6CXusGDmSIdpO3lnp7Anz7N2772PoAooeWTrvOxg+s6qUuXeEE1EoUQZWpc3QNbPdI9sAfHQg4dj6BPn2HevYW7+w7TvgX+8B3oqQN1nUiOvXsjpFI3gDcG09stJIeDw3jf4tO/2WL7qcWb/3EDOIa5V0928QafPnyAGUfQ8HsYADSxdM9NC7aE8U0LGpxstmaawdJ2Zppgff4KexhA/Sh9ZxgCKSQRI4X3vxbjWKKNPMkEIIL3Togs3N8L+DeMXuqsTjIE4MVHh5jvvwO/uwf99AHuLz9J/8pk0Dxp1rbyroz14KmNSV69nBSYEwmeE17QYSOuXtttkuw5jwYj34fobo/p9++k7T49SL3UM53887y5l+uOnbSlHUI0h4CYU+yfQCQo/fzjPn+etRdtNqC/+yN418COE6izAuYPQyzn2AF8hPmPgG2aKOujYND7NyIfVSYg1+YY5X1RN8AeN7DHCaYbYZ560KGTtm0anwx6qpOgoV0T0Mm/q0Bu6RwAhH5H7AKRGCJrwvObMMdoQnMeJPpNIzWokUge9/v3oEMP/POfJfpOQXeNzNgIYH7419+BCWg/D0IEPRoZCx8/ybO1rcgghTmtTpSFSA+NcEr7FXFOfAP1uVFzRVgD7LaB7AwRG9pek5OoJB2rvp8/G9w+da5x0zKmrs9TRlpmz+8CoEjU5OSQel974j4kZw/zjqyhtTqlZNgsR1X6aNYA79+CiUAPT+Bx9KSxixJkxdwePcSb+JwAQG2MgEsaxR2Psj4Xw1WuMZLzZ7eR9cw5kDHg7VbGrfbxsv2TiKPp4XF5zwHk+V+qoPI5UvgKe7YX7gPD/B7I80p0y0vqean8y+z6FaDka+59fX+XvplEcCEBci+VttE/08gsvz/TMZJFg6bX+f1puD6QiBbkZRUz8pY5z4e1VLUsarNw7Aj766UJKSE70mcNxHsipZqRN94RIe1z1XZU54mEbGQGiihJahrQbitOIYHExeJ+OHvuE+N89lw1+xrOX6fsGpEXa8tfspJYSz/z6xmZVNaxWLPLPnjt58j6REKOpN8T1veVotz6V8n+fiEHXvzBhc/rx8hVuPdfY+59hs3lOvN+lilKLESipr9fbaeuu5REVntp214yJtM9/0v3LaWj61fWR9S+fWIE+Kob+GY3u9nNFu01PDR+63bpbq72+wTkoGkChnnbZYDRKU1wduKprd6y6uXMEgVBo0HY/jIDkxNCJNFzViAtJFgvrXy3emC0Rs6Ew4Agg1L+Dqhv9IpnpeDp7UHsfvByJyZ4bQfN/NFHhUxTlmcj1rei8VwA+WRigmVW2akZlsNzsLeysSXvlQ4fyQBb1GeaYI4CGrAliYTZi8wLPTwBuy2mv/3eJ1D3xRKyf9N2I1ER9wKuc9eBRg/CEgmRNkWglpUEGhzMWGmj9OBnDKgfYQyBei+rNAyhP1Slg2Y5RUw94kDvM/QC/NfKAgJIroQI+Tw1aLxMlAKfHpiJOTz89UP0nmbNmRF+MwXw8iLN4YT4kDwfc4BR88vwMMA89SFvCDOLtBuzEDTWAke/5VXZKT9uYkSWB2TK8a4AT0rs6e8cwzw8gfs2yGEFSZ7SlBDR3EEAAOdJsBFu4QBMGskBgByElJxYxqQSXz5hdiYLtUB8yb9j3xHQweSHIAOf32dMojOSdUYjipIIJfnXRoA8JZu1bqPI27m+j+Pd1wOalJ0ZzaNEkDQfj8A4ydzTx7FA6TuqeI5qou1FUkSvcxzmIX2eAHgo+ZwCd+Mkc6QfY2HODvOglpsQ8V9K474CrM5k1GbX+HnHOTCZMNdqNFhO3vkz1ikvayVkTkre+fEzirxhiGTUKMSliEbkQFGI9JomENP890v7qvR7zVk1TmAdQ6XUZPp7JXfXWDrOfm17kaftF4paeekZ/rWiT9aWW7zrWU6PVIKkZlUiUC0lM5z4IZCR/puOiSyCjOQyKuaiNc9SVm2Wn+SC63UfmE5D2bMaH5XIsz12dS6o3Ptkzh5dKybZz56KECzt4rm7JKF/bbt0TDwX8NVrdf+oH2V79RNz4QWk8ar8TK+BBWrkYTmGynd9cZv7CLAkN1+aV2ptLqpVdsNJY4Tp0thOZC8XI9SvaZeUrXvvS695jqXXPee+37h928TI17LxvNnNbnazS+23tNCsXThf45B+oRdD5mXsGIxEJkZziLRtkG0KIfwJcJo+L/s8EFAwbhzBjwef92IQ0OXT51iXxLM2gjDiuerU488k91ELnsCA6wcPalL4G26KSbx9GVbnq38AAQAASURBVKWH4KL5diAfxSF5QhzQxYgUVtAMEFkljd5wU0y8HaQfPEjf93VszkfvBBA9HOgdMs/BaYJTULYSPRO8Mq0F7XcIieqBmAze68mbTwegbeDuNuDWgt7egw4dpj/9Gfbv/haf//N7mJGx/1Mn7WGNSOXo2e7NvZBab0X2jD6LRBINo3j7jyInFdpZVc+OkutE2mW+KadWAFg6DjAOoKejANJdL+Ck5hcpDmOhj6ismv43TY4c+rmDezwEMHHmCaU5OpQQaRqRg2sbsMpjaWSGytCojIx2oX4A8WMGcC4mQK16sieWgq1apx51YIMl1w0fjjAfPsf7T5OA8EpEkJe4AnKSLS1TI9NqkTmJjAltt9K/fd4C9+cfQ36c0FaVpMncDyCak586trjMhaLvWiOnAJBj0ChyazRK32Yl0cYk/0YVxE5yLWWgmgFZeC/k3Es8y80A5HOYlqHey20Ls6HYFuMI7o8SPdP1QD9IpEjy/gO50kqy9ebnRyG3fvog75YMeBxDPbjUzU/aiqyF2e8iIZKeEaZEeiuRpQvzk3qmKvmnuUn8M3PXR2kuoiLxeuqNXQCZr20lIa3rEABe8GBVfXGo57muZUcviViJwqiu8UkkZyjTrTiXDWNIih5ybC3126TPhvUHwMzrVfskmSznC/S3aT2nScaOJ/7gCRrn82MFUgzIo93WWFKPmZd+UZdXtSvepxqZ9fJC15Fpp2yWU6PSR59LmqTRdIRq36yucxVvdpG0ovOe31rPYtNUHccnPIh5HP38t0CQrzV9ntIzf0156RpRi55RJ5y2BQ0DGJwTOMnvIsFS7l10T5w4e5R9gEzduWQJPyplvC61dG/zLZzxnlvHrP1c2D8GG8Yovai3egnQ7/thRo4sSa9d29j33+rniN9dmkPBl0vtVgjRfgiOGldzqvhaiLpf2dJ9L1nk586l36tM55JTyJe2azrS/hr3fe0yr2TfNjGS2reyCN3sZje72Zey15oTnxsC+lw7B6xeWlYqoVKE2PIEEHx0gUZSKMi8AMyGCBQpUJLPKkhfaNkHb3v9XPXMk3qEcO3sfg5BQ14BvTEB+1AcPE7pgabAc2pDD+YYEUJ6MNbnSL2lPbAoxXgwNJWSWSMlogeO5O/FZygsPRyFZO2WJIoGyPOcKLA1OSEwvPd6ACqswbQBppZgvt+EBOjT1sA1gGsJ7rs3Es1B5HMeHGP7A8DEMOQAB5BzIj+mze0TrnPqna+HJ99PSAkg9dIP3tQL0SJKQim4CWT9KPSxMlojlJFEPyQJ2vP7kNRrnALYwuyThWu56bsqonqqiQ7Pet+mpJe0D2uS86V5xwOQfDzK7/se1Tw05yKoql5kEWANhys9LCWHJ3JO+l4KDrgo2cTMgq/pMzgX39s0IdQkBVY9aSDSdkIcmMEJ0ZYCu8MYZdfOSaSVuWgAsEGcr7zEFbOXEiyBR2mI4K3P1vpnlwTnDMERMUpfDJEuh07ez5I5iSyhYy/9Lc1rkoHm8yiRlNiL+V+c/DaVJ9MyK9EJAXzXd9g2s2sx+j5lSNrcuajPD9SBUWnM5edesjWAbkmc+/vyhHrkYUpk6DjTCCcWiTtKyY0a8JzWKQFOWcm1E3UNwFmybuXRgHPCdpVlkV4V8DTpM+wYaBpw24CmScZk1/k5xkcRtW0ua6cRRqlE1lor8kB89ebbPfVcfjW7CvBXEhHFGvGiSJQCdE9N56L0/Vb+nbWhsS8jKsr7n9qHL4G5p6w252Tz2LKXdX7fvIwlD2yN2ObZb+fPtAiqp6TNUh+o1vOVx+KvjUe99v1L4s87V6VWzh9XI0lq9XiO1SKAtcxZ/+F8vS3KeFFdikjE/Ax0wzWvZkVEbzYXLc4v31D733Dwq9i3T4ykm6Jbp7jZzW72126vPQcukRHnSIqXeGAtgUQXRovoZwryzjbEAMCDTwIrG37GFEC/bAObRo0o0KNyWoXEAY9R+5n1fjXvNf2s5iGYkgZ63zQ57tJ1qRWECBX1dIdjDphOJr+2zBMRCCrfVs4DqanDvUopnDzAP+MZkvKh4L4xMdfC0beNkfdEkxNdey9VxU8+kTYAbizGPcE1wHBvQQwowussACYc/+YOzdOE9ucn0DBi+vAR7Fg81IkErPaAN00M0vsn3sYiG0EgYiGgkACYx04kZo4+YmTJi1oBbgW3bZS6ik0aSbkscXZZThIFogBl1s5EkvdG6wIAwwDnweAyAfTMI/ac51wtckSjRIgjON4jAZ2L9tCx0PdwD4jjrTJXvEirmSLpoeWofJs7HMHsYDcbBC9d/7sM+FVQXYt0ye9Soi/JzwFDoN1OonccYLoRdJQIDO57kQXLokVOkCIhqqgAnJUw6nuJzACy95oVl+SdYCYBlq0VMsSD60ockTWgu71EfPzywRMtFdDLk23sOBA87KXBoqTTHHAL7ZVGinjwn/ujjEWNjPB9ibuuGjWlUQKBKNztgowcHIOfnkLEj7YVV8fBhUTgOTsXVZU1heri9/PfpZIdgPQBH9nEgJdi8+/UpuWZEHEVgd8CLD0Hwuq11kqyZ597KEju1aJTkKxPet+aVGB8+NnaESJIJuTltw1410ofJYn4cYdI2tGmlfev49NplBGfJ0b8Ok0Wvs2Tr87Jm13DnnsO1nlC57iUPHwNEPnF40IjMRISXv5xPSzAkJC/S/sX3+/13kECxzvelPJv5PcS1Xn6Ofac/W/Nnuu8dPb+Hoi0Vry004hI5jD+5acco/Wg0pZnIgI4b/vMESONNDlV1rlnf27E0Ze2S/t8+dzP9CInS8FRIpU6paaNCe+VZE3ewYwAe047P2deKiMsNQpU7+045rIr67O0Br/EUQ9+P5kSe9ciT7VuYe2+Yrlr7CscO9WzUGqX5ok5e8NXePavBeu+tB5rfnvtZwtjkoCVxX77xAjwOpu2m93sZjf7luxLLZRLB8TapnDp80vsFUOBTx782UdoOJPnAqlIY8QNvve4zdRUOLTDDAAKbblyDbt0rdMNsUZ2ZMkuE0s9ufzhAID3us6/B1D3Rtbf6b7zuR6nS/0o+43JDlqkpIgCZ5y084TgxU6aM2OcwJrngQzc+zt8+C8BGEb7yaA5APs/MZqOsfk0wbWEx79t0R4avPvl4POx+ATGmw2obeF2DdgQTMcS2LPd+HqwEB6A1G+h7XgU72WRIJiC9/LMi7o0EyVmMsLKRyRVdZG1/Xy0E0+TtM1mE9+1B7G5733y8FjmDAxea1WPu/gO00gG9s66wKn+Vrio1/IUXFCfucRdrCMZ8iSYCaB9lkdFwQGe5/oJkis+GkGuZ5EPSb9XOTOVK2saKcs5kR/qehBL7hR4aSoeJAdI9bkTsDPI21WbgUJd0raYtTtFkEuPD0HGrW1yMFAjl45HkZryz5wB9YlEUtpvARRjwC2uA9Q21WgnIpIIt0HzGNUjRTJtdGNA93dCrrYynmmcAHDMCbVpM4CnJAdfDAaUEjmhvU7MpUrIL43J5L1Q24g0HRmJcBrdPBJCy5tJMZ4Z7yfmBDIUI3p0jdH8Igt1zv57ztI+cs6L3jlgSsaRS4C6U/IaGk00nUhcSxSIawB5VJ3//mQdX2ovKdfveb5Ybpxfy86BL95pJpDAlPT96v7X5WOw7LOZFNXKOqS/C+V8YTCsFv02+82J59A2LKNLQ/HJHk5zPSW/0z3BSdkb3/azKNCk3WbySyl5Ui3zKwAd19pz55NXAWxXzNXJe8wiiVZet3hmu3QsJWtiVaJV+8macXrFMXrVvCJqQYru+kWftGuc/69ha6N6fu01b+2asNbJ8Fu0VyFFLrPfBjFybfta2Lib3exmN/ua7Gzo/gWfr73f2vs/p9wz3iHi+cdBokgjP05FObBbqCczFnemlz7TucNQIi8DIObd0ATlagp8KWCqYLrmDinKq5M6iHr1+tW5zf2St5rmKsm+S/JilECv1j2V0PHyNqzJdZkBDODHp6S+JkYBGcLxb+/wf/4//b8xsMF////7N+j/5Q7v/hfG3Z97NP/Pfwf61/8Kf/q//g7No8G7f+c1+Q2BqBGP+LsdxjcbgADTT4BhuHd7YGLYDw8ie1S0kT43Wf9Z14EHivlbyqiHJWDYmgysDwD0gvdZACdDLg75nu7uQHc7D7YPAmgPPsfJ0AewqCpDtfLwOHu3gRTxWuPbjeRx6XuR2Cjrn96nLI/dPHGy9tklT7/kIE/WimQVAH54yNvMexXS+3cC9gySl2D68WfwOIh3pM/FAwDYbXOwXonJzUYIjwOD3TwfCG3uQNtNzHHQNuJh//gEHA6gaQLaFnw4hBwv1UiRVCKCJBE6tc1MZi3vFwY8CkgdoiaQk0QKblPTCEGgALchIXHaFny3EzKh68HHI6ZfHmbvfBa94iI4H6Pvyrk/IdCAIPskydYTWURNCuSlktzhmIP+tagCrY814O/fwW1bieZhBj0cpU/6KC7a74Q4ORzq3ofXIkRm3xvMvGzDV+u90GnTSj+enERu9EOMPAzzq0+IXEZarPEQrz2Tl/6jrYwvJURm0UB6mY7rGtDmKkSKjh/v+Rvei5eNQ+nxP06gfgA/HiRCj9mvB5rPKhJ0ecWMRNcNZyLP/O8wTVGmzntJx+SvXxilKudoJZWLtlwcfy+5L7DQpyvrxkqgN4smCm2LenRHsW6cNE+UhnxaTqPCkmip6nj38qYp4JrkIPEfZHU+/YA5gfwqfeZM1ECca1Gvb+hDC7mMNn4tOxxmxLv8wMR8SEwzyc9ARKZe/AttP6s/M8QbJideAnGVPvpSREpW12eC36ci/r4EznRNInaRSIrjL/0Mzs/7Ju5Fdf842wsuWUrWVr+/8KyRRsvr+pJKK1d+e/bctiSRt+YdcyRSM0eEK/aPk7l+VhXwAuLna8FSl84Cai8lRc5F9l7aT78VO7WGA7/u+9fx6y6L0PymiRHxeES+ybjGZPK1DOSb3exmN/ua7EvPjTVA9JrllrZ0gL7UE/1adS03VQvggv3hewHrSqBOAajDQSI4NK+BlquJZfVeKokDAFMloeiSKYhdyzEBIIRxL1jzb/4z9P/wA2w3gQ4DzIfPcD/+FPKEBIDXmih30zbR49jLZcE5iOzJlANbRZ4XaE4Ib7s/H/F//+//G8AB+z8bbH9h3P+nI5pfnuD6AebjA97/u9+h6RzMx0cBqh2DDcDHIwhA87EDDECHXgDVzkcVHI5CNPRDFWyTyBolf8yiB3WWCyR5bzw5ELFvG+PfRSW/Rlle04CMidEJhmJC9aFI5K1RHEtlnhhP1LTioZ6A3mWEFU+A2RnQu7eAT8gMa2H3+5icuVV5mylGASjAP4kEUNb/Sw938gm1gbpnu49WKb0HqWlgvv9engGI9Unzb6TaxUYiPNiY4CmbgvlQ4pFdflAjAv3932D6/g7UTZL/YJLno74VaZtxFCKr98nWs6Tf/p02TZRJSoAlsIvkoZIQem8lTBKQmkjIDpX0ot3WP/sg9+z0Wkm8iqaRft8PntyS9xjkbihpn5qVc+yMeJvPQ+y8Rr3zQItxUc5D87s4rs/dqUex9o2mAT0dYfohrgVdH54lbStplzYDe2b1fq4Vnq3yn2WvRz6T8DzTdp+cyLBNTnJKFdFRWcTPhWCB9j3z5h6a6wdAlksHSMZt5VmSisw+ygiPGhiqa0R6Jqw8Bx+PIGYhhIYhn3PJyzFqxJ9j0DiC4bKIyHl9E+/3NN9NSUKSn2fXSnZcc++jZel4Sq3myPGathQJlcq1nauDgn2ZpPYZD/RzXszsEJLuAvl6cJbMSCJZdX7XaIbnWkbKlPc7A6atAmXPtEU1csu/mzPtIdGE3unB+PZMnW7Yybq9cG+ekvtUo8oqjlO1ZwCKteWCea1GYl0yJpfOML82zlQj3kpb0U5lZHiNDKxFeVwi07c6d+JKK9dSzU11Nmpwaa46FYG0ihx53UgFzQd3khhYVdA3io3qnvtrtnNz8Rr7NZz6a/f7NfpJLWpcHRTgzyArh9k3TYxoCD7gDwbXJEdudrOb3exmX4d9iUN6OADqPfVQdkI245LygflznI38OA8S0GYD95/9HdxdC9ONIhHipULM50dQ12M6doDrwZMANQE8naYIonpiBIZAg0/Km0idnEoIyOOYJyIPlhIbHkRMvbN8G3/63/8d/un/Auz+bLH/E+P7f3eH9uMnEAbw6OWq9jvx5mysJM/dtpKo2UeCcD9IeSFiIgK3qQSaPof4VPj3/v/6d/gv/wcbf+slqcRJccL4n/4ZP/zffgQAjEm+GEyA+/gJeHiEOR59xIv3tj4cwdME13UZwTTzlHO+f3nv5jKKQG5GoP0+5JwAEfjp4DW6O5HwevsmejMraH9i3NBuK0Dwm3vwdgP6+Bnu4VGAQvXkTnMLpODEGu8nlZ96cw96/1a8s3/5JZaL2AUAANvvMPzNe9jPHehwAG024HdvgGmCOXTAdoPpd28B52AeOvn88QD2eVnIkymZZ21KOjQtzNs38nEnOVOC57dKeBmSgAMyoQxqGrh/+CO4NWj+/BE4duCPnyJxFPrUFN+t9jef14I2GyFd0r5Q8c59+N/+gE//2GD3s8Pm0WHzYUTzOMAMo4zFxye4rot5Y4o+Yu7ugP0O1LZAY8GN5HSgxwP48RGw0ZN90vGy9C6T/DP09g2m372F+fAI/POf5dmTKAOz38PsdjIPdF2I+gEQo9b0PVgLZi/Rxj4hPZ/J/5J5Biee7sxwh4O0+34Pcgj3VVK1Op58e8fiGeZuDzQW7qdfwH0Ps90ChuC8Dr7TaCB2Apa3cQ6lJAn7s/MHpABaIRWYW6X80qM1XVd8tAYAH9XUw2m+lVSiJlkD84TyJ54lcyTwuXH2O+D338s4/eVTeA9w0n+ZGWmy9zrZn5KMEUDjwYNu1iKC1/HdBi9/T0a4w3EeFcoM9+GjANZl3/D9k3Zb8P1eCFjnRDqxFkGippGOKlfWNMB2Kzl2iISs17wT1sA9PkkU3lKbJu2wCNY9d090LW/ONZ6wS0AhkPXtmuTm2eAIdZCguGYjyeMB4HIiP9zby/ilkUErNoFV6dCy/+k4qxE4S8B5rTE0YnLJaaWMoFyyE22hThtlrp9q9EalfiFPFhm/l+iAkcC9i2Blkltkdv/aGCnnHJXqqjnwsAOP1yCqV0qKAfk8nv5d1v3sPVd6ml/6fbG+iAQmJQ5RicOE/n1yHMVIqerti/1e/GJhzardg5N9aO2ZTlkKONf6R1K/xddbXB/W5qAkkJxzsuLXOResGqdrbKnPuIUz7Kmo6qyCvwE89Zwjwms51F/i3HnpWlrOLefWlFqZC86WZ69d8/2XsnROm30newL6qyFGSlsTnnqzm93sZje7mVrq6Zl5Pi14pa4tM73uGpvOcnPPcTM+3bUY9xabfpINAHtypOvBXR+kdHgYc63nNHG3l8PRzb4ClgLyrnzuar0LPX6t++yQIv8jB7iGYN69BT8+wn3ynufDCGytSPioN27biPySbx925POiTLNNX9VrbQJA8nw8jBkYqZ7uDM07kcuopUQRwUcxtACnYJ5/fokI8fc+4SEJd+aQwk7ehUuiDgB/XexrM++/1DuwaYA2yZMwTiD0IqvjvafnuXAqHpMnLBwQNVrAkzUnD4r9APvYgbo+vDvqeskH03Xi1X8YQM5JVMI4SZ01+uHUAR4Q0kOTbE4xCibIxzFLPVNPWBMl2oghkTTe277qYakES0jaXBCIC6RIuLxnNEdGe2DYg4N9GuSZuyiblUVW+GcIANmmFcLLS6QR4AeUH2+TA/OwHjAr7iNtp7l54hwnSc378H2YN1LTaDVDwBTLZtT156uWSK+Ao6ybRsOx5hlKoxFOyTuZpP2aJCJL58OlXAGhKFqbz/F5lkYxPMfUcczLjmlUE7ux3jbPvYfOieMIcgxuDDB5sE37u5LsQJSXOlFnIPnNjBSorB8JsY/pDPDtAd/F50+JkOd6cbIDSEh8GgY/JnxuK598flb/7G99VxEEvur59hqgRgnE1KJOTsjvpM/4rHxkWg2ivE+9BhawQpkiesvrGlppYw8mX81eEfPIol8uNb+OpiRriJwcxhwY12hNAz9HndhwzvpYnCMzCbOLokKSub6UkC3vc8q+FXDZRyGRcXFd1q+CQ9F8n5uXkZxtKhFoofy17+HUXPEST/olUmTpty94T7N57EvjkUtteArovmGmX8auPf6vUd63Ml99YfttESM3u9nNbnazm11iNS9+wCcY9uD4OSAx89CNuQ+qGvSplZ+rZrMeztRjX+vZFkv2NIGaBv37FuOdweZDB+q93M40wX1+AHcdzO9+ADUNph9/Ep18TVicgn+GRC6osQL29b58IjAlh9VLNkylx2t2bQQZzMCwRwvbAc2B4TYG09/9APsXC3z4CB7k12a/A9/tJO+C1t8akAchaIhe/JlsS5kzJTXvjUZNKx6++31+vY8M4L7P659GPXjvZfLPAzJC2ngpFU38nJEWpbcPcPqQ4gTMdz4SJTcfnWA00WkKOtjMw432e9B2Ez3cH5+kr3Td/BnLeqbPp38WMgpZ/ghr5T6fH6TsE15b7ukJ5p9/0kJlzH3weU66DrQ5gIbBe/KqFNAQ5aRqhEM6dqwFfA4RAkRSSOXYHg/zd6ze45qLZmDw54fY/tn9cqA2eDDXAN0T42fzS4+7lrD9qYd9HGA/PgKHI9zDo8jhpbl2gJDbJMis3d+B39z5CJGDFKpEnTVC6hy7xagkbSvx8C0AT2bQOGHqutCeGp2jUQgz8CGVJ/MRPURbiJepj8g5pR9e1I0MhTwwOEq9glyTgtnWyu9ruVf882kOgZRY4k0rknK+T8B7OhM7T34kOX/8eGJO1oVAPLxcsiGVNhHJ4GeAF+nc60RqjizqHrylxx0vALvFOpd9zg7u2MFut+BNI0ndmcNaxBrlBHnnoZwVVpLanLZzAs6HqEcvBRjrtgxiVz8fRyEjbSI7qYTgciXl/Rvp78QsgGPbRPJWczaVWvKlLYF41wD8Xxppou++JrFEqEboVP9+qWyIlpESoTrXlRGuF5dbka+D9jt4UqfoV0p4MJ9+RdeK2Kk5QFzb/Dq+mGPkjHE/yN7MWpHU2rQgbiS/j9MIqrhXIPaeMVDe5Jwne5HXJfTFC/aqus43jewlinUxOMik3XqR8KqX/0VAxvLssGQ6fv2aADJhPyTfF04da+SXauuEJ18uju4ordhvxvIvO4fEf1Lxua4j/j61OaxaVxflU5PPhBBK9jQr+2Bezsvmhfo9Ko5+6Vy8NkrglKURKC8t67diL40cUwsE5Cks4UpRpd/aeztFetacaM7YjRi52c1udrOb/XXbKW/FS3CuchOfSmHp36c2jSe8mzXxcQADAPE8tRb26IGh0YmnuHraK1j5/i3croXpOvCTAKY8jj7JM7zsD8DNKOB+Apxy6kH/XKuBsEkkiT1OaD81aJ4AM/qzceqxDsi/x1G8+k2UAIAxYOsJEsADpi6/Lm3L6uHLJ6jWAzwzlBQLSaj1YLH03nxbUblBJco9y5+xUQse1/ouKu8jgBAFWKJERV4cZ5EWWv5zLAVwVRKj7KchIuOUORYZppBENwFUndSPvPwTD1p3F9vjRPnhMDx6smsY4vWuQqxoAl4fnUTHoZA5Wx4PM1JE392pd+7HgzmOaB8a2MMA89T5/Ba9EEBJPw5ESPivyOFx24BbCzJJAu2sjR2q849KAQEhsibk3NhuhLw8jjGiBnPd+1Sn2ze6kFhlTMU0ZfXIZHBrtpAkOradB8XU89WXv5RXJABo6TxqCDQ5ME3x88nJc06VvrXkkfwCr/f0eUKUmc+PcpE3fUZYFARC+ndqYc6KSc/JJPr/JwhH+T62BY9jjOwiAltPcgYw5kTOhJqF/jpv7yzhNmTskZ/PlPifqRCdAaHIELDdwN3tpKxxyuterocVgJ+sEWLNOZ8PaIryjqeuPUE4f402Jw5W1rPSZhc/ozu9Zi3mTVhpWcJijXjQMpcIqnNr3DXIoJq9tte3IQB2fWSfN9q0wHbrpT39tWUZ7AD4PVeSC45qY7e0hKANUWDPkVsClve5tc8ukcV5dsTZpcDpBX0gBcZT0qeM6n5OPfQajSJ5KTF0BcA3nQuy9XTt+16sW/36i9Y3IOvHr25LpF5Y01/6vm4RKKvsOYTJt0ZYfCnLHGbm+5JL7UaM3OxmN7vZzf46zQNlVG5K09BylY05tSkpPdYK6YAAOCmQM4yoSlAsgfYe/KTtVoB7LXfaANZi8+OjAKKdB3w/fpZ8Bp786P/Ve/TvGtw7wHx8gPvpZwFcSeROXNeJfBazlO8EyFYdejK07qBaWnlISD2TA7hgsfnQ4e2/38D2LP/rJtDgASmNeDAk4P/HB9GAb3wbeDB42rdoiIBPn+P9Eq/31MO9JLDMpgW9uQ/9IAW3qYF4ECc5I2rvKkSMTGbWD2rtMrPggRs9T1Nzx2O9LP3+6Sk+l7ER6FdvyJB7xYUE4qdyXlQtjWwpo4FI5NqCrrj/nRIcVVAlGXc8TZITYOFwzoN/RiBqv5/y7CvAW54m8OEAOIb7/Hn5uYlC8mTa7+R5Pj2AnYve3pUoBAAZUJd63EufWc49oePbfHwETRPMx0fw0xHu6UnuOUq0guq1qzQe2k1MsE4Et9vC7RpQ14L6QcbzNAk54aM+MpkRHY9tE3JqIJHk4k0Ld7cFHQfQp8dAqkpZSdtzHFfRgzeRZAvkBcfcLGHOO/0OqW2Cjjc7jnJMfoxqFJ1KoZ2MHlLSwZrQV+FYnnsYRY4LAmxz12VAXTh8TQ5EiSShJ1Io/e0LjHxuF5GbGQAy58EcrQeQza8qO8bswhxKsDOvaP8jmcOs5kmiJN1WMR7T+yAeSMGSW8b+9EHatmmEVNZ8SOG+J8CTAqCsJ7bX/tv6//pxdpR8SwJqJxENS32sACWUaHTv7zH8cIf2lwOMX1MxJYSstoeuTaU1DWi/Ax+OgM+rogRsJoO3QJaWe4kM5P+1JaOT6K3ZV4aETDu5V8rn5UhuXZabJ4xzTxAvjj9trwsBP/JJw7NcVOxQknH1i2nWt7L6+LJebGvA6xrgWqvbUhkmyeU6juvJESLQ27fg/Rb4+Bk4FPsXT3izl32cOcKoQ8qqqOsikmxt2/oxKFF04+nrZmN1JXHwpcDMZ94n7E1qUmIvrc/VwPYXXEvGRz7FBNyzBPHhHqff/4wIXiJmn9OGS+TINSKOyv1abczr/S/NU7H0O41CeWndv1TE1WvYKVmztZ9fal+yra79bs6tVUuWniXIk/gvsN8uMfItD6ab3exmN7vZlzNTASguAbo0hHppPU617J0TkN+ZGKa/JNUVIkX85t4nzIaSAkdJgEwPRwGERvFwZT3gWSuHe61ma8G7DehuH8iVePB0XprIZBuUeej5ShBd629tkEXQXAhkYy4AZoZ56rH/cYTpHezgYB960EHyXgRpJm27zoNfx0Y85LeNRIwAYEuSBNpHTzDgPb8TgC0FdhQk3WyS/BNTfGfOhENOkBSjBc9Cx1AZiJnV+ldoIwr3o1SC4JJ2BmKSU7VUokiJCR9tQQpQX6rFHW6WgK+m4iHHLsmDUuRDyX6XgISF52L2vX6W9tULjB3L2ExlVkpw2FjY9+9y4lGv7/t473IMqGckAN2Qz3O8KBh25sDcD6AnAh876edjAdZ40ilEc3jpu+CNbgmuMbDGj+G0vZbyNQAB+KL9HvzmTqKwGgu2BG4MiFlA5345YXQkHsuotyVZoDOAnFrSloHENnLonuWqWIoeUtBb5x7NUUQEWA8G6JzEknSZUzJPo7wiUxDl8ZKoqEs9qmd24nB80vu9QoqE6BWTPruF5BdZICmLd1WPuplLOpKfE2dyM9OUEGEr5jNTjLvs3VZAnFNGyfyUgvUKgGWRnXlZNDqYwQk5n0WmJZFvp+4/OYmu0vGnydfT5ynaekY0lORQ5fOL7LXOwwnQv5hXI/yWZu9uMR9W+MGKeute7Yrjj9nnaUvzFa21k16/VyS1XkqSZYTNHDOhdI52bjlSbsk8GU9E4LYR4pqFiM4kFEtZIlNE2a65T7oOXyvaghfkyn5LUkGvGa2wtuzXxOvSfePsq0p/XiJXq9eembuuYb9WH7tGv/gtjI+XWK0Ns3PDwj7sW2m3a9czzOMvK7dKfF5g3zYxwg7MJvs7s2+pg93sZn9tdhufr2fpYnxr47qt8OYInoL63RmvNQ7YaQ5OZcmoiUTuykKIjlTOqKiLeu8qKcI/vIfbNODWgBgwH59A/QD3p78IGaDgngf+zKYVr3LHMAPD3bWAJZjGwnQD+Mef4fpBKy2RI8yg7TbmVyBKQIfLPKHIWvFun0TWJ0j/NI0QPBqJ8ZdfcP/pUfICjDFHCvscKmhbyYtxOGL6/BnUdTD9AHr/Fu7tTtpqckL8fPcW6HrgM4G6DqzPp15c6uWrIPN+J/fYbgRg8SRVSAbaeWDPmJBMWOR/Em1i/Zzju43e6Tb3LFs4eFHTxHtMLhIbtXwAaVkKAO73MTJEtfyd87rZ0VOOn57yOqReYudArdTLN/Rv8cYLSbHTfALnEqKXbXKKOGA+QSCeANMU1FZSZCrAc/9c5v4O7r/4e7hNAzM6YHSwP34EHzu4Tw8StRGiZBKQHKjo6rvsUKTtVfXUlx9IMR8/gT75PDJjkaCZCGa/A+12gRzVvBj0dBTJntZiumvQPNiI4as3roL5Wq9SosoQ3O++w9O/eQczMszgYEYH6h2Mc5h++rm+x9aItk0L8rlq4CPBqnI2LkbThQguII9ySt4jp4SUj2YBALQONE3gqfePUSG70jpuNpEgMSTEkidCoDlGSKLSQiRV8m6p3WQyb9xJrhbabKTMNJosvXfyLCctIUgXAYklWZcUuMkitnxSevWq9/JOPMyvz6SbdIy4+buhxsK8fSPvJsytLpAgAZx2TiJF1OP+3BxAJOsVEElbfeZa22lkCc0BVY3iCeR2LQqvFv2i7XTsYT8b0NNRSMpxjLmMNJF9IjuWjiEikmi8cYzA8jTJOpvOC2UeC30OQ+vnzS9pxZqhMp3UUiTBT9ls3dJ/18Zs0qYL+66wBjkO61tW3Zlk0xkQKiV3gfp4Xip7rZ0Dxb6UnfNaLskrP35nc/EZop+7XsZAIznteJqAweetsxYE6ecatRAIXJKxiMkhOKLU2iyt73Pb8xzJca0Iiq/dXus516x75/afLxkv5b6xFr2V/LZ272y/6zhE8Nbu9SJ77TlhaT+i78BN+Zj+taJ8Svu158uarXXsOYkZlGVqlCueH3X0HPua8KKX3D85i8t//B7rwgCSb5sYudnNbvbt2q89Af9WrTz0fI2biq/NVJ++sAgW+QMzYfkgVXqiei84siYCVQDYxIgJiUI44dVgKObTMDb8ltjfT8uxFmhZPMiDdIQR4mXTwj6NwMTiAQuIR3jbAH/zexhm4OMDMPQA3Qu400puBe4EFMKxy8GHc31KwbbdVoDcoQf6QQ4ZelDebsTbPfES4XGMh+nQrN5zUwkLBfisAW9aTPctaHCwjz1odKBDJyBxP8QDfQXIIAXP1Hvc1zuAh+rl69srJPouAauwmTWxXEDejT9Maf6NkPNF+4cHlWF8e/p+SMYI6Eo+6qXsc8l1+hzSp8h7dlYANWthGooe3Gl52fMU3tMerEh/F/S8Ewkd2uyA/c63fR9IMKhnferFXkZupHW5lqXgDnuiaSi85VOSjAh0HEE6TobR5/fo83cFYEYQ+vtUwTiiELHS/Ku/l4ito0RDoesSmRZ5/2zMnFjRd9BuhMDT53Iu5E2BMaDRiQxdPwqYOwwyblzh6a591VrANKC3b4Hv3gKNwebzIGRIP8p4GibQ46FOisDPkb7/MnMou/TaClE7QIi+Um9+slZkAoEArodE3UouK0GqEXDMIlvnvcUFZKsQlmoLc7yS1aTtuGl9u45RZiu1VI7DE8aMRCKpjGyo2an5U3MnhHGxwqM1/c00LYxh/55UWi+ROdPnmSVfL8vXcpUQGSLDEnIDWAPstlLPvgdBpAp5cnOyr3wM710uBIVvC6ac0NM2qK2b0wS2FkZl0gD/LiNBoc/qv8yv16i/fgAdTIz6YBc82KUfF7mUfP6nsKYoKazRRCUZCwTScHUOmfL5f21LybRUGnOpjrO/fd97JrCka9BZkuKZ5JK+lxfnd6GkbULhOTmW3LT4e8W9a9I3z7WSlNa9V3av9N4rzhYpaUEmzMHEGo0x5eV6BxNK5v8QkZqSadeyst9qnf+a7Es9b9lf1kT9XeM+LzFmZPvdNZGPX7ud20Okdq22fG4533pbX2IvnddubRxtKVJ9hX3zxEh66AoL3G/xJd/sZje72Sk7tYn8EuRI7f5LAAYQF66XeCq9BChIQEuJthCv5/CdSQiNVENeQbuaV4cnR9h50IAdACOAMQB0HQgENPsE+DJzjyklFtRzbrsFtS00QDLm3zDgbQt6+0YOknuJnkAnXtTu9+/BjYH98wfYfogRJ5aAdoPP//YthjuD7/7HB9ifH+De3oG3Fq61gAHaPz+APj+JtEzXrWtXIlDTSs6E796D392DPj0CD4/+eZ1Ev7zZh8TpdByE0GCR7MGmFQ9v9Tb23shkLczdnbTHbovp/R2e/rjB7qcR7X/6BTh2cJ8+517KJ/oGkZJAJtQdm1bA5odHub5tQMMIV+ZG0GdNZJeCzI+1Qgj5fC1wDnTsEKR81IyJgPDhAGaG2e/kd5psve/zPgfZ95g399JOjSSh564PETc8jJFwkQskh8SmFa3vccy9kst+lzyT2XvCo+tETmkcATfFPbwC5Pd3mP72d7AfH8F/+cnnwWjBwwA+dkKSbTaSiHjoJVeDRpdozp1VQFACKHERfZB8Jv+O5eVe6DL2Qy4Rzd3z559B7CQ3QCqhQyKTFySESlInrU8AvSiCQjwBbYNP/+0/4PGPBnd/cWgfHbZ/eoJ5PEoOk+MxJoMv66mkwJs78N0O6HrQOElOIe6l7o0FHXo0o5N8II9PcF0XSSol6TabmD9n04L2O7h/+COe/vU97v7pgPZ/+Pfgrpf+CMCVwKBGD+hzK7CuQJbKAyoZFtpmAJgAE6MZAPHQN9st6Hffy2e+j2m0AZxEI9Hbt6BNC77fy326VjyKmwY0jnCHoydHEOuh9QqRQr49Uw3iVsYPnmT80d0d6M09+OFRgHFvruvE8z/JNyD96jTYPzPtv+WyqOWF+p7JuZACrmU/TwhYahuYpgngtZDsfj3TeSAQBgtnKG03/26nz5/j51oXtbaFe38PMMOME9COModOE9yjf7503UyvnSYwGZlzTCQy+eBz22jEVkJwkEkkp7S//LAHdlvQsQM7B1KSSwkMT3KDi5fATnLZfPoMHI9YkmfS/BO03cgcd+xkng71KEighfcYn8XmBBwZVKMzn7PPKSPDXhq1kJK16cdpFA2wLrpvqR+sOcena9BS+aes4qkeomCUtDoVBbN2rVr8zsDsZO1XR4ZMuvWUZ3qlrFPkWvU5yr155T7c957A9u+8zeVGg+TnUhkqP6fjzxqQ8XvsCvEa5rxxlFxP7SbsA3UdgHcaWYy0/v+z92+xsizdWSj4jYjMrJpzrsve+7/7zmkQYIQBWd3y/4oAC1kI6fgZ+4Eny/AAOghZ4oGLjBEvNA/GTxbixS9GQi1xkblIIDXYajWN2zSc5nDoY/zb/Jd9Wbc5Z1XlJUY/jBgRkZGZVVk1a64159o5pP9fe1ZlRUbGLSPGN75vHGNhr5O804DTAjbeFWj5kMDSfWYSBmm6f1D5S3/NwA6tBWPA4z4GSu+zmXvOqbXmvizv03P18SH2Qr4eaJ/ddZ6N2WMP2MzrfhDkyxz1o76DO5je/zEDvGPj/phnyFm4J9qjB0Z69pBox4sttthinyfbB4Lch53rXiFyMWMIzK3DoRd3mryyKKBRxulmfpDYnLnnOBOAxEfbFQZdacRR1UlEt335RvJxaNJZHzVMdQtq5VpYCzQt9MmYGM4SuhJgK9e4yxLthQUXclXpo2GBxNGY5eoI9QV6idJVrx/OyYF4VckBuZVobNrWYCvsCGraqGENRFmWXl4HvRWDXCdgQ92ivJUoeXQuJGae1MJOafFp3TsXo8O1T4M+fNtPmpuUFfuYht/p94ai70CjITWymCiOgfUKREZkkgwBneR20PYIsmyVT7jt5SnCvVwiZeOljADvzFDApgfqpPlBXPIxxTmRPpvjyJhJLQCMUZOfiKCJtgNjpGll/LsuAgC57v4hG5vzZOZH9SaR70Eqztooz7Tb9eudmrJx/D3JeOk8P1cHc3is+o5BDvK/1gUNe/ZSPeIAytg7FNllyhChVN86Gb8EeDCxic+gEY8aga85i4zPVeLnNbUANR14s5X6jDk2k/Haa9M8x8yg3TiCJHq//JopU3CZs/bR9tK5O5XXBbp+mci+U6eutp0hPyY7ycnkIE4a6+fSYMwnDIoxp8LbtDRiPIlEDzmAiPyaCcAkzzLm9D90hlIG2CE2gHNSJR91nvaPOMe07n0wILAAuk66TcHh/JGrKgYNAMJgYQduud8WYzYjdxgzg/y4gDVA3cW1StfrQ86qvc48lSKKebdi/RSsPhcLYKI9zuk0ycbRrPV4X+T4DJmmWXYoB0fOhDqnUSbNpffhOA/iHsHv5/S6rgtBMHd1IHK21+zVJf974OybAFx6UmfpXmrE2ZfmJtHy0/2Zyt1N9ZPzbC0T/75zLpleHc/sN3pXDt+H7mhO9qT3YumYPCDDF+t0oL3eVZvex1r9rsfHQx6b76M95vZ+V3tpb48eGJmlI7rYYp83e8yo8WKP18aiKLJo9IEdHRUwxUDJoz9nHs69s4+dicyR8DUjlXUaPZDNrT+RsAi6LiZz9myC8boln3vAgwuDbmWx+coKriCYllFsHC5/85voPnshrABrvcPTAN/5VCS4PngKXKxA1xvgZgO+WIFQgS3ABUDeEbT7sML2QwvTMagDLgDwZiPOm4sLkU7p3IjPQg69VHpnK8RxxDuRUkFVgp8/Bd1swNfXcNc3wIuX4bkUuBFWiBEH/PaNAC1JnhUwi6SVb0/z8hoXzKBtkzityZcxcdhWgEfBjyALU0vbXVx4TfkuJg8ey/UBAYtCFKVzSVJn088VQOSjiDVy0gYQi+tGZK6++JHImzknjm/n23Tn2RXqqP7CBxKBfb2R/tBo180WTiOrw/ixkkOlLIUFUMfr1TkegAsgSLsACJHY3LmYrH2PtjLfbmBevA55B3SMa/Q0ta2P3I55PgaSXmOWOU/73/WZI73fTEULEoW8EMoUkVw/Dt3LV/18COoYSnJLAAi5VQJoOOXYT52njlG+6bBaGaxeNChuGpjXt8BmKzlF0rwWCRMmjClDwhTpXAS6/D2CZJY+Zj4W0jZyBnTlc5WojFTToXrVgK436G5uxp9Fn6Nnfi2g+HmUvip99cSpRSzzMrDyXGTfKGgbHOncXxe5c8J08pJnAOSZO5eMs244DhQcUKZMWchz+zaTcSiMLPicIQFENuTZYy0Ar4sfH/J+napzLM2LoeuL5r9QZlrpZcH8mpm+z0LODCDJ9zJkjwGQtc9HVzMQx9oYONB1oNudrBm1jEve7YaAXwbSqoU8SHm5vh4MC/v8Sph+PuLeffpCWBv6bG0Hsh04c6Iqm87fqHdPbYcAgHYdUMna6XZ1yCkTgwBInk3fH3ODKVJTkDDvk7wf7rKHP/f+P9kzgcyIPJm3fWuwfj9md5DAGC3/kMRXeg0LsDbKnDp2npNnHCt7KDxXLJeSvYgGO+iaRp49tbfuyXsql2RLI/NlLbZHs9uoLMLaMnzHmsjWUtZg3madzsEEVPTjhPVdbC3YTYDw2jaUSJGmMpx63aljPHPW38mf1Fs3J8bK6Ng7o8P6PpzfhwDguecuzhhYY/N8wPqYYX7O9tmpe941Y7aX2XVCmx7L8Lhv1s/ctSus7XEfyvuCXhabb/cduL/4+fw+1Z/N7mCPGhgJmu/yxzuty2KLPShbFsnPn83duL5LG1un7wMU0c+OBEeiwytnKByOMu3dOmMlTAEs6gScirAcaDzrcxF6/6PLS1ifE0Elp2LUfwdqO5+rIjocNV8JU/xv0zgUOwO7czANg7Y1XN1IkvIANjBIdd/HDi+plr+T6HVcrMAXktycuk4kr/zhH8ySiDONBu85A8T52gOrPGiAuhEnXJscuDxjZjKCvyfhEJ2B3Dm5h0bveyftaBJcdRqSifU0yugpgrxVGIOclZGyk1Tzf12BSwvqWNgXu6bvTFQmid5HncgaLZ3r8Ouz6vMaBYwSVlQGOgyS1LHzjtX6MJ2+60JOmih1EevFmjtBJUrmSCTMsVS+Kny2f64Gpo3m/7HTG2l2DCL2bT9ep9H5OxJJSx3DNpLYnJoOaCMzalS+Iy2DjIx9ZqAswIUF1Q1Qt4GRIz/lAeAUAEuVLVNmkgdYqGlhr2vQth62+z6J2nztzE1zJAER4PGSKpJfyAmDDIg5hIpC1iqVe9JyO7+G6VwPjBHPKkiBCpUNIxIwJIAdNiTlps6AE6ZUnD/CYguAY3gWAWc1YfC4fEfs66MtlwHYJwcCBKcFEcdoav87BZLJMwE5idxm8GAc74tq7303BeKnv3VOGICAHFS7hG2RX5s89/D5JpyIgI+otwISDq7JxusYWJaxwXrApmdjCWukC8/UawcTGR+BEQUcbp/0GcKfD2h/di475Tx+V0DkUNkDphsP17rw3cQ+9ci+inl3ErbtyPe9e4wAEHfyb2TvEF+R48rIZNJmW/LOV1AkrEWhTrovASTRejY3tc1T5ohL2K66VzzxzDv67p4j5TZ1z339dd9R++/q3H/KGO3th0fm1tSeYnDvLODurmvP++hLPGbteltjaPFRLXbI7rimpznzjpnXjxoYWWyxxd6iLSyUx2kPpa/uWo+9UT3ZBnoulTo3H0EWDqz+QOc0Gm8sYn0ski7JTRKcgcRRhkQj56YSZQNyXeKYST8nJ05W00o92+/+CObDJ8B/+wb49hYOcqCk9Uqe5/pWDrdF4R3sBrA0kFhffbZDcdOi/PQGdL2B++wF3GYD8+QJyBaAFfkfp1I+aaJjongQZhawhRnUtOAvfYT6CxewlyXMkwvYT16BfBQxd53ktCeKeR28k55V1ggAtxoJ7ZkjzmvPbzbgshIpKnUEWiuO0/ygzQxu6t5hiupGnMl1HdkentUzyhTxv9VoSpGq8pGz1gJPr8DGRLAm71+vV8xtCxgL+6UvgC7W6J6s0a2sl1ti2E9aUBPZFfTkShgl1sSI5raFu76RuifO9J6jT2XJiEJEahhXmhzYMahMkgnr7zpIEnuNlh6zNJpT80Kooz9tO/bR/Tq2R8oZL/+IyMFJZwX12gel5GahshQ207oSiSovFRQjhhWoIHHGeFmywPxRc9k8yPqAWcADu21hNxZm24A2tbRH3YS8LYO2MCr5ZXrObL5YwV1WsJ+KhB7vamEFpBHnyXObJ1eg58/Ab27Ar1/LONBnMQS62cB851MBKxUkUnDB9+1kzp7Qrml7myBdpcAfrSpZV3c7AAZ0uZbo6JtboGnhfB4aPL2SubPZ9sA4AZAcYLbiIFP2kTK6NAI5lVkyBsZ6J3ZVCuBRFvLMzgOsXQdGlE8zH34gTJG6ifNE13RSoGAo8Tc61k61EI1tpwFJv/5yym7yDDby/UtlKUC5oTCP03oPNN91DqkkokrGcWQ09EDrkXoz+zxRzv+brgcj1w+fa2SMZSAKb3cCBLq4xgbg3j9HKiU3Jq2Y1ie821lZcv6ddCt5dmR9VbaYsrgMwguUOOSE4qYdXyt7+2cF+y1gDzisHsr+bczSyP0x4OGQHYoav4slkeQhSGJq7UoByNSJmEdyH9MXrgPXzueuqzw4mLD6nOS6gbJOHYO7JqxpvfdLyjYZq4d3IqcOoZDzheK7g4zeJ/4m/H7EVPIzvBN88EoAYhV/77J3l67ZXQdqqQ+IpMBIKmfJLPmldP7rMxoT5O+IaBocmWNzzrBzyqJEJm3svT0mNTZV7qGAtqm1cHIszyxnrh0qd9/8Oqa8sf3bzCCDwXvs0L16P9a54n/izCg7/CgbYYftHXtvY41/qO+RfHzeN3vmbdi+881dnmvxwU1bGoQYAp5iQAIfMaffD2DkfUR4F1tsscUes73LSMhjI5h0U77HCRt0+nMd2+GF4RAHp9FsXnJGo1X1oJhGtY5sdILDT//XsUSd7xyo9M4qQ3ClBVUF7NMncpBsvGSCB2TocgUUVnKJGAP37AJuVYAcYHcAFwbucg20DtY50O0WfHsrB/RkwyqHUk1OmlU2yCl4h6NnbgTXQ0GgygIMmFUpiZTrRhxc5PZG7etBtHeQVssPRIYSv+VIPaWSwZHLifOM0UkSXZ5givjn7OWnUMcDewaCYzBxcL7m7TMwnyfBlQausiJr5hjWWsB2oMJCtIg80LT19Wsaab/M4RicfBoxr7lFfGLLkJ9EZWM8cJdr5qdR+IOI8rQd/fdEvv00QnyszccsnXdj0bL6THk90uvnHDrGIhLz+qWR4XmkbSqNlo6NDHQh45Ola5LYxJFOHXuZOgVFeRg1nD17uJ/mCPHsEKqNzJ2QQDsBcvxvTVVK/xZFcB6b1aqXL4U6eJm1OoJ7ockozHsY8k6ocadvynSIjAUrAIzxkl2A5JlRsNiDOEHWDgBfroDWgbaXso4p2KZ95tcUbds851HI35P3nWNJVXKxAlv/XG0HbDyQlMjIDfrBwuf58fOKJ8bjHFNH0r7fHnp3JWOZbOb8rErQ1VUcE52Lzvq9UfIZUDBS55APYCwxePo7vZeyxvK1dB/YOZVfIl0LyjKA4KP3z01ZRXMYHYn1xlh6n8AYhH93JyD4LMfqMHfDMYzUh2C5dFP/y8f1LKOOynM66KbGna5TZCT/T9ONzsPeO2nPvnM0cAcYsrXS76YsB4c0H9ZIe4R65tNW91VjoIheckhO88CcDU75YwDpnvP9DP6jHCQY20OcYlOA+KFrxuzcbJVkjpz0HnzIdq626o2zPe/eh273vZ4/tvfFPtsH/C22305to57ywd3n2OMGRthhMoJiscU+z3YIWT7lxb/MscXmWv6iOvfYyQ+Ip2jTjhabOD575XmnXa7RPHFw4aaN+vaARDqz1zdPI6M038I+c17mqe1gdg3IOVQEcGmw/aiCq4BuZQBTAt/zJdC2Bf3Ot8GbjWhVVxW6r36I5mkF0zkwEbZfLNFVhPLWYfWa0Twr0Dx5isvfeg16dQ334iXcZhvaNURgW3+4JSPOTg/o9BLIqlxLiOR2sMxgS+jWFt3KwGxF+guvXsPd3gKoJJo7tGHioDYxCpqqKkaed52AERg5WHsHJvTAnH8fPnPynECIEgushjEjCs5mWq/647z0SdHrRqKXQ2T6xFzwUdl8uwGY0a2/guapBy86wL5eiaBbYUPOEdo1cJ+9iPko2EekFmVkCniHNKlTPLSJAlsrUFklVTIhqbKyAnr5BoITUKR9AiCUAiDswO3IXmyfcyllVnhH+bg/NInm5hgBDCSOmENAqLIJdJx6wJKdzCu0HahzcAoGJfUSOSbNiyFtom2dS6SEsXF5CbIG7s21Z+soO6mF3RSguhV5u8YzPXLgSe+vYJ3VMdCCWwBtC3pt4W43vRwbVJQwVZxH5gsfgZ9dCdB5fQNarUBf+BBoWvDt1udIqEPuhSC5pYwknZOpjBSPzScT20oBkaqMeSCYgwQWrSpx1m+97FojwI7b7WCfPsX2q1cgBqp1AbNpQN/8GKhrOJVn0jGaMylMzNsDIObOUfZeUwN2jfrLV2jXFtWrGmbTwm62AgwpSNO2shZ5ZzoVFsLccNLuREHeKwXKD0rNad8esFFJtbQIlerTv6sKWK1E7q5uQB88R/O1D1F8eg3+5neApoFTpkjoLnHe7XVKBkDJs1eshVmtYjuNRUuTT/a+q0Ofjj6DnQBD/TyeAt2VPWWePRUptlSKLuQ9yd7/nnWoTLZYBzvYQ8RcI/6zkLsmCQ7QdaEq/RghGcdegvHgOEjXPHhAJO2LQzZ3P7Uv4vyu+zEfWDAuQ3RE2fcZ1Ji84+N7gnp9Kd9na28IVrljG/n5wI6jTGACLvfeL9aIpCDr+LMAucjsmLKxaHRE0IqsD1bJc3pN7ZHzNvFrOdd1GKfBEgZ1YAfWdX9N8YzgAHr7MrReusaysr9SMMa/i5ll39LLMQKMrhsHx/Y+AGzs+z3lBBbuCEM09HP4b3535+1egAfivu4cxiybsLlryqFr9gXP7LkmzRE1lQ9w721HgcM7rJOH2EH5PPNBSyczVe6LZaH9O7cOp9z/ofiVHipTJa3XnnPUnVlO74Pl78H0fUcGmNm1jxsYWWyxxfbbQ1vkF/t82FjE3ZhT6Nwbz9TmHpZ6xfooyEE0+REU7dHndNMa61NRl/o7JnF6AaBNATQWtmNwaVEVRpKwd1K2qywMEcyzJwFAICOHbrttA4OhfGNgS4PqTQNqHFxl5dC0q8HbrWeKxAMUd51ITqk8yVibpFrrmXOdSSR7RIKB4C4KmMs1cLsNAEvMfZE44zT6XNuck4hFL9GDMtnGaBkhEbuByGm50Y1vzwnZo+Ki34+JUz3kefAR6PIvgQqTHJTj/7hMmBuD7hWAh5oWdtMGiQpygKlb0epXMC2AQUkEs274DIksC7xskbUC1BQWWFXitNhsJd9LuDnHNnNOIs0vL4LUVi/CPEssHKSMEv3wSYbN1GYewFTE8SBSVseExbhDdZ+mt2+nlMlBpUjKUVmKtNJFBbROHL9EyLXhe3lzkDg+gtMhMh9kbIjEEZW+L55cAUUBZ4RRNGc9krXISYS+Z0mQ5pkBQr+FBPDeWUtVFfum6yRXzc5LdlkLMkbGQVMHUCJdm5QVphImWceIxN1IjgaqqqStFEi14EJkUkjL03s29QCAJmvQrSUSn7o17KpAuX0OalqYRtYfvr7xZ/VhHdK+Cqw99m3o+8reyJpnbxvQrvFJ3OMBiozxcnU+71EAh2QeB/As66uDlqwnU9cfZJLo7zlheKmVVZD7sptG1uuQYL5f5qF7hLEHG+eeX8MIFlitQF0Hl2DIYc6yl5XaI72XPXQCBI2wsPRzBWqMEfDKOXDb+bkW10SZM359HoAC/l6asJ6TuZSaY1mEpxuox9Lizu1niyTrUO8egGf0zWSaHGtva/+/B8h7sDYWwX3m+ufvsTw5OnWdrMm5dJZa+t6THwGw/cCF9FnGWCNJOaApx3PyTs2i3AfzODBRDXpJ09M9l5cQCu9DRFBE/5vS96xJ5mJuzudQykCRAWPplDwXd40uHhtDmPk+eJd2H+yR+7R9Z8j0srfR7ofOsfui1yf2wnGdOEP9HpodAzg8JEbNKXMkWfvOZhNrTP+a93HgHGGH1ocj91fvBzDymDZjiy32NmxOZMYpkTKLLTbX5o6puYfTsQ3CQTmAI8ARHx3D7og6De6XOXx1w6vRzt7JFg6FxojzbSrSyUemda9ey+9eiHOeqhKmLLD+5hooS3Rffg5XFeguCrSXgHnyJYARkjwX334Jc7sNxV5oUtztDsyM8sMPgLL0OUW2/QMykbA6bm+n20ITiAdZn8SpTgQUBq4iuILgCgC0gltZVG0H8+aNRNo2bYyk9frYZrUCLtbAZovu9WtQ51kUZQW6XMN9+BSb775Ced2i/PhG2Dk3t8NuUaZACsCMRDuHiLr0OYkkEv/ZE6Dr0L2+Bjet1MOPKyoK4PJSHKrGgFV2qbBwV14a6NtWAlaSSFYdGw5A+Y1PUJaFB0CcSJk1begPqqrwW1OVw2d8chmj4w1JrpOqxO6rT9FeWVz9rx/DfeNFcKgGp553shS/6/vRfvEpqHOgNiYHh4I62pdNC6obyR1TNyFSPTBOcr32vI1z7W3fBkEX3TvIxZGiSZwlypSqtVyfRoCPRURrBGeSJyMAaT7fBQoLvlzDrUrsvnwB0zLWm49Am62wGbSeLslXoG1gbT9RvWKFu5308XYHshb2ix8BF2vU3/UBussC9raFqbtePXv1VlP2kg5FnxfHfvQh6PLSs7FcWB9otQJVFcwHz8FPLmBe34DfXMO9fgP+9EV0JG22oLIQaaW2CfcnzWXiZa5ENsmGvg2RuoZAJDl1uIlecaoqmGdPwbsd3Ks3PteFgE4oLLi06NYl7E0N/q3/EcdK0jfmwgKXF2iuDNoV4fZLFqapcPGFlcjTGUJx02H1G7+ZyGslrCbfYNzB5yLxa2wtOv7m6lKmxv/nv4lDEpD/ae4U+HViVYEvVhHIaf0YMxYoEXOf5ON7jk2Mf+0D/benm5+NE/bMoQA++Rwi9MFzdB8+hX15DfzX/46ubWNOkdTSKN8xZ6K+B5mETWZIADcFW62Rvm1b0M1tBKo1L1PD0/lo0nbIq9UDqf1a7NJ2diF/jPvsZT+XTlJ3ZgFtSQr1MnSeTdQ0YCZ5r1gb84KojJz/DXcY5upJ6s3bXWR/qrxQmkel5xxLJMASB3QYQ8oKOGYs6X5mn5Nu3z7qHHZXMOTY/eF9RNzftS3SumV9EXKLNC3AEpDQy8PgOsmrZDwDTddCIIC7ZG2UoEo/9//ttnFP1wNHALDz1xkPaqbPqkEsyfwZsBp0XqQyfT4vlYLgIZ9YmzB8wz1sZDymwRMAiCkB+j3bUPNFJUyMkM9J50jIZ9HF9kze9dK+eyKn83l5LodiykoKnykINNPZe6xT+MixG0Ekz1Sbw3B8aDZWX/9u6Fk+3ue2bS/YZuT32Vqu+9TAMs+kX3PJ33TPFMqlmJNyr9zlvr66r35M9wip83myH5LfAb6NNE/aAUZD2sbvwtGv7+a06fU8OKN9Q+BcBwAJQH0OJse76PvUzg2k3pfldVQm1pH7q8cPjDyGzlpssYdmDwmZX2yxuTYA9CYi5M5xn7v8XKPZfLQbpQdbQCKyk7/n1iccGoHoyOkczNYnKLcELoyPWgeo6SSB93YH3m4jIKOJmttGDsA7n7ybGUGzeeT+UxaSdJLKzCQOrTRS2kiuka4imJUFryRpOmpxHARJBik0Rvb6aP/o4LYiVVVauIIkcXvbiUM0r1viIA9Rkz0Zhj1roR5cyiI4pOn6xjsnExaBIfCqjKBOiLqXNqCxfs4PUdrHHvSgwnoQooarffR/Wldj+htWnwNA80IEEIYQk6XqePQOlFy2hxiS/4KT/wFAxwL6aD3HxsPcaL08d0dw5MQI0IFsR3hmitHZoxHhNLg+5MmwRsaateKsLyy4MIAl2NqBWl+W9mE+B5wLB9002rX/LAmbigncChvItE4S8TL6uUpUTqXkzHk0sZH3siwhUl7ZIkRxbLjorOWu68n/heoFp4hfPxPnl7YjWQNuk77yzAs2GD+4UjLPsnws1DGo8yBDItkGZ4DCrx3WgK0BOYAcBLQggK38h6mdgEq9A7hBnvRd2zU4GTV5vQKCTRuApvhsyTql1yW5REbX6VMiIA+9r45xCqRgSecE0NQ8AApmncs0+tt1gDXgVSlz9Sa7bEoGbAQo6DEMk/uMRtxqZLmCtOyGwHZahtq+NckQwBTGWvYg078DYiS8giJT+Wm0emGNl/4fgECLTduciNkpe1sOnX31S6Ugc2NJHh6YgVmatcDe0/Un3Rvd1cbecRMW1lK/zxu9Ziq3xgiTNFzHjMGTqETrWLm+vZIv+3PrIUROPySf1HLOFxtjGd/brdIAFx7sq/aOD2Uc5DZ3r/GQxt6p9hDm8F3tvt7p70sfvy07MXjjcQMjzBi+VRdbbLHFFntwNvZyGovsOfTyz2mTczZSb2szEe7jI8iIJToulc0Aeg7uIAMyd0PIDG4bcCcACNUNzMsStixgVpU4sL18Ct1swHUD9/p1ZK2MbBa4rkHsQsQ4trsAmhxsOwUwqlL+28twBc13QKSaOoazhHYNgMXBWnywRnX7IWhXS64NawabSmYGigLm6VPJW7BegVcV3NVapMMaht22wKs38Z7GR2F553BIyEx6eLY9eYtJXWIyMOsV6OoK7dc+hKk70KvXoqXdtj7SfQ26uEDzpWfiaPdnG/JyLsWrDWhbo9MIY59bJLAZfPvx5Rp8tcb2q1fo1jI+TMO4+nUGf/JpL5G9RmKFaNDUEW19outOHKR224EJkksjdRinYwEAX9/CEsUo+a4TVgIgzu3Chgh1biXpN3dOchjUzVFROT1nRm7swE0yNrsOIlVlgcbuzV0wyhQh/+9qBfeFDwAD0KYWZk9VAB1j9ZufRmaAsiMS2Q91gPZkQXy7AJBIWgBcK4NBnJ/dp5+BDMFuNijWa3Rf/RDdupB2BmL+nAvPhNlsk2TqCQjg82fwZiOslDTPBhCibnm7AzUN+HYjYGgegcgO3CgLyIa+IGtiHpVOnN8oiqCN3+uLdqKfOxlf5mIdmUvOgWqR8rI38nxus4ndVZgwV2m9AhuD6nUHuzJo1wTTAXbjhBH23z8WmT/P2BiNytRyiaRNTQKK+PUgPswIsKX5ZzzQoOOBnXfEK4tg7vtkLJJcmR45cOEjUF3djTAHXe86AGF8c9fJelQUMNaI1FgemTpZt+yzJMKOAnMPUXKtaYCnT8FXa2BTD/MHHGqbFBTpPV7WL4pR2SS6WXMh7ZOeHH3MdC2ROcNVFWQlJ+t4RNCFMKry/hzWU97zeZ6yA+/9qf3QlNPzbTlP3qaD5i73OpVxMqfcScAj3os0uEMDUQbXRXCkt1fxY51A8b2fAiRTUdtHOsMnAT1lhiiT0FB4N3LtA2kch3ULxsT8T1kekPzvYOmeBpD9VEGyn3DdEPRWQNQ/o0pVBgbkMX2s8/Vc4MGcffIx55pT75Pf9sj18p3aqWuXH/ejOUaIMGDL7Fv7R4M+zOjfyrqOH1NWfheDK5L69PchHbjzezHr85kdO5YDq3SC8XKsjbCXTy53DmBJFPMkvqtcGen7/lgGJ3SPkvbrmQGedwlyPlYw5sR6P25gZLHFFltssffLjnE6AQ8zKkoPqGlEICBRgUCM4AdGI+rm3cOFgyXXkpSdgLjxZhYpFS9zdDB6ggxgnGAHJtlo73V0qYM3RmQPJIIgxVCHEA0errMkUeJl4fNbdD1HVsgh4hMfY1WBvQwSDEBNh+oVYK7rQa6Evc+p0jlKiTdJwt9kPIUEqesVdl9Yw+4cVldXAJG0bepAtwQuKOaQYIZpHWhbS46HsT52DFh/yG87oG5BrYNpDJgI1EGSr1dVdHQDMp68wz44hslEp4oCJcwwdSe3aLP8K9pGIbK/E8eGyjSpU12fDwAx90ER1dk/ZDPn6ODAOjVmD60RCVNE24NI2FRMJDJJhkCtE0f/RvLqUFn2ygjsFLXef48DM4CLB+SuE1mezda39UdSh8JIvxYWzEWYL1R6aZFGZK5if/u1RGWiAttHARoXHdSOotTYgXUlgkgGg5wVOcst17XPI/u9xAt7uaVemzmWZ/LMsFHmnx/PpmWwYZiSQB3DtMI24Y2APXAuYaYlIHMayax9D3GME+AZCnsawwOmo21wqh3rpJwDKuQfe/APgMzfph29bvyGE8y5sXs5BoNBbSsye8lcCAyvE+o/WpcpUKLrgDnSNHm+D63rMe/ZkfsHubMTnM97HZSP1fHweTZl3E2Zl8gJc9oD5qN7Kt0nkmd0AjJmPcBM3uHGJltXp+p1rj2xc8n+QOZ4b40aY33hSGd8ElU/Oq/C/uyM+/2HPN/C2eGM/ZgW/9Dzn9zB5gaY5ePzYJvo+yj9Vwrq/ztxn9nln2oqMadsqrs65dMx2LvPTJA5GbuParzdlwLFYo/KFmBkscU+j/aQN4aLfX7t1GghYPwQ8S7HeTgQi167mI98PSRVlW9Ac61MjVzX6PI3bySJZ+mdrKqd7nMljOoJJxtfKgugKoMznOpaHMPOn9L3RfGoQ95awLTybJqjwNeXug62dii2BJAHR5jFr8AsbInSgm62oOvbUD9+/gTNF65gdi3MtgGvSnTrAtQ62E0D++IN3Le+I89SJvk1uiRpqMpHqeyJ1tkiOsw5HvADo8IzaOjyAt2Xn+OTHypht8DX3nwV5uUN+Dd/G9w2cLcOpizgKgsuCNVn25ijo27gvvUdOM1ZQSQSSA49AIkAuE8+AxUF1m0HrkphJzCDywLmow/gPv40RJyyM0BdR+18MsLoKIoo6eW1yc2La1jH4OtrYVvkDm7fHrzZRqDDRUd1cDj7++lY0rwTp0R57T0s7TvUceaYSU0jA3sAkY9mLQqgLMGlFb9qIe1jXt8CdYPuxUvAMczzp9InReGBxzreU5PAAiNgZmRfADZKwPnr3O0tqG3hSoP20sLUFYwxMJ7xxdudyLRdXYGMEeaHMnOcE5ZI1wHchmcVhoPMYecB0BDlnzMb0jVSGUtQ4LH0jJEqgmNAYE6EqMg8CrPwIJKhCOiUBXBlBbxpWpFgA8C7WtaoNBG4HkCbBuwsYCVhuN34cVUA1ELAxV0Hd30juX2qMurvA56pYkCr1dBR5zpg14os1qo6zDbINcbV2e+S/821fUDDmMwVu6ilP1acMk2ysUdVCaxWAlbe3Pi8ACnoNAbgjUSxBudKAkwHFppIx3Fdw93ewnznU/l+vQKaNrB4xiueAOVjjoepiFJ2AJU+al7WDOdzpgzu1VvLEkeufwb261p8Jwzv13vunJmiDC4qe6DfpORfKCiVO7vnSNiHsqe/L4bGqfXI/z5nvab2bZB5Sc+eAtst+PpG5lJZ+Jwcymy1yTrtBPTrEPNv6Fjz65rmxFEp1EMR9iJ/5zCQv0rHejbn02cL67U6OlOGYsp67lyUMU3ndw52TpkGX5hkzRmxwCDT+vq8PrPn1plYNgfLPOb7fb+5jzl0QjT8W7Fj+mBs3DNjNI+F7lXJTLKlZwEYyTyNuW2yMoLUqp7bdD+yn2kaWNEp0HLo3JVYGuAl5U1deMQaOBoAEzbA/e+nypsLNDAP2XTH2qE9z4w6aDDjafdP9k/3IQf2EOfse2pHQWO/8Au/gB/6oR/Cs2fP8OzZM3z961/HP/tn/yx8v91u8dM//dP4whe+gCdPnuDHf/zH8e1vf7tXxm/91m/hx37sx3B5eYkvf/nL+Et/6S+hbY+IcFpsscUWW2yx3PQAl/7voVhan9wRdIZNlMg0SDJsrmtxjjWNdwhNSAZkjvEAbui/3ulOqUxTaokzTRI2m/ibHn0dQNvB1A5261BsGbZmmBZBzoSrAu2zNdwHV+CPnoM/fAZ+egV3UYILQndVovnoEs2zCs2TAmwJtBOJHrfd9WW7UtODTh7pCETHV+I0IM2PYJI2MEaSR18AzRNg85ULtF9+BvPBc5gnT+SHXQfTSZ4KajpQ3YI2O9C2jpH7A4cgh7GgklRc16DbLczNJvweQOwX7SuteyrRpkwRXzb5/Ba0rYUR0bTjm3Ytz7komePHTchTEZKsJjJPjodj+ZDtBT2mHKR+jGhel0OOSG0Lor6TxRDaqxLdVYnu6UoApKYFN42MVy/j1mM7HHgO1twCI3XqjTcFVqxBtzJwlYVbCxjJVemlSry8UttG2SY1BcCM7YOkwNDxPCffQcgr4ud9SBTp50kr7aIASxqtS0UBKkphea1XIp21WnkWV+oUY59PpAnya0OHtgcr/bXSRgS2BGcFRDW7DqZuYxvrXAj5fTI9+/T+2g/OH3pVdq7XIB7E1TbR3yowqf3ox/+sCMhkro46BvTz7Pu9Eh/p8/k1tvcdIHN8j7N2YNm1ymzoJQpXS0EidZhOSeQM7uMZetbiqGhyNe/U0v/NsiRfUZD5Ct/tmeOpw2zEKRTKS9ei+9ZFT9mYiz0O0zXNj5exeZnPM072K3LN+PrRK+uUMTF3DuZAcb8SCDKee8o7uKbl1x/at6f7n2Ps8zZ3Rp73wUbvH9s3dznbTewzB3KO57Q57wdlooxKeU2cwcbKuE97H/J/3KMNGe9HBtJ83taoB2pHMUa+53u+B3/rb/0t/J7f83vAzPgH/+Af4E//6T+N//Af/gP+wB/4A/gLf+Ev4J/8k3+CX/7lX8bz58/x5/7cn8P//D//z/i3//bfAgC6rsOP/diP4atf/Sr+3b/7d/jmN7+Jn/iJn0BZlvibf/Nv3ssDLrbYYiP2UKK6Fvt8WiL39LmynrP0iAjSXPIki+ZRTXmemNdUCJNkVLuWKOQUoM7rN1+sRTZpuwtReb36KijiExvTegV+cgnaSl4CiS6OEUB0fYvq4xLFWhOmG3BpYLYNQITdFy/w5nsrgNZgAoodo9gyCp9f4PbLFa6/y8I0QLFlPNs58G/9DzAgjlmgDxLkbZceGHLZhlQSxrFEe2my9/UKuFijvSzRXDFcxfjW1y3K15f44vMfwOqTLcxv/Fdw3aB4tQNbgnmzEcDmxUtw0/ocEheRYZH2AXtpKqJABuC6kVwNl5fSJ08uwVbZDwkbQR0TZSESUP55qBEnMt/eivyWJmKeiFjTPmRmQCOye4dEDwIAw2jQY+dvHtWXO3fzKLVeVJqD224P3iImW7cSoetYJJyeWbz5vhW6Eig3FVavOlz+92+CdzvQ82cC7K0qKWSzHU9Mm7RLT8vaEOCSpMp5bg8PvDTPCuyeG7ApUWwl+bvZtbDGgHY13Kcv4G5u9QYCQFgDs1rFaGOVlWrbkBNIx3KIip/qmyTROql2vLZR23pQtZG+VkBENd2NlXw7lxexDD/vAT8+mhZ0K3lSeCd5eHizGQfkVD7GQsC3TQd7dYX2wqK9NNg9M1i9cSi+9RJ8LVm+FYwB0FtfAIi0HVHI96KyhSo3x4VGc5Ksk97Bpjr60LWvcyJr13ZRoqxzcJvtfu3vPGIxYeaw48BCiPmO/HdtK2PngK64MobMei3tHphdXtKubqQNgB54MFi70zrqvxopyQwYWa9C2zGHnDYA5BlWlazxt5vk/bBH2gcACKFcruvDEpKpVNq6iqwmAKQ5nqbMGP++E6YVN20cx4FRJnMWPsqWDPWYlT1QxFphGHZdyH+kc6T3jKHuSdAAZjgkp6JuewCb/+yQJObbtsFarWv5GRgyBxgRD86SurrtDnAv5b0aZA7jmCdrQasVqOvgdr5PlU1qLAiSTw3OgW+T+aeAXE8Tf7ytKXn/DNpxTvJ1fbdkDrsg8WhtkP0ayMPqdX4tHGWKwQ73Z+G7GabvISYfxX/H8fIQx9uhOo3tlcJ3GWNtDFB7F887xfiYc93c8nrfa06QRF50bH2eGncpUyItL9sPKlMk7Kf13QjsrV/MpYX+HnmM9bbvOVOJL8JwH3gX9lL4e2z/Tv39rtYhZxqP2bnAgLHx/zbt1Pey3yfGsTQMXAvlP7S16T21o4CRP/Wn/lTv75/92Z/FL/zCL+DXfu3X8D3f8z34xV/8RfzSL/0S/ugf/aMAgL//9/8+fv/v//34tV/7NfzIj/wI/vk//+f4z//5P+Nf/st/ia985Sv4w3/4D+Nv/I2/gb/8l/8y/upf/auoqup8T7bYYostttjDtOUFfzfLHMpkKRwSARx2VvXK0shl77DTvBWOJYExMwxuwW3cvJnKyzVpxPmFJA5HYYGmhYE/HHg2BzuR1pF6Egz8PrqTzbRpGeUtgy3gLMHWgN0y7MbB3rYotiVMA9iaYXcM07iwER9EEI/KQjjvBKOgaa2RiWStyE1oOanzEhDJpc5JjhQG2kv53eaLBbrVJa66/xNoJ0mpTe2AuolgRNJXRCTOgzGd8eRQwZ0kbOS2lQ1zVUo+CmuQPxmzl9cgEnBE+0+juRNWigBZNDwEKsOiyaLh82jRnGZ+jjk8OEwl43rgSD/gHEgiukn7jkjabr0CryvYmkEdZAztVCLK9dlSY2X36uEw6uhMo/1G6srMKG47VNcG5Y2MFdN0oCaOBbKmJ+NDRRESx5M69pnl6LTdxaS3avvyvWiEsial1/Gu60SaIyKT3yNrI4DADDm8eVknF39LbRfzBPm2jWwT7ZOkvULVKNSnvG1BzgIElNcO2Po8SWM5QNTSpMSJZn34DJBk6kTAegWjz6FAiq5/QHRitm0EjLoJOcJDbe3H8SDCOZW3OVJ6QeRxEmeLMjj8mp9KesAxyDgEKceD0dhJPVM5vWTMCxhb+jXTgJ1D1DefAuT6DEKR//P1cizgmNNxhQhaKSCcspr895MOEDIR0EqdyKONeYCBps+rl5NB8CbPcITszS3SA33fo/3QQ9FpT98tY8DVW2jzVLpT/nFxnnjpUwZElpBdn1Gnc0+duSoZlZTZy70xZem7cCInyKSpDGnSVj1Gh+afStlj4cKMFR3awO9B9owRTaI9Onfyct0Zxlq+D3lIdld2xNQ786HZSMDXbJvTRhOBGZPfH/r91DVkwnzozc1j1pwRNmgEPe5h7aK4VxnYMfd6CPPoTvOF3+37eGHkPAg7OcdI13X45V/+Zdzc3ODrX/86/v2///domgZ/7I/9sXDN7/t9vw/f933fh1/91V/Fj/zIj+BXf/VX8Qf/4B/EV77ylXDNj/7oj+Knfuqn8J/+03/CH/kjf+RuT7PYYovNs/fpILbY+2ePyVlwhFTJbJv43QAEUHmRp08k+ntVSeL0NzfioPe5CbiuESgJSb2Dg1QPoN5BST6imZ8/gasK2M9eg29ug+OVPngGvhB9eeocdt/3EXYflrC1yEnZnYOpO5TfegX+7IU4l+oGKAswEcy2laTXALgqsfrNT1D9v98AXlZIE3zDR/s++fgLWH/8AajpYLYiU8VPn8RnCRJEHGSfRi3TpiZrQRelOBlC20cnBNcN8NlLlFcXWH9ygfo5UH+pQ70GPv2DFlwSyu8y2H1yhd//f/0U/M3viHQQAKqqvlPNGHEmaj3U2RhAi6GuPTqD5stP0V5aXHzyAvzqNYgMGByi37pGABT79Anc1QXM7Vb6qSjkmYhAXSfRpz4yXhOnY0x/fAr8uOuBY9933AkjoSr9R9zXYs8jHYPsgHduq2OpbYKUW5BCu7rE7vs/AjnGB7/xmeTi2OyC45uqKgBMqEpx8BMNQCgAk2yMyej15KDPTYvy//FfUJUx2TpS+S4i0JMnsM+fCcPBf6aMLmcMeF2ACwP7egtzu5W8MJ4lAECAiLGxb/w6URaBZQJDAoZp/pKui866pu2tF+bJFeijD8E3t3CffibXFQXYbECvXiNIC1kb2lDHtPZpGGd+DLrtLji+qKpAz58BzqH4f/5vKABc+Hw23W6XOOU5zm0/foOjToEdayWHURmdgMwMXN8KuPSVL0l7101khgQAgIXhotJ2AWCckLgYs0QnXCJHE4aaMcLKmZMjoyePFq/nppU8QZofqfZsQS/BRtUa9ORK8sPUtWfCmKHjNXUaZyBzYPno/dVhYAQg4ycXwqwxBtQ0cIAAtD4fTQSFTV8uqGmkfy6FOUJ6fdMKQ9EzU0RaLskbo5JunjFGZeEBLdkncF33WDm824GBoWPKPw8zS0BtWAf781nYKWXsN3hACs0ANBy1JOr34LA5VE7K5tHneAh7o737njM5eO76nGO/1wjdHsgw5oC/273JWmH6AXF97LoA2lNVCoNq5UBtCzSt5NBJ2Bbu5auwNqXgg8o9cqdgy0jdCZGZpvf0wRlhTAORFThi3NRhT9hznPr57Lq239fpmhU+i/OOCp8zyGKvDB2tViC/VqZBPiGiXusHG8GhKcdu2ib77NT+3sfYeBvz9ADz4uDe5F1Y9r4jzV3n/+6PtT3r3dy1cArETpkZY+9gtcH86M+DeBsGuBk+n8/Hpsz+IIfqIpOMTBLkFQLe/Dzb7eK7QAOrxp6nX5l4rwNsA7NayXu9i3uhdO8zGTA1Nt9DcE3SZikrYorF8lDea2Mg+r7v72rKEszvN9aOD90eSh/e0Y4GRv7jf/yP+PrXv47tdosnT57gH/2jf4Qf/MEfxK//+q+jqip88MEHveu/8pWv4Fvf+hYA4Fvf+lYPFNHv9bsp2+122CWHv9evXx9b7cUWW2yxxR6TvQ8v2XPR1ScicYJsUFkK6OBlZMiY4FgddfImzjfJB2LESdslTjAikb1aF7BBz39I7WZrJCdASQAMDDFMy2BDAtKkz6AOgtaJ5JMvkzdbuDdvgsO1tznvOvD1DeyLSqL7m9bL3GSba82PoBHrYxGMhyJZNXk2eccZi9QVOQdXAlwAIAYM4C4ceN3h+7/wAv+/VpJ5c0iybkDWBec8ABD7iPWuE+ZIp9GTsW33JR7V/ho8h+vE+coskZ0a6T3XOaVgTe78fYhzL3Gy9P4O35vY5snYc5ZgGCLztN2Jg9WPF/J9AqJ+BGzalmp5mx4zv1mSsAMe4CQjzjFrZd568ALk542CIgoeMCeHVe7fMwUAxppNdeC1PB9pm+ZKCFIQ5Prt6xllbGWtYB/hr+wkLYPbVsC4JP/NaH18G6sTIMgaFRaoRbJq1FEXnAnJQdqYwyCoWitJ2GElZxC1nSR41zVPn0dBEXXajx3mD1iQ6Jj6zaGy9q1T3kFIpuj3wch1o+Uekq9Kn3nwdRyPg7lnzH7GEjy44EEz+aCN49kl487oPPZsxsBqSkGaRCpt8Og8vd7n+VrGzHiwMrlmCixd7JFbzkY6Y9Suvl8EkDCj8z5I+2n+HPJrkPN7j56jPRvTKgc3tVceCXxIgb6ZD+EdtwlrTONzUtBU//a/8TfrldMzZa9Qf2+pALLubXu/ui9w477sfTjD3Lc9FHZZ/vc+FsVkORPXhrE+PR4GDKlJpuFM5gpwtrbtSz1l9zlX/73teXKus/m57aHV53NoRwMjv/f3/l78+q//Ol69eoV/+A//IX7yJ38S/+bf/Jv7qFuwn/u5n8Nf+2t/7V7vsdhiiy32IO0dywG8U3tszzi1SSTsdzrv62P9nIdJlQmQKOSLVYzU7lzQWIcexsfkm4CYZPxiDb5YgW42QNOG+3JhwJWUwbs6JKjmN9cSgb2qJMeFi/IubCHyV5/dAG9uBCxYreTQ37QwzJIQvG4CM4TrJjjAuG5iNKXmPdhsQd/+WO7tI4i5bsadgqmed69rqHdgIBsjsqCsmrKEubqM465p0L24hSktbr+/hblqgNoCjsAFg0qHVdGCjOQlCBFh2m+2i/kr1LHto0Nz68l3ASFKs3i1gd1I7hayGv2VRWSSAd9sQJ0HZ7TdlHXjxCEZIvMSx+cgMvwdG3duMheOSmxovgCqKmjeFrIW9slVZC04FjaFMShf1yJZtd0Jo4cMYJxgAMygWhzh4Si62/l6tOize0baZ04EXx7F2XUAup5Wey+vjLJFMnkv+1kLbjtgt4NLIkGV8dFzaGdrSsypwyERemDWdM5HrnXgNjq+qShBlY/y3dZgZpirS6mfApie1cWe2UEjkYZB3kn7qihhri78fK9H2jRjBWkZ+qzGSN+zA29kPAcGgXPCzkrniBP2BLGL6yOzgCI+kluBkJDHRQGXOfMi6aOecyPVIDcAOTfuYEiNGYAHVw31AwbT+xCBqlJk+7Y+t0hRyHNc34S1ZJB4fKzu+o5QR+tI1CvIhFxVtPNr72YTZbxG7jMpI+Wkz9zNpq/7ziwAIYmMlsoDsv8NbwTQNBdrYVW1bXwvakR5F24+fFSNfO86kTAi8muFA7ex7lSVwGoV31HANACVt+M5bWxfcNd94D0Ha9yrnaONdZz48jSPU5jzaT6BQ/29R/+d2wZ80wWmnhSZjKGGgDKZ3NaIdKlfS0Wm0EtZeblPDmtoK/OwLODpcfJcKTuAXf+dRiQsKBffayFC/MgxwW0z//oQzEHhd8ocSaVNw/sp2QNxMreH5abJ67v9a9zIb2fX/2BZRzrPH7vlYNddGTJ3kfu65/1qCFzKo/bDfd3E59lnCYNycBZE/FuDpMj4wJUcit/HZhgJaAgMyqk9li+PO+clQ0fOBnMkxg4Clkkfv+szxiCY6sBa8K7r+5jsPWmro6G+qqrwu3/378YP//AP4+d+7ufwh/7QH8Lf/bt/F1/96ldR1zVevnzZu/7b3/42vvrVrwIAvvrVr+Lb3/724Hv9bsp+5md+Bq9evQr/+8Y3vnFstRdbbLHFHqfl0cGLPU7raaSf6FBIN71Jngxo1OGYjUTUDoo1BLYkCYoL74w1fuPccXB+hU2z30iLfJVDvn8PzAV1OGoOgs4JKNB6mSSfjwNdFyOkdKPNThJPX6y9BE0Tk0P7HB7ciQxLqJuPfI9R3q63yR9NsjgW2Z6zBIwBrTuUqxZUOMCy/I+ATVuia232Gy/FlUb4p5Y5DHsORGUK+HvTrgVt26g1ntZLfiy/dyon5mWRNNl76LMuOtC9Ez1KQz0AUMRL3EzWZU/9ejkz0p90Dtw0sDc1zLZOxqKL/Z4ykzoX/peO98PJk4/cSuua7ts+9IsChU0T/1fXIkHUiAOct1uZB03r58AIKNKrW+rAi88cndnZ77yTnKyNOU+SQ7SCo708D2k5Or6SscUugiUxmtjE/DaAZ67MczAFlkkWbRxsrJxkLlL6TnXZuEuZC3McXmPrro7F7Pezo7T1+rFxlySNDTlexuo51Z5zxupYZHu6PjsX2YUZY2cysrRXL47j3nX9PQ4nwL7msVKgMB/jyj7qvTsmnln/Z5L1NR1DqaXvCW1Hju+XR2tTe4T0nXNXu6/3yDnrd6Y6Dt7bg/sk43FM9m8syOFQHpB8rculMDML9wxr28haPMPOMu7H3jc5U9bPtwHrd6SufOD7d24PsU6Pzc7VhmcBwSbWyfs4ox8Ltk291+fM2/AungGKnPics3Ne3ped8x03Zouf5r2xk3OMqDnnsNvt8MM//MMoyxL/6l/9K/z4j/84AOC//Jf/gt/6rd/C17/+dQDA17/+dfzsz/4svvOd7+DLX/4yAOBf/It/gWfPnuEHf/AHJ++xWq2w8lqdiy222GKL4f1/CT+250s2plORsr1kf2m00dwoRR9NHCJf1THmnOSv6FJHjgsO1MEheCJKkC9XYKxAtztQ08Lc1qBdJ5rzTStlAVECqGlEa77tgyNsjUTikpENd1MDtddsByQi0gMdrm5CVCU7nwDc6/DbL30R3Zc+gP3kFdrf/p1hWyizpQNAI6BHbPhBH5CRKGHunBzOq0p64OY2iaSXCFK2hPKiwbOrLTZlh64zqOsCYML/8e0vgL4l0cU9c50EXm+3A4eHyGeojjDku7KMDl9A2ts5mFdvQERw290wOSvgE9obiTQFQsL7AISEqLDuJIfIWzNmGRdqOUMEyCJihW1ARQnz5CpG0nadRMmyEzChaUIEPXkmCdf10PFik3wIA+f+vjnp56OPiBuAbwfnMwD4KObNJoyL1AEW5E/atu8MarOxngClYY1IyuGmBWtuj/w5gX4uEj9/YU2SdB0JoEFAKwwvXRcUEBw+swM4k2OwBmACrAepbm4F2BsDJRJHts5TBa6oKOKzJ88f+lZzh/hnNG0HJvKJ4h04SR6vYNEs+awxGTdA8qUUheiCd8lz6Np/yDkwwpZJP6eyiLlAlBXmy2VnYCoTIsPT/BmDcZnrgyuolTtSKMk94oFtUjA6gHMJAJZYTx5E5dsMEkB9HMSgohBGUhFBOW1tBZwpBbI8AzB1vqj8Ry8Zvd6iLCLjCeI87q2Vdd1zJPfAx6k+2/v3NLNgr+k7bl9U69zy8jLGnETnYr2cUsa7iNxV6bi2P2aO6SeJyi76ObFyG8stZkhyi2SmgDcZCmubsvvCPIS8E4Qh1o3OvQhUJ1uzZP9wFNDRW4v3BPjk+1hmjGnk63wyq1Wcm8bI3qXrQKaNddzXF8r+mWBJTj/PcI0bfD53Loztrd9XO7jOHcHESQI2Qo4YjLz7z2FT9ZlaE/U9kDvz0/ENxP3pgTwQe3OK6d9E4V495ki478h+MitHGOUU6j6ab27kt+wYhOT9dmjvms+Tt213YXzpb7I8L+/cdD7sq89jU9BQe2T1PgoY+Zmf+Rn8yT/5J/F93/d9ePPmDX7pl34J//pf/2v8yq/8Cp4/f44/+2f/LP7iX/yL+Oijj/Ds2TP8+T//5/H1r38dP/IjPwIA+BN/4k/gB3/wB/Fn/syfwd/+238b3/rWt/BX/spfwU//9E8vwMdiiy22WGqP7GVyVjv1sP8ubYbeapCD0YPAXQ8AqsucRL+TOvs0On6fOe6x2N26BFuDohGnIe0awLR9hyXg82QYcZDZKKNFTvKLUOd8HhB/aFeGidan7TvUJK+HyKdER6K/1pI4UYHkAMHxb6DHsDhoeT95h13MtcHiOE0YOVxaPH+ywXc9eY2btsJtU+Lbnz1Dt7MwrwpcfGJE4mjsXk0DttbnBPDODGaQ6SdCloTDWVQ0i4QZDElbjT1zSPLsE4j3mCL5IeqBgiLH2KhDT6Sxgqa6siHgnZ5N22OV9JJqexMZHgdAwcUDTpmUiaF1YBeda8fM7xS8UoAvHU6pjFQKaia/HRTpOGrB6zMHBocJ34XDsEqTqCM5dSY7jk41a3qf96SQ9j1icp8x0GewXk05cP38ZQWBc1NJusDa4AgQ0IQTKzBdZqyZh8w/3yAnxdyxMCWhFYBUKxJaTSvsJp3nPsGpXC73HmWo5O8oSqRCVJbm0G8UQBqLAM+eY9Ty3D3Jc5IhoCpDAnYAsg6O3SdlfrhY99AO2TiLDEsTnzsAxnG8MbMEGuhnOdvwba2h78LpNNcect2OsJ7cX/hwjmPXHNzvhfIHjtD+Hifkupq61dh3xgPUbPxcc9BcY+m9KWOgjDO6ZgIJifN28B46xtLfaj4RQGRSWxcDiPatmXe5/5yy5s7xx76fOredsz0ectueklvjUJBMNgZHGe5TdQks0mwfejQYPyOgJ6/3MeU+JHuIdVrsndtRwMh3vvMd/MRP/AS++c1v4vnz5/ihH/oh/Mqv/Ar++B//4wCAv/N3/g6MMfjxH/9x7HY7/OiP/ij+3t/7e+H31lr843/8j/FTP/VT+PrXv46rqyv85E/+JP76X//r532qxRZbbLHHYvuc++8SHHlIoENq6eYx0S8Odtf6HlvWoQNavoFON63++6ifj/E+N7a/wfUb4ZCXwvlI3m0tAMRm6/XXk6jctNxcuoAk0frmaxdoLwyeACg+Y+DTF+DrG7i66UWysBPwgwHJjdBIvobqdYviTQ378Svwi1eSSJnZa9GPyP74+pA1oLUER5AT5oDbbMA3tzAvK8kxogmrVQ+8TRgaGpmYj42s3cc+l37owJsuRtKbOPbJEHYfrPC//J7/G/7Pq99BA8K/2/wu/LVv/Gmsv1Hi+//JK9hPXqN7+QoDY4bb7YTV8MFziYB2Xson1JOivAsz+PW1OD29XBh5feBBzpSqCk5SkJE2q+sBUySvz8A8S2Cvg3ssgv0+LTCBut6YVT14ZTBw00rbpY5a//zK+jHWAk+fAJ1Pfj5C6Q85P24morXGIgs1ej91uCaHUik3+31I/Dxxn6kI27xbDkW2+nIYAClTI70nd2DWSHsf8QwE2SxKZIsUkGPnQOsV6PIy5rDx/0vrQkUZJZJ69XV+vF6I09vr5cN4XX9lfqSAUhIlHUCtRvJKOM2r4fsgJC++WEv5mnPp1RuwS3OG8FAKqm0l38U+7fy5a7zpO0xnR2bnQFv2ueqF08Va+uD6RsZzqIJn0+h4zKNJU+aQ6yd6ZfZza70CNQ3cVoESCpJq8lyexdW2MbfIyHoeojHHzLF/L4wwYiDrGr74IbqqgNk1ArC/2orkIhDrE5hVRvIvpJiOjgUFzrTuad4Y1wV2XRgbh979c1hE2va9sk5wwJzqqD1Uzl3LG5Tv+0Fvc2oE7rn2bUc59DJgPC9rcP3I92NyWun7kjtwPbL3SKUcW5/XrRRWralKeZ+lbNZU/lBBXmtBZIA15LvtDr3gB2VUUAb+nOoQHHvP9Ow4pypVlazT+nfbCmPymL1GLgN5qt3ltw/1rHRum5oDU0EMh8rK9+z5Pd6mpUzNqefwue0C02UfIyO1Y59pLjiR7EORvu/COtEOrx8pN+aAa++3/c9V9qF38Ng1eaDSQwNFJvb+g2uOtXP4Ru7qh3pk6+JRwMgv/uIv7v1+vV7j53/+5/HzP//zk9d8//d/P/7pP/2nx9x2scUWW2yxxcYd3/mG5y4b7btGoM1gjYz/bGaEIqeOHSNsCifsDGIW2aC2Dc6egxrMLFGGpu1Auw6mZpiSYVovw1I3Igkz5SQCgA6gXYPitoO9aWBua/B2B7frSz9NgSLx+XzbW0o2t8qA4T5gMWibMUdG0hcjm+Ch9ISPpPeJD4MDFYCpHX7j9vtgwehA+E+3343iRYHVC8D+zifoPn3hk0LbbCwK6EV2wuEJBFCECxuYN/o5IZZnKp+IOJEQGsgl3UEDPyaafEAHhqm5q2CgXpYm5E4jvTWqNmU/pBrK+X04c5D2HAGJnIF+pMBk6nANtxmJFL4vmzoMKhtrSiu659OLEbzhtyGHhTBDqBP5IfZALHIATgFbWPAhB2mPGRXrR2UBTdI+anmib+cTFAM+0j/WObAZwr/ZOpGOlWOccT3wJpvbKmPIR87FnGGh4y1ZQ6iqBEDaF92u65ayniYsB0cAGQNsLWi1ir810WEbLOTgmcGsyu+lYP0o+BQZIqTvNZVwbJr+dUUB0rFAJGBz13k2lB1hPbm4bngwPORi2hcFPzPvzWw7xYn6mBwLD4npPGc/N+XsHStr4rmiNGYX5msvafMAKOP+mNM1LB9run6Hn3GybprD7Lbsvveek+PI4C6RxEu+m2IAzgkEeJd2KDjqfTbeM6be9Vpw7P0nmI/5vm/0Pr1yTnzmu4yjlPGu68RU/e6jX8bm6aFr3qVNnT/Hvvu82+esPe6cY2SxxRZbbLE72NRL56G8jM4d0XNKeVnEdXCyBKfU0PkXD4EzHF55RHf4PBS2v65TEVOjEcAp1dnsL3tso+ydlCB/QG5bdB9/It95B20vOnpPfdXJ7r79MWAtLr9ZipN+V4ObRpgizCECOJUCS2ne9N++gYtvVD1WCNQZZooYIV4U4sCsG3F8hno4YLMVp2ipTIgKKCtwKY5AbhuATJSnSceCjayHXp6KNAInj+Adbe8OzBTb1j/r6jd+E//uf/m/4P+++hF0KwPTMH7g5Rb2uoZ7+QrcdTBXl0PJC0Ogqysp5+YmymElFvKZfPFDcGkl14W1oMvLCKgQgT96Di4tzEZYIbT17BAPhoX7MU0HHk0waoKm+RQ4cg4dXs9MkRtqQu6s3Lx+aXOysIS4M+JMSZzn3LTS/l+T3HW02UkkroJ6dSPj1FoZPymQMTXvevUakR8Ceprye2UPcuDlVMtZBVp//Tw/i7KPRjYWVBVDYNJF5ggMgVYrYSB5xlIoxs9pd7MBeSZTmOtp9QzBrFYCzCbzO1aHgboWyT/9rG39/O2AooD94hfk969eCzPM34M8HcAlTDv5va+nytJsNvK3jrXwzP77wgpzSwEejbpM9PxH13NKctAAA5BF+99ttsAG02OLCGNOg1C2nxvydxnYGubZU/DTK9BmJ6wyXecSdhUriyZ9P3ISkZ5GY5NfJ5Kk5MwMenIFev5UcrDcbuR3RSHsoDfX0mYQp+Zo/qqRNgn/zZH1EdpaCgPgwV8A/I1vyvztOjgdA35ekbWgq0ugFFYQOScyhj6al5hBT5+AEjCHNxsZ0/653WY7nT9IARYgOpf0fT1n+o6xBsbm7aEyxn5/SnT8bLDvblHvcW/g16G3rd2eR0HrniO1HjCgeTlScHT+XlRlByOg3M/rJJr92U+t7FNZ1w4FFzXQJezfPLiqMm/puu3LkT3TBsqS1GcaHc8nvneoKHprUr/cw/vq8Hv9Sfa+cDe3oE3Cnh5jkaljeqyPwtx4AA7Xd33/t23nfN7e/mrPuJoCDcbOWXMCHfaBOloXMpILB8m8TPdQCat1MsH4MWvrIRAwv5Y7uM1m+H5Ib+/Xpd78I4RnkL14269ruG4Gg0v39n7NCutgsm7kjNWDZc4BWubs3UNZe965xsI+kXOaS8+PwGDtnbzHQ7XHVNcHYgswsthiiy22WN8ORc4Bp71w7xJVNQmKYPh3Lld1X3Uas8A88JuxOQySY5wXSYRz0GLu6vnl5BtOdkEOx93chs/y8kb14v117vZWgI0pRodP6BzkI0IfTgBJQSYsB4UmorThD+HOYW8LzGXzpG3LDnx9g4v/77eAwgpQo8XVDTrvHA/1Te9hjThh4Q9VTRMj8tXBCEji9dyxo5JRTiQzuLRwlYVpBVyCNTFiX6PkgZljfmY7nJoHZ+pQo3rnU7kM9tVvqi6p48c7vCWxN8e2UUmoQUTuketDVodRZ9Hccu9osx21yNfMsUSgfs1K6h3kyICEiZQk+p10Yk1WIrllTKYNoiATo04uIgIb34fB59cHnqJzHb3PA1iVOgHSdWws/06vjjMaVXNaJOs7mYl2GbMpxomheHsvGxjMJoBOKv80YilDY3I9SED3MD6cAxHBXVRA04F2tVyjOVNclFaDl6OabamTf8r82sibzThwqkYEtgakElnMvXWfjJE1YMKxNJB6O1TvY+0U/fljyn3XrL5HEh2fBir09h0A4Nmhd8Wq+zc04/mFpis4+EjZcOl6F9e4bN+Wr43nNmWjdiOOzZTBPLu4bE/ODtwujrv31h67U5ZZAATds48ENgFI1vu5G7IjgLw5184EPyfPxLqPOfG9EnLTaaDF2PcnFXwGwHPuuyrNz5afxfKAsYcAxC52b7YAI4sttthii0WbiCoH0N84Hbs5mIz2mQG0eOcdyPScPlqnXpRKWvQRzsNBtcYcS4fqGiKN4+/IZODIVETR3jJ9GRoVvi8qfZ8FB7WNm+Q0QnmqfqHqfedkL7JaZR+sjVE23sx6BXpyBb65Ba5vgkOfCmGTUFUBq1XigIvl0K6O/QsMIn2ZCcbnFCAgsANypy1ZG+uUtuNYhCWAXuSateDnT+Snm51EH9/e+gTIkaVDsJIEPJW38qwbiZ6MYA97KSLV66c3NyBjggOHt9sAJBERTCH5RGhXA52T7zthRRyUKUv7PhmLkwelUx17Oo7H2jRhX6VMi+F1FOvlRJ5MNdflFqK5HlgJGrHnHOj1jTiOt1tpj7rxkefeaT4VJa51z3OADNhaQ+mnQf3vYlqHQzlINNp/0M7jUW2aiL3nEB57NgXXNIdIfm/IfBvc1/cRgMn8EWn+HioKme8AyOdC4roReS7PSOnlLkmejbIocCo8MyBLMjzVDrjdBDZBOAR76atBvx5y5J/yvkn6MP2d5AvwUlbEERj1bcG3G/n+dhOBg2wuh6hQBeezgPlwwFdpEGXB6Npay3xqn65QXNeRaVUU4KaRcTE3IWzvmfvjsrcO53sK6Dzdvx8IsoPpdV3nE9KLBGNPRoi5L502s95jkmNzfhfe10je/8fItfXK4/57/5h3/Vt24MwOSLlnY8fTjkwk74J9e4Epy9+PxsjrrfBroxsJiGEGN35N8yxRWq9kL7RNrnMcGF5hz5LWLX2PqzOPkzY/xWk3NVaUyZJfrnuYsXdB+nNlNiMbF3Pbei7bZXFSPiw71XF86vo4Vs65TJlb+t9j7IFj94Vzn/FM41pz6E2Wv3eeHQYD2DGIciA3kVF22T4lvfeYzQEzjm2bvfsJF9i2qVzhrPXqHb1nF7s/W4CRxRZbbLHFhnZM1PZdyp4bhZECBOnHKqHinX97I7pnV++OEZFJNLA4VoZtdkrdxiLuTihk9Pnu5Mw46ECk6PTKHWPGeCmdobMBQGAYUFVFaYn8YGJECmdMqqpXjWOcNtlYZI2u9smaxZHb9J5dchzAgyMqQ8ExAilnlEDbXfK5cFFESaCmDfVgANS0AfhhTR6tckYhCv64g+VYWwwcGOe0qRwo6eGC/HjIpEiCE9ukawf3AA1umgiIdF1ow/Rguxc0Sv8+58Hr3DYngjC3qXGfrOnMLON7nwN55HOJGDQxv8YU2GY0mXec78xGztCJRNNR7KfBfQ4469jr2qfsoXflyE3kuTRfTUgkbkRSj3VOsOvlj5oCL49mEvl7B2CIWXyZicOHda25j3UhjTw/CrRIAK8c3Mr7cwxEmazP+Ltxck8w9d7rgSN3tIfK0LgvZsy57L6YNRoEktoxfZSCHLoH2pfLZsa4vUsQ0L0ax4Cm+yl/cUi+F/auWXD7LDljBsvPB8e8Y9625aDqsb8NYOzMfXEWFBPehcAQWDrFjgrInOezCGe0vK/fxrhcGCgPyhZgZLHFFltssdNs7gt9HwulJyuSMkGmon/lUJrqjst3DtyeyKQYq1f4WKNs431mMUfSaNVJOZMjIkBTeaf8HnP7IN+ckukzKabqw5nkRL7x1Y8VuEh+BwB8uxF2w2YTI8GVPWElr0aIjm48C2BVSWQ5M+jqAnj+BPTmBu7Tz9BLbEoEqkrR37cW9OZN/3sgONvl8sThl1831W5dB/PmRn5zfSOMkW0/uXyQgek6gA3MuhidH9y2QToobMZZ2iZNrp46mMlIpDiKQvKJpLlcDjFFcuuhDYm80ZQs1DG27/6azyK/xo/LNGoeZdmTQpIIWm3fWiLoE3CN1l4D+tozRnzug4O5dtJ7+7IGY33u82l5c66bsrkRssf8zh9MhWGSAYqZ9jI3Lbrmetj3B9ZlzW9BPnE3dR3cNpmfVthO4uw3QFkBF2uZ220hOY08GyFlhIizz+cYyfMF6L01x0iIyp92UJCyVQob55+W79kaPQmuWZGLJ4A4E2OerAF3DtR1IUcCVaU8e9cFJtQYk1PeDT5XkLJo2EHzPPkGEPkg18+Xou3AXQf35hrlb38qa5DPF4PdTsDGUyJ6R1l5rjfvNOdCeDccmK+xHA9w1Z7N0sRcSz32WsKGgvMym6ljW1lUnkkprK0EbAaOk/wJ9T9yDc2fL2eczC0j/BYY5B0CTuvH3u/7+5uezNIeibez29j8TN+pI2yHO9so6OxipHEKoO17HziWcRuCJobr12hb+sASCbYZUMLi/vREkHH43UhQz9w+Ds/SHXyHLM7B98hOeUccU246Vnrj6pRAscNnzt4eY2TtfNCgiNpd59cUwHDonJvvM+fuocfKmbp+7DyavAfmWAxEO+JMfsx1U/ZQgh7G3lWfUzbMAowstthiiy32qOygE+oOL/KxyNBeFP25WDN3sT3Ov1HLnBhHR++Fze2IU3twzcRBuq598kKOjkES6SyR1qmi7JSXmghMjMKCL1cwbSeyW00rMj96L2vBFxWo9Q7Fts38/1FuiSER2Mc4cJg51E2ZIj1gTvMMkORGGGibq4NNc4EoiyRNTtx5FsgIXZ/TxKwZsDI7keHog0043e4t0nbP+LFW+s47z1nlSDKZgl7beImmEPGuUjr7JLN6998jFTjn87n2EA4Yc9pjCrgCfMLfkTmjz+Y6cQoak4ELpjc/UBSgwkqOCGVLIelXnn9QvBN7Lpl/ebTgvVo2F5Upkv7N1vq2pDAvAmCaRJYP2F0zc7yksmYA+s/ddeDbbZTyAsbz88x4tr19kkbdD4IlJpw4I/JE4rhqhb2n5Y7lkPEgSq4fvvd++rt9loEEB6891k7NK3JoPJzRhvKm9zSPphyiJ5d3evsEeULdr8iHIj1lxvdBWQFJPSbG3+SYTKTy7sogPtWOdn6fsD9ZbLE5duf9WQIoAuPvDgAnAd1j5b0Lu+867H3XT5wf99kx52wt+5R1JF27gYfRVw/NPmeg9QKMLLbYYostFm3fBuOMB68QLap64hoteciBF1gjmHbqHooCGlamV6fcGTFwwM3ZtI3Vc+w3x2w4jkl2q5ZGJ/cSBSeR8rOcpiORJL7cXmT+GEuirntMESpKiYQuC6Ao4L74IXbf9QT2toXdNJJovLQoXm9hPnkFvlxh+7UnKK9WKAoLs9mB31yD6xputwM9ucLmu56ifLVC2bTgm1t0L17IvapKItaLQpwYaDxA46OWy0ocDVN5LwCg6+CubwDnhjkU1DlfFIA1MD5/Ade1OIh9nhCu6z4TJAVVktwAg7b2UcxutxOnaZovAzg8Jqbm1RhYNnZ/lUE7x8Y4c2ylLABzsQZ9+IE4YHc1YD0QleSbCNczS7uUhbSJB4tCDoR9bZKP3SwyvPf8cw90mrMnXcv8PeSfbK3L2+JcRpkuffosB387ku8hZTVYK4BkU/euoaKEsnO46ySPkJbj+wgAuG5AVwXw0Qdglc3b1nCfvZBoPdf12y3MEw9e6HgfW0s98y2whCbGOQDwbiesK2VAKDiiElVjjteEaTdwRoZLtI+nGrh3cQJOeACiaeBqhnn6BObiwoO7LoCFoY7MPWCDiCMbSJlByorzY1HbBkDM6aRt2nVwXRuf00i53Dlgu5U8Srtdry/Gn4lCuXmOqak2CG1RUm+N5ptb9JxQU4CI78vA3tN3s+siOMccwFJlkvVYYgAUoNG1gCySZLIz5mk+5/Pt02w2HyNE1+dyo8dGsE4EKfSuOfTZPsv3SMduTQYg2sxIYgVqi7KXV2jAIJ4ynQc+J13vd8Ye19Z6b4PAMCLjhnk5xsrV+Qt5v7JKQO7bv+ZsoJRVuUfm51SblJM553vrc+Z0W+yAHaNCwIzR9/WRZY8m11abA+hNrRlhjbwnFl0OvMw9Q5/TmIfvu2PqkffJsQBHDmqF92Zc52XvkvXBsaDVofeVydh7c9fMh7L2BR9M0h8PpW5v2RZgZLHFFltssb6NbXYeku3bPJ0aYZn//tTvx+wYB8V9mjqD0j0imeyDCRtxFO7VXc83u2kZGlmuEleFARsCFwZs/f8KYV+gsOBVifbSgjqG2V7CGAO0LagsYKsKvF7BFfJ7eLBlsFG1FtR1UmY4UI3IUeTmWRnUeNmL1OmuB4B0TJjotFBt/vgdDZo6OFQPORK7LiTDPiWfyEE7R3lzDrUhuiuRN7MWKApwYUEt4gY9H3MqBcQUWUBAiAQ/qF88ODx5OxTtduB5RufBoTlyD0bWemkmBkJCXjf4Ps3TM9uBDcT1Q0ETnyskJNvk5ACqDkxlfRn0WGDoHND6xOI5E2UKQB5zWKRrCmx4bU3mOdE8RKmUneuDMGNr3Vls7J3l5FCfynrBGnGuOs/U8GtWDxwaG1eH3ou67uaJ6seYb+yBhFSq7+Dj+b5OJLv8Qw6dN+n9knFBAcjZM286Dx54+Sxh04zL9aQ5a3SNI0uj/Sp1Hhs3j9B5m4/l+6r/qfcZtP/M90/+u14C8kwa8xBrxpD8rhurzxG2b35MlZuCsrof4Ynxd8DuPdn9fTKA3jd7jGvFu7RTI/3vq5zcps4y+b3fluX1oWzNu6/bag6jWXv8sYDFAwDT227DeyjvJDWGxR6cLcDIYosttthjtvwl35OfucNLelb03czInvyjxKmjzs3ehmLOITtlZEihvXJDBNChsnIQKItEhtdpH5VtObShO/emf5LJc7idVHqBiILjqu+gmnZMUFlFaZWQZJmjU4oMyGZtRIiRzf7AH5L9avLlogAZA/r4JS4/fhmfsWnAuxr4wgdovvsjbL6yxvXXLOwXDex3VajePMH646don5TYfmRRvXa4+PYGVLfiXF+vYJ89ATct3O0taLUCqhJwPmcJEJKpB/3gfeY6uBpxPCXPoFHS7vZWHnuzje3uWQwgA/PRByBjfILwhKGizs7AABk6rUcdk8dEEHMG5vTKOKDFPhV9n99f2Qp5xH5elrGgSpgeKEuYq0vwh8+ApgVd34LbTnIaaAQtALNaicP/Yi1tpwySspBocM05MsUUydcA3x6a2yB8rsyPHHjS3APpoyTXSB8noEHS5uxG7j/WfnNMncr5cxphdJirC9B6DW4acN3AEPl8C94Z/uFzuA+uYG5r0O0WvNkCm60wEep66FjUB+gQc32UFWi9Al1exLG6q8E3HcIakjJF2hbm8hLmCx8K4+Sb34lMBW27pE32Jr3UNZ9MD/hUkIyqEvT8maxRPu+Ee/lK5pbP5cG7nRSVzLvB2AnrbSY/NdonM4D4fN5wF8YFdwZk2jjXr2/Au1rWRzJgXQu2O3Bdw6xWoIuVsOXqRp5dI17J1yN9Pyn4sF7BPLmS372+jk7YdJwrW2G9AjVWxgcQgIpeX42worhzIGtgLtaxjbsObreL62bKdlGGiQedebeTtfJi7d81fo3ebMFdB5Ud6168lM+VATIxl6KMIfeAIM3fkkqYaT2gUnxpvrK5bI80gnju71KbYpo5/37W7/aB2Odaa+ba1J4kZdGRCew+51kRZr3q7Z84ew/uZXCO1iOC5iHwIWfNpPPZM6cik9Wzsjr9vyONTGAaCbMTQJLPLO8D7rqwZziY4y03l72/QqFHjIl914Xy3pI01/sEJrwvz3FOO8TAOGZcpiyRMTs0B9Kx5plck2uN32NQkbBRxyLqp+bXfcyffffI9/rnMh/EFIJO8j1+Kot5Sh0Gz5QF2Ozr78Gev/9uDO+f1WqQuzHdJwUGor5/0mv2jbnknS/vjuG56NHYQ127xphRc31PJzzTAowstthip9v7tKF9Hyx1dN/3oebeosgySvPcTfCh/ce+smbocZ8cDTIWhXxuO2YeGh81Pfa8Uxt8ldMpC/ldmri4l05gBKTL/k6167U+vNuJM7AqQWUJd3MLd32N4tkTuMrClQQugM4Q2DBMS+jWFs0Tg+0HBrZmmNs6RF/Dgy7o4iaZigLctjF/hdrcdnPJRh2Iz1EW/SToPgGr5r3grgMVJkri+HsTG5Hf8H0Xoq19DpQAyB1KIP6ubGrMpRFsI+MpMD0UHCtLuHUF41hAo7ZNZI3UCW4i2wEYODTnRrQPLKv/lPM7laHzNxwv6xTg8hSbanvPvEHnQLaLgIjxzI5Vhe6iBJglX0/beWf04bVJE6NTWYhTsSg8Kwph7CrA2s/pA58DaAVihttsBYy8CzCErK/IhO+4LMIhXtkH7JL5lQGQe4G8wf33vyNOyt3EnTg4g2PWAVwLaOyBv8A+Cw4divJa2i/Kdui9PxNHMJGMjTQ/0tgh3pjheMiZbhMOfHmkJN8Em8Hc1/Kkb/SZTUj+DuLI+gOkn4iQ5mIJ0mt7m3ZPX+h6kj4fAFaMPJEhO9qOXYfGAlsmrz2FrbrHoXPXwJkxiTMtPpMl7eXS8fOVrIUyesJ6kUqjHA0sGQ9GZNKeaZ3VVMJOmatAZJDwxL17TtHUGajvqWScMsc5M+EM7jHljgUtsrL2/u7QeeBtvbfGyh+7932znBZ7e5a9K+7HcZ+AocfW69BlmuvLzWTWP1S7w3rfW8uDlPRIW9yXz+GYuk8F9xEBlsBtdq7S73UvEvY0R7L39gZePiJw5CHa2PtrbEyMvTdOGPcLMLLYYoudbsvG9eHYOSU/gPM59Ec2BoNknecwjdiYqsOc37vM0TOVY+SYck+5dur3g4i+eWVqNExwBmVSKiEiOHzWd5oFXfqi8NI5DuQ6L/XCIb/A0PpJmKkqQetVdkkHKkuJ6FlV4IuV5OlwIrVTfnbrL6xAjmEaRvmmQ/XpLYrNCnZXYfVZDXr5RhwSZSER7LebGOFVlsCqkqTPXSdJn08FD3N9eo1cVxbOiEnuhRtx3NZ1dIpMRTAB97e27ovO2mepg2XK0ZNHlAepHOqBYmEsVSVQWJi6BW136F69GbYH+f/2LCVNPA8AruZ5CbNntuVo5CD5/DFAiHaedJod+mwqwnCuIyjvqyxajTfb2B5k5Hm6Tpg2hQV2NYoXBNruQDcbYSFsdzFhvZaZRfbDa+cH1kHTCBNDx3ECYgXQK+T0AVCVcBclTNvtByI0wpui41rZOKFczY+xFeaHHmjhc9HQy9cRIHJOxpjP4REYBMDEejXS1gq4aP6AqfesRqzvKzZxKATWgl87+3lD4vMqg4HDmG9ACvba6JidYtpoudx1wGYjTLyRfENUVcLUIAN+c90DlQc5Q3JAJG0Tx3A3G6lKBupq9KYp/Jrs5xV58IPrWsr0wBu3nhESZAkTSayk7sGYAbgotaWfZYnjabUCrSppC12H836aK+2U2hnX7MH+6NhI3DlM2btYOj/Gvs5yAgV2k2eShfeF75tB7qwpB5dJ3iUpQE5xbPSAjX37WJb1gaoSXDfCgN33Ptkbre2ZdaSgSJK7ZKov0nlDSXlje70xZtqhPjQJcDMnwOhdOPAm9hKLvUc2tdc+V2DlrPPdCftefyYk3YNOOWjvYndpg7c0T3QfuY8dexSIkLJxcxD8GDYAMO0c1/KdMJnD+2Ui/57u/Y9m783Zw5/aT4eYVp8XU5nUucyzO87JBRhZbLHFFnus9lgiEd5G1ITe4wwvx8lN3tuSFphjs6OcKYIi+9ok6MKPlGsMYBO2BzMAG/XqcwrxlOPXeCZHHuFvbcgl4qoCtpRoaTgH2jaw2xbFbSE5RhoHu2lBtzsYY1CsLMxtA97tQgJ0dq6faJcIbI04FK0FTBvlZ+4jgs2x5FRQY18fY5Lo7xEpm/fQQvJuH0krDt/MsdW0XvpojEngAK8DT5CQbs4dpPcZqZYzRfaBImNRkfsYcIf+nlVHBatUAqj1bU0Sga1AIABqO2BXg3aNyG21bQRF8jU6zTdhAEDADlSlzw3S9Mdw8ju9PzmArQUpC2HOmpzlnwi/8WOIikLua5I1BYiAWd0A1vX6hIgx2qpz555fR0Ji7r11P7CeaB/rujT4mvoOXw8+90ydFHmukL3PwAIsjCWn1z7T/DN+XMjPxnP3jIIieqvAysll2VgcwCa5HwCYFumCSTpW8oTvKQC0D4hMfzcGGBkK78VHEQT8kPYdUzbmeAQQpO88eEv6LnBxfMl/ZCDDsZbLoo3VbwxsCOP4SOkuDPeJZDywu0+aMlw8Nn6z98coq/eEPct7vL9Y7BHYFChydDlveRwr0A57f2vwY5mb2hZ3DcDcewadOSYOXecDe0YDGscADx65Lv98Vr1ODKhY7LCl7+97bt/HDYw8FqfgYostNt/OFUWy2NCxB8yPhAjXn7kvEifT6Hd3ue9dIm80WhkYOkPPea9T7NR33VjEeohGRmAtBBpx6/rOQv/7IJ1TSoQ/OQd2XcgTIhHF2X3SavgI8hDdrYmSVV6qLMCrEqxR4oUFXVzIb282sERYGQI5BrUO5mYHur6F7RyIGeb1LdxmGyKsNUdFoH1bC15VAojUjTg4q8ZHmR+5kVVmUdsCzKCm7svy5J423+YhIqnxDpgDUjAPzvRgdKitUod0IpcV8q3AB8fCO903G/BmC+fbc+y+3La96NeB/u9UHUK9J+o50PJPyk1YEynTYOpeZGXMkjXoXl/H/k0kZ3r30c/TSGH/N/n8CgrupfrHk2Aai1wU+bGmORn0b2yEgUVVGaTrQuLzZPIKgGriXAVAVeXZPQmoqf2QjmOCSG1VJejiAuwcyPe5ebMF3W4POhj02QHI2lSUvpkpAIswBPPkSgBIH83IbSvgyWolrDaN2vZsi9E+nHOQTQ5kZEiezVrJm5FGUc6xwIahPstuIDlIgYkTZOWAkEsmPN8+xplKczlGWJO03PSASQamKkXSsG4iqAYkOTz674R9oAgMwZQrwDm47XCN0zZEUQh70AloRXUT9gXcORC8XJb2XfKcPRmstHkzFhBvpY9yphdvd9J2iSTkgEH0tt7vucN+TKLqGGf4uaL/c7bB1L78GJabZwWxMsIU2BsLEtD1ube+xChjZgIlTKCedNrUvE7+pssL0JMrYCtroTwzgWAB+FxZh97R2VrGrfbljLEUnK6xzsLcdcnrYATISb6fbYccSicykR+tHWK/LnY+mwqKO2rPfY99dGjsM+/PQ/g2gv40X9OxeZfUwp78RN9Kb75MMcaPP0edzSZAZgn0QzxD7OmnPohyShudWbEjD1K6jwC+c9nb8tkdwyQafEYYj44a2uMGRhZbbLGHaW8J2V1snp2cH+Oc1kP8Rw7/d9konXu8HarLYx/Xx2zk08jtEGnrI6P9YZ4PbQopYQckOTi0TLZGQJHCAJZijpC2FWdd3cBsWnGEdBwi3sla0K6RpM4KVOgBIo8QtiSRnMlzjEVszzXJWyDOyRBVDUw7QdSJeuwB4qGtpXM2wQoqGGWJ9PO6MDOoc2DrgLqRJLQHHWyeOTJBhT+qvholn+vgG6XbZ6yFsRwmY+yKqgzOa86u7+cp6ZJ7KnPJDWViHMt5yDO+GAChQy8Z8yFTlpJzIDLCtGhbn2g6yzVBXm8/Y2MoABoivSfaXdlBKmUlACrH3DpuRp17MnXpfydzN0hlCbsBiPMxsNpqYR+JU31Y36Peicp00Hqk9RoD08d+H26c/E7fiUmOA2VVBYmyFOBNrkEGaGUPN/6MaT97CQtK8pXAObAxokrkUlbbiLN9H2MlZ72kn5MBSpE1lLYEqKHIAPJtwzyDDTNo8wyoUsAsX3MVDAmskoyV87YZGoNoSB+lfNcygZOdFr2xc1fHWl4n7qJu/xjrTCpw8m3CmroP9CQjARj5XkjH4bF+qPBs6Vw/sM/q1e1An5/SHnPG8RJgutjn3Q7J6p4LbD7Rwt7xLutv8s4/hQkheTlwnnPIVHvOBZmm2H/A4X6cKv/YgNF9tgT3vhs70/xcgJHFFlvsNNu3+J/j8LTYYRtzuAyuGdE9f1dtnIMjU9ccY2k0S/r3vnscqltel3ftnL5LPVQmJSkrRMf6f7n1DuFcZkWdNF0HbjuRxPGRtsfVX5yiXDeSGLoqgaqSZNubFvT8GVxp0V2VaJ6WWBUGtmlBbQvebkHWwKi0VuckynOzFSAEENZB04KbFlTX0Zmn7JiiAFeF/F1YUNsKQ+GY5xiNenPCVNFnHHOKaJSyskmyazQi/pCTM0StvaMx2MuJsC9yLYkGDuAXIEwCTbbbNHB1DVxzf94eiNyfnYg+ny85i0Xz3DT9SEBu+1Jy8X4H6PdwAJWgJ1fgqoS1RvJwvHoNbtuQY0UtzfVDyXObi7WM1V0NNI3k9PA5fdB18r214M1WIq/zKGvvtKfLCxAZoKllXrQyN4yX2kKQ0UoktFKgSOtZFMDFOvQjtx2w3UbWk7at3t9a0KoCrVbgy7XkNyGSvD9lIXlOxqLfdJ6qvBSzzGVDgVUWZLw+eCbX1w3QyvNoT3DXSdsZErBUAUkFZBImSogo7HB47PkxwB1AHmSC495YmcovNF5UHpXqx4+1oKdPJCfMqzdwb94kfZSMmxRkzHNFeXaeSvaZKpE/dE5YRJ4hEiTurJXxUEvkPPs26rEoiEJ+F/nTt6Ul5InOebfrP2M6/9Yr8Hd9Ea4woF0Halrg9ZsgzQaKbLzecxHFa9Kk14mFvDTMoBlruz5DuFMOBB0uwP/uftbkUcDgGDsV0EgYUtrWB3PyHGnCXBoBufftD5O9rKmqkPsp7W99SpW8C6yn9B6ASA7uGlnTuk7WmKoKa+Os4Ji57Tp1XbanCO/4dA+bsmTO3AdS7ufwvJWymBa7f3vIYyxjtM3Zh/bsnGDJGDNkEEx4RGBV+t4NYDEQgmoOBjjFZxu8z++TcTUZ9Y957a/viXMBw3vWb6oqBJb2fQWfPhQpzT1BZmeREDtX4EVann5+RLkLMLLYYosdb0uU0cOzMRbG6HUPaJN6prqEaJb071M2KfcB9D0AC0mQ1RKHy8F28g5paluwIZAxA0cYgIObGnVSknMS7a1OS3X8GYALAy6S6GGN7G1FAkuceyzODGZxfhbCGPEPI3IWqXnnM1sCHEmUqNfSPy5hYAK2pXPNt2Nwyg2cnhPOfN1Qav0G4KUL34f7z90g73PE3GEsh0j2ffcFosPfJEwhMkBJoKaNjtemHgKb57QsIl9ZLEE6rstyOXhnefj5Afms+LdG8xtx/pclCAiOO1qtvFRRHSPTtY2QOJmLAlSWkm8FiEwN+DZTpoQHEVKJpPCvyt4VhbBWmjbK1bStAInd0MmWJ/8OjnP/DIFB0IwAin5cURjTRlhfzJI7yBpw4UEpQ+glR94TwcfOxHVL66fJmxsvjRDWChfHkVOpKQVETJDdGaxdc8aezhsSKSqVvJn9zs2ea0qCShgcEsmOsXdYClyN5TcAYt8xh2TlvXlrreRv0rVFxyCbniN+ABAo4An02jUFaQKotWeNICK40sp4aBKAPgUhHfed5rmzfB9bJQG/Rt9T3tLvelJd9x1lP7UG5+DSnaU9zrBH743T+3DKz3DQ7XuX+XlIIAErdQ1SCzm9Ju7t1zTNhwTgZAbpQZsFvvbfV6PfL7bYYu+lDaTzvLHjPrt5bEF718F7p1q+/5rLGjlkcwOuDtmBugxywr1Ly5/10LM/RGbLA6jTAowstthix9tDW0wXEzvmUH9CBOH4PY8cC+ceO+qI0XLzvx+j5X10l00vu76GetCp5v41e8p3my2obkBlIZJXmZyORLZfhMh27rpEn55DLhNAHA8GECdtUQBlBbYGcED5covyMwfz6gbu40/B6vyoG/DLV8FxTNYAV1exgob68hn6LElSYTYkrJGnlzBGIpepaUR//lC0i0a0j7CvqKpAlxdw3/tVwADFixup782tRBFtd0O98ixCnznmeQldwkl0e0+uZ0Zkzj2MfXYMaE4KtVEqvP/PzsVkzz6fAF1eCkvDWokKzxkKfmyF5PRjDKaEhbI3Qij9WJ3qfi6465vsdwZUFrBf+ZIccupG6tE0EYDrusAOMuuVd8p7wEUjz1+8lPtcXQLrFczXvgIuLHbf+yG6lcHVb/wOum9/R9qyGzrhbNvK/PLsGn0WurqSuXd9I/+rm958plJkrswXP4L74AnQdEDTBlBBcmJQzLegv0uluwKLxYDWa9Dl2o/jm3C9gpjB+e2ltySviLAJeCt5RFQOjMsCfFGhfX4Bay3M06fgupa2TN5XIRdGljMj5A5xheQO+u1vhaTygRGi7WQJdHUleZDqRpylafSlY2m/VDN8btSkz7mgzLQQLekXBGaK7WEpPtOYjNNgETEwqxVwsRbwbLORPBg9h4ELTJ2xGmubcd3I+NXPFdT2dSm++7uw+z1fgdl2KD67ERZJ0wK7WkDLhDkyaINcCs05pLlbmL28YlVFxknv+R3c7S3M//6NMJ6UQSZzfsQporlAurgGmudPBUDUsXh9I/1/sQaMBd/cwDVtvL8+g7LvcnCvt6YdkmAacT4cY3PWZubpOsxmKZwY0UvJ2EU3kBucHWlP+e/S93JkiHHb9NtQv9dIXP8u0PWJ61quUUk7jYJWkE7ZUVqNQkBAGQtJ3f24otUKWK+Fabbb+XxKFdxuB97t9j/jnrbVvGy9NQq+XV1cs0bL5E7WGwWqdc+VAia6Np5Yv1l2bNDCY95zL3a6vUtnpl9LRkHtU+uU78/3BQPtc+QfyewYvY9/F6jcanq9lk9lJYEU+Xs7ee+eJIMVzp9+b55K2abvlmOekwxCXr25AHDavnmgkwa5tU2vL3qBaoTxvtT3UP75vrpk37nd7vjgmDl20lk/D8ob2aekPoVjmR6TgaMnBrXle4SxnF753uAYO3H+L8DIYostttj7YFMbtOwwdbRNbfqOPSjfp+3bEKT2AKIR3oUFJyaAycjPfe3iOrDftFDqDPPR5VSVohtPPorbOR/x7KObMmcgtyROW5+QnXUz23SgzQ58cwu32YCqCma1kvvVPtrdy79QIQ6Q1GEmyfb2HOQJksfEa4vzsZE+aZS+mrWgskT7wUoYNU0H2lpxNAJgU4OYBlUaRIdpDgU97IQI9653/Tubbj6CP1jvsDLR5j56H5rw2fcZ2hbEJh4ImYMMkP8gNvO+OTtwUiZSAaOfZ46psDFnAR5WFWA9mOacP7/5qHsgMtFUgihhWcCxSLoxw15eCCiwKsFVgd2HBdo14UrZDmNAJPkIeOfXcZs8W1mAK5FcizkTlOFCEfyrSriLEgYQyTkFPEwbWQOu6zkm07wWoSqFlEWtBziNP0CpYzwBLiQZuJU1oOvEMd+2InNVSN1hhAkmc6/YK3MU8xqY8DeRd7x33f58NGSAqhRWmGNZq7S+SaLnYx0WPZtKyOwdGL12zJiMU2NZD/hUFODdTkCjMQByBFyN958YU0DfKVKV2H1QorwxsLclqJX1nFrJ+RHyLo2Ai+wj8vXf/N4S2epAVIjEVsirlK79LbqXr+QPDzaNRsqmoBlHpxcZElBkVQkY0jmZH50wEclIPqMeKJM7U3RdGgBzB2xsPKSOhnPuLe4xyvWY34WE97r2Hfmc4b2l7Z07Q8beHTq+rJU1mCO7jvOI6YQpFWqVOw6tDwbhkbrre6npr+dU16ezRwKYauIalOSxGq1HbuwA4/M6eRA+7Z3JfcA5x2Eu55XWLb8GwFnkVBZ7N3aqc/8c0f13tXTvr3ZKPo3sXRHWprng4Clzb67jd9/9lXU+xSa545wM+QLToueMi3wvEiS9uPc+DufEKUt9G+l7XKVXwX2QJhuTvfx+KRO1f9Fp/pEUyE4/O8bu2y+RA0tnez+cCFpkZ8dJhY98bXlL/pvHDYwwDyIOl5fyYost9rm1MXDkoehTPgT7vL0f0vEwdpg9RcpCE/+mt2lakEuYOqrX3XVAR71cBsEBrjIXPs8DlwbdagV+vkZRWNi6kWhgZon6vLyQCPbrG6CqQKsKKofCnQtR4BI9Jo5ccdhW3kHBoKaDeXUL2tZwzPOSQfv2GUQUKVCw3XknMoscu0vaM2fraHuG/zaRiq3/5jI1p+TLSS11Et1l/GsUc1pm75BSygGtKARk6JxEgvs+xK4G7MaPCWGFBICNHZzPKZGyBfZGjo1FQ005rfUngz5MIurqGvTpC4k4b+ok4j0ynvT3vN0JCJY4wKCOPGOCZBXdbkDW4uqihFtZ8M1mdCxQ4VlQZdGPgtbHbVpJVl83Ye6FfBLeUY22hdnsYF8XoG0tc8VHQXNdRw3kZA7Gf02Ut3MskYev/f0AD3Sa2BapfJx36FNZgo04MlFWAQSj2y1ou8PqlTCp3M1NFskfnRlpThG9LyuzyMtwaZTbIEqUhXXlnl+BLcHWDdC6CIa0fLx8XmYyPqe+nIj6PLS2epaJRML7Ns/AISlngKz250sOCubAiX6+q7H+rAbV/u+mBW1r8Fby1gRpw6SOIf+LB316smTKFlG5Nmf6vx/UO64d9smVAOjbnawXKVDqtHw3LpmV3BurlYBtux2cX1d6oFS6To1YL9eOlp3b2KH8XTgFx+owFhhCyff7fj92zUgEbG+cEQ6utYPf+d/qHA5rgB//+ThhZhBHOTT9N1334FjAXyCuD65//ZQzhX2+JZKLo/zgbidr5x3flew4SnxKQwzbY5+lewOtSxrIMRm9e9497qjTKu0vD7RHx+PnM/jo0dupffY2+3rfXAb6a8gp9Ur3kZS8P+ack061OWUeuIYVxD3mHHeEaXDK0TmvJt6PKYN7VpnJnoHKIglwcYO8gHm9Q/1Lv9fmfsBeT0lBGRTA+7WGjfqFeD8YlVq6L9oXHHKX+uy79i3b4wZGFltsscUeu91npOFdKb567UOICvq82L62PtdYOSZXxazyWByYqVOfkigm8pswlZpJy01yLrjSwlUGdl2CViuRgKklmTKVpTh3W4lgp1U1qENwNGsUkkY6+ftQ6yThatPMB0VC+ePXc5onBQRSAMJr5R9M5qvOjvxf3bCPaenfdRyc+vt9a4GX/AiOK8dgjZhVSS11tOcSQQo4aH6YQ/W7M8Az/IwdgzdbORCrRInWK0v6Ln2OGGGcRjh7hx23rTyvIdg3O9CuAJp6eO9UykrnjEG/z/0Y465D0JtOHWcK3DReRqn2Y7zxgEjnMsemCZHIWm+VJIDzOUl2u3GHdJ7bwtoIXABgFhZY6MO2RZC0SmWo9NlDRDlL3RQ0BaQM7QsfsZgmER0wMozxeYoUTEzq6qVzTrUoKXSmsZmsVQCkf4F+zo7EkT9gnkzU8dBZl9sWZiNAWwBx21Zk7/YBR2OgwtS1KbjZr2D4nAzFfDGp8xeIkkiZZGN8CAVU5X9kDBiQ+ZvINvZvPeNdNtV3Y+39kPZEo+DIEHg8R5DMyfnbYgEylloF8JLv8mdI39HJPmG8TBZA2cg4DgyT9Jo05JlZAHoSZmBYd0jzE93RycgO4DuOkQegXT+dZ8vMBscWW6xnpzIrzi0lu8/hmwYCPXQ75XmPvscZ20LfAWPLx56xoexoTpbyKWClF2A1JnWl9wmAuwa2HPsw4Ybj95n127fg/E/H+Knnv4e05znWiDCXAvq4gZFTaTyLLbbYYg/F7nPtOlfZo+U8kk3jY7aHshHxG6lelCcgjjQTI4iDc8E7tIIEyqFNdVmgvRSpIHIMthbmci15OrzuN6wBjDqeneQy0GTVGjWqjlXHgKsBFEGeydSdJPtt28TR7E4/3OvBSSO+SyN5TGzqbPaR7UBfV5woyM6EaPzUCZSyWRLHxEkOqTlA6anlcYysU0CEmYHtLravRoUZArHrM0nSXA1p/Y6Nhp3jpFLTQ0Ea5epEYsptd8Pr07KVLh+if+WERiwAYJBRMpJEG8+fyn02O9jbLVzThqi3nn6+Vm21AlYVaLMFd02oH2+3IS8CKcPD2gCWEBFQyt90swkACbcCRKiEFvnE7T2mCJk4j9oWzCYk7ebk4BiAmZ5EkQl5gkTCag2+qGSJYAZaqRvtJKdI+D0Qn80DPaYqfd4AD3qQl7pTDejtrhfhF2Qzkv7hpoX99I3kLKqb2L66Dh2y+1xvR53rJgBj7BlBAWiCDZGRATSifrRlMJdIOaicRsoo8d+TVUYOAQ1Au1pysTSeiWSoL/vXmyOMkKEaiBH1adSnj0LkPMI2A4G4lX50r6/7EmeJjUbsK4Dp2QS6TvJmE/Nbpe+prIxUFqoXwX9spO3UODm3TMU5gyCOAfP8uj52Tch9NQcg7J3RXSgaqbTblEPJ7y0CA8T3achNwgxiJwAL4PceFMGRspL1bSfgMIKcqIvvVz/mmT044vx+4BCAetd+OeX3yp7TIu4CTh1rYyDbmJ0qR7PY47K7rk2nBuXoujSlinBK5DqQOIyT8UvZe3bvOyJhdd+HVNG+HAxzyhjM2yPbKzBB7yiV58sh4yD0egzXi6lACH9mQpIvDcD+NSn0neRnizn1FAAZYdeS3v+EMXXX9rlvO9u4nDkvJn/f3xdMyl/fV8DwAXv34QiLLbbYYosttthhe9ebrgnqc+rECmyQKQmUsWKNgStJokcZgAG4TJOm+gOHidIS4lTnGO1OFCKKepbWp3MSvd6d6fCeOmVJQJHePef8LgVBxr478PvZdl+BJGnUlQetBqBIkN3wjkxlkLylgwRrJHwq9wEfgWaSg7YHSMIzZXUL16esoNS8Iz/k/NDcIE0LbLYAc59VE3KA+HoVFlzYQaQwN60kXGeO7IwykZxSAKFz4LYbgiIp+KLMFgVFbGSPhHaYE12v5stia4CqRPdkBXdZgksrclq+jiHhdZorIr2PypEBwzkM9ECR+Fl+qHbAZit5ilxycMvldcZsTE4o19g/NSIwdXBMsji9U5ZdfH5tn6TNQrTlaBSk6Y/n7BpJRO3bmBnUdpILRpOgn2pjzo0BmGD6bcoMbmqRAfFMqLE6T1rSjinYekwemYPO5YfIFEnvP/Xf92lp355yz7FAiUPOdP0NjzCaXJzfaX1EmrAM6xtRf70JEo9BLtH11ooH4eDP1mV9j82WtDnXmBibz4stltux4+3U8Tn2jjin0zf/+xR2y7nsmPdhvo9L18N0rxXexUfU8z7Xw7H2HduPAf0gjH3lpY57TgJMQnHZHsqrC8xilk7e85GvkZN70zS4boac47H2EN61iT1yxsi4Nuliiy222GL3bI99E/BQLY+01M/OWd4x5Y69Y9W5q+V6xxqpg00TtKtMUhpdHHR7vTMdADkH6hhsCa4gmKYE7VYwN5t+VYjASXJjFAV4XYEA2Oe+YI0q8tH1wZHo4j1TgAXGznOkTX3vI0xN5+AQDxt8uwl5A3zl+2X4SBlTUC9vy8BBqVHWzXyH31H1n2vG9h2zXScRrKkzuyyAroNTySzAAwE+cXhd743oPmiHGCVjEXbMQPhYIvH7eT4MzIXIsrntrj/Ws0PpwDEPhDFNlQV979fgLiugk8Tf5uU1sKvhbm6BpgGshblYS04E63ORdJLfpPcMq0qADw8mMDO4bWAuL0HrlWdJWaDYScR/2wqjonLCysmZIqsVqKoSJpMJuUFgjMyXzUZyhazX8jcRiHzi4KaRPk0BlqKQhOuVT4RdFnCXFernFUzHsJsOxZsd8O034F0d2k5zg6SH1KDHbwhUVUGeLiT5NsYnd7cJyygHpZJIcgVlXSesMx0v+xyKOYgQDshxDRGWj2dk9C7eEyWq80MBXLVcJztl0miiZZKE0oToFA3Rlrq2KmtHGlL65eLC52+KEeZmvYJ5/gwoLOyLWxk3txu/VgqwgB5AQQnQksi9ATGiPnU2HDGXqayyd0PixCD05AR764W24/OncFUJc30ruYv0faNSc2k7J22X/q31n1fhpH/v+j6da3NA8Ye8B/MMJu0L7jDe3lPPoPON+33KPtcTNQ3Y2ciw8mO9l4ukLEBt2QNACMk67uXrSP+79e9h3Tfc1bL8YKPvjzmmIE74+wifx10i2PMIdc0nMmb3mYfhIdld5IjeF5sbsDPFtrtL3rz8fXFO0/qEM8FM8PGuuU20nPDfSfukjLp9c9mfZUROsy/9Slbf5QlLslf/A/vppKzJa/LvU/C899+eNYJkvzMmj8b9OvaADE6f8YhzRHL+HANAVPqZjBts8SYtff6chZ5/P/W7h2JTdUy/O1lrDMNnfohtgMcOjKjRyEFlscUWW2yxxe7T5jhq7/rSf2Cbhp6j3xiE5M8KiiSH/4FMiT/UcAcQLEDiHCN/DRNEjsoQYKnvSPT3JBsdFmSMMEs6kc4AezYIax4GClItUXoliQoFEHIW3GEPIc8tCQpTsKjnaNQ2Sx1scMGRO6lrfmoE032YOog18XW6cbZ2IDUVQJSyjEnoMwbD+H0OHKjHDsYUk0RrHTjReB87CInDTZz8IWGzM5O/4VQCZlBlgrtaoXlawW5bmMYzlHa1JJduG5gnT8RZ52WjCACTi/Jueh/r21mZNV6ajspCZOX0984DFwoEdgZsTF/yCh6cqsrYXykoUhZy/7YFK5OErXymzkmg7yQzMRm3lsPWwhUGXBAcQQA/ALzZCoAW+txGiad0nLATGRyV4VNWl/Xz2FpQ7qwcAxEdg+EdCh686znC96ynk4mGx5hoseMny8vLiUwQA3bekTsWAZlc1z+sd1CJrbC2EqJ8IDv5TVF4QCtJ/mytAFgAaFfLd3UT16mUkZOBImENyvMfTT7r0FkQ5lIKOGUOnLwto0M7aR+fm4RXFrjJrg9jqu/YJhMBnDHH0d5nGLMcHHlo7+j7sBOcGJTm+Drm9eoZHprzwycXQijISzISEKX2fEBGHHMEtgakTDSdS1KxKA2nnwEgygCIc9mpAZwB0E0dr+84EPRQpPb7bksw7t0slXg8+rd+X3jKODt2vZ7Tz+cKYMsCeoLkZNhvZuDIxP0ieDCx2KZraH7/9J2WMwQmg0noTvPhqDGgdc9zkxy7HgVw1w6/m/P7qXohYfXiQJO8a9bpHHubDNQHZo8bGGGHWYmYFltsscUWe3h2DuDgbdoEvXfSqX4uUOSukRX7olz3lc88/mwamVsW4IQxEKI1EymYwQZRAYHWASjFOVxatE8s7MahvG5RvNjAfPoS3HawH3wAurwAryqgsJJ03Ts9ug+usP3yBdbfvgV989tSflmKrErXSQJpZuBiDaxK0K6Bu73tO0zvwsIgAhUlyBrYXQfnWCSELlcwX/gIvN3BvXwFbpvxscIiCcZIN9TRgSdtnRwgNLoqtOPx9Q3lTD13Nk4C2MAKYsVDbZCEIhImw3oFADCZFJTkUIja7QFYyZ8ljbrSqioYMKgmRV15ItB6DfeFZ0DHEknedpKHpnNBY57rOgPrBKRzu508Q1FE8AxInHp+vBee+dI2ydyUnCGwFvabn8F+bCUJdNsKA8Xr2JvVCnR5Ic+i9fFJr8k7rPnVa/BnccIEgMMxqCjgftf3YPu1S9itg6k72JsGZlvDvHwDKm4Dc0SZIqGcpgVoJ85B66XoNO9L43NxkGeOXLeRbaDjs8ew8ZJ11oMqXi6M1wXsmx2efPOFgJNNA97VcLvd4Wj9RHuak2TrKZCgLAizW/XGUho5yE0LvrnxXStg4yzZmUSqJkR3u8SJ0CHKV83RxN7zPXeur5OdOzeqEnSxFkCtrgUESUAuab8sGlHb1CbApBNwiAyBYWXsf/ZS2EpXF4nkXRdlD/e8J5gZ5FlPdHUJ6jp0r69HQR0qygCgyjN38Tk6Ya8AkJw6QGCYafQ/e+bWGIDBTQt862OYooiMkxRwZY5ydqHuJE5vBarnrJ15W5yTxXkOO9rRd8e91gCozkDq/DrXCTB9iJ1jbM9RGnIN6ddPrgBrhIHZtDJGfMQwdx2obXsgWGBYbrcgZnAtazVZA0bp1/cWIXo4YZhwug8yFFkvCqYd2376zNYCTrTt41fcB5vz/uTIJDya4XSMnQPge9dzYczu62yRR4Ln9hDb4l1Zup/TtTllje9Lpp7/TsvLr9Fy9uxnxxiEPcuZUWmOpWQv6n98+Dx1yPLzVhaNz6nTPlx7+Jwi78vhOhU+73245/3WWxNcvw2mZBCn5lseGJewRuY+F5jjGSplHs4BRXIWORL2XtL+eg4bLXtsjUz7JSl/sN881CYP1e6jjmP+hdQOsWvmlntHe+TACANz08wvtthiiy327uwxRElM2RjNGTg98umQ3XXjfUqZRzAvg3PODA8dwTLn+JAtAWhUPxmDriTYLYFaB9rV4Jtbcbx6uR4uC1BhwaXzEeqE9mmF3QcW5esSZrcDyMAYkdOBj4Dm7Q7GWpimFWetOqUPOToOHaw1EtrnaqCmk58QgMIEiS911ATgg7NyXXYYyh2z2cZ7dv3G6jtWzqFrNDl065IDTRcldhSgKAoBrqrS5+pID0TRqRt+Z5KkeyPPou1F1oNhKWABiHZ8WYbcFHx1geajC1DLKJmBppX29452xtShxTuIPcBBANgfIhXsi0CQP/wkgfgAImvi9RsAQHd9ExNeG4pJz8tS8m60rY+G98wGW4KMgbu+gdtuh/1iJKdI+8EKmy8WqK4d7MaEPJF2vRIppLYdgCLhINqKU5GRnPMdxBmojkDNDZMAMj0QSMcGmcAQ4kJyibAhmLpB9zvfGtZB67HPFByhfltrP6Dw0n3WhlREEvWdAAzc9Z2J6SH3GMaHjote9Xwk5tw5Nwk2u+m1xztxqCgkT0wGigyjR5M1QuciUQQ5tFgr7Ax3eyuJJa8uwvoo/7r9beVBNGaRIqKyjCevEYc5WROYK+EydECTOJxUWsw5kGl9PeV5XFtPt7OLSdtVHo47zWWU/CZ5/5Bzksh7Ss5pynInyGO3MzuLI9tyok01sGLqvpRKpPj1wst0KkBKq0okM5XlJDcGWNalcGt9HzNFkJdM710U5keau0exNyDuZVwS/Zsm5Z3LKk2A1h5TSt/phkDo+nUPzxXnYZpsfaz8O9tsttvUGvke2F3nRA6WP7Zgr/s2ZYhkErrnG8NZ+RPX9P+Me+pJebvkPdgLWkqDk9KyzwlapvJZWpdZv5u47tDnB9mRaRvsed5jx/5RMlhHrL9pfabOO/l9pxLb52eitA6jgTKfQzbZudY8Ss6DwOjecmD30N6PGxhZbLHFFltssfu2dAOZbFrvBRTJ75n/97nKvNPv/WYkl4pSBzglUem9jWV/I6zOV9N0sA2jWxO69QprAOXtNkTVu+dXuP6fngqj5E0jjvCCsP2oxPYjg9WLEit/f7fdgQzBrNfiZKkqcerdboOTPNgc8GPfoYI7uBowpTAJiAHaNKCmBb25AbctzMUaXFX95MCjmroHNtinanjndPd9EVEplT+VpGqjJJNGY3PnIqMBDaxPIs7Ob2xDwH0XZJHI9sGf9J6hTZSBob9tWuD6Jjpae3VjcWJZC6obVN+5EUfrm1tw04iME3OIvB9E+/lDdZCV8vUj7XfX74OBzIp3VGu78GbTl43y0ZHBQaw5WQoPwNTC1iDv4J+ScVFnObUMWzPszsHuHMyuhdk14jBsh4nWe8/pnYIDSaguGRfOP7NnEAwc+OooKAvQxRq0qkTKzjnYVxvQzWZYh7St8ii7UG7S50CPKRJsV8c+CQyH4bMOoqtzMHYP+y44WPYC4cNHG7XgsPG5DTQZdOcEWcsjYv093W4nsn/OhTbh1gMfdhyI564DFX786ngHeswJ7gBuG/nu+kbGooLHg3Fj+mtAal0H9+Z6XBJPHd06V1er8HzknIBwHlQLDMPe+2BG4xIFhlYsw/XqEhzgKTjkHeIHfStzDvkPzfE51zFx5nr3mYzYD5CMMW4UnEuksrhuwKaNOcySdYvzBMIZ+1L2JSOBGobAtYtyn+oQVUAxSPAlgD4r2NYk5c+wxBlHhiLQk86XlAWaPs9cm12X7N06VU54T4xERk/d96EDAMcGjRz7LEn0+2J7TINp0vdXuhfd67Q/wCbRSw8EOU3lhjuo7+frMAB/e2ezbri2HbJDQWojgRn3agffdxnDI//dnj3V6L1OmTcH22vi85BU5EQgLj/zjpWdfv+Q18SHblNn3Kk+UDvzu+hxAyPvSxTPYostttjn0Zb8UI/T/CYkJgNG+BvwEVlpt+6L2uEOaDtQC3QrQrciVGsrTJEaQNOguyix+dCgqsg7kQlsgPaC0F4ArqJ+eaYIoAitKp9cuI6Ot706vAf2FfkhwEVZHzgHqgUYYZ/MGEUBsgx2DuRllUZzmuyL3rpjROPeyN4xUAToacOHRPbqaPUOWLRZdGvT9MvVeqtczz69eQ+ckbKQNH8GO7i6i85QTPRP24FuNiKhtdkATQu32/WliDLmQ0jc60Gd4EQ2ZgCKBOAgqWsoz2vpc9v2o3zTA7BJEoOXBULkspc8SvOhDMw7m8EM6hjUAaZzoNYBbRcTaI/JBPVkZkwElsYATXVWjjibY3HeUekZQpK8vROWV91MR95pe4wcbkKfA8N2D4CHw2gOnqlnPXRNNv/GctCMfj/zEKZOUemTLsiYcbxgPNLVs9x6yc61vMC04vBZzylkTAQiTZqngaIjum1DwvIewDQzkpeZAZVHm2oHP7apsAAbifZPGRw69ptE7i19lxxqX82FMzcwYWw+77O34fR9247lU+914Hej0dQ9ELS/5sZyM5k0vdzLrRGRAIlH1lXzRsV7RpB74CD10dD+AXrvpZNkNpO5kwOLIb/JwTLuaU98CsM077v3ca9+7pwhi2N0aOyS/G9HjKEDoMhsibupQI2xsieCXyZ/s+/zvXWaAb4/JB/nPgnRU+t6rrlyTDCDsZhiqYeyxuq2zOtpO1fbHBuQ0gtgOt9+6nEDI4sttthiiz0OG3upve1oq0MRcYcsRB8nUSjv04ZpLKpzn6V6wclvWOUsgmNhfz/Trkb1qkG3MnArA1M7kc7abOGub2BqcTa3a4L7YgEQwIbQrQDTAtRB7kdev16jioGQx4G9DAcVhY929vr3GZMgOGj18KXySYncTJ4fg+sa5pufwBRFSHAMZQnUwhRRxz4AqY9vv9kb8GOislJTrfep8oB+hLgmV28884EMqPIOXpWcAiIY5CMBB1H2rgM0P4Umlwe8/JGMjZ5TTdvWO4b9FyBrQ04CdJ2XPAFQd3CbbQQ01BHtf8/M8RlSp2/+rN553GNSpAnAFSAI0c3qDLRRKmW1AoVEwdNGheTkALMwB/RQXzcAmmFSa19fs1rJPRyj2DLsroPZdaC6FRBOk7dP6vhTdEw7Bkx2nfNgiLIHAhOoXxdSsLGqhCFTWLiqAJUWXBYwhyL+iUKelkH9tB+q0kt4RYCJmUGe/RMTdnsWUln0wa9D4EhIvjlWP4MgzaV/z7GRuRRYSI5Fxq3rBOgFQu6C0ahxlaIChjl5NHo9k7pLGXyAbxPfX6y5bABQWcWy/fgecyyNskUOglIUwdOq8tJ6Rcyn43PWBEf0vvL2gcPMMr99lD/GpMmMSHn1WHrshu09dt8pR+k+HftT7K7lHOtEOHv5LoxXABGw25c3YN9+T+elOtk8+MVNE/oxAOb76ub3JNw5UOESRtyUIzSJhkY69k/JKdJ3EIa55lyUe0vqmdf77DaXZar13sf82ecYfR/slLPBQ3Nen2Jz95Wn7j+95UFUJ1tynkhzBO2//piyE0sCCh61jc3tuc+U7Jn3glDHtvMIq/Pgb+5iaS6rVLJpMpBoz1gdfbcdWb87zqd7tbft1zj1fvdUxwUYWWyxxRZb7PNn59iYPMRNzduyfe2nh5fEmbV389O0sJsG5Ap0DqCmk4SrzODdDqZjwACdFVYJEwQcIYJpAOqkXHHclnFza/Rg453QKpfEjL5DJ4mGTKO0SXTsRVu/gSaTJQtAk5CzOJHdZy9BVQnzxY+Co52JooO3KICSgNbnvuDsvvdp+6LB03wFJjo3xZkpzyqO2TYcbgPQoo5Oz7jomTrbeUIiasoJwzxoEyoKKUMZKV5Ch33SZlaAQ+utya0HeS72gCIqp6IH4TTCPIA63nlHZdCJh+aEUDbGmIV7GHBhQbumV76OkTFHOVkL+Pw6YIBaBjVO5kjr/6eyZmO/H6uTzxmhzmnW581ZGXm/6bP6HBIynwgMAixFJswkuBfbXcdECkiFPqQEAPHR/ilQE8aTtg+NRIPvs7HD8DFSNr3f9ts3sJB0rfER8AIIejBnX24q/W3qAE4dtVOOOA8QhBwlOs41MXmS+wNAbNMpEEDrktczSAyNOw6kD/29rAGcSST3fBHMGEi65fcfkenSfuM2YabteQcHsG9u8uo5evXntvcouKKnQz/GiDzkRE73Czp/UgbeHCe0vj9cuv/w/T4151JA1a9RxwS2D/qQ+5JenNdjrM77yjvVjnZWZp89ZOfdOWwSIN/3Dnt/5muwt8EGGguiOrmsR+C0PYed676BNT4BCkzN87cB+r0ldqYGvKWM29FL7yOXytjvP882Ckg9nHV1AUYWW2yxxRZ7+/YuXoL54fyBvIgfnM1pl2MitULE0ngkKbctqG5h6xb2FURyqu1AxsCs17j93if47IfiBtXeGlSvCFe/w/jCr7+EeX0Lt16BqhJ0dSVOlSLR0/DMk14yVEDqZC2IGJwmMFbnoUrCkEh7URJRzLtadPO9rIxGhPP1jUSEq2NSx5t3VlJVeiYCx/seMw7nsnrGDjvp+M/yiVBZREZDUYCI4IAIlHj2BTsjgAAgEei+3eFYmA8JcyNIaCGCViJr1vSj/7U+CmR4QMpcXkq7X16Atjt0n73wTt4E8ALEZwzEROtpZJsvS/7TP3vav2rKUvDRvSESPbcAtCHqx+92GMhTpT9ppFxqWy8B5IE6lxxMjR5eY/8FJ7s3e1ujMgR7U4N2Deh2K3lNdrvIjkH8vbZreG6fjyU8r7aR9pNn5/B215cE83Uxl5eg50/Bqwrd0zWodTA3OwF6bjfg7fbgWA6giLatMquUDbRaAYXME3Qd+FbylnDTChOjqqLzn52whhz38tIA6pydigocYUvlMm8ZUNI7TOfsKMQDtZbDnTCmYIS9JvU2wiDrOp98OQehXABQUqZDv+4msGSUdRUO8Y7FH6vjJhn7ChiGOidMqLz8HsA3AY70f5M8s58TKAph/QEh+fvAx+ABIKoqkHNwteZzmCl9Mtavfs1NpYsGTqExO+i0PyNb5H2xU5ydh5xx/jtSxpGx8l7w8yYAXRNjsHcfZSyqvFzKGsrzTfn3v0p5HQbRclZV/3p2HN9H+8DmMTsmmvvU346VlUeTf14ceGmQxqkMhMe8NsxhKx3LjpkLYt6Xpey/KbbYofrcZS7d5ffnsHTfk67T++qU1ztc6+axc46xY888Okf3SbXuuRe3TdjrjUoLm35uKrI2tts5n/td+h/mgg9vo1698fmw1s4FGFlsscUWW+zzY8du8D8v9rZkzcY2Z44lX0LTguom6uIDoKrC7pnB6qs3cqkj1K9WMHWBYstw//F/A1sLc3UhyX6rElzYHjBCba5ln7AGvLQWt965qffWKH+SyGcqyxglr/VXCaPOgZsazM7nB7DAxbr/2D5ngDhFW/nvo8JST7B9siZArx2gMjhlKU7NtgW1bUxybKIDSRKKlwFMoaoC1zV4568HIgtBzVqgrEAUnVVpPdjnjgmHl6oCXV5If16ufULq6Mhn5nFpkhFHb0h+rpazW3x92YMVISJ9ot10DIUkz3lUc+ZY0sh8yTPj+u2SjDUmEzWQgcjg0bnQdDDbRkCRbQ3e1QJi5JJhSbuOsVh6DB7PFOHOhb6Hbfs/8AAiigJ8uYa7KNE+qVDcNDCvb4HbDboXL4dSYL0yMhBKWQxJnShlkRTCPnEBYOvAkLFI1kgOIsfAZiu/sZk0ntZbwZGpaiWyUSFBtxuOj33rY28eqXkHLplCgBxr5Jk6J4DqWEEB7DNDUESlw5RxMyXXruwnE0E1Kos4XzTp7AwAS6rE8bkOOXj9HCVj+qyizIkcGFodx7HfdQCaeaDIHkZSkEI8xgZO7gP3P6c9MKfA0TYC3E1fOwLCTen3GwIZA9aE6s5NrnOD+7ILjKsgM5h+lwcLAOPAwAEb5FfJ5uu9M4/GWJdzIsEH5Ry47gFF8751O/Tsj71d9Dw0Z6wc+6yDOXFPZ6+JPooO8Kl8gtmacdc6HPrubY2VucFTc+0BjPG9LNs5poEnGNkfEMU9nLIHDQHOANwOr99b0f2Af78+b9FOmXf3se4/At/LAowstthiiy32+bD8pfx5PvClds9tECK8gRAt3otI3+1Ar2+kHsoIMKIvzm2Lj/5fn2L16sNwua0diutbFB+/Qec60MUa9PwZuCzAVSnOx20tEaM3t+h+4LvwnR/7XriSwBawW8bFZwzTMMqbDtWLHcx/+m/gpgXXtUTOX14KILJaAYWVcssC7moFMMO82Uq0MzNM08J98plIONUNGI1PtG5ibpFVJRtwHxmPzolTWPMH7IuEGolQzx08mj+gl8sDAGuC9BHnHzuGqYwkuW0auLoGbTZRkkqjbgGYZ09Al1+S/B+7XWCWoOukzXy0OACfCNwFpyj5yHD3+nV0iuszeGdm8V1fQv0DX5Lk4lvJR+BaaV94YMtcXURmR+7s0rYJRAmKyeKTcTgABYCYO6SqxKHWNr1DfEgcqs5pn2ODVpXIfH30XJ7zt/4H+LrpRZ/pgY4dC5uo3Hm5KF8/PZBZA/O9X4O7rGA/fgW+2YBWlQB8yjDa7GDqBnSzkbmx2cqYy7Wf9zh6Y9vrOIkMGTSN5MMIzAIK/UPWgrdb0Dc/hqlKrC7Wkui+aUBlCfP93wO62aD9H9+cdppTdLT3co2kie/fvAGrMz3kpoj5RFSqTkAEhtH+1zH76s3wGVPL2yb576mcGz3LIguDA5RYkkaH/rQiQ1fJGMGXPoK7WsN+8xN0n3waQYrsXiqJpmtm6F/N5QNEZkWvGgygg/3wS2i+94swdQuz8QDaza0wNzR6vs2Br2SOKOCXWpKjQ0HLACD6foCxMJcCBrvXb6SsspBxr8naQxvquEKPqaW5e2i1ignTWXI4yVol4LTb7qYdWeykzTS3yQBgmhibLO+ds0eIft5sDtMCAqyncoZhDda/tzuRStQcVWOSWjlbK3xmZU1rN/P6v1f/mX3PyXts7LfK+EveQal8YGCEhd9OJIdPLXW6ESXMsQSgAXAop9toefvsPubDQ9h7B2fpoWsesaXMidzuK2I7MHonGLfHlnPIJuZJmE8TDunACgjA5hSAckfQ6C7Mk1NyWx17v4c+xsfW2n02BQyl5WTguO6fyHiAXG+XBiodqOOg3Klr9tX7vvriFFDyPkGRfcDROx6PCzCy2GKLLbbYw7JzbRDGoueA+4tcemx2nxuRtO2tFee7EzAgHOD1ANO2wGaTOTw6wDsF+b/+H1j/r/91cIugelMW4PVK8pKUNjjTebNB9/Il3JMfwIs/0oLWHWzp0F6X2Px2iWILrD4zuLwwePK/r+ReuxakLJGiCAwUXlXglUXzrAIYKLXdiEDbFvT6Wpz59QYh8tta0OWlj942wRkOZmgOEmFIuOm998xxKnI9AgqpVBNzcuBLdYaBuNn3TmmnrBct0NiQvBmuA5Ul3PMnMIUVyaPCMwi2O/Bu269Mqu9upB15txPJqUHFIVH6z67w5vvXsA1QXnewO4fipgHtOhh1BK9Wws5InWSJJErPQaZJoLU+JrICApvF15E7BxiCsWbY3gnjhDtElpH1DtyyQPv8AjCE4n8UoZ3HjGsB+oz/HbwjWMdF/aUr1B8UuGwdLBF4XUn7bXYiy1Q3wjbYbKQslYqZlAfKwJEMFBokpu4cwPWAzaOyTFzXcG/eiBO8KqNs0nqF7qMricU7wFIKfWAwBK26Dm63m/wtWQu+ugAbI8wy50DrVbyg3RNRPtUmwLhc1B4bRC8mDjZ2Mp+JipiTpSjgrtZoPlzDflJOgiKhLO76eXs8qARrvSyb5rrJ+9eBL9fYfXGF4rZAYQ0sANrVIf/IMA/NHhCN41oRHcw25nVJfdWGpC+6Dt2r10OgLjeNyDQxut8XJOUQ+fHovIyaSG7BEKiuPRg1wvxyDLiRKM9THGzH2Kl7lofgID6XHfMcng0X2HwKmHhJPLfZegms6WjvlO3VK5dIwMNjZFdO6YMe2ySfVyasj5oji/x7iPR6zZmlwFBw5O6RfNP7qUSijTlxNLn1Xn38ffa2HFNj68Ex8+C+6vm+zMPUwr5v+K540BHh4SxwYh2n3j9pefoOyqmX+bkxZ56es81G144kIAfTeM3nyo5ZG9KzTj7Op8rhbO3slbmPBZkEnh1Tz7F637fdFwA6+/oD77UHYgswsthiiy222MOyc73As6iQe7nHY7Zzb/DTcsfKVue0NQAX/ejsNBLbdVEfPANRRuvtGNS0YBYZJ3hHN4xE+lPnYK8t3M5IaoiaAAO0a6D7KsEVFlff/zXYVzdo//tv+4ghBxQQUORqjc13X6GrDNgCpmWYrgS1DCYhZ1NRSGJ173wUyax++7A1ICP/Y5WcMq0czg5tMsc252PAn2fZDAAQzQ9SFr1IVvYR5JKYeSVO+6oUNoICGUTg2w3MpwRWlkXr81I0tTh4RuSppG9cjHrP6k4eXKDLSwDA+rMOpnEoblqJeL/egZpW8le0LXhXB4bKwLkc8sVQcCqTlTqlrZqCIkE6y+vKO7fp11Ed0mUpZXVOyr9YSx+2Lcg52E0DtjTc9GvCR/KRwlUZc7YAUfseAhLY2wZ2bYHCgC9WwpRpWmBXS/Q0a71jnw4c7MnBMO+H/qNloIgyH7pYThgnRQG6WPt61Ek+DU2Q3MG+2giAk/VxfhhSMKSX7yUBDCfNSI6a9sNLMAHlxy3I+XWm60JelL1yC3rv1KGqUeuW+kDiIRvL55KWneTaoMLC7BqUrwVcmuOw7c0X45lFvTwnsY/TuUBNC7vpYLcdzK1njNRNzNEwUu9hxP2+xxYHLw+cOV4GTqNv4cblzQB/zZ5+cgykpJ6qRGCOMO/v435l/b8zIjXnXLfYtB3bdp7Nw10XWCKAgMfp9wOGZD6Hzch64r9nPhCheqrlzrex+cySL2ggl+mcMOKSOUTOv1eUiTUFBo0F+QD7gd05z31up9yh+ZQ/x9R+ccqWeXqUDfaC4YvD78pJ1tLU798FuDzXcpZAmpctPyv6/U/v3fW2xp2//yAn4mLzbG5Old5v9LrxPEsRpDrA6jvVHnqw5qnspdTe9jw60RZgZLHFFltsscUWO90GUfYHDjjqUHU+Opqor8/fdOPO9InyNRqTWu8EVyew5mhwDLslmIZALQAGmACuGK4CTEvYffECKyDQ68HecWEMXGWx+UIBJ4HSsDWjuLUgK3kRXGdhrbBMWNkuzL1DVcjRoXlMDAGsSYLnbRR7UVATxp0bSuWkZWiUblXKv7cbuN0uyCXR5YXIfrWtRO16c7sdiNmzJbyUUStOepVH60nwpECJc0PHjWdiUCUJ3BlAed3CNB3MdQ2qJbk42jYm4PbgwJTckebjCEnLQ+4ISTQeI+A51ikBF3jCYa3PTOR8Mu1SxuBG6kVNB7ih41ruHdkRQVYtSD24GBVNBFN3MLXzY7MANa0AfnUjAJSW75I8JSccMsZAESk3kZ4gE6KSNZcM2jZ8Hswa6fvNTmTW0gi6NFqVXR9QSc3Ph4GEU9oHhoCiQHslx5bA2PL/8kbAs2n2zAgIkEj5AIi5P46R8OhFo0awJTyTzy2EpoW5BTAigzVets/lYxImVB6dmCZRV2s72MbB1J2wapo2MO+Cszm1UQaNieNryuE69rlnF4U+VwBwlMExLF8kxPS7RI7OS+AFQHSq3mM2O9J0JiA2+tsTHRrv0hFyFzAoH3/HmDr9OkFhySoDMZHadHvAr3TOpaCIrik56zSt8zFRx1PXpsCztSB0003ADnAmgCO9eublG8m3xOiA9sg2nbr3oefVtjyUa+E+HdZ3mXfntofI3joXaDuZg21P+Sn7M3/PnTvy+64MkVPsUICCsrnbBzAmHuLYfIimY/Vk5/1EAGUA6I/MOXKXez8k6+3l77BeP+Rn9LYAI4sttthiiy222N1ME98a8pFYw81T0NoGenI9XDfA9U3v99zEDWiMeBs7vIm0EV94SR2NpvcSTrRegTYNrr4BdCuCW0kFTAtQSyi2DGoZt18p4VYGV59+WaLPb29BJE5ftgb1M4IrAdMAbgeUtwZ2xyiuG5jWiVSYj9hGS+DagyvbnUS240nfeXOCU6znFAxSWD6a3GQO67yZNPK/8gm2mYWBoflUNKH5divMgJ6T28RcIs71c3VotCs8QJU7qTwrIge5Qp2tkTwabYfi9RbUdAKINK3Uxed9ifkfJhgSCvhkbAA47rFEUgmp0fKSNqWiELbI5YXUtW1F9uRCpH7IS5bh5RuQc3BtGx1m+/pXQROfYJybFgyGqVvYbQuza0F1K47tXQ3sdtL2nl0R8ieMsHB6EjNTidc1/8xUNKQvg6zPP6MsF82JYkjaxUuKceeAV2+kjiO6/1KfMgIGWldOmFVUedBoz8GrbVF9ugnjaujkGZHFGGl3bZvBWDX+8Ndh2mGk0Ygj9w59r2NR26+wwqZ5cyNSYYcsd1b27uEBE5/QXZoqAbScA9VOxo8HRZCCInMcWjm7qLf+un6Ok8QJofKAgYHU9LS25h2oR+qnTJFYVMKU2VfGMdHyd3H0ncsJ8zbtLvcOzqc7RI+mRibJa5Q56YNDKo/oNiGKF8k8Jg2y6DqAc+m4meNiYp/Ru0Ql2w6NGw+OhLU4m1v5GiSBEnssqUcaANGb23NBQyDM6fA7dYb3vj/CpmSLDt37IdhDdNqdCxCZKmsvq2dK7vGIeT8X2JlySJ9iOZBzSlmc7A9PtTnPfqBue88+nyc7BiC8h7bq5au5SzBBKPAd9OedACMXApziZ/fwDKeWme6Zj5HQHLHHDYwwA3T4ssUWW2yxxRZb7J5MnYLK0OiSKMox2QckB3mNHt05kZdKEg73JG8mIziN5LqoCqBjUOci8GCMAAFNh8uPHdoLwu65AdizPraMi086tBcG11+zAAEXz5/AWCNJoNsWpnMAAe0l4ArAFAAbQrcywlJx3uleFpLbxEsCsQcvXN3AIHHYjEWYz7EJp4eCSSobNWma50Wd3D7fRUggvqslsny76yehpthfBJ84fiTaNXf4BGeVOvDHDpjeEc6egUK3Ip3Fm22oC7pOHLFjh/GUBRByYYwAAiH6PbJbJvM8JIwTWq8ERKo8Q0T7r/KJw70ePr+57ifJ1mfP2yS0SxLxrIlzO5HNkkj/FrRrQh+FZNIKuIQ2HQJEw9slLI20PocOOGSiHJmxcU6p4996cMEYcFvDXd+EMvvz1nknpomyWal1ab6MhBGR1YmdSF+YV7dSL5+Q/njH3YQkXdo+KfCY12WirdRZH6TSlCliDbiwwPUt+PZWwKO99Rvpx6m/jYlAsH7uHEzjWUxNC25lrDBnoMgU+BIeM7KK5IPEqcyJk0BN50ZPbmGPo3Ys6lgP30CfSZIDqzrHx5gox9iYs+XzHJl7jDPxzI5RdQBqnozki/Ef6HhLARHAyyjGQIG0vIFj51D9psDtUyRBHPfzKiUBBbOt1z/JXBnU5zQWT7zPeRxMs+/9Li1/9vfN7hJBfwyQss+m8o7dFbzInyufy3dlthxklEy8Pw7V8z7sfX5vvY35eWgs5nunh9jW91mvdN93X3YXUARpwMzdqvG4gZHFFltssXdl534JPYSIgsUWO8bSDUk4TGcOxXQc+4hqUBtpua4D4PNfIOqOh8hs2hPlTF5mpqlhXt/KZ/4gyNaACgt6cgVXWskL0hJMy7Bb4OLTDtWbBtU3XqD78Ar1k2ewOwavC3C3Aj25krI2W5jGob0EujXD7AiuANoVSXmNAzUd2JAkJF+txHGsUdreKWma1jvl/QFRZZRyh+Xcpi/KCEQRAWUFsgaGHbgu4La73sGOfDQqGh9BXhQwq0tx/FvTY4nk0ac9BoJjcFcPAAjyzJ3QB4n0VQpAUFnBXKwFSFJJqptNdJq3rTAkVBJsClRJmSJVmUiUuEgaUOeqarprMmd1smZrrDA4JPkzWQNar4P0FVsDfrIGlxbtU2EnVbtaElu3wmoRhomvj2fZAD5+xxDo6VMBU7oO0OdL5LyobmA2khdCmTJoWplTytoBJkGRwNIIuU2Sd8oYC2AKGFKQyefIkOj/BrAW9sMPfNOJ45xryWGhbRpAJQXUfML6UHZV+T7xUd0+ITEU/BmzngNeGEbMLNJ52xtpK32OKVaZtUkZCVtEAVSVwmtbcbinznzCfmeo5u8xBHr6RPKxJPOcuhq82/XaadIUUEj7k13MWUICRoW2C3VUqQMXx1CbMEYcj9ddLU2EPdDRHp9/oU193bjt5H69ZwEGjlo9wDatgMhdXCOosKAPngsz6+ZWpMcMgZhi2xmpZ7h/SJzK+/tpylJA55jf3GWP9i6dK2OOplNAxmPvkd7LXyOASMIeHcuHkDqvE3YS0nlQCeOM6zq+V4EeQBvYYFq/MQD0HpxwIchD5eHGAPPk/TRdUGy3/Tc8PSr47HZX5/fbsIcMjpxjnXiH7a7sybD3Suf3ueul/XjXvpwD5vYCC8bnTS/Hlu4hjnhm3XfLmrXntw917B5jU+P8bT1burbum3OnMujy4JBzgwwPATyaW8Y9rUdRUeFu91iAkVPsoaKFiy222Nu1c60F78PGZrHHY8fQkg+WZXpO8kFS3nBLf5AIDsmh7I3qjvfrteew7u/NnQNuNwiJt4skUpsKcGFgGoYpGdQRih1j/ckW9rMbtL/5DRS7r6D8gScwLcOVFrQqYdZrcNMIk8I5dGtGt5Zk68Qiq+UKksjPjqODtfCa6V47XWVs0HrJIPYME04knfY5LaecIQqK+Oh9KmyQyCJrhXmRRrz5nAfctEDLoNUKWK/EAWnIO7+zaPYsIpyIwCz5X0RuqoiO/aKIElsqy9U2g2egyktTFYWABE0rDlBDwkxovYxa18XkmGORhoncU3C2a8JbvT7kmonOscm2TtkQVSl1KcueU7+7WoErg/p5AeqAygjThRvPcKqEfQMPsISkuP7Z+GIFrkrQdgci6RtO8z60nTiCG59ovknAAkPghmfpYkt1YzS1MmUUHJuT0yYAaeo8rBvJBfPkEtR2Mr6aBti1QNNIvUicf2EeMkdStzFROi0F1dR5oA78sX4B4jiw6RrifP6VZjoXRtYuka0TWRdEJH0W2q0/1/pJoEeSbybzhC7WcE8uQbtapKyaNmH9NPPWXGXD+7ZnxzAFBekyGAIan8id++AIuk7k15o25rAZY4uEn3hw21phSOn1U33RA+Q8a6goPPg4AWJORWDqOpGCn4bAVxeyZnvQcawczd0j5vNV7ZNR22dk+k7zg9ff437tbZ0vU0bXrOuP2DOkTsODjv4D8k/5eNNO8vPW+fcrVZWMnQBSJ2v32NqQ9nnuUD0Ekh3RPxGs8+ucX4eDadL59H15sNB7cOSPgE9nt7uM7Tm/vUv98zZ9SD6et8U4SO1c9/NMZTISJEQ+0OksfuFJoODItW3s9zN+GyLUp54lyIq605y2uk+aLP898htMsYoG170j/+upgAjQD3IJxd3Dc8xtw95v7nnNvw8bZWrlrOrT23cBRk6xxzSAFltssfuzc60Fy5qy2H3ZMVIRdxiH4jQfcWCnjgAfAUVFAawBahpwmyQUH3WgZZHx+efeMUcX6+jkVyZL54BdDeMc1j6JevW6gKkdaNeBqxL2f/o+uCcXMC2DHNBdFuDKwFQfgQuD5lmF9sLg2X8FAIKtAds4rF60KG47mNcbUOfgLtde378RB7fmnwCiwxIQZ7LPu9FjQ+zbyGl0drL5IyLPJBBNcr6+kT7wkk6a0DtK+3gWwXoloMblhTjpb7eAzw1hnz2LSZo9aBNM2QqOY14TICYU7zrJn+Biv5jVKowJ8+wZ8NFzARJSCTJ1difSWdy2GWslYYdo3gZtB2tE2sqxJCg3BHRJ2QDQNOJ4msixEJgiyg6pGxC1PimwhfvSFUCE8psvgM6h1Hw2n72E29V9/WFDwhYwsf1oLWMTb25ArAnrJf9ML2F4VYKv1r5OVlhI2i5jbIrEkZeyenqgCCBOxCS3SmDxjBl7EECj8dtWAJEPLoBtDXzyQuquTvcm1p+shblYD8eQ8flYyLcNnPS5jh9ArqtK2JXmCtLfu/A3iEAvXksfOc+4aZrRHDbD59Jy9M9YL/YAF4AoiTZlY+upMh2sAb96A7q+EUZQInkmIAbHvCxNm4BJGM79xHlERpg2dHkB3tXgzTaAcalsFXcQAKvx7bLdBrbIWNL1wLgwspZw3Uh7a5unEb4jdZT8MAKAoevAG6mwWa0846sZ/o4d3Gbr+6IbzvOuA77zmcgZ+rWyV38F7KyNQDMAkIttdsJ7bDJfyejFE+/SY+57rojUUywFJM58z8A60qIP9Ueakyh5v0VnYwacKBNNx7/vN7fbgeo65LXhrhOW0Z48NKMOzV6S2Yy5BQU65nl103uzY3EKAxHQcxyl8DSfSu/fA1HU52Z4nGMcTO3XQv/pdUcyu44BLk519qX3eCgBsPdch3S+DvLxnOPemptO979z81wB8/rA70Ul549nrZpk3p8Eks2r3+Q+wY+j3venMGRS9vOe+zyIcXpXm3P+m7J9QPwc1k8eXAIM1/hj15Q0oC2oH5jj1725xjPeS4fO0nPu8TbWx0EATtb2g72y38+cqX0XYGSxxRZ7mDZF938o9jYieB7S8y72+Kx3MB2J9h3krThx826KvvM1Lx/o51UoCu8I8Z+1Lbg9IooqKVejvXlVRW1x58Th4Bx4uwV1HaxjmMKieJkcBEuL9ivP4UoD0zKYCN3aoIMBrgq0lwY3X7WwO8bz/1bD1B3sThydkty4A13fiqPz+RXAml+CxDGYRJqzc+ITqJvIIhnLyzEGLulzJxJF8SHEecy7nUTPZhvKkEBcwaKyBMoSvK7ApQW9bsFvrkGXFwKaNE2vjj1Wi+vkIKoOVcdAJQwL3nS9/AlUVXJf/eCDp9h993PYbQt7vQN2LWi7i8/mWBym+QEpBUWqUu6tznN1XBWFB1SGkX7BST91IFcnq7IcAHEqGyPqB1iBVwLEuI8/hbu56R/GgejgHpPzIgFu2BrgzRu4m00AA6Jz2x+kqxJuXcC0lcwnZmBH3mE9Vf8JUCQfSyo705Oz2DPnjJG+b1uQvQQ/uQA1LboXL6Z/Yy1QlaCWYoJudpJ82Ep9uG37YzgkUBaAjC4u5O+2FRCpFbkllctyb66lHHU67MsXA0RHquNen5GRPpJcQBzWroFM2Vh5I5F55HOKOJ+baPLnfj7KnEqA07G1V52kgLCrVhWwq+E2m/HDIfuo3LoRtltdT46bkBMq7Yt9gNDEYVQSwctY4aYNzBOyqXRK8mzM4KkE9N6Z1H36mYBBK2G0DYA8G9egAJ5ZYZv1WAUT9zhoDzVy/Jx2b06NhCkHAHw4D0xPqlE/U1BjgkkSQDcFMuo6C8wYAcnSNXHM8ZKspRLlnaytwWaGujOjL8Hn54ohWQ9z0DHUxcR/Dzlo1VF1CEh5V5aBGX2A6Y75H3Jn2di8PhBsMumIfWjgyH2az//FnQNZhD4RR+6B55/RPrr/ih8k/bUvMGtOH5CX/bTWy/DK84T5m58pzrmuH/p96qieeufsc7ZzEgxwV/bafbGBzml3rFNcWxL5MgCTZ1o9D3mJw7gv3AOmJ787GiABDgMXb8vuwjTKAepTfj/HknlP1h4OSEiDPe44lhZgZLHFFnv49hBf5Pdtn8dnPqe9S4ro3APVMfIAwN2eJQdF9N/c6XRM3X0ZVBSgshDHWNdJEnVi75joxFF2dSXXOweQivmIs3N2tK5ufpL6cedAbSvSPmUBLikyJAorDsW6Ab96LYDM5YU4qasS1HQoXm7QfHiB2y+tQB2wftkJmwGAaRjrTx1swyDHIL1txyKfldSbtE6FBXEpz9w0IXE4GRNzNgA9BsBeGZeJvlAnUIiathZEJsr1qMNEpYJUgieRsCKfx4LrGiGaXyW+9L4ucUInTJGeU3Wk/zTnCK0qYL0CFxbFdQ2za2OSdWVCaD6NKVCkLDxbxD9DT39eQCE5iIqUlrJFOI02n8qnoaCIMQIKGSO5QAyJc76wmh9d+lAP46kUnG8XWq9FhgsQsKoR5x0XKu/mGS9JRH6vXbsOZtuCNOp/V8eo+fxwrG2TgyL+3lKuB0hygOuQPFlVCsvFeadGYcGFic6MqYOmY7BnA1BZSBu0zudrWQ1/A/TygxCKpG009wRHeTRlAek1e9gMx9qUBOD4xSPtZwS84z0JzQFEoIedyLWlNnLgDP3bicxa+P2Y+b7hlK0GjLKvAAwTQgNBdm1yrBCBirLP3HJOciplchHBQTXXH+DXLSqLOCfH8jGEy7k3XvzDTpc/50B/6jha9mvQ6Ni9jv99prKDgHfYJt+FPDJZZPAhltCAteD6zh1912lkr5N1nQzFd10aiGEIDDu+BozeP2F59tZqeaeh6yKInN1rlp3RIXR26+1dk6jp+7zPXNvXVg+tHe/TwvwZma984P06p51y4Er3D2HOTZQxs+zAGkvWA+RMsfyeZPqgZX6/c/f/seVlYOKpLMjPo/UZrnvWaA1GSln9wDQL6BR5trGz+7v0S6R1uWs9Tv3dvuC/iTl4kA0eyplg+xxpCzAyxx4D2rrYYu+T7dvoPpQonodSj8X2231TPoGhM/eY+x6Kajt0vzk2cn2IjAngyAmRICqDYa0k//YOTJGnQQyuLCvwxQrUSq4NdJ1EqQGHcwPsexZ/CAoMDGvAGoFeQhwYlxXMq1u4V69FjoYIVJbgspC8H7sa5ukKuw8IpgFWbwAwgcACjLwQoIQ6jocrrUcq16Qb7cKCmAUQIAJ2OwA25lcwFPMkaBseQf8dOHB98mqRzPKbSAlN7bNyNIdHYaWOXvLLqZyTj5xPmQ8hN8GIpEiQswnOsOzAoM+7XsE9uxT1pJtapH52Pi+EJllXqYUxUCRJOq1SbIONvQIged8ckI0K8mQ+HwZ3wuqhy7X05WYrzAkr7I2YJ8fEhNCeiQBrpc8VGGEWxgOzL8OCjA2yY7166O/bDmi6Xm4KeFZJLzdKGu02wSRiTvJ7ANOMk7SttR5VJc/SipxYkKgze5xamg+jbkLeF+58Mm5jgNLngUlypqhsWkjAThTGUUhErPXWNstAkaFE1PgamWs8n910fKZ1yOuhB3E/Zsja/Q7kJC8Kd07mzF6ZL399IjEkdZjo95TNA/RAkcl5o0BlUQhzi53kw2EOY1H7SCKRgWNzf4T5Hqo5bJ8BKLIHQHmU9hDPnXPeT3NzvWT9SyZhRwFDkM1FvX4A85yFU074HliSOE3lRv5fG9e0JJpY/z3G9zK69vh1lttW5BLHQN65+7GHMDYOWXg3d5FxeYr/amb+h8Xmmc69AaP2PsCBMXDkHOVmA2nUkZpGoCfsgvDccx22b9Hufc/yEC3vhzl9MBZcN2eN6N0H+4GUcN3M9WevD+sAq/Wh213nw6CPzf61Z+b9Qs6fO74eFmDkkD0EdG+xxT5v9hiieR5KPRY73c4dNXEssPCuxtBY9N5d6LFzTKPNNao5cZASE5izvsiBg4m2Ys9ooLYDGSORy4DI5FgLt7agyxXsl74IdpobYQfUdXTu7zpUrxlgoCsJVABMBNswqlctqGVhOjgvodU6yc3RdkEaiI0BDIRhwOxZK/9/9v6tSXYdSRfEPgfIiMjMddl7V1dVnzp9ZjQzGjt6ko1Jv15vkh6kNz1I8yKz0bl1V3dd9m2tlZkRQRJwPTgcBBEkg4xLZmRuutm2tTOCAQIgAAL++edf4uzxPjp3sgZM6z/2UJp46vRkA9FvyLtbndwhvRGsBZkgSG+NsBGeniVN00AaCiIK7J/WQatOU2ZqUx2p3gMg0eRlAVqvQ4orD3qW1Dnkuc05nYisH2ggpI56BXeM6Y5XHQ8+MAuAQ6aIjoW+eaopF6zpiMYr24gNCUMEgP22D9ogIU+2c+L701RH1gbtCAFR4m2sFZDQOWEU1ZX0d3ieWh4Va4m+ZwbqJoKHqlPRC2okzyQXWtd7d9o+JuKpRRaFpEBblcIqSn5PtT8Er1IL45PKQgAA/Z0ypPZ7oCxawNAYGTOhP1QTB963YFsA5ljT4h0cmDLmTdre9O80AjP2i28dsj5L/zNmMeq0u151mCAjUYqqZ3PUUiBSgV8FkYDO+hivU0DBZQBHUs/+aiXf6fweSLemjCKQEU0fIILcvNuDmCIrbpCFc8RpwHXTFc7O+1T/P9NCmpQC463apc6i1wwUYQau0c1ZSpnZTBSkTpMjjq10vdC0V4FBEi+Zcv+h8cYeXOvc5Bb0HivnREfRq1unL22n3095hrPv+Vb66TVNWVLX0j7o3OsFnoc+/757ka4B3fVklFVwLUuZm6mTPPl8NEXoqXbrc+IVz8QAjq8dsxgjA++aWwB2TwmEvMQ9ez/vyRQwFxzD5d4pCzCy2GKLLbbY+7PXePFf0i5Z93Sj0fn/7LpzNqVj0U3q3E6jqoPzjogk/QwlkVtA6/AjE1NyHRgzNDUGN40AI01y2DEGbAn+rgR9/wm0qySlVt3Ab3egVQnz8QNM1WD1zcMXBF8SmCAR8vAwewdTe6DxIO9BtbBeeLuLzkq2FjAAB8YKeRYQIu+T6KxUZ3VyAJpifVHg3kATk0VTYIFInNFFIc7KoIPA1gJ1DfftW/cZhToRUWQKEBDxGORMoAA0xXzvECcprdfiXC8kNRJtVUuEJDWUMkWapgUwMgHEmOs9ONEpdVallrJV1FEaAZEjBxBlQVgLYh+BJLYmfg5mmKdtaGtSbhJhTDYAAsYciJ4DADkPOA+fCmYD7RpVluJs9iysEe/BCo70OdvTVHh6n3Rep39PjKRXIA3rtTCqlPmk4E0Aao4U0mqGaD1COiSuKrnHxw8yDqwB7Q1YnRV10B7xLONZ50pIjZYKuY+yX461MzzbVA8nMidmFaTX+1h/qNj6kd+pJscUICauDc4BzrYg4JC2jGrJpGK3x9qQrSuDgKL+pihkzd0JG4iKAkQKqARtnGMRk2NtToHHvB4REA1rTy5w23u/NxB5/1IM5CE9m2M29fpUFwcYbtfQGEnTaenfWi5Sp+b0+g9GXqcgZ88Yk/cgt78nc/iumnNv/b13YPbH14pL2THH0jWBBOZEkytPg3bh+/H8sbEYxp3vY2PjrWRNiPNc33cz592l50fC+D0ICEptbj2P2bWBnmvdb0453O6PTtojXigdU1vODYPafe/gsfpda75fam2ZCm4dsQUYGbO37FRbbLHFFltsNHLoxe/7WpazMPLc9nMtjcA2kh6G9ntx9uXfwQbwQ6LBY578VNw7XAsqo1OENOr8mPMgRF2SRlSHCHRykobHWnEYug9rmNLCeA/s9qDAcOB9Bb8p8PW/t/ArgC1gamD1hUFMwg7Z1zCPCoSEegfnPpwDkREhdseSBsm54KS0w04ZdWAmQq+9DistoyfHbYx4Tx9NEBNUMWgVpxZ2jAE9PoOcg3/eyvWrVUjDFX6j5aiIYXDO06oM6dJC+zXVU3oQ0XYB4tByDux9EEWmKJCs/dZxcKvDLgVFQhtivZwDNCI9sCvS9FnqND4mxq0ptLTdMVXYw4MwfpQtkYILGoWf6oIEzRMKIJBo3LTbaiqLBNzQ/9rnZTabkFKllDmp7Jv9Xu4XWDUdB1qaRitPoaXtUdMUVSGtGBWS156rGly3wED7/G17Dwpp4Uj0YQYtYfeQbQGsQbaAzndNTxPSyaCqBSjV/klZP+k6ELGppC+nrrUJe0t/z1mKnkllhcj4uGYBkSmD/b5ffD2NBE3YHNExkqYyszaCQWaVpJXyPsyFlTz7mGLORFCGAAE+FcibE3GaRMgfv9aCPjzIfRUkVsYAJWv4HLxpboqKyWy7zAGQvw9vJYIztVNymk+6zwXKo573Uccp3a7js/1LuqaFtSjuFYB+J+LY/i6s66PgYJ9zSNcw1dyKv+8RkR6x/N3fC6q8xNg7Vtdz9qoTHViThKSPFsLisMyf/S3ttd+Cpc/sGCCS/90HUt+aDQGxOGHskWhqAWj3YZcALBQkzT6TG116zX+B53Tpe8w5o6fXntuHI7+b9T5LnfS3Ok+Abt2O9fnQPuoadk7ZZ9ZrAUYWW2yxxRZ7n3bsBXmtfMXnbhjSNFLAiZEvw5uc6GjXKMwT9/lpqpcIihjTOjKD0z8yRZiFMdAEZ6/qQEhhHUFfImqv0/YM9atncSRbLxH3IfUOMcNYA39Xovm8gS0t4BjGGODpOUayc2nx/O89/J0HCg96tiBnYSoBWGhXg79+a9M/cRbFbi1o3wjwUId0N9rmOWKjPblnVXhc7nuYSiQXG4y6GaUIJHMdUlytReOBvz3CPz8naZxC+iQbUlX5AFioL1yfZbkCPdy1aZ78s4BDqQB9kqYI3oF9eIa7fXC+B0CkrrsgQ9L+NAo+Ook117tzAtiEfopOcwXduHV4j85B1UbRfz0DJYHuNwJuFEZ8e3p9AHmi81fF1stCHHiFsHJEZD1hQRRWytBxrpo06jjerEWnQbu6cQDXAhIo+JSmr0pBkU6/JayaJCUU5+LVZSnjgLkFRhTYKIpDNo4NIFHn4JnNQwVFiqJXgySmmYuR/txqWhgCVmW3n5PrFBhlToTAUzthne1qaLTOkpPXwMBA0fRSnAopx4ta8KitSFdbJIKBq5WUVTdA00TQLa49xkiKNwX4lFUXBNcZoc+dH3Tg9IlKT0vvRS1wHfSDUDfwX751nTw6DoaAbWUV5KDqlPsPRmIeeUfmYMi17BKOkD5HD3CZvcol6hZ0ZgDE90tnAjGD7IR+TkCUtviwlpWSck5BxkMtoYE0NEfKj7/1AyBHkm6nV3shv36KJUyRg7r1lXetMXqlyPejls/39Pen1GWIbfQW7ZpsnbH7jfX9EIjcp41wSv2nPvdLO5X75tmEM2IaMCTv7TPrMfAOi+n+mhy4vzHH+hyWwdwyX9L53mcD95ut99KZNzcOjsy1a/lNtJ9OZdlcqI8XYGTM3tNAXmyxxRb7rdpB9JNGCSu9/8J5XE/d0GaASNwonxOglETixzL7HFGnOBl9kmbC9kSVB+eff3wCNQ6caiwkmgG0KqMjJIqEGxJWh7Wguobf74c3mCxR9sQ+Oga7kfOAceEZG4DLAubTR/B+D//tEcVffsU//j/u4NYGzZ0VEfavDnYbAA5rRGBYNShUqySW70H7ShyC4Tqu6yicTdYC6xW4LIIuBwHbXQL6GHGI95nmIDcEokKi6i06QImWQVHrImEh1I0wBJpGvlP9D+dCRGzivDTB6V+azrORf1chRZPck+7vYO424sTf70F3G9Bm0zr/gbYM1fDY70OaHNd1OGVjU53NWkY6e5m5ZSdlANWsnMwpkFBKBD7v9qB9JWwGZvB2KyBbqKf5/KlTROwTBR/qphVpBwQka4KmimeYP/0jqLDyeXoAbAT84N1OHOABEDyIME5/0zOHBUgIfa5gUcLKgrJ3gDbne5+D2QdgUcEcY4DAGjH394Bz8BkAENldqZC6accRAgDFz8+I7CHP4iwMgB5t1sJCAIT55T3gViAXWDTeyzpw4loFuDboO4+YTR1G3YZ1/ozzKxUIV/0ba6QN1sRn2B70lJ3iRgkZXFWxH5kZqCBjsK7BzsP+7nvw959AewHQlIFFzglTBOgyuQb7Ijvss5d6BXAGntsUeWHcUXhmvN1F9lcEr9M0iDoGOh1HsRxzd3e4lnsvY6qv3hlLRDVITnJa5xHPl3awXmIfMRTdfAln4rlOGq1bAngJ02kVQVmyBua7zwKs7nYyZqoqALJNFxRkBbTD3IjBGk7WsDQ9XQIuHjz7mK6pb0zMSK8S+ybTXtDfA5gq1NvWO6uTgkvWhrnjMtAvAwx1A3iRZ3eGHdvXjjk0j+WRn2u35p85B+S5Ncuduqn1rZdz23BNR+fYGOyre/rc+p4h+2FwdqjcPhC+897pAQgBvFhqvXNN35vXGrsnjafzg2ZGbzE1heN7YrP1zofQ19do17XfTxNtAUYWW2yxxRZ7v9bjSExzRk9KG3Ks7IPPu/nnJ2+m0qjiTp7unsP+pPppeTb+3REZjvc4c0OuuhRJO6NOhXfw374BqmeROAXitWUBurtry7NBILwpAGOlnCGnGcKmtaqiM5cDy0LvR8yghgGWunJZAA934nj59Qvcv/wrPv3tR9DdBvj+c+vYLSzcwwpsLXgnTn3zcB9YMUldnAN2AtxwXQt7Zbtto7atBSswUjciyB2c1t2I4MxxAD0sOZj1Whyy4brIXNHLbXA2B6YIlSK4zk/BwakgSFGA7ig6VQFxpEq5JL9bryI4EHVJgk4MuTA+7zYS7f+8k/t//AD/6R60bwQkaoQZEp3g+z38bj/gUArAXcYa6tXHCOm5oj6N810AoW+uZRtm0gO/slICi8J//SbAmqbket5G1gZZC/unP8oz1O9D1DRtxWkvadSSOgdAikPasuZ//ydU361QPjeg2sM+16JZs6+E6cQc0lw10WE4a5OfMlKCPkoHwHMuskjEKQd0UFd95t5LGwOoQ0UB8qGt9/dAXcn3gcXD3oBI6uldIyDHquw4yNUJyNtdRxODigD2lQVoVYLvN1J/7edGwRYSFsV+P70/1Mais9Nr1PmvH/nDQyCtVhFgRGC1CQvGtGNpVQJPz93f5wfKxBGaMji4Dk7kmIooSSPEHvzxAfs/fULxVMN+2YJ2FWi7C+PSxfRrU94XOdsMAKgIwEiYU7ENqh/jGX4b5rymofOt4za2JZ27iUOarBUNIo3CDYAaOw9qmm4QwABbgp0Tkfc0An+uo2YoOvGlbRDsP7FeUzREpkTkjgGEzF1QnwIgSCGtZlmAf/gMLgzoeS1rm6Zb0wCDCJCYzloXH3PTdJWziOQaTbfpqu681LUcsh7FsXHMSXmCTUqp0umvw5Q5mnpQLpX5pakXueE4lw6ZMhd0SE51JB3soYeAmxQMTcbgJcf3a9kkdgEdjrdLO/vOLTcHPcbKyYHjXD9IP5tq1xi7wME7tZ033bodvtvR1j++j7O1k7k/NeZBfbKxn36mQQODwRgD2ifa/7fIHHltx/hcAOIoqJusbb3r1ZXAgFuzJIBlcC8xZx18Dev1yxByKc4hW4CRxRZbbLHFbt+GQIgpEaLxUD0n4fkMOzfydM7vZ244OqwOoAVFLmTsuxH9U8SeY3366MnMIRJZHPZIcozLj/ujugArTlhNadMIAEHOA5sVTLIxFqAkpJJar8VBu9mA7jdwn++DiLoIt7v7AkVhYDdrAV/aRrSOQ+eFUWKTlEHWSsob9uLwLQvw2oKrEkQEergXXZSgoxAjR9N+SJuowEZfrm6imBKLvv8M3qzB2nY9DAanaXTkqjaGlrcqg8O3DL9xcr6rarDfS1usjanQCBCAZ7cX5/luL87tKqSCahxQV1n7JkTZciv4HesNRPaDXtOKdLeMjikb9vRwLE699iBA9wEs26zlmT49tdcmQu0amY/OOBaWCycOXyKKzkJN7SYsDMgmPThmKYwheG4BmyGtB+aY5iUCngHMaPVdfJuqLv2p8wC3z0Tqbtu2BfAL1rbi68qI2VfxmXYc7ymYO8RuGTFWXRXnQUUAlogC8MLtc58ibN5nM9dlVrAyj/AGWnDAkACMCgYHUAieY8orTphGvfXIU2tlIPUhsy9o/dQN7M6B9m3KwKjZk+v2TG607/6/9+0YSqtMQTPEhfrpOE1Ahvx9oKwscYD3rG+eW+F6ZbIo82WoLewPHdPXilq+tl26HsfW2LHo6MTI2uH+z+7HDvJuTIIjqKpBjRFmk2p/uZY9dxTMHqh3BMUOqsECzpIRRuW5jqzeKGTZQ45qlkwqOwBC+Rqhc0CDIvruc47zMP9a51marrG3vvrdwFigZP2/VpqV17YZY/Qq1sfcOHt84+gYOfzdGZH5+bVz2pADIfFcl/xeNbwG1q3R/UMeuDDX8r0PgMmBcWPz5VbeU9e2a7+/J4/vget+C8+h71x9Srtvpa8ygHOqLcDILdlro2yLLfaWbJkviwEnjYMIFpx7gMtfvHl01dyy0rPPNYCcvpzulzjEJmmxurfrOQj1WZJzN6bkCeLTmkLmmKnAuEagi5hzcDZXGwFGCgsubetwZRadh6IA3W3A9xvUnzfgguALAltCc2fAhlAEjY7oDFWnINdgB3H4hAh4ABL9mQhM+7WFXxVBi4Ak8t57cFWDfBCvHzsfuZCCRzeraSSZpr9Zr+F++AT3YQX7WMHsa4lKDRG+FEAmdr5NtRXKo/UaKINORmDZAB5c18J4CCmEIsCiQvT7vbAcdjvpG3WeR4F1n7A6euZpEuXXaWva1/mBNheuDmNn1Dr6JWG8pc7nAIyACLxZSduS8UokYuRcFq1GhmNQ1JOBgCKqp6HPJwIjDHIsPvQAzsUDfnBEd+5lgN6c3kB0rBGx1EV/qwwMnTcH4JoDmuSwHgTkKdFcEc0U+Y+ZQY0NOjEhJY6m+crTMUUnpwd6HJcHFgCXqCPSNGBr2v5kbh3/zO14Goz4O3LPPk2C3GL0YQbEJmMnatOopoqOT2aAXWT8dJwwY3VL12JDIA4gwlBu87qB2dUwVSPgbiPaBexCX849zGYOHfbcTbMX6q/POaafC30xKq6u49JaELGsxz3356CpE995Cjz6gUjduc7h39I+8VwHEBDBUSIG63oxGqEbtLqAOJ7NTgIFeLeX9SOkUWzZcMdB7N56egfm/mfKzsGsSgGo80CDvOypjm6NnE01iS6xL2Pf9q3+fQD2neGEPma63gOBuZpECg/dL/2+k9YsiYx/j6DIFHuNNWYqiyW1UxzK5wR9XdDL+6UhAAEAAElEQVRasDZjgwHdOubMiznzPf/dse91DzelvNxSRslv6R11a6aBk2f9/oae3yXqc8q8f+1+yMHeE20BRm7JbmliLbbYrdsyXxabaj0Rb+zTSOcLjKVLHB70cJynuJoTWdlTlwPWyDUOrz6p4wBQoputGPHuJUpdHLnByajRXj4pp48V0LMJY3XgAojizd5L9Oq+kntUJonQ961TIDg5i+cabChG/q9+BexWcu2TNRGkEY0BD3aBut804ijUyH2vqWkK0R7YO9hGtEioblotgaARMCUK9SAtmpoh0O++h3+4AwoDUztJ0aSR69pvIRqeCtMdI0QCioSUUp1+dSGnv/dtiiuSFFbkhS3CThzCETgJab4UEJjlMNF+MAEUyftFc9CnUYHHnHxJJCGZwEhINSI65bOkB2tabQ5SwGBVCrAGCLBhGGABTCiJ9I1js66FSaRi6DSCGSTASEcgfIqlTBEFv7Iy2jUgcy6ocPp6Lf8f0sixDW0qg/B30PzQcg8F4DVlVvv/CnhQEKiPrBQgjo02JY/MQfIszvYUOEo1N4as7yCXpU+cHemdjJ2YhtDawLIJmiImRJBX+/E0Vqk+AbqAEnuO4BSTkTEaWDyxn3R8eQ9yLICIS/7zvr1uqg3Mn4N+JtVQsQmzYzjiP0aiK+jXe98eTSr97pK51i+9Tzx2+H9t58ClTFmFx9g7QPZO9pE5BbYdzaT2XTDigDwAHSam8lA2Bwew+pI2pFlycnm34WxWLSyew/LQuis4b1rQNAI772H8n2u32gd5+iYgzJ0J69Yx4GyunRDQNr4GHVmf5trIWePg+ynl5NfOPdctdh07dz1On997epangKivbX3PkQhYUmkttthiv2mbSw9e7HbtkgfILMpx0Dkzx3qdqycenPOI5QseQg7AkQtaFMhOQZEhB51GVjOJE9UbcSADLVBhbRuN3ccKiA7LzGniHPx210a/c+J4fU60DYITlr04/claAUI8w37bg4kAS6DGt07y6BgMgEpwrJMJOh1BEDitT0zLZC0oaJDQ806c1/u9gBYa2T80ZsIYyEXuY8R6AGLcP3xC9f0axbcaZteIlkndCFCD4IiuSZglRbL1Cw5fLgvwpgRVjeR/13uzF40SlrZTWQgrwTl4dQT7AIbQ/gAQmQ74oO0DMp2UYQdlzEidpeVzEPpmhBRnkT2SMm/E8cyPT62oNBA0Wwr4laRDo8bLWYoJTJCc+mkdDQGOwfsK/vlZ6qspmCi7Xxp1mKc0GmpTGq2rcy84rXuZIipybuTZoWmCHzHMh7IA3W+gGiNcWGGicGCNbAG/3Xbum6aSi2mVAACBfaJMj1pSt9GqBHmpf2SJaL2AKGoOZrkuMBYic2FuhDdwsN7JODhezEGXh/bJuhKYHIWsGdTYwPyqRBi+ow3VRppHDaBM1yP2QWfNMy0Y55zMPwUnAGH9BMYWB2BVNUGONnDMgRTq1AHllC2i6da4fWb9+I+Mp+gcH7OkL1LdhpsVoR1670z9/tx7Ay++p40MTJ++E0be7fGd0bSsT02F53vmsQnvs4G9ibARRvqbu/MJCqxeyoZYEy8RkfvS55epe+0ecASq13drZ65zn9UlgYBL25x3ol5rbCdNYyd1ZF9fDa07c/riUvPlmLDPtZ7PkXI74HGvJS/KVAMlZ7Ysdr6dy5A6Vu6trQF99hbqmNql+nbo/UUGQumfVswCjCy22GLvz24kImuxxE59+R2LyjnjZToph/bRQgYilc8t96DMEw4XR9JxtQKEJzwTjQ4NTmxW7Ypw3yl9K5HS4Y+Q2ipqTAxFG8f65ik+wiG9D+tSZ56HgB7p50bqT9t9F4QgEsfOTsSeyUpKLQoME9ZIbbTjKBWhBgA2iHoZ9Pgsn+12B2mmUidkvwPItECIpj0K4s+8F90Tt7Zo7g2oKQAC7Jcn8NO2ZcR4PnSeMksasSBIz6sCpOk9qlrSn+wC2BGeFef1TlMoZUyFo6BIGpGPDLxLmSHtBW29j1kSGdk678X5TjZN18Pg7RZUlvC/+wQmgikLEbXe7cFg0N1dSLnWaoiQS8agirHfr8GWYB73oLqBD3OC7u5A6xWaNF1YJ/UDh3RjOi4mRv6rsx6QuaIpcBSgRDsfY182TVu2phVzDvz0DLq7A3+8bxkojRMgL4wxFTjWOmvZ7A0IrnW2qPYLmZCqKzCtknHT0TjRunjfgnLq8E90agaZBNk4inXVz0I/xbRsc8aP/qnps777JMwqZVEp6ysFRHvYKaK90YoUR9BNx6UJbJCiEKBW17/gTKaVaAjBGGHA1YHFkzCEJo2ZNDXQgHVYPFEYlqM+xJixZ6kX0E2VpqBbGOsUGAnKaOvUfeiddQspRyZoblylji/dbhZGJxv0BycM/o7jOhOBvfj8D/uuTW+YrGVAv0YPs8xBnT8DqdngB8b3pZiy6Z7vnOcyFEk+9Nmp9xrYV3QA9Ll7VuZ27QYu17eXtpeaN9diig2VmQZVHKtXb7lZEEZfqskBRm3vd/lYfu11+gWtI+ROBmZVtnsNAJpqrk09l/Xhb6ivrmZT/T3HgP0hW57R7duF/H4LMLLYYou9PZsSxbO8yN6XTXnpzdmQH4ucnWN9B9xOXuqZdlGWjO9GesePebh+UzbsyfPo6F8c+11P/ZgpOnPl5zzsBM3uH/MOe4euRkviWKTE4arlB6aFaHB48JNE9nO4Tp2TXFUiav75Eyi21R84Q3U8sWsPQPDBIeykfHbKvuAYuRe1N6LDMs+PHNJVrFZBA8K0GgeAABjOwW0sqgcDagAQUNYN/K9f2kOv5jR3JchydHYpu4ZXBdymAFWNED92O/gvXw+it7lu0CdsqyL08Zmmh8U+GxjjKVh2EDk+dVwNlE3rdZvWSdkiARTAwz3q7zbwBaFcW5jnCvj7jwB70P0d+G4NXxpwQQAM2DBsTQDaceseVvClwerrFti1acbswz1wt2mF2Q1krKpzw3sZv0HbYVCovgPcZc5j5gS08DG6n+ukDO+6jyMAHVzV4O0O9uEe7vOdMKVqB6pq8ONjBMcAiSAX52fT3jcwwEDcjYY0FmazluvUQZq2jdpUPcq24n0VQDbfao9oeraRZ9yb2it1tpYlyOv8Tvr2yF4i9nVIpea//4DmQ4ny788wz7ugqdNEwEWZIYRWh0XKbtMkkvFtH9iVAEcsgIG5uxOtm+cteL+P84eKQj4HJC3gvhItnzpJ3zXHOTnkCNXI3PTZBKYLV9UEx7iwZwC0KeRSMEoBVKLwzuCDunfGd/L5sYDhq1i6p5gACrwX03RpUeh8ltPcR/ArApo+c7hqXwWNI2VxAohBEoojphHt8T2424fxMLFex0CIKZbvL09lB/Xtr/rWo545MO8+ye/ze2oAA1KHrfb/9InWAYHf0fifbddiil3b4rs4PEvV70kB9EFw5gIBYFPsVoCWoXNRZ22DnBcAYZDG9K1p6rL2DCB/L8yRs+1gP9xHZ6X233MYUJPrdCPj9hL2VkC81E+UBE3OWacWYGSxxRZ7exYj1m98kV7scjZIk5zhuOizS44h6nEizBmnU4AfYJqDpnPfTLtkZiqiIQdtp6yh74Ho3O84yxVIiCLSWtU+oMaAVkkaGo04T9kAdtXmRFcnC5FgJca0IIY6XUK0N7tkQ60R7ZoSS4GVWsTFwSEaOhGR7UR/JeBIdIAqABMOS7APUs+yjOm4EFL0dPp7F1JtNU0L2IQoXCIC7u/EwV9KhPn6b08ontfi1HatczICYHYlztWiEFDmbiW6IpuV6GY0HsUvW5jHZ/DTNjJl4iMIKbTIma7zXuurjt+hMdHpIyRj1KMj3pqkaDrLUn0JTXUQouuj41WdzqsVQITV35+EMfK8A6oajlnGWNOAagtT+9YNp9WzBP/9BwBA8cuzOMl//SZObY0Y3O0EB9G0UKf6EnrA4ZhTPzA/OjbUhwGUUzYHVmVIseVQ/PVLmBte2E070c4AAmjFHJ89H0SSh2fZcWa7wHAqRRj500q+V22dqpLvw3xFHcZtrlMjFei2I09bFYCueK1GvAOgum4/73NIDlh0EIdr7Y9fYb4UoCcBLnhfyfqQ9oUyfjpRuclarONdxz+Lw1fBTn7eCqhWt+webhrQdge+24CKQ52hQedkzxo+SW8lRP6TodaBam3bz5l+TaetR0DtOCaAdl1OnWw96cgO19kXspfeY97CvlaDRsL7FUDyTPre95JqEED77L0HG9OmyANaoDttn7JJEhBzLBUnBxCSykJSGAbwWcuMOlJDdk7QSU8gxMX3nJ3v+taPARtrVw6QJO9e+bgL4E629J3/WtbHXOjbt15iXo1Gmx8ZC5ee13MCwLL9enz/pOXkn4fP4vfRie87v+mtS97v54JGl+q3c527E96tncCAlFGOZKLk/Tcl0PNcu/Y9BtnuL/g+y9euvnE5Vs++35xVn3fkn7p2W67R7ye+6xdgZLHFFnub9p5eOr8Fu/Tz6kSIJBv0ORucwUiomZukIVr5AUBw4iaxT5A0vU+f9Tr/JgIinaiLHhZD/Dw77CS/SWnjFJz3MU2Qg5Sp0cmpEHZP+q+oa6H3Sh2R7AEqJdUR0EaIh3RYrDocmqpLnTNZGqyDPlEnpX7/+ARlkHT6qC9yH0AEffTv9VocmncbcFnA3UtqJr+yIvZeUBB9F6fj6ksl7I2nHWhfg//+Y9QwIGth1mtQEZz6zOD//GfYugZ9/AhalfDP27Z/WFKQ0GYtTnFrwB/v4R/WcJsCfmWx/revwI+/wj89iS5GJxd1SPFztwE0fY+yLTx3n+WY9aV/SH+XAiXpM5m7wU01Jsi0EflVBSYDowLjTQMiAn38KL/7538DnIPbJ6CQtdJmIlDVwKCALxKHtDHY/cMGAHD/n/8V7sefuu0FRPfG+QBa6bhN2q/9AiBGNw06YLoOeKlj+H1gnEQnYx4plTJOVMOCDOj+HvzhDvzzF7g//2vWlymY5buAYN9BNB0Den1ZwITxxz98lvG4q0BVDf/zL3IbnW/B8RlTbqX3ScdDpndCgY3jO7oVXvwRZMDc45Qds9jmpD2e4f75zwIUDaz5nfSAfffTPgpt0BRbtF6BHu7BXx/hn5+jdk/8WVXBVRWstaJbRNTqfgzdqxN9nqznAbQ96tTUNGkh4lUBRAoaItEhHdf1AJiptkh+f62fc2C0Dtk2fR637UqroaynvnQvQ5be75ajHY+xEE7eM1zACajjNNYrLb+7xpq7jYzn/b4TfKDvZUn1Z4Qxmd5Gx4oRDaY439P5nQKtATg1nz4Bq/IwxV7qrL+2U+61nUV97JK+y1JGSMIeOWB1zt3vntr+S83Hvv0X0v3jwP40tWNgRh5MNDSmjj6rV2SU9O23+t5f3OO8D6Z7hs7+d8yG1o3Xss6zTPebJzjJO2ejwz2Q3+269xtiYOWgk1x8+P25ls+TS6OZQ+BX/vmceT/lGWSA1KSyB8s7sre45T3EW7EhcO5afXri+XEBRhZbbLHFFnt7lkSXRzsnGrBT9swX9dQX8BxAovP5C9DV+2zsUNPnvE0iETvRZ5rOaqgo54CGEm2F7uY0akI0jYAief7xEKUlIuohCr4oJB2PHuQCQBK1BpA4Bg7a3R4kYlqn8BtarYKmShKBnv4u6RN1SBCRgCKrErwuwdaCSwMujKRnMiSR7SaIeSeOQdrXchg1BlSUMB8eRBekEKFqrIOzsmnE1x60CsQ5lR2yPAvzZlWKkPqugXUMu3dyHz3AmURMUp+zailoOqS+qPi5NjJ+Rq+ba8YIq0KBgCKJblYhdsg45ESDg5LIeGYGGwMmwDShT1iEz4udAxhtKrFgGmGvYB15hnEsIInzQUTbB3FieWZTmDJ5VDQztVo2SVqmMSMFUgDpG0rSTmmat7Hnm4/7Iw4QbhqgNqDnXWee0KpsUy6FPj0oX77sv0/UEQnzO9S7IxKv/85KNRXu5V3bN7oOORefba/WAWs9epwC2ha9TlkYzgsAlzp6+5xXUXQ9TeHVD4B12p+tl1Pb3xHqrZu4FsdnFXVQpqcriPMvYSJ1LDAIOtYDmL8LO1gD5zGaZpV9ahkjexJhR7a6MmkqShjT6s0AIVhh2EGcrze9oGisFrdBB3l/je3D+r4/AKdeMMr5UtYXUJJqWvUC2TkD74XafewZzSora3cC2HUAsvzeE98HB+y6uf2TBjy8YetoZAHHHcVpMNaxdfslnM7MOCnt3uj3I+XNuV/8zRVAkaHyX8LSPjgH4J8KRJ7bZ2P989beB69hU+fxjffl2wZGLvViXWyxxRZb7LatD3zoiyRO/z5m16K3a7mnlN13aDw1cj61Ob9Nru3kHc7r02dppHVyAO2kWco3oN6Bq7FDQSlOyQbwVd11HlHQ6WgaAQzWa/m3LMEIjkYFSygRYI73GkgNYruHOXYeZI1EwHqGfw5ObJ+0U9sdypD/QgT0qgSvSvCqEEBkZcO/4mxP+5zBApBwYDkE9getStB3n8CbFfC4FaDibg0uLYw6pJKx1xFRVqHoohDxaO9hnrbtfZ+3sV/I2gOdC24aoDIxQje2/dJ2iSjSPieqCtcHrQgwy5ihVpibm0SvAYjR8lEs2hK4MDDPdXAIAzCM4lH+7kTKU3I/hOfSeFDDMLWAIqR92bgOS2I0ilG7KXX+K8ChaWsCgHXMycrOCXD4cI/IWiFC1LSpG9GlObZOBhZT29dJXTUVVl2DgxYLFUXLeliv5ZpcsBv9zjxK0vJEdobez3RFTmPaJzVvJq/5EfjQ+weGDRGBFVwL94sMOKm0jBtrQTb5bkwvwAh7CTvIfM/SF0UtIoR5uN+LtlBVJWntsjb1AUhTHSMKioT0SESU6CPZjpaNACQzUt+RiSwCfup5F+TtODXNj7ajr8xbtkvV9dQ90dzyAYCdsAzViECbNYgIfrsDODAOw7vwICi3Fww/4iTU91nfuDu2X+pjEbxFf8IB4JqCo6YFNPPUdnkk+xCz65p2KdAOQO5874LiZzqDU3bdXPBsCmvgJa3D/pxxRgK6e/ixuXLKGeyltEr6AnEuWd4Bi2Fi+dcGRPQeLzGvh/pg7vqa/m7KXDunbfr+ea19wlsE4nNL5/GprLpr2cz7vm1gZLHFFltssd+WzTn0vpZdasPdB5CceoCfU6ec+XFW1KpHKyASrC9qdKxt6tSeeiBzDlwHgcOy7GeQ6IHX9xzKuNUa6aTmggAkKrbdue+YeQaqWpzryh7xkFRalel9zvZRnJ/Y74G6btvBDDQupiuhXQXUQV+CjLTbc9Ro6AAuzKC6lnJU78I5cVhX8rsO06TPkX4OU+Q15mZIqQajzuqEMRL6JgXL0kjTNBUXWWH4sDpdtPkeoG0N0n4kalkAQJtOpigEjKodqHbCFqkbUOPAPhEl77OJc56ZI9gyamQii4YDgMNFF9w4qA+1miTMBEq0Hw6Ez4EOM0udKmRtq60T9VYCiBfYB2P6AuDuuCNDXeCDAqCjWkG59dSzv38OmSncNKDAHBKwOGi7HLA1MpBIy9P6ImFjhesBdIC1vD+7+iXCMuIhIC1luyXpDHMb1CQxVrRgUrMWBIgeU2ifMkZ0DEUQCEhAov7nqKyCrEKHn52jM3QL+4BbsnOcL53I30xrZKhM58BEcb3Qed0LoOUBJVOq1DTtenBp8OctjZ1T9oRDbL+p7/Rz9qHXsiT9WmeMpU73kwKVBvSNpoAiWq9r2Clj/qSI/SwtbsKuvdg93jibJtqlgZYxuyVnevp+uEadrt3O1+7H177/JSwdA7dinXeUASZ28wKM3LLd0sK32GKLdW2Zn69rtxSR8JJ2jTb2HbJS5sepNnCAPkgzk98zrVOIzqaybCPy+yyLjiRAgI1VKamBVqWIJavj1ZBEkKO/fewciAlYrdryAAEptF5Jnv728JgWEpgHzMB2K78JAup2VYINwZRFFvXJkubq2xO4quCftmDnYO/uhOnQOEkhoo7RR4nUVYc97/bgqu7mcicTHbm8rwJTIvTXbtcKYFsrkeE9wIemUuiNTr81S9MnAQEUMUC5akEya0D3d+KQftq2abDIAJQ4rRM9Dg7giDqE9R1AzzthVwRwSrUYuGmk38sVaL0CHMPsGtC+lue4D3otddOm8JrYt31gREe74VgEXND1IQAoLHhVAEVgSXgGfNOWkTJgVquQvokjONexqHtihfGkqcjqSubi3UZ+o2mjfABy0gjwnIGQ3CP2cZpuTqMKVeyZPXi7C0AfR4CTp/Rt6ijU1D/sZV4lQuSxr9P5kIJHAbRIwZDYL0QR3IAJQJrOaeY47iiMoTgXtQ1VJeNlAEzrREz3gb65hk/627IAfXiQ+u33EWzippG1K8wHYi9AoDECmjCDYEP5I/3LoVwk4EweTc0+rM04BJ7Otbe+b5tb//QdfIG2d/QqAHkx9jDT0rRrBMi79xjLcEbduKrEz6HMiL5I1b7y8nftUB3eItsoNfYQKmr6d9aWc8CNS/RL3/1Pcqzrb0IQTv7eystlnryv7QDYp4Bwlxo/1wKixtpDoiel786Odla+DxwrZyxl2ylz9K3bqcyS9PdzLM6FK777jpV7Fig/wfqCCE+xt77uv6bl785jdq3xmPgO5B8CsZ+M2yzAyK3a2Eb2rW/sF1vsPdgyBxe7tr3kGLuWOKSWlzgVRxkHmsZFnXsanbyvJMJeQZUkKtl8/Ajzu++BfQX/9Zs4ZqpKnLjrAhTEtqkoYO7vA6iQHOyYDkCXNLc+gMgS6XWujuVQNiamogG8sDsaBwKig7SzkQx6EwJwVElKJC/9F9MvNa0zP00dpW3Lq3F/L+LX6oCuQxqeqooptgYtZQ+9BctTaXkvQEjQY9HnzoUFNZDUU00TmSTESV8QCXBRNIdzo6pFK2RfSTqssoSxVlIQJamI4B14txNgoClAlQAjXFXx3hiaEwPA4oHTe07UL/uWVWIMUNUwT3tgX7URt4kzvrcIBSCpjQYna0B3IU1ScPTL7RIniIIfCuxFMGRg3TnY/x7mk4/X+aRdiYgzPIuGzxxj32Km6X0UUM3Bm4yZlX7fEYkPACSYBXj1DEZbZ7IGWBVx3Wirw901YGQNbe/brWNMQzY57VVwgleVrKmeQdQ+1ziPjjlcc6d5iDw+iO4erMcJ+jD5fdO6jDnebv18dUt10/mVpizSMZGnYkyj7tEzFuemGtLnmK71qWMmXQ9zJ2Tf878kO/elbcC5fCCuPjQvbkm/58z5N6obN9WRHwtjHHjT5gIil1pP+up+CTvWfueEVQrMW4PTMlJ/Vm59c/GW1rhL2DGn/bXBNiMpXTvBUov123sbe69hLw0aD5Z/2nttAUZu2foOA3HD94r58BZbbLHflt26s2Cx80xTEOQ5hOdE6+j76thvKLA0hiLFNBWNRlKrA+X5WX5jLYhYokXD/cx3n/H8H/+A9c97mP9tD97v4fd7GGthVqs2hY7VyH0P7Hat+K+mH+ocPk0rZI7E+ZcfvA9y+VP2J0le9e0+/F6irKHR15p7Pcwxft5KNHgERboOGq6q1rEcHc0+9pOv6lb3xNi4h6BPH+A/P8B8eQI/78A76aPY5hDZO2pDzqtj68NLrh/RIYH2uTsHlAX4fiNfPQc2QWEl6j9E4Jv7e9GySfOCOwfe7aVvuHsf2u4F2HgWVg/dbaQfjaSq0ufmv3wVppG1oKIQQWIv5XZ0TeZE9BqSaaTpLSKDwgZmz0gXeRaQ0RqgLMG7PfDTr8KySPsxS8tEybogEeEWKG0rAF6uQR8/yN+7Hdj7DquBnROAE4jAXpqa7kCvomf/eyCqrqZlaN1jOU5+MwXUS9p7oBeTtJ8NwDX3P7OQOjDOXWPb+irbIgAjDLRzOQAdVN5J6jUT1kBD4G1gazUc+7OXXZSlb0nHAOnYcx7gAQdJPt6MpOiLuichCj0Cr5pScGBNbEG2E1mHunYF1s1g+pZTLLLK0D7HW3KEjznT5kbH9rXtxMjYvrkZn49PHMneySXpPJKLETWMrAXVNZhZNMaG6jIEZEVHaiYKnewhZG3NGUkTALOh617T5jyzlBVB+ZqZpUVj3+4Zzr3vXOuA2wmAcypzpG+tSdudvtcmBRFcoM2X7r9rRllnZcuaO7LvS38z5Js6Cka/kMbIa51j873K0BjN5+s5dU3aalYhfSn7cdb9W7Z8jL0V5secer53JtWlrANKS0DfJLZ4sAUYuVXTSIXeDdwCiiy22GKLnW3LOiqWswFO7Rcy6EutESONw73k2q6jJD08xBQcKngcnPrQdDksqYxoW4G+PcH/7hPqDxZsNtjgn2Aed7B/+0lupymsVqX8PoiwU1lKJFzdQAWVO+/ckM4lRppPcMp1nJUkbZMUMwTz6ZN8HtJ5cdA6IduIgzQwalRQOfZncGJwVQugo85IBUb6tAKSDbS5vxfmgvMwjwKIaB30eZEhmLsNsF6D9iEVVyqyfuzQOsUx9xLWx65QZ7bzMN+e5P9DOjRNSeb1sLgqBdQAxHHNAjjR3R1QFCi+7kSL42kHSgTTOYi444fvwJsScGEcBC0Y2m9k3Cmbp2na3/WJpPdQwQF0n0XujE7HJxlQYYImTM+41TQrRkA5Wq+A+zspf7tDxxESoq7Ys4y/lJHEvmWOBA0Vft7K5zqGUgeqtcB6FZ8L25BqSlkQRPB10z/eqO0DMpT0g+myQQL7JnWis5e0d22fjuyhs/VJ1yDz4QEwVgBaFYrvcdJqyrn2PqqvInXV/otzN+a/lzrRxw/Ad59k3DTSJ8a36wUPafzk62mnSaFuzCG94Cp7juJUiFH8+6pNk+aT1HqhjcqEYmOS6ziOFfOwDs/GSzq1oClCpYwRr2NjzHJGzqUt7b9bjFQ+Fsl9quMnXVv60k/lpsDewDsgvrsNhTHO7bowUC4nzMcx5lP7g4EgisHrQ0qlUD/m7NrBud+zBr/mmJgL1B1znPWk1ev8NgcQrm3ZWsVp+rzZZQ2M46GyhhiR+RjoY0ucvD++4QCzIWBYPx8CZjvvwAnjZs4z0ntNifoeCiy5hf6eyuI1tvuZdvMxNl0vEyc5OzDLXje/9tbWu1PtAPhF2+fGThuXr2Vz6nWrbbhVi2uXn/VOWYCRW7ahqJbFFltssZe0Zd25DbvWRn8o0m6sHvH/E+dtPETSgTOtL8I0OlSKAlQWMXqcykJSOwXh6/pPP+Dr/3QHtyI0GwJ5hnHA+gvj/l93qL5bYfe9AX4w+PYfPuDup3t8tBbmyyOaf/kzzHoNfPwooufWyH/FGlQ3klIKANmgF8Li0InR5po3P3Pk5QLLubMyHvi9l7b84QcRo/3L3yXl13Y3umGnohD6u5O+88/P3b4fGgdKmw9ORfPpI/jDPfjrI/jL1zZ1VmgD2SDE/eED+OEOtNsDu30ESET/4oYPFmpDTgxAIt/rGs1f/y6XqgP451/jtbRaicO4sK24vfOAJWGCAOC//iipswDRmwiHLq4bUFlg/0/fof5kUTw6mIZhn2tQ7WE9A9UK/PVbC3yNOQ9zsDCMJYKT6KcwNtUOxt5K2AGo0GFWxX6COvAhTJoP9/Dff4BlBr5+BTF1uzBlIFTydxzfzkXtEW4auF9/Db85bBcVBfjhTgAAa0WnpW5a5/q+ApQZNmLdVF8c6ht+0wsEOXGOaiR5T+q8zrzSqPOwNsFa0OdP4HUJ+rdKNDKGDlq+ey99xuwlR3uH0dXn8Pndd9j+d59RPNawTzVMEZhc1gL7fdQX6dQ7BZW1ztp0DqB0GKdmVcqzcg6IAIUPYJqswf7xETEVXL6OWwusBfigkPYPzkUWjVkZmE8fpV4BAMRuJwDcwz3Ye+DvP01bT851aAymDrrxtWyKHWtDz3g+vOYIOEIEsypbIF8D9kL6LFIGFBFQlvIbZTAizFOfgG8AorMu6Mx06jtjf0M26CEp+JqnzlJwhEzURmjTeWFa6q5zszOcw0BJgEp9TnEPMsjsSNMM4nD+9DmOB8tJ9249vztX1ByI40dBfrKAAsmnFTgTAEvB4HRsxHdLuwayywIU5jqrc7bOLa5BQ87zKevnqcExR34Xg6OOgITsDvfoUgB61qCZloPJc8uZs6b1aMcdY9PpWni4Jwnrh2ewV+Zeu7fkpu55P/Tsay41VscyC5x6tk32aqlJMEy7vnSCdF5j7s3JqvBW7YBBdiLD5ZIg3QlBL28fGLkVRHixxRZbbLHFrm239M7LItoBxBz8UZj8yIGGAgtEWB1hI29sZI3AGJiqweYXh/rBgg1ADrA1o9h62F2DYmtRPhvRGiXAVgxYAq9L2I8fQwojG8tLbi6C3ICAAKmps2Ugbc1guh8tN0bRBjCGxRFNZSn/XxUhkrp/oxyd3wdRnsMHpOj4BRAd58wgPTRGx0qbGkhF2WMEb5NE8vp5kTavasw4yAUWtCVSEEvZMcwMflKwKclR33GamO4mXR1uQbeiFSgP4IpngAFigJz0O8V+FbHsCIoMpUJKQREFRBTMoDCv8kj6/BkFYfBYNzIg24IH8cAICGOqcW37Ui2Avgg8IDoqNJWbposbPdCQ3NOvS2F77YKj1QcR76pOnK8TrG/tmWBHmQrZesXOy7CqahAzvDsyH/KDenAyjtaTu05I8izjp3agJtVimTAXj0TXcliHwF1WzWD9UoaJauGk4y9jMMX0fqlDa72S+9WB9fZW1pS3bNHhpXMyZQf06fT0O410vRp6RxGFNdYlqZjMyBgci0zvs4H9gzDHkrE0wenV0bS51D7q2pHWp2p/9DEijtU1AQQ6qX3Grr0V6xtXc8bZkCVrXWQrzrGhd+gt7eNzG5qjr2DpGhPNcy+AkPxI/n2pFF3nWtrf6bt1yljrCTyLXyVaYwf7pQgm+8P3wSX6LAfm20r1X3/OXEgyHqQaeeyNsHfT+77mnHvPoMiQndreV+yntw2MxByxN/yCuYb91tq72GKLLbZYa7eWa1Q33YF9wHCSNobayO6OCLBuzo2AIhRYHFSWMdUOAHARgJFvO9w/7lH/4SPYrGECKLL6UsP8+oTSMe4sgQlgQyh2DlxaYLMWUXZ1+hoDLgtxPjZO7rlZS/T/41O3TYFFc5CGQ21MbyMFRcpCIrHD/XC3ETaIAjF5uip9nv5YdGjXydEbWRdyCtO+SqLD0dVvqSr4qgZVVat/UdWifeEGHPhvwTRdFGwEOMhIG+nTR0nxU1XC9lD9CHXumYCwkUZBJ+mCPANGGRS+fX7OgRoPUzNM40GNB+0dqKrb9GU96aUA9AIiETDU7wGpQx652mlzcE43jaSUStJBSTo1AWmoKCLDw+/3sHUDqgMopiDPQbRyuG8YO7QqhU3kWcZRUbT91GdkgFWJ5vMadtfA/BzAokb+9d++DUR89o//2Q4q6bDx+uk1SfkcUk7R12/CrlG9jTRtIHAwD5VpIf2YRIK69n694uONg9072G0d2VvST+G/XPA9j5Y0ybjxmdNYu0FBEV1jjLL3THBkmHZOGElDyHXTSaEmbfECPubO9FoiUWm1kt8XhTzjr99kbI6tJzfikHsXNghCJBHxcS3pjxjmuhr+PcR3TkxRfomK4vj7Io1SHpqTAyyXGOHf1OBm/nupndcTLj7myJoyVs9iPB0BRfoic4Fh52Nc47op9A7LO1IvztegM5gxqZM7rqs88QEdsb5UlMcYQJ31XPcQ6dc83L+dC6VvI+OkT/j6ln05t1IvZRDlw2FoeHSCDC6oSaVlA1cHQ2N6UjPNRTuYcjKOU9s7ZiNzf6yMU1hzOaNMy7lWujNu1wuGTT73J70jOnbsWU8dC7cyn65lfc/8DYIiwFsHRhZbbLHFFlvst2I3FMmlloMcoMBEAMeNN2cRxjG6hxgMB/KSNuuA0bEq4e9KmOcK9PUJZWFxbylG49unClQ3MFUDu3dgIrAhmL0D7RqQ9+DCSsqsfSXOW2sksl835OrwtkG0OtLPT6Dfpyl41GFgxFHKm1KchPvgNLQGKIr2EKQOnzy9Uh75mztLCG1KE2tbZ6geehrRMIn3SR3u8QBG0gfBoa7O4JQN8Ras19EMtKk6guBvTPGT6lAwg70HNY2ME0D60ieOEvYhIj7cIwgHU1nArNdwAMgD1ARwxGnEv0sir5PykmeasjhaFtXwXD9gLI05/AObQ3Q9bBvNb2149h7m21a0JdLfJf9PFlE8XhleMCaZ92Y83QV7oGlQPFagqmnnHicMmikWIh1Pit49YmSo9aWoU60MTjVmWUcwMM6G2h7aRpw4evMIyny+O2HSkAJNgS3STSGWgWn5PPVhrCqTI6Ya4y7zJIsol7U7a0LddDVsjkWcmwSgZY7AjtyCwHOcIbfsPHxNO7dfTmUiqOn6lUbmkpmkxXVYl+TdFuYDFWV/xPRUx/RY1aesNXP3Wm9lnE5hoE7t30vsRXXvcQlLn1kANtK0omPMp/h9/O3QPWaOvQuM19+8pany9O+XtKEUrfH7AWBw6powAAIfzIshJ3zeP1ldp+yVBvfO6X5j6vqmoGLvjbJyLr1mXsIxv9hv2t4PMPJWNiVzbKhN762diy222OVtSiTDe1w3f0s299ldMtIpjVROgACyVjQ75Av5XiOdY/7vEN2jTs7VKjiGjbBEQj39wxrV92tsdg3cX/8G+ulnrP68BooCtF7HNDxkLeyTiKszAWbfwDxtwdYAZQHUDfzTs0TKA0FnJAAgAQCIjAsIiMD706LNoqNSHc+hDu7DGiCC+fIk91yvW4YG16DVnbR7v8dBDmtmcUinKbCCoz06qjW9UVWJE9dKP/rtLkZlai74eJ3zUeMFzoF3e/k8iIK/KbaIsiN6nNscgCi6F30L//TcFZ9WMKyqwdbEgFlWBkVwMHMqPp4IfNvPn0CbNYgBU3uYfQOqGgHB6ga8r0J/92iKhDzmHTDEKHDYOuU7adCmpo8JqdUoARxJI/lVa2JdAo/P8H/5m9QvSeEFoD2cB1CENuu2eGXiWAMqLLjJxENTY0ldZv/6a+ssT5k4Y+1I2jP3wD/JiLLUV4jzhTZrWaP2e3hNMZfqFgQNoPjbDFDSPN7CPOuK2h8EtBKBnI+MI3jfMkWmpqDyjDRosgM6KYtK2xGrGZ6hrt2maYEvrUPqNNFxMuBkpVXZAV/907OAMUMplrL3UpvuKItw/61bX6qgU9gZyXg/cAprnw8xInudWhrs0Op9dFJW5b/ra1oh7DxJvwlZT63ppmgD5B01IuzeX3g77lrAfyI4MrX8PE3SnN+fan1MkXQNylmnUx3KfVHdfZ9f2vL32hTrmwNDYE/OdAEOGSA5+20oZerEs9OgtsE5oNKtMcaP2annzHTcvdY7oMP6OQEwnPKsejQy5PqBAIY+GwM8aRwMHtxDaRnGhn31jHW3D7yJN7yi3+HiQMsbmF+3ZMowAt5s370fYOS3ZIszc7HFFruELevI27NLsEb0HXLmgbfjmDTmSG7x/oMpOETlq5Cv9yE1j5UsBp7BpYX5/ntxpu73oDx9i3Mhip/FL9B4oBHtA6/ppZwDewECEFIJAZD/B8C2ausBRGHto31jorJr65RIDxoBuDC1DxoogRlQ18LQgDiFaFW2EbfOC2iURp4pKLJaicNI+ypcYz48AOsVaLdvUyl5Dk5VJ7R8E6L6NcpfU+FAHNVtdDpPTxnxEjZ1nA7lRw4pslTf5UBPRtkOwXHMGlHvXSfiMzIuEmeHAnooiuDUJkmj1XgRFq/rVr8lb1N+INbURTGdV/jYAxzEyvkgnn+oLyimvpK2eHE2bjYdxgAFwCdPY6XsI0YCquWpvSiZ8zxhvPStD3VgE7A/3NvOWOdaR+/kn3TuEfNxK0iV11fXhnx+ZyBctD4WTMbwSOcYlauwBggjTkTN07QgrVP7gC2SWu7kINNWUoFCBVl0XSEj66myxVS/IbBOOqB22j5dg7I5glVIQVfVMpd0neqAkT12Y2zIm7Jz+mYsgjeWn6cdOq38DkBy9He++//JWKaikHenrg21m7bGHLvPpWwoyju/5hJ77KDbdpA/KN0fxM/6oscHIthvIQ3MuWyRI3UbTjMU1tIpEeanjp983vXN4SljZJCN+I7Pby8Fxk2xo7pkw2yN7nXT1oNe9sbYuS+O5Z6y04ChLBjiKHMuud9kRu9gWVdi/NzC+FgsjMHXrsRlbAFGbtXiwXNgI7OAI4sttthi78PmHgJOZYqklPDOZxMjKPuq4jlGT0eHLpvsvZUd6lOngupgVLWISxOB7wz8qgAMwdYe7r6E+d/9I+yPX+H/+c8i0kxBm6QsQVUtGgkGQA1xSDeNgCulBVvTagM8P4NWK5gPDxIx//EBVFtQVQmzJDjNY5SY5ljvo8sTwYQIeq7kOrJJmiprgVUJLguYZ/meCwtiBr6KjofqstDdnVzP4lCX6KykzwKzwzzcBye8OIo0Gtv/4Xs0nzawjxXMvgZ9fQLvdsB+D3gHojKmUEIAVsh7aa8POgqJcOH0aNkrH2CVheQTJ0OfQyiMB2bq6GvAM3y9h7kj4MO9CKI/b1vwA+GZqS4EEhFhBYkUwLrbCIgWopapKCXSfr0GCgvaO1jHoG0l43m7jaLinWg7dWynTBGEMUeitxPbGRgABEidmYfzayd9FllLmvPfOdDHD3C//wzzuAM9buXzKgB0idM/6mQQtWcdBWwSkA7MkXnFAWTr3Zum+1bVb2FJaea3u2mRkTlTJndGKAMsPKsDOzY+vTx3c7eRFHf7qtMnCh5RkaUMsxZ5HnqpIncjtjXFXkjnxlUlqfsUh324A334IOtD1bRgWgAT2sjlJOI/YbfAG6mfRQTYcodOnN++ausUWG3sPHy9j3OfeWAt0GfgRaMnMqf0c2vB9xuAGbTdSR2MAepa1ppBTQmT/TnBcTNklwgeuCWb05ZjmQaSd298vgnIJmsot/MoX9+PnT1zpsmxM2unLnX8jDZrYL0CP22BugrzwE+PWta9BLg7jua8247eYkZKvd4CRpyZOQArN+yvf/4+HHI89rAVxc6I8D3D4RkB2EvaAaMpZULla9kUQOjM6Od0Lepo+qTljYzJbO+eal+9ul1j75ez217Dsjnc29djdRtLvTW2fiobvPFIU6vG9/jBPJ8xlpP6RP24+PHQ2Et00M4EMw7WyjljJzsvRlt8oJexS/mTvZv3/nspIz1zTLv87QMj6WHpPYEFYwiwfr/YYostNmTLGvF+7Vwqvb43z80zDtnwRodpKFudc9GJYRLndl+6hOBcIy9CzNQUAnRAsA4mgl9Z0Kd72H/8o6Qmen6ODt/YB1qkNcBmDb7fwH1axbIABMaFCrg60NNWPi9LyX2/37ci2xMOA/HQpIeNUgW7HTg4B8mvUP/wPdhS0J5g4LsPIgBupd98oOnz77+TdjsnWirPO6Bx0l7PUn5hW2f3ZiP3e96jcAzzvBNgZbcTp3dwVitbQJk24gwNBx+WyEn2JxxIX8AJeXBwUzbPQVW4G4Gq6ZDKQhzA2708l6bpMI7YeQEejAF5SKQ+EMCFcJC0BvTpo3xc1aDatJolcnNhdHi02iR8KEyt5cZ5k+vqhLIAJCmmNCp/xOF5cAtqRdd1njcO5stz1MqQvnARNCSL1unvs3HgAzDQJE67NM3WqgRDxq0AOoFtUDftWuMc+HkXynMCYI7pi6SH4YNUEWmEOkCkTt4TzwHh8M11IxpEXspSUCw6FValrGVN02HeRMaJ8SG6G4cOsSGHBIXUePtK+jFoKLGyMXoE16OlzKJOCjR/sIYddXCkGiEReLGd9EPsE8ZVLsYePqPnnVyrzLWgxdM5qx2xwRQ2U+wWD+fn2Jw1dqKDrBVbz3/OwwBnWv4ggHnozI9OMWqdch0wLdSpLd8LcMgM1JLysXcd7btvz3XpvBjMyHPinurA4Tf33TlmB4DOyFzoC9yYYyPR5qNlneMwTcbhpfWi+u51lp3zXjmoysxyhlItnePzuhSoMWm9mTsnXpmpfGyNm2vHNErCPBDNxSHwOGWPTgRj+8YN88H4y6/pnZPxzDgW+NLzTknOme17YL7ftgUUe4L7poIrB3VbfCQALtsP7yAo5U0DI2QCAjSUPuGt24xD8GKLLbbYu7e3urk5FnU5Z2OXbz4llLz7WV9EoaYN0E1qDlScYNF5pmm0NHWPWYlTer8XR6NGoKfaDElkKTsHdHSfg+O4MsDewn1Yo35Yof7wAPy7D1j/tIP957+B9xX845MwL1JHd2nhNx/gPq3w/Mc17j1gvOhumI8fYp/wbgf3448w9/cwf/w9qG4Cm6A5dNwc0OXFAcxVJQ7o9VraebeRNu4kWtr9/UeYjx+x/T/9O1QPBsWewQbY/s7ArwC3BsgBn/6rh608Hv/Rwm0IvgDIAw//5rH65vHw//tFWCB3gZ1QB+f+5w/St//2N/hv39ojZTLWyFrQx4/gj/cCDlSBrVJwdO7mz2SWXXMOZlGfbSoiOozkSyPrIWOcigL0cA/2Hu7vP3bT+YR6c12BnYUJoBZXlTAk7u9AxgjrZ1Wi+sfPgAFWdQPe7UH3G5lXdSOp2wK4RXUjoFRIpRW1WjStgbUyT1T/Q//WMVeHNuhhMBG/juLYIwBW1Mu52whwVsjf/PUb/F/+KmypDx/Au73MH3321grwpqCIjg0F07TvEi0UskZAxfsNcLeGeRAdFzROdDm+fIMyKrhp4H/6OfT9QCTu0Do3GCQU9Ip07BrbrolTnH3atlLWLP/8LMUEBhdvt+LgV4bF/b2AF1+/RdAnHXOsrCN9DqEtygwD0IIWSTt5uwVvt7BBr0VZb5oKr3edDuODiMApKU8BuTRdV+87IfQT2r4mawXwU9aJ9yAnjBJuhF2mfdRnfr8H/vr35APfMkViXyTpB7XP+tbatxz0duk6j0ULzy3nwIkeHHPGIwrUHMsVPuCsPWChhFSWeqVqFPmnbVefJ9sP+a+PXfA1Z5X1OOE6IAUnGj4d3Z9+x2u6R+Eh1lnW/jay/Qr+h6T+bdT2EIA8MCY0zefQe33o8/Q9BbQBLgNr58nGLOs30SBQ16lT37tizP/DI302Vm5ePjDsFJ5j6Zic6HxP3yEA4t6l3b/P2LMl7ekwT9I29Z1VDtpxoec/ZDrWpq51c8+FU8vt64M5bZ4aeBbmAXO2zwWgLHyZH/17GtETPJwHqj/IykBXy5isHXaaZgA4BsIm9Yj7Te2nZJ/TCVZiP8yyG+pXDdII8yAGwMAm5RwJ5gpnoNQUqB/ch061offyNdhUl7Rr1u+l23zhvdabBkZ67S1uoBdbbLHFFjtul47keUmbC4QMlnOE6TEj+ib8cZlDX/+NJl7Wiv+KY5NE+8AAYBZfBgA2BL8iNA8lzOePoK+PwLdv8l06JogAS4AH7F70HqIQep+gL3MAbTRimo6nK0qMPXfTqxoCrVetDkhRwFvAF4BvABBgGgYbAm8ALoD6nuBKA78isAVsBZiKsf7VYfU1RGivV5IezIjzlJjBZSH6E5raaChCsRHnPRrXiqtrepLBiP0bACLzqPuhMdUTBc2qLRIcvKlgeu4MIBWhN22aonjQcx7UOBmTIPC6FCAuZVeoE7lB1IZg7mGMaLoqdTwrmJg6eU6Jnk2flQIu4R5cFiK2vk3SqYUD96AloEhktgC9GijMwnCIfaqMC6BNb6ag1SkH0VPT/Y29J/KDYcLgYc/xoJ/ekQwJWKFOC2tEkJV960Tsm0sKPugaq86tRPBdwY+o26GptHyPE7dvHvik72ncqUFF2aZM088AsAvrY55KJL53Jz6HlEnDE8H3awW4veZ58FbPowqK5R97FscT1Bk//kyixlj+7FKtEB1jEYAfKG9OX2VgeVqfTh06DKps/zUW5TxVXyy91xWDM09PKXdinUL/dDTkrrXnjutwsq+dExR6br9PYjxc4NleiG2ijuXeMTEV5Jl4r9Frh4IOzmln315pTt/POR+eUs8XWsvT9/tRphx0He5nUJM/AtyyhwSu2H6WPJlYdud90PPM4l4xDahJyhzV+xmrH8JeLL3XTEZpZy3rlH0lu3XmxK3Xb65dcK/1foCRS6L6iy222GKLLXYpOydqrbe8AXDkWESh/iZGjWUb3jnpGNIo05B2Jmoj9Jn3MbKZmLp7UgppidZriShVJ38SmUbBt9hsDEAFfPEZm3+z4H/7i1xnKfYjGwMuDKjx2PxYofi6A4cUOKoBwiz1ISupYvjp+Xj/jVniFCZrgA8P8veqBN3fwZcCeLAVv+X6C8MXDHdn4Epg9zsCuZYpcv83j9U3h4f/95/hf/kV+A9/gvv8IA55ZmmPMfCbFbg0sEUh0VVplKdXwVonDAdA0iZVtTAZYjR6TwRXeC5t+4YPREftAtFJClzE9Ex9lrIGgKj7ojYUHRmZJZt1y2xKDg6824GaAmbfwJcW/LARofuQ5gwc0gbVgVkQIv1R193DZpZCi9RZYWw75n1PnwMReBk7KGvkIBWFpIwrS8Aa8P0a7mGNonEwVdWySMJ9iUM6NaCTQiveqyyjMHist0ZXaxv3iRaPc1ANF7q7A6oKXlNqTbWkz+K/hMmspgNGnJaTjBEybaqsGPVoDAiIIFkECtRRsd8DgSWG1So4el0LRiXRmR1x9RC9qfMOqgGTOAa5EQCT9jW4rkOkpz/qpM3HBAfwpY8tQqsVzH3QKVqVct2+EgaZ8xGg1jJSdkvrLB9/Bp36pNoo8gFgwtEzL2YoAv/caM7XtGtFZp57ztV84FmfcxPYHmUBsodraLQ4rwLLLo1ITuasziPRZfJAs41OqjietDxtUwBeIxMKOBwrcW+QRD+jXQMj0AkIOOyb7thKGS9xbWD53IZij0Xj69yeOC9mWZqCbEi35Vjk/lkBOAI+sU+DSWbuAYb2TUMO7LmOytS5d7XI5zMjyo/ZkPPf2OxvDdLQumXP4thtwrwY1CbR8db3fV8qqHSudq6d+TzSNejUZ5lfP5UJciEbSgN3EqCZMjjC+/uo7l8aFJQ8IwLASPa9ysLppCjlENiVBa4ALbM5ptbKmBr6znAu4uycjedO3U9h3sTAFSOpapUZO4fdnqxl8VmdyxQZquexz27Jzq3fpX3tc8tLz6kXBLneDzCy2GKLLbbYb8PeW7TDqQfMk+83FlE8If9r6jRO2RKeAQoRyyPRpn0HBtEvaIDaAEUBEEmefSLAMYzz8M7AOAY5uUWsh2fREdF+siwi7NaAjQUrldpaKds5IM9brtFNRAeR4kMRtofdwiDvwIZiai8iAlsDbwX0cCXBNEC59zANsPrCcCuCL9Fhiqy+OKy+VG0+f0OApbDHp1YkF9Ll0dGj0ezq7NY2Bj0J1MoWGWCKDI21V05ZGlOJHIsUG6h/RzC7DyjUdHDK5PCJxkOlGgn981SjoMl5sDXyO42MTg+aaeo5YBozJE3TFNo/JPgbIweNEZBS9UuMES0bayJwgVoAnE55qgUU5hXJTUH5gTrtw9BGrmr5fVEc1FtSbolI+VHR2CzVR2rsk3V/DCDqY8QNXUPtv0TUMs+ckwP4QQRllpZBn6lnMNqUV52c2FqGMinS1FoKdilAptcNjbeRqN/4/HucJB0zbRuZuXVCswczJet5skbyCLMst1wbYar1XXvrzoWXtkv2R5/jVwEGjdAdYgkd2YNRWbRluCy1G0achqfsdfK1KUQZR9MI5mxcRkfZWMrM0fsmc/vS78YeBmT3+1eaF7e49752X1yz/ME0YEnwU9+Y7Iy9ic8kd1jrb0c+G7wncNlx8IZT4veyERLr1dY4Zp1UmxNAgJ5yO4y+NH2gjq2h/UVaVrI3lO3NwB441VjLPnsTdgpo81u3S/fTyQEw4wzpufbmgZHefHXAdaMIFltsscV+6/baa+wtHtByO5bj+dj3YxY3tzMiXzRCiLPoSrjM6XnEsRbvJ3VgZknrxAyKYuRoBaMzrYKDopqQgz7k96b1SqLarYAupmrAW4MCAJsCpvKwu5Aaikwr+AtAmStkLfhuhfqhhFkHEepCUgqhAni/D6mWQmog/f/VSiK69/tun/Y4SNN+iFFTdYj0Sh3t1sJtALeRCFhbMe5+9Ch2DutfCG5t8Mv/XMJtgM2PjNWjx/1/+gX49StQB0Fma8FFkjbEhdzt3osmReqUhkRuUZGk6GmaljHifL+myFh6kVPt3DmagnDKFBka88FBlu4LY8oqH/Ibwx44tqkoup9pnatadGIen2BWZXu21DGtzmsv2jlonMyDqA2h0X7cuV8EXzQyMD1Ucxuhz+l9UjHtvujBsBZwwy3joSzAZQG/svArKynXVDh8twNXdUdYm6wV1paWnx6KD/o5+a8JmiurFXB/F52gCP8SEehuI32y3Y44XkjmqT43oAUPmiY4HwIbqE8HIBlrB2l1jjgkdH2gRuavsqlalpE4Ko21YQ0RsIyIgLII7JlhhxI7L+uDMSBj2tRkIW0WFUVsu7KPuvfvlhetT2AdbmCMaAo3C3jRgIG2J9yLgHjPTn5wKbxb5sDc5qZO/siuz98z6XPJI8nnBAzc2lnv2tHsl7LeaOsA7ikzLAU0s2CC+Hm2Z6DVSoCR9H3TSZeUMbnGbMzBlrL+rJF5qxHQaZqtVKcnZWnlQsNzgI4jzsLJ43MoAGVoXzg3kOYs5kjP/JwV1ZuuVVl7To0iz8u4pl26/Flsnwzg0yLi+9h2Aw1G6hp1sg7uEWxQb8b0/30pVh8G/Hja/lteO9UUZE33kOw7YMmgrzJekOxdNdVm2A+gOdIPg9+l9bLhnMXxu7RuyFNmod1LUJpWdPAcpOyRWGj/HuTgdzPXMi17jF3Qt6YMplzsK/8MJsRbeOefa5dmisy5LzCwZxm5fqa9eWDkTSGSiy222GLvxd4CMHHLdom+mwOK5HR1pWzjyKb92CZIHbkkZbMxwbFKrWN3UlPEgUwh2p7rGoSydWrXHmQ9CiNaDwAAa2Ae7kGfP8H9/rNct3eAAdhawADFYw2qHejDg9SvLAS8SfVEjAnOlxBB7RQomnkwCxHWpCmGNKVH3WDzi4fdGdiaYSvG+pc9zE6cu+6uBHlJSbJ69Fj/0oB2e4nCL1egogVFmKjVt9D/1EySKiF18KgDSyN4+9LV9Fh6sHsze60sWpiZJX2R8yF1EbcHTqAFKcpCBMSjVogDdvs2LVIYm+Q8yLEwQpwPY4VEv1pBDB1feT+nuffT56bjzYsjOgKIPXNn9nMIqePIM2BJ0oU1wWnokvrlY0nrZJLDiCUBP1JzPjg+gyPgbgNqJHUb2B2CPBOMBtbGY5GZ8k4a6KMh5oiCw+E/2mykqKfnqAWiv6ccxALaFA9peYloNJkkSl6BlCBaDzJgoMPQgHNAE5wjM591y1KZ8DtjgXXQUmg0ZVfirEsF4rkH4Bt7f53k4PTnOyRuzRkxtke6cQdKrzbSnGhx78EpMy5PAXTMVGMsZcwNObTG8vFPvN/RteUUm8K+BS4/BvJxd9a86lk3Jzs1u0EKvfWY4hi90Tlykp3alj6WdbomTwqMOuHMloKZ+veFbRZz+VYtnHn6v8qDNPoDknIgZe77f1a98vFykDKrW++DtbUvKCm/b9890/Pn1LE0EghyeO2J4+YAoH8joNxr2K31y4XXijcNjAg1Lf7Rc8GNPbxL2XvbKCy22GK3aUed4q+8Dr32/ccsjaQZenFP3RieC0LFA2oWHZnnLe75ndjAJjHUK0Y4hc8YwRGrqVrUjh2A9Dchjz/u70VkfF/DOA+zk0ghXhVwdyX8ZgXzj7/H/t9/h1//5zWKZ8bdT07OAQZY/VKh/E9/Ae7vUP/pBxAzaO9gQiopGIJZr6UpGiUdcqrH1D8amX5srDknEfnOiZNUy7m7A/snfP5//RVsjTjcGwf/08/xXsXnTzD/y38EQHj452cU//oz/Jev4qD//Q/wdyv4TRFFnxnixGbbpv4xmgbIcz8bROvVF4Xe42SKY0R1EJyX/PN9fXHM6XPunmUqg0XHY5qGwDn4r98AohjFjFXZLdc70GaD+vcfwaUBNQyzb2C+fgt6I+IkpqqBAYCqlueYAC4AZNyyaKAc6LckKWpiKi015wEOzml1xqcggrKPGs2TfyTyEOEga4PWDgOmcvDrAvzDJ5iqkTb84oFvHLVpolO/8i0DpFiL47yqYL7bwP/wEVQ1wtAK80UYMjVQfIT7h0+gbQ2qqjZLT2CCIXeuH9Q9EbzPH+2xFDzthf1Fx6jJhGlCBhS0h4RlZsDff5J53ISUcwEgFc0F244ZQ4ALY9vakDrNSXll0bJxVIeJvRDz1mvRHSoK+V1VA0UB3m7hq1qAt6qNfO/M47xvUidB0MnhpgHcgC4EEMaSzAW+W4Oed/A//hT7hVX0fcj6nk+Yd62uyzATrdf5nDvc5zpNLuGsG2rXuTa2zp6TV/+algYHRIdZdxxSEdbQrO81PRU3TWScEB/qQqXR1b1pZtjHdJyd3Ped/jSH1yeRz2B/+K47sJa5MgscSZh9vRojRF2G27EUgmOWjpGpDAvmTKeih/lx7LbhGbNGrE/dg6aO3jQS3XW/nwSKnBKgor89haWTfj+ljlNsrIwh1njnObfgegSaju0DjtVFAyGOlcFhPe/rj4sEdzE6YxOQPrkUADNW76n9N+UdE9YPKVfApLjGcd2W01e3LGUa6c86DI+e3+VtGgAvetm1Wd1lb6OpM6UCBD0rJKCJtf1r2dS+nBIskH6ke1Ld1+bMv6mMk/BMeplJPcCUaCvheDaHS7LzXtvOXTOPlZ2ziObOw77xHc518dwLHM5VMpBoyWm3edPAyGKLLbbYYle0t/ySf23r2/CfW94ZB5HUuRBzaw84GWdFHocobWh++ijEnub47pZDJhF77lYyiJ6GQ2BdAXsLbNZAYcGrAn5TwJcWzb2F3ViYABjc/eRh9x7FYw1YgrcGpgoHOudgv+2FaVGLuHFb/XAv3fCfkkYqRvgzRPwEUXcCTSMMmufW6SvaFWGj7kT34+5HYZSY51oc4NpXdQMUQRS6MCGSG6CqAZwHmTayXJ23kSWhDind3PfpUxwzjdxNU7flG+Qph+tzTA+aafRpT5lUFOGQFyKInT6LkA5gveoIXregnYxV+1QJkNB40axR8WsAZA38/Qp+XcjVtaTNIudjpH8ENvJo/6nzVsGQPPWcc4OAQbcD5PkQhZRJjQP2jbCnSpkP9LyXMdW4Vr8mGDsnbKoOSyaAnkFsXX/Pu72kkwoAQjyEE0DKLDFGGE7OtsLj3Vv2W2DtaF8wc3dNOsFp0olajvfJHNVEsjaYJrAokkOxzu3ks5hewjkBG6IT1A+yY+jhHvzxAapZE8soSxlL4fcH7SSKc6BT/1TDRNeyogwOhMxRa63Uq6oFvDYkIu+p3lAAp4bSHoJMXGeoKGSNqaoI0vSu7RnYGssfy68/xYbW6rnvyjFHzbX2QH0pim7NFGxA4vxPgxEH0pOkqawIyTqWOEQUhMiFfFNwO2VbDdZPKndwfVdYfWicHZY9GL1+jEEzdN1QmXMsf9eeEvU/13IQj3LHYQ8AeqyOY89iyM4FAPosOqSvOL+nOv0G18C2D/O9+6RyT63PkPU903MDtobKuSQr5RJ1nFKfg9RiPUyNsffdHFbOEFvj1GesAHK2TqXBKEfX4nMYpBEA7dYp3pu4DbLrBcgPA7smGR+29wAYnw2i/YYD108Fic7ts3xcTkkFPmJvGxhhj9GX7HsdoO+xTYsttthir21D0Xinvkteaq3W+g1t4g6iXgIAQa0ToS9S8mgaBP08FitOdGJlLSSRm56TNDPByc/dzbY481pQwDsH2u1hfv8P8A9rVN+vsf2HAq4kuA1ADjA18PGfK3z4v/yvkiJpvQaVJXgTUv7cbYDtDvz//U/igMzZMnUtIM5mnUR4hUh4P9KnmQmokhxg1YG69RJ1/rQVhsr9vThRH+4jqwYAvvt//oukPWqCI7oopH++fgMen2E/PoALC6pquUYZLrudgB/396CHB4kCtxYUHNf+y1f47Xa07nHs9B0q2A9rJ8y1Uw9PCjJSKQe0pudaY0F3d9Jvq1IYHkFHxj8/g+7ugB++kz7e7gVUqoOXfrOSsfqf/iVq5LD38KozE6KStn+8R/1gsPq2gqk8isc1TOVgvjyJbk1VHeh2SLsTlkFuPrtGBa+zecFDm/zEYR4jrzXCbrcHnrYw5jv4uwLml29o/vlfk35NI6sBNARsd229nQPvhC2Buw34eQv3tx+z32agp2dwYeC//yAA064KqfAa8G4H7Hb97VCzCbigZgLQ6hnggSjK3A6i0lonaudfrXdhAWvBP/7csmASEET1PiiAGbRZS/q1/R5cNzCbNbCy8tu66XEiyv3dn36H5396wOprA/tUw37bRSBPNRl8Vfc6BKOQqlGtEANQeHZav6IAPWxkHOoaxr4FMpyH//VXxChRdYoAkTmkUf4aQcp1W3+yFubTJ9BmDf70AKobmK+P4FrWGunLsh3r+aE1pC4kAD5jEUxyZup15zq7+pwpfXPskufIsXf0LVlf31oLUySAso63XJtD01qFd3kvEBrW8zQI4uB76s6b0ShT1jU7KcMII0ujr3O9JK4b+V0EbVz3WWtE/QEgPwB4RkZud952WF+TneUXCjSYqgORRa7ne8ED3adQFlcjoAUn/R1laAidNJfH2DznznMFg7U4HU+dtT8Zt/mae84cncpkO9L+Q22fgTXqlPLn2tBcvVbZl7K+SPPc+iLap9Zt4PvI1Bia9zq+0/Uwfue7vz1Wj452V1LGhH6NLNHBuezGh7KxGRCdfkfd4KxYZhr0YWBWZbvv5Vb7CSxM9XgsHKhjnOdJ+tdOAFSqhcVJX2dz5wBYH9O00/ok64z8/g0EPfTZOe8dk2k3su/2GSf9kp01RwMxx7JBpSyiPjtRK/NtAyOLLbbYYostdinLD9+3ZpeK0Irl5YfEU8oIm3pvEieEl2jx1MEbI6gOxSSB4Fg42DtzfCa+MBKN7gHTMLAj0evYM4rnWqLfjYEJaYqobsTRWRagKqHm+6S9qi+iIunKtZ2ohXDYF8mGPm1D8AwQi+MzAkRAG0273XZTX3DQbfAMWNnYExBS9iD+NmoDqMPRMzjovaAoWmHxoeecR+qpYyuP6L1VUxp8EN+FNQKOeA9ubJgz4fnakIqtLEDkWmaObUEJeB/6tD1UqrMYHLBEZnGQh/+P2hAa0danZTGUQih1oDAfzpmD3xw+j5iyxKIFEYpCQL/A8OHoqJ6Q0iVhAyiziYzoYUz6PRAdi2wIxNTOsYmOZgULUuNTlqqJa6ayuCQtWDN82FLw18tgEICiCw5HG3KOhaWGGFFXJgKqcQwd9pGAy4mDUkG09Pvs+o4Z01k/YnU6h/qe6iapgsgaAUXWJdgSyPc8lANWy5jzb8Jamz+/a72fL5WW65i9AWdJjJ5N3wl9QF249jAV1pltvDSjZmwcHhlPY+/ASd+9BiPpijbIJhuyc+bVhfrn1BSMZ9zwsuXpWBliC8y1Nzjurm4vsfYf3JPbf1NAo++aa9fhFixPpzjnzNsDioyWDxwvf8radUv9d+s2cA69pXPm+wdG3ujGY7HFFltssVeyuRFDL2l9G7m59cvKGMut3TrFRjaHScQTMQlDIjh405ywkRad/N0BZ/J80uxjmhq2BNMwVt8cqOGQNquC/ekbsN3BlwXo/g783UdJl/X4DNxt4D+sYZiFMZDoN/iqBsGC1iHXvw1O9JASafZGLY087XzeRouyA/j5Wf5MoqqJSByzQKs/EVJhQSPDdyWoLINzP4A/gOhIAAIGFBbYV8J6KEv5e72GASR6PAhkp5Gt6vSXCNrEqZ/n432NQ2NqnIylJMI1ggKrUthCyhgJTn0yBNrZ2K9sDHC/BhphMQAQoMR40V2oqjAOwn2JZOysShRbB/KM4qmBaTzMcyXptnZ7IDAHDiM8e0yFiZ3MmxjZluk7dKKUx6IcA5BB1gJlIbo261LS2jWNMDjWtpveLikjsgRUZ2RVihZGVQvLQ8EWa4f31ArqMUtgmON2nVHwoO/+B+WElHMhSjlG+NWN6Pccyzk/GIE+cPjVcfH4BDDD7/YD4I+CV8J446YJgGQLxCmgSmlbHbogW+1gtx52Jyn9KDA7UNXCUBqN3PToRFynUdlBB0KiIzU1hmvHiKYKswbsTAskhsh61HXQyEmeb2B2IKRR470DrVbw33+QfotrvA9p59q0a51ozT72SA4+H4tml45t+xeYoB9xgh1LaXLumfKW9hJDlkYwk4wr4nbNTf9t12TTdSINOqa4++9YHfr6usPoMINArabzOnDEeBmPZAgMG98fndz16f37NH6SYJBws4F2BlC5KNFlx6bR0iPj6RLsoqkC8EB8jm3U9EDgTJ9O2ZCljMiknybvr86cb72pF7No9YP36yVSbV1jno+OlZ78/anQ91tYd4bs2iy7Y+Wr5sm1x8IAC3da+dOCaHrt7DRraUBYwiKUP4fBiOScFzXVhpjIkUl8fDxHNq33vUyPNOCurU/4bZ5eNRGlz27Sqccsfar3asfW9yFQJGXz9P1maH2+kr1/YOQtvwwWW2yxxRZb7BoWN6ftYfjiG7sDR0P72SzgwTPIM0zl479mV4tjersD17W0Jeh1UNCGoLqB2Qah7KKQ/wzJNUF8nSMTw4iTr7NhPvGgMma6kXbB2UQGDNmoU3JYUOaARKcHgIgIQBHbyqlzMXHMxo2jF6CD1YELPSd3ne9EadSabvhfEAiZ0r9Zug/5X2VKmJgqCEVgCTUhZ7LqP+hhyZKAEpbbqDJlQ+gGPIv6JyuMCVN7gACjGiSNAzUupFny88ZLAoTlEbgHgNSU8tQB3XEkh/6pHexuXFSbiCKoREURRbrbcjJmRPfHbZonNQNxsitrxJ+wtqQHU3XEp207Z16GMREZHw7TmGJJVCJyMDP7fdQP0foC4it1HP+TedsyhQY1Djp1N+N17fsuf3bc1YRSzZMO66SzviQgjLLyqrDWjjFsDurGUB2mCNJOYSGdy2wcszHm5C0HSVzCJs6jjrO8+8X0e53k8But1IQyklRJarkeSt6mOfWZEt39WmyJk/TSBvorYbieE917FOw/+MGF59ucCPRbsCkR7en/p4E5rx3Mckn7LbEmTrFzwfpz50QP2/zoPadaDrofqwozKGHTnnS2zdfOMZBe/7wh1sNFbO4e+0xtjwN7pfXr/QEjb31xW2yxxRZb7DL2XhmD+Ub2AhE/BwyB/Hu9z2ikdqtdQkxtBJD+xodctWk+39F6BZZAXcM+1zHKn/YV+Gkr5alTGgDvK9DffpK0QWQk///Pv4iz98OH1mle1eK3bRr47U5YBW7dOsUvncajrxyf5O3V6Oq+vKs1gwGY7U4it0sFRgLooW2va2FIrFbCmNjtwY0D7ytJ31UUIvAMSfou5+dQRp0epkfae2w+XTqybyhaPNNZiCyR9QpcFuBNCewC20GFy8sC/q4UJ73z4gjX1FrrAtQIKyGyPgIzhQwFQM3APlUweyOAXONAe4n01z4+iETrMWYWRo860xMWU4zEbS8+0j+JGLfvOrTItfOOvj6hfN6BgwbEQf9aKwyjuw3o/i7em4xpGUpm5NmSAa1WotNBJKQGNmD4NtUSzTzkpFopJoAM4XnE6ETCcad6z4E/9pkRto0AI0ccdWHNlXRtgV2WXx9ZFEG/gyima0u1O0zDAqxVtfwXBez94ZrYAwh2LObk5uTvLrhHKTAYmCTsIeONDMg0nbWfdc4gALTOHZRPtQN+/gKuavjHpzaCPGUicvIboH3PcLdug6+BgbZ35kh6zdQ0b1K57thIHcLXAMQvYZ36XrBuQ04fDZxIP+7TdwLQMqoUQMvYYfmzOXvPchw0YZ+sj70aKNx+1ecYPLYe5G3OLb1XslZHBu61I+BzG9u7HbCQAztNHZ4hSGOOaeq/GAzTxzKZukc/dS/ft5frBL+M5Ke/FWDhiOO6N+XpJcbWrZyfUhbMlP1n+ps55Q9+/0LjIDqWZ7zHbsF63hV5SuGjRRwIaHffD8J0BYBsDdF9SkhZrMzGtLReUGTK2NZ9kyWAbfc8O7iW3siacQ078s4mq3s7C4IDc9bHfezL9PcHunw8eG3H+sD8vrInPpr3B4wstthiiy222G/JznEupAyBYxGGRw8Q3N2ojh3+O86nQ22OzqXOR0ci7cQJjboSB+V6Lelotltx4KnDWdO/1I3Uqa6jcDKcl5RDhmB8Ug/vO2lpXsxiH/UcLLSfnJOUWfEn6nQM32tqn6IANDq/k+tfmA/srZShAoSXPEBO/f2xA2y+ER4CRayNzm1ar+E+PwRGCMHEaHwfrmsddRKpH+6j/8X6tM7pqC2i968d0EjaIGpkPHITmBh9KTvSpiszJwcyYjckkbin9LPJ5k90ArVso46gubJJEuYEEYGt6NTEMiNrY8j516biSlNtsbIxtC51M8pYiSAU0B23yqRIGA1Dv++0u/caE/V9Yt2cA5jCM+wBJqaYjjGEMaMaP2kbyERGmDJFInjFMk4HnQMdJs7xQ2InLVCItsyjKGO9dO1N2506QZXF0qebo4yY7LvB/N691T1jTRk7OB8FFXvWmBSYugWH4JC9VN3mRBKPgggnpnm5BhDUAcCu+I4f6LehuXQVm8vmyep8oDNzylxNQdtzo9pPsUGdpxtx+s+xl67vrfXPIACZvCevNbdeoi+mnMHeik1wVvf+ZuCdE/ctQwD+7PpNf54HLLmpa8etzZ8r21HtqSPPaTgwc+IzH5k/c/aZCzCy2GKLLbbY+7SpG5Nr57C9hl2aydATHdrNtz7xfszHHQ59ZY04pHi3g/n6BH5+RvPLF0mbVBYwn+/g//A9zK+PcF++DhyADXjrAGWGrFYgZZAQgT5/AvYV3C+/yuXq2NS8uYR+gOcgwjL7PmouZAcEjZrpG3MjkYy+qkGmgdeUJqphoFGolQhtG+eAUqL3qSgk4t9a0eBQHQrnwE8e4KZbl758rlOtj8GUt2nss7we+lGSoqmNSIIAPZs1YCyosPDff8LX//gRYGD9a4OVIRiNNrvbgNYred4M0LYSR3Rh2yj/NAosbLzN/X3Q3gj3f3wWUGkvei3Y7yWNUFUNR8MCBxv2gwOERuTP6fukjykFdxQIsUEHw3mwlfRInesCSEBlorFTyP+zCY57Y2TMELUC83kdgr6LebgHb1aSPQsEGBbAwRiQq+G/fA1i8P1AGBWlpCyLLBYTARVlLUTgIj0YhX9jDuo8p3SyvpEhmA8PkkJvtweYRdcjZV0c6X92vtXdSMpvwaEQJb6vRLcjTUFVloDzMLUTkM05GT8h9d9BRF12yBtLB9ERwm728nsTNBQCsOW3OygTKtY9X6+9A+cHzDzanxlsjMwrIuDxCRFIJtOm2lIgJgXW2MdL5zqJO5HRB4flGQ6xfH0K/RSB4s58uqE9wTXqMiXY4USjkKpS/pjZn/pM8jEyCQBt10JljaSOkRaATbQDBtfuC/S56iTpNLr0vnQuQ2TIDq7v6sycAhoeD5C54JhOmcidqHLTrns9747DcnTMTADPju0DL2VDUdopI+qW1qqXMhP2MGrhnfpm7eS17sxnf63fDzKyRuqtczQGfzlwNfJ+Zwaoe1YY2g8MpvzMU0qHfUqsXX5u6/t9n13q+bzEfiTfF/UBEkN10mekwUdDdR1MWeoP95ljNhQUM+ADmGPvBxj5Lb4QFltsscUWO9+W90d/FMaLRTZmG2E1dXpqvYoC5uEeURfAGFAlzl+yVhyxnd+30e66IRaBa9umM+IQSR9FQv1hhNA5lgsGa3qKk4vrtrFNeSPOda4bwXK4aKM81UlaFLFdVBatMxjtoSKm2JJCJ1QoBUR6IvbOiMzsHPq1H3OnRkh1RcwoH0WDpvwW9GeCYzZG5gc9BQGTTEylpf/Ret06V9ShbAgx/VWwCDgEbYXJY4V9v5DjKRYOg+rMJxYRbCIPJtXNEWcWGSMp2FalpFoLzioK7Y/zKQeItA+0j4oCZrOR/iBqAQtl7XiGqVwsgxwfZ4qoJTnsySNJFefisztkOyCOg/gMjh0glSGi4yHcm6gAGTMivt7X/9SWocAS+/76AgHYUcYIt2mvpAEHt+hNkdJXlXQOp85L6lwU55GslQoE5U7EnoN/8hkzC7DILIypuh5dz+I46a/40I+S/08AxVOiNgcrNhJJHm+47AvO6ecOiDUzqlfX/jZ1XhZgMJXtwYds1HS+xLKHHC1Hy5/QN9dIzZnX4Zrj9tR3ur63X3Ie9bKTjjlVD/e9Byy6G7UDoPilgJpbs9APV9F5uHYfnsJ4SH/3Fp/xFeqc60V19kW40tgYs7fIShuzGeNtkP18aTv1vT1i7wMYeU8Db7HFFltsscXOsVM3zGMOsmsfuAaiS8haYFWC1yXw8R78H/4AVA3M406E1//rn8HWwnz60P2tCoYaG6JZ6taJ6b1EsKvz0jO4Cdob9VQn95HrvIuR8J3UPen9+vo73+hxsrknA3O3kaj+/V6cxmUpzkfnATj45+fYd4AAIFQUoPUKfLeWa+sadH8HuttIv9R1SJtEIGdin3Qc03k9k3t0jA4jdCcDLdFJrELzNvuaW60GBTOMAW9WoKct7v9v/xp1Olj7mAz88zMMe1D9CWwteF2CiYAiEc0mAv3hdyDnYJ624CCKDfbiAOaQLikIurOmaVOHc18fZcyXmAdZI9s09/qpqUaCA5/3TlJXWQsOfcMKVhAB6xX8xzsYItiiEE2U/b79vizCPPGg7V4AI436L4KmTWFBHx5AD/dt+3Z7+K/fWrH2qob568+xLcwMNI2kgCsKib7b7Q7bkUaZ1bVcF+7PdYj+VNbBUBRbGDO0WsmfVdW9lhncNHDfvnXvG+aH+f47afdf/w6/H4i+DZ9FQAgBqDNGtFnWK/AvX2QOpmCQaccN1Q2oln9bbZHjkXWdaMhk3UrTPx3oP3gHhpU8/yHqm8pCmFAcNHUC4ymtQ3wW0cLf1oJ3e/B//m9yv6FocO/l+Wl6t7obwTtpvPfpLUXwK1tj5jow83UrjeaPn/3Gz5V9DMA5fdLDMppfBwGoTUFtFHj4jOueewzdqw9EMTaMo4QZijRAoNWZGiw7fVf3rUvshr+fYnN+cxZIONLGFEDUeedc9zdjbJCX1EsYewbHrju4Zma9X2u9ONDuSXR1gDZC/r2uZ96B9zeuyZHvB7NnRiFdaycFJvB+n1lu+TxNg58UuIzv7IGzhO6F860AJUzQCdYJPEu19fT9M1ROzlS5lF7MtcGvnD08ZMa2ATW6Zz0W8JKP+76z0iXr3nPukj9JtGcmbhPfBzCy2GKLLbbYYotdzsYiMV56w26tOHfvSriHMrrL2XsRFl+tAJT9vzUEMLXO4gQcic5FQAAM9tNp+DMjNHujpo9EZx/YAFuk52bthtwHoWjnhDlhDQilHBgCE4K9bTVIAGEfwAm7gcadG6rZoKycNNIXCM7Mc3M/Z2yRqC+i/4V0WP7peVjgT68rjEiwmCDmzQxTecAFIM1L2QSAtSxWRlHCOuIAHE2IQtNUDwR34Myd7dztHTNp2iPRh6AwztlakPOgJmE2aHq1yJ5BZN7wZgUoy0bv10lrwCJGGZ5BTNcGBPAh6bMEQBiks2ft0XlCwIEOS7x+zBF3zOnecWYmh+z0t2PGHoBtr9W+0HKc64qV62+YwClTxfsWfMvbOSP6rXf8BUeCOnlFC4Tj/8OaNvMVBZ2QvF9Tp0B+z6E1sq/eSdsO+uREG0spNsnSVGG38H5bbNAodXawP66xM8dS1tTg+jSemkW+mwj4v0V7A6yJV7eXfL6nBCi95fH3W7Apa8zF73nDzEh1cl+qXmeUM8p4fQk7gW052eaUG/a9cxjMk+57Tt9e6bkswMhiiy222GKLvUe7RLTJS20KDxxzFCN56f4Ouz9+gFsbuI3BXcOwz1thjDSNOPyKNrKcnRcWRFmCUtFtBUf079A+KgrQ/Z1ElP/863BUS+pw1KhqZVY0mV5HGlGTahjEslQ3Q7UR6m501IDei9/vu8BAnrKHQvSrT534Hvz0LAL0Hz+A7zegfS2giPZDuZLUSoVGstugCeFbh662K9nY0qoE3d8D+71oGIRnEL+32v4sX/xotHjoAxVaL9qtqjKIRDdlBZQFuCwkAr+nDLIW5v4edH+P+vMarjTgQgTG7d6B9g7m63ObZit9dnXVCn8DQC2ACAex9d5ozCxqiYxqlRj4b4+Aqw5Su0yKokrKjY5hBTcU9AlMFgoi6Nw0QFUJAFTXUoYxbX8qGGCsMG8+PaD6/QOKL3vYXwKzwhpJa7WvhV2wr0DrFWizkeo83Mt1TRPBos64j2PeHbIoYtsF4IwOggjWhHvPMK6raRdq9HNI9cVPTyFqc8L90nmszJbnrWjOVFUvk0LHDPYVaFcKi0JTsTnf0WIgKwfQmO861DeWpayztD8VUCoCQ2y1knnSNOCqDmudb9et8BvOx26i50ObdVJ/H9g8QxGT7drYasK0oN9s0enEWX0IJvY4kuZG1ysrraOjtTiBo72mMyhP3ZY6Us5Jh5LuMdJ0Scl4kLHVgrktwH8kYvka9lKpcoaCYPLP+5hVv3UbjCC/oGNXyxv7PDqTs2d0a07v37INpW489T12LishZYDd2jjJmXnnLDxT1tEcGI97USNaaVPnc9Q4ylgT1z6Dz73P2PUDDMiDLAd91nuW6TnL5v0zWubMvstYO+yzfe4Ru1Cy41e2a6Fpiy222GKLLfbW7NY2uRp1rv9NsdSpaAUQgQFMo07BBBDg5P9DBDZrZLZu1JTJQKqpkEQMr0rw774DvvsEc7cR9shQU5Io7I7DZqhtOTPgmI2K07VtlzZ1o57JUOJITZwZXtIIRed1zz0FFCmiVkJ0uPfVJ+n3zr+qSYG2nyMrIUZoj0RqD5mm5TEmliXC4BZshPUxOOYTRgRr/RQQcEHvoXFAFTb9znfApjiOfKJTMgTwDDJ4fHvPtL+mWh9FXKP/Q7909EIUAAmOX2aW9Fm+PYxI+qvAHlHnH4U+KowI0weARcCgoI+hh6a+g1MOBqZfq3j62BpwrF8uGC3eYTYpIOIG2EZj9dFx4ZzozqQAYp+l40lTg00ZD3pNvo70HUR1nuj8zcfPVDFKBSd1rM2xHBS5pl3yfXdr787fomXvl662kEfH8XTWfbIyeubii+elf882Z/9363Zr7bi1+ryk3Xrbx/anfEE9w8XGbWycDDG49Sxw6/uCWYDaSD+M9tExUGSgn/LPrxWAcqH7vG3GCDMAvv1FcbHFFltsscVe0q5JwZ1jJwAh3c88sF6h+mSx+uaw/nGP4tfnNj+/mhOdBU2rpJ+hqlvHfBnq4hmoksjyH77DT//nH1A+eXwyBubbE5q//n2iCLNv00WFvzugjqZgynPP6vdB2yQyPYZuExgpovnQag1EPYCyZTKQBbhJHPfs4Hd7UFXBlCu5jTrKtQ/XK/B6BaosUDdgMqC6is6ioagy3u87qXWisz4Bn8hnzlvWKNzDyPpYZ0rKS/4VpkgpoMiqFGf9s+jNdKKQAlsk/s6zbBcbRrFrRCh814CqBvz4BKhIOSDpoLxE8sMfplc7mrc7E4z2T9vu7/LUCcfYM21hPZFtFAGQOPYVKCnuJCJwu4N7eob98AB8/BAAMCOAkmvrQM7B7hqwJfjvP4D2tWj5eA9+fgatVi1DJDzTDiCZW9S+aETUvK/tY5anmOrTGJlrKUhgRJNE0yV0ns9EkCaODdXVyPOEq4W1jJsG1DhwHRg4B2m3Qj3ydcIzwKKZQ7DjzuGUCWFlHqjeCyBsEPZDKVlCqrC0nUOOm5T1k9STNOVc7mSYHM04I63RKeMhn1O37vR4j3YkwjWypVQr7CJASMKAGAMuo8ZV+GhIf+ba6WhuZVweMEcmRhnn3wNhDo8wcvvue2sW23JkHF3S8vL6giX61rKXYh29po2NqVuykfrxJfY2U+3S50Ldb0w5L13ajq07+do1Omdlf92yWx3YTQwi0b35a7JO546ffN7kgX7HypvLirvU3v1YWanvYyxN5oC9bWBE7dYXw8UWW2yxxRZ7aXsP70Yy4qgtIOwA58WZqxHoqWk0ducjBkFZC+owdC3bwnugsKjvASYD9909rDUwj0+SFme/75YXgIe0fmSyaKNjm+/wu8Omzkg3lbaPqG23OpPyTa+mWGgaYJ8JU6cskzSqM40w79Ma0e/VkWt6QJHAPJEUTyrsbrJ+6HF0ak5bZsFIDLXpvvQe3st4qBsBMbQsTYFi2nrAENzagA3B1OH+3gONE+e29wLgGP0uifwfcfr3P5SkDvm1Mzfpo2a6ThEiEtAjZ1Z43x5aiQArjBDy4QCRMJD8yoIaDyKGrVvtkOjwT+dNLH+A9aDpnpS5BcQ0UdEyFkxa55NyOx9zBCVjg4hkPFnbMoag83BgXAZ2FSd/y9csKReGQARde5iFoaR9moODaTqr9DnqNXFIJeNzsCtEP4SzdTHVVjqammhKCqxLjuk5dgvvt0unzFls0Dqp5U61OYEa+bO9hUCTW7Wpc2DKWrKktFvsLdkrvgNkr3LNG8xo23t9F76n9SgPChmyt/4czwgMfR/AyGKLLbbYYostdps2wKZonYWZYzCLYGFr0WwIdk/w6wLWGvjtrptjX1P+BIaI6izEaPo0PZS30SHMTQMuLeqPhPoDwPYDVt/u8XGzgvn2DPef/ps4lZPoaHYQ1gLE0QtmcN0IQEKZiPtQFBUnjmqg60QfiqakoA+hwADQahqoqdPXFK1jOinTffkK+kYw330G3d2JbkDTHG4iFViwthXyTupHQXhb9RHIou1zZbFoOp+iAKnWQWCpMFNHfyQCK84dijs7B2w24H/3O0l/td2LmPy3p6CjUXei/VUQXtkAMARer/D0jyXYAJtfDYpnh+LLFlTVkc3A3rcsCgVO9JlPEY7uPDcPWt0BRMKqGXJAT6GnA90IKNiODkcEdj48gDYbcF1LnwRWVexPa6MmC69KaZ/zoH0F1DWaTxs8/WmF8slj/XMtDCwA7Dx8VcOU5SGpybOM8bppn3esOovuTHTqUwQS2QEgAxPmUTcVHsO7bAw0xxxqoewgdJ8DmnqN2ay7a8x6Lfoq253ojRgCURHbyU0TwEqJIjcPd8B6DTxvRYNnExgnVRXSjSVtBbogBxlZnzzL9XVzyMRKxi+ArpB7ZwxMMCKgaeCfnpN6GdB2dwCWRNPUHs63rLocRM3qEXWSQj1PZorEOhxp3yUO7VMdsD3vozftNLhUGy7lBDtWnwwIOcrWu2TdBlmsyf9HIPMCEetz633p8Tj1XZTXYTIocgQ0voa9V2dtsKiBM6QTMSXqe8p1t2xDegUv2aZTxtk5QKvus8Oe+aS2sgc3I3NyQh3SsuJnL9Hv+bjte/bpunKMzZIFo8QYsLm6aLe8V0j3pENM/Tn20vNrqN5DFq+bB2wtwMhiiy222GKL/Rbt2pu3KZvrCRtPUzVYPTLKJw+zb0D7evR3qc7CwWdpnYxEjHtjwFb88/UDATCofrdBubYotn8EVzV4twPqGl4drqrh0BOdz0yHkeAjRtbCfP4k4EtwZvv9vnWK5gwEIJYrgvIJKFEWHacf100EbqIQu4M4PpsGxzQRomB9JkrdS/33vivu7LnNyqMglbUi+B4cs2wgDJIQwc+pJgJ7+Y4032+3nuL49y0woIBIePatMLlUotwy2AB272ErYZqgbloHbxw3FOpkWjaMCvIec/ZG53/yrNLfn2JD8yhND6D93mED+G6qJnVqW9Hr0ZRm+nvTeNg9w+48TO1AdQA8vIwbYaToA7UCqpBr0zKp2LoybobSSgUGUm/0d65bE0HVaWuUpsWalNrFGAEpEPrJOQEUgUS/Jzy79BnkbLXATCIAtLoXVowCJfq9mqavc9l40mqZbE2J95c5HTWOIrjU007m4PRwXbAm3G8QFAn90mFb6XUJgycFQrQ+oWMO23TJd8tFy3pHUaCvZVPTbaSWMa0GHWos4uhEPF9baMo4Gar7LTq03oPNAnx0PblieqR3Apgs+hTvxF7yfTRlf3RGxP2L2aX3A5pG6yLlvYH+W6zX3jYwsgy6xRZbbLHF3qtR5iCbFKk+sby+z69xUByL8pj4Gf/nf8Z3f/0xOsF9XXdSTrHnTv58WBvz6ouzs42uhxVnN293wij4+BHuwwq+hKTrskD1ibD9wxrUrFFsP2D1lfH9//oV5tsz6L/8c0inZSS102YtznhAnKzbLch5cFXJfQKjYixiiVYr7P+X/wHV5wKmZpiacfdffwV9ewZ//RYd/wBiBDuVhbA2Viv597tP4FUJf78GiuDQ9AA5B2o8zJdH8PNW2At1A//tG/DtG8z9PRCi9sWhmvR/yO9OgV3ATZtuCOwDSyaAMZ7hqxpkGrBqewRnsTSSJNIewfnbNODdXgASCimarAXZhKXRNICxUv5+D/r7z6IDsipjOiJuGvjtFlSUEs2fzhOS502bNbDd47v/+3/uMhP2e3h1iBclsFlLnRUQ0XrHvq/H50iI4jMfHgQA2u6EJWMl/ZKv6nkRT7FcAVpiVGgivE7WAPd3oLIEf/0G9+sXGRNFIWNlvw99uAKKAhxSkbG1oLoC7fbgsgA+f4D9+xd8+i9/kXuGZ+SrWsYyANxt4P7hU+g/BPYPR5CLvj3D/fXv3XmZPv8kDRUFxKwDHkSGU3KonNpfzAB8W15fFDezaO1YC/P5ozyjR2EdxTZ6BmzGikjWXff1MXkswbkQ2FOwFv5//BOqzxus//kX0M+/CihnSOZeXBMSwGLEIugJ2/ZLmPNwLoJ6aRQ9OwdUVWjP0zCAydzVY1LmWjqPrACi/vk5PhsyBIrz2HTLU2bVpd8jr13eS501L/EeHoqkzZkOR8qgFOAesWEmXDa2U2e3Asdk0NGbylPXsQPn7825z6IT1ZyBMjGA9rDMtF0xxaV3sW/ifAz1PFqHyWtYVu+ESXFKqs1Jds64O6cOIWAh9n/KGlH26IwAEykjB9j4cAykAQXXBEeSeXTAOL3UGpSmyBxjt01ZF17arsnseknTMWXs5efmyD2jPuG15u0cBtlLA41T2A5T1uaha3PGr03fUzicw6ewtcas772Vfn7OM1cNramBDXOZGmNl5XWZanOe5Zn2toGRxRZbbLHFFnvv9lo53G/EVDhc7cAZoxHqmsrH9PRXfrDUa5hBnkGaTUr95pptiwFXQcCGJBVQfCaFjc5m1angpgGxF6YFVyA+kgfYWuy/K7D7zsDWgKkZ67+uYPc1UBZSR0059OQBrju/RRHSI21K+E0BLkxsF7gAOY9iVwFNAwrR7tyENGJN0zrBElYNEUm7lP2S9mMEUCStk0TpBzZKiPIVhy7ECa7O5uAAEWZIwuhJ/39gw8zMoKoGF4U4obtfyhgIrJnIhAAQU3Q1Dv7rt5D2K7Q31bEIbApWxsnBeJngkMvnaYdVcPk5THE8Bic2IO3rYwMoI8eYmCIrFBLabUCNg//6FVQUoFLSpKGuo+g5dZ4Zg2FA8OIXgMwPzlkiiSOKlFmhTCHgUONiyoF3jvU5i6Qy0h8d9sYY6JWlA9TUel6APdXC4dLCrQ1QFqCy7DjhGEgYWiN6JNDqnNb2o87ECA76w/7XNTSmoUifpaZxS/SDEJfM02xK5Opr2VggQXyOFxyf51o+ry9pA3uQA32tqeWcuqe5cCTukGaJghBd5h+dXu9TLLvX1dgBlxh/c8dx+k7I7Vwdmdz6xswltExec23K7x3fTzOch2RezNn4m7CXZiG+xry9Zl1ew85p/zthnR1Y1q6ouXfJteKG++5tAyNyGltsscUWW2yx92+5g2/uYajPQZjaLUSRZRYPztZGJx5ZRCd8bDt7kF2B7jZSf+dAHgJOWNuyIgCgKGA+fQRXNfyPP6G432Dz0x3YAuQAYgDi74StGKtvHuaXR9DTVtgHiZg0W3GC+g8bABDNhLoBbUtxKtd1lh7qMPqHViUe/2Sx/QPDVgS7Izz8ZQ1TNaAqsAF++AwuDMx/+Ve4b3V0yMIaUGHhNyX8XQl3V8CX7fN1GxGvf+CQ1aooRGj66QnsnOhr7PYoPjyA10UEEcgaUFMIs8N5oCxFJ0QjewM4cixCPKYbS5w8HMS+Y6qrVQlUtUSmqyZGiMAjExgbWo6hCAIogBP7NgAwtFp1QZdsvHPdxDET65+3QyPgmcF93w8Ye4Z/2kYGhAwKef7C+jhaxGC5HUe1MW1/qCmboCy7Kc0Acf4XBfz9GsRBKNxa4C5E/4c+jrosQADQmuiQ46YBVU3oLwhThFnSrDkn431QI8eE/0jGUvpduE9/2q2JB6iU4ZH+S4LQxTRrRWBaFcHBb7ReCvQFEC67p1mVwrTR1GsKuHmW8ez2gK1hniuUawsuLfDxQXRw9lXUFIlaIxqBPmad6PBQt1DOOAuv5zt16sac277LWolgCWflJPcP812fXUfjSYXn5ziHjkVuXyqq+txy+pzhhNOiKPsi2vv+f055nb+zFFV9143NKQW7QgrBjt4NEjAs/l7fyxkgmtcjrw+f+KzSMTPl+j6gVSNmgah1dPg7f/A9WQtOWW3H6nlOpC2369FBW27RqZSCD1P7BjgEn9Ii+9bIobanARtD9eBsbTvFXrrvj/Vp/t47WA8Gfk/J/ug1xtJLsXZeys4GyBeQ6tUsHYOJliSAyBKMOYFzDblrWd/+re/zU+zUup86V9O6p+/FG7W3DYwstthiiy222Hu1l9iAvQUjcxjZPGRDh+Y0Yt8AYANyDr5pYOoGdg+wBUwDAUWYIzBi9wwKqZtaAffgBAxl+1VIC1EHkffGie8siLOrU+XgQB6cxX4F+BXk5p7g1hZ+U8A+FwARms934JXB6m93oKBzolHq6uBlQ/AlwZdGwBECfCHpePzKwqxLkPdSr509dNwYAxgO/xnAMoACRHI4GHwCPgFI1GGoqZK0jvpZokEhDmjfdQB3uiZsotWBjdYxp8+aI3sFLQCTiNN35o/v3qsjat2j39KxuSKMQw63tE5TDxnqiFfLo5h1bCvbZai+6X0DONIBfFKmiU+Br+RzTZ2l/3kWppRL2DcH9U+CmPLnaEbG1QnWF1WtmhkUUuxBU2C5iY6IdEwZkmerDBytfdDuMY0HNZmDzrkwTgOjyhxPo5Wud900LHzoQMkPnmPGvsOUOjsK/ZJsh0uxMC5pYwyB1440HQNwhgCSU+qgbExgeI5PtTBGU4f4bEDt0jaWopTocP197fH52ve/hCV9GseCfja2Jp3a9msCr2/R8jG92PXtvYBAvxXr24/8Fp5f1saLMBXTvhxaRm9kfizAyGKLLbbYYovdqo1GDp5TJoYPerfCHCHTBSESy50p7DkIRT9HjREAEciIzI7NSoARAOZbCfz0C1A3WD1Keh9bCSBCngEfhLp3jThGi0JSWzkn0d/OAoUAGNV3JZgIK0OgxsMWBlQ1oH0FqivRmvA9zmPPUj+CPE8CYIDd9xZM99gELYdf/g/3qD8Q/lD/I8p/28D/7Uf47S46bdlKGqjqc4HqA2H/HcGtgbsfGeUTo/pUgs0HFF8L0PMe1DQw3ovmSNNIO1YWZAnUGBHZDmAQvBfdgr5IWRVzTyKD2RsQnIisA4ALkeqReeGjQ51V7yWwFbiqol4MAGGurNetcLg8VPnt07PUHWjZEmlKrvR6okO9lxC9ZNZr+W3KlAjtpBQQeu20Awpiqai9MgAKKzohQecCdQ1fccuMQbi2aWCqJgJEtK/A211bfFW3bVdGgXfC3Ami65KKjaOuBOn/K2tkEBwJadci2yfJnU8BXpjqfOxbtzq/9cnH1Ea+K6ipmh8sfZSm/6Iy9KG2ryhkDCfrCev6QtSyJxoZW7SrYJ5LmWO7Stgimq4rrOXCdOsHcNkziDLwbizqnBI9iAB0cjJ/Ov3lHZipmycbOCw7cYTDc8tQ0f7MjKtq3LmdP6/c4XCuw/FSDssOqyIAeFl7Z2seDJZ/BIg9o46x2Mgyix8cL7uTMk5SLoKMgIHppaqd0Jc6D0Dcs/SxJjrzYCYgMqWvpqzTOYg4BuoCmF3fyLg6431xywyRc6xnjLTrx4S0hqkNgcJHGRYnzjn9e8bvJ7EDB388YRz32VGAvAdgf0m71Dw+xV5rPvUxmKYy+Ybs3La8p3XlFOs5z0zqk2v2W98zvWQAyhzTdeKcPdbB/nJg3blmn87YZyzAyGKLLbbYYovdsh3bMLy3g3Ow1OEzlnIhuUj2cMBhKiGNrC+MgBCGgKJ11NpKdDHsXjVH5F9Te5g62SxHKnDS38bArSRlj1+ZQEgR7QcqLJgLkDIkfLbxJi+ggAfIAXZHsBUks48BeG0BZ8AFwAXgNgWKu7U4pjg4rplBTurrLeBWgFsDbiOC8gDAluBXBlxInSikGGNqgQS5pwFrKi4icYQfPZz3bzrblEwMGH/gXJPvxKHO1h5qY+QRjdbKf4njXp28Uf/i2FzI0r2o7kX8SJ3Gmj5KgYhjFtp6MEZN64g5S5h66MBm2mfVfmYO2RDKkvBe2EzOC5CYOtFj+oAszZL+XqN5meX3yhpxvgVHppimoQK6fTvl8DIDFOm1IqSLq5sAVmTtJGWCBMu1YYJGSqxH0BaKjj3vQc4Jw6wZSHk1xuaZ0obO7xKgSdksfdYBI/oc2T2mLKAxZ0GeQuu130O3mqZhzLFwkkNsAijS/SD7O/s+Wb9a4IxbxkR+774UWYNO2oE0Ma/9nOb2+VxA7LXnwkvbEGNtLLVVPr7OASyuYe+JJfLW7NLz5xaf5VgE/TG7xfa8dRsYc1fTdxqyd3qmH7RTA0WuYO8PGLmVSNfFFltsscUWO8empEUBznC29kctH/z/WRFJJzg/NAr6wOFpE4dQiOBE66Bhb0AW4jDf74OWQNjmBFaFL4NItCHQXQnz+RNQFlh9FUFzqj1M5WB/fgQbAtYrYU6EyHpar0V34flZxMyJ4AuD+j6U6ayAG4+hWh/uxYlc1RFkYGbR+WAvjtrNGquvDIDw6b85lI8exWMtQMfagg3h4S8OvpDn0Xy+Q/HTBrTfg7c7cFXDFBZUbcD/4x2ae7nOVAg6K4DbSKS73RagvQOtV5IuzDmJ+t3tYb48w313D/dhJcCQ8yh+3YK2+yhafhD92OfsYAeUa9DdXasZAojzPAAyRATarMFVHZgKTScyXaL85Vn7xyeYhzvg+88t0yTReYGxhw5stYRpEhkvYXxRUbSObWZQ3YSo/RAtHVkQfjSvPBVF19mvnwdWAVf1YWR1p4426I8M3KPvM++z1FlJmreyABkLfnoS3RYgamHQvgb2Ffh5G34XIsJtC5AxM7ipQyNCX61WQVNDWSsCsHBdSx81jTzHTgdQ7Adh/ZhW2NvaMDbC752bdvhUMCv5u8OSiCyhLjOFq0qe03cfhQ319+SezK2eTdBu4X0jrJqgLaJAE63KWHd4lrVAwQMA2O2FXbPbB22RumVUHDvspjo8KatD62ftIeNJr3cOaAYct1M/S9f+uoHf73tZQEQUxkhzCBqOtfFajq4MJJD3ApK1ZOJ7TB21AylmTmaLRDD9gkCAzlsd/1F/y7ZgX5grRwHZUD8yFNZmFqZI77VhPuXA6wHQ0pYHHxhhad+dOhaOPcvY1xeOhh+bL9fyN1wimhx4OX9Itl/V92I7VvpA4pHnOJUtQTTc1lOir8f23W/Jt0TmdKbKe7MbcrwemD4jYzFbu6pvrZsz78fmma6lrzmGLp12curcvyTjbK69dtmDa2k4b1+pfpGFmjOezzU+sv/J7P0BI4sttthiiy222OmWHjhfw3LHVJJWhmzP9el1KurqjaACnXLlAM0df4NsvM3egYlEI6BqgH0lDkCijn4CRSZIIY5752HUiUT6HwnbgwhkjKSUWpUAF60eQ9OEOrZ6GMSAaYSlInWVMpgIpvIwNYGYwUFg3KzX4tAnkvoag2LLKJ5FxJ0JKLbCggFD0m3ZwJopC5DzoLIANUVwmlegehPZMmC0m0oy4hx3DnCE3tQ5Y5vPyELgqL0S0zDFZ9f+PmVyKLuF1MHXuFbXRK/NnzMgzn4FwayBWZVgZ1tAoSwP668MEW7rdr4Ogz/NoXrMlIWkt+Hk77xPlF0UgCoOoB6AqCsJoANmRMsBGCegiAIimloOKZMilhfGuDFShjphlZXhfVfbZMyIJrDG+qOW1TlM6XW9B7+e8vos9H3UrUnqGP+NbB6DYSrHiE11pGv5QxHbnNUvCNL3lm9InucIWBXbrQ7P1478H7IbYo8IQJHUJ9cAuUaEaKL1NFyxzJlNoknV912vhkn8O7mnpq5TUyYTGZDNQOpTbArwccn+fKvRu/EZnfnumesMzMdUykI6197qs3gNu5G1b7ErWQz+OHNO3NKceq26LOyb+ZY+qynA45TAoBtYs94fMHIrk3uxxRZbbLHFzrGp0S2Xjqq5RjnGtpueY9GrqluROhMDE4GPlBGjE4nFoWsCOGEN2Bj40oAcw9QOZtfAPz2D6hp2VYrOxroEOW41Bh5DpLiyC8oCvFmBvv8kzuGffoHd7VH+0z18wbBbD1MzuLSAB8zzDmwI9R8/A4ZgdjVo72CcEz2N/R5Yr7D/jrD/HcPbAnZfBHAD+Pgve9htAzYFuGj71f3xO9APHwXEaRz4x1/gf/4Fn75+w+eyjJH5vJb/3//TZ+y/K1B/KOBXBsXKwjyvYAoLu9mBn7dwv36B+eWLaG5s1tJWQ+D7TWSYaPol3u3Au33Uc+GqkghzjSiuG7gvXwV4Wa1ESySwEBjoOtZS0EAdt9aCViXo7g78w2fQ8w7+X/8SxpLpACoxfVpZRDCFlSkS5gavV6D//p9EfH5Xyf2UwZMyWjT6PwFHWqdmvzNOxpyOu6RdYSy2uf7zNGrqcPJt0VPnCQDeboHtFlT8AGzW4sjebuVzJHPBO+ni7U7u6Tyob45aCyIjz17rEVgB7ByoqoU91DSR8SQsHw5MBm6ZXjmAUdcChnEh89i7LhtBI9V700y1LJGDSPXY78kaqKwlIgAChBkrIBj/WcYQ55o5XtYW8iVgAwjoA4DpHGi1AlkDv9212i3pcwrMGn64g/94D0ME2hVSh30lGj11g84Y6HE4Rk0UI05tTsAHbg7niYrJExOYBTBVADOCG6lmT1HK8wWSOcQdXR1lGUVnZs5M2W6np89Kx5nJnPSnRqL2jN0UMOuIep9Zbs+N0LIUj0SVJtewc+3zSkARVsBgjDE2WA8cOBLa8RLuOyX6MgEydAwo6H6g7xXYfijL7hrSAQER11CuKgFrywJkrTA0rYX769/BdTWtrWlVQ/8JqNqXnosBKJsG0wDp3MGT6qIYK7pDOp/yNh6t8BmR6keuVzZsr2YQUaIDgy4QeiLAcZzBHO67WsU9QWQezrnv0LVD9x8rdy5bZOo1U4y5dw29+H0G7j3F4hjStUfZq3mKy74x30mp9wK+t3Oi9V/TNziZ5Ta/L8kQuDlhjKf1GjLdR72kDc3XvA8vzdyYGqigz+mWwKRzLW/LQLtkX2WzfVV4T5KR92TYL3T2h306Y7kxd98VQ/U8UsdL2PsDRhZbbLHFFlvst2ZvYaM2Z1M59P2U3/Vt+IkAKywMpIGvGiFfN8LsKEx0kDOz6CYYig5IDkwGXhXy26oGigqmCU6BoPXBRKAgiA4iYWsURgTbPYBVKc7IqhbAgQC2gF8BIMA0gu2QZ5iqgdlYeNNqn7AhYFUgRsE7B97v4fb7tr1kYL//DLq7A/lPYANJJ1ZIXVAYcCEppdg5cF3BswdVFeAdaCOACK8LcKEpkAyoDhorzsvBupB6IKRS6jj5HHUdsPE5JQeuNBVGcNLFiGNr4VcFzN4I8AJx7vblJeciSamlEftJGhkuC+lr1cQI/dYeisIzZ0bu9BJnQf+Q64y55KKY0qfP+jb5ueP4iHX0T4KGyKhz1bdAR7eghGllCCgKea7OiQOyaYAm9IkKiTvX9lXKmgigSC/wou3Wevc5rvOosTQlVub4Gyw7b5s3QCl963f7Sc5SiZwP9/aBlUUhpVafQ1aZMbrOhJRcHXZMXtcpNpS+IAVFiEQriKSekekWP0/6JbCn0jqwc1E7JdXtGbLc+T5c96SNCWB42QjykTmm379mFGKyrnWsTw/mUimgJjONFITrH4sybgecJJSsF8AhGHqQ3SWs8dYKk+8Y8yuvZzrWIgNlYB8R3qenmry/2v+PKSRPYX11Cr4wi2Xi2L7ofBu+CRQw1GcdU7idE3BzaQfouTa3PjcQAT3ZEkZmZ8zkTLEUKJlY7tnPr/MueRkH6YtZJ0hoXnteXPvirdvUsfPS4+ol1rkLzMOj480Q4CWwp7OVmbK3uZG5vAAji4m9txfNYosttth7tz4a67nlpU7qS0fjHL0uO/yccX+NUIVnca7fr0RfBAAbQnNfgolQ/OF3khoIkIj4fSWiwyokrelIUid0jDIPEeVNA/UfsQ0OdJL78MMGAGB3TdsmS3B/+A5UO9B/+TN4v8fqC8MXhPWvDFMB628Mu/coftrCPG1BtQiUm6ppha456GI0Dp45AhzgNHLfAoVF/VCg+mhgKwfzHNJ1eS+AUF234IFnaY9ql3z3Gdis4B/WaB5K2F0Ds61BuzXMZg0uC4ki/pWAp2eJFkoi2Ng5YSpkAtcdXYAkWotWK9GjUDbCvoJ52gnLI/R9jCxKxj+tSviP9+BS2EHkPMy+AVUN6Otzl2XinDxj1ccIz5pZAR8nzz+Joh87EFAp+htcVf0gyUHameFI3OiUmxMxO8WIWqBPmTFaXsOA30sU+CpEghcBpHEafR2c6Gm9fNJH6ixJQZFM94WsjZoD8E1X/yXVl+mzREehHxRJ0sbkDBNKtEKkEb39oym/uh+H1ELWCgA4sJaRtSEtnQPtGllHqhqoq8g6gXfd9TW7d2cuAL2aFhRAK1qtBFxtRJuHtI/C+G1BPnVipWyTcA8TAC1jgLqGzzVisr7tMDHmRE1mfXbI+plhA2DLUZsD4qQ/GxIxn+JUUd0aBQ1y9gWZmBqyNzVhXr++NTMWlQOyI+CfsglilGd43xlqI8j3+/46OSdgm4LgZQgQSOeNbzV/JOWklfndNPA//yLl1xmTZSgiOEsHxbp2HHM4z2EjZdGy3DTy7Arbgoh9ZZ8T4HGucRKZO1SfJAXpSfWZur/UcZnmiG+aeWvEuXW4detrxw0EMx0wzHJWFBKQpBOM0sN87LO4bp2Yzi1ncB2730va1HPS0e9PBM90P3GqzXknvrZfcIhJMtXC/oqKAszCZOzMv2Pvi14m8wXn70v076nBhuGaDvs0H3caNIW+feuFweEr99UCjCx2Oy+ZxRZbbLHF5tu5UXnXKutc6zt4DFKcez5XUW1AAuKJBMAg+Y8tAasS3DgBGJhb7YRY7oDzLUTJs3MiYs4MMIHyqqVtSIAnv7IgS7DB2Vo+M9yaRBOkYhTPHnYn6YtQ1aB9CSo4iLj7trxana7qwGbEjaih1vlMiLnjVauDHHcBHyA4WyQynlT/wXlhmqwMqDGg0oIaH0ERFHaYIcCMQ3ZI5uCLznTRbsGqlDYFZznlz6TPyAgoUhhh0yBx5jcOMB7kgqaIiqpHVktWdqp9coum+isxVZaP4M5kS59XcGSqWLx8dtrh4wAUSe+j7Ibo6zx04s27Wc/cTBkmADpR3t4P32ckch7A9Ah370EKvKnD2WcsjB5WTO+9h+qasFEimMOcAIx8qH1ypM6d+/X0a5yreXqEU+3Kh9urRNJeaoyeYlOYMcBx4IbScRPeDca060cAkEdTpaXruQuspA5gGpwo1AIt0YlfVfHv3nf2MWfTS0bg987J2wkcPATtRgCQF+y3oyCf2mz2xe30/buxfL8fwYcJvwMSAHP4WaYMrO4XFwLNfst27T54bcblpU2ZsXPb1QfK/ZbHn64bSR+M7rku0Vcv1N/vGxi5NQrmLdvSR4sttthiiwHz3ge96WuyTeSc3LmZ8603Wq0nupSKMugchGjpqhImAwA0jYABtYMJGzo2kvaKS3HqMzPIhaheIpDlNrLeWgFQrBEdCwD0vBcWQ3Cwm70HGEEk3cNUDtR40OMWIIL7/UewNbDbOjgtgyPr+88g5/H5f3vGx9JKmi8PFN/2wnZ42kq6rX0Fdha0r1tnvkbxKEjS+3jE+WUqj/LJwO5Z6lUH4EEdYsGJFfswOLz812+g3Q5mU4I/r4CQHowtCb6024vGyfN2cpRu7gQmItBmDfrwASgseFUKUGVt4ljrcfqkkfZWmCIAYLe1pDTTNu73MUUUgDaCX/UzQnmk6aEC0KSsoWOOngMGywGQ5/u/7wGTOqyIifOQn57lGez2Ep09kE6LViuYh/u2jYFtwBwAPgCwVtpdPyOmvknS5ZAxnQOQpvNizzH6/QAUMRlYoY7TNGVdn2UpPMhikI1/ACxkmgejWgtEkWGWAnxpCiyuahANRKqHZ8zOAY2TOVoLoBnZR/nvchZFGGNk5btWN6DbN+yc6JU4AXMpzBEGOkCZ3rN37GrfeAPmBhz0Yg6apdelQtre4OyUQufYCHB/ErvjGpanqGIPrsMaY8J64E2YpxOdM6moOWfjKU1jNfZownsSQMuE0LUvvNc6OksT+k0ZWfG+aY52tPNO1yTm0DdF2WXZpSwbFWjvA2fytfVaxl40Msb0X15jXM0APOKad6ovZGb/xj4aYUSmdYis1nSdOieq+SVsbj2O7Y1f2zR9Z8wdl+zZda/sR/Qv0j06gD79pcE9zcRI9QO2yUuNhWPz5rXZApfycY6V805Akch2rebrWnXsVtahW7B8Tg5tzqcyk2LgYJpa7kSm2Rn2foGRW3npLLbYYosttthv3SZHBR46EA/yleamrANOdCCYY45rcQQLc4RqYT+o0AgbA1gOkewhx7KWoemXiAI7woiAtPfC2oiOSIZxDHaSooqcj+AD1Y2UQyS3DEwN0v4oC7DxsL88wxoRS2ciAV7q4LT0EoFOQJu+SCPCtR5jDAe9pxe2CHnpj44T7OAxBEd3XYN9aI8L/eg5aqmgEW2TSSK/adlpihljgHIFfriTPg79RXXT7wxKnruAIsE5XKQOeXn25BneOYCNRPIDbSqtNK0UAI5siTaF1qSD4WiE87Aj9zBac0Lu7p7vxUleJU6X/ny+kiKrkH4gatPFJTosAnwENo0d0DzRlE3KNopOE4+OgM+Y+SMHniyVxywLuh4AxPk6qGdCh9fnFiIM4X2rOdJXBhDmo+sAE0MslbRNfZF2g1G24XoiuRebQ7bJlPRv0rbgLEjTqRw4NU0Ejq9i6UH4DH2NQVDkGjahLw7GbD63c0fjnOjpJHhA1lIPYIY+ka65et9OPXk+W65H7ykCIznAp45OIym4eCTNzmhawWtbvKd/vTq8BTtDHwHAodbODaSXejG7pXam/U6mG+QyZy09piN4yvO9pX56r9a3Do/tXd+S0fhea7Ej9sJrcidl66V012bY+wVG1A7Q7YVFsthiiy222Duz13qnTXUKT3n3DkTTceK4TaNxe6Oh++5T1bBfnqJwOsoC7uMaTAR/V4AaA+vEyS8598P9mIHKA6sS9R8/AQYweweqHUzdtPnYnYN9qmH2BsUvz0DdSNS499HBbB/3Ir6+D6m3rDA5/F0pAMqf/wbe7WE+fYzMBjALq8EpG8C0DleN1N9uQ9qSwwh0gpMUSY1GA+qXkGjzXQXe74GqBjdNN/c/q0NI0jSZr09YrQrR+3jegesaXNUSVRuYB5MsRBYxLKgk0RS5vwP//gc8/U+fYCrG6mstfbwuQLsa9PURvNsdjA8FRcx6Df78EV//B9FzWX8tYbcemz8/gpgFXALAK4mWFrBJ+9APgjqj6WSSehyde5PnyDxBUxVHprIAylXUAyEjjsdOlLMyn4ogfqygWtNEBzlt1uCPDwJI1SsZdzonAPm7qlogzieMGh+ead43QDdVE1HrmA2fd8TJ87RSGlHc9OhfjPWXyYAVbWMQUlZgTiPlVQNBWGaUME6krip0nj9JKsqODgHXtfRBXcn8yOeVRv0DUXei1YcQDRai4BDWtHhplPVqBXO3EaZP00hqoroW0fRwn4O1cWj89aUyY47rhDrdmUecI2OH5j7HShKJfHKaqcRpLXXIyulz1E8pM2c4Tk1PlZumqgISofAAxEegIGFWpIyJ0WKTcelV1yF8qfm9h1IOan8HzSxald1+MwQ4B//4NMg469RX7Wg0dT/Yq3pDEivQAqys7LMcWHqNs/utOelnsEVGf6fWB4qlnx9pu9lsAGNkDxCYtgdj+db68Fbs1vok3SfkjsgO+JWnHXUyDIdSDPUxPi5lc8fWWwVlhubjuXUztt2LQB/twLO61jw+Vu7FWDGavncCO+292qnP8JpBMfH/TWSKtvd9HbbS+wdGFjtuv7XFYbHFFltssdu1KZFKCZOEjIjJMpAIpKd50CWlElkDLhB0AFg01SnoguiBvsdJxYZEuJ0AUmHxVQlmFsd+WQhLxLOk11JB81AXIpK0To4ja4Ecgy2i4xWBHcJVJfXT9of0TuRdaJ/rROkzc3RgHkTZp397uSc1DNP4NpWU861jSvs+NjzojcABdQ3zvAdt9+DtVuobnL4RFOmjQYdndfj4qO0bI9ogviSQl/5GYSTNWe3CfbIoRDLiRLZW0ptZE7UrOOTOjxopWo9Uk0NBEWUW9dlLp+KZwhiJ1yYpqMiAAuAh+ipB4JwyJ8fQQUPbbyx4UwI2MCicEWCJE2d+TA2ViHunFp3+WTt80pephkssR9uS/GYoGnlOFGMSXa8R6mTR6tro/AvOvcGSFUgJmkARhLAyDmP9PAeQQoCKDqiLhElgWmArrStp+jJmYcDlPir93vn43Bh60FegKhOrzS11zr+klk6WZun69ztz3s6Zj2pT2nZpIeFUZHvIqdUHOObgQ9DMOtpvcx0sfeuOFWFz9lbYkxQAOD8RYI/vmqzsKfWa4mxLy7/U+j/kPL4VmzsWlQlLA+n13kO0+WLTTPfsLzWuX2Js3eIcvaDNZuK+J3vnz/ZNWhKIMpRK9iXs/QIjR6NYFjtqS6THYostttjl7cxIvVexU94HQ+2ce2tD4JAqpOPwJyOsAtWnaJqWybDdSvRpVYFXK1DQrvAfN+J03NcwtQM974QxESLhvfOgogDd37X331VY/8uv4LsVqn+4hy9LuD9uYBrG6o+fYfYNzNetRNpvd2Dng8OUxKnfAPT1ST6LabUM4CkKJ9M//ADrHLCvwM7DPz1KiqTVShxIVQ34fQRKzHoNlAXMxw/StdsduGlgyrU4ndYrceKuV+CyQPnLDnZboPiyFcbH4xN8+I04u8cdYv7XL8DTs/Rvql8QzGzWoLuNpGoKbWLnWwcwswAT6pBrGvBOUnDxl6+gusbnr8/gIjjnAfF5NS5EE5mYHx8BCKP7O2nragU8bfH7/+ufpQ2VpP/i5604p/W+6ThM0x0B447ka0Xs9ZZzJM86O3CViUeuSvDDHcgYmKKI2iHkDLjRVFIOfruTFHBqdcZo+P4Tnv+7TzC1R/HsYGoH81wJo2m7lzH25WvLTsiAI7MqYT5+kH5VFk56+HYO7pdfu8BezvriJG0eDTh5k2v13rEIIoC4ZYJoPT3LuFmtBDTT73f7yCgiQ7JukJGI+jTdkLUytv/d74FVAfvXn0XbpSwkT/t+n9wrpCIb0qZRUAYCrIhDWK6lzR1oswHvK3BVie6N9rcPoNR2FxgjGYtGx8SQ1g8RuG7gH5/ae6cMtHBNdJgkmjDd2xBOSkkxkB6tk4MemBZBOmSXjjKcC46GCOk4htNH0Ve3GWsID42pvAyiCGRKSkTbaohoiqv9vtPfXCf6OcbCKLvOtetjZ66ew5YjI8zIsgCeRJuKq1pSVFobWXwHjLekfWa9bgHJBNzrrE1DIFGoQydCNbxj4nywSTS1T4IHOk6bI++MGKWcMWBDKsNJAFT8Uc+1p7x/kjJV50XXogi0R0B3PIWJ3+1DPVIWWB8TrH9OUlEAZRl12jr9OyWi+1r75alO92uzFV7C0ndFJ/CE+q/ps07kd8pMQweQzd8Zg9o9x+zSke/HxtE1xlk6T8b694oAkDDNqdX6GbzwiuP2lPfHCfc40AG8lh3dn1xxjB0r49IBD+daJwjPgY/ttY4x60d0/IgYmBhz8baBkSUaYbHFFlvs/dutHiouVa9T3mUvGX14zruWjkQvH7Nks5OzIGJKnqIAVhLpDhZWBmsUozpOiABr4EsrjAkEnYnnnTiS9/vEAeJB61Vno0l1Iym4VgZ+TWg2RlgYDaMwBPvjVwE16pC2ySSbVHaSYqchqauVNEIEAw7OX96sRLi5CfUKjk9Kro/R+mn3lsGBG4SeaVWKA3e9ls+NAXmG2dcgJw5u7Nr0WVNAEQDwVQ1qmkOnhR7w1HFclpKuyXmQbfudnI/1ASWO1TSVFTNos5Hfa/ucbzfMCcsEIRULGSP9s6/gfvxZwKT8IM4MEFoHrz7nIXHquXbJg/OUMrjHaWUMUFiQKwIIFZ6RtW0UtqbCAlonVPrsC4vm3sDuAyZhAHKltK9xoL2BT5z0BxbmIlFyyEnna9209x9aF9TBBlzWyR3YT6T1tMKqiawXTXXkHAAHcj0sJyK4+xXcXYnVl7UIrGvqqzRXvjJiJta/wxwJ80hSnJnwrLnVTwrP7GDOBkDjaDpm9uAma++A8/padjRSdei9ek1Q5NLnyaG6nPwe1Ijsee9STQEXwXigkwYPRthPKcimKQoBWTZlPVFAzFxmXhYWXBYSsNAARI1o+Hh/yDbrNEgZV8Ji43S9ANq5MjMtuTK/CLK0RjYZIJ8zg+EAb9p0LFPKzfcsutZM6cOp1021LHVJBEVCf5O+F5WNe+zWAw7dIUf4gZmgX0QheMIg6d+JbJ08B/3F9uQT+n7qvaJD78YDn9J/1eaAd0A71kP/xfEf/l/HRDsvTtAP6AGCL3YOOwbKv+SzeyFWTNQTvKa99hn+2iBrvrZOWt+zPrkUQ/Gcvh777bWf4aS1dMK+tC8AZ0a13zYwAtz2i+at27VePosttthic+zW1p08QurkTUiSwzw94E8psy+y61qWOx/m/I5dG0k4tZ+SaKr0cN0KzQbzBiBhePj7DWhfidM/1Q7Qw7v3QONgqgZsDdznO9h1CVs3AiqwMAgoOGZ4X4mT9+EOfL/B/t99hNsY7L6XE4TdM4otY/OXJ9C2An977Dp+k9RD+jcb0zpgGicAwP0GbC24tEAp0bJUWNBuB1QU0mvVMA93wN0G1DTieNWI4A/3wKoUh+9+D/zxH+DvVzC/PIKetuBv3+T3f/y9iJtzm4Kpq+0Qno+x2tmdfzUnPHyTRfqECOmdsFmwXoM265YZ45z0ZdAq0TJZheWDo9fcbcD//g/wpfQF7R3M41YAnO1Oyqkb2egWhfz9vJW2r8pYJzIUtV+UtaAaCQrARMZLKjo9Zrew/hwcotq/+Xkrzz+NBk4cTlDnaBoFTf5Qx6JuUDx7mNrDVB5UeWGL1A4U0sP1an3kpvdxLgKFHesDdtJ2jdnAuqcpruL8CvOfqiq0M0sllEevrkpxtDZN6zQO7CwAwFa0aqh2oHUBvltLn+/24CYAli6kuzMGoynaDpqUXKfpkBLWWxrJ36l7J8I36Frk6dMya+cxT3uWQ+XMcZJnKal6NSSk0HHHf9+ZRMsfu+5ce635n0dfp5+P1YklJRZZG9dGXftafZvEeWAtsFrJmKgr+a1qlihTAugHkYeiOPuc5qE9FFLBUeMCWB4c8gr4DaX00uhma+N9qSiiVk9sPhDmUU8dEoCJfVJn5wMo4lvwMGfLaDXmpqBJx39I5Sf6XUecwqemcpziF0meY6fPMdC+3PGXfqVAiI6ZXLtoCOT04R2s62zOyDlmY++R9D5z+y/saeL/h3F3yG6cAYqcW6eXspP6Cv1rVXwH6j4rHXNADFy6BTuyno7a1CC1dF6mY+zU+76EXaoOt9CWY3YWW6PHYT/nXKG6mQ6vtz7c+jko9SekdrDutEFZLRt5+m3eNjByxYimxRK7lBNwscUWW2yxafae1tpTgZX4++RA5VOHTnJNEDPvOA1NdmBhjtoevjQgZ2AKG8XJJWpR9RWcMBGIwKVF9amAWxOaNcE4oNhJWRR0N3xVRxHkjjMgYS2IqLIBApOCnDBdiAhcFOLIVpZHcPD6OqSrCGwMzp2HJmhxlAUIgLsr4TYFjKaz2u3h93sRi/c+ahNwApC0HRqcTer0VOfWBGd1TF9iLdAUIMsCYDC3uijRAeITpoqPgIy/X4HDcyOj7BmX6Fp4AG16k8gE8l29jZhiRfsqpiwImiJTAZHcXisQ51j/OyepnNZrcRSqoLpDyzrwphsFrSnc0ujqMD9Mw6DGC8tHx4we5qc4CdJ5V7cpDA7G26VMnTIa6W7M9Kg9oHXWxnFDiR6NOoV1/kgfsDFAWYCqGuA6ji3qmfdjFvskAyLjOO0DgtJ2zY1ahgKi0+p3MZsKjswq84rBAZeIHL2UncMcUBZGfC+2TBH5O6z51gojIhhn43jQWT3kJB+rrqH+tUTrOfZj1eExOt8VENT3iOkC/n02sB9J16chh678ec7zCP2tDLCXstx5G/5OAYm2Qnb4txnAPApijDUwvA/oku+FOYFFU6yvjEutOW9xfz+nzul7rQcwuSm7ZH36+mhorNxaP/yWbXkWb8fyNTgPIOh7t89I/fq2gRH2uD7/a7FlwVhsscV+0zbkEI2O11c85Mxxir1m5Kv+O6cO+WFKU4noR+q32FcwX5+BZiBPaXZP8gxTOVDTpu3wT9vWsa+OF+eAqgYVFvtPBr4ETAOYRpzHdu+Bn3+Ff3qWnOjp5stVh81Jc47XNTik6KCiAB7uBAwBwNaA7u6AooDRPvvhO/j7tYi4ew/6+iQR7HvRRuGHO7Al0K5BuQ2fA9FJzE/PkmJstxfdlaoeyMWeajx0HSAEh2PeHBWPj+yY+Kx8dJJ3nDGARMKzFz0Lx9LndSNMkX0AnaTj2t+rNQ3w/CzPSp3KTZJMNqRrkGisrvP5wKYcYFPB33j4v6LDP9yzk487Rl7Lv+wceOtgv/sM/90H0OMW9PgMlB5oGhAnjtHYJBEaT6OrqXGwlbBF7D4wRRovaeRCqrbBtcRIdDpvVgKw1E0AtQIIlmsGTGp/6nTNWHURGLQyn7K0MDE1Xuyz0I/rdUy5B8+iOeJ9C+Y410kzpNfpXDHMAEMAkADwRSevZ/EpThA07zie0yhpzzHFXW9EYZ++gTo5Xc/8TNh38jOW1IHHDooZkHH49REHdrzwTFB8yNJ3yTXm36nv9LH2zhr7LUgt1mqGzAL8UpDgCBAlgQH2ELDK0uBo2QAE9KZE02SA6REd6lqnppH1p6qljBBUMKoPwmGuOMB83Ei6SzW9b93Ap/NiqM/T+RTKHM3qk10/KbqWEgBQ59McVsSp43rMoZ/8rQzMzphKAwc6bVEwy0EZmOkzlb8TgGVC3bluWhZo2EvndZll6XMf3LNPnNf52prr61wq7c2t2Jw+Gfy+pz/CmLmqvfYzOBosMqAlMvdcNjam++oyp/yxeavj/ZjWTP6bU+tyCza3vn3v5JlBK2cLjl9rr3Upu7Sf5EqBMW8bGFlsscUWW2yxa9tYxOYlwJGX2CzmuZjfkqUOsL5NkHOAOmKB9lmlzgdNURP+I8eSRchK5Kk6ZIiMRFOHe3LTwDqP5h7wBaF8FMeoqRmm9pGRMVjnzmeankScEWQ9KIg206oEs0SsU0iVRcxtyqxVCb8SPQNyDiqYiroBMcN/uINfWdhH0Q8RkEjqQEYcUZKaq0qc1AMH2b4+Zj88fNLrg2M3smPUaab5y+OzaB3dFCKIaS/PkHaVAB5V3RUFDtRoSkW5yUsKs9SZMyWKte/QljuCh8T8Tp3zeb9OiSxMI3TVGaOfqb6FOhSNgbsrUVQNUJYgagLw4dARMmcvAdYdhhDaeaFMkYQtwmnUeU+7onMrj1CHgACaMmV6X/U45Xv6J8/hr2Ccr6r++gYmlqZZi6nG8vulOgeGgCak3knWIkrAjGipRsJQ2qEh48A6GeqnqJvUN2+HgYw85/9JwulXsIN6THb43/Dhf8hOecenz/Nc1kgKdoxoeExi8RyAdNzWlTOF0wOAJ1hgEIJbBmOXtdBvMR++IUlFGQFJ21lfJuntpBoHyTtmqL3t/JvhLMv1RW7J8nf6GNDYF2gyNFSm9k8A1XiObstkZ+OF9Vlu7dndkr1F9st7tWu+G099zufU6dpj6xLln9s+4HQwOLdbB0euZRccI28bGOlsGqkb1bDYYostttjbNY1SuXb+8CmWRsoMOVHT76ZEEwKHQMWtbmouUachZ3JftNNYlFkSMR8/chJxCuckGjpofcSc11UF/vYN1NwB6xXgGHbvwGuL6g8fUHwrYX/5En4TnDPRX8LwHzb45f/oAAIe/kuB9c/A9/+fbzBfnuD2++EoK2030B1DMfLSw2+D8Oi+EidtGVJqFYWUsSoBAOanX2F+MUEDgeGfniTa0hqgLOH/+B2q79e4++UJ+OUL/HbXcUZzVUlU7pCA+hTra2eIMGbf5pMmppDyK6QPS6PrQ58epCfZ7UG/fk3y3Avo1I1ATtIyqJ6EMVEXoi33cF4xk+R2V4AsfVT2kHksDrgkShuIuhUC7ATHYNp1UyPqIsBy5DLVBglpx2i1AhVFHAPRqe+6DkVeFcDH+8i8wb4SrY+iaH+vDJD43AA0Dva5BrmgLbJvJFVUVcu8GokGBwRENE9b+dw50d5INTumpL+N+/gjjijV29BnVDeibfPH3wt75F/+Iro3oY5mVQqQFOYVBzCNStEmiRoM93dS5n4fWE4t6EYqYn1QF4rCzcpSOYi6TtesPAc/9FkXgc1VdUGk0B/cpP04Eq089o5K75v/3tjDa2KZF0hdPOZ8jteMvDuvGXV6qTKHonen/K4H7BKncTsfWm2XLM1h9k6l1SpZP7ogJXXAOwX3QppBXevSoXDMyUzUAi8H7/cETE7BkaYBs4mMMtFESoCHvF3ZOz9vM9eyTnV0Lsb6PwUFRgDFLpjo5gPiuZZJ8vnN+CuGAPoprI+0X05pS8pCOZe10DdG5vy+t8yBsf9WgZJrrKG3MIZvyUZYtR2bw8BIy+td85MUu2PPeCzo6dbGxFimgUuN46HfnxrIMBfgSHVGgcu8E46Ngdeya9VlIMgtDSgT1vy04t42MAL0v7RuZbOx2GKLLbbYfBtz1KYgOPCqa/1BeolL2K2CI5ewC0fxxY0Ps0SAe261LBInLnvR2kBRSBoqQBwyluALgl8VMEHAXFLwdOvJ1oLuG5BheFuAGDBfn8Ffvh46QLP2xmjtvoM/SzoLiUhvwGRATREj2FVnBJ7B221HlNbv9oB34IYkwt8Q2BCocQKKBGZITDUUhKEPnNsDLIXQcW3/jj8ItE6j5LfegI34/zl5Fr0WdDK0jdw0Ig495Cy0aJ17qu9gCIBNIpkz8KXv3rkzJXFAts0LUc8hVRP7Jjxb36ZKObxdW37n7zad2lBfxHuH9FB6FamoObPUIY/81j62BBQG5GwbTd00iPo1aXqdNErbOVDtQd5LSrPIGnEt4+qwsu2/3oPrumUzcfi9AmTjmf+77ZiwBvZFt/NGgMROG0l1e1rHBCt7TB22Ct4E8ISbBuRDjVPGEpEMaArzjdqxwREEPAaM97M7NMXQQdoW7ZPw90E0fNpfKXtmjoaHsn6uacee66nv8hvYCxzYNeoS1w4vwyMNHknPvarDkZtneU/k4Iiy+XTc6X2IwAbHx3O4FkAy5zKmiK5lnKzNDsf3A30gn6YGTBkrfennxowZ0VPSNxf75sKpjKYx5sgp/opb8XGk+hHXclDOtIvuyftAzrl786Hf3cLzey/20vPhGPBw5Jxz8XNj3HPnQMlA6q5T7K0CgS9lZwSOxP1cDPq7kfX9rdmUgKAJ9vaBkfzgvgymxRZbbLG3ZX2HhjRq+Bi1/yUtqVtvJOA5dk1A5DU2tgNO545NBYJ6DiNptCLXSQqP/KDuHXz1/2fv32JlWbarULT1iMysqjHGnHPNtfbL9t42B3M4vgYsHldX3j/3SmBhIf/hTwQI8eVrEGAJISR+eCM+QEIyEkKIHz6Q+AU+8EUHpIvNkWWujhDmdQDb22yv11xrzvGoqnxE9PvRIyIjozKrsh5jjBpjZpOW1hxVlZmRkZGRkb311htA726gvF+FElXG4s0c0Ar8wUsAgPbEyvVtePGnz97iB//+V0EMZG/fiNn6p593j5m0MwRhfZApa1+WunW043IWkYE5IGV/MlmmcVwqDHDqhXYJp//Hx7j8n0WXrFEDdenj/k7NVI0JJS46p5W5zHr/fdTX7ANcLtgUspz9fq2V/sgykPce8V4KUYktqTfv/jZJRnQMlz3fmqhbqKsr0Pd8Dci0+JvUDejWeb/c3gHGiFdJzxhkY9pSKa48FYA2WOjPw10X0sq1ceAlN+lf+V9Uy92XBEuCb560CjXcjZEsatffMQlHWgXVgypyqMULaeKyEh+axpnXWwtezIDLBXBzB/vmi04fdwhErxSxVrY3PeWzes4t9CFnbb/JP7r3Yay46CtbFv82DSilyiufZWyMIxG19MWvfld+tlxG5xaNFe+944gQrqqWNFEEvrmFDURQ7FEi49m8nKH8cAbWCnpdQGkNKivwzW2rwOkj9HyXZUJ8huPVTSg9F0zjY8VTqm4qCvkvVn9Z73NiQE4VBKXaecSTW/Hve8CuL8Ox4vEZE8X7BnV6yM1e7AoI3FfW6DFI29xHOo/NhB+alx15F4hZrwQMv/FksLuH3PMOgCjGIk8L4i6BET5P/WsAQCmo2QxgC3u3AimL4HWSPmNM9/miX7wI5a3i+Zw8AWkZUNFzWymQP7c+tWg8/gzAd3ei6vJ9W9e9c1ov4usSrzOjkllbvU78PlKPDUVQsxno8gJ8t4S5vm5/m2ZzH4NTjfcd2dLk1x7xHBj/xs05ZwH/zO5T6gGHkU9ANDb6svQp+KPtR8g9INJ2J89VKgr4cpwdxH4vj0E6hHYMkA9Dc+4pjh33kVtbhLVA3zH7iNBO+5IEnUNvmaGxnD7Ph+7LoX6KVN/yu5612DHB+kO337bdzmStkcc7xRoi7u9953ebqOVOObd7kuWU+30MjD2H8L1b2xuE9TTvcdM9fWJkwoQJEyY8XaSBtocI4N93Rsa5ZXyMXSCmwci+QNTBi+Mt13VXwGBHFpa8sOxY+FgDtgamqbsBjZtbqKtL4OtfASsFBqR8UJG3GbarFdS/+T8B5s2jDCkuomBJC8ngl4zf/kzLYHJe12CrQT6jnVkC185DgeKgJwD79p37uyVBNoxV0zYiCX52GhJdk0D2KPfCnPwu1ShzG0Brj+e8RhxBAtsaopM3ZY8C0nEbN/YdXiK6RIF9uYDNJeBMtYFmDqWguGlATTNcoc0yKHfBR9+3TdMGJIFO+Rmy1pULawmu7vkmAea0nn2stAjw38cvpYl3CrlMb6WcSsoAagbkmbTLkSJeqQFmQGvwPAfd3InSqK8v3d/kfUVsT0BkF+ETm46nvhs927WHjeadjSD6lrkhHgdOWWXeXffvwzIYQg5QPK6ZpX2FGDkHpVUKl4VvCw0zJ5i1AliDZpnzFdH+ZLbPkZ6EyaWkF3mvBdXOF8TD/ghEQuiyvz62p60R8SJ/y7wGYzE4T8ZBYl8aLQqax38fjOeqhNyFfZ+bPaRIvK+27BSi+8k/U9z19WTqhmquXw3Ifr5O7zc3V8dtE0Tl5dL9KS3PT62BRjyxOJlPRLWC9v6L1W99a5EEnhRGQuaMJkV6d5o8t0atm1R4JgOQ857PpLRnZ99R4Oup3Ad+7IUkhWjsnNMad9t6NV03jg6Y9pQm6v1ZUtpuG86lvyL4NRlBiMWQFGLcnPIQvNc+Yyl9dp9ivzuuryTCUHdt2v2R/H8oke8Mr/sGaA+fn5Med89kiFPu+1zm4fsaH0/pWXNKxGuHAXX2NkzEyIQJEyZMmDAGYxcZ57gQPrRkwzHoC5ofcow0A4oZUp/Jdj/bo00SIHJ+GFUNta6kxBaz+Aq4sk5QPdl0nfa7WlFOZUFxGSwf7CES/wMi8HIVmVpTpHqIgpDe86BpREURBSe4cQs936Y+FcrG+aLNfusYece/638p8ucDtq3iIs6k87/LXQmwupbfxdvrNss4KElUJgoS4wxY2ZlOU6RAidrWgc/SjM+RlJAiAPTNWkpBaQXONKAViJUEE2lgLAESPFfYML/2159ywJdMglIuqKdCJnUnKJeSO2xDdnfbOZ7kasdK6CP0BPkUiam6FuKNvQrAGJcZLi9CvCjASkEtS9C6dGXWRH1EedaqIWziVWGs+JJ4YsRY2b8vU5MGyLAjWG65S4oAveOvQxSGD/uz54OaJlGQpPfRVigCzS7k3z7r3PWp/Lc5V6rLC9B8DmosspWFXhvo0vmw1G0fDZZr89AuaNw0Mq6ijHoiajPeSYH0JrEZ7hNH9mwcqihAFxeyTdNEBO2Il8OeDHpg4BofksCwI9h9ls/NIfgxcqqgTtInHUWZ97kAt35CcRkj9Mz/ffdPJ4DnVCYxkeIy4MmpKaEUUFdC5ueOAHRzuVrMg7cOLIPLsktUVDWgojHu789AthkpPec/d8qWncFoatWInVJfgShya4691zrxWDe7x3dY22ggz+Uc664nU/e3ybYdNe0WZfQjgl0SSWjXvp4I942Y+BjMKk8UH4ceSif3iz/E0Lqrty2PgKHjekLUK5HjOQZ+7XFkktrYd44+dcK23x6y30N+x650rZvjBn9/in7a1o6kTXvtc8w2nKy5D1FojG3TUySNnjKeUv9uU4vtIrhOeJ4TMTJhwoQJE54nti04DyIKelQL96lwObUMdts5j80u2bff9sla2Wffh5Aind9HJY2slcCMojYYHLLm1XDt8k7wKcnwVSp8RlqDcvE+YB1l5lofqO8p79RnJB5lB3d+J//YsXjsIUUU7a4f70gebmynxJb4XUTB7SwDilxeqyNiRMgi5UztOfpYgmoMANqC2EpWsXKkT1pSKOmD3nuRADBENWFdsDuUJ0KbjZ92d5JVFGdO9n3f26YNoqariOgoc9J9+bJHRoi6tgRSl1gkly0OUkL2UOujwcbI6ROBMwXONVC6MUgEaBdM1FqUE75rKSJHjCu/xRxMkb0XRyhZMzb7ygc50dOfff03pGRIg7rUEoidgP2IoF3cf5R503YSc+pw3/YpwAhU5KBZIf5CNQvx1lhHGMm58oh5KFw/rxSxtuP9EEyjyZ/7JmnEPss+6uNOWzMNbtAzzgbGf4x47PaQe72/PwWe0gv8QyKee+LyNv67QHDsSkBQ7XyfepWEY0XjLpDZUWA5ViLlRdc3pGlk/nGlsSSwqrpjPLQZG+qyQWIzGcOducAjeo6FDP5t5MiplMnMXR8oX27H+53t2tZPNYeqGu4baULK+wpHmG/cL8D9rv8fAOzXHH1zTCfzes93qGPeJY7NdD/1/RP6454IsND3W+61Q1Q1u74/BQFyLnPVvrhPJcVT7I9zQd9ac6zqK/7dEdf3aRMjbAHS0yCcMGHChOeA+85ISx+Why7q0sxa/9kp23aq/cb73pk5lAYlHlCGe+h5HtM//voZKV0FIgnOx4oBX7s8RdQ3EqzJN4kGpUCzQgiYuu7NoN9o0lBZsChIEbLm/ee+PT0lSIKqw3lnsJHgDeVZJ+N2w3vAb59noMUcWK0lwJ+3HgZEJCWBsgxUFOB5AXW7FA+LppEgmQv0ss+oNc67IvJPgVNSEKlWGeNf2IFuYHiIpDAG+q6ScmhFBmosaFUG9Q8bE/wdZDfJ+bIoeODq0jI4XE925c9S+P7jkO3ck/kYMrpV1PZWFdIqH6zsz3ucKBVqvAc1kS9PUzdS8sk49Y73xckz8CIHE7rGxP56Wg5t7asfzswRMWIcOWi698MuJAHB4B/TeWnZLDMnAXsX0HS/iYOggYSL/QA0kJYK2klgLuYgT0Q5pRGRGwsWmySokmAwzefgeSEl2pbOy6VqQGUt18Jn3u4InrAPILuAMXtSpY4Cx27ceHVYx5zTX2tPovTsn6uqvQ4+W9/9t1GDv7eR3Tlk8JweY872eOwSEbvO4QQBI0+oxl5K6fEH696HdkRz5YZfkGpLwNn4GBqYzSTon27jSwt6on+1Aox1HlQEoHRjt2lJk7Q8oqL+cnW9xFv6mW7b2INdpWC8glEInC7x1y3vt4tcoZY8cqo9NkbUXO7vresupYN6r/X2OTPlyKkTc+4DYVydeD4Y8lHbeIdIVD/x57uSVc4JG6Rrspbx6FPpbE162EKq0JZ7bFu/7fsecwzYeYZt2/exxzsV4ULdNWVHedz5XTRmXeLLQQToPglvD1Um22NjDcP939/XccfgXEilc2kHcNgYGYpb+M/ZYGflighPmxiZMGHChAnPA+fyYB6LTmbtE2v7MTjluT5m/0ULZ2ZuM2N7gsWDgeG4HJAL3HIas/eERF1tL8mVtivsuOflY5esOG6bC0RJSSxqS3ABTp3RE3RLS/84Q2fSjfw/z9r95jmQ5+B5AZ4VYnqeZ66skJFMWl8KjG0boAVA5I4ZeSEACGWFOh4eG6qM7gs8GwOqGgl65RoglvJSdR1KUlGWyfVMsz/9PkLWsSMw0iCbtVKSKsWYAEhC7PSZrwc4tVHoZ3YZ1+4ahjHZoxawuZJgplcepOcwQIp07kVPivjrNYLQ2zzPnmP3IARPOx+qbt94BZb7LnyWbNOSCsOZY6QiQs7vx9cP72ufV5Fkrha7sVAVRJVUS7m7MKZHnG8ImHo1DtC9Hmngifw5R/dpnIGfwnKrfiMFjq7n0abp7+Pz7pERrpkP1Kbje+haROuTzr3kyVn3GTmiIZ0LpVwfAel055WQztNI/rOOaIzGhytL2Jbtc/vNPdnt59rDA9ob88aYoIrzCoInG3tIkdGISO1QioijUndDc5Lf3CcmxOq9p6RAGDMf3GfQbZuyYKgvD02EYrM9wNujbBrtPXIG6Dwbtl7PiKjf8ptox0e37dGxSxVzDs/DXYrcU1+Hx05MeOq4z/47RF10DuRI33rzVG3aYz9Pnxh57As5YcKECRMOx45F+NELujFBhLEYq2g5ZME8FKQ8FQ7JSEzbdER7SCceDGm79t33vr/f1qeW25rgPmDplSLbAp4dNYCUC0oVGqhqMNuQUR5n0Lam0z3X5pgx4EqhhCx7H8xSSkoCcSYZrlXl2r+ZTaXmc1BRALOZEApFLjGyxVz8UpTz74hKZJG14DwDvXoJ6DugLEGOlKEPXgEfvAStS/C7awnUrlbimTEr2mMrIQQYEH+Vvvu/5z7kqgZ9/hbKB/SYJSuZuTUYvVhIG7VqS77EypFQKkx3r8+2riYCzWZCrlXVyPmmHTekbDAfDmODbFvXWllwVYPrBmr2CnQxl+M1DXBzC14uXR/1EDZEQjY1BrSqI8+JAVWED9hHSpG2pBy3ZAmQkIIaVMxbIscauXZeBRORi76GP3lvArTt8B4sHGVRq7l4G/jrFQK67v7gOAgTByL9R1nebhd8YWzH/wdRqTvctp+T1lBXl1I2yPWNul7J16tSMsOXK8kYb3pUQx7MoLxw/dOSPGQMmE13O3/v5jMh+aoq3Kd7wY0dObzPnDvhs/QxMTQ3nlOgCtjvmdlJtEhUcYcoU10QNyVFgvrNKdiG5jhmFmWTP57/nbKgPAcvZmBNoIu5EHGfft7O1yTlE315QEC17U6I+BBg3bUODKfgnjUwG+vDrcFd553ilVidEpQpUd03R/b1kVM1+jmIsjyoMkOpu97zoXAsX1ISvgyX+773HHr2M+p3u3Dofsb8/r7vxUFi8EBCYts925tZ368UCQq/c4dvK7A9MBk9UzmU47Obc4z7PpTc6zz33a5iZdZWguVEgdE4CH1iNclRSIm2Xee77bkXXQc/j/T27amUTHu/2z4SQXau9+B9tMuPn6HEoMfqi2Mqcxyyv77viICRTXj6xMiECRMmTNgfu16GHjPIcKpsisdeFJ16QXBoG7b5MjxEmzrHH1JfPHLGSuSHEGfM7zQ1BwDY1ribooAH0JYMiUyW5XAHLvoG28+dF6SO+TvQlr6KjNDbQExPUN2ZRFMmKgWvtqA8Bxc5kGnxS6nFfFrO0QX4ZwWwLmW/ESlRf3SJ7J0GlmsQKtiKoUhUJ2xtS05p3VW29Lycb5y+MeDl0ilUkvJLWgzYUeSyr7qWoF/TgGC6l5eTEkWdGv/cKicSVQ0BrkzVPqWKRvzGkQRsTBtsJFfXfuw8aa0YhMeqj2ictePFkRheoeKVIvF594C0EhItNov23gL+HNJyOhtql1QRxNI/jkhg51tDypdfU3JeqddIvD+g64MAF/C1EXniAzxORSJ+OhTINMxmgTQhYwFXaozXayFGXEmz4A2ypY8CWQp0xmm32RRMranIu6X8BrOju3NGx9PFX4PnkLk7BtueMY+Bg4POtn9ePgE2SgNulKNrn2dtfX3ffilBx5rAuQbPFKjWIF+mz0Prdnz7ew6ATZ+nO4P/SR9EyQii+usjIjfHOnmjeJ/oECu0xqj4BhD6MngUybzkvZnk4LT9ua5IiCpEz+N97tdzIwSfKo7Jnk7VK0/lWoR7YIBkDn8nRG3wXaHOszYQn/656xIgOvNNJ5mhj2w6MfYhHx4SXn1jR7ZvyIukh5waDA4PfTdB8Bz7aIdy8ewRX5ND5ug9SBHgqRMj/sVpwoQJEybsh11ZBY8apPbHPvMavdsyy84FvVluDwgXeOhtgs8keoj+2pphYtsyV3FA1/kYgAdqosfwtdfd4s0HM31Q1nt7pBn3wevDqwX8flxQiV0po862Q+fDDNIUyIhAhigC167ueZ63ypai2FDEhMx2pYSomM/BixnoVkoH2eoaeAfQrICazYCZeIugqkHLNXiWCwHx8grZYg778gL1hxfSPEUw8yvgG1dQjYUqDe6+MsfNtzRe/LrB5f/3v0o/93ghUJaBZrPNc48WzexNb/1LYpbJeebu5d2XPDHueocs6L46+3G/OgNsI0oHuljIx8tVlzjYN/js7wtSspQNBMhMxpBTCqjFHLjSEoxfroLyKih+3DXUro9V2UCt5HpgXbpyT9I+dbkA8kKC7jFZ5/u0aaTf5nM53m2kVlDUVWB45LkQT8xAWQafiw2Cqe+8/X5CBnl03a2BXa2739fNBhkS/01ZvlFmq816t9I+rdtr7lUqt7ey/Te/B7rIQeuqDfL48lTGBBUSr8t2rMaqow7hErWPGVTXwGIhJMx6LddPi7eO3Ocm3O8wBrwWv4aQ7e6zkZumG9yNz7WpgZWV90D/+6Ha8U8Ve2V0PwL6CKwxL/LpvHbMNXPP1tAd5Nd1/j6U8d8xK/ebWoa9vu4Qiu1cKc8nWq7cmCTAWNjVWsaeD17EZuoRqUqu5NaGOiJFbMLa+6wzYN4WROxmY7NlUZn09hPCuGFokLJQ81nwePIKUlvVQYnJxgbvAZnL2PkkcfCmoixr7z1SIV4RSBqXpEDMAFlARcpJP9cMIVKn7q00GeqDsZ9Hbdj+/Y5reA6Iz6HP+Hevfal2fKfX7jGCkn2Kj6QNNJu1am6/zgS6xKH/uwdDnnhcVa2ac2PbHb5IY77bB/f17Dv2mvp15dhKBEHR3LOfqCzgIMkVEtSSdu8i9Nxc06v4PxbnFqw/l7Zsm1sPna8f69yOPW68/aFroT22e9rEyIQJEyZMOA6nUmfcB+77QX5ui7Lnhjg4cSoSaYzc/JBrGrLbfbanKxOglQRgdhEjMeJgUBy8SF42fZkpEEldck9qeEIjnJNtX6J2vbT7l/NEIQJHzpC2Uh/ev+y4bD55sSKX/Z+3igGt5PdKufJbNbiuoOq5M93V4EyBKogSI9OwSglhsihQf3iB1dcK6MoiW1qYmUJ1paAahq4Yd9/QuP5Bhmo0LgEJCMWlg+KSDbHnRvy9otaQ3DKkyoqcuy8J44NV8Nc27jJfysR/3BtMsKHMlTcaZlq3CoRDEI0FIc8c4cFRGRtjQNklaDaDffsOdrncHN9xQJhIjOfXlfRJXUsQvyxBiwVoPgddzEXVY22rgqhrIYuaBqTcNa91h+CT8eT6JFI7ULjPTceIePd9aF3mt+uDPtVFHDSg9nchAzUEA+pwv3aUGP5+9l1lrHiwaBfAdAoUr0jhFxcwlzmy2wxUGymZBQOunJ9I3ci1qmpskJWhnRHhE3wIpGwYATKnuM/g1Tp+/LlrGXbrA6B+nBtgiBSRE+DhgOo5P+u3YUzA91ye5eekdu3sY6isk1dedJUZXJaDSZYMAOv1uOP3zY2xZ07vd8k+tu1/CH3Z2OGrLR4J7jlLWgOLuRAcbJ3arpZ7Nc8Brjb6ty2N2Cpk476N54Q4+QHGyPM66itO+2HgHOX/AwT0Q6Cvna4NbWmfh2zQAIZUEUPeIIcm7AT1z8g23Bd6ydnN8yKfPAJE68y0nwbUnPHffTiLC4/77fMTkCP7/b7/mS/Ysq9d88k2VYFTBx2t7nnM5/O5rA92Ycz64RAC/Cmc+5lgIkYmTJgwYcL7iWmxcL+4jwzeQ6+Z0v3BRJYyPxTq8sYvh5vKhUEYI8GM2MQdaINLPaSIvGxQN8h8dSmZumXVCXBSUYg/RlriKw3iAxKM8qSIJ3iKXAL6KgpsGxOCrZ3sWmNBs0JKXF3MYa5m0Cxlr7isgirA3t5BaQXlPEz46kICuVUd2pO/XUNVBqwkqM6KoGsWYqRkXH5sUFwrLD6rRInh1C3gqEwSJ4GfyOgWtvVuia8VWyVlvqwVcoccuaUU6PJS/B2IWrLH8uYLR5qp5DLz7N0yXPO2RjwHcmAQfS80vt3pZl5BlP5+C6gxULUzoXdlbSjP2zJUWSZ+LpZBZeWM6jMps7VcgS4vwK9fyphlBqUEnYfWQlJZDkQI1dV2s/X03KP99pfCioKI/l5RbZZ0IPziUlNsA1EVyklpLUQPHIEzmzkfm7x9WWZ2JT8sVFkDCqCylj6snDdLWYrqyqmSOkRnp91JeZEUXp1mDLiRDPQQBB3oI/Fb4XaMHJqB/VSfd2PafS7nFmdZp5/fJ8YGS1z72ntuQCWXnsPBz90uSRmOdU9lwgDIM8iXo9OI5tHxQUiuqqi93WcLEXVJIxdgj+epUIIMEUEQDOctmEmeTY482lDmjGhrKBUZGm3hPZoeRKUxpAhwx/U+UYfv/4T30Yjtgu9L5HW1NZs/Uu24Dd2xeq7dQCZ+S5xHqp+Tk6IYXovHa6e45GVnDdQzlrx64THm3Yc+7q659dD2HHoOQ+3Zmny2Kzltx3zBByiiPbaVPzp1YtwQHmt9sC+J0fc+t+13+7RjK6k2wWMiRiZMmDBhwoTniOdYL3UXBl5A2+zRvnIaUSmtsaVnkr71RErA1hfqTe8P9v/2ZYnquvN58OpALQoW27TtCItpV37LqyRiaC3VU4Y8U+BPxykgnMcIFxlsoaFmOdDMnFeCAt/cgusKXFagvATmM8mk9cazngBalsjKGjzLYS4LUTMYBVUzqLGYrSwWv9FArWtRKTRZey5D5RtCEEkCzNab/nYIBxOCV+TLZ2kr/TIrAGccT3UViIPBGs6dg1spcQRslD07GOlY8wbs+8JaUOMUIE07PtpxRDK2jAWqBpgr6QenMqAsg72ci1KiFhKpN7CplJSD8sfgxF/gUMR1tn2pOWfi6vs5kHvevN0YIUJCG1tvBFaA8iawgAQvM92ObUWgxog5PRFYKfl37Ug114/cNIEU8aRdL3xAdlsw0AXbgjooVb/EfRD6xQUuOn9PeDK474zl9O+tATD/72TMxd/FAdt9a/P3ZOEHqDZxwJPem6RBQpjuEwhLyiIFUldT+3yPvo9VdhvHSEpMdu55Fc2pozJ8fR8LIcSWQZHKIzzPtnl+9cETvn4fTh2zda1zXxgcc3uOnxQbCtHTB8U3/Bk8CZ/6jw21D+j6ax1w7M5xHjDwz8atiQIh0p881L/xE3wOnfKdKCbBH5ys2fP+HkOYD34nhOtROMbfcmNfT0T9cQyGEiwm3DsmYmTChAkTJjz/hcZzxvtIgOwDjjLhBrKWRnl4JNt0/70l4zaUt2pNnSnLAK1AC6eS+OItULvsdGSgC/HlIF/iyL94V5moHXzN346ZrCuJZdqsVoIGovIe3hchbaNkPjpzaGb5jZFAu2osbKFB+SWoNkBjoWbiRcLGwr67htKvwS8Wsr2Jzt3VoWdN4DjW646tlw30r3/W9qMxoPlMzqtuQnat78dwjVy2bSh71psNJf3BVdV6pmRZCK7T5QIwM5CxQTEEIAS/OSGRfAZsayQaleqCC/Zx97p3hkSnZFSalel/RHJsprYNoQG8fVyWFdRdCVpX4LpuSTufuWsMUNVSFsYYKevk+9wRHepuLYSAIwIoy4JnSBi31opyKC6T4xRIHW8RP5biknrxubhzbUtP6eEyUBE5CCCUtIKNSM24lBZZKf/GDBinHlG27cOyan1dWPxamBmqboTgqBugMdKPXikSq8fGZN8lmeMAxDOlpJZI4racGOWZG3s9Zcimuf3p4b4Jkb75YCiYkj6vwpphKLu9XwWwc63BLJF6FakhYx8mV2rIP2/T2N5GrG8fUqSTcEBtG/x+4qp8isDQm+fvM+tV1g12e7+xyL8rVrVJ2/3Dt8eU2kopmo6qJPYwirxQhsuMJUkQ8fObyBHCJw5AxtiYk3Ykj5wk+NyzJjvheneDiAMAGPGLGaMWTkkV2emmb9muYO5DBUE3rqlbIw0pIB8LY1Qau8r09m1zarUBc6tGf6iA/ZD65z4PuSfhd684lzG6C0eXWet5th+wv62lIydsYCJGJkyYMGHChAnPG7uyDncZII4JCPX93gVJRGnhShBpDSoKKWV0MY924TL3tRZDc+W2Na0CgwHAKMAF5DseIdELExspISQKEEhQ2AXHuW6kHTF8Vj7QBrJcMIsMw+YKNlegRjL1yRhQWYHvlrDLJdSrlxKIztBVq8QZdVoIEonIu2NWDcznX4gJ/cVCzivL5DyHVAiRH0zwDRm8JmJWDRIVAHLjSnZpcJHL+TnPkHj/zD5jNA3oR74YwWjXdpUVA4RINxO1J+Ov0wbe+2WUm0ZKQDXODyMtxWUZ3LgAiLFgMiAIIYA8k76v6lZxEhnZszEgUm2gs3YqmzhAaO1mMGlswCcmTnxgNu7HkP0tY5+r1o8lbB+3xxMoti1pR2g/46ZrMutL1KExoqJpnPlxXD5rh9pqG8K15Lo7XsO55psleiZMOARjAij3GVyK7pGgxHIl70IAP5SFO1E7Yl8fd9wwZ3hVZqKCCcqKXc9+X2KJWk+wjqotLfnIRkzc83Y7VgBxdy6MSwDK/wYUKp3zjK6tf+Z40sm39VRBsHj+5XYN0kvonxKnKuN2CEI50RHHjfsneVZv+JYB2+/LQxVap8CQUuRYHHsOPZ4o8XejlVEPQTpt8+gY3OaJKB9iovyx2/wU+gvoH3OnJkq2Hfep9NNDgQhjF9cTMdKHx77xJ0yYMOGxMT1gJzw3dF70T5xCkxAhPjAbAilJpic3RoLyd5DAbF0LaVFWYoBNBGQueB8HeRYzgBlqVUqZn7KSclLLZSfb3mcAUpaBQwkiRwJo3XozuGxYGANruVW21A0Ya/EaKTLoFYOYhdhQClxk4K+9hroVQ2/zza/i9gcuoBqGqhnZ0iC7LkFGgjb1qxluv69AMweaS8LiU4tX/3UFWpbiP+L7yPlWxNnFgOlk77IrncWuveriArAWts8Q2KuBolr69u07Oc8id0H2CqQ16MWVC5q7gPhgrXZHjuSOTDKm7fs+4+2YdALA3pSXk7WmV3g4sstfi06fbEPTAGUlY4sUmJuOB4eQZKIyCj4trk9gGZjPYF85VVDdgJZr2PW6NVJnG8qXMUvfU5G310WpYVII2AxiRKoRCUT1Za87tZMnXNw2dHUpny1XYIiKCaRakipVsxCJMuvllZBAZSXKGN9frt+lHJm7ns4/RYjC7Woyms3k3nJ94/tk41w2VCU6qEWgNchY8LEk7VPFUzqvx3xPDEH5nhJYpzqE1p1gLe9SS/W0MTxLQGCrg0LL73Ov/tuZmNA1kCdXBtDPu+y8huR+Vpvn1HtIEvViXgCu5GJQjikF/fJKCNW6FqK5T0FhGYzo2e+D0DbyIgE2Sdcd6oKN8k9KdRVtxyI6xqYZ94nu06Hx+hiETFCCRh4tu+5xtpt97q7xqOvJUfLDLvXNIeisO/vJJo6fq4ceI9nn4N/77nNQCewSXk6pjjoUfp7jKDkpHa99ff9YJbjOFU/p2T8GY5WcD4ANBff7iD3OeyJGUkw13SZMmPC+4H1+UE54f9CX3XnyYySeCI4Q8cqMUO5HRS99oYSBZKyzZcCVLEJZgTgHFjMxhvaxgrh8Ri3BJm4aYJXUJbeuPjapUIOcLJxPCQIR49se2gHJrOemCYEsaqy0p6yBeQEUOew8g50LaaMAVK8KrD5UUA2gamCuCGrtzMBrRrPQWL8mmAXQXDDya4K+q0DrqttuH3wfmJeCUah/aVYEms2kD8pyy4u0+6cPdsflzbzCYFbIb99h9wt3p8SW7f+9zzT26oW0rMtQRiRHxIt76e4E3PtAro6+91txSpZQhs0rW7zJKjOIrWRL++BcpmEuCqiqgSKSfXlVDhxhEwf9MxKvEWa4+m399drDP+1wt+4gA6S9jsjTzjw9y8CriAyLr0nUV8EzR2vwogAXGRQAVo2UUesEMlvyx/8X7k3ZcW/7qChAhRjdU2wIvwOBRHVlylhVOzaISog8l+d3+t616z1sZyb3Mwuy9KCTLR331ylqubv5MJAKTJEHwZ59Gj0X2akQO55Au9ox9nhxVnPYPOoXR5Z69QbXvHvfzkuJLubgJURx6OZhNZuB5nMhnv3zKsx1tjsPxn4u7llLvrxlHEQfnWm+SUD782U+TtnmdtQeB8DpJCh9x+o5j5iQSX2X7vOeDmvEKOi+bS7hTVUneSuGXeT2fWPbHNqTjHHcsZK+OtW+t5JS7n4/hzk+TuAZgynO2EWnDOKZXNPnhlN6vOx97Ke1Tp2IkRRP6OJNmDBhwlHYufCc8KTxmNfwnBZDzCGAdLBQZNe5+BIMPnMdAGUZ6NVL8MUc5fe9hM0ViutagrGNBQwHTwf94kqO0ZiWGDAGtFxLgKdOvEGckoSNlEWiXGqiB3PoOCPQl06KgzVDZTvYyjm4bdW7a2BdtuQBAM4UYAFVNnIeAObfvUHxJpcgMzOoakCrMpixX64qzD+9gJ1laC4z5De1BN6doXUofeJfkEKZLF82i92pO7Ipaj+XYoauFgtRjjgz9RCc8kbddQ8JY9Aa37u+pSKX7P/ZTH7m1DhcVRvjwHuceCPh1Cw8LufSUTHQlhdp/9KfmLCT1kIGeAVHirqWMcHcKl9837ma9uz3by3YKICaNrP63S1y763hs6PT8/VqE3b7L6M+NaYnC3vP0lrUDShK2TKXyWuMEIfexNm3IeoPfz90SBJSUEUhJeA+fiPX2ZXHsm770G6faZ5l0o/Kla1jR6gmQcPgGWAMuAJoVgAXC5Dvo9s72CrxL4rP1RF0lGWizvIG7+78+7Nw7yG7eF+cknw49Xk8RL885topqOD6jneawBLXTVtGz/JmoHcjeO43lOdfrKwI+/PfA6LyS/xH2D3zALTEjC8XFf6W49q7Fbip2zb4e8WTOXH/+HJ6nliNA+2h3ck8Z1meucuV+DJ5VaB77tiylHs19fny+yIl5TI9yRodPwT+Y/VMCiJQlrfris7+JTvd+2LFc3LY3zYlUXjGbnv+oO3f+xzPbLtjKPad8eWS4rJWJ15X+uf2Rj+PVEX17FD+3+cxAmxclw21wakwVr1x7Dy+jaDYda2Gvt+LDN0De5O648ZauuYefdyxBMk5EP2xyuWQbVPPqqHvj1YZnck7Z4qHaNfg/fTIqqpzvSYDmIiRCRMmTJgwYcLpMfAy+GgLpUOOO3bB3cnCM2JAnmXgizmaDy5w/ZsKmIJw+amCLqXclKotcgUpXeQDsCtX4me1Bjfi4wEA9m7ZqdOuXn/gFA4u8OIDR5YDsSEbGsn4daaw4UVd6VaNAGyoF7ipAVKw5g5YraEWc8mQBaQ0FzNQRSTOZ18C19fSX0qBydWW99+/+QL0q4ysKJBfLIR4KHJXUsyAOcPGa1fIpuXwNyCEUxxM88bgajF3/ietOicQOsaAm24wrxME8aSPcioIAHR1EfoQlZLj9F36IFVXrVoIaH0u4LJ5k6zloBrpY+v6xps3/rU9wQh2PhnORLwbAFQhm7jjPeLUJKS1qJKWS/By2ZYG07o9F9//sXoEYrbuA5iinNmVha27f6cvbXHQLn4Rd+ROIHu8x4kPSvrd9ZSTEWJFjmU+e9MNCMb3txKVF2tHFLm/N9rHNhAipCMiD25szmeOnGFRtHC52Q+eBPRl5LJMstO16gbL+ubLx37R7CgUzogAf5+wbxBu332z2R5PiRWSYbuonJUnYf1c20TeOkRCVGZZq1jz5KZ/xhVFS4SQEm8hUqBMjM+pbpzywpMMSfv88dNSRUjm64B0Pm1NqcmruKKsW652KPi8r5if940RpYxCUIpsLZ8U5haZVzs+Yr69CZnUG9TvZGP7XXvCa7j5g+06JaJgqxAgCeFP2J5AMIQDg6R7K3eQqFvQEi29HiN9bdtXbXBKnEq5cMy6+qFwTMB9FwmeTj6HEjtD4/Zc1BT+fvV98hDJEfuuLw5t09B4fCprm772P7W12Zm0dyJGJkyYMGHChOeAM1lYAOhf9DOfT/tSDJE4u9AX6A3BoAb06RvkqxLz753DzAj5rYUuDfRK1BZqWQGNEdPrKLDMzmOj9StogyDsvhdTdiXBch8wVpJp2glE+ZeYqNxBxwfDBXolqGWj6+Qy9iHlhNA0oKqGWraEBzVGVC51Ba4bKcWV7FvOx5+HEBqhtFFMNnAUzHd+FaQhv1Uk3iJEkonr+9oIMURZBprPpc8dORAyjh3p1Mny923yxITzq6A8B15ctW1q2pJKnjyiLG8VGFEwhYFWWaBISjg51QhHYysQF/4cPCIFQaw6YWNBiBRD0b7SsReXvfF93gbVhkgIGwgt0kqIL9fOoDiKjgFEAVHLYiy8y//End9G3fq0VErnfNwYNABIVBtISSdj0QkqufvPt2/QR2DLi7D4fLgyYwNBy/bn3JbscaXLqG7A63VQ3ZBu69ZTXoDyDDSbuTJk0T1f16EsW4cQPHece7bmhHHYJzjkn3PJnBLmhaSkXnwPeIUVgLZEoPPyiYlPjhR34X62mcynTdOSh3EbuZ1XAgENuOAzNufAIXYgmkNi83U/v5LumVvifrIcShaGc9sn+Me2Lb/Z91v33Cc3R/cG9ZO1Sdfv6Qzu1Yi0GZynN67XlnZvUQBtQ1CN7Lld59DJeN98bg7st0PSPWDg+yGIiaf+PDhV+w9Jrup8fgYKUY+YHHmo493n7+Ptzun9eV881XbHOJNzmIiRCRMmTJgw4bngHBd351hTN+2nOCur87vttVk3gg2x+bYxMF98CVXVKG6+hqZRyFYNqLJQtxWobkC+bvn1rQRQ8qybTQ64bHkJ9NgooBQMyrUCGQm+i7eJK5OUGl0Dm0ROdI6hbEVnGyljJOSAFa8RopbEiTxSfCb+tkxUdqa3oQRRXCqrL1jjsy+tFXWCzzR2ByJyQf08A/JcglcuYCTnRuH/G6boUUCdLYPLSgiBq4X8frlufTpsSx6Ru0Y2LaHgS5xo2TWTUwEFEiE6197yKTJ2vBF3p8yM977YEtBiyyCKSJFASjmz91RF4urcswLIB/i9B41RkuHcNF1Fhg8ieeNgbvexj2R/g5waKrUQZUizVSDioKrwgUa5Lsn+9Y6AGw0ESj18Frvr805Qd6OJrh1Ecg8YBV6tYVcrIdG0BqwEfKnIJRv+8kLK4flyco547JhTT5jwUNj2jN54VvpAny91R515oVMCy5exciR3KNPI4nEUVAJe/RffZ9F9Fe4xIJDSu9Vpbg5Lfhd8xnbdYxEh4s8nqD6ick8tkmeBO6/OvL8P+ohsT0wrCqXIhpQOG35PYbcjzv0hEEpljbiWO/d1wBrTr29IJc/Gnn0NklrJcySUdRtJcnQSIwbUo/eNc3tfeG4IY+SRfWcmbMd0H0zARIxMmDBhwoQJzwPnurA713alkvA+bM1m72YbktbBbD1kiDqFhF4ZkGHkn92J98ZqLabOPkDcNG0gHAgBUprNhPi4WABYQL27dvXbJWhNmRACmM8loL1aiQG0cQa36Qt6HNxlK9v7UlPGSvAqCbSwMVJv3ddLd14WoTRX3bSfjbzWEmyPsiodwdMGnFwpEtenXDcugGyA9dr9hNptLYPXpZzTfCalwopcrkPtgs/emLzv+gLOQ8SCrnXnXNTVpZA/y5Ur85LL5z5bt8/XBQCI5XwSP5fWyLt7bTxZxK7sCrRrh7s27TbbmCc7LvCV+HcIAeQIK8viseECVoSesjpx+RYYOc9dxyQl45l5sCzZmGAlMwdfmTQzV4hB1QmGsjebj3c9JguTIrVRKHvmd6IDKRR2qQAyBuyz3J1HANd+jtBCilwswBdz8KKAemfBZeUIFROuw0nnzKdeJmLC/WHIfyJGqmpLfheegX3b+s3cc9Hfr7wuwZ5EAYJSKqjvjBGFGFqCORyfnfm40oMBaE9Adkp0xQqMHYHrUA7JH9MrW6KSSRt9E9rnvnPPS6+C2Vel0fv7mER280VQe8aB157r1CZaNOOC8PEz/j4QK36GvrfDY6r723h8jOxn7/ER1kPUrwKKywelCH3aQ8SPKMM0OI5OjVS1sCsx4DnhXJ5zhyatnUv7geMT7w5UdT0IzjGpcMKDYyJGJkyYMGHChMfAKUqQnJsa47mXVenJ/mLLbfkjFzTnupEgqfuNKhuQUaAvr8F3S1hvGO4MvtNSIj5wrLQGqdwF+xWwWvuDyjZFAWQa7FQM5I1YdT0ceIgyfaElWBuMxYO6YNNzhI2S8l0lSekqR1hwnOk+5uWiJygdm7sHU17vcZFlIMsSIDNGCBDXdlE4uDJhZSl/z6VMES9mEji6gzNYp25JlbRElAt+sbkRUmY2AyklnhGuveTKdoVrVvuSWlGgKWQNi08GN4nSYCgo51VClsFsQM4E3FZ18HzZ3a9paTfJig0Bpj4FlC+H5ZQ/4Vo4FQlHx90ohbVHmQevhmFfAm4jW3ZLsDKol9yfQ4anzmun47NCLrNaqWR/W5CWAvJZ5n7zxLRXjsFt2TNH7NlKPHSgHAFZ5ECegRcF7CIH3enWZ8GX3nnIciqHBmo6PiPbVXUTngiG5pc0iB6pIvv9OtCqJPwm3rdJVeLd4Y29fVlCj1hxEYLijiTxBIlTShJT//PNB7yLHHDPLPaKx7EgV8bLKTW9yXo453juiUmIpHxSKEe4L5gRTLfiOSb6fzBd33YOserFI5nLtm4/+N2OuWPUOmBPRcUY7DOf+TKkcKokV7Jx+Pk8pDJGV0HpvxvT9jHltu4Bg948Ew7H0LtPnIzUd188lXemc3vX9OisRQ7sy4c4t4l4eRKYiJEJEyZMmDDhMXCKRVIcpDqHBfZTWfgNtLPNElWOWEiC3WnJnziDHC5gq1TwwVBO8aBv1q3fxWwGpUgUI7FZdrS/0I66Blsr5IBSgRAQcqAGLRZgF2hlpaCrWuIpbIFKiRm3r9uenAdbJaV8jJi/U5Y5ksMdX2WtX4XxJuk+0MxO5RIFfnaZRHoPjbT8WJyRqrWYvPsMenLZwd/zNax/82vkywbFr74Br9bgd9dybKes8CQKv7wCvFcGM5hIvFGc5wPXTbe9/rZpXCatN7O3LKbkdS2Bva+8BmcKqBrxHimFvKLFAgTA3i2Hs2sHyjB1uqdwBFjocxtq6cdlP7aW9aCY2HLXwh8/Pmf3WezfwZaBugmZ3H5cxvdAb5BvD5UQr0sX/Lebwbk4G3pgn+HapcGr4PPBzuA4ClJx5F3QW8LMjR2thbTIM7kXLIuvjrWw3iMk9ZdxUHNHfNQ1bMXd75X4KxAMKM/BlwuYywJmkUEtZ1DrhSi9ysRH5hSIgrYpuSNj8gQv6xMp8jSRklvhn5tBIvaEayjPx8O/7RtPjuhvCdVIXTc05KM5S4hIGxIG0v0EKN0pZek9qOS7iBgfY3btS3yp7rzd8eNy7YvVLjvR+xzo2TaZs+MSYGwVVCYeKlxtP5egyonUAqScH5U/zz5sr4m59ZgnW9seipEJGlw30q/xNfTbjzpMVDbOlzDdp5nee+e+VDkeCYm3ua59YDyV94RjoKI5c+zc8FA45Ln/2Pf0tn0eq0R5iGvz0Nf/nMbbE8JEjEyYMGHChPcTp8h6Oxd0Ap5TGtghiMuBkFaIjawDNoIX3A3KOrNlzOeS1QrI/29XUiqKRFXCikBNA7tauYA8tQEWUlHpEQsYCypLsFcqKAUuS7AxUIpEMVJksLmCWhdShqkxEtivGwyCLbix4AZQi4Uc06lcfBmrEAy3LOOK5f+cvsi74HKbQdyXGafaPvZlVIwVssX1H2kFFJn4NPj9KELz4SXe/PYcsy8zfOX2BdQ7Df7ibUvaOHUJZRrmxVy2a9zLqHbBiyKXcmOuT1KCRoIFpiVHvHm6tcBigeaDBcxcI7upoNZ1W0JtVsi5rVbdWFJPcGXDxyX+rihaY3kAuFvCJgH4nXDBPymRBadksZsvj+HEI0UJ1+F3nBAo3d9vwbY50xrYtIKWH+8hA31Lpq0be8PH9r4GvLGPllDpydb0RsZZBs404P6TcmaqE+zy90WnhFe0vV2X4Do6SReoDeMrz2AXOcwiQ7PQyGe5ZLav16K+OqUpck+ZpHZc9JBKwPkGFY7BOSQMnBuSUku7FCCkEQLy3QzoVCniyUDq/M1BTZeq1XrKP8kG0XWLfCCGfu8/8okDzCBP3MfXPfaZ2jaXsG3n/7EYygSnbp+lfd1bCqvvvOLjEKRt28rupaRVfG2satURQ3P2vpntT+0+82sZpqiE6MBzcgiqVRYBXfKqg76+CYki9nBu+dA+fyrX6Clg4BqE+7zZ8Y4Z//u+r8tjqD7id5v7xjSuh/GU4hmPiIkYmTBhwoQJ7yceIuvtIeADhtPCZ394PwAfRPAvM3Epnm1wgc/gh+HKOFGeS1D11Qv53XIdFAZyWAIrV986CgBRlofv5aVbgjM0nwOzAjwrQJkGcg1kCrffc4lmQbj8bgn9bg26XUlW/nrt6qpHJa76yhX5shx1E8qFhG183fekrwLi/aRqgvQlcTaDWszbQJqiQKZQloGrGnx3J/4MnowwBnR1CXzwEmaRQZcAK2D1PZfQHy2gv/EKZBmqdkGsdQNuDPQnb+UYmShJOBMPDZrPgSyD0jpki8Y14Nsu8eSNuza5XJP8N94i0wpU1UBjJAjeNMByBRCJF4mOSln5QJQvweI9O2L/mcRzhBsj5diUAr24gn5xFc7DvvkS9vYWW9Hx/ohPqjvGSKuOQbLU+I9qrPeRIUq3SiZPaGi1eS4UBYiSQKYvObfRR6HvpRzYoM9GJwuzO/4k65raIGrnN3Le6jd/P3g+A8+kT9VdKSRiVct4b4z8Z1kIyLppy3YBUB+8AuYz8N1KzNI9tKh11GIOLvLWFyb2fGEGf/kWel1CvV1gVuSgm6Xcr2XllCibp3w0knryneD3IaVcNgiXI4mVU+FcS32cIxIFZByTFzWE87gaLJ3n/78Z5AfQO477PTMGgmYbz5qBTH6/5qGoHbYRgllraYjh1h8r3d8AvFoMpMRDK1aPhh+54/bsi40ByrIbJOekr4MqtacBSkP5Eo42vUczeW4WOchmYKfuC+Uw3e8CGZxeQ3+89Nm+iwjpUefIaWwSsFDUmTd7tz8XbFu77JpT/LXxHjSxYnPMucfjepTaqI/sjhI8UiVI6hOTKEfO9po8JQypW8ckOTxG/z+KcuGBFDPTuO7HmKoSU/wAwESMTJgwYcKECc8DD7moOZdgWIx92tRXRoTUpj/Bjn2EQK9XLFxcSJAUAOcZzIeXgGVkdytwY1qlhFNCQCWBodT0VTnlhiNFmq9cwcwz1C81TKFw9w0FMwMWnynky7UryVNJkCTKag+m1E1UqijqA27qTp8FsiDOek0NO9OFdPrSHXdVloGurjaDDkUOezWHencH8/nnG9/rq0uYVwuYmYKqJOi++ooGoGF1DmUAXTF0yZi9bZC/XQO/8h3AshAVWQa6mAfFCFyZJCnTVfYSI3Ftdl9iDADsx58KiYAucWbLElAa2cuvih9JUBC5l8HGlQUrqzY4x9yqUjwBFYgER6otZkCmYS8K2FwjX5fbiZHUrHZg/JJWQuD586wbKbm2o8Y6eeLPkWee1PLnwsaAvOJG0aZpe6SEaj9zwUJ/vOCF0v8y7e8N8W0ZGH99pStY1EjVN1+jepWhWSgwAfMvF9Brg/ztGlQ1oHe3ovqKfGTCvaE0+OoCfDmHUi5gCkgfNs4jSM1BloG6EjXUukRQ4gAwb98Bb9/J/mMS7RQY8WI7GKxJ78ttWeFDJeF89nnfPs8BpwianCp4cOx+NvwODtxfXxA4umkHRQxeWZYQJjKH7PJCao8Znkume9y+Y8kGriRcanIdf54EhYkYdgdxH34f5iFREoC3KC7jtvUoSTefK+nvhoOFpDUo8h+T5411ClQhpOF9W7QGmiaUGWt370jyoZJZqaJlCNsy4uNnJVxCh9ZBzdIZP0P33zkEMweJi+46KYCoJQ39WgCIyrWNK9W2odzbpw9IheehT1AguDnedXx4Xj7laofnMD4OwTmWz3osjHkfO8lzdfI7G0T8/jaRIIOYiJEJEyZMmDBhwn7Yt+TAfWLgxXXrwq+v/RzX3d4z09H/pmkA1oBWoMZA34jJOopcgsI+S98YUNNm51NRdIIKqVkqtCvxw4AyFvkNkGkLk2cwM4KqDFi7IL6rq84AaNuLgs/k6jvHKAC64U3QCXy15YQ2vEMiY26uarAP6pMEdSjTYo67rsXrpK99VQ19W6LINeZvNcgCurKQkwPAElvXpUXxZgVaupJjLjAVSqv4Ekl+XHhlQChx0gbU2IjZLwOi7oAEfOJAFZhFkcOuXJr3/miigIgVJQv743g1TlCQ2HA8AMBiDlrMwbNC2toYoG6grg0UICqgvuvUIQDiLOCub0C4Jp5s8+PNe8xAAixhV8Z2CDM2RrwCfHkctCo1dqb09OLK9ZFTS1R1J7AxaERso2P48+g5V8oz16f9u+mee7IPpQCS8ZLfWhCztEkRaFWB1mXIAOaqdsFRRii7w1bu2cZln0eBT7YxsdWeT2gL9wRy+4gRY97f9/r7DoCdYr/nEkzoCcQfhLjPU0Ihnc/lH8l2XR+MsNtBpUm3nWyMI0GxeZ+kbUyRkvvRPReepU0TvLAOCpqNGZP3MSa8L1KkdOmUBHMeWOFzR1R3VHrbSMqY4BxlEt5HJEUlMT18ea99vJJO3X9pdvQhxx0ijdLxZhIF1VApyMFyZQdO9un96Z5FaRkv8eahxwmEnvKY5zLv7oNza/O5tcfjlO+RY0rYvc94bxeX4zERIxMmTJgwYcKE/XEO5Mi24495MfOlpPwLJNAGafes988uME7MAMS4nO6kzBLnmagAtJbvy0oCG74ESVF0gtJx26CkHBRnnlRhZGUNWMZcE+yMpJwUkWSRGgsKJbQsABXK+vQ0ekvXxORI1yy74wkBl+EalVVKDcC5qWGuncogz0DGgDEDKQVSUgJLdtQN5nDTQN2toJXC7CoDMaAqCzIsHioEcK6g1gbq7a2oMoqiVYJY5xuRZ7BFBmgCKyGS1I0G257gtMsWJgBMCqQMWGuoWSHXsjEgazaIE2Ypk+WVIqHPPUngS5U1TTdg6O4jms/AlwvYuRBo6nYNKhugrMB1DbtaJxcoCgDFgc3wffcaBvLHjROvXGKtAWqAPHcl3Nx+q1qIEb9/a8BV5AliVZTNzHJdX76Q83dlypBlCCW36hr87nposKFX6ZH+xpukO+Ki8+IbjZ2tdfsZyG8bkGGYhZZ+Kivw7V3oFy7XrbdO3NfGnVtj2jHrxkxQmcXzhi+PFZf88VnWaUDRn+Mx2DHndUjOrYTpE8TQ8+hcz+eM1TUdNYBlbGTAjwyqt4Tslox8Nq0XD0fjd4DI6H0ue4Lbb+sC9sHbJyVw9vFh6yNZD8EQmdUTvAskNNAhGdpyWF0CvlvGCaOIj/AMNz1t29bueB++7ZEXS6eEYJ9X1X0GK2NCIz7m0G+HlEOdpBDVHT/hGeVKN8aISyeOPR6w5Zm3Ra0Tb76FiOq/X+55vhlTumcszmxunHBCdJT7JyDSNtbAB8z37wOme2oQEzEyYcKECRMmTDgMj7nA6iuH5TGmdnOsmIiNmzvH2BEUYeuMTB0xUVdgq0PAgCsragOegTMN8iadqUmtU3iEmtVKSoBgNgNlGnZRwC5y2LkGK4Je1VCrGhd3LngS1yFXJNsVuWTMGgtC7coPqfacN/oiPbUkIBYFB0JNeVdKLHiipOW7fA11nyHvy51oDfIGt3E/hD4HwKKw4HUJyjNkd3OoxkK/W8l1cvvhRQEqa/F9iDwt2GX1k7XgTGH9PRcAAdlS1DUqy7oKj2SssCd4jOmWCGmSlyzLYDCoLNvs5E45mihbWvmSZGYzeEIE1uQujwWtK/BqLbXqPdEQt9X/M5Sj6dmnv26hXJxXzDTi5+IDQL7EVXwfuVJxcq3jjG8hvUg5hVVMCNRNILTgM2oVg1kIhQ0vgvSYY+YTayVgBd09X69IGcoMtxZ6JZm12W0FGAY1WVCOiIopkz7KMyHGVCPqIS9kWa1kPFU1wDaUxOK16ZS8Cefir0mq6onGb6wQ23r2Gwq3/efeBwuSHbLPY9vx2CT9oThl/x8aiBy7XRpwDr/vV6rJn9G9uuU52npvUFQCaJMolJJZ28+DjZU5jlkIEkcahMPxwLogJauIxq0l4m371Bkx4u/TwKD/niOPkM62TtHmSGkAnedNS3oyEB92Q1nI3d/2YVviS0ygq+jZAtyfV9IupKRI+m+g+ywcoaTtHWekun2LgXk1btMQdt1vfWQaUfuc29XRA0qte0e4d6YA7HuFx7zmp1RkPTcEIne6H3dhIkYmTJgwYcKECeNwbtLkoQzrfeupOn8GCt7ObQB3OPOcQ/AciLLntRVjUkXAai2leohAJhPlSF8f+mBqbOapFNTlBTArYGcZzDxDM5cM96I2oLsV7OdfwK7WyL73G+JJQSTkS+4CS3UNaprNjEJfkz0ER3qMZWGTv9EGiiI1CxVFh5jx/hOh3jbxhqIk+G/0ZHiFdpELuq/WoCyDvquh1hXw6RsJshsDKgrxEmka2OVSdpFnYBdYIq1BxsJmCsuvypL34nMgYwCZdibkUSCno76QYB35TGSlpMQVIAoJknJbPkuU12Uwjmfm1qfCB8tVz1hNg2SeODMsqojVGna17nrAxNnAQPC3ARCRX273XgkVvyB6RUecFZ5FrwMh61oUGuIVEpENcdAtCgixMaCmaQkBV9ItGDQbE6k8vI9OO47QEwTt9lVEpPns6PS29BnofZszQ91WoMaK6bqxUFUWzoP89SWS+1fLuGV/nmzBy5VcF993Mx3GBDO78mrcEh1ptnwUbPWqpI5SzAcb+wK0G6XtjnjR3Sdg0DN/DpZK8u2dsB33lS2/b4ZsqlrofGcR7tOh7Xr/dttFBOXW52i8verOC57M6CVU/XZxWa+Q4GDbUnfKzd82WhMMtcH3YW/G/5YkiZ3bxcfpKxemNr/fWhLLbhIn6bF33eOHltCK0fdMG4tTriUTUmRjfgq/G9neHaTZRpm59FptlOAaKMl1DIHMpv++9fvvW189JHaSrBNx8iRxH++A/v44dEzsq8R6iujrm32uxb4k7HuKiRiZ8LiYHowTJkyY8LRwqhfZY/Yz8EI4+EI8hDQr0gVXvNph9/auZFQUDJXAs3gxBAPWTDLTae0Cr2UVTJ6pKEDf+Kr4kCzXzvvCZQbOC6DIcfsDF6heKKga0DXjojbg2zvQfAY9nwVjcWYxmfZ9S8iBLAOvy8i/Ic76d/3VKWGSvNyngV05SfneSjAYQJv5nuXyd8fs1rbG755oMAasNKhuQhCLHNFCvjwIAFuWUFpDvyuAqoZdl4Fs4KoC1llXKeJUC502W0AZ+UzVDFWJf0dQNvRe2yhj2Fo5z8a1NZTqaktncNN0AiBhr+57ypzHTBogSdqqliWobsDLlZxfWoKkD50XpJg8aK8laQDKkUZlGcYeiKRtWQbkmZTQct+H61hV3cAmt6qRAO9d4j1YfJ8A0k+Rcqa9P03nf4P94s4hBOIi0m10kN8yaF2CrAWtyrYsFgBerURdlGVApiTb3Cl1YiUOFXkoVwe24LIEKhVKh3nij+HatTM46TLDY1+h9P5LAr+jDNQHsOEX1PujzTHZ+Tcl8+u5ZGVuC/IfgqFSV6cIDKX7OPW70JH7C4TqnuUkg2LDqQ33fx57tWHeIZlhG3RUJX1kY7R9IHUtS/lKQDyRAADazcn9yQ4d8iNNCBhsd5JIMHBeHTgyJXgNhfJTPfdfz5huS2HFz/XOD4aPPQbbFDDk5qu4XbGCJbR9V5+dAAOkSPzvfcui7sLg/Bevj7obJH+fOO6x7/7GzGGnWKNP8Z3nh0Ou6baxENTMR5IjzxlDa5pA5p9Bn51DG06AiRiZ8Hg4ZQ3KCRMmTJjw8Dj3xdAYw9W+wIMLvG6r3Ry2jV+CvXmzD5L67bUW7w9ACI+qEsPUPANmM1Tf/ADNQmP2xQxUGvGqcL+18wy339RYf8iYf0HIbwE0Bvb6FvorHwKLOXhegDMFQi6BIE8OaCm9hWu1GWxhAygpBYS4XFIUUN+a5Ss/CCoFAiTAq1QbUHb7Y9OSPZSpECgnVNI+315SEny2LMGsqoJdr2EtQ7nfcVmG/YIZcEqREEhLyQ4W7w+yABjQpRFipOkSMltPk1nMz13gn5lbDwpPhHgSIBBkSTa9C9B1Pot/7/+8W4Hv7kQp4uvMhy83y9RQGhQMwbzu70krIM+FJKtlv0KMKCHP5gX4YgZaCjEQxkEtpTtEOdL2KVi8WPzvpNyYz84WjxUhqWx7/T3sjvvK90sUmOwEvIjAClLmamiMbgQYHSFSN+DlWvrLjX2+vQMzQ794IT+tKiHg4nYqLQTnbCaklbGAiXwAvAF73/lutE0Ci/4eIa2ltJn7Tv5HbSmhuK79vibSbEO5tcEALdCdB7fN66lfw6HoIwfiv88dhz777qPkV0rub3y2f7YoWw4Kys5+433vGCOdUlj7KBSUAmWZzDuePNx2Dn3fedUXOx8ooH0+j2lD+tmud9YhkquvnJHbBymKlJTeI6RHmdK3RulLXOh8HT/DtylZ9gza++eCUh3FiC8v2H6wrVTViZAo6QZ/lnpyHEj4Bex6fg3NaeeyXo6v/Q51TO/fwG5Sxf9/Vzb/ufTJ+4xD1Ahjx0S4R7fPVcGT6FwSLZ4KxpIj932fncqL65ExESMTHg9P/OaZMGHChPcOQ8GAc8fWjKX25boT7FMEgi+TMxA8iLMnw1ctIRJqQVeVKA5SokURYAzyz5bI5tnmyyIzqDZ4+asGi08JxZ2BXjPIWCkhBQipkDlfkzjTtTESWLcM8yM/iPVXC5AByDL0ykKXBvrTa+DtTfAJsTe3UpKKcpBWrgSWbo3D43OzHNQSIXPfGW37vuwlWHwZIeuyw5zXgrq8hPrgFcz3fgSqDdT1EsQMZa2cy3rdXiOfjW+6QS7KMqgPXskfxoAuL1B9/1dgZgqzdwaqZmRv16BV1SFQtmXhs2UhBapayqTZ7uJ/w4cjPXdvbut8ZIZMafn6Bmpdgu+WgTiL2xGyluNAEAnZQVkG9foD8LwQ/xpmKeO2XgtJ1TSg3/z9WH3rJWafrpB9/AZciYcJaSkhxfMZzIs5VJFBFTloXQHLFVAU0C+uwHd3MG/fRecYjXnL0ubbOyEaqioJBCqQju4znx0dnf+ogFyRS8BzPpeA5+2d61vqL2kSX0pjwDe3ztcjyXZWSlRKNzdCJnrCzKlmaDYTc/n5XFQ1F3MQEahxhIiRMeGvHTG3KpnoXNsSc62aTNrNcg9mGdRsttn2pumWzuH9ymm1Jf8SwkW+jP49Jtg1kIk+9lmwixA5liC572fSfWRRH9vmeH44dt8xAXdIOzo4LMjFddO5f/YKlvlnSl058tIkirWB/e0KHO3Tj85MvrN57D3l9hV7InWeQX6+jLdLiJLBpA2/nonKkW2Qx0Td8otjzi+Z72FMq+yMTe771lJARxkTn2f8d99zODzn2G72YTRW0203ttvcMUYTA+73IYCres7FtylFX8B5bLD52HlhkMQbcT9RvGa7p7m4t58fOcD7FHFMn2xTI/T9ZhfR1fu53dxfdP921iOUzFUT2uf7tu/H7OO+sEtRue++gEe7xydiZMKECRMmTJjwNMHdAM7GC/C2skUJQiAjzsLPtQuqpEGiRF3hMie9iqCTMc4GXDpz9bIESEEt5m2gwFjQJ2+gMg370Qfg3NdZJzGaLg1e/McvgmEz+f9fXkjJn6oSXw3tSlu5oCyaBvzuGtw0ePPbfgu+/BELqglkgNkXObI74KP/oDFnFh+TXPw4cHcnwds8B83noFkhPiVNA6pqCdIaE8qbBPWAdW2GlNIK5ycn6fqCnfoAEoBmFl8KrUFXlzBfe413/+sl8qXF/JM8XA99W4J+fR3+7qh5fNY+O1+PVy/CtTavLnDzAzOQAV78ygp6WUF9/k6C0s6ctxMo6xsfNlJKeE8OD9cW0p4AGQ4oSgC8DW6nxIl580V73cNGW7KBXVtIK6DIYb7+AcqvLECGQRYoPr+DenMt5IYxWP6mV/j0d+V49T8yvNIE/clbmC/fQS/m4EyDFzmqlzlUraEvc2TvMqi6CUoSpRQQEyPtiUk3VTWouZbP4msfyni5kl1+fLqA2qggv/ucikLULbNcxmrTCDHorjeXW2U/MNfXgNLQL6+6vipa7nPz7rp9CSVXjifLoF5cidpmXgCZRvPBBbhQUKUBNRbUCGGmiICVCsdDVQsh6s6VihykNWxZgqt2jvDEq1rMQZeO8Ix8e1BVgK7bIC9T6/0yhhzxZYjIk51oA4a7sjTj8XisSqR3/3v6YjwUnlrw7T7aewqipW+7HcEPbmpwc8Cx3H3LxgAVWkK/j1xItxvRrtHNSLy3xHfIzXUJ4c1N3R7TK0m0brdvmn5V3ECJRcra5yaASIkSnWuUwMBm4P5Picr03vdEf6qO8+2MySFSoo71azDvuRWvyWz/9SGtZX7286i/nhuqGpu0Wbf+YQkZ00nYQPLsHyBF2n/GhMvAujC0ad/xG7eNN6/5UHB0gFwO5NfGNbqnuS19Vuw7p49QF5wd0veKhw7snkKBOMY/CUAodbUvtt1bzECYJiJ/wXTb9x333Q9jx+2x12bX/XJKP6YDMBEjEyZMmDBhwoSHw32UEjkBQukQy2D/vpv4ZAwGBoN5ek9WVOcgLkOqqsGqcSVuCGQMuNFQ724le98FLSgmOrxpuWsXG9tmyDtVRSfAo7WQGwCyNZBdK6iaoBpAl4BqgPLDHFAfwWoCCLhYllAuax6ABBa0ApBJW/NcyJqqFsWBz2SPghKhPFBMIPQFXqzz3cgLIR+WK+jP3+Hlf9cS3C9rgAisFGgt//akVVtGyQXMtQYtFhJ4rmpAKTG6byyKGytKma1ZiFE26ECZjDbrvjVgb0vGxJmsSRmZQJB1+2Dj+/DFyBcARW2JJADNyxmWX88xuzbIbwzsPAe9ugI50k6XFrN3gC5Zypf5NrmxYmYazaWCLl1Q5SIHVRfgTIGV6qosUjWIov57wx2HSMhDiseVcR4xVgEw7cs50KpwfGAlPq61ombxpcxi9JUA6XkJ43UJ6KYlNJ2yqhfMEthkllJcRNBag2dbjKn9eIjJjTQwm2bkEsk93TTd/XlFSdi9y9DeVQ5mKMtwI8t5JCnif3tqcmQqnXFeoJ57eayqK0UcENsnq3lHqR/KpASkKEsGCINoX4MlquJ2nioTPQ70w92vfd/3/R3fs35tAMhcCURkiIIqcjDzRrnF8PyNno999xgPPJfGgneudYSMDX5tMRni1hHhfN3n5PvAn4dlMJwyJVbfxXNpX0Y6t0pPIH6e+H0kwbcNVUccCE5KdXUUMSlxsYNkTo+TKk8iAnuv69I3pigi4Q4Z14eMi3j87qvyihQEW9t7boHyQ9dv54JRfd5D+B1DkAzsP9yXo58Tk3ro5M+tMb8bKpV3CuXKKZMxDsBEjEx4OEwT2IQJEyaMxyNLSh8U+z4f0hewY4J1/sUAEqckb+wcvo8UBdZsZFCxVei8IozwNPEeD+yyKtln/5elZKnPxPuB/UtCGuDwJaB8Jn3dCGGQ6TYIpV2ddgD50mL2VkNVQohQI6qC1YeE1Uc5yEJUBl9eIXtzIT4MzCGgHbxKHGhdyf6rWnrOm5GzC2bTds+OAEWgIgcvG9ibG9i7JdRnnwvJ8eqFEBxaiRm5Lw/iyx7BZ5gpUFFAvXRKkbISNcAsB1mL2Rvnp2F2jC+XST+oOrDiqdHNwtwSMNzI8E1foPfIpoxeQj0J4Uk1aRujfJ3j7nsJZBWyWwNzmcPOMuQkZctUaTB/Y5GtrBBvyt1zJKW0zFyjulLINKOtT7YAWSnn5omNTsaz9xdx6osQbPOloeI2enN2Ny5F7VGDwRGJ5gJFWoOIwaE0lrSXXckquDJo4Xh+TPSUKOubW2woy9Zm/7oT6G5vWW4MR1Dyeg0YA6UIXObgRQHWmwQJN01LqioVTN6DmXR8XeMAn3HeN75dtvWxISK5LCFjGqPmmqEAxsGGxMcSGfsEip8bNgKw9/BeNJSVu8e2R5tWD61d+ojLnt9tZPSn3xcFKMtgLYOH5mBqSfQ0ft2LE14H9gkNQOfZPao/3Zws6joriQHKB7jJJXBo0HwmhEmnxF6bLDHqNrXR3LP7pLrrLL822VGKh6NjkLWihFEEtkKWUFHIc8HNt2F+NMZ5zMj6KDxvh4itjXMTpacn0QgG3Pi27KdkGPIv6b1P4ufJjrJZbXkxtx9Pip9CPfdYweVj9/Wc5//7xDHvi7uIqMEkrxOB97wvO8qk9zi2+FhJhtvIkUMxcm1w35iIkQkPh/d14powYcKEQ/Dc58yHlqDvRbzY6J9J8CAiUvxvO/XLgfbleNeiMZRjMBK8cWWyOpnmgAR+iTazT6PvOfMv2SxqCUCCJ7VCcW2w+KQNauiaQQbQFUPVjOqlQr0gmEWG7KPXwLsb4N21GKT7/eWtBwoTgTINrEsJEq/LzZrnadAk+rcPHJFXwSgCOW8FZpbSQTe3EjzIpAQHzaSMEQDpI2e2DmO7i/RZIf9vDMhY5OtaAjG5lpJHrrxKUOC4jGLA0sJ6FgABAABJREFU9f+ua+ZVKt6rYYyR+AkQ1CE+SKO1lENxf+u1RX6rQQbgTFQ2+q6WoLxSUJVBcWOhKuuUQFr6nMWUXNcXUI2opZoFibqoMqBa/kPlSr50lA6ioOkQIkBLirjADzm1jy9fFQgOpRwhIPul3H8/0KdshbT02b91HRQU2zsvUS+lfwMJKeLHgStbVVdgFqUXjAGub4Esg6oX4Ey347iuw/lyfAxf0sUpVHx/bAR+rXXXKyJsfLDQiqn7aFIkPZdwusn2WwJ3o3HKF+Pn/tx7DOwZvOgEeg/NHN/2946x1RmjPe0Wbw7qtm1D3bRlXN/3GGPbEqNjkzY6JGm0vV8PdNQSFAzp46B9b8mtjba59Yvv431KFx2ShOKvkTFCXDdN51xFjded5/x3nZKR3DNf9iEmuyPlyMEkX2ff7ty9T1RnLTCSsIm+41SRvHG8gbF6qvF7purtCXvAj4X7vJbn/Ew+57Y9ZxyqGurbzxlhIkYmTJgwYcKECeeDsYGLVDXS2UdaCuTAoNDQ9snfvk449WSPb63J6hUW4dgu27Msu7uYzYIPAoC2JIX/d6aFuHDBEp4VQKZAjQFpjeLNCi8ri2ahYQuCXluomlF8sQLdrkD/61dgigzNpYb6+ksUZQXzWQ3dNEI8ZBr2Qmqek2EgU+BZAfKm70AInJNKSji4QEWnVBUhZITCmbCrxVyMwqsadrUWrxOSWu3q4gL4ymuQJ2qMdcoeBpq2JBm0tAuAlNSqG9gv34px9lc/kr5x5yT+Ihx8QnYG18P16pbXuPdKQD6L22W+hqCRVkI0uMBRtjIo3mVQDcNmQmrot7eyj0xDlQ2Kt16pRODcGX2zmIbr5QvoagabAfWFQn5noVY1UNVSOs3546Tp12xd/XxIwFI8LFwZGN2aAItSREumsFdUuKxZNqYlx9iCV0PESERKWhkHHeVOfN9TRFr5kiWpOfuuwJUPqq1LQNUyPo0BVis5pfIFUOQypix3vVWADhHCvk9cebiQxRwFMzdKaSUlxOLybd0+2YGI6ImDhoO4T1KkL4DdUeGdmdfIfeIh1CLxd7uOl2buPlbgNCWb0/s1Jgh3lbd0vyFlTzO0xs4djgCgrKd9fWuCiKDghAwNQXgf7DcJUe13q9s1xOjT8QTtUOekAbB95x9unw1AZNAee7mlpIi/drpdX3DfNewb02Gt4c4p9gjbhUgx1fpyCPnfW14u7FgPkyPbsJOcVrJWsmb7706NUwU9x2DfsmET+nFmAeaD8JTVH4/R9qGEg4eeJ3Yo4+61PSc+54kYmTBhwoQJEyY8DB7qZWvfF600cHjgfgYz3T2Gzn+opruHSTIejW0DC8wSvHb7Z0WAFoUEL2ZApkGlQW7WyO40bKagqkZMo+/WoHWF/KbGbKFQvK2RvVsBjYGauyD1uhRiIVNOmaJADQKhAacM8LXE24CVa5sLLnTqejulgagFTFsSxBEVpDKQFgWJLy1mL2Zgw1AAyBigVJJtWtWgiwXM93wImyuYRQZVGhTffSvNcEoLqmpXs7zt0w1lzogSGHJ+cTkp6gQSKMtFDeC9V8KGBy7cfaCHxecijKEsk1JpTjGhKotsbZGtGLqyIMuiZlhX4KoCZRraB+mIpDyZ1kFBYzOF6orAGrAZ0CwUbJFBVTX4+hYwplV0WNNLTJKi1otERXXag9pFys6xD4Qr1WZGW1cv342JgzJ8NwjS7v1GjkgK51FVLVm3C0RQL68ApcHLpfjruPHHjRAmlGXteQMh0BdULUoBedbeq+lYSn1JgKCMYk/KAff/4jsmMHZIG/r2OWUtH49TBgd2lEY6CfbNcu4LfmvlPCzQJUeB1icsVUft8C4ZjTHbpmX60u0HgvqAI/29V0hcDsyTJ9EcBkDmB0+ojh0L6Vpn23bx9TpyHASvLqtcGUXTVdd5+HKh4FYlCWDDm2nzANjwEDmgjZt/m1adY7q/2VvFFzYc2Zf73t9jfn/stdwVDN11fI+JFHm+2HeMPWVS5CH2v4sIuU9C89D54iGu6QmPMREjE+4XT5n9nTBhwoTHxDalwYQWfX1zyOIwJke27bvvOGN/F/7uEiGUZ22pLMvwtcR9WyTw02zux5ESvFyJcmIxB3QGzjVsroCLArAZ1LulGEdbCw1I1r7LiGTLyL+UDPj8s1vQuxtRZCzmUjpofQPSLjh/MQNnUlKLLIJKA0qD8syZ4VZRBrhtyZEkI5Vd2TByBu7sM2CVqEToYtFmyC/mMFczl5VPUhIrz0CNlNTiV1e4/YELmILQzAnFjUX+ifN+8UHw5bq9Vmy7JJZXn4y5xqnqAAiKBFIEms9AWsFiHYJbHSPxdNsdY4dc2atgRJtlosrIMiDPQXUNZgNVNsjvcui1hS4NYFjO/eYO9u07aCJ0Rl3lSoxVQn5xplB+QAABrID6VsFe5FA3S5gvvwTNZqLcAYJHjju5YBhLLsM3BO2c1wh8KS2vdGoMoJLz9qWq/LVJ+2UbUTI0B8TZ1E6RQloDRd7+zhhwNRwoDWXfAOD1K/B8BvW5Ai9XQohYC1vVMi6MaUlCkuBme09buXZ5LqXoGve9U5uFYzVNd34YMh3uO99dgap9EO/rFM+inUTLFCA7GKfOuo7Np4HdAZlDEWec7rM/XwrQk4amh6h1wXEJxLdKAPl6RMmpY5DMPb2B84H7K5RMjNSh5MpNyi5UO//7z6LnZ2s0vuX8uKc9YxRbp1iHhudFtK/YjyryYWLjyAhPCnnF4ra5rmetMb5tvl9M97NdvmmnSIDYhrH399h5PpB2B17rEccJStAdyqqNa/nQWe/3hedyHsBhsbz0HeC+j/ec4ZOj0udcH9H/0OqMNMnhsVUzR2IiRibcL6aJbcKECROOw3OaR0+d0bJv5umpkR7fL1T7gufR96R1q/hQSkoIKQIp3Skxwes1uG6ktBSb/hdIAHR5AV7MpESPIlBtoJihbktQWQFlBbYWlOfBNJ0h2aggAlYlcmtFVeGDLkSgK58haUF3K1DdQN2uW2+PpgF7X4WLhZix+/rb29QzvkSFkTJFG94pnrgJJrQMfSPEBjXuJUBrCTC7c5h92cDmCjYjZEsDqiMDbKANLBgjxI/v4zjwHLcvuaYUPFyS7GO2oNkM5bd/CNWrDPmtQbY2KP7bp7DvrqUME7fB76As6Zi4M+JgWqitDiHN4hJNvjwV17WQYVkGms9hcw3WQmwAgEhrCFjMofiVKEwaAy5y8Mx50DCDLi6kVJqxePEdl6XMwOzLBtnbFaisoeZzwI8dr1RJyzpxVOZkHZWCc+bjlMuYYua2lJbzCGn7vicTOL6H3JgIZdiGFCKRUsn3o5TFQvu9UzsRCREHAFTkoDxH85u+juYiF4LJq4wIMIsMNiPkL2dQlSOfANirAjZXmP+Xj2E+/kTOx5Nt8djyREl0fp0Akst2Dp43oWt581z7sG0e7CN+x+DUBP0hxM6ELtK+OjWpdN+BXo90vKYl74bgSPWYdATQu77oNc7e5f+1JZGhW2apZ5vkc/Zz1q5jhKY5RYWnsWOiIPYYiUvuWSvza/zcTfefzqmdc0qUnj3nsbP96e9VUlZQTmCzL9irR1rlIIBwHvGzgRRtJ4dPjY3nyRH72Gubw1XLG8ceHKdH7HdEX+xUTw/t69yeAWOfSxtz8pmdx0PDr7/uQ2XwvvVt8KL0f/vzP8DzKca+ZMYukvMZYCJGJkyYMGHChHPEM1loDGJbxt8ubGSZbVkc7vMCePDLr+oEs3nLMUkRqMiFEMkyCTbP50Ampa9Ya9hcggr67S1oXUpmerlpbs6WpZTIy0s0rxZQ6wZknGH2ugY+fQNzcyOZ8nkGzGfg+UyCwXUj/giZBt7egD++A15ciVKkyOW/RQ4z0yi++xb24y8lM7Wp2/N1UK9egl69BMoKSmspUTTkExG3v2miWuwui99l6Iu3ifPRaAzUm+tQioi1cln/Guyy/2cf37bXr24CGRQfT8o1OZLC+3U0TX85pYSk8NcskC2e2FiXUC+u8J3fXwDfXIF+ZYHZFwW+b/khtDEwvjxUum8XlJfAjw0luELd9TyXf+dZG2SKxhWv1uCqhv7Kh+CLOexMw+Yk5IgPpBGBLxegizm4rEDrCrgQ9Y12JZ/sqwvUL2fIbyq8+j8/FxWOq2HPtSPQXrwIbWNmIRKMEYWQb5fLrGVrwM3mCxflBZTLfOWqlsCJL5nVF+zaCLzZ6HgsAcM4KErUkk1N9DskRFZ8CK3k/lss5F64mMNczfE//19XKD9kFG8JqgbIyn+6ZJABVJOLYgoAK+D2+wnNBeN/WX0F9Ov/c/AcmFnKwDlyDs5rBHGGd/wSfEgQcFtZvrFza99vT6EOOOb7CcMYE8ROA+PHPH+3HWfbPvq+99nwTnHmVWzb2uFJ0fT+9wHsQC5E5HVvab6hbPXk+eZLd3XaEBMTSkcEpyOXvedEQtB2zrv35KTMJDN3VKSt6kTID47IZ9Jank/Mm35nfs6NS21FHh9CumjANi1xMWLNFJQtvm8JnfnKX8tuObOWLOkmIlhwlWRD93WNwfhx3NvoPX4fVBU7SLRd26OHnEsVWRvbun41PYkC29CXqEPoJurE3lunwLYs8ueAvj4EBuaNidwH0JmLzwJPXb3D0fow/RzR8y98liAmwhOV4CDR33us54+JGJnweHjqE9WECRMmTNgfp1CNbATtNrP4j8qk2QeudFAbZGiDEoOZ3v6FNwTZFTjPYK/msLmCqowoI8bAMmi5DoFuALCLHCCCsq+hLy/AqxXYmWiTL2VkrXiT1I0Ev4tcArartZi2VzWsumjNYzuZ4z6z3S24sww8yyXoCxz0XA9lM9y/0TQgti3JZKwEsXku51AlKgz/MuYC+7wuW2UB0Ho1+OB6KE2SBBOALtHlyYo4oA20ZbLcZ6oG6kpjVhFUAzRXOdSHr6Dulh1yxAeU1GwGaA2lFLhuWrLMt0ProNAAEbiRlxfK89ZfxFhRAl3fQn10BTIZyHT7nvwLqnaeM8zQtyWodvtbN8gUgaqITKjqLqm09cIN1NBP+zTqM09i+GveW9FjaJ5w1xHKBVKZoizpNPg4EOj08Ob1s0L2t1xDlzVe/uol1u/Eb4UVYGaAzQFAri0rlkowDIAAmzNswd1a+PE5pIFgUiDiVvGkqNuNp1AAnEpFMK3Rnz4emuTatl0P4dm5b0d4CwWyWkV+EqlSIygvojl+F0nY176Q7MDt3Ew9z8TBxg78Zsv9GRIeYkVM8nvSiSLDkcVhrou/tyoJVtpwTvJ9D3G/oxyV799Bfw1fzsz9u5eYStcR2HJ9TqEK3ocU6fvswHEfl3OLPux8F/dPqhg8Ke6jZOH78IwYo8Z8rtj3+p7beDi39twXtio6+tbpiRJlwkSMTDgDTATJhAkTJkzwOCbrKint8yDwQW4AqCoJoGTe3NkF70Og2AVpTOu9QUBQQpQfzqQkz6ertmRUOE5Pv1gDZgt+dwO1LsEvLsGzAuaqQLPIoK8KqMog/7XPwXdLIQsa02aLrteirihyYDYDVmtwdScluYigSEzcYa0EYrQBGx+IkgxQ0gpUFDDzArqsd/f7UIYhGzC7gBdcmaUaYF63wSGtoXzpq5gYcQbtMBZ2ueyWFElJM2t6M6g6GbZAmyGc50KolOVwZlXTQC8J9V0GvRJlQfk6h9VXWLxZgFZryeR1BAVlGejyQvr9lgBdO2JEh+A6uVJPoipQQLOSa3VxAb6Yt0H4T9+g+eJL6K+8hnpdgCxLwN46UsSVPZMSWhrqtoR6dxv2S8s1aF22x6k4lEcLfaTakmXSh7YbTBtzv/qsZU+KuL6ANyAfc9978s+RI1I+Jgq6+T6J99UhuVJvn7wljIjAv/o/wWWJ19bCXl3g5n97hfKlQnNBMHMICWIAMhRUJEyAmVnYmQUrwkZ4JFbNOBIEimRDVi6oojbvi2OyUDeClA8Y2NhVYmfC8XjKfdrT9lhtOa5knHJqBCUEQppEELy5dh+7t32ETZLV+VtBuXs28pXa2dYeYmN7W2w4ZigZmJCrrY+TlNryzzv/HAueHcwAWXlux55fIwiorYhLJ/acz07iZOO3BED3qzcHN7yH+yApMzba3yPdRwLfD6EcWPRZqprkSFlz1Dkeshbb+xgnuAaxOuepzm2HtvtUMbDnHEs793N7zHaNfab1wZdWPdd+fQRMxMiEx8d0Q06YMGHC+4X7ymDtBEQfYDHtjhEyL5VqA6PWbmbDh1roEtQJ778u6Kwr23qSupJIncz9oXPyvhnGAtbC5ArNQsHmBDIaevkKKs+AdSlBb+PaHNWBJiJwHORRCqzlv1QtkoKrCupuLSqOOOCSZoGGz9B+vlGCwWUxxaVKAFEXAOCyDH+HYxmngHHn1FHqhKz9NBu1+30nq1NRyBCmIpcAlTtub2YgW8y/YHCmkd8BugRUxVANOyJAgYqLtq2eYLFOAaJ0W6orbrPL/GVFoFkh1yeX8msBWQY1m4FzKaVFdwy9qkUBUjdhTCDPggdN2DeRkC1VBXJl1sbcL96XpSvL3x7cYOcLQETi2RGX0grXpLuvcD08aRXXLbfdrGcpUSdeIaIK8tfXlXAJJex0d2wAziQeEmw0Bny3gmoMLn5jhvw2ByhHfUmorwA7B6gBSOKNAABVE3CrQU3krRLDzxPGgJrI+8a6a9Nncn0ScviAfZxyvpzW9xO2Ic603mfcBrNuIQVaw/FumZCtQZ8D1gfsExn8sUi1z424pBeA0SqVIcTEfp9C1ral+Cjet5+UonWD+Bol+zmVqvboOSZpx1Aw/7Gy8vvm5p3b9Kw5kr7uloGLiRg67JjbMNRv6Vps6Df37TkUr8fODdsUscDx7xlDyqinrtI4JZ7zue2LU5Zrm/p1AxMxMmHChAkTJkx4Hjg0sHjIy4jbhpQrs+Qz/OPvjZUIapypCRfUJ5ZArGoJCb1qoEoXWMlUMJklInDnxToKcrhsUWokEA6tYGcK1ZUCK0iWe36F/HaB2XfeAm++BGrx9qAscwHyhPzwJX60BudaCBJmcE//MjNweyeG7uyMYu1wQKDNsPXBrE3vFPGq6PYzuOtJkiIQF33ou64DhAzlXhUhGcJUSJkl3N4B3GxkCrNlsDMuz281yDKUAfK7BnpZC1k2n4EuLwGlYN98AbsuQcaCcgDzGUgp8XrRqlUTeXjTcq0BU4jyQ6lQIouKAri6FGPwnEANg25X4iFT1W58WGAhaiTSovLxxBdubmHefAH90YdSUmoblIzJoH6J4bOY4/JlaZfXjYw3r/oZUOD4cmO+naIscYqToQxkcl49gPPl6fYjEYmXSKbBdys5PreeH2AF5KK4sV9+CTYG2fUN8osFsuX3ovwox5v/W4b6iqEc7yLltAh6RcgbQK2lLN3mCakwT7BT5/jybFIO7QQvqJ0g8xm88J5DG/bFVCP+UbDv+CenuvNkObQGufkhzswfrAYVqwIIA8RkErD3z60OkdklRzqqB//9gcTBKH8JItB81hI1QWHCMtfGyoTeZ+ARCttTBYLdsUNJrfs45i7E932aNHEoNra1/eXP3HehHYced9vcFaux/HMiSjzoeFpFv99Yq8Vt3TEuRxGTfev1sX3w0HP1tr7d5945p2f0GHSSog54p9p3u+eKU1z38NyK7uNj9zmhg4kYmfD4mF5EJkyYMGHCOWDf51Fcazz2hwAkOx8DARofiDcGMDqoTKg0Yd1LdnxQxRurEl8AzMiWBrOcUDvVCAiwGcG+mEPhNejmDlitJKBiWQLQRS7tyLLgY2EXBWzuSJNYoeFJEctS9sq/8DsiJygKoj5KzWylPBM7f4VE4dHb17tKlgy8JAzWeN+dlQytgbmUWSJn8h6C9X6/TQNYi9mbEqrOQYZBFsiuS6i1U73kRTC6p8tL6CyTMmirlQTrlQLPc3CuQbURnxBO/jMG1BjxpfDKD0DKYeU5qtcF7r6hYfI5Zi9zFO8q6OtSCBJjYF4tUL0qUABCqnifGed5EfoqDmr4kiYW4CxrS0GF30bBD7Yb46N7XdogIjAQ9PP7dMb0oZ+9IighXNKAKjl1E2kFsA73RQgMJiqkcAzfFl/mihRAQsRhvUb++S3IXKD6tgZ9/xJNo2BrjfzjHPkNsPiUMbth6Hd3aLwiJclw9m0gr2oiajO5AYyp6x/6aGtQKnpxfmh0ytAk9/NTWOufe/vGYtdceF/neah6YF8hgCsfFfyGOvuL55ldxx5SJziVWXxvWg5KwrbdcVmkPUqBjcW2YKxSgagOpEiUfEFagZk25syzw2MpQdI29OHEc1ZqOL9XW3buvGe7PkUQDazDAIC71yEmGTskyZgxtYsUHPpu7Pk/1Fy96zgPRSg+NZzDfX1OCITkkXNKokyccFpMxMiEh0eomxxLRzG+puiECRMmnAJPIVBzDKZsksNwADlCWrcBVQBgK/4Drg56CATH8FmdAJQLaqhlj+phRLkLripw3UC9lOPkX6yg7zLQ1xeiHCECZ4TyKwuoD+aYfZyB3irwcgUuSylFMitEMUAEO8vARQZzmcPMJNjMdbOZ4W/FF4R8WSNjYNdl8lJsowxfIYMod0oMH+x2wWLpOu5uH2U4tie8+TLallPxZut64zddDBMxPmBOeQZ7uZAySzcXoLwKht3kVDSiJGHkv/IJ8izbCL5Da9DFHHwxF+KDCFQ3sJ9/AV6X0HkOnuWwFwXMPIMqDVRtgscMrSpQY0T94cgRaAXOszY4Np/h5vsyvPutBnd3CtldjsvvZrj8jQLZ2kCVBuuvzrD+QMPOCLNcQd9WUDfrtixNGMOOHDAIZBgbA1oQsJhL2S9PhGktQf6mQchy3lZLf1vgnyhSijhVTpaJUqmq2uO4324cQ2t3baKSWvF4NcaVkbMheApfh9+rv5wyx/vLcFXJf//5vyN79RL2//2b8Md+2/+Bd80Cb+sL/O9f/g4U3yV89ZfeAf/1V2GNcabyMr78+YRAkmUwYoIxUYtszfqN1849QafHflGOs5BJhSBbJ4j23J+5Ho+ZLevuo1413rYyhjv2udfvHxJKJc+OKOMf2EKMbw9o9pphO/Kjt/zfqchIf49smQdI60DUwxgElaabg8nPgczg1WrkcbsJDEfxO/vORZFi814x9r6MydxTjX3uuR/HtGUfJP0eq1rBrWLFP6dJ512VcxhLfg3mxrQuIsUUA+TOpe85fMrzeQo49bk+VkLDNqLqmOf2+zQW7hupqip+ng8loDzXNdfQ3HMkJmJkwsMjybKZMGHChEfBc1wsxHju5/eYiMtoAa6kh448QxSgbKiDDuTdIGj8/LMMLFegjpm4W/D6QLDWoJzb3yvJ3g/KDJdhz3UNugOoMaBMYw4gv81RX2YwMwVF8lJr5xnUYgY4Q3Fer4Xc0L6ckwHVBjbXoNyZzbKFKnIgv2j9HZpGCBNmMZ5v2vIdnUCpC7yTisojJYqYjb4ZKm+Rwq0pwvbRgnmjNIc37fX96Ms5xT9xJcQoz8SQHu7Q7lwluGABOIXQxYW7thZU122gwbcjc8H3upFyL0UOnudQ9gOgqmG++VU0VzmotkKKrBtRjVS1kCB1I+PAB/69KsKb1LrvX3ynAasMugR0ZbH4vMHszVr21VgsLCO/yZHdVtC3JWhdAVUNtgy1mLvx48qxORImlGUx0h5erWXM+ExSmE6/kyIJbvkA0LbM9SiI7o2EfVDPK7BCwM8yKMugXr8GFTn46iJRrrj7sJGyWHR5ASzm0L79q7VTxwjpQyrvNseIcTobR9Q5ryBmkmMr+fzy/7fAP7j+f4IaAjWE179MuPq4hnp7C9PI2KA8l/Jc0fkTt+fXCeLKP7pjeQi71s7x948197MPbkb31Pv4HHrkc+5VS6RjZxsBl5LxaZbqKc8vbtdIzws2FqRM12co8WygVInYOeZ+6o4NH5G+cyDVq3xJg9PdHff0484MdZmPOV4vICIgjZGym07J2HvcVDWAiPyJ1YPHBENpYBymULq9VkASvB8I9h2KNLC473YPDZ/ccaTniC/xFn3gdsfdRI5orMTl19gYUKwmSf3bJjxtbFWgRuusvRLGpnGxgVPNI31rwUOV8U+VONkrqYPQX+N2ExMxMuFx8BRvwgkTJkw4Zzx0Vuc5Z5E+NFymXVCOAAA0KBMlCLk4LNU1vOm5DwSwMWg+/Vy+d9tTlsm/i1yCPPMZyBbtcWaFfF6W4hVSSOYfr9awN7ehvrj69Rn0fAb7f/8tWH9YIF9aYA2YC8mo17dLKbP05TvJICwK+U9LNr3WGnaupYSTZairS+CDl2Lo3UgpKL69AxsLu1zKSUYKj+BnoXVXVWMMrPMEIaJuUKujEEmUI0Pw2ZhxwB3oEiHuWDQXskP6iIUIiAmSPJf+v1iIYTkghEZZgqtKziMXJQMpBXpxKcqgd7dg27gyZG0Qgh3JRXcrwFqYb30VzVUBfSXtePdbLlC9JHz4yyVmn9yCVqV4wCyXTn0j5ID66EPwYhaIAKpq+d3dElyWWPzr/4CFtdJ+reT8jAmklKoqZK7PjRtrlGWgywvQyxcQdUoJXq5gb+9c49vAmqkb0HIpf1sf3I+ugS+BBecPQwTKHCEYB19cNnPIas4zKSdmDOz1jZASWSbbVXWo6U/zBcwPfg/qqxx331PA5hBRggJsJob3r//TEvquCl4pdp6BGgv67udAXcl+3fXzZJVXK5EBuBblVSDyjBFiU4mfwff97L9Lhp0EZI3rDLq4kHt2CO+uYVNF0T4YETR9dByr/k6fK9NzZhO7MnxTEnlMpnyq+IlJZfe8agPYO7wD+giOvuDuxrUdSVS4jPcQ9E99rPxzx9hOkn5KlAuJ2xNcSokVX5prKEAdq0bjjx3JHhSRaeD5UJWJNfK8jfvaxmSs6feB8t+n18crW5XzFgPAxj1/PY4KyjuuvE+dmbu1jlOkhjnarW067d7c+f0Swfe13zFzmldQos0zCH44u7L7O/tpr6v34AnXJPKh6Wyb7t8aDHKIW+/nkdi2XZwdf8i1fqqB31Ojr49P2Td+XknJ6T4fuUNJliGV7HO+vkPP7r77Lv57TJ/sQ149pftog/hXEzEyYcKECRMmvFd4KouW5wa2COWkjEFcp5nHXpPwcuoCFDHRotHx9xDTZguoyAy9NxDlTLfrBqphqJphNYEvCMQZbKGgli+hjAUvJbguJIUNihUx+Aa4yKFfXoEuL2DnM6CsnHeFDeWx/DH7z88RRBaAcr/3xBB484V3m0JkCLGKJwoGeJ+KELjKMiEBfE12Y7qVzry5rlciZFKrnZx6xL/okcvMJUDM030brAXq9lzIlwdx2c1qWSOPVBbzLw2ytYJeNeL7YUzI4pSyTKJgQOYC+km/+v149Q55BY0P+ANgr75w+/SqFmYG1Q04q9ugnTFtKSkmIToMENQAAxES0hrq4kJKT/mAVpJpHkplZdF5EAWigvKsLTOlNWimuiW0LENETyz3CkFeeNwmZt7ulyxDrWpQ1QCO8KAFifn6TEqDUN04RYoK+/dEVAfub1vVEoDszbgmd+1IMn1VRPg5AmX0fPA+Y8pCPh32KTfhsvwBdAP8lsdl/m/DfVYI6JRlboP5Hf+e0Ixd59+9r0mNLO/Etn12u74Lz56o1FcgIDoKmQMD+7vukX32GfVL66FynEqhQyj17ccTcXG5Knf8oLjzvzs19sk2PoM5O1bU7A3nlxOe/0MG96cIMh+lMNqS8X6sEvJMruOjoq+P9+mTMb/dZ77dB/sa3D83jEmIGZP8sGu754IjzmsiRiZMmDBhwoQJ2/HcXyzS0hq7ztcHn0P5BxdQqKq2TJRqTaRDsEEpUR8gedn1JQtc2R5uWg8EYtWqG/z+XJmMjawhZwAfPnWBbr1ukK1zVC8UmjlQXWUgC9jsFWaXM+iPv4T94st2X5aFkGEGGYa9mEF97Sswl3PYixzZlxa4uXPB+GqgS5OFqTtvsAsUDZUWi/t4H8SlmZxKxfcH8kyy+V07YK2YmLvSSQy0bWoa2c5dY7MQBUB+dQloBfvupvXSIAW6kaxgdXUJKA0uy/7M2KKQ330u/cxXF0Ce4fI/3YXfk2WgrMQLAwCKHNRIgJ2LHHaWO1KAQWtHwjiPEF/GjKtKSqkEA3AF0lb6IcuhFnPxClmtYZdL2LIE+bIrnozLc1F0ALK/4JExrAag+Qz0+hVouYK9k3PqlEchBSryoLiBFXNzIiVKmMYAsT+N0qCLmZBEqzVgGaoSvxRd5QAzbCbkCFmADFC/1GguNWxG0JXFxX+5Bd0uYe5Wsl/1CpxnsC8XYAKy5VrKz7k+ZWPkXouDm0Bbsq4vWMgmlDzxXiiiStJCyBgLOKWY9xSasAPP9YX9VNiRab7pF+Hn2R1qHkd+qsxtd4i6yREsvcHctN1BHbhfUNaXZwym0R0403TTkti9WfTxv5PnT/zs2lqSKz6VUHIPQXEWnsdatz5cYHf8A5VVEcm84U+U/m7fZ2h6nseu+XrUPB6U5Z3ntPe1ktKcrg1KD68N7mN+uO+s+mMxJjgc9U1c8rLzk7R8aFy+DDieJDlk+22KlVP0/zldx8fCIee/T5C9g+F7/zAieIBEfu7X9OD+P/H+3xNMxMiECRMmTJgwYTv6Fk/PMXjVkYKPeJHyL/6WI+8KF2B2nh2dLHH3nWzaQwpwm6HqfQ3YKVGYWYIsPf4cHSgV7Y4BY0G1gS4tdEFgopAZzJpgcw1d5EER0Sk9tSqRvVPBCFytK/GsWK7BZQXU3TrnvV3klQt+rBgjKpPB+u89Y2rk4p0tg+JS2kTAbOYCMJFviyMMoGQME5GQCR6OPAEziFn8J64WwCwXs/TGgG9u2tIUkJrvpOXc+kC5BPO9QThcCTGqaiEF8uhzP/acIgcAVCO+L+SvfaRqaGvs92RXOrLH+190zFbd2GXbkgFSAisL24riZnfGHhU5zIdXUFqB3hQhyEKuNBy0duSQKEbYWBBbUKZhZjlIKSgt6hzZzl0zn4WtNcwih51J+5UBstIFGx05kt0akAU4I6jKgtZinh7abi2oMVDLSu6DxpnLl1VvRmqcPR3XXN+Av2+NdWSSGwuunFkgViYchunlfRxi1VyKPcZf/MyKg+/7ZACP/u0h6winNOA47pY8TzrHj5R1O9uC7nNkJ7nTHhBsozKO7rnH0TpiQ40RzmePoG2SlLHrXIba2vGcSNp0skzvZL/p58wk6hCv3Ix/nwZV+3xhTl1Ga2ide2qMJQQ7ZdeOONzQ9knpPIp/e8jz6tj3gft8p5ieIYdj1/w09P19r3mmazrhxJiIkQkTJkyYMGFCP8YoJ54S+uoV92WT7pOZF5XRCIEay2CFkCW6sWlf3V2/T+eVwQaiQEH3xZa0boPirkyU9+6QAL83wYbUhmYLvayQ3xUAA1lJqBcKNicJ+GeSsU/1ZTD2xroEr0vwmy+Bz78QM+uLBfj6Fri9g2l8wLcn6zXKVgwZtIBUPIr8KTbgsu77gnqd7QazCnsy1LQGXS7EyDtz/bayQkhoBVYE0k2rlGD5zhNS5Iy/oRXqr13JPs0rqMZC/zcAd3fis9IwsFq159gDmhWS5buYCQniiY91CazW0sdFHjw2eL0OHhvMDKzWUICcg4kCQsYIQTVQ+oQbMWenFy+gLi9aEiXqNzam9RzJM9CskGC+NYC2m6bqfed3dYm777/E/LMc+Sefg6tKSk9pLQqKLAPN5/Cls8ha8IqA+QzmqoCqDdQ7p4jxhvWRCgpFjvpVATMX43lVA4tPy2CcTpahb0rpL+cPYt++k/51Y4EbA0Il/R2NK16tO+XdkASHesd5p5PlvmW2YKNATdOOhTjQ50u09W3/UDg2c9ZncadZ1afCcyPbHxqkuvNgrHTaVUrFP39MojTx+xnabnTbhgJoe+7PK0b8dtYCmsCN3bxX42MGgmSHEsQ90zeCxH3t7JyTI0fgVIg993/I4j+qPBKjY/S+T9mrgQDmRr8drRbZvj37NURMeGwJjPsAvpR1HFg/nQr+mt7nMZwqUv7d83wZc+xtCgu/Nt2yTyqyoBYBuXsKcCrR3YcP2/Up1A4Nim9TjvjjPeZ7x9jj+2t7rOfWKXAoseG+C+q0Q4jIp/aO+JRwivJ3Y/GeXMeJGJkwYcKECRMm9OO5LoZ2vbTtW9M2GKC6/opMTOVv930cfB3xgrUROLEMjsoikC/ZZVlS5oH+fdYN9LKB1RI0y9mCtZQb8t/zumxNOkufaS/KBK5rUKmBqm4DGruCxX3t7zO6BYLvRajLHn+vlAS512UooQLLbTmrNJjiMlGV9xRJAhyUZXJOnvTwx3JBK1JRJmtjJPCuFQAhkggAswI+fAV1uQC9E+UIFbm8DFunQlitWvWIItBiAZ4XQJELeRWCeu5crG1Le3mliG0VI9w04onRNK0CwYhBeVDgbAFlGTCfgdYluC5D6S35MippQt6TRXxTSBshGohdKbT+l2Oez7B6rUA2R/HqJbBagd6+ixqgxLQ+00J8WCFAuMilhJj7WwJGPljGXWUMAUwU7EXiscQK4FwDDYHWJaiswXUtpE9MtkX9vvUe3xFU2rZd8CWIx2eaCf1YCpJj5vQOsWx6PruHc3quz6D7xK7sf97+DBokROJtHxGdZ2ufCnNzg26743sU2N4HY0iHDvniyBHaPr/0KloOwSFeIPd9z+7ThrT9A0H9kGjht71v0uIhcch9CJyuncn9tDciPxlSiWL1EGxTjhyy3/tWFfX+7owUorvavHVuG+GxNLTPUyU5HOt39BzRtxabcDQmYmTChAkTniMeMpNgwoTHhM9YG/MyNvB9HDgNL6NjFpzJ4t8HYUkX3cC/+7cdW1InDg5ELybsjMJDZh4pgFuz0l6yghm4uYMCkNEVyOZQpYGqDWyuwZpAyzWazz/vbiMNFyUK34FWa6n/HRMSQ22Xs+0/J79P3+deqTCftddSkZRScooYrmtRSxBJOSZjYMuyJRXiwxgDckF4KC3lklSrQuCLOagxwPVNZIqrQkacD2pxKWodtZY6+81sFsqQcUFY/uBrgIHF/7wArWvYyzmQKaCxIGNAn3wBWq1l/3kG+9FLmMsCqhISBI0FDIGsmItTWcq5NI2cl/OrCO1aroSYMiYYkg8qj1IQgeYz2JcXUHUDe3vXmshnGVQhJbaEoFKBmCCtwWyFVGGnsjF201eGCObVAje/CWguM8w+/wryN3fA23fuGlmouYJ94dQ7btyxlvGrKgM0FlzkbkwoIaWW667PAfn/CCAGEwBFsIUSwiRX4kHyG5/C3ol/ihAtWdJcV4ancvdjyIpMTOP3RQjuDWRfKx1l1UYEyWNnwe6BkOkeBz38HHWKl/Rj++GUAbX7QIfE5c3vjs7Ut6JgGzrmUHvi46ZZzvuuJ/1za6hU4rHnqFTwVfKlGreWvIrLE/rvnDKzv/2MvU3RO/sX9Zh8HpXGDPs/QaBv3zkqqBNsS4QD4utxKpJmH7g1QO8zrLcNjszadt5PaB4F0D2Xvrb33Uf3QQy4531nzbHPvqO16snKsI09z53lyE6QCHDIvp7SOLwvbFGhnGVfnsv8sWvcRaQIKQLzmbS7D4/dp9bstSZ92sTIJLeeMGHChH6c60NywoRTwwcx9kHyMtWfVbvHPtMM3dhTA3CZ9nGgZkSm5lCmedReUlZKeDGDvB9EbKDpj1mWIKWglYJa56BSVB+qyMWzxBioxaLNvu3pj5YQGRkwSjPGUlWHr8fu+gve9FprhDImypmGG+MC90rKTRlRkQTlShpAYNv6PDiShSoJjnHmAkLe68PYQCyFbQ1AdS0B8+UayhZQswycuwC8I0hAAOca1FiosgbWrl+88oPFFwaWQXdr6Ma2HiGuP+jiAirLnPm7kAheWRSXpGDjAnkdj5bx8zzXNWhVCdGgtZBHbEGzmTMLd9C6PY6VfqX5TP5el3IN1EzOS2tQngGzGcoXBTgDqpfAlz+0wPztDC9mOWhZAm++lHMtG+cbYkFKgTNH7JVGyKSlI5IUuTJj66CQIWOgKotmoXD7vVK2bvmVBXQFXHzWQJUW6raBKh25oRQoy8PYICLZF6u238L44WBkD0B8TaLxEIw/Nzp1xwvrQL32k9bwf2BsbfsxdelPsWbZRQA8dgmWXThF+/ZJDtgWuDpjeDI8kMR96q+x/X3MmEm39b9P5oFA9pM8i9gYcFnubt99wkZrn2NUJweO2dAvtGP9tk9w9VSB2PvG2PurL1t/7LmE9eOW3zoFcij5mt5LQ9d4V/tJwdWq3I/giBNy4vM4BQ4ZA/G9fE7j5yHBESF5KvJp398/5P17DnPFrudS9P3ZryUfuy/3xBMnRpSLNkyYMGHChAkTAIx7mXkKi5V92nusbP+YLGfmNqvdL1arSpYn4cVWTMo7JX18sHVb2zvf9QUPdM9nEVx7zLtr4N018En3RZsc2cAvXkB99KEEjp3Zewjue3VC3ez3ohsO0qpDOl4hbCTTiZzqoyylPUXRaTsDLkNYAXkBWsylbaSAugIqZwAfk1NGzNEpy6CsmKdjtZJA/ouroKCAZaCWkkuSvYowHuzaAFUN1TSg2Qy6+AasM/9mUFh/2iIDNRb065+AV2tRVyhqS2EpJf36K78ONgZqMQcVBejVC3CRw3ztFVgrZL/xJfjmRtrTowYJRt5p4CLNjO67PsywN7cgp4KhomiJjYuFeMw0jpxy2dVsLbBaA4s56MVLwCmGKM9AeQEqcvDFHHwxQ/16gdvvLcAaWH2zgf49t3jzdoH5//gAV99hfO3/UwJ1DXp3E9QZIBKShFmUMHUN8/Zdf5ATAKoa+W2N8nWGu//HEq9eLDHPG3z29gr0zy9x8WmD7PMbaScghE+WhYxyWAterVx3+IsX9ZWiqN66bX9nlTNi1psEaBoXdeXb/Pn5cmn+3mGvcErr6j8kjnnxT+fKtBzOse1Kj3XM9um+UtXAvvs99XUaqfQadX/v2ucBc3Z3+x2eMmlAs6MgOn1JGS7L7a//aTvSkou7yKFYhbrrGJ3PVGdOIEXueSAKDSpy0HwOXq5gPDGStvUQT4K9yBunDkhVf7u22/g+GKod1ianUCTt2mP6iGebEDcHEq9j1lrx78Px72GuIBLCHgA39cg2bSm/uK29O4hPbmTtFBJ3kvZTlkF8XaLkE0SkFveX8PTPUXlUbOn3cG3QSSTwJVPluXmkAtEnoHifjH3vr6fwrnTfGFqnjH2e7rovhvbjxkcYG/fp1/JYyQBb1uzh+8Hn1p5lHg9px3tGDD5tYmTChAkTJkyYMA5jMsgm9GPs4nDj+zRTPHnBPUZOTtTW3bauHM+u+tDJiwW7tlBdid+D991wJb98Ru5OP4Y++JcaZ2relihrX1Tle1eeqbFdtY0ro0V5z1JVESjTYBaz8CHPkxCIZqcY0JBz80qVvgzF7g5CeSuqGlGeaAUFC47iSqwUyLK8yHtEWZhQSgiFIgddXIC8uTgz1LoRBUpdu1JlA2oQTkqJDKoVBsaqN2n35clUq7oRbxNHiPm+d31KQfUg14aVAmkjqp3GgI0L/mvALCxQiEeLtMUlBHvVR6bD8aGiF77g+8L9QVhSwGyG9VfmKF8qmOsCXzYKKrMwbwvMvzAovlgLsePnOQWACWQh/atU9/rE6BCW7vz99fNjpdPXjixJA3cqa0kfD69EsQrAPb7Yj8Up5/9dmY270BfUO2p/j+iZ8JyQlHA8asycyzXZd1wd0ua03yDkKoXn8671wyHH3IMUOeY4nf2q7r8P2V/sixa3y6lrdvfVAWNyF+nxkMlD+5DiQ6W0jg3m7rOvHrI0JUU6iT/7NqXHT28nxhCY8f7PYR56n3HOQfZj1zLHHPcp7/+ZYSJGJkyYMGHChOcCos1/D2VHnvMi9SHwEOe9Edw+YWDUZW8zk/hSsDfxdll3WrdkwVA9b2vAFrB3K9C6bA24PdGQmpyPhfdScP4hYthetUSJU4ZQloFmBXi9hrmW43BVdXxH6PLSlXFaRwFoJUqGIocyVva/WvWoKayULNEadHEhn7sSWT74HdQDvqxHfI3YeX1Yhrq+g15XgLoCawWqfFY0xFvEmY7a1Wqzr5RG9vWvAos57MUcnCnQqgLVDfjTL0BlCVOW21U5u5RNsW8LokCDL8XVNNJPsc8FKSh3Ctw0or7x2ZqVKFeoaYKniS1LIVGsFRKirqGIoKoZbAbojyQLenk7A91myJZAvmTY6xshhz78IPQ9e2KECMg0aKVb1U6auZpnwOuX+PxHMpgZ8OqXM5DJwAoorhmX/8f/BXt9Df7gVVDChMAKsduvBa9LIQKdYsZf+1D2LiKFtoFyKcPGVQ1wm/Xrxyyvy1DyrB0DBGLaTm69TzhlECLKPO7Nrj70WKdqY6+6YESSwtgM8PvANp+Qzu+S9cVjZd7GCEkgSRnKbZnP8bYjVXi9++ioyhQIBqy1qMeMkTnDmJ797Bm03TUWEiVKyLo+SHWRlBZMCaB9yJGon9jAlWZUUjrRMignNzdH6shDSRDfLms62edy+CQDfZ/18K57d8f3YU21a7tTPyeG7s14/pQGusNL4k2nz3yCRtzGpGTcKFIDQCfrPf7YwK3Fdii2gppgh7fVPqrw5/Be9FAJcLvUdv77oNiMVGa7VHvhc4udyvhTYXBOf6SxMEqBdiLz9UOUqM8QEzEyYcKECRMmPBfsE5h4jxY7Gzj03M9RccMcakXHL6QcZ/rvGhJsAbiAsPPGCCqRQ5QiQCBBRDHC4PC3AvIcNBNiBHkOAqB8tn+kemFjJVjPtlV4NAbQCpxnIEtAlsnpFQXIWtnGKz1cPxCx8/Dw/iAKpJMXM0WS0N93jR3BQgDUqgZnCqy1qBKIQI3dGUyH1uBMS/ZwzVLWqm6Asgymp8eULPBElL9uHZPv2OC7E9gwreF7KN+lpD+9eoi9miTyOmlkXwQAZQV9W0KXQjxZQ8BNjuxGIb9lZMuobxwR0iFFOmSu6g+IWBkXZAC9BuZfWOgKUA0jv5UybPIbBrTbnyKAnXLERORHuF+ie0W57+Pxp5SMJ47ao3V3P333hh93fkz1X6zuNZnwfHEORMG+SImFfbc9xDPiMXHfalr/fCYC+Xl2qB2nRJhnTmiK3dk9Hb/fSEFIaQD02Az/nu2HfJ8eDNvuj/u8N4bIWWBTDRLaE3nBDXzfwRGKkb2Rrmu33b/Tc/bh4Mf3INkxqXb2wi7i47778z27b54+MfLYbN6ECRMmTJhwTjhFSZJzwENmn6bHSTOe0t+e2ZqDjXHZ6MlL/7YXxZ7vg6pgW0mJtK96yh55AoSKHJjNQFUt5tpeBVIU4MuF+G/kGdCI9wasECFcVbDXt4AR0iD4YQBgWoPyHMgzIRounOdIlgkh4PxQeLUO2aLMFuwUHsxrIWsuLzvZjf4YG3WxWTxk7M0taLkClaWYpV8swK4+OjUGtm42yoWF/mErfhpaicF43YBvbmG9SqSvdvJG0MJuv7edCoerClxzS0L5TGXviRGTXcySwRyXziICG2cQbIy0r66DOTzYgEsDJvHSoKoC3d1h/v0vYQ3B3ua4/DWN4h3j5XcazD9dw1Y11NyV8NJqkxDxigvt6pYbdPu/rkB3Kyw+Y4CBD/7jDdT1CvzxZ1KCTGsZP45w8XvmWDkC4wJ5CLXVQ6arVUKURMoPKHdtrYV1BJFaLEQBtVq1PjARgteQLwcXKbBgLZhUaAcod0TUA5fXOua9aSgbNN7v2ONv+3yftvVk6vdi3/PdeCY8wvvmYz5rxpIFvUTyCdp8ynPvKXG1+ZvN51jYtq9t6XZb7gMhk614NFV1PzFyymzlDQXAEcGztN9in4k+jFJcqFZd4MlmX77QKe06hMshY6FPHZ0+Zw9ZX55iTTr2XHbeeyN9afrWt50/u98zd/t7c105cD/ZLckAYxDfQ2OUQrxDTeDWKKJ0GasYSdRPQ8+l9yH+eOhYH1TYHVZCeJBIvm88xrWN57qggh2pWty1v/cJB57zMyBGzqR26YQJEyZMmDDh9HgoSXjnBWjHuuLUi81jX7JS/4mh77ftgnkz+3MXKTIEr16IN9XaGXfnQmL4fcW+EP6YJN4ioTSYpmBsLUSFAa2rTntIK3mhNzZSqlAIVnPsLUJWjNuHSj94s9a4D4wRU++qBjODqqxVD3jD+m1oDKisgXUJruuuSmQIG0GprroiDmj4tpDLvpWmc/Rb233B5CjY4UunGSPBe+a2bU5RsvFyypGReN2ANTC/qLAyCmaWAQRkSwNa1V0/kbFI7jFuDGbXFmBA3ZaglRgwU1GAXr4Q4qlKzGyD4kXGEc1mLXkUK4qUDYSeL6dFROC4DwG5zmy798qeQeFwzQ5RY50Kx85dx5RvuG/C+1QB4VO087GSE071fHrKAZU0iHlISaZjyLYNTwYJDArp+4hxi33jJn0l1XaRTIPHju4HRcGku/1sdxnDo9AJOo64N9P7aNc67SGTecYiVWTuwOYasMdvaNs57lOurY983rhvd5NDsrYZ+ft9se1anytORijfw3g+5347B8T9M4bQn3BSPH1iZML5YltW6YQJEyZMmLALp3pujCEeDskovu/nWtruoew13pERl36fvHyyK6XU+b7zQj1QciEtBxSVz6KicOWpjARBihw0n4OvLsIxqKrB61Iy9ItcSo7Uks1PFwtQ08DerZxHyEKC1FUN1CXMl1+CigLq9QfShjwHRdllNJ91TNm5qaV9eSaB7ds7+Xs+a8/H+UAIYSJLZO/7wc5rwzoygFbrzvWxvuRXCvcb+/YdSGvY1bpVLPh+7gsIRH0twXTtulwCD0ER4lUJHnkuWZKVmLkHQilWYcSX0KuEBtrNTSN9NZDl7M+lmSv8nu/9Dr5z+xq/sv46slWG4uMb0PUdTEw6RNu24yohTkKmXPTz9Rov/us1YBj49A2YLdRHr8EXc6y++RJkGPP/9hmwLt3uWcgvy8G3Rn31I0Ap2M/eCEHVCJHC0CAN0GIOKI1QPsyTV65Noa+s9y1J+iMyFGZm8RWwNnjZkFYAVKs2GZON7/sq9FOSyX5MJvVjoS/YGGOsUqHzdzeTXRRSRybPbRDmByhZ0jbue90Ofc7c5/NpX5XQMcfow77vl4fcI/7m7jvHXesI5+PEltu51V+PdL9D+9p37G70iQuq9QXWxhCbnWSFpB1DJZa29YvvE0e4k/MR68BaIaX9MQaeWUdBDSgMUuIsfjZ1fnfisXYI0usyNJa2kSJR0HWn0nhoHCb7DMkTvi9HkU89Co1taq2h4/fdL349uM812aW+ec441TPjGIXDEJ6jOmLbMyB9XozZz3PEKZRZRMDIzSdiZMKECRMmTJjwNLHPQvgpLZh34aEImYgQCUGQ6AW041/h4X9nDADnw+H9H/IcfLUQv4jGSjkmy+IZosXToUPCaC2ESp655hC4yAGjoNQlaLGA+cZrUGOhvrgJ6gZY7pAibX/ZoA4JSgHbBrLhg6lAv4FoUEnwuJIRUXDAEys7X9STl5zN4JMLOrAFM4F6lBzt7yzAJKWiDqwFHzxatv8Is7cN/s3/9YOwywzz72aYf86g5RpctkQFGSO+MHFbfRmVKi5vlQQ4SBQcWFXt+flsY2ao2so4MrY1PPeBHw3QYgFkGezLC3CuoWZ5ayIPgK8WMhY//RK8XgeFyUZJF6+Q4Z5SL4N9E6leuB17ewfZz2n+uo+M9zjYfsS5ntRL4TkHHJ4y/LzxEPfEUNBq2/e7SvyMOu6e91hKVo0NLg9hx9jvLaU1dE2Igjk3+W6xAwpGmyjytrXHJ2J4damfnxUNl6gMZMKI0mrbElN2YVuA/z7G7Qj1UiCNYwIj+n5U29x5BX+Z2MMmJVbS343Zv2/XKTLlwzU4QC32PuK++ujQ5IJ9t3mq17hv3tznXLYRos8Bx17XPbZ/PsTI+1Dr76lhuhYTJkyY8Hg4RgZ9boG4GLvk93041cKq79inOMa2rFGgzRralll0imMnL/OS5S+BhlAH3MNaF4hGCHqE8hjWhix9KgohBeoaWMxw9wNX0GuL/LYBGSFIqLGgspbSSLOZK1nEQKYlqM3ihUGZBi3m4DwDLwqsv3qBN79thvkXjK/879fg1Qrm+nYz+zM6V66lBJcv4xEyepMSEIHA6MsYdT4bGxmZWzLCuarAaV/3wQcT/PFVJoEHYzqBnk7pKziVTZwt7/ogeMb0qQ7CznYELdz3PsM33r//e/EL/wU/9F8/FGN1pUCrEvbNF20Qpq7B17edfXJVt2bn/vS1U+t4lQWRqI+0Bt2tpP1e5dMY0HKN4ruizODlst2nUqI6yjLwy0vYeYHVNy9RXyisPySYggAF2By4+z4LssBv/YcG/MuftkG5JLC2EWMkChnIpEjIMlcrn4jCOfixtZfx79BcE297dBbdAZn0xxoHjylHcywODUTuel4ePdceoQA41bOmb59bngE7j/dQ64T0/I85bqToOEh55RVwbMcR3X3tfQjlwbbyYX3PgaF9AP1Bfl/GaIs6i7LM9ZfbXueym6puVaox2dzX5qit6VpDvXwBvrqAWpVCamdSrpOvb2Bubjr7b89pZCb22GsW30eeOMgzqNlM5n/vMeVI+y4hdEiJt1OMjWgfu/oiKdsJpwrmdbm1LynPxFfOmNAPo4lr69ZX+8y5ngSJx4rzGfOKYQC774ttOLf3omPjn/7e6lNMHaq4jPZDWRauQe89TpEPzLmpdU6mVtix1tl3nO/CIfvpU633XaNDlcqH4oHvt6dPjEz+IhMmTJgwYcL7g2MIn1McO8a2EgYPsaC7z35IgyaeFNlybuQX+FoDzPJiPCsAAFzXoLpBfmtAlsEk+6I0aBQrLEiFakpU5J3zZaXAmsAZwArBtFUCXt0X5A6sBLLYlUOKS0T5z0Zn9Hfavcdvt32X+MEEZctgsLcNXHUC7519niho7X/m+5h9UNDCliXUl+/EYD7LxEfFe8Q4dUunXFucMexMWzueLZ1TZZD3ConHvN/eGJBx+/OkiFbiZ1PksBcFzCJHfaHQLAhmTrAZoBqADKT6FaO771gJNaL/2HKbDR21u+eHO/c1CscEQh4T8fx9H215iOzsh8a+/bTvOfeVYbqP45wCx/jbDO7PHvTM3vac2BkAvq81gr+/xlzDXZn5x85V8fPanStF9394BqcKvDG7jkpxxeq/oBZNnqlRQ3rb1/nuhNfGe1X1tuUxceg5BkXtYecR1lenRi+B1wbkJ6+GLTiEnBu9a7cuikmRnt+czX0R49QE5DliaG1x7u2+Jzx9YmQyX58wYcKECe8DDsleOXRxc+6LosckR9J2xOgoCE7zck2KJKjcCSiq7gvmtkDRvuXG2GfqRR4XOwKZ0g7jgtFZm7F3dQn76grqdgmuKtjPv8Dsy7eg1x+g/t7XULWBui2756aVBNWXKwmeKwW6vAS+9iooBIgIVBvo0iJbMvIVS/ZiXYsZd3zujtAhEhWGXS7leNb0Lh+ZDwzapi/mFH02oF7p30+SgTnQzs39RCa5O7OR07aqkIkrGdBRFjQb6ZMoa3TToFWUHShcNnBdA3XTkiJe3VK3xEjI5gREaWEZzLEhOkngyxnysrUAVV0jd61BzKBGi3rJqUXUiysgz2FfX4FnOcqP5mguFFYfKdiZEGmqBi5/w0LXDF1qMAFUNcBiIf4jBpGqqN5yDaO+tAxGci+mapHONYuQqnp24RTzy8GqEXTmor0DK6eYv9N2nDCIexJsO8e9MqCjYOKpA1hD422fcRj/7liyblcW96mCm96/IsxpLhsWW+brGNaA0/EW30tjFQn3SY6kx0k/T4n1g46zRQXXUeVE2fqRZ5NX3ew+jrs2gfw3UJcL8Syra/Dd0ilaSby1/LNmhPKJtJbnkDGtuhLYf92UtjUu5emVg1uCwztxqgBmVM6s4y02WAYt8fFwySQM7D6PmKQy7bMdu7aN76ND12HM3euZ7vu5YCjL/5DtNz4/wfPGGnC1ZT9j58qHxENXTHisMbmvCvUeCbRzwdMnRk4lKZ8wYcKECRPOHafOlpxwv7inBbYPUIdANT/wQn4bLAMqydBTSoytjVM+1A30XQWqDahupPwSUfCJiLfbCOpoJb/XBDKM4pqR37l7IjEiJ69e8X8Dx99DgyqhzaBdkJ+PDbhtO+aubQNZtsf59dQY7xBxyW9jJctglnVvxu5mFjNbhdS7pDeTNBiX65YUMbYN0GgNakwoVyKHY0eYWEAZqNpC1SSls7QoRMjCkSIW8zcEYgB148aMO8/YV2fXNezzFdggkHYEkh76hfwUxzzn5LRzmRM9DmzPvWRYjz74Ax17zD12KiQB14P79xBV3tD294mTZD4nKj6v9hi73TYz+ENgGZ0yVYAw3sHHKzousL0PBvzEjobbR69ycAz6SIFjvWPS/Y8IrHeu89C9su05Evm6uX+Mb+NItea+20x4QNznuveUOIdku8fAIfeYx2OsWe8Rz4AYeT4XY8KECRMmTNiKcw5CPTRCsPXM1wFHtnHThFR1/79rTBzbP97ke8e+SBG4aaScVZ5J6au6hlquwVoBX/1QAtrWAncr4D/9d/GKuLxsg9HGitrAGPEa8VAEWldgrcCzApxnsIscqmzwwS9XUOtKSjjNZ4Arr+HLNlGeuwYSuDGg1VqCKL6ecUp0bOsvIlDmVBFeReC2pzwDEcFWNcBWlCvRtee62Z+QcbV9+zxGUi8Ar8AgZwy/GSxw2V592eCO9CCNkFG6UfM5zexLMmuZWYgta8DrEht+Kht/W3DTU/aIevxffF/kvj79CtywKEqMBa/WnePxcgXoEtQ0oCzDrGqQvZzj5puXAEjKZzUAGUa2NLj8j58By5Ucz/niIAq6Ic+cGbvBRvA27s8+cmRfP5HHeDnfq477CTJwewN+B86Tu1QP54J92rOttNV9PPMO7cNjlSJhP04Z4+/71LfjWHXDoGLCkb37ZMKeShV6qmt47DUYe+3T49AOQsk6pWHY3l3jXDwHuKq2qwh2ZDPbUub38FtjRDEItM+/bZ4F7vnpFSiHllMbAhsDVFWHCNpb9ZWs8fzaQ6BlDTISKYk1ikxI1SJO8bJBiJ36mTUqEaRHKdi3zbk9B+4Tx5zrvuqBh8J9PO/61qMPcdxzwiGVBN4DHEXb/42/8TdARPjTf/pPh8/W6zV++qd/Gh999BGurq7wkz/5k/jkk0862/3ar/0afuInfgIXFxf42te+hj/7Z/8smvjlZ8LTANHpH4YTJkyYMGHChN3gHt+Jkx/CLZwtS4A41PG2w1mQ7H7nMzq9kbrfl1KAUmBmsC9/RAS+XIAvF6DLC9CLK9DLK9DVJejqEnhxCfvyAvbVBczrC5iXM9hMgRhQtyvQqgTluZAReS4Bc/8fIGsVrcW8fT6DKuQ3lGVSq1zr/nMZOr/O391+COaw/u9910l+baV0KPNBWkHNZ1CXl6Guenw8yvJgiCqkVCHnmGftf2POMR5TfaViOr/dnh3q9zHar6XTDN78z48XE409194wztzYCvsxzpekqkGlgc0JtgBAAFlGtrLQd1KKxd4tWyWK9zuJSrEBm9d28Pz9f0eXd1Kb/03YDt5/vI1+lzlV4OkYPNVgzajycDvG+CHXdhcOKQMX//dccMx5Daky+vZj2/WBbLpjm23PGdse15eqkvXHuPaHAP99rqOGnqcjQIraNqb3xZ77O0itgZHPvP0a4v6fjLNj1Venxjm04THxWAkaKe7jOpzjtX2q8dRz7MsjcLBi5Bd/8Rfx9/7e38OP/MiPdD7/M3/mz+Cf/bN/hn/yT/4JXr16hT/xJ/4E/uAf/IP4N//m3wAAjDH4iZ/4CXzjG9/Az//8z+M3fuM38Ef+yB9Bnuf4a3/tr+3VBlIE2GfO6J0r4kxFfy9vy8yYMGHChAnH4T6yZu5z/w+Bc2vzUJblESBFrh56+9zdeMkd6od9s0kTFQHgEoXIBR1ItSRHUi+bmzbbn40FmgZU1UCWgby3RJ6BixzIM6iXL4G6gn37DuoHvg+3v/UDgAFVM8ASuFYNQ5UGzVWOu69nYA2wBvQaWHzeQDUW/PFnwKwAf+Orcgp1AzBLeSVrgXUZjo0ih5oVojJYLtsAijEwt3ftOcZ9m4D7EnmcuoBJOYJC9mmtGNCP6vMoa5q0AvJc/u/b+LWPwJdzqO9+DvP556GNlM1E4aB1MD5HlgFOvROuz2q9PWN1yMskXu8NqSX64BUWh2RxbpAyrkTKctn93Je8cgEyWszDsQFI/wGg2yVUnmH9EVB9YHH5HYW8BubfeQd8+ga8Wss+ihxQjkAiFpsYY8SfRgGwCqRsf/IcD9Q0d+0P9/FYRP4S4RCWQ+buo+LYci592ZqPNZcPlas51sT92CzUyNMneGDs856VKMrk/zvUAXsHxHeoCtLPh9rp4UtE+hKEHQVBpOw41Zg5t/XDIRh7DU55HK+Oi++TXdfc/d5WNYB687ttx0t/y+yed1rmXGMCqSbPnAFPqE773LMaRtYup4bbf99aaSyC15ZPaghrMjcP7HyOcuc6cJK0MHqMuEQBNnDPvyFFF7pzHFv05mAfQ4icymtlCOdG0DwU4rHinh2yZhlYw50a4XkVjctTHnebImaI+HsolcTQmL7PtdH7NLb3wEEU8O3tLf7QH/pD+Pt//+/j9evX4fN3797hH/yDf4C/9bf+Fn7v7/29+D2/5/fgH/7Df4if//mfx7/9t/8WAPAv/sW/wC//8i/jH/2jf4Tf+Tt/J/7AH/gD+Mt/+S/jZ3/2Z1FV1WnOasLD47Ff0iZMmDBhwuGYFklni95yFWPVIr3lEbYEqba8FIYXe1e/e8hM2n8eDLd94MKYtpQWkZTayotAHKiSoSoGGYYyQoqQcX9XFvmKkS8Z+R0jX1rkywZqVQO1BEE41+BcA5n8x5nuepTUjfznCRPnhQEWlYB+eQX94kWrrtgzSzL0j1MLdNU2O4IiybGYnZm5D65oDfviAtVXLoCvfYjse78H+qMPoV+9BF1eAEUOuliAXlwBs6I951AuTJQUG+cVAqcnuP8tS/ky7y9yQoPZYAwfj6VIQdJpQ3RduWnEnLeuQesKsy+A+ecK8y8Y83cWtK5kTHgvmjgw0Fc/Px33fUgzr5m7240K/owYe485Zz+AWm1vHJrB30vcndm5hUS0kUr9KLAVMr5J7bk9Df99Srj+D75Zu47jyHfKYhJzR/uem7rjITDmmo8x0E5/n84dx3jFGtM+aztqx5H7uQ/vnrjP+lQxB6gn+7/YYz9HzGfs1zN9z/S+MZKuG+/rvjt0jTHhPHGf13O0IvQR1zV9a77pmfXgOEgx8tM//dP4iZ/4CfzYj/0Y/spf+Svh81/6pV9CXdf4sR/7sfDZD/3QD+H7v//78Qu/8Av40R/9UfzCL/wCfsfv+B34+te/Hn7z4z/+4/ipn/op/If/8B/wu37X79o4XlmWKMsy/H19fQ0ALjMr3/j9hAfAe1RvbsKECROeJcZmZ73Pi7NT1e8+FNYkL9oHPHfjLOE4838wIzN5iScKx935zuDWBsxWsn6rSrLufZDZWBCzKEeuLgBroa4ugMbg8pc/hi9dFMzYGwOsS2TWYhZnSVqXne/LJ2UZeKbBRICCECoAmAhUZ0Bdw3zyWRKgbk9GXV3B/PbfDBCQ/ZdfBy9Xw5lySjuT8+hFjnlQccE7rlnHQ4SdGsEA7Mp8ochBeY7bH7zCzbc01P82g64+xMXnBsXbBvmXK6ibFZqvvUT1qsD84zuoT78EL1ewqzXUYg7MZqKeKHKgIbBL2O01a3fnJ22PAk5bVEmU5QBbmLdve7/fJ0veHbjTP+riAswMe3srgRZ3T0hwlEIw1XpFSZyl6/dzfYvv+8crUJa5scNybbwfTnx8n6HrlE7sx9yYGvF957trzZxk9na+8uqXQ8u+xO05RbbtfWaiPxfEKrBTlFNDdK8CkMltYBz6+9FneTOD4AnSPBCGg+2NP9YDvgRDc9qYZ8oA2LIo7YDNudcrFPyfi4Xcx6sVuImUlJ7oPjbzfCchcAZjVnVVBHtnWfc9x/z2NOyltdcxtiVm7KvI8nOoC8ZzU4OjYcxmj3YB7nl9YBwjXRcq3XM+FuARXifb4FQ2veRIh7j0yslt9+VuNewGwrov2a8nRML+Nr8X5bCRZAk31to5bPw9uqEeS9anQT1zKJ76O46/Dr5/0rEQ3+fA9vmx07fOI+jQvonbdcx84ffV+3n0vIqPk96f6biPv0+eLYO/OwZjlJRD9+SpxuZTHecPrCjemxj5x//4H+Pf/bt/h1/8xV/c+O7jjz9GURT44IMPOp9//etfx8cffxx+E5Mi/nv/XR/++l//6/iLf/Ev7tvUCRMmTJgwYcKE88TYheqJF4R7l/Q5EMFbghlkw4eORLCt9wgANAa8XkuWs1YS6FaufNJ6LcoAXxLLl5PwZSa854Zlef9RCgwLZG4/eSaeKKl5eQTKMpQfzcAauPr0pWQk1w2456XOZ2CTsgglbsa+6G8cmMI5IxigawlqutJYAKQfFMFmgKoBVoDVBJsROPbAYIQ+Zxc0YObWmN1fE196RHZ+kkBgr5fIiV7GgodI2h62QiJ5IiN6+U8DUmwN7JsvnHpGgsa0WIgyxPdFkrXO8bEeGTuVKtvwVF+KHwq7guGjib2e8kGH7OcYRONbmkRS4u/QfXVwDw8O386ozRJQ23EsN6eFPnXPgw2i91Q41/vnQPKtY6A9tI8wN54oi/qUqqMN4uyRrk9fYNXhkPJZPTtxx9lBamxVpCb9/gDlGMPz6r6UZp2DHXHtz/W+PiVI4aC5+7n2TVoC8CHG6IQngb2Ike985zv4U3/qT+Hnfu7nMJ/P76tNG/jzf/7P42d+5mfC39fX1/jWt771YMefMGHChAkT3ks814XxGGzLiDsFHrJv+16Mt2Udxzi0PA0bwBBQ12BnCu6D8tw0wHKNUO4oJj6i4DT73w9kXTI7YqEsoW/W4CKDuSwAKGCWgSyD5hnUMgd9noGr/mAAXV3i8x/JYAvAZl/D/Isaxb83sDe34Krq9oHWEsDTklFLjnzY+N0uuEw+tZhLgK9pQNaC5jPxZckyyYy9W8I2DfJbg/yWcPGpxezLBqq2IGOh1hVQ1cg+vYZ+l4NuV63puDViMD+fASYHCgNUVXc8NAT2HjDezHzPmushU3vjiz2Jkp59sDHAarW5H6D19HBEj6/FPppEYCG3fGYu5bmQUWbgvtjlcbCvr0RfVuWWQFvbjgNJOOBBgmLPCo85TwNhbIbgVjwGfaZ61EZSJJ5DgJQZVAqklCOHd2WltkFYUtRRnXTKAZ4yk5ZaMhh5LoRl08ih0mxofzxjgNqRx0q5udfdwxq9hPbwOe/53WNjF/nmf5Zl0U8OVy2Q1gDTOF+LIXVaRLAFNeI+3gXxfocCmami5SEyjXcdw68bT9GWvuu8SykyoAQLn+2zrk2fY9vUAG79R1nW+qy4cxidmEPROPH77MO+ffockwQ68+Om+kHUVAck7xzaV1Epx63X+pD9J6qWcb9L1UZnsv7ZpeS9j2M9NTxwu/dKIfmlX/olfPrpp/jdv/t3I8syZFmGf/2v/zX+zt/5O8iyDF//+tdRVRXeJlL6Tz75BN/4xjcAAN/4xjfwySefbHzvv+vDbDbDy5cvO/9NmDBhwoQJEyZMGIE+1cNDHDbUpuYQrOemkfIKtQT0uW6EPDEm+JL433HdtEH3oZrn3tfDWMCwS/N3X3nliVdVhFr7yX9KzLVtxqgvFeqrDLRYCGmRBhX8S7737FBOmRLX8N9Wn919F2r/Kwqm6ZRnoFxKZ3mvFACAMdClRbYC8juL7LaCXtVQZQMqxUMDVQ1aldK3fUGUPAMWc1BRhHZLc+i48cAnyIrddYjYs6X3+PfQBmtdxvQeJaxO8RJ33y+CEynyZEGxummvDSnc7/sqj7Z6BIzxodj2+7R0F1G/t480pPt3nyfJPmN7oy3PMGs4KsM2+vz871JFCbCbFIn/77dL/bPuw9fjoYN+D3W8U5EBEQ561h9TgjG+3qS6/9+GpGTWhAi962Du/v8c0Tff3se8m/aBXyM+RTzH59IZYy/FyO/7fb8P//7f//vOZ3/sj/0x/NAP/RD+3J/7c/jWt76FPM/xL//lv8RP/uRPAgD+83/+z/i1X/s1fPvb3wYAfPvb38Zf/at/FZ9++im+9rWvAQB+7ud+Di9fvsQP//APn+KcJkyYMGHChAnvA55j9td9gVlqxmst5MNDwBpwZYWr8FnISV3g1LehN7alNNR8BlgLW9VJhn0btCFroZeiiOCsNSxmV6saltuAj+8DUkBjcPExo74irF8DzVxj9uYjZG8voNYl7DoqydTUALv2+L5USv6Gy3CMsqvTQJBXNbQfiMG6qBUcGaKUmMc79YBdl5h9fAuyl8g/W0K9uw3nzHdLqbWf51KSi1RbgsurD4yF/eAK9esF8s+XokwpSzEmZ3ZZnc3h95LL0KUsO66m+hDS/Q1lqQKS5c7UG4CT8msWsAqsIJ43gPMUscHUPRjIay3CqqaR/cVlZcYErULG+47a70A3+z/NJDxmjuvL7N2oS37CefSBa0KfBNsCTftgV1mOsf3cFzhUBECDiMEbv23HJFsGqqolDLwPkx1hLOvvY90Ssr3tcvejVyWMyv7vCYqlzwPmqOyi76uee4cWc9B8Ll5QVdX6/wCuxOEOxN4FvlmefJeG7N5Hzz4fZMyHuaHns7gtnnS3cp+H8x1ArLaLS1Syf94Ooc/DwI8h3wZAEiD8M3FfP5Axv/X33kMFiE/d/n23jZ8dW1WJETkWtj2i9Ge0z11j3nsZdZQjXvk2tO19X8On9FwaQkoabajIUlLpQLXImN9sUQz1ThvRNsGHZt92nfoa3rfC7Nj7/ymuqZ4o9iJGXrx4gd/+239757PLy0t89NFH4fM//sf/OH7mZ34GH374IV6+fIk/+Sf/JL797W/jR3/0RwEAv//3/3788A//MP7wH/7D+Jt/82/i448/xl/4C38BP/3TP43ZbHai05owYcKECRMmTJiwgfvI2NyGSL4uMa7Y3wKtwfyWrETSWoLuxoBU060j796+yFgwGWf2roL5OrIoM021Qb+0F1Qj/zEBIMDMM6iLAurqEkrr1rDbv8hZBkjaxszdzGWyYCape+95EP+WGNfSB0QtohQwK4QM8W31AXJPslQ19KoBrcu27BgAriqwsSDUYKMiz5XuWynnGs1CI5tpKKXEl0NrEHNQRzy6mCA109xr2y3Z5tvgriMUwNaCvLrJK5H8fzEeMmP4mIzBbdumhsvvO869DyJSdyMQHcONW1aJmuJAbAum7539nxI+UeA87HMMwRI/L5Lf93od7WrHxmd7BhLj7OfBAHVS6mlfHBIQTEl51U8Yp78BMG7uidSGYd++H13Jyd7reV/32rnfww+NmHR0hNej4aHXne8Tdo37bXPSY9wzvkza2DFxzLpwCH2qksfCtrl2Uow8KPY2X9+Fv/23/zaUUvjJn/xJlGWJH//xH8ff/bt/N3yvtcY//af/FD/1Uz+Fb3/727i8vMQf/aN/FH/pL/2lUzdlwoQJEyZMmPCccZ+L2b56vafEQ7+UkA+KJH4QD53pCmxmAZOSMlI9LwFsxHeDXr6QmvnGAMaCrQkZ0lxVwPWNBGOKAqQVeFaAMg2TFyDdEiK+/n7wBlmXokTRABhYfGGhakb9UsMsFihm34IqG6jrFaiqYT97A65q2LIUwuZiIf/PcwkU1bW0uSyFMHHqDV6X8rkra0Mz5yVydQEucphXC9hZhuymBK0q0Lsb2LultI8UaLmGJgJu7sDLZatqcB4svuQYZbkEG2NFTKZhFjmqlxr5bQE9n4GKXLKuqxpwbYXL8DwGpEhIofSa9/0NdLJQO2oappBxuhMua3lM29qsd5YSbo5EA0T9w4Ary2Zgy7IlwzbqVI/EaL+QLfXaD8G2EmCnvN+fw4v7qdUyaeB97NjpC5BEpstct5m2pOxOpUZM2LJXk4wYj50s3tT8OUaq5NqW2cqtOsPfh1TkbZlDwKlaeBy5we25SAnCTEjiPeawMUTB7p2k1+uITOtd+yfCqCCh75s+PyGfiKALGRsx+Y4oWBn5TnXUckGZpzcUP6TbNlFRCEm/WoGbxs3PB2SID53f+4D0fhq6vwb6o+Pngs1l1+g2JNe8957pa1s8XjtEfOSTlCoa7/PaHktOPiXsUhn4a5k+Q9JSeLFPzq5rte+7xBhlcaxgBLrrwkOVFOd47YfWxqT2U2A/1SoKZ9Luo4mRf/Wv/lXn7/l8jp/92Z/Fz/7szw5u8wM/8AP45//8nx976AkTJkyYMGHChPcb+ywo0yzxhwpqDpWqiUqqeMKgcz7e5wFwZuLes6QtIdHJcLXcKiWMcWWVEL3YK6AQg18QiTpgPgdfLqAaABVD1Sz/ZoCJ0FxmUIVCXrmyEBcXoLxqjYz9vrUKJWsIAOcZyBhXpgmhLBO0bs2GQ7stWCtwJiXAyCtH3PkTNP7/7b17rHdZXd//WWt/v+c8zzMPzwy3mWFEEFssIpdSqOMEjYlMoPwmxlZiDKGWVhsjHVoUa9CkFdJGITZtUxuLvRgwsS2VJthKCzqAYlRAQIgIzRQsdVCZmYrO7ZnnOef73evz+2Nd9tprr32/fPfe3/crOTnnfL97r73W2uuy9+fK5zsSG/2b0tR5NeQsx41QU5D1PDEvsnsjGJFkrpGQ2BOR9KzQhSD2hV3eWAnDnZXfZxtiwxP2+31Uh6/cUFKHlyLKKz0iVua2/q6+5Clo6gTHSunfvsDO5rtpqhRZg3IA9GOsMWAF3OHfTU83Y5zIKgICAXfdtWP1qArd4n/f1pLZhvwqwwnnvHW+a7/HlAZDMtT+WnXvbRvCZ4CCcLMY1lGHuhLaQECSC7mV1T8eCjIrtoGShlXeY0RIszeEXk7cfMwMwUyEcJNywHBBpcpHYwyhZe/eHjtmPcee92uibT8d25zqwxhKOjyH9mZwjxEAAAAAgFUw9IO+/8I3xAugtJZUKi6IyXlpVFijhw/pA7+YCuPJ4bDCaBsiy3g+uNjvNkk7GYH9+Tmlf3qmBS2+AFtIbZl6siVx6ZIrm5hJnO10DoltQuL6TnuVbLfET30SqQsbSm/YktpIOr+iH4Uv//E5kRR0/gTdp6d/tiOSRI/fosO8bh7b6S75mlv1pa/tSJzviP/4fuL9VUqedgvxyVaHprKJ2ZX3sm9ySIittpLm69eJzs5IXb9OQgjanGxpTxdInSSkThLa7J9AcrPRx+33xFevknrkkcwCPE2JVOrid+sY7qkWWHn5CNTVa0RXr1Fyy00k1CmpRJC6fJHk1eskzne6bNM3yQ2XtBfLdpv18X6vc5FcPyN17XrxZZk9K/YTc95eGCtka11aoVhwY9C7rUIQbROSN1zUiqSLF8mFyhKC+GSbG6Picd1H6qr2pLHxzEVC8ZwnnmKFmYmun2lPEaOgyymdqhRCgYdA6LXiBEKCikrJsn7oSygUJYoLT7uWW2etfGwv52UeHmXHNlIWWKG0Lcvz/qLMArw05w0ro1i0a4XSnmsXL2pFoAkLaI8NlaulniD2X7uWW0v0MGTTduO+z80/K2zfe3uMKUMIQeLGKzqsIGsvwEK5Uri8TrxPibYnJLYneo2016rD7DFiu8k8VLz8F7qCLeZJTCHhW1THrP47eYsEieq9PnZVseuVn/Tc5BnRubE4a/8lvbbStev6c1uOHyqSiIh30fq6fE32/8AThK8+bg/U9bUem0lCRHqvEEmivfLSNFN4q4jHUlV/+Zbspp+ilvDmWGFCSJJ9xvAt0v0+855BDkbtWmvX97hFecE7p8v675+jTN6I0Iupag+wHkqR8sR2o5/f0tQ9E+pzStamNm2IXdPzWludciy29lTBKp7rp+w85tJxVlmfNnUqQYfQjYTfmsv9K3s2qvOgDN/fYsc06fOhvRSnZKh3zarnMFaNgz9AMQIAAAAAcOz41qfuswEfpm25NnRKakN6JCRYEdskwVIQscyH1VKcCXbKsEJpRXmBlPEOCeuSbiWpE0npiSChmJKdEeBcNgKcvRHiCcoJ7dVWe7XIvdKW2FaoJGXmNeK32QonjLLCecVYQf/5Xns47PYkz/fE20TnRpFCJ2JPEh3aSSktwPO9TdxlRCFnirumETQJpY11ORFEGy9Bu9I5NcRW11dsNkTbTb6vU1VMGh+9nvGYEcIkN68/xWFzekgdl14QGQGf6askS0jPJ1siIxMWSul+Yo72g4jlTrH5GkKhi5LExHmlSB0lShH/MxeKZmxL1bIX5Jhl+Zgvyod6AT/0y39Lb45a2niI2LYze0LrbM66OSVlNj/NuBTSE0BW9aGpj1POmnEVjn33fWXb7PwydTT1cutjZVt9ob+Z98Z7sHSK+WXKyJ4QMxKYATGBYMGDziofnEcQZUremFBSyCwHSJJorxFz30vzgjTB33d95ZoQ2ZgMFTx2zbb1pXwujMay2K7ra6hEih4zoTfLWBx6bSQqXt/38JXSeW86wrUJDMdQHm1jY5RZpTm1Dsmc+g+eUIOwbMXInAYkAAAAANbF0C+TQ7+YhlZ0fcoPQ7aEgqKqsBkuJEJaHg83UFY4IVgiiVgrJyhJdDLyRB/LzDqviEmaXrD+Vympa9dIpCnJU+3ZQanxojg9Ib5wQunlU5LbhOQNl3Q4qvv+hOQNlyi58DSSKdPJwztiQdpTY6vrJxSTvL4nwUwnj50QC0Hy8XOis3Od50MI7ZFi47AnCfGFE1IXtySJdOgqpXRCeJMXxXmKnO+0MHGzIdpuiTYbrXh49Col1860kF8IZ81MyihetludNP38nPg8bw1bECYYbxVmJnHhlORmQ+lpooWhQhhljxEOGi8cYS1s05RIJcbjI7MkzoUwK7Mg3u0y7x/yLFbrvAqsQHd37r5jIUmkqW5LqrQny6ULxNuNU4rIxx7X3+33xPvUJaIvU2zkrJzT7LOMNLM2Lmlnrv5lSpFYXHW/rVWEyoswrncbwjwDvdaHhuceUilyCHJeAar63g9+7RIvB1bESpIQ3mfK5FMiyguAORA8Nrh/BUt6K2RPVe770Gpfh2/yBPknJ0ZBbJQ1+72Zy/uoxT+zUWaebElcvEB8TXuK6fCIp04pVJgvbcZG1/FbZlDQpzzjEUnKrHHmPrHi/L01fWrbLpKE5OUb9D1//PHoWBTGKMEpyP113uK8T6h8X8+FT6zKeeJ5GwhJdKa0QsQqJkx+p9q1t6Rsfw5GLeHtvqKYBBnvIqNMy4Xr9J9zjJdnWEbu2jGmUqS4+1PxnOq3x1a/Tc6C6HW5RoHazAuB9zvvfkc8Uf3cYUN4O/rXObSSaGjm1p6BDaoyBbHM5nufZ6OhaVsH8+zd6dwh6zEVJV5j4xnntA87SrR0xQgAAAAAwJjMwdLukMQsy0KrTyNcEBxPvM3KxLmXFQ+qVkBhwlyQFCQU6eTYSmlBuVRFGY+vPCDSidkTzsIuSf1jw7/wtetE5+eUXN+T2khKru2IE0HpBa2QkDsmkbLzBhEpkSAm2qckUkW0V9q6drcnsTPeHs4DxPNwsAoUIbRltRVC7fdaKJ94ChAiHRpGKRJqk++nmGAmMh5zSc8txpqaNhtjEeydGwrAYrH97TGy5KUmd6yx9vSEd4Xjmwgo3fEqS4a+32uZTqpIiJQoNZam+1QLDFOVE/ZUWZja78qSyLa1Ti1VikQvPqN1ZIjQBXNqzyEpU46Mes0GipdSRU3E+6tFDqGY90LmmeDlpiib+16ukly+JZu3qSypvLEeduutX57NlSSFFoxPqSgb6VpCevsKla9ZkRO1UF9oJQkTlfepT7gHVFjsuxwjtt/ZeKs0HJf6HsmcF0l0z2hKC4+faB/6Fuk5ZUKDZPdla+EUa2RVf5etQ0PUa6h2VQmHrUcZLOGPmpg3rvcltQrxNQZ9POymqsean9XK1vwOz2JQjAAAAABg3cQenJo8KI7+UtvTOjUUPPUNgVHzkuosfi3hC0uSkBDSWPsGMcdTo2ggyrwZlCeMSxJjISi1IIeZaCNInJ5qZcLZmS43YlHKaUp8du7CgAgirbSQUofEkoLUU28isUtJPnKVeL8n+fn7SBKRuOEG4ksXSN18iUgSXbz/GoldSmKvdCJ0X1ijlEuuTg8/pj0ciHTuEufpYKxQFWmFzMULOsXExVNiKUkmifY0MV4SQkqTc+SMeL8nceMVHcrq8Wva28R60pydZXH3/Xtt8rTYsGSUptlxrIjTLQkikntFiUkuL3ZKCyFNgnGHDauVeiHCiHQdE1k/vmyc/9g4EiIajksfH3mxZXYJ0HUf7Ex7JdHVa/qQvckNoJiYOS+cLRW0mD/TzIJdGKtpZbx5KtvpeYu4F/ZSAVTX8C6R9apufk/tMTGYBe9QArYDv/iHyhH/866E46qNB5LxGvHj2TklhvF0c+M3ZkFuLXLtda0nGlEud4H24tuX14/Ii6WujxGbTZaHya/y+Xl9rhBWbq0X261ee3c6VxKpbmF3hBTEVgDb5n51mXNVXgaecN/lwojUlYi80JHZeitcuEaR3bNLF0mkipTN3aFSsy+Ytp7v8vuqvY7JYcLn57VNssp3QXpN1nsUxfszmCesjPKlradIGTFDDlfRopLQtt31t903vXwtIkkCZY4o7luxNW3sNblBX0U9IOcYcSW2v3GQb6YNdV6qdXWxY6Wvd82cOfSe2QcO5t+h6tD1+6G9RA7dF00YzTukwviq5fM3FCMAAAAAWBdNlASweG6OL2zwBTJE5OcCYea850hOUC1MDoeaB/jwnvihLnzC+2fjpNvrGYtlkWrFCG9N7pATrShQDz+ij7WJeIVWaljlB28k8TYhlQgdJSSRmZcHs05EuvMSxEfaIawFtPMoCdrpW+ha4ZQJZcWp0goU6b2kJ0kmhAxfAJKEBHNmHWzrkCQkNgmxIBLMJJSnkKoKhWGVVy0ECvXJyosKhKgXkF8PUu6dTwQCvCxZqxd2rKt1qfXSaagUmYym7SkTCK41dMgSOHSfF8ZOUlActFIk+Hl5YuU3FbxKmQn9A2+0XMi+MkxOKuG87rQSt9G5QzGGcDmnHJHla2/N+pM7T0gi6e3LqvyeO4+/KgttH/84u36KBsmlcvPCKvDCzz3Cvb6XEUhcuciKSTRIoxWt20wRwdyK/j3YxUZ6nj7QGtrYOwsAMB9iz8EtngmgGAEAAADAuji0QCqkLDZ1m1jUdXHLx2xzEJ/boSSxJBKbjRZS7fdaWSAkicRaE6eZ5Z9gEuyF4EhTnfdDiOz/nb2mcZE/31GYQ4OIMivO/V7nGrl+RkLq5OHaU2RPYp9ojw/FJM5SrTi4dIHo4inJky3Rbk/qT79iFBdE6kTQ9VsukY6PRcRS0PkVScREydkTSJ6lJHeKxPnetHmv62aFfMokZN+nJB573Hg0GAXS41sd1uT6dS3c95UspC1zeb8n9ecPuSTmuVtw+QaSp6fEjz5G6tr1glW6uHiBxMmJDsm13xMbDxPxhMuknnyF9pdPSG2EVo5c35G4rq9n68jMJFiHpGJrJMxZHHibP6AUo8QoDSnieWY4IZpS5PIGlOZL0NZwTETqzORIsAKLQEmnPZXaKWb0GGqRbD1GA0HuJJQqRwZYG4YUfFVZdfdhKmV3VR4Y///Y903q6b7zlFphubnjIueHHh9k1m+7RjLrtZpV5tHhW0fb+ewnp7YeZNZzZG/baK9TbvXvh17SHiO+wtd4o6mzgudCvhCzD53vtMfbyZ5ICOKzc6LdzrSH4/ckV4wJT2W8Ftn2UZuxExvDOQ+bmj2/JD6+9v4za6X0cnfF1q6SPEpkvf4kZ4ojxXlBrw1TtN1kXgW2vJScpX7mOdFybrVR6FZZO7v+8p6Vulhq2/Fc9r1Kic+z0CvO+4bIm8tByK8mOUe6eMcNtY65MTOBNXmX+k75nN5ybnf2VJkTczD+ajJHquDYulVxrUO395DMLe/Koch5JTbYLzygGAEAAADAYTi2B9lQgNT4vAmsEhsKK/0cDUSUJenOHxQvn7LQGU7oYD09OBOWa4GQLtsl+g3jn0vtgeJfU8c4N8KufUpin5LYGWGezeWxtWahp1ogt91qQdSeSWyYXIJSoX+E1ueQcwmxuUeEIE4SrUyQQpefSq0U2acukbAT2guhhXk7nVhY6E4k592S6DBiYrPRSpOgD8V2qxOzbzck9tnjuz1ebLc6CTERMSujeMlyngg2+VL2TGKnw85QmuUWEb4g1RVuX7JKcpCEVAiGshAwHb0tWGXJcW3feDHtuyg2Ci/cHdeiwpwou0anwlsqEcZSOsyNUKm89jb7gt2mx4ddwt666/6vsY724nRbxUoXfIt8He4wC/dkvb24yfwzoRoFEdHOU6j7itsajwobbtH+XciH0oSq8dY5hJ7Mh88S3poZeusY3NoT7hms9PooKX+f2YR6ZM6FUrR9XxgHNe1o41E4Of4aUVBildS7TVx6/z4v4Tm2jSHOsbP0PprzvGxLk7XUV6Au8d4ttd4rY/mKESzyAAAAAKgifEY4WDz+ktAjTc634ZjanDcUzlPFjy1PmQVvmpKQ5/WWXb5yhNJc+Kmc0E3onBZshDdZUlYvNngs9jkrbTVsPVESSeKxqzr++aULxNsN0cmGeJvQ/gmnREQkn3SZhGK6+KVHsuS/bJQHnocOP/KYFiSdbJ23hzg90fHtiUg8/JhWljz2GCn/XKt4MOG6KEm08sIcY8Nxya95OqmbbqCrt12k3Q2STh9KafN4SpwIYkF0ev9Vkg89qnOQPPmJrtz0SZdp/4QTOvnTx0k+fDXfH1KQ+vOHSDz2GJ0+fCNtr1wi+dh14kevEu3OXV4TfazUihUpiZxFtyA6Oye+dq1ohVWHl1OEfeFbaIlp7nsucW9ZvHFb164M7LkRU4i0FSzmCEN1DSF0G9LLow9lY6evQOAQAqCIR1P+O5VbOwqK8LaeCV3OI4rGx+dIDo9S6+jIvhXmLYkSeqCY30ykwzmdn+dD/llsviSKKC2Jcp4rrDyrbqMUFVIQyY13mswrh2w5aUp8/YxyuSTaUPAKChJ0Wy+bshwbRHpMeHu6y3e0KYpmhBBEJydZyED3hSLeGxdL9j0TlPaqsZ4xSpn9R5C0uUOuPk4udBZHcnxUzVejwBFCOEUO7/fF+xkqJGxeJpeHTNWvdR3XBrE9IXHh1CjNPG8Y0mNLnuj8NNpAwIxPvz8qFNpOkWjHt/9sZtoZHVNNvUca7q91x7t7KiTlnj0hO5uWIb04rfetzReVpvGy5nJv6+rRxKOkSVuY9b4zlXduC3J7Wmydczm4ej7v1XnfHZJDvLO6dVlQMdZxnOUrRgAAAAAAfNZofTNHS3BPyMPc8OXPU45kn2mBD7N96TN5JWICm9o62ZwUKXEqdVqP7ZbERgtylNCKBt5ooVm6kSTPU0r+3zWi850TJDnBmUlSrq7phN/y8mUSiSQ+Pc2sZRVrQRSrTNngwmux8SjhLMeIFER7Ldhz7dtuKL2wod0Nks6uCBJpQiwFqa0gEkQnD2+JHt8SXzghPtkQ7XXYrv3lEzq7aUObRzckrdu46SshhA6Xdb4judmQFILo+pkLecapJwASIgsxY5UiJjF8zFK5DaVW5lXlDjmHy7wLOr+Axq2KK5UijcOojJS/BMKw6ZiLMqq0zJYK+pxSVJULfptc3gvHGAr1RJLo9cbuAW5tksUypA75lKuLv+ZW1M+eX5sTqQ7v2p1yEjjhjQ0xKHJhBn3vOiEEsZTVocZ87PmpUcD4igzFeu23yglbl7Buddj9gai4lhcUKl4OEilyurWCYnwIpND7NJH2IPX0ecL0s0i0RyWb+uqwal7onlDxVeZNEvVIqWlPn/2t6XOgX99I4nkwAaXh9noKsKcMk1bH0M9qa3xGsbmXwnWh7zvdVM91a70vAetQjBzBjQIAAABWx1j7d/iieiiLqvCh1f6OxXSfAz2t2IpUCV0i3xmLJ60g8YRi4YtExIrVeSfkFClasSFop/NtEJFIUxNWygi09orELiW++rjOZ5J6OVGIMkGU0PHe5Q2XiJJE5/qwOVWISJxsiWSWi8N+rssg4rMznTw87DpTb/Hnj9D2fEeX5U108siWhFVuMBELQdduvUjiqRdIKCKhmE7+/IzE1TPaXUno2pMlXfqyJH7kMa2U2e1cgmPBrKPnpIro2nXi3c7lM8ksSo1Azrd83adE6bk+nrlorRzD83hwOQWIygVKZQw9NweyQs4pVjyhWcyjqe+1dNz/TqfO24J0qBf5IRXFR/LSX6Cr50q4dhc8YsKwh2aN89foMOcKUd4TpExhYb0UlVljpCCxOdWC7gsXSGwSUo9dJb52rZmyorcnVGa9bfNS5K5ZNd4j41cIQTaslRCCaLtxyeWJyOWFyfLFbL22eP1u1/OwXOMp0iuHggn/yJS6EJUikXrfjnmNEFE2ZoSRDwpnHFFq/NB3XirWuWc8T0N3b9KUhNroa6dpzlskpyzy13rT9qgSJ1Qe+u1puk5NuQ4d43p3CArvIgMoppzxD83jPh66Ds5AaWbvU0Ra8aqY9EtAyTuPb6jQti+xXpTT4RlxHYoRAAAAAABQztyEf7VWyi2F6TELTdaCDmZBIk2JlSKRMjEpEop0bmGl837QuRaguITErhpGSGUsUP3wYWzyhZDNM1IIC+DVR6m8JwkZYZXx8baKm+SRS3SiiNSJJE50eWpDlJ4IYiko2THJHbnviLXyRNh8LEbII4jySdxtonoTaoyqhPmm73ifujwk7IREHcaQTWjr9Q8z5+Lmj2I1PAVV9Z3TfDskc/N085lz3cZgiPY28TAJL2uUGESkjZzLyrCC6dLvfWG1WUuN9b/YJDpsohDEPbxamtAo10pLK327PgrrxWCRQisUdqlTilgBvdhmXouleJ4nnKpm9SlT6ATCJl+JI4QgVeatY87zQ2Y2Ulx13XNMzhqXQ4a8e2ZDannela6abl8MfufqU75nzm49afscBcDU9M3VM/JaX37dDkYeeCacNctXjGCAAQAAACCkSpDbOKxNT2VC7KU6F5t8wvA2Q1tj2jJC7wCiTHjT9Vpllsj+d+HH+x3lYrvbz40SgDd7EkKSuHZGlEjnMcKbhMQ+pfTsLMtbEl5DJiQvaU8R9cijWmlgFSg2DNhub0JyhHHgjSJlv9d1M9axLmyVEVSpRx7Tl7r6OMmTLYnTU6JNQuoJNxBf3NL1p16g3eVEhwETpJO5E9Hlzz9El/83k3joUW13liQkbNgUKXSCeaWtYfnsXFvQ+mFUbF3TVOdL2afa+ndvlEW5tphY5bGx5B2TJVr3wnPZ30Q65r3tZ6EVV2St6sJ46BX3/GBUCcAGqGvXBNeDMPaaVDZ2ulxvaK8Rv9w14ffxlG3zBeheCK2CEKuwh9RY/vr3XRlvNiFIPWZyLJm8T4Pi72E1guZOYbXCMu1aGeydnKZ6fT+9ZD7Q7WdisiHI9D4o8uVIQUIRsRRESpKw+nk2dQ33WnNPojkMjMEBeeEwrYK/bP9zY49TffutF1HOyybw1LB7eWflSGYUkPPsI8rGDVHeW8Rev4wOSsFWdGlr3Rq6NGODKZgyBJF/nT771dCeJ3Ojk1Ik81KeLL9Gm7HDwbpWeywYlJbPPMtXjAAAAAAALIGc8mAG1oVDx7m2Al2boHeKuNbhy2IoYLIvJlaYk5rwHzaUFpEJG1WSxNKSJERSZF4lufKpVqhi3emFyaNCSb7/eL8jYqY0TbV3yukpie2GJBFxeoHkE02y+D2bH90G8djjxI9fI2aV91iR+b9trhS2/RAKsGyfSCZm/XcY4qRVeCf/PhiliAvn4nuySFmIAb8IfEHHWC+0/sv+FB5fh16P+tJVoBj7HEKK8YgJzonya1aDMlyuEUuaZt5tTenpBRfNQ0EtlCO580LliNcfKi/gEUmi21kVEsusufVVEFo57ZdvFVXC2z9jdN3bg/wXOueLpwjxc2P0eX6ougdGqdQ3h9bk9H12PPa1LTRQmpIh+t7WfSX3sVfY0DlQq5hsoBBZ+rNXW2b6jAXFCAAAAABAjKEf3MIYuH2VEqMJZMOQUCVeNy7ee5AMl8jFkycysl1Om5XbljIhW3jYbm+E8Y+QSwBLlIvfnnth9stlRerxx/Wf1qukdT2NdWpKRELHeHfCJ5MQVwugTPzo851WZJx/hcRmQ8mTbyBxJaGLf3SVki//KfHZuQnNJTMhki1P6ljvnKrMc0SpzHsmIgji/Z7IJJh3CeiZM48PS8xrJHcfdf21RbIR3p3vjPeKza1j+8Kz6A36qVjuTBlE0JFZPfreIjr80CZLEt22zDZ1k0n+Gn3natMX/SGso4XsHl98CEveuVB3z+w9HnNeBd5j+lfgURieYr63aw03sf41IY1YySwf0+mpXmeuXSdW+9J5k9WnhzTOCwNY6UFSNi59b0syivNUEZlwi+LChew6+30+J5SH3Y/ERot0eG/COp6cmP1AaCX3tWvZep4IF1Kr4NkZJEkXlBBRUvAwLCSwJ/I8PYpjIL5n2FwJmRGFSJJcf0Y9VoiIZJJbK8uOE4kkom2hrZym2T1k1W2NbUqZl1y4lrX1qpVJ8NlAz5eHYOr8KlNK4qva1fRZPud5Fal7l3eCsj4/hNC6hxFI5qFsnpXGzjVSmM+Bd130GaWmTUuaq0Mw0/YuWzHCbEz9AAAAAABAa3pbHtbEsJaCBItM5hCGEmvygDxQmBsnpBdesvb9PvNesC84qhjOKeolEtbN/l9mAWY/95QkYpMJD3Pvu1ZBYjxU5HmqPUWuXqf0K3+eXe7iBaKtDkdCijNFiWISgjNliVduTADkBHNE2W9WxEmik9abuPe5/qlQmLFirRwxyZS1p4wRAgZeNlHL6pm+OC2CrnPaKhiWpCRA/PzDU1gDZc3/kTUy5jHRhFzCcaGFxeF+UeLdqPelirWsDb6ipCus8zk5BXLOYyTv2cA2hJbLn+F54cWKtuGiXG6qYjgz/csKGb3fvgLI26ScMiEiKMyVRdYgINjvc153HXJh5LwSIwJjKfU1UuV5pXjXtwntm4bRKly/o4HKMVqIHytzfY6p8pacAx2VM/r5dIT61Fwz+ED/XrQbjGGmnh1jsWzFCAAAAABAGWt7oOsag7fGq8J5dxTCUFlBQr3gSAvCE2Oh6Qm/bbm+dWNT5YhnwepePnzvCIsRvueE/n65LowWkfIVHDGShOQm8JLw22m9Luz1bFU32+x7EXlZ8s/32utyo5i2Oevp7UYrcLYbbUH8/x6hy4+dkTjfUfLkJ5LL2bFJshweRDqGPBEJk1CemLV1sE3MHiaXdX2Y6hBaIcajRmw2JC/f4LWd832Ra6TKziXKK6HIU4RUJbGNMYbH0ZywyjCnoOsosOvSL76VZZnVYxvKPDGGuIe+11KffE1rGz8hBYv0NP+dXW+Mx5qdxzkvBv1HhdV7JCRN4EHA+/z34uREK1r32qvDXlevnRXeP2G+CpdnxHi32TxFYV2DsShOT0mcnBDv9yTS1K1jev6VeCgEHoS+UN15S1LQZ0KS2JRYMRvL75yDHCX68/Nz4utnWnmz2WRrOHlr6fWzfHHn59l6oVjnW/H3IFNfdZ5m5Uihlec5T7Fg3zNluvXI7qvhumT3d7MHy8uX9bOAKY+vXXP3u+iRmY1PZkFEac7jNPqMwCo/riLf0y7IkZUkJCg1HqxmrS17NvK9Z/wyY33UNIdArqwR1h57D8a2mB+Dpa/FfUPyUcVYblJ2F+XcEOX0hdk9F3aqgz1/DC/6xt489vndGOwXlM6eh9jSxnndWGzwfjmoV/XQ5QZAMQIAAACslSU+iIHxqLLsTYKwDEQ6SatU1YZPvteIFPn8EQORC8ViE3r7VWgYFSUqoArCfrjQUUHYJ6soyeXD8IWCtl6lwhOKKwJsaAQriLH9aL1aNhstHLuulSIkBNHpCdmQJZzInGLEkRrLYxsyxLa/soNiAkEtrBKbDdFmo/OakFZ8CSJimzfFNbHshTsSrqSLACA8vqzeS6JQfy/e/qHadqgY7HVEcwhRf0vXI7TizoWwSry1yyhKChb27sRASZ0VqH/74zYa3sh4daQq219iyptmjcj+DhKCR8evMOvlZmPWL3LrWBYKstm8s31T6KOCoqFlmxQT7849xY+vAJSZAse/pP+/rzTwDAvc/icEkfREQFWeGr7y33o1lqzTvtejSCTR9iT7UkrPa6MiVBpnfZozLijzNmmK2Z/Z5k0pW1u964TGDaxK+qlvkvjItVuf6u/xeO6vZ8g+6in4dl640fXquPakzhx6vDsPxJJ9b67PU20oG+djrzdV3k0DXxeKEQAAAGCtHPphEWiGFuC2Ka9KmGCfN41wzMYdz4eosIKEauGOMCE3mNK8IMeWv92YvBfaKlgkSX1cb6N0sXk5iEi/fIQxyIkaCZGFFNoq150cnqNIne/irvH2M/96to5CZAqVEiFTGKO9FCvcM4nSdWLc4CVESGONK3QIFT+uO7PxDDFWzec7bU2837cXtHtlMrOL5U9E2kp7t8+EdOGYIdLeMPb/JrlDmtQt9oK5FkFQzEr5EHUgGv4lfigFhh/qSwZzuS9D1XFs+oYWjIwzZnbCaJEkRAkR7/aZINtXFniebfrkQIBshecldeQ0dUpkDpKKt2uHqYdNMr49IbFJ9FpXlgtqiHFi8kIJUeEt1/R6wV4ukkTvoX4ODSkyj5RAARLWS55s9b30PCNtOX6YGaecYtZreWi1TYEXqZ+jI3a/lPH2sF5CqSIhvDpstOcjX7vW6B5YTybt0WK9Vbw2Nxwz2rgg8B71b5mdCyXl5pRedfU+4B7k5u7SE1lPxZD3qk9Z7Bke1XmqgThjPf81LdN4o2fvIqGi3BiPLf1eNhmfY92H8J13pHsOxQgAAAAAwFIYWGinBUtheJsKr4c6/GSm7hqKiCIeKU2wD8VGYeNClxDFPUBieBbOuXPDJL++IiZ3PpsktKGgJPJgHos1b0N8NVCKsPXSYaG9U4yHRlYXLaRktt4lJsSK9SCxChGbXPf8nNT5rptSJFRChKGdcsKyQKGWu16HUCPROsn876Vb4I3JXJVFsZfcLmWEiYfXRF/FR235RaVIbs0SnkBeBR4PQhTzUFhrZ1HyO0Sx9rrrXH9vbAuZr29JCMQCJbmWGl3eeh9IylsJty4ov8Y6BYYQLjeUEIFi3N+bg/51SiIiFzYxF4IyZ6xg+spTtOSOV2z6M7KflREoznPXk4KEIm3UwDXhLE19nZJIeflBypK5l5ajFX1+iLRQeVBmsT9rpcjclbegHYfYq+f6jNCFA7al9p2g6nPQnD4egw2BYgQAAAAAIMZQD9uhJfIowq4edVVMTJyz/tfCg7SZ8IiN5ayIWRQZRUMgXOFQEFdVd185wqyr1LS9ZQKEVvktVGYVXWexapUHofC+Vilix0hWDkvS8ebJs/C1gr+zNB/ma7Mh2m4yxdT5jni3b+6pEquPLz1KU+Kzs3wdCucEbe073tsIf9b0kk/UXekTxsk/dJ/YuRvmh+hKIUfJCJaYhxJSNaVK+GJD8JFnwRrOQ6NMtvkc8l4BkoQ9z+YkCvO4GA86G9KQJWXKEdceT4lpLf2DcGW1HoM+vpeLCVuUKWiMR9/ZGfG161m+DRsWy6uTSBKde8IP99gn9KOQJHwdHXu5gWJ5LPz2eGXo8HlMtPPzMGXeibncHDIhebLNLmk8RFhx5gR6ekqC2cs9sstf3yoKTH6WLMyV9RoyXn9ppuBwCoQ6pYSd44rzSh0ilzelNJeLrX9ivHKIiIQxFBBBbi+ZVM5/ZnY5ZHLKP98Lljlu6W2tvHOVKgnT1lvh31PJYepS6XkA5skh79VSx0nfsHpD16FLHjjQjon6FooRAAAAAIAyxhQuDqUo6fNi7VmS+sqKaJLUOkLBmC8MK/NCaRp7dyiX7ZjlbAOlRZ1VsE7+q5wQy3qmEFH5uXX33xMcOuWITfprlB5+2C8XzswIe1woqwHGLyvTvjqL7CHnSqBcKiSFXkPc5pC5hwmbU30OmYNlSIa2/i6scSXzxAl2AgVKXdnSCx1IlMu7VMgNQRRXUrShql7etXRoPy71cLDekVZgHs3N1LAOTuAfelv6ebnqxqY1QCjzMCTKK1p8vJxgwg+dZdZokSSBp0mkLlYp4tWHKM0pWPLfETlFWoN4TWwUL13ROUGKni1WOdQkbJRTiHCm9Ck8gzSx8o6NkzmtPXOqCwBrps1aMNXz0pyeyxYMFCMAAADAklhLwuGlMGQ/DyHc961ueylERGbR6sq2gsaWigNbr9z/YYgqy8SC7FzoHi/sSJjjpM+8spa5vpIpzX9foOR6WWx1zzPDuwecpjlLbh16S2ghV6pMCBMrDGrYlgb32NbLtpUUVyvPYqG4QDu6rg9E+TWiTzkWG7qqSei6urL6cug8LGPTpb9i+WnK+ik2JoQgsdmay+vvxGaj57vJJeQOdcnT0+x45SmP7fpl2e+DMEhUH56p4FFBceW6MmuvXy//WA9WrHNWEGlFjlUmhB4ZMbzP/XLCa7UxKPDzaHBKzlODOQtfVR233vaB0m1nL0dW3bzfGo8Ts5ZnihgTspKD63veK03g3V4r0slTIvlhNqvqFj7XhMoV4ylSpRRhxSQSynKMpGk2DqmBJ2xU+DnSXtZxfXSGArYf8G6wHubqXT4HDl33Ju9xvudmIX8TFT0g23i/x44d03jv0P09YT2gGAEAAACOlbk89MyVJfVNTgHQwcsjFyaCA8HUgOOkzgpzJGKWzIMmKmUuWl43DKESVCpTipjfQogs9IhNYO9f2giahFOKlMTP75u7wFruWsVMGYeIf76kuVpGOO/6lkU0THkmbFHnXApjsFaFW89xLKQo9k3ZWhAJc5R9bYT2ds3xQ2V5VvyF/CT2XLt+RYU4HYTS7lwmEplQmEziW3de4iUNj3rJmDCHOSF9B8/IMOG8n2upBX6uEu2NI7UHTt2J1nvPhVMUJpzZLhcOLept4vYYEb8Oq/w9LeSPamIooXIKnpxXalUfFULl5ZUquXWo4T1zOUa8ujVSzJSFzpojyDkCwLwQRcMm9787xLyDzPFdfIo1ZWbthmIEAAAAWBJjejCAw9JUsRF7yPaTEfvPs2VCgCoPj7pjh2Kocq11VpJoK2ci4nMdRkpb4Bqr4lgTuaGQpWkcYXM/RJJPDi1OT3Of2TAjYrtx4WlyLyL7vfMAcTHk/fjqrh7Gwne311a6fqgQE26EiEicnJA42WrrbyskkjLzQKmJ+c5pSnTtWr1gy69bndapr6JmjbGdh25L2/JK1oq68TEZvgJyzrRRUodegD36WVvKJ/k56ixTS7wPrPWqYhKJJHHDpZxFq7jhBiKVknrsqvbQODtz19LF5700dF6KosLEr6M7vune5PWLSBIt1A88WbTye09isyFhc3DYsWuUuWHujuj1yvAF5kbxEiqpa8uLheQy9RIJ5cNbxfrH5lbZbslPzO5yi9CpLuPsrFLpw2lKghKSp6dufyRbB/O9q0Pud0nbYkI0X/nkLtwgPwkR8X5PYRisVveLlbcnmjwrvrebGd+55PREOkxckuTug8ulY+9V09xrY8IluVHAvOjq+THmPY29P2AMVdP2WZW5PJSt9+ze6FHmUN7XZYZdQ4yVnPK5Yk+w15tofEIxAgAAAIBlMTMrk8Y09SRoA7NTioQeEUREjZKllpXbtF59BdxDkCQkkoTEyYl+gbBCA2P1XEgC25Y2ru7uf0/Yst3oBOlW2Lg3Qr3tiUs0G4anEYq1Ra8yAjiVxq9D5AROzMIJt3wlidhsiE5PSQiphWDGE0WfyuSS0Va0PxoSYCgqrOpcFSJeP2AiYsL0Ja7BQ1G2LubGcIu1t69yhJmskrQ1/jlSEm02JKTMQvlJSbTfk9icaYH1eZrbH/QeE1AmFA+v15RgPxLCeDv4/cSpdm44Ocn2ARuSqiyEUtt+9oTp+ba199DyQ3JZTx/nZVHpVZF5fAh7mF3rpSDa7Uk1UGQys1YiEemE9JK01wkR5fqqiTFASbizrl5mtm/ixgBNCsj2s7KuFH6fkeclZTxMhPcMQazzrjClmYfSoTnm9XcphErpOdIwZ9Dw113IM0Sfd7Mm31eV7ylwZzOE+t43TymiPQAj468sYsHIYwaKEQAAAAAsi0M/TA8Vt7/pd7XlGq+B0IKXTBiJfQ9Lo8bWtMaiqa8FWuz8JvF401THmTfhXZy16VDC/CbKH+9zbc1pEtWmRCzOiOSuWF5q+uxkm4WBUezC1PDeeHj40p2CBVr+/vpWzCIhsjHjhV9OmmrhmbMq7jFGxnhZMSFzCh838VgBYGzKhBq+dWfrEE1emX2UzWY/EAnllRMmN0OhPGU9MkQ+n0MQrklcukRiv6d0tyfnxWGvZxFSK3rNeYI8S3uzD1mBtA4h4p0fU77l/rcCojQTmIdCE0ua6rVTKa3MCdeNvl45MlTytBDeW+WK7SsiomQb1D0oKzcevHZsN+4cSlPia+f1RgB2DBjPEpefKhJyq9Faa5Vy/nn2T7unxXJvNSATnHVY82v2JXcfU9Ljkazyg4wXZeSeYv8BbVjCWAnX0cmuuwCliE+dt9yI7WkbPnC8igxoIGNyJBbKa3P9kJ73AooRAAAAAICl48UBdwoSE3JkFIuw2AOxL0gZ+EWraY4DG6LKWSzHQp30rkyDh28XDkULEAveFjZBsVXoJEm+/1TWjkZhjDj+4uRCtPjfSUm022VeNXOmadguMA2IZV+9tvnWnYcYm6yIyEx4m3fCN3Ev2wvYhJkylvHOg8VTlIhNotcqKbRng3euPsB8liS5HCNCKaJEZMJ+Y6Uv2HpeeMoF33PG1tf9afeyXXZc2B4hszBIQytFqrxy2oY68TwVrJeCvgTH1+XQI8NilV1C3+esvTVtNEovDhPQu8sF+23dnhdTTvnefS2VG6WegUN5pxrFe2ZMkiWddx6mzoiAiv2PfacZS/EKAKALOaOtjs/TTRTZdcc1nWdznI8zUh5CMQIAAAAAsGSskKjgOUD6pX7KB89QOWLr17k8IzzzhUUR4QgrJkEp8fUz8/kw1sHukn5+ECswstbODZQW+fpLIrXPJb6V260WSNqExrsdcdpAsdO0bWlKfE5ZPhEXb79hG4aoQ1tU0PbZxBI4YkLB9TFS1QfcMG54G5oKM/x6scqE0WEIq7J1WaVEKtFrhOfN4Lzvzs60t0aNgtrme7KhrHR+Jyu8V/nQgUTaa44o8yjZbF1uKF1dswfs99l6aM/11wgTPonThASZ9TPMs9F17AYeG9HwYU2LkiYMlhe6ibYbrRA5N7k1arwCncGDbX9iPTaNIqzMO8gI8pwCpiQpem4Ml42/ss9ZkUi2LgQVKaXDdFHSWBmfU+gT6Xb53kVNqZo7hfZaD08vcb07LhhnoBnH3ldzb797dxhA6D5XwjU/3Av6Pvv23fBNLsCoARSzlz+y4jm9aRvG8Owm6j5GwrxP7m/77NKizAGeS6EYAQAAAABowxxfEmLCOj8nxRju3mO9MOVCiDS3NPUT6zqL10Hba/J1yBIBUmXl/HoEFmDWMtt6uJgwHi5cTN82mHIFaQWTsxI231WGCAjDuVT936uOM5xTIM7Y92rpghii4evfok98K/ioEqNqTXXrgQq8QlSm4KhYj63Q33mrSC+ZuL229SghIuuh4h9jFSciFGDZvExl3hN+XbloKGCvNxhN9qUw1JfdQ4TQfSCN54hT9GR5UeLXDJVZnHlmhJ4sDXPcdApPWJVjx7TN5uogKUlYL56W3quubl3y0vh1beLdSaQVa+z15xD7Lzge1rB3+azBCMJfO4Kwj3PwVshyAZaviwfPMVKrPOuYy3IoBhqnUIwAAAAAAMyBPsqLSsvIuNXoLD0FYpayLkmfJ8Ap5DSJeMu0oarvhdDJy6X3guWFmKkULEUtaotWYbzf69+7PbmwJn3vj/Ei4pSyvCVtvERqrAhFkujyQs+OpqxJgHAsVFmPEw1zT+c8LuYsKJJePgcv51SpIqHsnqXGct54ivD5edySNYJeD4yCWumQREIIYklZ6CwbVtBfi4QkefmyVorYkJDGQ8WFmfJCRDqvE3ucH6rQJCdnv81DhGCKKbfL9lE7TwKliJBCJ4e/eCHfB/u9UXLIaitu6z2z22uFgxDEe+P9oZT2RKGkXKluw4H5Sem77DMNFA3O88XPYdJGEDmk0LLN+gSvOGBpq+gYau+aIG+Fo6nScGimUCIJ4cLyseJMgK8/GOwaurxubeE0JRIVnhfKKGuHfi9sVcmKZz6idu8AZftboKDuTGi8RYKoYRdAMQIAAAAA0IWxHuzHfmHw4+APTexlY4j2CKktoNP8Z5PF/JZGEGcVIjZMiK1XLLRKm6SWJtfIYF4irg5W+OhZwvbBvgwZy29B6RyM7sAaWZr1rS9QnbruRgDEgbKBiKhpfiaHYiJpQnGlKfH5Tn8umwmAmJmEolwYQCEEsVXQhGGbTBJscbIlsd3mvVIUE4kgLKI0Iai2G6Ikyern43mk5AwB2lIm9GoiPC/Lw5Ukup3MmULEKJFyx1G8vqyYhAm7wuYayoSQFNuN7p+qvX2KcamUU1zpa6p8GLQGdSg1OJhKWAzdCCBazj40VP6dLtfter2l9O2Y2HBcVftJV6XI2MzE68YRepkKSUQSihEAAAAAgFEZK15rW3xhXOkxQRJbIpfwm/e7/hajTR+OO1ngZQqR0Ho4a1ezBIXOy8EqH8I+k0n0VD4/L35WF4KkYLkU+cxa15q8H61CW9XR0Mq7W3nKebeAI6KpV1pf5mCx3Xa+HUowZa7nBM9mXctZyhIVwxH53hTeOqTOzrK8HuyvcTapexJXSIfCZClzAnKx3erDzs9NUnhzeevocu26zhFlvQxMIvGsXTYZtvZ8s14i2uI2WEuDZOK945UH3jh+cnCtFA/6o8xTg4UOSRaUb+PLc5qSEILEDZdcH+g+Mtf3PBXt3/494t2ehBQkL17IFCaRe8X7XbyebSlRHHGqXJ4XImqnmNMnxEPgDFHfcN/329DVCvoQTOlVcKwcqm+bXtcfA23rOqY3wRTnNiw/l6evSx/5f49lCFcVHjIn5Kfm69LY3j7uby88YrgmleahGqMfZW9lNhQjAAAAAABzpO2Lb6ngKy/IcSSJtuRN28X9LtDUetb/u62A31pUiW3Jy4N9sah4QBc6TItISCf69V84IgIv/7tcqJYhiCWErLoHcxAU+9TVF4AlU5VDoer7sa7rf9dUOeXWxF10bYsm2GYTzs94meTO8YXbfijDnHIksjabkE8u9JWvZLblq0gYwZK2utAje0+57cc4Z9VvaQrvgb+v2n70BFnaI8dT0FfsbayYBHnKp+3W5JfiLL/INiFxsjWKcqPk2m50H9kEvcrL3eK8hPSazJSQ3GoRj9jtdV+E92V0gaRy1+Vw3BC13zv6CDSbftd1Th/K6r2NUchcqQoZt8T2HIKWeXv0OTN4nqwTnltiz8pNzguPb0uokCjzAG/y/lN5HS9UcM0x+nId5sZEYcsKIY4nu3aPHFQeUIwAAAAAAMyRpg+TXrgkIoo+pGcJeb3vTPimQaz+6+ra15rat9j1f9twMVboFnyeC0dihDVCirznSRDWRZ9uXkJsaKshqAiP0rwMCAzQB0fAoe9v3fULSoiBrLfrFC9Nyo+FjuIs3J8Ik3WXeFMUFSkNhW9KEfv5mOw+Y8/3cx2FRTbNfcRp9f/+GtHVG9Ld0yBhb5Nzm5B4CpA0zSk9bF+JE+1lk1N+EDmliM3fEqVJUnWReY+2yhcVCg1D4bw1umBBwsbP90I5MiX197qPl0iVsLKJILOPZ+ZUNM0ZNGem8kBcK10NVPoK84ek7V7b9Ly+uPKbraHdr+Mp8kvb2uCYymsM3Fdujw3CXB7KWKrw3tcNKEYAAAAAANZE+NLjhaUohBexx3eljZC6p+VWITSM/ke3LRD2ZYqNsA5aQCiMRS2pfe67qNdNm7AGU7zQH7Ni4FA5HACoYoqx2PIaBQtUG27JU5DErFTLvObcWhiGGwwFsla4b/H+ZuZpckf02Wv8dvj/FyyXQy+MGgGaDaflQpJJ3Zcmh4og8sKDqSzBvElmz0G/CiG0N45SxRDqhXtfbY3sPCnr9ruIENB5zHBQtyQhkaaZ4iaXh6tGgBb2fRfaKEf86xQ8hma618xJuA3mR924neOYniPh+h/2q2jmLVhZftW96uvxMtZ9HmKNHrIuRIRQWgAAAAAAIE/4ol9m9drXJXtspYg9VwSCvjAmr/X0SBLKhe+IxuXNLHJzx/iXrMv34c71rLNrLd8q4ge7Yzpazx0DdQKrJVrMAjAGVsnrr0tmrXLeci4ZtheGyv/cIry1sBBbXBX2A5snw+YYsXkmcnUzx7p6NWGK+R0Lk5L72yjW46moGiM2G91Htv9Mn4gk0QqF05Psmqx0XhLmTOEhBekk915IrZiQKklICC5XeFiDiXAshITeN949yym6zBjj/Z7Iv++xnC91DHGf/TEbK6/JZ1PtJ33HN/Y94HOs4yG2nwy1ltjyQ8Ozvtdo8p7Rpvymxw+hfJ4ToeeINehoCBQjAAAAAABTcQgLm5gHydIIQ2f51s7sW+EKY5maFo9zZXFpPF93fEOlSCZkbNug3EXzgqWgrqCC2HzqE4YIgKGZi1WlxXqE5HKM+Dk6wvWyuLi5dTIW316x9hLwkqYX8pXkyo9Yvs/VEt4o6XvtoUIab5H42iUSSWKz0QqP/V73p0lEr08X5Pa7QtlC3xtmEmZ/4jrvDKL8/uoZCmT7Z1EBpgmEgjLxzkmDkJQN1+mh8PLmRK87pznZh7W0A4zL3PahvpTmp4kkMh+z7dE6DKiYmGqdXAOh50hs/a8AihEAAAAAgKkY8gG06Qt+3/weYRmHxIaD8ePtCpFZvKbecUKWJzRUNpl7EHqrqVLEXFsnAm4Q17ZKKNQkrvvahTtdqAsTMcS4B6AvXcNr9LmeEPl1xXqLeMnO8+dE1jx/jQnW/8pEsay0ctoLbyik5zFQZ6UfS3pb1h+HWAe9fC3+Z83ONXvG+bmue5LkviOl9GdC6BwdGyOqMZ4fuesoJmYvX0uQGD4MvVXAu6e5nFtee3LtbCJA8/sm1k+5Y0e+Z0OHphkbO8+mCE8KlsNQzzFrGyul+1XooThwuxu+G0xeVtdz1jYuiAJDM0HFWJNxoBgBAAAAAFgauZAmDbwMhGyeWLXJtQ/h9VJ2bea81bL/ghQmIS6UGeQV6WIJ3CYPSbQOHQlC4Bw9hwqBAsZnborAuXt2ReojksDLoCphadn+0ia5aSH0Ydp8ffU9A8u2rbCOY4QaiWH3jejnTc5XxLu9VhylikhqJQgR6bBjzCRM8npBRGyVJJkjZFZULgQWmVBpMsjx0sRy2fZ3JOSVCJQjdW3NJeTF/lRK2bNMW+UIWC9zMUhaIjAmqmetfZELeyahGAEAAAAAmAWxB/KpX3yHDp/lW/VOKfxoex3fcqjUglTlPVC61KfJS9eQ99wK59b6YhPjmNoK8szt3s+tPnVYTwUiEqzXKpEkxfwQtl2l7VPOM8EJ0GWS2wNsGKX89VuuVb5n4Bwt/30vmk57htlzBOuu8vvz+hkpq9gwXh/qfGf+N/2f6HNiyi7eR/q61EvHeFYW8sqUxGiv89yJKtkyj0xXjB9a61iVAMfYZtCOpmOkToGy5LFW9v5kKTEEE4lZU61BmK90LDtv7qxtrZwiQXyLOMdQjAAAAAAAjE0sFvto15rGmlkkiRGq0HRt60OZheZY1/LLH8Pyb00vSACAcTHhA1llIZeEVPmlu07wwuzid/vCblbe/tY3Ge1U61oXoUwj5VEDXBm6z5zuQQjiXUq8O684WWUeJlYxYhRcTsFhc7pUeUy6uvix+COKjTplSOQ8ISOKEl854jxdYBFfGIdlzwxtx9uSBcBN6SsoXqKgOTYuwrwa4TwOPaqX0mYv3G2YzyhT7IeKD7O/mfCDHHrKN1kTwzp41x2cpvN8jWulG7fzeH+EYgQAAAAAy2buD/rOMjOSYHYI4VHdA/MY/dMmpMrURC3IRh4jYRz+shAZZd8DAMDYGMWGToYehE2y39cQS6KuE36XJLueA+H6X1dH/3jRUMEwBA37jtMgXJXFz5nVtM7+cTHBamzvLAjzVPyZwC8vFtIr3BePmTIFSVfmOA+HZog2zv39ISTq/RV6dVUoO5fU1jI4y+8ntifGU26feeMpSYLSkv2t5To+dn81DsG4gvsWMsWe2gIoRgAAAACwfOb+cjOmAKBJ2cculJ+izXXXOMZ+nwPHYDkLQFP8MFVE7T0mpmSIfd1ZHTdM4u7CQnnJ45PEeEZOJMipU7J79fCFf05plSROEVEQDuau4+fX8o8zio6OFr32mq4+Vf12zOty6HUztaBw7s/NU7GW5+OY11HjvE4LGwtGyS8SqZXy+733nTJejD1yQYHxmdm9gGIEAAAAAMtmZg9XrVjay4jFvHgIqcZ5mV/Liyo4PBg/AAxPTqg+kkB3CKUIEbXKcRLmULHnD1GfpuSsvIt1d3ULPDWcQoLS/HHRa5QouUQDZUauMl5YsCDXSLQP/XNAnjoF3mDXgZcOEa1nHFblYWp6r+fYF3UeHsZTJLrODbUnwbDmaJhxHAQAAACgAjzYgyUyRgiqQ8wF1kkNc0lUh8BPjggAAGB+zDmUosUXaLXOz6C9RKzHQy5J/dgIQUKKeJ4Oi02KHniPFJKl288i18gfE+S1aNpnUW+WSF+p1Ptu4hwyXb8f+/q5Y2U0RF3/ciPH5vI2gChregadKjfGWFStGcw6hFaYR6QNTd851jQmQBR4jIByYK0JAJgzWJfA0ugS37ZxuVT94F5nOVbluRJYgWZxw72QI8c0H2P9eEztB2DOlK1Hx7ZONaVtvxRi1ptcJXPr27I9L/Z+69VdSKEThceskKcaQ66P0xLFhvneNiU4JudREs1JYD8LlSgtcs4ImYXYmqNVdZO6jH0/m/RLzLumql65MEkNPIJidcjlpZnhvTs06It6DtFHXZS1IbGwiUNde67g2acRUBeDZkBLCgAAAPRn7ATgVVaZdYqPKsKkrmM8F5QpHKxFV8yya8rnky7eLPCAAWA6qsIDwUq6nLbhVqzygMh4DQaC1rmseVEFmfYGac2U4yfMzRH0p/UoyXJ4NNzzw3vT1YMj7Aubj8Tt0weca7FnhPD5oaqOQ4/dts9Lbfqu1ivGKytUgLh7Jg97v8BhmMsa3ZSmCo+mHPJdYkoqn4lmtFfPAHiMgHKgWQQAAADGp0ohYP/ugi0jZynYQmGSO6YkYe+QlkixNteVP+Wzin+tNoLEqhcTPGsBMByVVtYTJzaeK33XHFZkUljEPUX6lD9ksvW60FdCZh4XRNkep5hI7Qufd65jzEOlJioD7/bF471z/OTmQgqdfLjMIyBXcBclSMzDpiRcV5knylhEvSFKxmPoQVHGkM8zRNQ4Z4hTgllFRUleG5nkj68rs/SZ78DrITxVDsua+l0IEkli1u6asFplHvZl+X1877w2uarmQtk7yNLaMQHLVoxAwwUAAABMz6EEuksXJIcChjBElftO5S0auUf83CovkSFCTYxxP5Zwj+tCWMQENXhuBeBwLGFdWQCc9tiPqmi6PtYJVF3ydOl9FCRTJ8/7kUh7aKQmZ5YvWAvX8rZ19Ork9vW69jCX7/m2HCdE30aUFAOM87bKgyGVY2X496LLXto2dE5byp6Vap+fAgWIraJ7LszfX5f3pm4a1oUTnMN6OFWy+bkyhXJoinBxc7h/SUKC0uapoGJriR8e0H3krxmJzmmyNOZwfxbAshUjAAAAAJieQz1kLf3hrtSa2bMU9H8foi4+hxDkL/0eE62jDQAAMEfq1ldWmVKEFZGQheTpmdIk1YIv5e+9qlx47Id2bFIXr0611OWVECLqqZHz2hnDe3OtlIQpO9j+7cZU8Dw4JHg2mRdT3I+xrzGTMeW87CwDrdGhQh2sl+UrRuCGBwAAAIAYS3lG8EMuBC/D2tJ1+iqBAYh5jqxd2AQAOC6G2meH3Kf9TbMQ5om0VbCpNytJQupjRJJog+HQHL/gORJ4gEwt4DQepaHCZ7TrdWEMS/Kc10iDcGlVOCVX6LHb0iMqZ3Hevc3FUEANBbVLec4dk7l4LXQF97A9ofdTV8/6Bor2xVMTurF3mWG5Cx3Py1eMAAAAAACUMecHs+iDpGctyKpXFK3ezKHv5lCHrnTN5wIAAEugbz6RvmXEiOWqqjxe5TxICgoPPzcFZ7k9WMnyePZ1IZ9i3gBtBXBzF9gtaa/r2pd9DB2GMJKoM7ZYisKgbz2X0EYwLLUKjRH2FZBRtc/6+9+C+g2KEQAAACDGwjb00Vli8rZDhkRoc+1owvEjjrsMAABg3oydR6LP+Y0UIiX7rZ+83c8DVkiO3cBqoZDIdyCPwSU9G7S5p2WCtr4KCN+yPEzCHvMoalpu1ec15YlEJ1EfLGdP7Dly5uRzAR3xM2/XEH2gPXVrzDH1PRSSOaAYAd0Zwy0LAADmAta1PKFlGvpnfI7xQR0AAI6RpRhjWG+HPu6MVUnI684r66MuguBSg49iLo8cUpBgQcwt79kxhlNs2z99y/BZQl+b+RTNZVAWLowr8uAUysBzJAC182DotWcuVChwdejItN/62mT9WUgfLlsxIuRiOnp1FGJyHrGWHwAAjgWs8+NQkuA1Z1GIvs8z95f9udcPgDqgCJ+OJQhwD01dyKCu5ZWFPCwZ/0IKEkIQW6+RXN6LbkIgZznfVNk097lZ5r1w6LoOMc9ibRkigbuvAPHlLE4RqYrHVdXRl9NMnQ+nCaZ+euwf0LubaPo+mfv8HYNDCcixt2YKVn8fSxKiJCFBgddaF8+52Dm+5+VCWLZihBURRWJ0gvGJWdMAAAAAYDDcy2KTB9UFWeUMxpzbe4yWwWBdzHl+rY0l9fUQgo4u+ZeaeIq0CmEpM6FsLFeIXcODMnXCc46Hu2x6/aAPWzvfLGW8jLkHNhmHMQVX37CwVQqRFmUVk6h7IaWKBzerW6xOXUOFjY2f2+eQoWMPcd1YSDefNT7PH/r+rrFPm2BltuE+lqZaKdLmPTNads11F8SyFSPgsBzj4gIAAMfAsT5ADkWZtWlb67SyxK4hzjKnY2iTuVkSNmEJdV1CHQEAgKj5PlD1/RCW0F33o6Z5KcxxQgoSmw3Rfl8ud44qcBTxbl+08B9asLRkxjYM6FP+UH3et31+zhryc47Yj4U5rET5VpdTxB+fcxxnJQJbIirOp6GfUdvkIhoLl1ck8Ozx843M8b7Nhbr+Cb8vU2jOvY+HGPslhgi833cvs+t1fco87Wr27rFYvmIEiwYAAAAwLNhXD09roVBHy5wlKkUAAAAMy9z2gKbv+G1jw8skU4okCVGq2gvKwv12iDwaa2Mqr8k19WfZc5wfTivs0yV7pjb2sBrwHvueGnMYO6zyypEl388p6aPAX5JH95Rj9FBzoiSc9CAIQdSwSctXjBDNZ2FbO+hnAAAAoBmhq7zdP8fYR/ta5gIAAFgPh7KIHSrvgo1NPsK7p0gSEidbImmEkTKIhd41SW+nyqz83bou7NRQZQ9x3NxwOTj0uGTFzWL2F3KSLLT9x4RVjogZhBabmph30BRtP5b+9anqW+e9NPHYq9pnq5TATb1RWjRlHYoRMA3HuIAAAAAAQxDGE57DnloSQx0AAMBCmeOa3scDcuD2cJoSnROJRDrliEt+rtJ+Avy2dZ3bfRqTY2prE4ayihZBvt0FJTs+yPPwXL0FlnTfhqRrnibQnlovm5koRcq+9+dtnZKnA+tQjGACAQAAAGBO1D2YjSm8ir1sllna4BkKHDtzUlYC0IchBX6xHAZN5khfbxV7jkzM/wN7jqiUWKXEaeLyOlCSEKl9/vpVxOrTxOJ2jkorMCxT7SehQsRSF6d/LuTya9QIZI9l3qyhD7rWc+z24TmvyNjRDLrUI/Z/0/PsZx1ZvmIEgxsAAAAAc2PMEBJtrg0AAGD9jB2qqLXXR48Qj0JmyafTbsXUwoo4NUmuU2pnsd21bdibmzOWoHRsAWzTsksTDNsQWML7yH+eLFGILJVw3s09BO2hWEp957w2LqUPp2Iu/dH0WaNtzrGWz0TLV4wAAAAAAIBy5m45uGRghbZ8cO/KWYqVKshoHHu7xNKy7/3uGapGbLY674clTdsJm2MW86WCFkW879ne3HWONBzOUpgyjn5Zjp3I3BCyOFZzypDIsayY/MTd2efB9erqcyiYiSg+X0SS6JB3o177SKiyqj9EP+CZAswUKEYAAAAAAMbk0DGND339NYMXPLBmML6Xw5ySUfe4BqcpCW6wX5XtaTLRQmIvkbETMo+huDhE4mDQjQph/HDlR/6uO00xCanyypCSsVrwoGKbnN2MdzsGy4TfcxmfIj9HfUZVihwbsft9yDFwqGtPpQidy/xaEmPtmy3LXLZihJkI7/kAAAAAmDuxB7QpH6TxsA4AAMtnqH0jLCe0aG8bEmjQHCANrhcJKSSkILHZ6JwhRDq5epqSUIo4VZlQ2YUrGnhfPKZ9tsrYYoh+GKsvD33P/XnmjWEOPaNal5t65QZJiruUNzZC5j1DYjmNZBJXEM2tLV0Zwmipa36Gvhy7ErgwXq2Sb0Cl3rH2cZmXU5+cZQ1YtmIEAAAAAGCpHOMDLwBz5FhfQMHy6JO7Izx/btbEbfAFpkYoxYqJUpXZTaYpsVP8qPw5S2nnnFlKou8xGHr8tA3xZRUrKhDELslDuM6DC6Hp2rGU+w7qOaZ72TZ3yEhAMQIAAAAAsFYg8AWgGmmsy0fL8gzACLRZ23Nha8w47+ohEtI1p0kXytrszV0m8sILeceGAmTQj1DBdkyCvCEIcoOQkEQsMg+KmvkiNltzWESZcqj70WZNUilxk5B5fa8zd+y96rP+HuJer6X/h8LL9wN6cqCxBcUIAAAAAEAX5hqiwGfOdQNgDsAqFcyZUmXAEa7tjSxLVZZvoWxur0mwOhegHOlH232ozfFLHOtl42mJbaljjW1aO9E9ecBnSaynkwPFCAAAAABAG4z1rbX04/3+wBUCAHQGQgkwV1w+jUBA0iWvgS0iVArUeY6MoUQYU+DJ3N37y6/XUB41AFSgE69H5kNsLHrf5RKUx45d6niFIrg5x6I4WgJ9+r1sruNeTgoUIwAAAAAAbfGtUgEAAIApaCssaWt12lcJEzJHIWfZ9cvqCsvdZhz6vi4JE3onqhQhqu5Lf0zOqc/b1KVsTs1xvZgrsbUJ3nDLwoa5hOfywYFiBAAAAADAJ3zhLHuBW1PMcrxMAQDAvOgSf97lzDGClljcc18Ys/Z1fwhFzxReNODocTlxmoytMGeQ+3xGCpO6eeKvTWVr0RzaMRVd1hX/+DkocJu2AWuoxilHEzP/W+zJ6MNBgWIEAAAAACDk2NyZj6GNAACwNFoLylR2nicoE1Lkk5HHLFSrLNiNIoXTdFn7Rd/kxiF+eLMl9QOYH6HncRtFZZmF+Zw8nOra4rcBc2kd4D62o7AGtOg/9PWgQDECAABg2eDlNM/QYTCGZCn3agl1BAAAAEJCpT6n5rkg0cqRNHKceW4QUpDYGPGANMKaRHugiM2GiBWpx67m8xssYb8cPEeKFWQdgccNGAeXC6Sj53FdqK2506SOY7WjTRivKekaJrFtCLOy42PlDeWBVJbbag30ebftkxNrbJbyzh7SccwiODYAAIBls8RNe0zQHwAAAMBxUSbss2GzYiG1LOa5gRUT22cIpXK/eb8n3u1NmQsXIfS0qC/1qgEALA/mdbw7NWnHoRRqa+jfMtbctiXScT7DYwQAAABYG3NypSfKrE66WEPhgbM/fSy+yu4B7g1YC3OKyQ5AW1xoJ0kFDwajFMkJ8isFY4ooTYmFJJKCKE1JJAnRbkfqfBc5foFzxiqKYt4eXfY17IUAgDYM9cxh3/WGXIOqvEmwzmXguXF1LNzcAwAAAACzBw+Oh6VP/5edi3sKAACHp8FanMst0qQcVkSxc1jpcFsL95joW/9G/QkAqOZQBly+odYhnmWX4qEiGirUwTo5snsOjxEAAABgLczJS6QPc2kHLIIy8IIE1grGM1gCTSx2rScEkSf4U1nidF+gH1vTmd0xQioiJYmE0uG1TDk2Bwmn6bz3hbH2b2ZyfWz6FQCwQOayZvX1xhi7HXPpp0MydI4UqXN3kZppfpEjBB4jAAAAwJo4tCUUWB9zUVQBAADIU5VbxGKVIr4Q3887EhybOy813iNhXpGl5BmxoWY8Sj0+2j4zzVUpEmkzALPkmMfpEGGwxn7PW8o6PzaDK9jVfPePIwUeIwAAAMBaGNKa5ZDMpe5zqccQ9G2LtYxdU58AAPIgjvh8iAkMQw8NIXQOEIoI+61AywpfAstUG06KlT0ubrnKu3P9h0xISOGSs4skIWKhPUfmNGYifZTLKWI9Poao89DtHmr+iep72r/8AbxxkL/suHHzkmiw+djm2hhj5Xh5q/Saj/4anDn15xrng11fWDkHzzqgGAEAAAAAWDtdH3ydAASWTQCsnrW9HK8JK+QPPw4UImKzzXuIxBKMx6yAbWgPY8nqFCYBwtSBKQjLNeexE+5fc1SKDF3m3Pds5C8DhxqjGGPVuP4p3wc6M/e94hhZ4/1wBhDN1xgoRgAAALQDDzUALAtn/dVy7q4hx8oa2gAAOD5ia1b4GXPOK0BsT0hevoF4vyd+7LH88cbjQ2w22uvDKU507hB54ZRIKVLXr5uyA28DVkSUECVWgcImBwkPL+CMecs0XcOtAskPKdrlubVq75j7fjJ23Poh2493ivVSNY8Pcc/rngc9T4lJPKSbln+o59hgf+mEX3fj4Tg7L8O1Mdc1dep6+aHFG4CgcQAAANoxx80WAAAAAODYCPODpKn+ETJQimsvEpczRAqXZ8SG1SqUF1Cam2MKpsxFIJr1BxgAvFOskyXPm7l7Wy0Nb44fdA8Bh2Xmaz08RgAAAAAA1kxXi9mS0C2rAh4lAGMALIHYGm7DYgkyidJTSh99VCs7koSIrHVulmeEVaotd09OiKQgIY04QCmXP6Ryv7Cf+x4nQ7cz93+QK6UJMc8aW3aTeR7ufTJBjq2hmatVMxieOd3nqrrMqZ6WpT6f2Pntr71ERW+2pa4Dc74vc6zTAoBiBAAAAAAAAAAAOBShgMj/v004RBtbm5K8MsEvS0it2PBPk5R9VnUNZcqMlT0G/nUOJUSDBfnwQHgHpgZjbjqahiDEPQEzAYoRAAAA9YQWfHiQAWBZHMucbRpDuun3fQVxsest1UJureBegLlg14aIIkQkiUmonre4tWGwch8za08Roryng4nxTkTEu/P8dZ1nRvV8sF4lpcndhyLmHdOGvha9oVIqVg7WcnBsNJ1XJkSfW4cOwZyt+puy5LqHrGm9XEs7YqzpPrUAOUYAAAAAAECcY3s4DpP1HVv7AQDzwCoqjHDPKSIilMZtjykuRPD6H+YoidbFU5woLnibTEZY9yqmWLuxPwAAQD0tE2GDA3Kk9wkeI2C+wEIdgPmA+VdOVfgL+z8R+hAAy5hzoiy2fNP/x67P0NfE+gLagPEyX4TUiolc4m+ZKSvCkFJGScD7fVCOyI6P3WcpiJSnYKhSNngeJrnjbG6RqnHU9T3OXUcF3jOeoqhpWUOs93PKtTW2Je+c1ocjtVqeNUu7J43XnBmN+5Cl9XnT+s65z4dkCfLMITzj59iulkAxAgAAAPRhBQ8DAEzKnARNSwd9CdqCPWueOAVIxZwuCPoDZQlRPll5LJF5mecJKx3+ZpPky+6S/LzPmjTHfB5lYbTKvhuKUOCEuQvAcODZ6fCsXUFyDM/oK7l3UIyA+bKSSQbAolj7A8oUTG2RDgDR8ix2hqrr0to9BnNv/1D3aMz96VjG0TG0camEAnAuic1vxyqn+m+pFRlCeuGuiIjIU3AIqT1F0pR4v8tfS2XXEZuE5JNu0v9cu67ziex2xKnKQnnV5SKJ5Wnyf5e1uewz+39Zf0xN4EXDaZr14ZA5qaxXkKDcPRqVOa0Pc6oLaC/cZUWs8uEAs+9mcG+FIHFyQqRYr4lEei0dM2/SEMz5WaXNGPHXOCIiUsXvx6BsLHZ9vmwytud6vyxNcyquPEIGcowAAADIWOhmBkAr5mi9M8c6LQX0HegDxg9YGkKUKBqUVoDIIByX/3fT5zyb1D0q6JmhV8ehqVIAAXCMLGWdELJd/qKpsev93NeYXkrhGfd/G8r25iVw5DIgeIwAAADIc+QbIzgS5mZ11bcuc2rL1Bxz24+Jse7zMYQ6APOlai+yFrWhFbOQ2muBlfZYICLeM5FMSCRlRQniKtmTnQMmZwnv9vqaqeet4Oc8KSMadso7Lwz11WZezyQWuk12L6TK9YdIEnc/uhUcWi8vRLAM5s1Qnkytz4usF3N6XrPzOFhLHXO2gJ/bO4ylTZ18z8epFCNlnoxD96U/Z+Z4n7ri99fKImSsRDUHAAAAAACOjoU/iIOZgHEE1oAvhHQJ0vVnzOwEgZUocxwzkSoRzPeZL6y6C/znME85y9HCQX+G//e6hg8Ut6ArxzZ2Qu+KKkLvOqL5CXvXmmOoEIKqpxK4zX0nigv2u1BWxlDlz5GVtgseIwAAAAAAAIBxWOlLFACtKfMACY8hqp43KiVWab48Iu1JIoTOCWI8P3JlVtZN20va83TuDPbq6yWHb1Pv0BI4FpN8KoZci8L+qMoL06l8eLKBGTDnMRhbc3xvOrsGRo4TSaJzjKQpcXpucijNTCliiSlH5nxfmhLbD5t6wlS1v40XyJjKEfvdXL172rKGNlQAjxEAAAAAAAAAAGBs+lrGFpK0R8qrsoKus6pVSofPUiVlN6WJ9e5SBS1rtgYG6+IQIbTctScOBefVt7H31lIVDFh/6lnqvQUHAR4j4HAUXOiwwAMAAJgA7DfLY86xnkE1a7GWWwKYJ/Om6X1p44UQlpkkJNKU2M47/31LSBLbDZFi4v0uYiFtrKwVe/H20+q6u1jt1t5SC0NFkiU7iVpjr4Gx27TGPjsW5iTn6HrtXiHzWlj9D3EdmeRzheTCCpaUr7SnglOiVNUnzINR5fU3NUvc990el8Y/L/VArMjdMVdFSN/7gmfoSYBiBAAAAAAAAADWAF6gl03f+8es84lEQloJKfJJ2BvHY+9o+d0kWTsAAHQltoY1XXOq8ihVnoc17WA0CVs1BHNSNs2hDkcAFCPgcGCSAwCGokncbgDAcsG8Xi64d9OBvl4/Mil/1lEpqWvXiuG2hCAhhfYmOTkxAkETKivMUZIkRNbZw1pft8EoYNz5KrPotp+5es2VqS10YRE8PHV9Onafj1V2NK/GAcZPG4+YKit/+33b+pv3PiGz9z/e7/Tf1rPDr2LgQcKKs5CBTdrgl9G3r+1aqAbMSbQ2DuHlROTGqvV4LN3/sF6vDuQYAQAAsA5gwQMAAMeNzWsw15AKAIS0EbD4YavKxnhNeexbSYeJ0ctPalhB0BmsWcNzDH065zaOvBc7pYj9XbWehd+xcsphp8itqivWwKOCFVfnqZnzvAOdgMcIAACAZQNLOwAAAETYC8DqsUI8Tql5uA82OUPsj/+VJ/wR0niI2BwjdV64OUtw5YSPBYFSk3j/c2LsmPCx7w/p3XCMLLU/24ybKfE9wvwcSRYRUT70Sgwvibw8RiQFCblxyg62HnE+kZxKWXGCiBJ9nvXkCNfXWE6LLrlUhvIUgXB+PMIxEAPr8rzoGf4MHiMAAAAAAAAAAMBSyIWMiQhvSkLdcJo6xYUTHhoBoRYK5j9rRewcePMWgTBtOiA8PhqEENp7pCE5Ba5ZT0WL881F459NNe7sPtDU+w9UE8vPVXUsmI6R5xQ8RgAAACwbPJiALti8NESI8zsmsKgCAID2xKwfreeHzQVCRMRCC/iiMgNVOF+vyUp7nPhY5UhK/fK1RZUjB9oDDrn/tLl2A48fMBJ4RulPE6H8kImxLS5/Ub5cbpg3JKcE8Tzeigd6IQztsW3A+JqeoTyT7Ln+O2PV/jinpO1Loeka3PYYIYhIEDW8FVAtAgAAAGBYFmKh19oyDAAAAJgZg+xl1lJ2aA+PLjlUDnFtAEB7csLimrVjxPkoYmtH2+vZEFztLx4PFQYOz9BjDh6Q01PlgTWUAoyW7jGChQcAAACYH0sQRjAT7/eHrsX68a2tljAuwHwZ8AUIgNnRxNJUCBKJjoPPNleIL6jxQsHoHCGRsvw1uer/JlRZgbedozIhIUXWrqrylrKfDG09jDWwOQiHMz6FhOYt144hkKKgFBFS1Cs4OJJcO/QeDz1EVJr3HLCHJUnuuNK1dyxCD4ZYvpdjo2m7S0JORr9v4ikC2jOER88AwGMEAAAAAAAAAACYOfkwMRHr1aljzfuJif0fkGEtXocUnk2ZxwCAGcPMxG3XHG/uRD3uhCAhRa03Xu57f+2tS9odWxPq/o9xzMqPIYntm6Lk3obHYB0el4meKZbtMUK0HIsRAAAAAIBjBc9qoC8YQ2DNNI2fHSYHKVi8GmWJkFnekcCrpPBZ0+tX1asvKm0epaTL9Ybw3mgid5AJiW0gYgmUWc5bta0cY+w1sM56em5Y631fODyVbMi/jufJdTQ562Jr0aTX13mSBGceHCwpP9di49nz+BDS/C0FCcHE/r0TkihJTHnmc98Tw0/Ubj1F7LXtGlsW/cd6mNjz05RYMYnthoQQpM53+ZwnYTm2nmXjfMoxuFRZbEyZYffMcCNy9zpxHxW8jfx9l4iIzP9L7Ju10FKhAo8RAAAAAAAAAABgrjSxSjUx8jvFyQeDkgvvI0X2sySWZgk9dX2X1j9zYGBBMatiXqTS9S/0EnFKES8/SJt7KmQrD72cB4q5rr22sPWQMqsbGJ/YeCz1DpHux95Ldz/hUbJ4lu8xAi0cAAAAAACIsVRrNgAA8NeusnWs8HnEEySMk15V3lwYOj9HVbnhPlGWyLlFXaKhfVTmYTBqeJDa8Ds1YylnGT/jPfSQXgvO+8DL6bM0DnVvh7qm8apgxSSkIlKBcLrMO85HsfY0kYLEyYn+f689Nni318LvzTZXRu2Qsx4bQSgmq7ARUhGlRGw9R5LEO9d4oySRMTXHsFnh/hJ6cE2JyO6VU4418Z6x64ifPyZQdLDxHKpUWvnjLdxP5ryOtiW2X66gbVBFAgAAAAAAAAAASyeW6yNUsKxAiDEaY1j3Ks6H+Jk7jWOagckZygJ9rVbsbceu58UVJnHXxeXDY7HiTABuvcCaeHewKobcCtaE2lwpc1+35+Ll4oc5awMXvY9qT1nSuj4Ea103aA0eIwAAAAAAAMSY+4skAADEGHrtWtJa2McCtSxPRjRkiij5W0bizLeoU5hTxIb78fNgjEnfex16YozlvTMGQhLRRBbrffPV9C2j77Xrjjmk9X8d1lMh9BqJUSawN8LzQti78FLWc8PLI5ETvEuhvVV4V6yjvoD3mVWOSOc5Uqijv/YsSUl5yLFiPbf25h7U1aPSay7L7yKSxNzfsuMbemDOcQ51IfQQsp+tgJmo9XqwYq0VAAAAAAAAAAAAJsSLJ9/KEtpahi9VuLl01tzXU3qKzMX6vwl+mCsv50gTr4GCl4iKeNSF89k7N+ZlUqxfRHAc5oNa6roxN1nsEB6RvudIE8+TttebW5+1ZSWKkJB1eIysJK4ZAACAGVK2xyzJgg6Mz6GfRQ59fQDA+GCeHy9rfeaItatPG9ucG7PoFlJbCRPlLMS1A0VEUFkQorKXGyAtP27O9zOsW9M6TtUmPxeAb6U+x74sY6q6dr0nrMqVI3Pfh5zV/5aETd9R8ACT1UoNZqKyr1lpjw/S4a+oSX4Zf63xvV3IOGfFvNTm3MdE8xLwl/VVWR2beHhwWnAC6nSPvGPERovfOU3nf3+HYu7rhWEdihEAAAAAAAAAAGCNxARnYHAKVuZdLOfbCIEWIjQCLVlLuJkyhd4M8b1FWiElkVLV+T1i1/OOj+aaqFW8FENsTc7c15++9QvX77b9XHX8nPttbsx9nBEUIwAAAEA1lXFIATBUjYcprCgxHgFYP5jnx4tqYJU8JEMJMpoKiMcQnDQt0xdw7vdBndPCMYMwh7kcPptIY17fdazVWW0P5TVjPQLm0oeeN4DYbEkkkihJiKT2SmBm4vPz7BzFxLvzeHlVdGlvxKOp8Xk88ZrTh0iuB/Y9OQoeI5zlGFEl4auqvAM4JT5X8e+I3FiI5iw5P68O+WTnhZ2P9mOvrKgipm2OD3udnIKmg8fdGLi6Se25E1NQ1F1fJiQvnGb/K0Xq7Cxfft2aFHoV9myz21/msHZNxULaCsUIAAAAAMCUzDmEBgAAANCVPvtbV4FRV8FeGQdOIFxgLc8KsfsbJkvvoMw6OC48ktSCcCmzpM1CkmClFSVGAM+SliUcXUpdY7lByr4XpPOJSJF5fpQl2G56vRAZz0HSuSe98HFWSaKTzpu/U+r/fjGHe+0rRdxnEY/JpnUVek6WljM1h+5fEGUdihEMLgAAAADMla4WewAAAMAh6LtPdQm508XaeajypqSRME+S2G60d8F+N05b6gTJY10n93mgFJkLTZVUOS8CRZSmOql2mmqhuBXI2lBNXcM9HZKh8v8MTRiOqtW5ioiSojJESBLbEyJWeY8ToqIgvkoJYe41+2oQKeLJ3WPnEpHLaWQUBIX6kPYiKXiPNFUWVH13yPsc5GDRdZL63tj2NvGOYaW9c5KExMlJXOHS1CtqYM8RMBFCNNZEdgiaOTMwKAEAYNnM6UUIAAAAAADMl7U/NxoBoBasR8LdjEVVeJ8xr7kkau6DE9oqJk61cD0M6eQE2Wsfx2NTl8OjV9kynl+ozT1jlRfuN1GKNVL4qmI5kVBija5h29kll9IU9A1dpYwyUuUVKYVcUiBjLetSy3asw2MEAADAclnaSxFYBkJkLtMYYwAAAMD41MXNjx3fxkI5LKeQXHdBeRFCPAt4Vkxs4+GvlbkmKLfPj5amz5HMRMKGN1K6DKME4aWNy7lbxvvP+P5nMe+WpsoG+6dVZPkKg/A64TWiRdrvWtz7qPdJ3nMke7dRJnyWqWfT3EBlnjZ+fx76/se82YTM+rSuXmZ8CKk9T9S168VDpCjqqdrmSVojU7dx6FCYHZmpahAAAAAAAAAAAACrZiilSOyYJXMID46pGctafQ7jwBe2K44nzJ4zc/UiCImFt+palA11Fc2FU3HdeGHdKzL2+O265k5NTmiu8r/D76Pne4otc56Qov3YnrNXzVw59NhpyfI9Rg4dAw8AAAAA84N52ZajAID1g/cYcCwMlRQ9JigLqbJAnbPlr6tb4KFQ1oaq7+fYvpAwx8jgZfc5tybRc1kfq9Tcn8QI2Xc5gSqH4ZTmOh5jfTBnqvKNlPVtLpySzTdS896QE44H4ati87LsPaRuDkdzmQTXk0mxzF7jviJZ/aEo9Eta/b3/uSASiSQiT6lh8rxwmrZTXDX1xgEZXcbPAfcuqL0AAACAOTKkpYUQi7PcAACAVYM1GYD2zEFYNzZVbbQhhOqsl5usL3N4NuydC2ICy/oOyeFzIX98AewQOSamom1YvCkJ+7ULHT14ovkpwrwdrQttEu6r6MkipBgmX0bfvpw70svXJMX627sk6hT/XehQxvI9RoiWYxUBAAAANGXIfQ17JAAAzAusywB0w7cOD4XWteFtIt/PRZZg22UtwU1cfYdKy70Z7Pnh51Xt6trmsr4vK98qc8awuo5Z1pvcAgXvjPD4JhTCt4lmIc5yypAWHsxTjcM+92QOc6WMpnVjJt7vqs+P9Q2ncZl6zsOrQZ82UX7a65etcaqkLm2JFTLnexxS5iHIitT5Lvd/9Lih6xCypL48FF29S8rOrfIgK2EdihEAAAAAAAAAAACAMZkqWaxRijghf6cyRlT6NC3bJY2eQAHlKZJ0vwVJ1NdG11BcyJcwT4G1VYoMWV6lcnRFSpGQqUIqlyWyJzLKbVGu3FozczE4aMiyFSPMRLSczgYAAAAAAAAAAEAPYjH5u4bg6Cq8GSs3Rph+IFSKdPGKGZKqfAhExfswZXx+I+jllPIC5jZKkdqEziN54rThmASsdXT1HpsjQ+Z2sf0gE60kTNPDrx1rJLb3hPlgiIJwawseo00Z1WigwRrdEqiKAQAAAAAAAAAAAJowptCHVfbjf7YUmoSamqQOkT5rKjCzeVzgWbEsYsLnqmOOACFL8hLVKTiXwBLrDGbJsj1GjmxRAwAAAIDBupuzwoMxAAAAcOy0eRZoY0Xd5zp9WZJC5ND4HgMy0X2n0vahz6YKwdOHvmPQjquFhbvJ4d9v+3dovR9r31zbO5IXgfY4S4thnUa41kGZe1tiubFAN0boP6jAAQAAALBIhDwiAwkYgwAAAOgL9pKMuXoDQGjWm6N6PuzLWteEcH6vtZ1VOAMyKFhHpWzNFuI4x90CWbbHCBG0bmBZLNkqAwAA5gRzN0vPJTFVgtchwP4GQD2YJ2AOHNs4jFqNK+L9gYSFTfo/jE0/5f1aunwlfD70PQuObeyXsaY+KPUIUdXHFfJCzLxP2tZPSKMgTLTXyBI97Ovm65zmc1NvNKLlr7Fzp0POsZmaSQAAAAAA1HAMD5RztWiNAasoAMrB/OgH+m8YlrSnjInNg9EnaftULOlZZy59GeuzUCjZh7m0E1QzxtwZywtg4Jw2LreI/XsMbF/4P2NcY41gLx6OAcbI8j1GiJb1sACOG4xVAAAATVlCnGsL9jcAqsEc6Qf6rx/OQnWBVsN9aeOdQTS+Ne+h+7/OUr5J/costZl1fg8fNfBzTJMcc2X30CrC+noLHOoewtJ8OJr24VR9HpsnPTwiOE2JyCtz6Po3TW7fOx9OxflTzAP/Hgw1Fpb0fjd37D3pqRxZvmIEmwIAAAAAjoU5uY0DAACYP0sKywimwSoWiNo/V9QIoHxLdSIi9hUYhwgLVqYcqTtubgivX6cQqi6hT6oYou5T93l47T4s+d5ZDt2GOqE7FJXNwp0R9e+jWDkiv9cUkUQNL7t8xQgGIwAAAACOBTzvAAAAaAP2jW7MVTAc1qtLPcNkzF3KKJHDWEt1kSRFodVA/SmkIFaSyMorQ++RurBZse/ner8tzFTImzEWMYHwnPtmLGKW/VP1w1L7O1yblkxdqMWl3qMhaZNbZejr2Pnp1iuZ39vCfa6C9QQ2W/qkAwAAAAAAAAAAwGFYikwh5vEwZNmx8prmELC5W0ZGSJHlThDysPduKeOmD8fQxjZ0zamx5n5ci6LAv7dtQ66B6Rlg3C3fY8Rn7lp+AAAAADQH+zoAAADQnzVHWVj7s0LT9jWN7d/Um6Lu8xpBoMtx0Ne7JWSIpMXhfOhbr7HGX1jPqXIqWA4d9qzN922xuXCsVfnQeWZy3kiy+jpL9MyZylPgENStkbH1A8SZ0sPK9x5pqaBftsfIEJsiAGOCRRIAALoxUDI1AAAAAPSkq3X00liSIK/untR9Hws91fX8su/n2J+1cel7lj1oeRPLuzoKFSdjqP4VIvM4GrOPhczK9/8O6gIWyrHsi0fAsj1GWBGJ5NC1AAAAAMDQzPGFbI6s3VIWgDmB+QaWzBwt4vtyDEKpgTw4WpVd913VMVWeKIPEmldZ2oc6S/yYR4jN1VGnGOpUt4HKcQqKiXKKWIb27ul67S7ft72csuPB9PHAXnVis81fL02N/DIMg1czhufOkrwR29a1yiNkCe09RjreF7hcADAWx/CgDgAA4HBgnwFgOjDfxgfWl+OxNiFOn7Fiz13qWCtTMISf97GE79M3ZZbxQ13Pb6dNuj5UGKQ+Y2qNrLVdVQzRZiGIpCCRSBKJJJKiqOQKvUmWuEbnwoUtYKx0XRPDNaYu5NsxM7jX3DT9uWyPEYTSAnOGGQsjAACA8VjiSxQASwXzbXzQx6ApY3m/2DBLU1vqt8GFGjWyEFZEQpKQQlvBO+vzwBLe0iY3QhdUmvc2aJqwPbx+Ew+CuhwA9rix15Yhyq8LizbktZrQJa/NEGWOSa4f1Xj1YSbe7amydDNvHTbniTLuUG3n7RjU1aHJWnLIetv+tX3a9p43zTHic+gxfmiGytsUljcyy1aMAAAAAAAAAAAAYN3MLbRPGW3CtXQVeBtFCBERq8zqXCREvFe543JMpfDpGqbKF2i6eFklx5QpPELl1hJCIMaUXVXHHro9sXBQjYi0a+qE8l2v2zYMk4qM34KiwY5Rbz6zub/hWJj6vseUxE3rkBvPIyqgaq4tkkSH3rNNGKseSwonNiVzWKsasnzFyNwtOsBxE4v9upDFAQAAAAAAAACOBpt/gqj7e1vMU2LI9z8jMA1zJET1CKGcpGnekLGjHpT1rQuRVaIU8Y8ZA//e+V44MSH3EMgkco9UfAzNibr6cYVyLixjCoYa033rHPOMIjL9FeRO7jJ3x6CJsi7E1fUAclp7r20uoi6y4qV5Qh2Cuv1xYXL6dcSiQkgtMHf8OLZzfcABoAtLjtE8N9CXAAAAAABx5hRCqC1jPN+xyufYUKn+iYW7aRtOygoXx6j3kGU2Ecx3vJ9CCqIkcZb8o+HLsuYiDB+Cqrofol1DKjWa0Hf+DBkCboo5F8O24VDvuLH1sC1978Mxv98LuZj2L99jhGhRmihwhBwiJigAU4ExPRzH2JfwogNjA/d2AAAAbem7ZzR9/+tiyT6A0L/ZdRqGzOkbcqzN9ULKvE56JY/X3iLaU2SffTZGX7t8MDNTIjTF9wzwLcSd54/ngVU458CE3jpD16tJjhz/X1Vy/ILyNMymDmXXapO/KPZZV7neHPp/aGr7sMHaNiPgagHAmEApAgAAcWzs2gVYkYCF4sYYHncBAABMwBTWsU08QKbM2+D/XskznfMSsV44RCN5/UyQGH5KYu3pmm8mxI6vrvchdt6cnhFVmg+jNiUlfTq6t1TDegxXfs/73cX77lhZWD8t22OEFeU00AvqeAAAAOCoYa6OIQ1AX6ylIp4PAWgGvPjAmmmTOLjLPGiTQDukMlZ7UJ+m9etrNd2UnHdAAw6VEL4FrHiW9ZotMc+QwvdDXGOg84XIkp2nM3oXOdT+O/Z1m5Yfy8/btozK8lVxLa26/hDErofnrNmxbMWIDwYXAAAAAADwwfMhAO2AcgSsEetBOAdleTjH/ETWZUK7UIDXK4SVVdx0FAgPINzzLdFZzSxJry/kt/1clSfh0ONpLsytH+qE6jb011j1nkLofky0WfPK1qiC4qUiv88Y9F17l0DbvWkmz5zrUYwAMEdmMMkBAAAAAACoBc+tYK208SDsOg/8fAtV5dR5h/jHdRHENxXIyiQ4rqbedQqR8HurjAqFz6yWKRfE+jgv6sZ5xf0SSULiwilRmhZzezTJjeAUrd7xVZ5iVWXJJB+yKkmIFBPvd9ONuRLhtOubWJ80VZD660DhAi1zfcTWmLJ8IHV1IqLJ8jVZVLqacIOltO3HIfN5+eUJQUSCqGHx61CMYJMCAAAAwFjMxJoFAAAAaAT2rSJT9ceQ12mbSNwX2BJpwV/JWBBJkh1DnudG2fXKrJ0rjhdS6HJ9pdQSxmXbfgfTEhvn/ndE1UL1JCFxekK035PY7XOHcUpxIX5Yha0RpQahuGo9oPx6CKHnoRQk7OdmXnKaTuNZUDfO+yTRNvdJK36SvBKqr4eGn9uobd2G8hbq4j23hPXPp++zxNg5lwsKym7r9joUIwAAAOYHXsrBWsA4BgAAsCSwby2fptbRPsxEVi5UIXgUUhS+d8LLspwLZeXlLHTzxzu5bmvBZc9wXXPIaQHGI5bTpE4A63+WpkTnO2JmEokkZs68R8JxXpK03SoyOPCGcMrAMsF7GJaNFZGSxGayuKuNHdqpr+KvifLQ3CetHKVh29RVeTmkwvMY1oihc1ENTeixlUMeiccIMzVuKQAAAAAAAAAAAMDcCBUMYfiZxgmMA+FjcF4+vwdn/5sQPkQdrdRbhDKqpCy3yjEIIUFzShVy9eOEFROfnxNJSbTdkkhTUrt9XJkREbgKKZxnB6WKSEinUBRSJ3bnfUU9nHJEGi+KNAuzJCSRHFB4X4ZvaT+mArJNGMOuzMEYcw51OEbcOtCvmGUrRgAAAAAAAAAAANAcCHHmS5irpC/BvS7kVLCfByGFivWZiDKBNwA+pSHcWqxtSrnfmadHoBgMPauSRHuMJEnO40RwXuHYCFZBSDDWCpYpcvDYawuphcqFXEADKTT8kFeu3AMS8zbqC9aq6QnHUyzXTwsPpZi/CQAAgEOxpo310A8+AAAAAABLYsrnwGiIGFH83/8B08E8Tq6LQFjEirUgVxmr9bkQyxGBMTg+S+hj36vKCULZ+6x5GzhNdSgtlwuj7MBsPIpEe3Xo3yaslqlLNBxXbSW84+08nOg92nq4xOs1UB185c8c5rFdW4fm0O2aK2N7C9lrhIq9FteFxwgAAMwJKBMAAAAAAI6PPslk21JWftvPwfi07fvQ46IsNFBVzpA5WXfPpS7HwkL6Wdgk5Yozr4fogZH1lBXxvughlfP0iCmJ7THMJDY2+brSSdSJnOdI1POkcDEztv2k0VOPd1ZElJg1YSSlqO+hkQtL1tEbpS5/TIyx99SFzJmDMFpukfLcVu7zFpeGYgQAAAAAAAAAADg0YV6JzuX0FARBGD1fmt7bEm8Tax3OKS1DEdbFawah4taNkDrHR5q6kFA6FFaJYiMcDzZkVVhmIfF6RYAdo5gRifZQYWYSShELSUKqZst4OLan9Dg44PwoDVtWR9s6V40BsAyaPIv499ZXmLRQjkAxAgAAAAAAAAAAHJIhk9T2LQMCpPnS5t5EjnUC4TblzC0Jep2Qcw51BOPBKsuJY9bNgoy9KleNEM7jJPtMErHIh8Iq026kKfFjV7O/mbWShlrkF/GvG7mW9Uhx9QmVNK6O/cY6pymRCPrKKomGmkdB3iR3r8ZWwE+9DsCgoMihvHUQSgsAAAAAYEBgZQQAAGAKsNdo5ihgWsuzQJOwM/5xNn+CYxiBbDEESkUIsKX1e1/L/6W1dwyqlHHMeW+DJkoyf/4KmSkecucmJARrBUkk1JYrcr+v/D5X/5p7mfPg8o9PEp27JFVEHMxBEwJLK2F6KjBsX5r6iiQhShKteGrr0dHkWhajnHJtCL9vQ9laMhVV8/1Q+8ac9qs+dZmoDVCMAAAAAABUMZcHSwAAAOAYmOO+O8c6jUE0hv8A4d3KrhMTajZRLMxJ8BdSVq+Y0in8f65tWhph3wb9yrF+buvt0QeZaKWI9VypS9oeeI04T5KBxwsrJkFpszk/1Hi1Hipz80xrSpV30pLaEaPuHjcZAwvog4qgeQAAAAAAYLXY+KsAAAAAGJa17a9haJKh2hcLeWKVI3XXWFofh22N/Q80tm+aejiFnwlZniMkJvQPlSJDja2yUF7bDYnNhkSSFMN6+fh1Df9uMl7aPuvbxPQTjUXrMVP8YmFzm6h1+KbZ4+ZRj3V4If0BjxEAAAAgBqy2wNrpktAUAAAAAO1Z6nNllWfHFNet+g7PMOtlqPkik6ISQUgdpoo8zxEpiFSQlD0XfqvH+I94Qogk0Z+nKXGqinVUTOzSj7AXcqtheKtc4vEGic79d4KydscUmENhvUbalL3E9XQqBstV1sBzaAX3AR4jAAAAQIwmFhIALJ0VPMwCAAAAsyPcX9fwXOkSRU/47ADv1uOl570XUmiFQsxzREoiqRUk9oeIiFSaha3yzyv8L/I/xYvHvVaMFb71FtH5SnYRpYPSyhHjycL2b5XqH1tW4bqiqBQpOzaGkJnSxn5U5dHSpuxjYw1rV50XTBePrhkCjxEAlsxSLY8AWAIjxG0FAABQwqGTZwIAwJiMkadjag7Rhj5CObBc2npkdPUikn5S88CTupD3oqVHg6tfPnG6yy1if1ckUXeeImGorzKv7z7eVMZDgFVemVPrpdJxHro2hevKWub1WtrRh4X0ARQjAKwRKEwOz1KTh4EM3DcAADgcsfAXoBo8e4ClEyZMXiKxNgxpNXuoPvIFrodca2zce1US8ggsg6HvmQsDJc2v8jmnvUiK3wshyNWoIKw3/7eos1+HnGJDSKKTrfZUMYoR3qtcn+jwWX7C9UhC9FprfemF4KLmibL9sFtjzSsOlEF2Xq9BgVzHkva5I3muhGIEgCVTtjiteNFaDLgHAAAAQHeO4eV4DPD8AZbMWsZvVTtkkoX3sYmOl8Rc8pNBGQJiyhA7r3xFRPA8wYpJRLwgmFmHtwq9MyJl1MJFzwtbBqcp8ePXiIQg3u0zj4xgPOt6pLlze9dhSpqsE/48PpbnvrmsoU04knxOUIwAAAAAAAAADov/8gVhFwBgavpYxvoWwIXcIoHwNklIJJLEhVMtFFXcPURPX9qE4hkz8XJbYpbzc7bCnnPdDkWsL9r0k/UwIM8zQ0gSiTQOD2m51ykrnfA8Wq4kkWTho4QUeo429WbIrQVpsU1CELEi9eij1eWEa0LjHCHhvDXlOM+Tlp4vQ45d7365fCm+B9pU82MO83Hqtva99srXLihGAAAAAAAAAPNg5S9fAIAF0ERBGypDygSX9jv2w+IQ8W5PZC3FXVLziS2mmwhco4LlmazTVQqpOTHnui0ZM6ecclF4ngcVc0kkCcmLF7TnhvXY8vJd+LkvuCa9RrFOJYrFrorXocaOv/50UST2Dankr32hMhiAAwPFCAAAAADAsQLrfAAAAKAo0KzaH8vi4Zed48omIimImYnOdx3D44wchmUO1tRV+O0fKycBno3qGaOP2oxtX+HoQjGlxDb3jD+P7fEGsdmQuOES0T4levRRPR+l0Lk+0oHzawSJ1zuXWbUWhd/beRFLJh8eV5L0vXidHsrbJn1Q5kGEeTgMXfsx6vG0vntywIBzAAAAwAE5dKzMMHklAIdghQ+3AAAAwCBUeYHEwjk12VOtNbrNh+DObyFwxN6tcWGC8Dy9GibwpmBm4t2OaL8nklInQRdCz8mxaJ2jZAilTJ03WIM6+fk/2rTBKo+brnFDhXxqyrGtoX3WSL+vVtpv8BgBAABwfLi4tD0sdwa5PlF7H20AAACghLlbe4N+rNRac1Y09RzpFKddEbEgUpLEdkNMKdG+Qcz/Ked1WY6UuY47P3fCkHXEXKtmLn1T5mlgx0Usj0WaEl+7nh2bJPrPNCX2vS2qqJsXvpdY7Li6HD5VZdeep8NmCSm0B0wsvJf/WTjWw/+HuNexPm2TN6VufTxEeLIy5r5mtmENbWgAFCMAAACOD2Y6mFLEvz4AAAAAQFOOREgxC8pyBdRRJxQT0oTtUV5eg5r7akPijB2+aM75RHyCRNataSrUBodjiLHOntIxLE9KPQe90FmctvSKaKS4KCmv6/pSe71sPrtcKVXXiIUvO8T4r7pmk/VxTsytPkTDhdJaKVCMAAAAWBdNH6QPvcEf+voAAAAAAKCaNs9rQpBIEpNcOOIRLCSJRJpiZ5SAeKnPpDEL9AaW/pX3CMyHPgnLa/QNQghioiz5OhlFQtPrDHncGMpOTuMKkZgSpFGOES+vUsP6Ci80WelUG3PtmYPCpwtDKyP6KEXGyuM0M6AYAQAAAAAAAIC1sJSXfwBWiLPSjn+prdLt320EsaCehn2p+339wr7ZU6b46KoQ8c4XSULEIkum7oVQZsXE5+c614g/X/uMiViS6uhxXogv//im1+gs5O6RPN0S5vSpqUvlWtjg/EFZ0job8+LpQ9dxc0QRLqAYAQAAsC6W9OADlsGRuBEDAFYA1ikANH2Eq133fV+Q5HKUeFbWzMT7Xbey10p4n9r0fZnAr0oQGLtH7rx2FvG9OfbnSyG1906aEpHKC++b5Nwhih4nkoTEdqNDZeUs3s21WJG6fn2wZuiLerluzP8iksxdbLQIVp2VtDHm5eDnTBFU3T+xMR38L6RorxzM5SQxfVp1H2JC9Sa5QmLX7ErXPDFlSq6y/8dg6LJ7KUfWj6w/BAAAAADgiGnqZg4AAIcE6xQAw9Aj9IhIkrww0rey9gV/XSyC1zjHYwLVsQWic2JJdW3D0LkzWsCKiZSaNlydfx2j8CEhs5+uOCG8yv8urQfn5xCr7MdVdYB+6dOmJhxqXlSN276eTIcgHA8gCjxGAFgTYyTkAwAAoFmjZR/2DQAAAKBILsF3w31SSG0RnirifWgtHQll00bQtua9umvb2nqYVDG2oDfG0u9plcW9DV0V+96ni4C+LtQQq1zuEF2nkXMlBHk9RCJ1gnciraSx64FN+l5Vjk9ujWhZ/0K/q4rvGmDuq/M4adqnbfPDHIomyjy8N60SKEYAWBNYpAHIwIMLAPVgjgAAAFgjdbH+RyAWOidHTIjYRQEDMrqESYspQZBzZDqs8kDae2HzbajivVn6vLCeKwaX8+QQ9F0TTXgsVi3ylSz53lnW0AZQCRQjAAAA1oVvzZKmeJgBAAAAADhWhg7LVOehIGX8O25gPb90IXBb5tbeOdVlCVTlyAg9o3LJ1aWnFKnAKrFsXg3/mi28uA6C8RbhNB/Givxk8IKyJOxlhLk9iPL5PabIG+Hfv8AzRn+fJbbvdZ2pcflbDhf2bVDWGNlgIqAYAQAAsC5CaxYAhgIPmgAAAMC8OaCwnRWTUIpIVSX+Bo659Ae8RYbHD7NUEJgrIkpKPKgCATv3CP8U5PrRuTUGHHMxgXqYdF0KIpX1BZetDU2wHjV+34653k2tMJjDejCHOnSlLsQcKAWKEQAAAOvDWrMAAI4DWEkBAACYSihUttf4uQ3CBOzHnENkThgDqsJn1nJ8iPswN0+YKWEmkgmJJNGvYiUeEaUhpXJKkR59aOefFERpOnwUgRKlSOGjJCESOseITgpv2i2TfDl1nmTuEtpzxL3m9vUeqbuma5O3hhW+C84Ze+yPNb/mMGf7tg2hGTsBxQgAAAAAAAAAAACWzVQWsxUCwJxFODwR5suSwv7kEnDPuJ4+rIYZ/x0FvJymWomQ0vCeIqUXtV4hkihNSQih84soNnXI+kMkRjFCSe5cv/4FJZHQSc+FVPkE6Pb8MRQTMa+fqnW267VjY7ysPYO2b2bzaaj6DN2ulStaoBgBAIAhWfmmAcBRgnk9f3B/AACgP6EgaoneeFPU1bei9q9Z5o3QqMwJra1bHR8kWl7SWChj7Db08nSoyL1hhd9zvwfcMaRxLJ9PmL+iSftN5ICoXmaoeVZ1PqfEOyIminuLCUFiu9G/jYLEJmgXie439djVzPssWF841YoVG7IrqiAZs33uGBvOy167xTXtvTVliCQhsdkQp4p4d56fBzbHzNzGfWwt9ZVGk+xFC9yjfcrGatN2Ve5nwkzCehCAHQAAhmSpmxIAoBzMawAAAMcAT2RZvXT65D04NPYel9Xb5jAAYAj6enCF2o2lzbcqZDbPhBAkqpRilkj7czlNloR3b1lxMVH93JnLWJxLPbrirxE2pCFR/5BiLc6HxwgAAAAAwLGyBMtDAAAAhwH7QzmhAM/up6G3zVCMEiYnYslucxjsFySgXBPM2kI+hp90e87EPKfa0jd8WNn5bT24YrROAl/+rM3e50IIfX/rErS7NaZiPEzxfO97qbS9ln+8aXfpmjPnMR/zZJpy35zqWlN7Mja93kD1gmIEAAAAAAAAAAAAoI6y+Ppjhq4JLWrbnt+iDjaHQfbZjIWSayUMUbQ22uQC6qsU6UpYxzFyNpBRhviXTRWRUvlcRbHqefO07thRGXp9WKoyfqn1ngtjGRQ0BIoRAAAA7YCFOQDrAXMZAAAAaIcVmjbZQ8Pj6jw/ugqGhvIoUSY3w9Jj14+FnxthrPwxzvI8zX8uE3PttHjO3GiSB6RLGVXzzg9FNUROHGbd5x2E/y7/R1pSByldPhGHYqLdLgspVTNucgqRqUOODeEVFC2zpHysQ8eBvc8yMf9Pk1sGihEAjhkIuAEAAAAAAABA0/T9qO871BjvYXivG58uAuGh7ssxeO+EIekOTcc+r/PiKOQTSVNi5iy0Vptk6scwLgAYEShGADh2oBwBbcF4AQAcmrXtXbDM1aAfAABroczaPRceaUBr2CHXzQOFMxmcsZ4VDrVHHeK6Y4aTil1LSKqcF3Uhd/wwZF0UBkON/SqPFSGJthuizUZ7ibAiPjsjTlOXX0Qk2mJee5xE2hH9rEWIsiEY6np45itnyvk3J/zxPUEfQDECAAAAAACWxdpeDqZ+mZ0ra7uvAADgYxNrVwls63KYdE1S24a17EnYU/qztLHgwtw1VIr4yjNfcalGDFfGimi3z5Kss84rYpUkhWObMvR9arLWTBKyC6yasnE1xV5ngGIEgGMGGw0Ax8narO0BWANznZNYLwAAYDiaCFwrw+YMEMKrSTlY98cjvAd1Au3wXtjjw3waYwv1u3h1hm3zPabKPCHalB/rw6Y5gKwixCorhSR5stUhrc569mHNHFaPP57/KMwX0ih/UU1ftqGpUmVKz962OXzc/y1zAJWVNVQb7Tiz87Luf5+1r8ND7XXR8SuIGhYBxQgAAABwjEDYCQAAAAAAwGEoE0aHCo82LCXfRFk9uyhFYv83LEdIoZUSQuq/mTNPjhGpzEEipImhVVvIcBVqwpgeKYMpIWT9MVX1mIJYHZvkkgGjAcUIACADizEAxwXmPAAAAADKqHtOWGNeoNACvY/18ZzBM+D8cQLUknwVfcIuNa5DzBq/hTeFHxLHV/j4bekimK5SitQR5PoRUhAliVaIpGlcaTHwfBFSVOZBYa5LuF7hbdTb0v4AdOnfcFzlvjO5aohqyxVJou/5WIom5uo5499LmdTPD6zbRXqGeeugTgMArBYssgAAAAAAAIA2zEW4NhQ5S+aFWOC3Be9986HOyj38/pD3rpMXi5dLI6RKuD0lRhlS6ckxNCZ8V9j2VnVwfcvZz7HCKqIsrO+PSe+5vmB9nqmq/8HgwGMEAHAcjOGqCQ6H8KxscD/bs7REigCAw4E1FoDlMLQHR8wqee1hQNb+zrDGNk1F0/lVZ+Edswb3vAeE1J9VCmyb5icZgiHGjBPgRyzn/TXlQOsIp169JlCGcprq8F2JvWTEY6GpN8jS53ToOdPUUzHMseLOaeYp4hgrJ08ZZTmDqjxLln6PZ04rtexb3vIWEkLkfp7znOe4769fv0533303PfnJT6bLly/Tq171KnrggQdyZdx3331011130aVLl+jmm2+mH/mRH6H9fj9MawAAoA5sKgBojt2qCAAAAADtWasHBQBNaBWmqIG4LZIXgxUXk3EPUZ8ujFm+Ewh77Zvru8lc63UIhu6LtntK15BbcwVj6+C09hj5hm/4BvrABz6QFbDJivihH/oh+h//43/Qu9/9brrxxhvp9a9/PX3nd34n/dZv/RYREaVpSnfddRfdeuut9Nu//dv05S9/mf7W3/pbtN1u6Sd/8icHaA4AAJSADWdd1MXqBGBM1hhTHQAAwPIZel8q2+/wDHY4wntS9/+cWLpXUdO6h3k17Hwpa3+oGOA0nwej7t5O6T0yNNZboK3Vfh/PLmYip5NhElKQSHRuB5uInWiaqATOU2WIZPSdKhB4L02Z26Is+kOT6zCT8wxx5dXMjzmzhDqumNaKkc1mQ7feemvh84cffph+7ud+jv7Tf/pP9G3f9m1ERPSOd7yDvv7rv54++tGP0jd90zfRr/7qr9LnPvc5+sAHPkC33HIL/eW//Jfpn/7Tf0pvetOb6C1veQudnJz0bxEAAAAAAAAAAAAAmA/HJPyzwvc23hBjKrWmVEpNEY6ub7k2v4f/f/h3WTv6JjyPXXMOVCnc1jh356xEBpPSOsPR5z//ebrtttvoa7/2a+k1r3kN3XfffURE9MlPfpJ2ux3deeed7tjnPOc59IxnPIM+8pGPEBHRRz7yEXr+859Pt9xyizvmFa94BT3yyCP02c9+tvSaZ2dn9Mgjj+R+AAAAAAAGQYh2VnYIQwYAAOAYOMb97tBJjO0zif/jfSeSRFu3S/MTcoz3rI5DeVKoNH4vZJL7sfdUbLYkNtvsvtokzcE4EJuN+8mNgbJ777xXWj7vdkQkCYmTE92e7Um+rjLJC6TL+qh3JUxbg77OX1/3L6cp8X5PvN9n9bFJ0d2PV56Q2T2z87Ftv/rrTNVP2/aOcX9HU255Cqgu9e7dZ8G9jay3o/YrmA2tFCO33347vfOd76T3v//99Pa3v52++MUv0rd8y7fQo48+Svfffz+dnJzQTTfdlDvnlltuofvvv5+IiO6///6cUsR+b78r461vfSvdeOON7uerv/qr21QbAAAAAAAAAAAAS+cYBVTH2GbQCJuovd1JE42nLnUbAhuGrEmOl5Lzhcz/2PLc/0mS/djrHFqI7tdjDhy6P+qwikdw9LQKpfXKV77S/f2CF7yAbr/9dnrmM59Jv/iLv0gXL14cvHKWH/uxH6M3vvGN7v9HHnkEyhEAAAAADEMsNvMxWFvChRwAAMAUDLnfrH3PKhHmikT3oUvKbQV6YX/UCSHL4vqvmbHa2mVcl9wffV9r8k1UldklIfWYYyAcp5apBNFV1zEKDlYcz20iJAkT5t/mABHGMUcIQSSNl4E0c1XZuajMryD/xVi5n/yPrIKGvXWi0Pd8uHed2Hhrev0mIc1in9eFAqu7/lD9YxV1zkPG5g7qMBeGvodlZcnkqPaJjipUzU033URf93VfR1/4whfo1ltvpfPzc3rooYdyxzzwwAMuJ8mtt95KDzzwQOF7+10Zp6endOXKldwPAAAAAMBozNW6aUiO5GEXAAAAmISRraOdsLNOoOaHAAo/c39HwsaAbnTou5w3gmUlFuwF5Z3/GdHhnz8rlSbWQ0RkoeuE0D/OQ8SGtJPmJ9HeMUkWZis/3yrC41URhkDzzw1DfZn6uDp4Xi75epTUa2hE5Pp9y3H/h2uXjPwfrHFTrW+x/gzvR6GebX4q+qPJT6GuQdn28yOjdfJ1n8cee4z+4A/+gL7ne76HXvziF9N2u6UPfvCD9KpXvYqIiO69916677776I477iAiojvuuIN+4id+gh588EG6+eabiYjonnvuoStXrtBzn/vcnk0BAAAAAACtOPTLKZgva022CQCYnjWvJTEhUi5HRM8ExsainVVwrZiniBXAEXlWycH/viBesbaIt4moBcUt6EE9Le5vLPyV9mCQxTHjE1qLk1WWHWB+1bU3phSZQulTJ9Q1fRj1qPCUH2JbIipVrJUPJ1tziiBOFUkiYmbnPSJSaf6Ptz2nKKpsj/kVjhkh3VwWQhBtt1oxkprr7HbF+5O7prdGVdUn5nXSEL/O3GVZsWtaYuua95rLrXUsnHePO92eZ7w1wu8Hnze5nE+Zd4hVnIkkelYBYcYwx+qnuLCG5/Dvl6+ECe8zq0yBZw9JKbtRfv4Xd8B69/FWipF/+A//IX37t387PfOZz6Q/+ZM/oTe/+c2UJAm9+tWvphtvvJG+7/u+j974xjfSk570JLpy5Qr9/b//9+mOO+6gb/qmbyIiope//OX03Oc+l77ne76Hfuqnforuv/9++kf/6B/R3XffTaenp6M0EAAAAAAAANCSFb8AAQAOzFpCOcaEsKFFcCeJoBWUc76vrGA8mmBb5n9b4ZnK/y+8OrMkEqwF8lbIyAyleGtsmJyYIiN3nGehLYUWahaE893HTC+6CEAbzOPGCoChiCiPosdQuZJGCOE8Q6LnykQnk9cHk0iYmBUJqwhhRUyk/xfKKEjyXhMiobiiqM67wp/HMvMaEInJgbIxSgDaklBBKKSc3N7UixIixVl9gjBPrALhelmfuPoHithcuxqGFyu7f6ZMIYOQVFLo/hURhYm/Dgrfa2kAJZ2/Fnt11tdPsrEvRf5+hefGypUyu3/+PEuC8xPKQrmRXr9F0H+5+yy9+yq0x5NVwAgWev3XjYgqDte6N7RSjPzRH/0RvfrVr6avfOUr9NSnPpW++Zu/mT760Y/SU5/6VCIi+pf/8l+SlJJe9apX0dnZGb3iFa+gf/Nv/o07P0kSeu9730uve93r6I477qAbbriBXvva19I/+Sf/ZNhWAQAAAAC0JXy4neIBsO7B2K/X1NcHAAAAhiKqRFiogqRBqJGoYqNBuS7kihQkhBFoscqEbNGcCMJZuGdW0sF17f9Sait3ZhJExOfnJARnFvLn53kL/7b5M5Z2L/vgCy39vBUxa2t7zHZD8uIFIsWkzs5yAnMrnHbyyJK+ZMXZtZrWkyjvyVRSP01EIJs7LhKSxz+OVV6g7l9zyLwNbcvyjw/P9a39k4TE5Ruy8EPM2hPDhMtiKYhtnhHLDReJmEmc7/Sx16/r8xSTYEWcRgTxKqIo8OZpDKsAcQL/4F6I7VYrdXa7ouKNmWiz0fN/tyORps7jwHm72PUhTU27zXqjzFpEpK+dptn4Kwwjka8jmbGt/PFRlt9FZGuYq7dyc0fXRWV9ZBUOShGd67o5pVXQh8Kcy/t95i1XRYnyxNZPr+/FtovNRl/b5qcx90hsNvrebDauD2NzS2y3RFLqeqZpQVlly3Hf2zKUXtPJjhGVuvEXtleY/hH+PNrtbCNyitvcOuO3t2p/WNheIDjqnzNvHn74Ybrpppvom+n/ow1tD10dAAAAAKyJOou/oa8zhWKkzBJwYQ+uADiWKlAF4FipUiYsbR6XWU0H4axyQvKmihEb3iQMl1InTDw50dUKBbY+VhDmqszE51oYJjZG2Hd2nheEtQmtdYzPFGEIM6JSgasN0yQvXSRiReraWTQUDu/31deUSV4x0vQehYqRQgVLkkLXKUbC46xnjPt8YKWIvUZbr4Oq523njSBIXLxA8kk3aeG0ENrzI02JhCDebPTxiZfjwStfnJ1r4fvjZ5ng2JzPzIX557DeAUbonrP6t0JqosyTJfTMsELz0xO9BuxTYl/xYsNPbXRYJz7fE6X7zDPEKG6s4sUJ3ZXKus0P41SiWIh6a/hYRUyaNleMmPLENikc6yt6+Xynu2WbhTkLYWai3Y44HUgxUqimIHGy1XVL07zu9MKpnrtb/T3v0/w17Bg8Nefv9vq+GI8TG5pNnBjFi/0+nF9S55vhVOk+ZrN/pMopv1z/eGOLz891nYQkkQhdXGpDOUbmTlWoyBnsBXva0W/S/6SHHnqIbrzxxspjF6kY+aM/+iP66q/+6kNXAwAAAAAAAAAAAAAAAAAAM+JLX/oSPf3pT688ZpGKEaUU3XvvvfTc5z6XvvSlL9GVK1cOXSUAZskjjzxCX/3VX415AkAFmCcA1IN5AkA1mCMA1IN5AkA9mCcA1IN5AqpgZnr00UfptttuI1kSms7SKsfIXJBS0ld91VcREdGVK1cwCQCoAfMEgHowTwCoB/MEgGowRwCoB/MEgHowTwCoB/MElFEXQstSrTYBAAAAAAAAAAAAAAAAAABYEVCMAAAAAAAAAAAAAAAAAADgaFisYuT09JTe/OY30+np6aGrAsBswTwBoB7MEwDqwTwBoBrMEQDqwTwBoB7MEwDqwTwBQ7HI5OsAAAAAAAAAAAAAAAAAAABdWKzHCAAAAAAAAAAAAAAAAAAAQFugGAEAAAAAAAAAAAAAAAAAwNEAxQgAAAAAAAAAAAAAAAAAAI4GKEYAAAAAAAAAAAAAAAAAAHA0LFYx8jM/8zP0NV/zNXThwgW6/fbb6Xd+53cOXSUAJuE3fuM36Nu//dvptttuIyEE/dIv/VLue2amH//xH6enPe1pdPHiRbrzzjvp85//fO6YP/uzP6PXvOY1dOXKFbrpppvo+77v++ixxx6bsBUAjMtb3/pW+qt/9a/SE57wBLr55pvpr//1v0733ntv7pjr16/T3XffTU9+8pPp8uXL9KpXvYoeeOCB3DH33Xcf3XXXXXTp0iW6+eab6Ud+5Edov99P2RQARuPtb387veAFL6ArV67QlStX6I477qD3ve997nvMEQDyvO1tbyMhBP3gD/6g+wzzBBw7b3nLW0gIkft5znOe477HHAFA88d//Mf0N//m36QnP/nJdPHiRXr+859Pn/jEJ9z3eI8Hx87XfM3XFPYTIQTdfffdRIT9BIzDIhUj/+W//Bd64xvfSG9+85vpd3/3d+mFL3whveIVr6AHH3zw0FUDYHSuXr1KL3zhC+lnfuZnot//1E/9FP30T/80/ezP/ix97GMfoxtuuIFe8YpX0PXr190xr3nNa+izn/0s3XPPPfTe976XfuM3foO+//u/f6omADA6H/7wh+nuu++mj370o3TPPffQbrejl7/85XT16lV3zA/90A/RL//yL9O73/1u+vCHP0x/8id/Qt/5nd/pvk/TlO666y46Pz+n3/7t36af//mfp3e+85304z/+44doEgCD8/SnP53e9ra30Sc/+Un6xCc+Qd/2bd9G3/Ed30Gf/exniQhzBACfj3/84/Rv/+2/pRe84AW5zzFPACD6hm/4Bvryl7/sfn7zN3/TfYc5AgDRn//5n9NLX/pS2m639L73vY8+97nP0T//5/+cnvjEJ7pj8B4Pjp2Pf/zjub3knnvuISKi7/qu7yIi7CdgJHiBfOM3fiPffffd7v80Tfm2227jt771rQesFQDTQ0T8nve8x/2vlOJbb72V/9k/+2fus4ceeohPT0/5P//n/8zMzJ/73OeYiPjjH/+4O+Z973sfCyH4j//4jyerOwBT8uCDDzIR8Yc//GFm1vNiu93yu9/9bnfM//pf/4uJiD/ykY8wM/P//J//k6WUfP/997tj3v72t/OVK1f47Oxs2gYAMBFPfOIT+T/8h/+AOQKAx6OPPsrPfvaz+Z577uFv/dZv5Te84Q3MjL0EAGbmN7/5zfzCF74w+h3mCACaN73pTfzN3/zNpd/jPR6AIm94wxv4L/yFv8BKKewnYDQW5zFyfn5On/zkJ+nOO+90n0kp6c4776SPfOQjB6wZAIfni1/8It1///25+XHjjTfS7bff7ubHRz7yEbrpppvoJS95iTvmzjvvJCklfexjH5u8zgBMwcMPP0xERE960pOIiOiTn/wk7Xa73Fx5znOeQ894xjNyc+X5z38+3XLLLe6YV7ziFfTII484i3oA1kKapvSud72Lrl69SnfccQfmCAAed999N9111125+UCEvQQAy+c//3m67bbb6Gu/9mvpNa95Dd13331EhDkCgOW///f/Ti95yUvou77ru+jmm2+mF73oRfTv//2/d9/jPR6APOfn5/QLv/AL9L3f+70khMB+AkZjcYqRP/3TP6U0TXMDnYjolltuofvvv/9AtQJgHtg5UDU/7r//frr55ptz3282G3rSk56EOQRWiVKKfvAHf5Be+tKX0vOe9zwi0vPg5OSEbrrpptyx4VyJzSX7HQBr4DOf+QxdvnyZTk9P6Qd+4AfoPe95Dz33uc/FHAHA8K53vYt+93d/l9761rcWvsM8AYDo9ttvp3e+8530/ve/n97+9rfTF7/4RfqWb/kWevTRRzFHADD8n//zf+jtb387PfvZz6Zf+ZVfode97nX0D/7BP6Cf//mfJyK8xwMQ8ku/9Ev00EMP0d/+23+biPDMBcZjc+gKAAAAAGNy99130+///u/n4l0DADR/6S/9Jfr0pz9NDz/8MP3X//pf6bWvfS19+MMfPnS1AJgFX/rSl+gNb3gD3XPPPXThwoVDVweAWfLKV77S/f2CF7yAbr/9dnrmM59Jv/iLv0gXL148YM0AmA9KKXrJS15CP/mTP0lERC960Yvo93//9+lnf/Zn6bWvfe2BawfA/Pi5n/s5euUrX0m33XbboasCVs7iPEae8pSnUJIk9MADD+Q+f+CBB+jWW289UK0AmAd2DlTNj1tvvZUefPDB3Pf7/Z7+7M/+DHMIrI7Xv/719N73vpd+7dd+jZ7+9Ke7z2+99VY6Pz+nhx56KHd8OFdic8l+B8AaODk5ob/4F/8ivfjFL6a3vvWt9MIXvpD+1b/6V5gjAJAOA/Tggw/SX/krf4U2mw1tNhv68Ic/TD/90z9Nm82GbrnlFswTAAJuuukm+rqv+zr6whe+gL0EAMPTnvY0eu5zn5v77Ou//utd2Dm8xwOQ8Yd/+If0gQ98gP7u3/277jPsJ2AsFqcYOTk5oRe/+MX0wQ9+0H2mlKIPfvCDdMcddxywZgAcnmc961l066235ubHI488Qh/72Mfc/LjjjjvooYceok9+8pPumA996EOklKLbb7998joDMAbMTK9//evpPe95D33oQx+iZz3rWbnvX/ziF9N2u83NlXvvvZfuu+++3Fz5zGc+k3sBueeee+jKlSuFFxsA1oJSis7OzjBHACCil73sZfSZz3yGPv3pT7ufl7zkJfSa17zG/Y15AkCexx57jP7gD/6Anva0p2EvAcDw0pe+lO69997cZ//7f/9veuYzn0lEeI8HwOcd73gH3XzzzXTXXXe5z7CfgNE4dPb3LrzrXe/i09NTfuc738mf+9zn+Pu///v5pptu4vvvv//QVQNgdB599FH+1Kc+xZ/61KeYiPhf/It/wZ/61Kf4D//wD5mZ+W1vexvfdNNN/N/+23/j3/u93+Pv+I7v4Gc961l87do1V8Zf+2t/jV/0ohfxxz72Mf7N3/xNfvazn82vfvWrD9UkAAbnda97Hd94443867/+6/zlL3/Z/Tz++OPumB/4gR/gZzzjGfyhD32IP/GJT/Add9zBd9xxh/t+v9/z8573PH75y1/On/70p/n9738/P/WpT+Uf+7EfO0STABicH/3RH+UPf/jD/MUvfpF/7/d+j3/0R3+UhRD8q7/6q8yMOQJAjG/91m/lN7zhDe5/zBNw7PzwD/8w//qv/zp/8Ytf5N/6rd/iO++8k5/ylKfwgw8+yMyYIwAwM//O7/wObzYb/omf+An+/Oc/z//xP/5HvnTpEv/CL/yCOwbv8QAwp2nKz3jGM/hNb3pT4TvsJ2AMFqkYYWb+1//6X/MznvEMPjk54W/8xm/kj370o4euEgCT8Gu/9mtMRIWf1772tczMrJTif/yP/zHfcsstfHp6yi972cv43nvvzZXxla98hV/96lfz5cuX+cqVK/x3/s7f4UcfffQArQFgHGJzhIj4He94hzvm2rVr/Pf+3t/jJz7xiXzp0iX+G3/jb/CXv/zlXDn/9//+X37lK1/JFy9e5Kc85Sn8wz/8w7zb7SZuDQDj8L3f+738zGc+k09OTvipT30qv+xlL3NKEWbMEQBihIoRzBNw7Hz3d383P+1pT+OTkxP+qq/6Kv7u7/5u/sIXvuC+xxwBQPPLv/zL/LznPY9PT0/5Oc95Dv+7f/fvct/jPR4A5l/5lV9hIiqMfWbsJ2AcBDPzQVxVAAAAAAAAAAAAAAAAAAAAJmZxOUYAAAAAAAAAAAAAAAAAAAC6AsUIAAAAAAAAAAAAAAAAAACOBihGAAAAAAAAAAAAAAAAAABwNEAxAgAAAAAAAAAAAPjVYP8AAACgSURBVAAAAACAowGKEQAAAAAAAAAAAAAAAAAAHA1QjAAAAAAAAAAAAAAAAAAA4GiAYgQAAAAAAAAAAAAAAAAAAEcDFCMAAAAAAAAAAAAAAAAAADgaoBgBAAAAAAAAAAAAAAAAAMDRAMUIAAAAAAAAAAAAAAAAAACOBihGAAAAAAAAAAAAAAAAAABwNEAxAgAAAAAAAAAAAAAAAACAo+H/B3/iEcgpDvPsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from torch.fft import rfft2, irfft2, fft2, ifft2\n", "i = 206\n", "image = np.array(Image.open(\"./models/HDBHNet_L_DIV2K_x4/val/Set14/monarch_400000.png\").convert(\"YCbCr\").getchannel(0))#[i:i+48,i:i+48]\n", "h,w = image.shape\n", "r = min(h, w)//12\n", "ap = aperture(h=h, w=w, condition=lambda circle_dist: circle_dist>r, low_pass_frequency=False)\n", "image = torch.tensor(image)\n", "# image = ifft(fft2(image) * aperture(h=h, w=w, condition=lambda circle_dist: circle_dist>r, is_inv=False))\n", "image = ifft2(shift_right(shift_right(fft2(image))*ap)).real**2\n", "f,ax=plt.subplots(1,1,figsize=[20,20])\n", "ax.imshow(image)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(
,\n", " array([, , ,\n", " , ], dtype=object))" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB6kAAAeoCAYAAAB3FeWHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde7hVdZ0/8M86bD3HlENaIxdFRRGEFFQc82AXbTAkc2R6Rrs4A5paljaa2UV/5TWli6ZOmpcxJachGyvp6oUoYhxxUoQJnTRJAjIumgrCKDZ7r98ftE+euATK+q7N8vV6nvUMe53v/uzP6p95/LzXd60sz/M8AAAAAAAAACCBtrIbAAAAAAAAAODVQ0gNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAACAP5o5c2YcffTRMWDAgMiyLKZOnbpZ37/gggsiy7J1ju23376YhgEAAIDSvdJ5QkREnudx2WWXxZAhQ6K9vT122WWXuOSSS7Z8sy1CSA0AAPBHq1evjpEjR8Y111zzsr5/9tlnx5IlS3ocw4cPj2OPPXYLdwoAAAC0ilc6T4iIOOOMM+LGG2+Myy67LB555JH43ve+FwcffPAW7LK1ZHme52U3AQAA0GqyLIvbb789xo8f331uzZo18f/+3/+Lb3zjG/Hss8/GvvvuG5///OfjsMMOW2+N//7v/479998/Zs6cGW9+85vTNA4AAACU5uXME375y1/GiBEj4qGHHoqhQ4eW03hidlIDAABsotNPPz1mzZoVt956a/ziF7+IY489No488sh47LHH1rv+xhtvjCFDhgioAQAA4FXsL80Tvv/978eee+4ZP/jBD2LQoEGxxx57xMknnxxPP/10yZ0XR0gNAACwCRYtWhQ333xz3HbbbfHmN7859tprrzj77LPjTW96U9x8883rrH/hhRfi3/7t3+Kkk04qoVsAAACgFWzKPOHxxx+PhQsXxm233Ra33HJLTJ48OWbPnh1///d/X3L3xamV3QAAAMDWYN68eVGv12PIkCE9zq9ZsyZe97rXrbP+9ttvj+eeey4mTpyYqkUAAACgxWzKPKHRaMSaNWvilltu6V731a9+NUaNGhWPPvpoJR8BLqQGAADYBKtWrYpevXrF7Nmzo1evXj3+tsMOO6yz/sYbb4x3vvOd0bdv31QtAgAAAC1mU+YJ/fv3j1qt1iPIHjZsWESs3YktpAYAAHiVOuCAA6Jer8fy5cv/4jumFyxYED/96U/je9/7XqLuAAAAgFa0KfOEQw89NP7v//4vfv3rX8dee+0VERG/+tWvIiJi9913T9ZrSkJqAACAP1q1alXMnz+/+/OCBQti7ty5sdNOO8WQIUPi+OOPjwkTJsTll18eBxxwQDz55JMxffr0GDFiRBx11FHd37vpppuif//+MW7cuDIuAwAAAEjolc4TxowZEwceeGC8//3vjyuvvDIajUacdtppccQRR6zzmPCqyPI8z8tuAgAAoBXMmDEjDj/88HXOT5w4MSZPnhx/+MMf4rOf/Wzccsst8cQTT8TrX//6OOSQQ+LCCy+M/fbbLyLWvkdq9913jwkTJsQll1yS+hIAAACAxLbEPOF3v/tdfOQjH4m77747tt9++xg3blxcfvnlsdNOO6W+nCSE1AAAAAAAAAAk01Z2AwAAAAAAAAC8egipAQAAAAAAAEimVnYDAAAAreKFF16IF198sdDf2HbbbaOjo6PQ3wAAAADSSDFLiKjePEFIDQAAEGv/o3LQ7jvE0uX1Qn+nX79+sWDBgkr9hyUAAAC8GqWaJURUb54gpAYAAIiIF198MZYur8fC2XtEZ+9i3oy08rlG7D7qN/Hiiy9W5j8qAQAA4NUqxSwhoprzBCE1AADAS3T2bovO3r3KbgMAAADYSpglbL7iIn0AAAAAAAAA+DNCagAAAAAAAICKmDlzZhx99NExYMCAyLIspk6dutH1M2bMiCzL1jmWLl1aWI9CagAAAAAAAICKWL16dYwcOTKuueaazfreo48+GkuWLOk+dt5554I69E5qAAAAAAAAgMoYN25cjBs3brO/t/POO8drX/vaLd/QegipAQAAXqIReTSiUVhtAAAAoFqKnCU060dErFy5ssf59vb2aG9v32K/s//++8eaNWti3333jQsuuCAOPfTQLVb7z3ncNwAAAAAAAECLGzhwYPTp06f7mDRp0hap279//7juuuvi29/+dnz729+OgQMHxmGHHRYPPvjgFqm/PnZSAwAAAAAAALS4xYsXR2dnZ/fnLbWLeujQoTF06NDuz6NHj45f//rXccUVV8S//uu/bpHf+HNCagAAAAAAAIAW19nZ2SOkLtLBBx8c99xzT2H1Pe4bAAAAAAAAgG5z586N/v37F1bfTmoAAAAAAACAili1alXMnz+/+/OCBQti7ty5sdNOO8Vuu+0W55xzTjzxxBNxyy23RETElVdeGYMGDYo3vOEN8cILL8SNN94YP/nJT+Luu+8urEchNQAAAAAAAEBFPPDAA3H44Yd3fz7rrLMiImLixIkxefLkWLJkSSxatKj77y+++GJ87GMfiyeeeCJe85rXxIgRI+LHP/5xjxpbWpbneV5YdQAAgK3EypUro0+fPvH7Xw2Kzt7FvBlp5XONeN2QBbFixYpk75ACAAAAipFilhBRzXmCndQAAAAvUc8bUS/oVt563iimMAAAAFCaImcJzfpVU1ykDwAAAAAAAAB/RkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJFMruwEAAIBW0og8GpEXVhsAAAColiJnCc36VWMnNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACRTK7sBAACAVtKIRjQKrA0AAABUS5GzhGb9qrGTGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMrWyGwAAAGgl9TyPep4XVhsAAAColiJnCc36VWMnNQAAwFbgc5/7XGRZFmeeeeZG1912222xzz77REdHR+y3337xox/9KE2DAAAAAJtISA0AANDi7r///rj++utjxIgRG1137733xnvf+9446aSTYs6cOTF+/PgYP358PPTQQ4k6BQAAAPjLhNQAAAAtbNWqVXH88cfHv/zLv8SOO+640bVXXXVVHHnkkfHxj388hg0bFhdffHEceOCBcfXVVyfqFgAAAOAvE1IDAAAktnLlyh7HmjVrNrj2tNNOi6OOOirGjBnzF+vOmjVrnXVjx46NWbNmveKeAQAAALYUITUAAEBiAwcOjD59+nQfkyZNWu+6W2+9NR588MEN/v3PLV26NPr27dvjXN++fWPp0qWvuGcAAACALaVWdgMAAACvNosXL47Ozs7uz+3t7etdc8YZZ8S0adOio6MjZXsAAAAAhRJSAwAAJNbZ2dkjpF6f2bNnx/Lly+PAAw/sPlev12PmzJlx9dVXx5o1a6JXr149vtOvX79YtmxZj3PLli2Lfv36bbnmAQAAAF4hITUAAMBLNCKPRuSF1d5Uf/M3fxPz5s3rce7EE0+MffbZJz75yU+uE1BHRHR1dcX06dPjzDPP7D43bdq06Orqetk9AwAAABtX5CyhWb9qhNQAAAAtqHfv3rHvvvv2OLf99tvH6173uu7zEyZMiF122aX7ndVnnHFGvPWtb43LL788jjrqqLj11lvjgQceiBtuuCF5/wAAAAAb0lZ2AwAAALw8ixYtiiVLlnR/Hj16dEyZMiVuuOGGGDlyZHzrW9+KqVOnrhN2AwAAAJQpy/O8evvDAQAANtPKlSujT58+sfCRAdHZu5j7eVc+14jd9/ldrFix4i++kxoAAABobSlmCRHVnCfYSQ0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQTK3sBgAAAFpJI/KoR15YbQAAAKBaipwlNOtXjZ3UAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkEyt7AYAAABaSSPyaEReWG0AAACgWoqcJTTrV42d1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkqmV3QAAAEArqed51PO8sNoAAABAtRQ5S2jWrxo7qQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACCZWtkNAAAAtJLGH4+iagMAAADVUuQsoVm/auykBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQTK3sBgAAAFpJPfKoR15YbQAAAKBaipwlNOtXjZ3UAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkEyt7AYAAABaST1fexRVGwAAAKiWImcJzfpVYyc1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkamU3AAAA0EoafzyKqg0AAABUS5GzhGb9qrGTGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJKpld0AAABAK2lEFvXICqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSqZXdAAAAQCtp5GuPomoDAAAA1VLkLKFZv2rspAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkEyt7AYAAABaST2yqEdWWG0AAACgWoqcJTTrV42d1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJBMrewGAAAAWkk9sqhHVlhtAAAAoFqKnCU061eNndQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJKpld0AAABAK2nkWTTyrLDaAAAAQLUUOUto1q8aO6kBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgmVrZDQAAALSSemRRj6yw2gAAAEC1FDlLaNavGjupAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkUyu7AQAAgFZSj7aoF3Q/b72QqgAAAECZipwlrK1fPXZSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJXmeRSPPCqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJfXIoh5ZYbUBAACAailyltCsXzV2UgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAytbIbAAAAaCX1vC3qeTH389bzQsoCAAAAJSpylrC2fmGlS2MnNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZGplNwAAANBKGpFFo6D7eRuRF1IXAAAAKE+Rs4S19as3T7CTGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJKpld0AAABAK6lHFvXICqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJfW8Lep5Mffz1vO8kLoAAABAeYqcJaytX715gp3UAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkEyt7AYAAABaSSOyaERWWG0AAACgWoqcJTTrV42d1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkqmV3QAAAEAraURb1Au6n7cReSF1AQAAgPIUOUtYW7968wQ7qQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACCZWtkNAAAAtJJ63hb1vJj7eet5XkhdAAAAoDxFzhLW1q/ePMFOagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAydTKbgAAAKCVNKItGgXdz9uIvJC6AAAAQHmKnCWsrV+9eYKd1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJBMrewGAAAAWkk9z6KeZ4XVBgAAAKqlyFlCs37V2EkNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACCZWtkNAAAAtJJ6tEW9oPt565EXUhcAAAAoT5GzhLX1qzdPsJMaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkqmV3QAAAEAraeRt0ciLuZ+3keeF1AUAAADKU+QsYW396s0T7KQGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJBMrewGAAAAWkk92qJe0P289cgLqQsAAACUp8hZwtr61Zsn2EkNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAt6Nprr40RI0ZEZ2dndHZ2RldXV9xxxx0bXD958uTIsqzH0dHRkbBjAAAAgE1TK7sBAAAA1rXrrrvG5z73udh7770jz/P42te+Fsccc0zMmTMn3vCGN6z3O52dnfHoo492f86yLFW7AAAAAJtMSA0AANCCjj766B6fL7nkkrj22mvjvvvu22BInWVZ9OvXL0V7AAAAAC+bkBoAAOAlGhFRz4vZgdz44/9duXJlj/Pt7e3R3t6+we/V6/W47bbbYvXq1dHV1bXBdatWrYrdd989Go1GHHjggXHppZduMNAGAAAAtowiZwnN+lXjndQAAACJDRw4MPr06dN9TJo0ab3r5s2bFzvssEO0t7fHqaeeGrfffnsMHz58vWuHDh0aN910U3z3u9+Nr3/969FoNGL06NHx29/+tshLAQAAANhsdlIDAAAktnjx4ujs7Oz+vKFd1EOHDo25c+fGihUr4lvf+lZMnDgxfvazn603qO7q6uqxy3r06NExbNiwuP766+Piiy/e8hcBAAAA8DIJqQEAABLr7OzsEVJvyLbbbhuDBw+OiIhRo0bF/fffH1dddVVcf/31f/G722yzTRxwwAExf/78V9wvAAAAwJbkcd8AAABbiUajEWvWrNmktfV6PebNmxf9+/cvuCsAAACAzWMnNQAAQAs655xzYty4cbHbbrvFc889F1OmTIkZM2bEXXfdFREREyZMiF122aX7fdYXXXRRHHLIITF48OB49tln44tf/GIsXLgwTj755DIvAwAAAGAdQmoAAIAWtHz58pgwYUIsWbIk+vTpEyNGjIi77rorjjjiiIiIWLRoUbS1/enhWM8880yccsopsXTp0thxxx1j1KhRce+99673/dUAAAAAZRJSAwAAvEQj2qJR0JuRNqfuV7/61Y3+fcaMGT0+X3HFFXHFFVe8nLYAAACAV6DIWUKzftVU74oAAAAAAAAAaFlCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAydTKbgAAAKCV1PO2qOfF3M9bVF0AAACgPEXOEpr1q6Z6VwQAAAAAAABAyxJSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMnUym4AAACglTQii0ZkhdUGAAAAqqXIWUKzftXYSQ0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJ1MpuAAAAoJXU87ao58Xcz1tUXQAAAKA8Rc4SmvWrpnpXBAAAAAAAAEDLElIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEimVnYDAAAAraQebVEv6H7eouoCAAAA5SlyltCsXzXVuyIAAAAAAAAAWpaQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEimVnYDAAAAraSRZ9HIs8JqAwAAANVS5CyhWb9q7KQGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZGplNwAAANBKGtEW9YLu5224TxgAAAAqp8hZQrN+1VTvigAAAAAAAABoWUJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAqIiZM2fG0UcfHQMGDIgsy2Lq1Kl/8TszZsyIAw88MNrb22Pw4MExefLkQnsUUgMAALxEI28r9AAAAACqpehZwubOE1avXh0jR46Ma665ZpPWL1iwII466qg4/PDDY+7cuXHmmWfGySefHHfdddfL+Z9jk9QKqwwAAAAAAABAUuPGjYtx48Zt8vrrrrsuBg0aFJdffnlERAwbNizuueeeuOKKK2Ls2LGF9Og2fgAAAAAAAIAWt3Llyh7HmjVrtkjdWbNmxZgxY3qcGzt2bMyaNWuL1F8fITUAAAAAAABAixs4cGD06dOn+5g0adIWqbt06dLo27dvj3N9+/aNlStXxvPPP79FfuPPedw3AAAAAAAAQItbvHhxdHZ2dn9ub28vsZtXRkgNAAAAAAAA0OI6Ozt7hNRbSr9+/WLZsmU9zi1btiw6Oztju+222+K/F+Fx3wAAAAAAAACvWl1dXTF9+vQe56ZNmxZdXV2F/aaQGgAAAAAAAKAiVq1aFXPnzo25c+dGRMSCBQti7ty5sWjRooiIOOecc2LChAnd60899dR4/PHH4xOf+EQ88sgj8ZWvfCX+/d//PT760Y8W1qPHfQMAALxEPbKoR1ZYbQAAAKBaipwlNOtvjgceeCAOP/zw7s9nnXVWRERMnDgxJk+eHEuWLOkOrCMiBg0aFD/84Q/jox/9aFx11VWx6667xo033hhjx47dMhewHkJqAAAAAAAAgIo47LDDIs/zDf598uTJ6/3OnDlzCuyqJ4/7BgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJKpld0AAABAK2nkbdHIi7mft6i6AAAAQHmKnCU061dN9a4IAAAAAAAAgJYlpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkEyt7AYAAABaST0i6pEVVhsAAAColiJnCc36VWMnNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZGplNwAAANBKGnlbNPJi7uctqi4AAABQniJnCc36VVO9KwIAAAAAAACgZQmpAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkUyu7AQAAgFZSz9uinhdzP29RdQEAAIDyFDlLaNavmupdEQAAAAAAAAAtS0gNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJFMruwEAAIBWkkcWjcgKqw0AAABUS5GzhGb9qrGTGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJKpld0AAABAK6nnbVHPi7mft6i6AAAAQHmKnCU061dN9a4IAAAAAAAAgJYlpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSqZXdAAAAQCtp5Fk08qyw2gAAAEC1FDlLaNavGjupAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIJla2Q0AAAC0knq0Rb2g+3mLqgsAAACUp8hZQrN+1VTvigAAAAAAAABoWUJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIJla2Q0AAAC0kkaeRSPPCqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSqZXdAAAAQCtpRFs0Crqft6i6AAAAQHmKnCU061dN9a4IAAAAAAAAgJYlpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSqZXdAAAAQCup51nU86yw2gAAAEC1FDlLaNavGjupAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIJla2Q0AAAC0kkaeRSPPCqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJXneFo28mPt584LqAgAAAOUpcpbQrF811bsiAAAAAAAAAFqWkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJfXIoh5ZYbUBAACAailyltCsXzV2UgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASKZWdgMAAACtpJFHNPKssNoAAABAtRQ5S2jWrxo7qQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACCZWtkNAAAAtJJG3haNvJj7eYuqCwAAAJSnyFlCs37VVO+KAAAAAAAAAGhZQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgmVrZDQAAALSSRmTRiKyw2gAAAEC1FDlLaNavGjupAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIJla2Q0AAAC0knqeRT3PCqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJY28LRp5MffzFlUXAAAAKE+Rs4Rm/aqp3hUBAAAAAAAA0LKE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkqmV3QAAAEAraUQWjTwrrDYAAABQLUXOEpr1q8ZOagAAgBZ07bXXxogRI6KzszM6Ozujq6sr7rjjjo1+57bbbot99tknOjo6Yr/99osf/ehHiboFAAAA2HRCagAAgBa06667xuc+97mYPXt2PPDAA/G2t70tjjnmmHj44YfXu/7ee++N9773vXHSSSfFnDlzYvz48TF+/Ph46KGHEncOAAAAsHFCagAAgBZ09NFHxzve8Y7Ye++9Y8iQIXHJJZfEDjvsEPfdd99611911VVx5JFHxsc//vEYNmxYXHzxxXHggQfG1VdfnbhzAAAAgI0TUgMAACS2cuXKHseaNWs2ur5er8ett94aq1evjq6urvWumTVrVowZM6bHubFjx8asWbO2WN8AAAAAW4KQGgAAILGBAwdGnz59uo9Jkyatd928efNihx12iPb29jj11FPj9ttvj+HDh6937dKlS6Nv3749zvXt2zeWLl26xfsHAAAAeCVqZTcAAADwarN48eLo7Ozs/tze3r7edUOHDo25c+fGihUr4lvf+lZMnDgxfvazn20wqAYAAADYGgipAQAAEuvs7OwRUm/ItttuG4MHD46IiFGjRsX9998fV111VVx//fXrrO3Xr18sW7asx7lly5ZFv379tkzTAAAAAFuIx30DAAC8RB5ZNAo68sheUW+NRmOD76/u6uqK6dOn9zg3bdq0Db7DGgAAANgyipwlbIl5QiuykxoAAKAFnXPOOTFu3LjYbbfd4rnnnospU6bEjBkz4q677oqIiAkTJsQuu+zS/T7rM844I9761rfG5ZdfHkcddVTceuut8cADD8QNN9xQ5mUAAAAArENIDQAA0IKWL18eEyZMiCVLlkSfPn1ixIgRcdddd8URRxwRERGLFi2KtrY/PRxr9OjRMWXKlPj0pz8d5557buy9994xderU2Hfffcu6BAAAAID1ElIDAAC0oK9+9asb/fuMGTPWOXfsscfGscceW1BHAAAAAFuGd1IDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJOOd1AAAAC/RyLNo5FlhtQEAAIBqKXKW0KxfNXZSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJY28LRp5MffzFlUXAAAAKE+Rs4Rm/aqp3hUBAAAAAAAA0LKE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAytbIbAAAAaCWNPItGnhVWGwAAAKiWImcJzfpVYyc1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJFMruwEAAIBW0ogsGpEVVhsAAAColiJnCc36VWMnNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZGplNwAAANBKGnkWjTwrrDYAAABQLUXOEpr1q8ZOagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEimVnYDAAAAraSRZ9HIs8JqAwAAANVS5CyhWb9q7KQGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJBMrewGAAAAWkkjz6KRZ4XVBgAAAKqlyFlCs37V2EkNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAydTKbgAAAKCVNPIsGnlWWG0AAACgWoqcJTTrV42d1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkqmV3QAAAEArySOiEVlhtQEAAIBqKXKW0KxfNXZSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJY08i0aeFVYbAAAAqJYiZwnN+lVjJzUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGRqZTcAAADQShp5Fo08K6w2AAAAUC1FzhKa9avGTmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIplZ2AwAAAK2kkWfRyLPCagMAAADVUuQsoVm/auykBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQTK3sBgAAAFpJI8+ikWeF1QYAAACqpchZQrN+1dhJDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMnUym4AAACgleR5FnmeFVYbAAAAqJYiZwnN+lVjJzUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGRqZTcAAADQShqRRSOywmoDAAAA1VLkLKFZv2rspAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkamU3AAAA0EoaeRaNPCusNgAAAFAtRc4SmvWrxk5qAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJ1MpuAAAAoJXkeRZ5nhVWGwAAAKiWImcJzfpVYyc1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJFMruwEAAIBW0sizaORZYbUBAACAailyltCsXzV2UgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASKZWdgMAAACtJM+zyPOssNoAAABAtRQ5S2jWrxo7qQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACCZWtkNAAAAtJI8z6KRZ4XVBgAAAKqlyFlCs37V2EkNAAAAAAAAUCHXXHNN7LHHHtHR0RFvfOMb4+c///kG106ePDmyLOtxdHR0FNqfkBoAAAAAAACgIr75zW/GWWedFeeff348+OCDMXLkyBg7dmwsX758g9/p7OyMJUuWdB8LFy4stEchNQAAAAAAAEBFfOlLX4pTTjklTjzxxBg+fHhcd9118ZrXvCZuuummDX4ny7Lo169f99G3b99CexRSAwAAAAAAALS4lStX9jjWrFmzzpoXX3wxZs+eHWPGjOk+19bWFmPGjIlZs2ZtsPaqVati9913j4EDB8YxxxwTDz/8cCHX0N1TodUBAAAAAAAAeMUGDhwYffr06T4mTZq0zpqnnnoq6vX6Ojuh+/btG0uXLl1v3aFDh8ZNN90U3/3ud+PrX/96NBqNGD16dPz2t78t5DoiImqFVQYAAAAAAABgi1i8eHF0dnZ2f25vb98idbu6uqKrq6v78+jRo2PYsGFx/fXXx8UXX7xFfuPPCakBAABeIo+IPC+uNgAAAFAtRc4SmvUjIjo7O3uE1Ovz+te/Pnr16hXLli3rcX7ZsmXRr1+/Tfq9bbbZJg444ICYP3/+y2l3k3jcNwAAAAAAAEAFbLvttjFq1KiYPn1697lGoxHTp0/vsVt6Y+r1esybNy/69+9fVJt2UgMAAAAAAABUxVlnnRUTJ06Mgw46KA4++OC48sorY/Xq1XHiiSdGRMSECRNil1126X6n9UUXXRSHHHJIDB48OJ599tn44he/GAsXLoyTTz65sB6F1AAAAAAAAAAV8e53vzuefPLJOO+882Lp0qWx//77x5133hl9+/aNiIhFixZFW9ufHrj9zDPPxCmnnBJLly6NHXfcMUaNGhX33ntvDB8+vLAeszwv8gnpAAAAW4eVK1dGnz594oBvnRW9XtNeyG/U/3dNzPn7L8WKFSv+4jukAAAAgNaWYpYQUc15gndSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACRTK7sBAACAVtKILLLICqsNAAAAVEuRs4Rm/aqxkxoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDK1shsAAABoJXmeRZ5nhdUGAAAAqqXIWUKzftXYSQ0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJ1MpuAAAAoJU08iyyPCusNgAAAFAtRc4SmvWrxk5qAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJ1MpuAAAAoJXk+dqjqNoAAABAtRQ5S2jWrxo7qQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACCZWtkNAAAAtJI8zyLPs8JqAwAAANVS5CyhWb9q7KQG4FXlggsuiCyr3v9DBwAAgKqbPHlyZFkWv/nNb8puBQB4hYTUAAAAAAAAACQjpAYAAAAAoOX94z/+Yzz//POx++67l90KAPAKCakBaFmrV68uuwUAAACgRfTq1Ss6Ojq8xgsAKkBIDUBLaL4r+n/+53/ife97X+y4447xpje9KSIivv71r8eoUaNiu+22i5122ine8573xOLFi3t8/z/+4z/i2GOPjd122y3a29tj4MCB8dGPfjSef/75Mi4HAAAA2ML+/J3Ue+yxR7zzne+MGTNmxEEHHRTbbbdd7LfffjFjxoyIiPjOd74T++23X3R0dMSoUaNizpw5Per94he/iBNOOCH23HPP6OjoiH79+sX73//++P3vf7/Obzd/o6OjI/baa6+4/vrru2cZAMDmq5XdAAC81LHHHht77713XHrppZHneVxyySXxmc98Jo477rg4+eST48knn4wvf/nL8Za3vCXmzJkTr33tayMi4rbbbov//d//jQ996EPxute9Ln7+85/Hl7/85fjtb38bt912W7kXBQAAABRi/vz58b73vS8++MEPxj/8wz/EZZddFkcffXRcd911ce6558aHP/zhiIiYNGlSHHfccfHoo49GW9vavVvTpk2Lxx9/PE488cTo169fPPzww3HDDTfEww8/HPfdd193AD1nzpw48sgjo3///nHhhRdGvV6Piy66KP7qr/6qtOsGgK2dkBqAljJy5MiYMmVKREQsXLgw9tprr/jsZz8b5557bvead73rXXHAAQfEV77yle7zn//852O77bbrXvOBD3wgBg8eHOeee24sWrQodtttt7QXAgAAABTu0UcfjXvvvTe6uroiImL48OExduzYOOWUU+KRRx7pngfsuOOO8cEPfjBmzpwZhx12WEREfPjDH46PfexjPeodcsgh8d73vjfuueeeePOb3xwREeeff3706tUr/vM//zMGDBgQERHHHXdcDBs2LNFVAkD1eNw3AC3l1FNP7f73d77znWg0GnHcccfFU0891X3069cv9t577/jpT3/avfalAfXq1avjqaeeitGjR0ee5+s8zgsANibPs0IPAAC2nOHDh3cH1BERb3zjGyMi4m1ve1uPG9ab5x9//PHucy+dJbzwwgvx1FNPxSGHHBIREQ8++GBERNTr9fjxj38c48eP7w6oIyIGDx4c48aNK+CKANgaFT1LqOI8wU5qAFrKoEGDuv/92GOPRZ7nsffee6937TbbbNP970WLFsV5550X3/ve9+KZZ57psW7FihXFNAsAAACU6s+fnNanT5+IiBg4cOB6z790ZvD000/HhRdeGLfeemssX768x/rmLGH58uXx/PPPx+DBg9f57fWdAwA2jZAagJby0ruYG41GZFkWd9xxR/Tq1WudtTvssENErL2r+Ygjjoinn346PvnJT8Y+++wT22+/fTzxxBNxwgknRKPRSNY/AAAAkM765gUbO5/nefe/jzvuuLj33nvj4x//eOy///6xww47RKPRiCOPPNIsAQAKJqQGoGXttddeked5DBo0KIYMGbLBdfPmzYtf/epX8bWvfS0mTJjQfX7atGkp2gQAAAC2Ms8880xMnz49LrzwwjjvvPO6zz/22GM91u28887R0dER8+fPX6fG+s4BAJvGO6kBaFnvete7olevXnHhhRf2uNM5Yu2dz7///e8j4k93R790TZ7ncdVVV6VrFgAAANhqrG+WEBFx5ZVXrrNuzJgxMXXq1Pjd737XfX7+/Plxxx13FN4nAFSVndQAtKy99torPvvZz8Y555wTv/nNb2L8+PHRu3fvWLBgQdx+++3xgQ98IM4+++zYZ599Yq+99oqzzz47nnjiiejs7Ixvf/vb67ybGgAAACAiorOzM97ylrfEF77whfjDH/4Qu+yyS9x9992xYMGCddZecMEFcffdd8ehhx4aH/rQh6Jer8fVV18d++67b8ydOzd98wBQAUJqAFrapz71qRgyZEhcccUVceGFF0ZExMCBA+Ptb397/O3f/m1ERGyzzTbx/e9/P/7pn/4pJk2aFB0dHfF3f/d3cfrpp8fIkSPLbB8AAABoUVOmTImPfOQjcc0110Se5/H2t7897rjjjhgwYECPdaNGjYo77rgjzj777PjMZz4TAwcOjIsuuih++ctfxiOPPFJS9wCwdcvyP3+eCQAAwKvQypUro0+fPjF0yqei12vaC/mN+v+uiUff97lYsWJFdHZ2FvIbAACkMX78+Hj44YfXeY81AK8eKWYJEdWcJ3gnNQAAAAAAbMTzzz/f4/Njjz0WP/rRj+Kwww4rpyEA2Mp53DcAAAAAAGzEnnvuGSeccELsueeesXDhwrj22mtj2223jU984hNltwYAWyUhNQAAAAAAbMSRRx4Z3/jGN2Lp0qXR3t4eXV1dcemll8bee+9ddmsAsFUSUgMAAAAAwEbcfPPNZbcAAJVS6jupr7nmmthjjz2io6Mj3vjGN8bPf/7zMtsBAABoGZMmTYq//uu/jt69e8fOO+8c48ePj0cffXSj35k8eXJkWdbj6OjoSNQxpGGWAAAAsPUrLaT+5je/GWeddVacf/758eCDD8bIkSNj7NixsXz58rJaAgAAaBk/+9nP4rTTTov77rsvpk2bFn/4wx/i7W9/e6xevXqj3+vs7IwlS5Z0HwsXLkzUMRTPLAEAAKAaSnvc95e+9KU45ZRT4sQTT4yIiOuuuy5++MMfxk033RSf+tSnNvrdRqMRv/vd76J3796RZVmKdgEAgBaW53k899xzMWDAgGhrK/WBUVvMnXfe2ePz5MmTY+edd47Zs2fHW97ylg1+L8uy6NevX9HtQSleySwhwjwBAADoqYrzhK1FKSH1iy++GLNnz45zzjmn+1xbW1uMGTMmZs2atc76NWvWxJo1a7o/P/HEEzF8+PAkvQIAAFuPxYsXx6677vqKauT52qMIzborV67scb69vT3a29s3+t0VK1ZERMROO+200XWrVq2K3XffPRqNRhx44IFx6aWXxhve8IaX3zS0iM2dJUSYJwAAAJvmlc4TipwlNOtXTSkh9VNPPRX1ej369u3b43zfvn3jkUceWWf9pEmT4sILL1zn/Ft3PD5qbdsW1icAALB1+L/Gi/GzZ/4tevfuXXYrm2TgwIE9Pp9//vlxwQUXbHB9o9GIM888Mw499NDYd999N7hu6NChcdNNN8WIESNixYoVcdlll8Xo0aPj4YcffsXhPZRtc2cJERueJ+x6waejzfvaAQDgVa/xwgvx2ws+u9XME6qktMd9b45zzjknzjrrrO7PK1eujIEDB0atbVshNQAA0G1reXzv4sWLo7Ozs/vzX9pFfdppp8VDDz0U99xzz0bXdXV1RVdXV/fn0aNHx7Bhw+L666+Piy+++JU1DVuhDc0T2jo6hNQAAEC3rWWeUCWlhNSvf/3ro1evXrFs2bIe55ctW7bed6dtyqPvAAAAthadnZ09QuqNOf300+MHP/hBzJw5c7N3Q2+zzTZxwAEHxPz5819Om9BSNneWEGGeAAAA0KpKeQP4tttuG6NGjYrp06d3n2s0GjF9+vQed/0DAAC8WuV5Hqeffnrcfvvt8ZOf/CQGDRq02TXq9XrMmzcv+vfvX0CHkJZZAgAAQHWU9rjvs846KyZOnBgHHXRQHHzwwXHllVfG6tWr48QTTyyrJQAAgJZx2mmnxZQpU+K73/1u9O7dO5YuXRoREX369IntttsuIiImTJgQu+yyS0yaNCkiIi666KI45JBDYvDgwfHss8/GF7/4xVi4cGGcfPLJpV0HbElmCQAAANVQWkj97ne/O5588sk477zzYunSpbH//vvHnXfeGX379i2rJQAAgJZx7bXXRkTEYYcd1uP8zTffHCeccEJERCxatCja2v70gKxnnnkmTjnllFi6dGnsuOOOMWrUqLj33ntj+PDhqdqGQpklAAAAVENpIXXE2nernX766WW2AAAA0EOeR+R5VljtTV/7lxfPmDGjx+crrrgirrjiis3sCrYuZgkAAECrKXKW0KxfNaW8kxoAAAAAAACAVychNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZGplNwAAANBK8jyLPM8Kqw0AAABUS5GzhGb9qrGTGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMrWyGwAAAGgl+R+PomoDAAAA1VLkLKFZv2rspAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkamU3AAAA0EryPIs8zwqrDQAAAFRLkbOEZv2qsZMaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAytbIbAAAAaCn5H4+iagMAAADVUuQsoVm/YuykBgAAAAAAACAZITUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGRqZTcAAADQUvIs8jwrrDYAAABQMUXOEv5Yv2rspAYAAAAAAAAgGSE1AAAAAAAAAMkIqQEAAAAAAABIRkgNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkEyt7AYAAABaSZ6vPYqqDQAAAFRLkbOEZv2qsZMaAAAAAAAAgGSE1AAAAAAAAAAkI6QGAAAAAAAAIBkhNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkqmV3QAAAEAryfMs8jwrrDYAAABQLUXOEpr1q8ZOagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAydTKbgAAAKCl5Nnao6jaAAAAQLUUOUto1q8YO6kBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZITUAAAAAAAAACQjpAYAAAAAAAAgmVrZDQAAALSSPF97FFUbAAAAqJYiZwnN+lVjJzUAAAAAAAAAyQipAQAAAAAAAEhGSA0AAAAAAABAMkJqAAAAAAAAAJIRUgMAAAAAAACQjJAaAAAAAAAAgGRqZTcAAADQUvI/HkXVBgAAAKqlyFlCs37F2EkNAAAAAAAAQDJCagAAAAAAAACSEVIDAAAAAAAAkIyQGgAAAAAAAIBkhNQAAAAAAAAAJCOkBgAAAAAAACAZITUAAAAAAAAAydTKbgAAAKCV5HkWeZ4VVhsAAAColiJnCc36VWMnNQAAAAAAAADJCKkBAAAAAAAASEZIDQAAAAAAAEAyQmoAAAAAAAAAkhFSAwAAAAAAAJCMkBoAAAAAAACAZGplNwAAANBy8rIbAAAAALYqZgmbZbN3Us+cOTOOPvroGDBgQGRZFlOnTu3x9zzP47zzzov+/fvHdtttF2PGjInHHnusx5qnn346jj/++Ojs7IzXvva1cdJJJ8WqVate0YUAAAAArcksAQAAgJfa7JB69erVMXLkyLjmmmvW+/cvfOEL8c///M9x3XXXxX/913/F9ttvH2PHjo0XXnihe83xxx8fDz/8cEybNi1+8IMfxMyZM+MDH/jAy78KAAAAoGWZJQAAAPBSm/2473HjxsW4cePW+7c8z+PKK6+MT3/603HMMcdERMQtt9wSffv2jalTp8Z73vOe+OUvfxl33nln3H///XHQQQdFRMSXv/zleMc73hGXXXZZDBgw4BVcDgAAANBqzBIAAPj/7P17rC3ZWd6NPmNUzTnXZd+73d2+YhMINjEHTgiBhhxCEgcj8cexwmclSCcQhIhO1B1BLJGIiBAORPJRJJIQQUBICY6UWCDyCaIgjhXHBKLIDflw4CgOB/JBDHawd3e7d+/b2mvNWVVjnD/e8Y56a8xRc+3dvXfvSz8/aWnNy6hRo2rWsnvPXz3vSwghljtOUu/iU5/6FC5fvoz3vOc9+bXz58/jq7/6q/Hcc88BAJ577jlcuHAh/6MSAN7znvfAe49f//Vfr867Xq9x/fr1yQ8hhBBCCCGEEEIefu7VdwkAv08ghBBCCCGEkAeVuyqpL1++DAB48sknJ68/+eST+b3Lly/jiSeemLzfti0uXbqUx5R88IMfxPnz5/PPW9/61ru5bEIIIYQQQgghhNwn7tV3CQC/TyCEEEIIIYSQB5W7KqnvFd/3fd+Ha9eu5Z/PfOYz93tJhBBCCCGEEEIIecDh9wmEEEIIIYQQ8mByVyX1U089BQB4/vnnJ68///zz+b2nnnoKL7zwwuT9vu9x5cqVPKZktVrh3Llzkx9CCCGEEEIIIYQ8/Nyr7xIAfp9ACCGEEEIIIQ8qd1VSv+Md78BTTz2Fj33sY/m169ev49d//dfx9NNPAwCefvppXL16FZ/4xCfymF/+5V9GCAFf/dVffTeXQwghhBBCCCF3TIzunv4QQqbwuwRCCCGEEELIw869/i7hUfw+ob3TDW7evInf+73fy88/9alP4bd+67dw6dIlvO1tb8P3fM/34B/8g3+AL/7iL8Y73vEO/L2/9/fwpje9Ce973/sAAO9617vwTd/0Tfiu7/ou/ORP/iS6rsOzzz6Lv/JX/gre9KY33bUDI4QQQgghhBBCyIMBv0sghBBCCCGEEGK5Y0n9G7/xG/hzf+7P5ecf+MAHAADf/u3fjg996EP423/7b+Po6Ah//a//dVy9ehV/5s/8GXzkIx/B3t5e3uZf/+t/jWeffRZ/4S/8BXjv8S3f8i34p//0n96FwyGEEEIIIYQQQsiDBr9LIIQQQgghhBBiuWNJ/Q3f8A2IMc6+75zDD/3QD+GHfuiHZsdcunQJH/7wh+9014QQQgghhBBCCHkI4XcJhBBCCCGEEEIsd7UnNSGEEEIIIYQQQgghhBBCCCGEELILSmpCCCGEEEIIIYQQQgghhBBCCCGvGZTUhBBCCCGEEEIIIYQQQgghhBBCXjPuuCc1IYQQQgghhDzSxPRzr+YmhBBCCCGEEELIo8W9/C5B53/EYJKaEEIIIYQQQgghhBBCCCGEEELIawYlNSGEEEIIIYQQQgghhBBCCCGEkNcMSmpCCCGEEEIIIYQQQgghhBBCCCGvGZTUhBBCCCGEEEIIIYQQQgghhBBCXjMoqQkhhBBCCCGEEEIIIYQQQgghhLxmUFITQgghhBBCCCGEEEIIIYQQQgh5zaCkJoQQQgghhBBCCCGEEEIIIYQQ8prR3u8FEEIIIYQQQsiDhUs/92puQgghhBBCCCGEPFrcy+8SdP5HCyapCSGEEEIIIYQQQgghhBBCCCGEvGZQUhNCCCGEEEIIIYQQQgghhBBCCHnNoKQmhBBCCCGEEEIIIYQQQgghhBDymkFJTQghhBBCCCGEEEIIIYQQQggh5DWDkpoQQgghhBBCCCGEEEIIIYQQQshrBiU1IYQQQgghhBBCCCGEEEIIIYSQ14z2fi+AEEIIIYQQQh4oYvq5V3MTQgghhBBCCCHk0eJefpeg8z9iMElNCCGEEEIIIYQQQggh5OHESoHy8dyYuTlKwVDbbtc8hBBCCLltKKkJIYQQQgghhBBCCCGEPLjU5HFtzNy2AODSY3fKvna9r9ufJqwpsAkhhJBToaQmhBBCCCGEEEIIIYQQcv/ZJX9d8bgmgufGzI2vbVeupZTb9vXa+PI5k9eEEEJIFUpqQgghhBBCCCGEEEIIIa89t9u/0wriOUms77vKuNP2URtbm98Va6nNvSutXSspTgghhLxOoaQmhBBCCCGEEEIIIYQQ8tow1zMa2Ja+rhjjKmPKcbX9lXK5tp65xHSt33VJbV12vjlxfVqvbEIIIeQRhpKaEEIIIYQQQgghhBBCyL3DJohLWTtXRvt2ynOXaeZdqenTEtKnlQ+381gpPSen7fblazVxXet1TQghhDzCUFITQgghhBBCCCGEEEIIubtY4WqTzEopaEvxXJPXZbns0/pC367wnpPcNZFczlceZymudwnsuZLhFNaEEEJeB7T3ewGEEEIIIYQQ8kBxL/sE8ktGQgghhDyK3EkK2orfXaWwYcaUz20qe070luNr+7+dddfS2uXrt7v/2r5RPJ9LWJ/WL5sQQsj95V5+l6DzP2IwSU0IIYQQQgghhBBCCCHk1VETtVaulmWyS3FcSyeXz2t9o3eV6i73C2wL4F37mOtPXY7bJd5rc+16f25/hBBCyCMGJTUhhBBCCCGEEEIIIYSQ28MK5VLa6mulcD2t1Hdt7Jy4rknkubl3rcsy10O6ts2cQK89LyW9zj1XQnxXD+y5FPa9Tu4RQggh9whKakIIIYQQQgghhBBCCCG72ZV2dgACpknpSnLZhWKb08St7qeWQp7reV1LO+8S1A7TdZdrKo+lNmeZ5t5VBrzWw9oec61Xd01UozKeEEIIeYigpCaEEEIIIYQQQgghhBBy+9QSx7vGJbkavRk/J7xLSVyT2XOCeK58tz6f6+lce6/W97o8tl3lzUuxXa6/HF+uuTb/afKbiWpCCCEPEZTUhBBCCCGEEEIIIYQQQqbUZHKZ8q1J1bmkc217Z9LVc+Ws7fy198r11pLRu0p218qT27WWAnluvtstJV57XivnfTt9rneth9KaEELIAw4lNSGEEEIIIYQQQgghhJB5ThO5tddqYjVAvpE2cjrWvqEuk8JzZbjt2nYlpnfJ2loSe5cIL9+fk81lD+1y/K7HtbXYkurlGk6T5JTVhBBCHkDa+70AQgghhBBCCHmgiE5+7tXchBBCCCEPEzVZWghiF4DYQCTqrtLcZp5c+rvWf3qubPZp6eKS0+SsFdxlenmuZ3StVLeHHLsdZ8eU67Frrx1vcWwupPNVji0fo5i/9pz/OUoIIfeGe/ldgs7/iMEkNSGEEEIIIYQQQgghhLxeuYOe0pPXzTZRJW2tT7Tdfk4Gl/vate8yKT3Xa7p2THN9pXeV4K7NV641FOPL4y2Po9aDei6B7TDt5a3befPYljgvXyOEEEIeUCipCSGEEEIIIYQQQgghhMwL1Zp8Pq0/8o4U9WwJbPs7mPfnSonXXiuF7WnUSoXXtq2JZBRja0lnO+a0Mum1cuK1/tTA9KYAu81c0ro8JpYBJ4QQcp+hpCaEEEIIIYQQQgghhJDXI7tKTu8SyqU4DcU8du6ZdLErt6nt77RS2bX9zDEnl2ulssv9lfvZJeLLfQLz29T25QA3d/y1bW+3tPdcaXCKakIIIfcJSmpCCCGEEEIIIYQQQgh5vVBKyV3pYWBbjqbfrrZdWY66JnptCWsYWV3uz7KrVHhNWpfb1l4vxPBkbLnPcr5a4lyf217bcwnm2hqQzkU05b1Lbrf8eO18zclrQggh5D5BSU0IIYQQQgghhBBCCCGPMhFTYamPPeoCsyamPeAGee5CEqlzSWeXxpZ9k+38MPNgnNfiAqay226/q5R4Odas644lfW0uu58ymTwn3XelqdP2sTxfNZFevl8T0XPHXKbmWQKcEELIfYSSmhBCCCGEEEIIIYQQQh5VatJRBWVK7p5aMjuN1YRvbIq5S9md0sBVUW1+T6Sszquy2mE7UVxLA8+llWupa1TGlnOVc8xJ75okPy3BbPelx1mmzu1+5hLl5ZrK46vJ6nLd5XssAU4IIeQ1hpKaEEIIIYQQQgghhBBCHjVK8egwytBdaduKsM4lufW1UIyz2+qcSJK5TBZ7k5i2c5q1RTN+Ug68JlZrwhXFNjUJXaaaa8dTpsn1tV0J5bny2mXyWc8PIOdobl2npb93JcrdzLkuj5WpakIIIfeB9n4vgBBCCCGEEEIeJGKUn3s1NyGEEELIPaeUsTY1XZORZRloK45NgnquJPak/HcprIu0dE5MR0la597UA6YlxFXkNtiWuDUpbY+lPAe1/warCeuK4HYxvVwTwXp8xXbV81FLZFs5vEs8l2urHbf+Ls9f+dmVcnrmuCdzn1YKnRBCyD39LkHnf9RgkpoQQgghhBBCCCGEEEIeFWqp2zAzriKlJ8ll+7gUmGY/Kp11vjyHlvzW50awTvpRI6WnTXrX6drsGsqy2HPUymLr6zUhu+O1siT5ZBywfW4jpmXK56RyrVR47Th2JaVL+Vy+X5uzlNNzSeo5KU8IIYTcJSipCSGEEEIIIYQQQggh5GFnrjxzTWKW41R42tS0T6K4nL/sqVyW9DZJaYRC8qbfLmDS1zrPY9YyEb1WWJdr1vSyXVs5bq6Hcyl8rbA9rWS3ncus0ZXntpbYPq2s+FxaXFPnZQl1s/9qml1fK7evCXQ7H+0BIYSQewj/b4YQQgghhBBCCCGEEEIeFWzq2L5WJnJrpZ3N624oEtKVRHHuOV1un6SzK/epUxSSdtK7+nbWWYh3l6S205LmZe/tuTnzgszrpcSfk9y6nV1zku+5D/SceK6cly257YqxLqXS/fR8TQR/rWS4Pba0TSzPT3ku3HQ8IYQQci+gpCaEEEIIIYQQQgghhJCHnUKkugHborOWti1ed0PapCxZHcxjpUgUOys9Vdj2lXWU6eBSClsxbt/zGEuSmzVoWjv3gZ5bay1hbCS0K7erlDafbGePSV+3/ajnZDGK14vkuKslxvX4ipsCJoJ/TijXJHztJoa58cD2OSCEEEJeJZTUhBBCCCGEEEIIIYQQ8rBTSs+iT3T5PoBtCRxTyrksC10pG50TvEbwTuQsME0WzyWirWCdE7k22VuWEC8FM7A9X3me7LGY59X+07F4zYrkspR5LWVdS4fb/aMYUyady3XvOha7hnK/ZTnzmtiujQfmzyfFNSGEkFcBJTUhhBBCCCGEEEIIIYQ8zNSS0mWp5lJkepO2tmWj0+suAKGdkbEqio3ELntP21Lf0UjtXNY6iVhXrt2874rU8NaxpN+uFNc1wTonZOckrk2HV8qDT1LNOnYoti8S35P93o7E1vGllJ+Tz/b5ruMsjmVrf/p8bs7a9oQQQsgd0t7vBRBCCCGEEELIA8WuL+HuxtyEEEIIIXcJF1LyuSZ5gVFwav/ilLB2g2wXjYSMDbJU1TS1G5JgHqblqMcFAK4HwiKJbVt628wHjFI3tEnmpvXGVGI8jy9LYOtxpP0BZj12bpXVLabyuJICBzCV+DMiGjDrNec4n3eY8+TGY8jSvOgdbc/9ZD9zz3X7ufLlc6nn8nltvH3NvjdXxrzcj6V2/ggh5PXGvfwuQed/xGCSmhBCCCGEEEIIIYQQQh4GitLTsTHv1WSjTVQXgnqrhLNNNWvKWt/yZm7zjbILQFhG+A5ZOOdUdlnWWxPWg3lNk9Zl6ti870rhHIv9mPMyEeNzJbB1bVbm2sdFotqeh0lqPI7nKbTj3M5+LlZQq8zW8uc16V+mq8s0vDnWavLZzmHPwa6UdDHOhZk5Kinz6roIIYSQ24SSmhBCCCGEEEIIIYQQQh50yvSrFbu1tHBZBloTy6aPtBXPmvQFdoyDSRVD5Kzv3JhqNqno3IfaT7fP64SksKvlqFWW6ppKWV07FktNwM6V/y5ltq6tkOaT5+aziFbomzS1PS4td65p8klqvFzfnJwuj82URc/PU1p+a3yZGrfbFuPtOd0S1nb7yudJUU0IIeROoKQmhBBCCCGEEEIIIYSQB5laKrlItlqJm0Wy6eucJWkpu4FJue38uJS1mlY2UtT3yKXBc7ltFbGl1FZ5bvepzSjt+nX6ose0Le+d09T2OGqp4VJAF0n0CcV2ZXlzK+K31lxLkKdj1dLmk9R7TfIWz7Pkr5Xxtp9t0TN8kvKeS5XbbcvEtF1meRNAeUMBisc6hhBCCLkNKKkJIYQQQgghhBBCCCHkQWRX/1+blrZy0gpdI6atJC0FaGxSqhnSX1pldZ6rTPxaYe11vJN92DWb0tx57brGJKhdNKnoQkxnmapzWPGqYtyK5/IcmferSeh8Qqb73LoJoNzGlv1O72nZby3lPTl/wKQPd1WWF+J6UmLdjfPmY9HP1N6UYIVxeVOCPQ7by7x2PuzaynNRptJReUwIIYTcBpTUhBBCCCGEEEIIIYQQ8qBRyteiH/BWb+da4haV1xy2UsluSHLaSToamKapNSWd08E2ha1yexWm/aAVn8Yk0ToRq+l5TkWr4FVZrOO1BHaSvrZcdrQi24pdI+CBSvLanltLUWq7mkYu5/Ayf5btIfWptkK/mW67VU7cfH45ke2L7c0xT86JniMr94vrYSL7lVI2l9cRzDa7ZHVZApxpakIIIbcBJTUhhBBCCCGEEEIIIYQ8SNTEdJFszQnnWEhaSyX9XBOO0Sc5rcnnJFqtbAxtkQ7WBHRKRPtODGUWpiZBnEVxJWFcPfzGSPhK6tl3xXg9D6Zftt1/fj5XqrqWNnZmbvtaLbldlM3WdPhkn4Uk3ipfbvp462erc7jis9hab1m226ao7Y0JtZsX9GEp40vpXJPTtfdY/psQQshtQklNCCGEEEIIIYQQQgghDwo1YVqKxVoyuhTRpTTUstFlaWhN6lrJasZogjr3n7aitcWYnrbb+nGOScrXHle5Hn1N08G2vLc9HhWwVkIX4tcFs383nXdCLS1sXy/PX7l9IWVz6XKTFndluryU3Cb1rClsfV/lu02L2/PhitT31lrnUtDl8ZgbD05NRLvix44rJX5N6BNCCCGJ9n4vgBBCCCGEEEIeKKJ+m3mP5iaEEEIIOY1dpalrIlWfl2nfymuTPsV2HjOfTQ9rqtkmrHPZbrOfaPerIjk9zqW+k7wOraShJ6W+YcYBWXTbMtcZXUcck9z2fFlZHcvzYSnTwzWpWxPVpVTX3adz4nqMZcmjWYeRy/Zz0J7gsR1fK/eXe4v7cfutz9KI78nz2tqL68JV0tdbonnuGrudfRFCyKPOvfwuQed/xGCSmhBCCCGEEEIIIYQQQh4UapJUXy/Tq2V5ZV+MT2W3J/2PS8lqd619p+08Ki81GRxHcZzHl8LS7FN/Z9ndjILarskFjD2ozX5zuW47v5kTQQSvLTGux55Lottta8K0LN1t5sjvm2PMx2ZLemNcq/b3nvSMNvNEI3F1myz9S8Fb7h8mWa3rLBLWOTVuEudbsrk8BabceKYcV85RXqu+eL92jRJCCCEJSmpCCCGEEEIIIYQQQgi535QJ1zK1WhOE9jmwnTh2mPSEzjJVx5kUbU5HB2z1T7ZjtTe1i/LYJqV1Dt2nG0TYak/lmARqTj/bJLbK3pSQdpogbpDLYedjUgEbxzR17gNdnocy0VuKa2fmr6WSzbiJZMa2RFfR7HuzjR6zlfJ2Nyqqjfze+pwqwlrnyzcBpPVNyoEP6VzU+nHbY0vz5iT1rpsjzPhJL/SI6XVT3izBNDUhhJACSmpCCCGEEEIIIYQQQgi5X6goHrCzHPPWa6Wsro0Bxj7HJm1rU7u5dHQqOb01lx9fVykbmzERnedwqYy39q4OIqjzc5t0TuvPqWwjy1VYh3ZMSIdUBtsVyWRbdrxW/jpL30oJ62jWspW4LpLBZWp5koC2Y0xp7vx52rWYpLn9rHLv6cbMY87NJAlfpsmLvt35ucp0t72WqojedZ2VSfn0OK+3lOnljRZ2XkIIISRBSU0IIYQQQgghhBBCCCH3EytKy9Rprcx3+dy+Xnus+yilohXA2hO5lIs2Bayp44hJQltlqO/Gx7Exgtoem0kOa29qXetEng/IPZpzqtrIXTdg2kO5TP6axHM+lUYA5wS0JrKtaNVk+DAei93WCmT9CbafdHqu52py7Lpv+828rkGPSZPUuv+ijPnkszXC3Up+exyTNHolET25hux7ljLNbsuz14Q2puOr+yOEEPK6hpKaEEIIIYQQQgghhBBC7hdFKenJa8BU/pVjrbAsBSaKbVT82tLfbpTEUUt3l9th/J23t2J0GLexc/uNG+VqcRxaAtx3mJb+1v2W6yiSxCpeJ+W2d51DFef6mk1Om0RyltfRzB+25XFeikmHq1DOx98bUY1xTE5825LrRi5PEtlWjsPMb1PpbhyT58W4TS6x7os12mR37UaI2jVgUt35sw2VsWb/szdXEEIIed1DSU0IIYQQQgghhBBCCCH3g5qArklo8/pW6WkUY8vf+j5GYTkp4a2J4KIk+EQmpj7Rk7QwkixuMRWZSDJ2EcfnPUYxrCXDk4RFmM45J9pt6W4Vyr4bk7yTktg1iV97XMpZPR8wstqj2u95IoXN9lbi+n5ca+7bHIvnwCTNHZt0jjSpbJPV9jya47U3A7jyOM172id8SxSXyX39XV5XtqR6Jbk+wcjz2fkIIYS8rqGkJoQQQgghhBBCCCGEkNeaufSpfb3o4Qxgu7wyMBWF5e/yNU1Ut1PhraWpJ5JW50779R2yrHQhSWsrIm3PawCuc+PzaOY1Y6rnRNdU9Jy27+f30nY5Ja3HgvGY8nGUpa1LQW7O06T8um5ymqCNmJQBn6Svw/SYsyx2mJb11uS2+ZxzH/BWHrt0o0GW2fYUamLaJp3Nud1Kt6N4HqfjyyT45LjtsZc3RsDsq1YJgBBCyOue9vQhhBBCCCGEEPL6wcXpl3F3e25CCCGEkJo4rso+m5pWUqp5IgDL9GttPrNvTTDr78l85XOVxVaypoSv79I4mwS2YnURxzm1RLfusyiPnY83/bdYbGSuLFz19UJe6z5tSljXnsei2JeeN3N8wLYI3zp/xec2KZ+u75efmQplW8bbAxgwLVuu584Z0ZzWpDcI6GMA22l089lqClvPV/4MrSwuU+D2ejHP89pMonxybmqU1589P/Z6LxPlhBDyEHMvv0vQ+R81mKQmhBBCCCGEEEIIIYSQ+0GZdq4JUTumloZNY20v462UdlHmWsWvFaH2fU0AV/sxmy/hc6ltUxrbJrVVVk+S00moOnvcmEprlbRl6e3QTgV1TlDb3tTmnEzWVJTlhnk9qhgO9Tlq5zALYbtf7U9dfoZJGE/KoSc5bftR588updSzpC/O9SRprWv207l1G2fOUz4HEduC2p4nmHHAJLE+dy6qjyvX7tb75TknhBDyuoGSmhBCCCGEEEIIIYQQQl4LVCbbstFzSdMy4YrKWIxjJ6JZfxeC0Jb0zvLZjjXrmohUlZcqsZvpfqJZr+uBsIyjuLbrM2u24nNSutukistkdF5zsRY3pGMrz4GRonHmnFs5HEuxas+5EbmTEuBW7Jpy5xMhDEzS0XDSr3pS7lvnTMfge4zJc/M5Rr89V9535RrI578UzcV5sud60kvapsOtTSjT5jq2PIfltTyXviaEEPK6g5KaEEIIIYQQQgghhBBCXguKUs4ARoFcJn3NexPJV4pW+5op0W33CSCXbAaQy3VvjbUS2ZTwdkPqP41x+0lKO4lNFyB9k3sn8jYJcQTAb2QDW45at8+9rVGkhEvpWiaVk+ydlPsuz42usSKut24AsOW+TZnsiQjWqW158bK/diHdgVHE29LiOSVt9qUpdy3xnW9qKK6DLeleS+HHcZ9bpclhjg9G/ut6auPsDRb2XOpxlmW8azcGRMx/HoQQQl5XUFITQgghhBBCCCGEEELIvaZM9aqYNK/lBOtceWRgKiQjxjLSWjrZYSou0zZlkjmnukvJab4xtn2kNfk7kbY2sav9ks2aQptSzgGIi5jFa0ZFuEkFW1maE9NJeNrS1zkNrnLZ9HSuJtRRvFZJqueS4+b85M/FfFa5pPlcctuWsbblvDGVy7F2rtNxul6E/6Sk+O0chxvPvzOJeLuWrSR5TdiX16eWDrfXmDnPkxsENJlt0921dRfVAAghhLy+oKQmhBBCCCGEEEIIIYSQe0khYvU1lX859Vqmm8t0aUWKTuR2maYtfxeJ20kpb92vEeWagnb9KKC1L7Q9Nitu83ZI6Wkn5b8RRVDnEtZlyWpTxnvSvzmaeW058jCK8a1za89XJRWs69Z15OMtEtNZLLtxf2W571pp8InI35XcNqnjaMR2bJAS6UbEV24MKJPMeh3oXDY5v7W2Uubb5LjZj+0LPulNXqwnl2TXNZT7nrvxorxOKasJIeR1AyU1IYQQQgghhBBCCCGE3CsqQnhLFAKjnJsr2W1kbVlaeUue1korWwFp96NSs0xfF8llfV97Jecy1FZG6tpUIreyIN85kZztuE9X9lw2onxSStub9aXjs+fQdxjT1CiEdcREwJfJcd9jO+1rz4Mth62y1gp9W+paz4EZO9m/3aZMrev1oNdISiFrkjofV3mTgs6Z5thK6Jsxer6il3M/OUfm3GZRr2sshH3evx6HXZNJjNfS/FtivHYjRXljBiGEkEeW9vQhhBBCCCGEEPI64l5+OcYv3QghhJDXHzOJ060kaZnQLbdVAVgI3Uky1c5TEYF5e1uu2qaxdd4kqHNJbU05u1EYa8pa9+mCJKZ9N9r1Sd/lFqNoBxBWEX7jZLlFlEp7YE9kvpHJMY5zaRI9p63bcQ5glOBOy4HrOYnmvcGcG4xjtAQ3zLnJUj3J3ck5MtLZxalgd7Hyn4J6TMHsz2/vEx6Ic2n5Mgmd1lIej13nRKKXnyXMdm7mNZPKzinvXTdJ2MdlErsYN+mdTgghDxP3+kabR/D7BP7PPSGEEEIIIYQQQgghhNwLbJnnWt/dXalSmBSulZ8qNst0dZlUrUhF+54tne37Yg7txayiujdz2D7SRlBGjyyoQ0oA+04kaGjH9UQPhAXg1w7RTdcBB7jeIbSpd7UK+UqZaO3fnNfrCumsKW1bfro8L7Y8dkXyR5Xf9jzqZ4DpOcrzJbGej9nKbHvDgJXrKZGsNwuU5ctdP14DWdzXvtkPmEj0yfHoOYB530+PfXJtFULfrmci+XW72rW8KzFtMWvYulmAEELIIwslNSGEEEIIIYQQQgghhNxlJilgpSatYzGmlIqFqI2+eN5Mt6mJais2y37JTiWtClLTQ1glbViYuYZt8ZxTzA4IiyhjUmo3J6JNMtkn6R3bODlPbgDiIube1blstfnRxHeWuzZVjsp5K7HfiNtUcPE55PLYurbynOu+TIrbymMr8fUziz7tx6dzAHMeVXzr/H6cw/bdzql3/fzKY7Sfb4lNh1tBrsLam2Ox56sU1vrclBDP7+t5rcntYi2zArzcnhBCyCMJJTUhhBBCCCGEEEIIIYTcTSoJ4YmYnpPKpbQuE9g1qVdKyqIUtJbOVhGak7ZpjBWWO8tEm9/RjaI5l3xO3zRrmjqL1gC43gEqrLXcdwv4jZuUdtZy3FYCh4WacOQS2ppIVmGeRbNNd0eTXLaSubwpQHdlRWuRMM5p66L3tArniTguUsXOymkV6OlzcGE8j3nfKo+DuTkgTveRb1TA+NlObj7Qecrjt+lwmy5H5TXd1qb5y+sSZpwrfuvj2k0Z9v3iPGdoLggh5JGH/1NPCCGEEEIIIYQQQgghdxObSC4lXCnpyvfK0tPAVApWkr3VNHbaTstuVyW4JpFVVtfKMKuQHaTndE73an/oJENdSgZb2auJ6rAKQBQh60IS1Cpni2PJpa6RRG7vJs9t2Wrtr6wi3PajzglxmG1mpKkrPxMr/v34+qQMd5Luk3LiGMV1Ll+tNwBouW/ddzoPuaczphLapfNlv8HfKoXtxjFRz6Mfz6ntQR7tZ2+P3X6epUS211cpq0vxXLt2C1mfX7+dGzUCttdDCCHkkYKSmhBCyJ0T+S8EQgghhBBCCCGkii0JXQrRYkxVCtdKJrvt18oSy2WvavvYprptOe/J2kJlW0XFZ+8mUjWnjhtsJZFz6rqV7XL574UkqIExWT2RySZFnUW26YNdE8rRAzGVGdfjjbVvvmspdPNZZVk+OWYjj81nqgLelvgGTMrZCOK8zuI68F0al8ZHTZqn85BTzw7Tst7m+sljPCYJa3v8W321zWev10b1pge731JWlzdQuGJ7TB+XyfTJeiy1pDu/hiKEkEcSSmpCCCF3jiv/tUAIIYQQQgghhJBq8tRKQX1eSzTX0qSlVKy9r7tWWamSuUwDp7HRi3jdSriasSo1s/i28taZ7XWfWkY8JYDdIMI1946GPI8+lfhuYk5T5zLadr6a6Mcon7NotyWui7Lj1fOtyWt7njDOE9pxLW5A7t+c92k+04kE19ftPmtSuRgTm3FcltPt9NhU7kZzjqrz1vpU6zGbdHUW6Pa8wNwcgOJ1ez7L6xGV57F4bZeELrcBto+vfI0QQsgjAyU1IYQQQgghhBBCCCGE3C1qyefyfWBexlnhZ5gkiK0ILAR0Fr0qJVV42vSt9qjWbQq5nstpN0lIe2QBnWVyj4k8lZLbYwK4luht1g5xEQGfUtLmmCf9lnVNwRxHWcZaNy8EelkOeyJLUxn2kMqClyLZ9+PYSToc2E6QwzxXbB/yQu5ulbsutot2rbVEcrle8/pEQsdC5Js58zEETJPTZp2zSf6aeK4l/XclsWvzlFIb2+O3bqQghBDySNCePoQQQsjrihjBpDQhhJDXNVEjK/dobkIIIYQ8kmjqtirb5p7vEp/FPLZkd37fJnZN2WaVlpoa3krDlkJyciDT/YdFSjxrorhH7v2s26vwDMsoPaRNSlvTzW4AwiJO5bWO6xzCKozbWilp0sQqmG2Z7RjNMe46PnNcWeDq2lH8Z1qZgrfbA7m3tMpgTUSXxztZE8b95n1p8rvsv6yfZcR2L+niM7PSPthy4c6sDeMcOj6Wc9Vugth1bdae2231qb1uy7R0LH7XhLnbPo+EEPJAci+/S9D5HzGYpCaEEDKFgpoQQgghhBBCCLljVAhnAWr/eW17PNeSqXMS0pltS6Fc/PPd9jJGEre5DHc5tpSwNpWtEldLd6c5XOey+M4pZ4ziOCwAv/ajkFUpjSS2TZ9oZ/bpepHbvnPVc2ZT4aHFdqJck+H2/KrU1GM0afJ8PuL4XEXuJIE89/WITS+rqE5rzOLd9p82z8t09qSEuJnb3mzgap+7SRfbft75XJk0eFmqPTaop7rt8e66Nnclq+22qIy3r5Wvw7wP7J6XEELIIwElNSGEEEIIIYQQQgghhLxKNDk7SY6qVLOlleeEcy0lHSvbzgjCSalvTOXlVrlvFZXlvJr01SSwGRdTCtppYrgZ5/I94DuRzbrPsJD+0yKrkcWrMyJd1+2M1JV+1jH3s9bEr6aEXeemEjrtL6ernYhv+15GhbKKaE0xazlxPY/287NlzlGMcZXndn+lgLafmekVDZjPo9hHFtUmCQ1g0kNaxboK7WivnXTc+dhjZb1zCeddcro23hJ3vF9K60KWZzEfx+NlkpoQQh49KKkJIYScTuStqoQQQgghhBBCSBVN5NbSu6UEtO+Xr9ttMJN2nUuhmvdzv+VyHpsStklfTAVvFtk6zpSLVjmtYlolr6aErfj2KT2t5cJ1P2ERp0Je16glwTVVDYwJ6TQfXBLhKpUjxrR3O65xIjrt+a3JaaXo0ewiJmW9raDfOr9uXH8W2kUKWgV92at6QvE8S2c9t2H6WM9bLu/uzfp0vnTcetPB5Pop+1bbbWqv223L8SjeL4V9OU/tmO35Tu9Nyp3z6ylCCHmkoKQmhBByOiwBTgghhBBCCCGEzFMrcVyTcnPliyuSb9JHuiYRY+U9U3o6J5Wb8XUr/3RM7mms5bsHM8aW/07p6Fw2W7cxSWMru3Np72E8Jk1X61rzsRox7nqX+zrbUtU5Ka4S2vTJtv2Vo0+v177KqN04oPtSjPiNblx/ToDrZ5J+h3b8DEpZn29cKOcrP79CMOfz3Sa5PYwp9Zwu1/MWzDy6rGacJ/fBLm+iyIPNa3OyWsfVHpfn1l7XhX2YpPdr12/t78NPXysT54QQQh5eKKkJIYS8MpiuJoQQQgghhBDyeqeWKtXfRgJXyx7PJVTnRGApslG8FzEmg02aVxPDthdyTWjq6zGVhgaQy2brmJyeNmt3fZKpncvSOItunTalu303lv7eWqsVmzaVbMS69vx2IQnvrjgXOtb2lbY9vcubAFTCa09p7VdtZGpskqDWZHlZfluPVdeqaWcr+60sNqXOdY2TntYY92lLyLvejalpYCvRba8XTZ3nbUuRXRP4pYQubn7Ir5fblNd0TWYXNy7MXr+1xLT9+8HMzQeEEEIeSiipCSGEvDKYriaEEEIIIYQQQrZlcyHcJglWYLfIq71fK53sip8y/VrI1y1Jq9iktE0U2+S0EcpZQGsf6SRBmxOXk76+M2liI4hdAMIqjqK7PIdp/9ozOjqTUnbja5qS9l3lvBUlu/OxFOctaiLXimOMZcnLeW1p9Jx6TucyC2uTRkcqP25Fct6nTb3rTQBlAl5vKjDJ8XyMNiEP5B7eWWrbFLkZ6+x+TbpdX8v7gtnWrnnuMysT2HadtXxDee3a12vzl6/pegkhhDz0tKcPIYQQQu4hMVJ4E0IIebCY+0Ltbs1NCCGEkEeDUjTXXi/fq6WhSwFtX9sl8ezc5f5UkBcS22lSWtPCUMmJnPaNRiBmcWrmDa3I3NCOQjqs4ljiusHY89pIz9AC/sQjtrKY3EfaJqr1d5KQKqK1ZLmKXi29HX1ag50nrTcfi85pJWxN5uvabQIeaZ8xLU/LppubD/R4tz4Ls/+ciG7GuWMzXXd5vnTd+XVbsj0l2GOrwt5Jmn0ozqfeIGHS3dE+1vNQlgQ34tmWUp+7zqrXayx+W+z4uWu99jdVE+KEEPKgcK//9+kR/N8+3nNECCHk/kJBTQghhBBCCCHkYaQm0vT18nn5T1+bkp6T2Pq7fGx/5hLYZZLYpm9twjqlpW2iN5f6NoLapqJ9byRnSjrnlHCROLYJbU38ArK/sEBOZQPI6eywjLkPc/RAWMSxL/QwCl4grUVFr5GYuc+2x+QYNIltE+P59bR/LdOtKfH80Zg15eOL28dQK4mt5c5d50ZZXYrtol94LnduE92233WbRHX5eZWJeIyPc6I6TOey50n3VfaCzq+XSf+awDbHsZO5mzPs4/Iar93UQQgh5KGEkpoQQgghhBBCCCGEEELuFCvMbPnimkDblSbVx3OJ1TnRZ0sxm3LZeX+lADXiM6epjXTOazClvQHkEtI5bWxErMrtPIc5L5qUjrYMti0/rUleFeBZnLpRJjvADS6neXNvaFPaenIudX6TYM6p8iJBHps49nhOwjkfd+Vz2JLWg6TD8zFEcyyFXHWdPIgq3FFIfV276R+tYru8SSGXBk+PJ58fsC2ejXDWNevjyTkpr8XypgP7Xu0GjbkEYXHjQlU+lwnpiuifjLPHSggh5KGFkpoQQgghhBBCCCGEEELuBJskLQXbnEibS6PWEqi1VLYrxqswtmuqyUazz5ziBbbLe6NIBZuy1FloWgmOcf9WYk/KfuucZj0TsajrM3LX2Z7Vzkhyc7y+c9IvW/tKx2Juh0m5b12TiuGY5PfkGOy5UtEcx/ETTPLaCu6tY9H9LcZy6LqP2GIi0fPrKpxt8lkls01R2xLdYTz2LN11bu197Uapndc/TNe0JZp3JZbnktJl2v80ymu9TGjra5W1bfV7J4QQ8lBxR5L6gx/8IL7qq74KZ8+exRNPPIH3ve99+N3f/d3JmJOTEzzzzDN47LHHcObMGXzLt3wLnn/++cmYT3/60/jmb/5mHBwc4IknnsD3fu/3ou/7V380hBBCCCGEEEIIeeDg9wmEkEeOWqnjXSKt9t6u18z2k8R2bX9lItXMM5GQldRsKTSzbIZ538rAMl3rsdXfOHrkMthagjqXlgbG0uC6VCtSUSSIwyhzcznuCAyrWJXftqd0ToKXMh+j4M0i2R4vMC2TXbthwL6n6W47RntO63EHM7cfz3F5LnaKWJv6NinyiXi3fcbNDQValj1LcJtotzdU1JLMNdlcXrO1xHVt+/JGjvJxOaZ8rzZ3TZQTQgh5KLgjSf2rv/qreOaZZ/Brv/Zr+OhHP4qu6/CN3/iNODo6ymP+1t/6W/h3/+7f4ed+7ufwq7/6q/jsZz+Lv/SX/lJ+fxgGfPM3fzM2mw0+/vGP41/+y3+JD33oQ/iBH/iBu3dUhBBCCCGEEEIIeWDg9wmEkEcKK9zmRLN93z4uyyWX6Wq7fW2f5fiaxDMJXyvI3YCpZDZrj+a5FcpW5mpi2CZ0cxpb+zyb44h+nNdr72Qrx9M6NdFrS09nYd2YfadkdNAEMrbl99Z5L0p0hxZTET0nX505Hhh5u0vGFjcNTMqjY3p+cj9uewyVz9PeMGBfzyloZ86rJr5Laa43F5Tlv4s0/FxifDLP7SSty3NSO0enpZ9dcU7sXKdJc0IIIQ8N7elDRj7ykY9Mnn/oQx/CE088gU984hP4+q//ely7dg3//J//c3z4wx/Gn//zfx4A8NM//dN417vehV/7tV/D13zN1+Df//t/j9/+7d/Gf/gP/wFPPvkkvuIrvgI//MM/jL/zd/4OfvAHfxDL5fLuHR0hhBBCCCGEEELuO/w+gRDyyFFLd+5KSZfJ0XKeWjLbjjGp3y2RCCOKbaltK5iBaVlvW+bbmbG6vSaoraBWoVymde364iiSVUw7FdRmjnwsttS2itfgENsocrtDTlKHVOJa+2rrc11T1ISx7blsz5XHpO/0VoLZjMtSP60tGsGcN1G5bM+hPS/l56SiGBjT3XqTQKUPth1j0+D6WauoztK+2F/+jPW8DtPPZSLVy0S+PSe1a3cuHV1ui8p79jW732KbWM5XptUppgkh5KHnVfWkvnbtGgDg0qVLAIBPfOIT6LoO73nPe/KYd77znXjb296G5557DgDw3HPP4cu+7Mvw5JNP5jHvfe97cf36dfz3//7fq/tZr9e4fv365IcQQgghhBBCCCEPJ/w+gRDy0FJLcNaSovq4FHBWXpfSrZy33MZhkgq2+1dBa8tN10qAOyuhyxLeteQ3kMtBZ6HsC8lqBXoqQe175PLTYZHm6adiN4tiPc4kVXP/ZiO0bXoaGAX1lthMZa0n5a5TAtwmpydlrcvPwpwjLYftzPl0SRpPUs66rdnGfoa6TS4jXu63IlyzSHbjucxpZ1s6Pa2jXI/ehKClwbUftS0DvpPyWp27dstrpkxalwnsub8XO19NXpcJ6nIspTUhhDx0vGJJHULA93zP9+Drvu7r8O53vxsAcPnyZSyXS1y4cGEy9sknn8Tly5fzGPsPSn1f36vxwQ9+EOfPn88/b33rW1/psgkhhBBCCCFkN+WXaXf7h5DXOfw+gRDyUFOmTYHtVGlN1NXmKJOoc/upCdWKHKylccs1qURWOT0pY10IQDcA8CKEc0pY5ahNEaf5sjxVkZqEre9GSer6NF+aK4tqb+a1SWTtQ61y17wGIIv2soR37k2Niky2srg2xmEi8KMejznnuT9277ZvJoC5CUDPuyl9PumlXdwMsFVmHUYy6/nVRLjOZ25UyNuaeaNdl9ueHxFbpdon52KXAC5vyEDldzlPba7azR5z1BLc/G9sQsiDwL3+LuER/N+6Vyypn3nmGXzyk5/Ez/zMz9zN9VT5vu/7Ply7di3/fOYzn7nn+ySEEEIIIYQQQsjdh98nEEIeeqxQs9+u7pLX+n4ps43cc4U4ve111OSe/ULbrtX2JsYorV0/ri+XxE7pZduXOktuk3KuHqPuK0qS2nfyms6Zpbbup3MitPtRME/S1Glu12OSdAaMaFesrE/bTRLoFSG6lS6O4xqclbg2Ud4AsYljqrpMScdiv0ZYZ5FcpKXzEtOxqqzX86Jp7Kjnt9husk/7+RfnyCazAUyT9/Y8lc9LaV273sprHJXxpwlrS01610R1bVtCCCEPNK9IUj/77LP4xV/8RfzH//gf8Za3vCW//tRTT2Gz2eDq1auT8c8//zyeeuqpPOb555/fel/fq7FarXDu3LnJDyGEEEIIIYQQQh4u+H0CIeShpibaSrk3lyLV7Yv07GT6UvjZ7cvktJ2rlrS222pCVwW16aOsaelcJltFtErWuX0oVhSbY9N5gTEJXKaXNTXtBkiJb1uiW0VskcC1wtr32O6LDXN8pqy4bpOT4L4QyPZ8KUbKq1iv3VyQU9IVaa7noex/rSXTy3MpaXOXH/uukjyvyF+bRp+VvBY7tpKotjcmzMrmct7aa7uk8a6bOuZufigT2+Uab/cGD0IIIQ8EdySpY4x49tln8fM///P45V/+ZbzjHe+YvP+VX/mVWCwW+NjHPpZf+93f/V18+tOfxtNPPw0AePrpp/Hf/tt/wwsvvJDHfPSjH8W5c+fwpV/6pa/mWAghhBBCCCGEEPIAwu8TCCGPBGUSGsXjWrqzlNJzEq5GLZ1aJlHt2DLlauToRLbqbxW4KrDdKKizQE1S1NWODRh7I9v0skrYwcyFUUrr9pP+yFbi2sd2nyYB7rQMtx5XxFQEl3OYdcGPgttKTdt7OgvymijVHyPdJ2K/3NaK/6IE+OSzzZ9BnPSRdsH04NbktH42Vk7bmwCssLXC2ZYxt6Ja12WPv3bDg46vSWT7uFwDKttYSvGsj8trv/Z3xxQ1IYQ8tLR3MviZZ57Bhz/8Yfzbf/tvcfbs2dzz6fz589jf38f58+fxnd/5nfjABz6AS5cu4dy5c/ibf/Nv4umnn8bXfM3XAAC+8Ru/EV/6pV+Kv/pX/yr+4T/8h7h8+TK+//u/H8888wxWq9XdP0JCCCGEEEIIIYTcV/h9AiHkkaAsY1wrpTxTXhnAbplWCsFSzNVKLJePKwLZylMAuS9ydJgkl52mpq3UVpmpKeGyj7HdTh8b8ZnLeSfhmUtWa7Ia41rKOXWtziaqw/h+WdJ6qx+3SRhPpHEpkmHm1OM0wju/btdiP6t0XtzMZ+7K/dlt9byZ8+GGJKR7I/GjWYfK6V7KqOv+J0n1mevTRSDa1+xayiS2m5mrnHfXdV4+r8nm2uPyZou5/ds5YZ4zTU0IIQ8NdySpf+InfgIA8A3f8A2T13/6p38af+2v/TUAwD/+x/8Y3nt8y7d8C9brNd773vfin/2zf5bHNk2DX/zFX8Tf+Bt/A08//TQODw/x7d/+7fihH/qhV3ckhBBCCCGEEEIIeSDh9wmEkIcakzDN1BK29r05yVbOezvCeldqulxLuX0p1o2ctmJXE7tbvZt1/zaNq6/pdkPylX76nu5T59X9aXp7rtx2lt5GvuZ+1SZJnGX1juRtToprWtisK7qpEN/qZY1x/5OUtu6rvC50XUaMq2jX5PdWGjmlsPOxavnzBmOfcJjX9LOz/butcDafvYtA0PS6Ffm1ntVz1+ucKAaw8/qz79tzVortmgS34+fG1NZdzkkIIeSB544kdYyn18zY29vDj//4j+PHf/zHZ8d8wRd8AX7pl37pTnZNCCGEEEIIIYSQhxR+n0AIeagx/xM2Ebk1+Twnnu1cNVm3S3TXhHSZyD1N1Jl9TlLIdhO7vyI1nSVqmcKNRnDXpGWUZPCktPfMGmMb4Ts3immTEp6kvlV6m2TxlizWdet2NjFcCsxSyJrz5QYjxm2aWucx5zKXIC/KaGc5XQjsfB7TmImIrn0OwCQxHcs1F8eRS677cZs8Ts9bKbiL81e9Lu0Yy50mpMs5awnuXfPv2i9FNSGEPBTcUU9qQgghhBBCCHnkiff4hxBCCCEPD0ksav/fSbnnXWnTmjwsxwDbss3+nhNtZeK09n5xDFtzFc+13/HWGBWeTWU7K76b6TbOSFxNQNt5XSkkAbjgRgFsvrWerC1Jb8DI3mDGVfaRfw/YJmC733be8fa6bfrcaUJ7Tv6nteW0M6bbW3Gu508lt94UoPvIEtukv3d9s5+PWde4Sw4Xx5x/165Ru215XZU3VNRurCjnLvddSvPa49o6yoQ1IYTcD+71dwmP4PcJlNSEEEIIIYQQQgghhBAygyZWYym/amnOXRJ6jlpCtCbyaqLZvl6RglncOmyLPLPPU49NH9aEvB2XnueS3aY8NSDrcSq17RfuEZPUcC5R3cbq+3burfNhk8c2pezMaz7CRUwFdSFy7blz5bGmY9wqAw7kPtR6PmpCfnLzQ8Q0Rd3GSWl0N7jckzqLdpXzEWMi2txAYZPZeizOHqObHt+WSJ4cqDkuHW9/lzdk2N+1v5FSVs9d6yXlOu1NCLWxhBBCHngoqQkhhBBCCCGEEEIIIWQOFXqV31VRO0cp8+bKFJeJqXLMKWu1v63EnQjOmfHV1KpNC5t0b1VyGumokjQ2cezLrOWvrTS1WOnrABfc5JijB3wnc+rnMOnpbD6TWH4+FRkaG+Tkcpa65U0JmpKuCNUsqsv9YnxePe+6bZbT43G6weVzBi/HmsuNx3G9k3NmS5DHcX5700C+cUA/y9rNEbpue53ZGw9q10vJXPq5vP7La7m82aKWji7Ftj2OXaKdEELIAwklNSGEEEIIIYQQQgghhBRY+ZiTrVb+linauTS1ZZfUrqWZy+QoMBWLtf3UBGIhXavCvJCWKkKdfd/05M6CNs3nBoznJAKxlTG+EwGrZbqzbC2lcZGARgRcP31Pe1u7weV1TPpdlwlhc0x5rWnx0cdpGtoeTy3hO7PmWJ5vu19NjcPM6zFNcKfEuPaPdoOK6uk2adnjbyOuy5seyvlh+mBPeqrXxLM5XnucW0loe0y1GwEqNwXspLwJ4zSpvWuftfGEEEIeOCipCSGEEEIIIYQQQgghpGBLPurjUt7NCWR9XsrkWoLUzlfus/Z6TRbWqM2tj3Vd3gjmUjoC0z7Kuq2VptpDOQlTN4xzS+oZuTe1rkkS1mZs7Ri9iG5NIztT3tp3rl6q20j0avJck83JkmvKOTYi0d0AuH48+K0EfVmuupi7xBXJ8JxyTqI6J9NtMlgF/WDm0OPSFLV+JnYOYNLberJWe16UWvK4Jn53Cd85sVxLY8/dtFGe07kbPMq1FmJ+a12EEEIeeCipCSGEEEIIIYQQQgghpKQsq6xYkTeX7twl9Sw1eV2TyXZ/c4nX25XWpnexvpYFZkrc5jLUZUo3palziemUKFcRHdOPCyJ7Y4ssXHNqWSWsLdWc5i37C0cfc6nt2Ka5eyC0MUt1W/560nfZnM9cZjxLdTcRuzpHTOW1tfw34vY1kMt3w7w3d3MC0nHZdLfu141ry/21zfmILp1D7Vttjnfr83PjOVVCi0lJ9ckNARi3nb1+ZlLuW9uddhNGjVqCe9f+y32Xa6gJ6zmBTQgh5IGBkpoQQgghhBBCCCGEEEIsSSZupYjnkqLAVm/iLSFspd6c2KtJtVp6d+53KZVRvG/2YRPPOR2tIrQxvzGOycdo9pVFqEk6Rw/ERZxIXp1LhayVvXlptmR1KnsNFxHSXFk4tzEnkXU7Vxyvls+2xyxCXZ7kY7ESOc0t6WSXj9WWd89S3B6/7qMoNZ5FP0Q4T6R27RrQZLT2x/Yxy/NJKXJzrJMktvl8tH91Ph82tVwrj11ix84l/GuiurzWyuu3/Fso56ulrueS2HaOHX+bhBBCHkwoqQkhhBBCCCGEEEIIIaRgIj1LIV2IPhWCWYwaKVqVdmm7qoCujS1fnywG83KvMqaWqHW9WatNOKtoT/udCNR0zLlMtpXVJjEcWhnve/mtiWqbbM4yu/JttRtc+hnTxr5zk6SwS2nuUibrvFaUu8HlY6yJctc7RAeEpTnReh7SGrUMeZb4mh7X1LiWQ/cxr0vl+Fba2nz+WtY8NlIqPaS+3rp2OR9mO4dpX+1yreZznJT7Vrleux7tPCjGpGOdULt+SwlezlP+TRixXhXbdt5dye1yf3N/D4QQQh4I2vu9AEIIIYQQQgh5oIhu/DbwXsxNCCGEkAcfm6Iu09EmaZylru3RXEuX1lLWcylSzIwrBeLcvmyKuyxHDeQS3LZMdmzNWKRe0u24nUpmJEHq+1FO6/s2eev6tD2SeAzm3Nh1OcB1DrGJCKsIv3FjOroZz5uK2yzDgwOaAGxcThpbCa89r30nr5WC1r7mUkjbnrcsr4OTNHMEoopdLYVeEeOAPM/9t4OT1PfgJkJ5LPUd4Ts3Xj9NEvDLOL2hwE3nz+cE6Xz22KZ2nTlzjszr+RzY7cr3SqFubzSoXc+16xaVsWbeOPP61px2nrl9l6lxQgi519zL7xJ0/kcMJqkJIYQ83MRTajid9v5rwYOwBkIIIQ8dH/zgB/FVX/VVOHv2LJ544gm8733vw+/+7u+eut3P/dzP4Z3vfCf29vbwZV/2ZfilX/ql12C1hBBCyCNIIcxqpa4n5ZRVpJq+y5NEa2XOyY/Oq+/Fymu1sfq4FNW29HQxZ9mPuZTotsy5TffaY84ityITo4lG5XS5ytXO5eeuh5QFdxCRC+Sy4W4Y39N9+o3LpcRd7/J7KrBh1mkTx/qZuAgp553E85boT34hJ6RdzM4hC/m07nxsSV7nc+kgcjodju/cKEwnJwm553SWtNoTW0ui69pj2qeew3STgK4htpgm5MtjK/Ybm/F4gUJYlyXDHcaqAjWhXF6nu5LQp1H7OynWnm9GsPsoH9s5+JUMIYQ8sFBSE0IIeW3ZJWxficx1p/xr57T3XwsehDUQQgh56PjVX/1VPPPMM/i1X/s1fPSjH0XXdfjGb/xGHB0dzW7z8Y9/HN/6rd+K7/zO78Rv/uZv4n3vex/e97734ZOf/ORruHJCCCHkEcGKW2Cakk6izPeYpHe1pHUWhqXYVsqUswrtuTQqzNjy9XL+gOm+VLCb48piNBTvF0LbhSRDjZTPwlrHqcCNmJak1m3M+vzGIeyFJGGjSNkkml0q4S0SVhLV/sSLUE7HFFYxl+P2azemigf9Lalsp+JYxbOmsm1fZ4xrdiqBbeK8weQ8x2Y8F1lI63tFUju2avjNZ2BuAPC9JKzz+0b8R29+nDnn7SjH8zHbNdh0PzC59mwPbV2j/fzyPOaGAPjxs8vXy4zYnyT4b4faDRZlKtq+juIxsB0oNNu78nMmhBDyQMJy34QQQoQY765Mrc1XvlY+p8wlhBBCMh/5yEcmzz/0oQ/hiSeewCc+8Ql8/dd/fXWbH/3RH8U3fdM34Xu/93sBAD/8wz+Mj370o/ixH/sx/ORP/uQ9XzMhhBDySGBEVyzlW5mkdtPf+T0drmLX9CmupqVVaHts76tMSKN4P57yWijksiZzVb4HICyM2NMp0lhN1vrOISzieDwqRXX7KJLeDTIOMOOCpo2jyOUG8GuPsIy5XHdYBbiQxHNKE4dllHH7Af7EpTLe6b1FRHPishCODkBrymc7c6y9A3yUEuUpgT051iSR/WZaaju0JslsS5sDk3R5niMdZ9AbFlQSp2NpTuSYY5PW2ZhrI8n5sIw5va5zWXHsNw7DKsr89jM118dkbfbmgtr1UYplN25XvfaBrfM3e02jeFyT0/bx3N9abd9z13+sSHVCCCEPJExSE0IIEUp5fDfnm3vtYZHSLNdNCCHkLnP9+vXJz3q9PnWba9euAQAuXbo0O+a5557De97znslr733ve/Hcc8+9ugUTQgghrydsehSoi67yW1UjgSelsa2EtKWKQ7H97ZRM3vVPUyuwrfCzSVsrwh0mZa2zoE4lpuHHlLjuNyyjyNpOdpRTv9orOgnpsFRriyyVy3Oqx+83Lp8Pv0kJ6S5tl8RxXMScmo5aNjyd82jSvlvnKIgwj+24Jt+N+4+LiJhez8K+jWMqPO1fJb2W1HbBfKZG4utaJzclRJjrSFLeWYTHcVwW4K3IZymFns5HP94AAA+EtMZchrty7dibJvQYcjK8csNDLvGt6XqMc+XfNcFsRfDcVzy1myjKeew+zPPZv5Ny/O1Ic0IIIQ8clNSEEEK2udfy+GGTvs49fGsmhBDyQPPWt74V58+fzz8f/OAHd44PIeB7vud78HVf93V497vfPTvu8uXLePLJJyevPfnkk7h8+fJdWTchhBDyuqCSLJ1IPGAie/V5lpKabE1zZUFtZJomW3X+/DuJN7dLvpXC0BXvlyWedf22l3QS0ZP0dnquMjuLTptKdgBczHLad0k0I4ngtJ0tCe4GEcyhHaV2bETIxla20fLeul1z4sZ9hlGoS//lmKVy2AvQct6+c5I8VpkcJZ2tMjgsYi7tDYhsV+Gey5eb8+UCpPfzIiWbU/I5j0m/VTLrGGAU1tpnOzZAs3YIexGhjdKzOp13PebcbzvdQBCWcfvbe/080ueek9pGJtue6NPPYXp95GvHY0tqT9gln2tpZhSvWZmtz+duqii226o+UO63TF5XUtUU1YQQ8uDCct+EEEK2uVulv+fmeVgS1BYV1XPlyu92uXRCCCGPNJ/5zGdw7ty5/Hy1Wu0c/8wzz+CTn/wk/vN//s/3emmEEELI6xubHLX//KuJrlIy63anpTj1n5FWylmRXb5XrkdlYpLQWbCafTqb4laZmcSr9jaOSON0u3Q8Kou3jietMSylVLVNWLsBYxnvbhTY2n85LOK4D49UstuN+8zC2sF3wLAXc+pZy2APjUhmf+ylNPjgsiAHJGGsZbr1JgAtqS3i2Y3SszjPthy7TZdrwltjy5MS8NDjG29EkJ7bKU29cSKqO4ewH4CNgz92CKsxTR2Dg+/TuVvIMcd27G2uaxRZPp7TfC3YGyPSZxV9+nzb9Bmbkut6XPkYgplHE+OlxLa/i+ssfz7BXEf2d/G3UJ6/2ZLddm3lekphPdcvu7ZuQgghDxSU1IQQQkZUtN6ubD1NzO7qP30n87yaNdhx5ZpeLWU/bYpqQgh5JHCaXrpHcwPAuXPnJpJ6F88++yx+8Rd/Ef/pP/0nvOUtb9k59qmnnsLzzz8/ee3555/HU0899YrWSwghhLwu2ZW8LEo5b6U1a6nm2vulUAvYFmpzSVUVk7oe22vYGSEZsVUKW9/T0tVWXqqczinkJEvDIkof57QOp9I5OsBHNMc+J399kqO6L00wj+WsZbPmyGM4E9Dc8lkua7nvsB/hT1zuRx0bKcstpcHj2DM6AAgpqZz6UvvOpdR1FNl7Iv9Wj/oteBLdAIDBZembS5an8+o3Upo7rNKxhwifym87H4EeciBtRFiM/aVjI/scDoMkrxeSFM/H07nx+wmVth6IKy0z7uCGmEuJ+85h2It5ffpZakI6OsCn3tlwmB5PP47J15e5Jqwwzp+PXiu19LO9LovXZkvjF3I6lvOUSWh9fS6ZbdduKgNMesercJ/7uySEkHvEvfwuQed/1GC5b0IIIfMCd1eJaxWydsyu8bcrs+fWdqfbxjjdtibf77SE92kCmoKaEELIXSTGiGeffRY///M/j1/+5V/GO97xjlO3efrpp/Gxj31s8tpHP/pRPP300/dqmYQQQsijRS0VreIL24J6kjh2xTaFIN5KfBb71ORuNYlt96WorC7WLEnmOEppnd/+E1j7Zxvx6ftxf5qEDq2IUjhIKWun20lpbb9xGPaDpIB7WYsbgLiMObWtx6vS2AWgPz+gveExHAT5Uj+lkd3g4G95hJXI73AQxnMTgeHcAL9x8CdeSmfvhXysiCLEh0M5qCaJYRW+sZVUMwYH18s6wl6U/tsbl3tce01ADw7+2I+9thdRyocHl3pdx0kvbTek8uMQkQ8HNDe99L2OMj46oDnxKX3uJqno6EfZrp9vWMXck9qeTy0xrp9R/vibca6wGGX25Prx45icPB/D4nIureRN15WrvJZ/z1yz+pOPs0xR17Yrx5q/mdwf3I3ricZwOF273Q8hhJAHFkpqQgh5lLldCTsnV08Ty2Vy+DQJfLtC+07GzM19O4nwXYJ7bv/sTU0IIeQ14plnnsG/+lf/Ch/+8Idx9uxZXL58GZcvX8bx8XEe823f9m34vu/7vvz8u7/7u/GRj3wEP/IjP4Lf+Z3fwQ/+4A/iN37jN/Dss8/ej0MghBBCHk4KwWzFVy6rrENt+ejyn4vl8yIt7exz04s4v2fnVRmdhG4t5erMGn3ncso6S+JSevepf3PleN1gjl0Px0hZFZthL8KfqPVMMncZ0dz0krbWbVOadzgIcAFobjboD6KUxPZjyfCwjCK8jz2GvTgR48NBwOLzrYyNgD92ucR4PodNSnY3QH8QstjUOeUcRUSfSnL3DtFHwMck7iNiI6ltP4zHr2XFXXAixtuY+2irXA5JbOsxiphP8y4imiOR07GRbZ2ZP5dozyXHY/6ccyo6vefTtlk+p3ly6fN0w4Et+Q5nZLa9LtPNA/lzsqXE7Vi99svtNfNQSmz9m7E3Xey4QWMyX/l3U4j8fCOFNRuaEq/18K79bRJCCHkgoKQmhJBHmTsp221/3435a6WvdwntuflVht9JovrVJpp1e5sU1zXcydwU2oQQQl4FP/ETP4Fr167hG77hG/DGN74x//zsz/5sHvPpT38an/vc5/Lzr/3ar8WHP/xh/NRP/RS+/Mu/HP/m3/wb/MIv/ALe/e53349DIIQQQh5OCkk3EV8qlmt9cGeSoi71YZ7sIhTST5PWNnlaS2QjpWjNvCq0VbratdsS3/BmHzElbbUcd+fyPnMaV3taaxlwLU3dSsltSTSPfZdjK8lel0pUWxEbU4luKd+NLIK1r7Rfe4T9mI8lLCOaYyeC16ee1ycuJ4vDIvV1Tn2a3TBKZGCUv1KaHGhuyUlTge+CA9pRSOs2UuZbhHh/NqSy5khiW86jG9woZ61oTjcwxDYitEBYhlwKPKwC4CXdba+zLKM1xZ2S0SrAVfbm0tY9MKxS+e/OTa6h2Mp50s/JdUlmp2PQPtf55gi9GUGvLXvdW1ltpbPDdtI5XXuTkt+V6z1T9jsv/36sqI7FeBTjYLad2x+K8YQQQh4Y2JOaEEJeD9xu7+hX21fZlgC/0znsNnOP57YDTt/f7a5tLh3uGyCW/8o5BZb/JoQQ8iqIt3Gz06/8yq9svfb+978f73//++/BigghhJBHHCO7skQOlfcrKebZXtQ+/TOzKBOuwnOyrUlW2567AEYprhJb92PX6UZRqftyEcCg+xQhq8nZLHIHl5PMuv7cu1qTvWm/rhcp7TuH4XCAX0s57DGJjJzkjR4IjezIH0uKOBwOcJ2H80BMC4hIUjWlqnMZ8bMBbu1S2hlZ6gIinftzQd5rkb8b0GNww3hcIrMlfd2cOPSHIozd2k3OAQAEFb2dRM/DUm9cH8uhu05fj2PifHCIad2ubxD2AtrrDYZ9KfHtj8dkuZbqjo305u7PD/DHaqHlXLreqRsfRbReUunc5jLnKU0dUllxLdldliPXct6T6wXmRgTtS+3MzvS3ve5raehYPC4SzDYBPZkbGHtjW1GNyviZhPfWGu3fR20sIYSQBwYmqQkh5PVA2Tv6tLHKK0lW13pVz1H2jD5tPbU12bT1aWuzv+fS2XPHf6eCmilqQgghhBBCCHn4sFKt7DdtRRowFXKojIURf6Wks6W+K9trz91cQtn8uAFTwV2sz/YgjmatXiWwymibqNV9pTW4Hoimn3NOUreS/I0N0N5sskAu0+ahRRakfu0RViE/1vXHVtLSYU8aTruQ1qbieOPG/S5iKh/t0Bx7DPsBSH2htaR0dBhLjEfp5ywSWUqIa19pv3Zw2oNay3U3UgLc9y6LXF2znp/YAGFfynqPSWSXj9Wlcubwkix3SCW4VQ5r0t3JfqKPGA4DmiOf549uFOa6PhHuyDcBaBo6l3VP69W+2ro+Lck+ufminz6PrenZ7aaC2pXXPcbttgRwLXltX7fbF2Mn186cWLb7jaivo/wbtdsySU0IIQ8klNSEEPJ6YU7kzvWJrsnmWlnwmjS2v2tjbPr5NFFcbj/33p2mlm+nZ/Uu5o7pla6HEEIIIYQQQsj9pZaGToLRjpmU2bYCLCInniVdjGkJ5JrotnNase1GIWkFm4tGJOrmKrJtWfGISa9hWV8qDx1SGrp3E9mnqWEXkUtkZ2G7jLJdOiY3AMN+yMnmUeSKDNay1rER29keeYS9kHtlA0B75NFdGLC80kiv51aO1a8dwn7IZbjDQoS17x18BxG7xx7tLYf2uhepmxLYzbGHljL3Jy6nqRFcToaHZZTy40nGw8k5AaSUdljJe36d1qwivhl7ZLsBOaGNJmI4M6QS3RHDvmzT70fAp5LiaycJ6NTLejgMaG556andymfVHqfjGEaZDiT5riJ8gPTTTp/bsG/7X8vx+LTGsIqjBLbS2d7wEMw14M31hvFGCX3PXse53HxNFuu1qj2p0zU+W4UAlTHF38eWYK6NCcU48/dYKwlOCCHk/kNJTQghjzJzAvm01/T1UlTXBPRpKeaydLfd/nZT17dTyruWjN4l02+HXaK91m/7tONhupoQQgghhBBCHkysOCtkXln+2CZPS1R62p7SNqFcLWes6ef0frQyrygJHhtMkqi5LHh6zfYY1l7HKurCMqJZS3K5uekx7AVoWWj4sR8zICWlQxK5vgOaE0lDN2uXE8nNLT/2r15qeld6TA9nwtj/ODr0Z4LI51ZEb9gL6M8ELK412Fwc0Jw4NGsRpipw+7MDogeaY0lUD3tB5PMtj+ghpbTTt9vNSdrvYZDe2Ck1HpZR0ttB1hgXUdLDKV2t5zGs5ERr72sR36lUeCtjJQnu8j5VAvsTh/Zam/poe7jOp0S0fF6ud+guDFISvIlwg0Nz5DEcyFq1d3Roxs/eb6Svt36WzVp6a2spdDj5XBBSufOA3Fc8Okx6bcdU6jxfu0iSWW+mSDc36JrtNVrrMz1J6NdyB8W+8jhzvU/+Jszc+cYQk/LPr9txKF4v/7b0vVC8Rggh5IGCkpoQQh5WaqnmkleSLrZzlr2q59ZQ20+Zli57PdvndswrQVPRdp5X0tf6tH3Mjd8l8cs5Xq04J4QQcu+J9/iHEEIIIQ8utTSnTTKH+uu6XZbNJmkarTyz5bvt/gqZlpOqZYLVlvqORgSm16wcl17NZs7Ut1j6Uke4IP2e3eDgepGuvhMBHVJ5bddLEll6VouwbVKf6LAY+1i3N5J0XUaE/YDmhk/lt4HhcEB7Q8RybGWu5qhBc+TRXRykd/OelL6OXvYzHAYsrjcip8+EJGVFVodllITzxiHsxSx4fYfUozqm4xXxrb2ZXeeAIR1v54FBjiH3u26RymUjl+xGShovrnuEFtI/euNyqnxyY0ErUr85ln3GRgQxIKXRwyJOzqdKZLW6cSHrDEm+537Sy4hhFSWJnaR3bCJiK/I6X6s+5psVmmNZr6TFU+Lbfh2RbqTQHuBuwJi0TteiK69TIMtsnaNWhnvr5g2Vy8ZETFLaMDdXhPH9yc0iaQ1Zott96ntlZQO7/9pjQgi529zr7xIewf8No6QmhJCHldOEqHJaie/a63OJayvGd4nfWgK77AXtm9ub63bWXa6zLOW9S6LPvV8bO3d+7mTt5Xm5nZsNCCGEEEIIIYTcW1RyFcll+34WcDblaSWy/Wedyjwr1Gr/dIzjeDsu9x4epqnTnKRWaR3Gx1mO65zB/NY507iwF+FPXJalYRVzf2nfSSo57Ad5v3OjsN4PGFbjgbr0en8mwB97NEce/kSS1NoPur3eoLs0SN/ktU/7k1Lhy8836C/2MraX/boBaG569Gdl/653In4bIDbSxxrBSVntdTqGAejOyXN/kkS1jwhtzAlxv3ZShjw4xFWAi0B7y6NZp4R0ksxS7lzKfrsgIrg/TI9vNKmkeUR7y+VrIiwj3FrO43AQJHndIffzjg5ZnjdrJ6nntCa9mSAuIpoTB7ceL5RhL8Df8jkxH126mWDj8n71c4heUt1wkONOSfpcmjyl3e017fqUtjY92F1ErhSQr6WI+t+GuRmjTENP0s36t+XGsdGMz1La/A1MHuvfhS2zX6xFen5P15b3V954Qggh5IGAkpoQQh4lbqe/c/laKWtPS2arUPbNvADXcSqi9XV9zzkgDOOcp5XKvh0pfru8EileW9+dSuU8h68L9FeaJqfcJoQQQgghhJBXTxylWRa/wJaQKxOmbsBUViuaRi3KJ0+kmcGW6balvqPtE5xEYh6razbSWoWflYtZYPaSNg7LCJdKY/tO+ho3t3zuFx29pHmXLzWAi1m2h/2A9kYDNNLPOmq6Wstc6z+X21F+uiBp5/ZqIyXE9wPgUlr6TEB3IWBxpZUS30nYhlXEcCagOfIibm85bC4NSQx7DPuSnvZrLe8d0R8ELK75JJpdlvK+F5ndHrmxtzYAf+yBIDI3NpJcbq/Lh6hpbgDozw3ozg/5ZoGwCjnh3J8Ta6sJ79jGlEoXCR2WUhJ9OBMQVgHtkZwjlfzSXxpZ/jY3RMzLOYxJ2JtkuElWa79xTUTrtRD2UgK80pvcDTZ1jbwfFcR6zFE+9vx52sTzVvlss/+tntDm+rPPJ7+1dL35m9jqd63jwnic5Q0hug9bNn9yEwchhJAHEkpqQgh5VKhJ3juVt8C8wFZ0H2Goi2orqFVE6/Naf2u79vJ1O+dcGrpW5nvXMc7NVY4r12JFdW39NXldS2DrOalxO2urbUMIIYQQQggh5NVRJDInqDROMk/LQ0/GWqHnR5GtQq0qy1QWWvFm59E16bbaO9gmVqMR4WadKrZFno49mmMr4ljSsinN20kCODrkntrNTY/NJemjrHPn5PXaoT8zoL3p0V/o0R459GdlrKabpb+xy1I9LCNCC7Q3PcK+pLPbq1Lyuz9MPbIPJH3d3PJor3lJTd/y6C4MWFxv0B55DMuINvWoDguR4S44tLfSejtJaavI789Iee5+PyKkcuQAcllyXZees/aWM+XQgfZ6A7eRUuVOS4WH9P7a5RR62A9yXgfkffiNw3AgCXPfSdo8pPLfUrI8Yjgc0KxlHHyS53rugFwCvDlxCK1I8ubI54S278f+4U0672EV8jUV/SjD3WDEOMbrzqWbLMIyjrI33Ryhc+iNGM5eb+a630osYxyjNzlk8W2u83xdm+01MT7pS12mq831j4DcG32yBnt8NpFNCCHkgYGSmhBCHhVKiaqvnYaK5lpKeE562zR0Lf1s39N9hGF7feXa7T5K5vpAl8noWllyu5+tY9nxf4Xle7sS6LX973qt5NX05CaEEEIIIYQQ8qrIaU8j5LYE3Nw/2VSoqdBLyWWbcM6yDJhKOpMyzaW8rRgs92lKK+s+tfdwloim77WWDI/akzhJvZD6GceFSFo3wPRyBoa9CL/2kohO/4wNezGVbXZojhp05we0L7fonujQHHlJQx9Lcri9JXPHRcx9neEihmWEvyUCGi71eF57EeknsqNhL6B7rE+l1Z2kkVcR/b70ee7PBDk/jRyTXzt05wYsrjaS2j5K/Zgh5cWzRF6LNI9J4jZHUnocPolrL8cdFum9VEq8OXEpiR1zT3DfiejXPtqLqw3CMojovuHHMt6pd3X0It/jQsqVuwHSH7t36FP/7UHLq2/kfPXnpJd3WEUpp94DzYlH9FHS1PrZQ9YTU3Lfr32+Zn2PnKyPScY3Wk48JsGdPn8AeY6c8NYbKDBeN7aftJXOk78hTB+7JJJtStveuLFVSaCQ4/nvpvxKpXYjh+5XbypxhagmhBDywEBJTQghjxKnpaBr2ER0+VvnnJPWc6nirdfCmKSurc9K8jmJa3tYl/PbOWrvlfuzY1Sez703x+0mmOfOXTnmlaSoCSGEEEIIIYTcFVT05pRomeIEpknOJLxs8jSX/tYxmvC0qU6TGi1FnwrQyf68GaNp1B5ZGOaex824P92ns5IxjXNhlITDSpLKcDGnw8NKpLKKVJHM8l5zy4sU30uJ5yMR0osXFwiriPZGks8A+gPZbnHdYzhM5bJ7J/KxiQhLKem9fLHJvZjDMkrS2AGLl1osboroHs4EhD0pTR6XAXGREtERCAdDTlwPBxHLK17KcwfAdS6XHYcDYuq77TZSjns4CFLy/ESSzlnYB6C/2GPYj6kXdkR/kPpAt0B/YcCgyfPOYflyg7CIaI4aNLdSWfFVzOJVS4X3ZwY0NxtJLA8OvkvntAG6x7vcM3vYD2hvSmq7P5Qktuud9OFeiUR3m/H7A009h1WQVPwy5p7SMV1D0ctaw0LOsevNtZXW6Tvk8t/5pgWH3NNbrz9NWAOjdNbH+Tq217QzwtmsN8tjvYljMLK6rCSgH2O6MaMqm4sUtX19UvGA+QBCCHlgoKQmhJBHlV39nctxmnpWYa2/dfxpc9n3bB9qSyl8a+niuT7XgIhuO7ZMddco+13PrX9XKXF9PJfOriW855LTNbE+t39CCCGEEEIIIa8NhUzLIszKYpvEVLkGI6GBXNYYQP7W1fdmvBXVKo9VJCpFYruUfCr4XDRzp5LaWvI4p2K1l7X+07Ydx/iUppWksE99q0XEhoMgqekoyeMsElNyuT3y6C8McL2TEuCLCH/i0e9HDIcBqxdTL+tGZPXiWiMyuE9pZBXIa4ewAhbXPLrHOyxuePi1R3Mk6eH1EwNiK/2s955vMZwbZP9XWxG3g8Pe5xaSEI4OrgdO3rbB4lqTxL0kqBGljHZ0UUphQ86jP/GSbm6TuE29pcNeQHu1hQtAd2EQKTw4dBfTeq43iCs5vmad+mWn89NdGjDsBTlXweXPQUqpy4XQbLSHNTCcDfAnDosXFxjODanMuEN3MWD1+QYujElvkdDISWsXTSo6QPp/p1LjekMCkpyGQ7oZQNLceuNCaKVvd2hlPX7t83XTpNLjsY3jtTYgn1u9mUPLpatMtkJ7UureCuIyLa3nyQhoN4x/RxOp3ps59G/GmX0Vf0+Tntj8+oUQQh4oKKkJIeRhZ1di+k5Ka+cEdfqvd5XKtsd0LWUNTMV0tP/1X6wxRkxKaNu5tM91KYbnek3bHtdWDM/10a6t6TTBbdduU9q3my4/Lc1OOU0IIYQQQgghDwS2bHEudWyT0/afb8nfTvrpTibDmGr2Zrxua0oR5/F2Xxhlm5XgWZxrmjUJOJ1bk9hZfms/7CT4NPkbllF6R29E7Gpf5uaW9F5uUiJak7RhKcnb2Iiw7A8C2qsNhrMBbnAIe1FSuKuAvcst1m9fY3HDA6k8dkjyU9PUYV/6Sjcbh+gj1k/2WP3REpvHRNL2F0T6+hMPf+wx7EecvKnD3v9awPVOktUHsv6Tt2wkfXw4IOxFuKNWSmOvHeIqYnHNY3WlgV87LF9q0Bw1QAOgkR7Vw/kecSF9tpsN0N50aK81kihuABedlMxuovSLjpD+0b2kzUMr28KL7PUpGe2Cw3CpgwvA8pqktF0q7z2s5Py7zqG56REd0B+KGM/lvgdgc06OI6zkAvBdSmkfBLheUtfRx/HGByT53klpdr+RNHxYyb7cIOl5f+JyaXjfS3l138l1EhejkB72wyiEkd5P15SKcllXun6Lmy70hoqtmz30Old5XaafVWAX1QH0RgwrticCfCYxbc8PIYSQBwtKakIIediZS+fueq0Uz1nIBmAI22noWtp6IrjDtiCek8q9+RfOXE9rK5DtT16Px85k9dx5qJ2DOQlux5VrK7dnQpoQQgghhBBCHl6s3ErPAYwCzZnHMQltP461vXWtkMuli2154jKVjcpzTUtr2WQ/pqXzekrp5syPvqRSrxXB6DdO0rgnYqxjE1NiWsYPB5I6DqsoKVqk/Zq+1Cpk4yIitkHGpuRze73ByZs7LD+9xOaNHZYvNQgLYDg7YHHdoX/jBosbkqDuLgTpMZ1uCFi/scPeZ1uEgwHLFxsRsYMI8rgMWFxpcfLWDs0tD38sc/SXOvjrIqUXVxu01z3aYwdE6VvdXhfp3p0JgAP6wyhJ7rUTAe8j3LrJ4nlYAsPeWPLcbxyaI5HIcSnb+rWIYTcAw35MAt+hvSnCGk7KoMcmormygAvA+g0DmlsezdphOAxwQVLKIsIlWY2cgndSFvzE5+S5P0nJ63Te/bFI7/5AjktLpY8JYydyfy8dR7oxIZfXBib9pTU9bUWw62UtsZFrQJPWei1o+fD8uEcWzyq5ldhi0hN6UvLeyGQrkp0pxueTHI8mra3XfO79bv8UyhtM0k0d+Tm/qiGEkAcGSmpCCHkYuZ309CS9XBHBzonoLZO/bSsiuUw5Oydy2Aprux4rkstS2VpCPEag8fU59WcIqErfScntkLbTWk+uvn+b2p59XJHgu86pnbdMVVf7cZ8iy2u8km0IIYQQQgghhLxySmlcymnzWHv25jLa2pfXCmIVbkas5VSpCjotyWzlshuFXx5fpLLt+FxqWf85avv6IgnDIMnasJIEbmxTWhcpPd3EJAvltdhGxFRiWoSliF9NU0v/54DV8630rHbAcL6HG4D2Sov+IKJ5uUV3LgA+YnG1QXcuYvmHK6zf3MF3khTWY29ueSxfbLH548c4+IMFNk/0IrhboDl28GuP7sKA/T9cyDFtHHzvsPrsIsvj4SBi2I8YVhHtTSnj3R8G9GeDpMPXwOqKR3sk0ra92sCtJRlte1e7CLS35LEmzuGRksseYT8CTURcxtxTOi4i+jMxf17DnqS8tce1P/YprS5rC4uI/twg8ng/oj8rQr0/M/bXRgD6s0MuZQ4kGaylvrsknxcm8b5IKeoDKTfuUzLaDS73mHaDjAPGBHRcxOn1n0qRqxgPLaapbC3At4y5pHhsx7+JfIMFxjlz6XlMbwjJjzXpr/Op+E6PvSn3nec1wt0+L//O8pi5XtaEEELuG5TUhBDyMHI7Cd1SPu/qyQyM4jUGEck1gR0GI5X9dqpYqSWtdZzuR9PaKq91PY1HVahrEtvOaRPcVmLrODu37Ymtr9dkci0RvpWeLm5Z33WO54T1rsdMYBNCCCGEEELIa4sRZFke6+tGSE/6T+vzOBVvLoziOsu6UMyDlA614lnnauX3ZLxNn5qEdh7jx221vLGLyH2R/Umy62mf2lM4tCIx/TqldReSDA5LEZrRS1p4Ih8j4DYemwsB7Q2P4TCgvbJAfyZgOBMwHAQphX2+x+rzDfp9SfluHhvQvNxKYhsiPuMywvfS13n5e/s4ftcJFldabB7vpRT1firFfaPB5ryI6O6xHsMqov+iYxHMm7E8eXvTYdiLCKuIuBfgNlJWfPNYwPEXdFJSvInoH+vhL21E2HcO7bGkzIe9gNBK+js6oL3hZZ1NRH+hh+scVpcXUqa7SfJ/EREXUsLcb0Qey2cb0Ry7MY0eXToej8W1Bv35Hugd/LGseXG9QXvDI+xFDGeCJLLT+Zfe0fKZqph2vQj80Ep6G1r6WxPO6VoZ9qUsu5YL16SzpqSBdK32MjeA9NmLyNZEe/7M0vXlO+SS3Hojhd4kMSmHX1YasMlpvfaNnNYqAZro1r+3fK3HYj43fb41zlW2I4QQ8kBASU0IIY86ZarZ/rYytJaOLsdqiro2PotaL++1LbZ6WecEsp9K43KdteR37pHtt8XxnaShbXK7PL7aeZlLiM/Nf1rKvVaWfG7fhBBCCCGEEELuPfrP3yTIVB6rDM6PTYnvSelv++OLefSfovYe8STnJjI8mPlV2Nkkt76OMXGq65PSzOOaYiulnaOTx5ry1r7DOb0dR7E4nJHy2n6TpOogvZD9RnofS19ph9hKwre95dAcexHQ65TUXUQsrnrAA8MKWP2vBdbvWKO95RAWkjrWVHZz7DHsByyuevRnA5YvNVhfDFh+ag/DXoTbeJGtbcRwGLB62WE418M/vobrPfwbThBf2IMLwOKmrKU58tg8NiDsBcRFxOpyi2YjPaABAJ2cyOEgYHm5hfvMnpS09lIK3Kd0cn+xR3OjweJ66t+9ElG+fLGFP3FYP9FjOCNp5eiTLD5O+0mSWGX1cDaIzE4JZNeJDO/3I5rrLdpjKQEOAP1BQH8uoLnpU+JdPmwXkxxuRBY3J3Kh9GcHwMWJzM83MZhr0Z94hD3Zh0vpa73+VDKL+JbS37kfdBzldC697sft8k0Lfno95Rs47NcbpTDWvzfz95dL2JvtY2umML2o8zyV12oVB+zfJ0U1IYQ8OFBSE0LIo8gkIV0RoLafsh1nt7Vj7by11+0cKq/7fnzuG0kfh2H8rdtrotr2wVapnef14/OYembn58VxlOegXGdOg/vp+2XJ8hq10t67xux6f9d5Ludn+W9CCCGEEEIIuadkWWzEmU2abiU5gZxG1ccAtntFa9Ey0xNXH+cktU7Rm8c2IW3m0bR30MS0SZKq/Padm4wPVvRp+W4n2/pUwtvf8ggLs06I0ASQy4P35wcRsCcpRbyKOX0dFhHLlxp0ZyL2LrcYHuvQnYtonl+KWF2L8A0rSRKHRcTy5QabSwOamx7duYC4EPGLN6yxeqnBkMpgt9c9Nhci0EYsf2cfzQ2Pxe8coDkRGRwdEH1Ef37A8uUG7c0GqxfElnYXBoTzPdzGob3ZSOnr3mHzZI/+wiDls30EAjAcBhHGg65VjrE9dtIr+lBKeksPZyn5jfQZaDl1LZPen9M7HIBwrocLIqPjQsp5y+cW0Z0bsLjWjK+nMuFI59V38jkMZwe4IZVa309J9LWfJOejB2I6x/AitrWctyagw1LOv4vTmyDckM5jE0fJrfvQr202Ll97+XoyN3NMrnVTmWCrxLa9KcRmBMqUtU1g2xtEYK53veFC5XPcHjd5Xv59EkIIua+0pw8hhBDy0FGWn64lgefSwbqtimU7ZldZ69oa8nxBek237XYCWyW2TVbbxDYAxOI9AJMS4prgtmW4c0ny4l8gely2v3Q5ZnIcfrrm08qnnya6J8dwG8ns8vFp2xFCCCGEEEIIuWM0felCkncq3Ox92868b8sMl78r6Wc3jAJYH+eyyFqquxnnt+LRrktT2i6lRFUYZsmu8jHJu9BABHEbc9/gkPopi2B0cIipd3GS2ktJFUeX+hd7Kdfd3mik33InwrU5SidpLYlhKScesbkQ0FxpERZj+eiwF+DXHr4H+gPZ//oNPdobjSS/VwHNzQabN2+w93v7WL99jeWnl1i/YUB7rcHwxAb7/+cK68ekR3TXyrzDuUHOz1r6UIeFLOPkTb30w77Sor05rqU59vAd0Kce1M2JpLx9ANyRT72nHTYXRFg3Nz2GPUkpRx/lK4JVgAsOzZH05h4udVj+0RJ+47C5GBD25ViGM4Mkk2+20iN6LfvsL8gxwQF+49EfiIzvLgzwG68V2tHekL7acBGLlxt5vIy5nLffpFS0V7ns4DZjr+r+jMwHaPI55mszX4u9fMYupn7Wy4gYnVwfrcj/3Gsa47WYJbcvrmW9mSPJbNsfXa/PyQ0XNlkdK9e/vSlE0b8XI6bt38pEbJu/BRXnuWc1IYSQ+w6T1IQQ8jBRJmp3pW1P649sX6tta/s9n1aOWscNto+16S2tgrrbTAWtleG253RZyrt8bHtN63tl+XCgLp91nE1ml8el0lvHl8dsU9zleu+EVyqaKagJIYQQQggh5O6i8s5j7PWsSVAjnXPyWZOiVkg78wNM0tm5NHIY06ehLeaPmJRAtvuKRuxNSocPqcdwLXGa1jjshdxrW7cJSykDLiWrgfZIFh1WIqjDSt5vTiR5HL1IXqdy94ZHf3bAcBgkuTsAsRUJHNuInNTeOMRVxOKGRI67N3SypsMAOORS14srLdojh9VnREzHWw02lwLgI4aDgL3fW6E7FxH2AxbXfC43vXipRXO9RdxLKeggQtx1DgefWgAROHnjgM1jA4b9iPYoSemNlNHuzwX4XnsvO/SPdQjLiNUVD/RO+mcHOQ+LGz71qW5EXu8HIAKrzywRWuDkzR3ggPZaile3IpQXN6Xnd2ySKL/p0Z8fENqY0sKS3F6+1MCltTRrh/4gSK/wzonY30hyXD/fYT/kc9zc8iJre4dhT0qLtzea8TqOkP7dwSHsxbGUvYrkdJOE71Jv8nYqnvM1PyRB3YzPtR91vuY12V/0YM/YhHQwP8CkpLfeFDL5W0t/GxPJrOX5bblwldMqxY2ctxULCCGE3F8oqQkh5GGilJO1BPSdUutZfSfz2+1bW/MpjNu0rZT/1vdtqW2V4bkMt8OWyNbEc61Et85XK2FeKwVeJrFrWOldE8L2PVuafK70uF1r7fmucuUs9U0IIa85DvLl2z35ud8HRwghhJBtrIgDJtItv1/+00yTzxE5qZlTo0mihTa93o/j8+YpCTuR3Pab2rJMsv4T0Qo57V1tyiu7Hlulj33nctoUHrn8c1hGEcoAugsBvk+lvD3QHElJ7uFQktPe9LIOKymt3Rx5uLXL8jS2URLbjczp+lQSfO2wuTQgemB5eYFwtkdzy2NxrcnbwwHrNwzozka4jcPySgOc6bG6vAAc0J1LMv1ag/VbN0AUkdtd6hH2A/wtEcfhLSfwa4fVSw1O3iASefmSR3PTw3cOmy86Rn9JZHJzSwT88NYTbJ7q4DfAmf+xRH82YP3HTuAGYO9yg+bEYf1kj/5QSn+HNmLYi2iPvKSnz0dJR19t0d5w6M8EDOcGtC+3cEGS42Ehkrg58XJOepH3+t+IYQF05wNiK+csNlGEsu0Lrsn09Pn6jaw/LGQ9trS39trOsewka/1G0taxwVjOvTHXS5AkNmCS0HodRtOXOl1TuWS3EctbZbf1qxx7rcO8rz92O3O95+oANVkNZBltRfmW3DY3nkTWliWE3CPu6XcJj+j3CfyfZEIIeZR4JQlbW77apqA1QVx7v1Y23ArnrfLUAWj8OG8cxnlDBLwbxbAt/a1yGpAxIcpzfRwGSWlD53fy3KO+3tspk1071rnzpK+X5cDLc2RFeym4y/m2PovKe+VjQgghhBBCCCGvHP1nn0o3iNDS0toAshjUHs9uwFi2u0/yWEVb2k7LbIeFkX3ejG/jWNIYGEsWJ6FmS4FPJJ6KaSPpJmvvp+/ncsxp337jpWx3SvciAv5YpDWCjB32RU4jOHl8ktLBEfBrh9A6aC/j/uyA5qiBX8u+2uuNyMxlRHQRi+sN4DxcADZv7LD/B0usLwZ0F3ssrrToz0ovZ38sY4ZzAzYHwOHvrHDrLQMwSHnx9rpH94YO/nor4vqJDqvPLNGs5Thvva3H3u/tAwC6MwGrl70cTwD6P3aM0DvEWy0QHc6882V4H3Dljy4ANxZYvtQgNsDNL+rQXmmxuLyH7mzE8ds6YHBobnq44MYbEwZgWCYxvAy5HHd/XgT04vMtogf6Sz2WL7QY9uSGgJjkMoL0ng57es5FOPvOIcLl8uuIIqHjImYxrTI2LACkz1FvkohO+mO7HvkmhnwtR+1JnXpuL0VoYxHz9RX2QlpLekn/BpIk1v3renJiWf9GbClwe826ca50GU3kty0BHu01j+k8sXzN3uChfxsY/1Zt2XDb/50QQsiDASU1IYSQaf9poF7i2jL3XtnnuextrRIaQE5at830PVt+287TRxHRALBOtZnaVrYPgyS1nR/HlCW4y7XYNdtxVpKHtM+aqK6JensOanOX5/VOe03PCWoKa0IIIYQQQgh55eg/tdwotrLoSvJXhXR042OkZGaW0CqykyQOy9TnuTcyuxl7AMMKOSD3pIbtWW1Fo6ZJdS2aDsVUwMUWWeA57eSlc7RAcBF+ncpyq0DUZK2XpGxz4lOp6yQ1VwGud2NCNaZUbwRcN/Y9hpPXw76U3G420tO5OXbozg9YXl7g+K0d/K0G7dUW3YVB+lKnsuNhP2Lxkkjdo7f3gItwwWP1fIOTN/VZUIez6TGAW+/ogCYCa4/NFx0jHLXwxw3Wf/wYoROr7CPgX1xi/7LH8f/1GFefP4vlCy0WLdBdGDC84wR7/20fzfECmwsBm4sicZcvtFL+fCk9n9dP9pJETr22/YnH6oUWm4sD4lJec52kqeGAxedbdGfTB+wjFtc9QitlzptbHkE/m1Rmuzs/wG18Tro3x5JiH/ZEZEvCOt0McOQQvQh8v3ZZeC+ueXRnIny6p7+8VoaD1E/cG2m9kFS3P5YEvU1IuwhJbLdxvEZhrlstmqfXKIxsNn9f+eYMUwlA96MiPRrZrPNZ6a3J6DjeMzGZO6/LTQW1XY/tD08IIeT+wvuHCCHkUWJXaeidJaU1AV2U01ZKIXpa2W/tGW3LZtvnvWkAFANyT2ot+e2bcS0A0LZwq2WS0A3c3h6wWAKbDvHkBBh0uyS28xwmrW1T4jp37ThsgryduZer7NNtX5tLntfOq9121/unjaOgJoQQQgghhJBXjqY9MZXGcMjp6OiQS2m7aKQ0kFPSrkeStLLNRLypzE5J5ZysNj+TxKft89ubBCnGteT+v5VjyaW5NfEaRSa6LpXmTiJSy3273o0p2tTHurkl6eGwAJpjL2JaE7gnDs2xR5PKdWuJ73AwwPeSPLZlx7tLPfyJR78fsf+HC7ge6C/0aK836C91GFL/5eZI0tKxifAnHosrIok3X3yMxcsNltc93AAc/M8l9p73WL+pw+LFFnt/sMTy8w0Wv7+P5QstwsGAdjlg9b8WOPdbKyz+5x7+73/uv+D//f/8F/i//bHfgz9qEL7wGMs/fh1PfLzBxf+wB99JP+hwZsBwdkjnwqHZyGfSnZdEeVzKOW1uyfH3qa92c+Slr3S+Hhz680H6eqfrpTsXMJxJvaYH6XUNQHpvnwlorzfwHTCcGeQ9L6XY9QYAvfmhueXQnwujZN6PaG96uMFhc3HA4qZI67CQtfuNy3LZb6TX9rAXpD/5QgR8tNeLG6+j6GSfwCiJgfGGC5tyVqFsb5rQ/erNGSrZVXjbxLNKcaSKBbqficjW19Pfon1se2Lr34rOoeVyKagJIa8nfvzHfxxvf/vbsbe3h6/+6q/Gf/kv/2Xn+J/7uZ/DO9/5Tuzt7eHLvuzL8Eu/9Ev3dH2U1IQQ8ihxJ+nnUrSWQnmyrf3XhauPsX2Zy3LVZdJX086afnZ+FNcxyOMwjOsBEPte3hsGYLUEwoAY4yivAaDrgW4zim/db05Xp9fLftNz6Wadozze8tjKc1k7F7t6Zd9uP/FX2necEEIIIYQQQsjplCWEi5LDNlFdimogSeBeRCcwFd46PidANamq0k/Tona/pue0ij6VcFH7BafUabluTef6LpWH9kY2+ijJ3QGSqPbAcDigveExrGJK6XpJD3cOvgP6c0NKg0vf6rCMCKuI4SBk6QgAq8sthkORp+01L6J0L0h562VEs3Y4/sINYgusLi8w7Ae4Ww0W1xr0j/XoL/ZYfH4h+98LkizuHfwf7aE/F3Dypg5hGbE5F7G5GOFuNege77G5GNCfiejPBJGhxw0O/+MhLv5OxPU/0aE/jPj9m2/A9/7W/4ZP/b/eieiBv/jFv4OveOqP8AV//X/gpT8VcPJ4xLAHnPvvC7i1R1gFbC4NWF+M6A/H/t1S+lwkavTSQxoNJC1+LmA4P0gSej/AH7uUEA/wtzyaI/kBgO7xHsN+xPKaAyKweNnLuduPaG5JAn1YSY/u5ljKqkcPtDc9+jNBbgRwgBscmhse3fkBvnNojhp0Z0RaA0m8p88rX4Op93R0kBsWkqjOyWkrku3XGel61IoCvhuvcegNGfonU0hhb5LUuY90izHpbFPTabzt9R7b8e8gr0eFszOPY/Hbrt1vz0EIIY8qP/uzP4sPfOAD+Pt//+/jv/7X/4ov//Ivx3vf+1688MIL1fEf//jH8a3f+q34zu/8Tvzmb/4m3ve+9+F973sfPvnJT96zNVJSE0JIjYdJBN5OeroUpMC2aLXvl68ZWQxgmlIGMOm17M0tqbXkr31/sZwmq0Marwlm38gc63UWu26xAPoBv/Mj78Dv/oM/Abdaiaj2DlgUyWfb03oI44+uOR9L5f8O7drt8VoBbc+Fjo0RsyXF9fFcH2o7du5zpagmhBBCCCGEkLuPSULnUtkmUe1UGBelv3PfXyvdGjMPMC01bFKjZZpapR4wbptlXjMKvFwquTHzYDpO1huB4LIA9BspHR1aEZMuAGEV4HuI2Lw4oFnLv007Fa1L6bG8fGn8t/yYvsZYKnqQfW4uijxdvtygP4xob3gsrzRYvNzAbVLJ788u0Jw4KQOe0tr9QcDipRb+RoNhFdFdHLD8fIO9F1rpb72IaG54LF9sEQ8G9I/1GA4C4v4Af9Rg/7LH/mWP9sjBD8C53/d4+f8y4PJf7HDwBwv4tcNvf/wLcebfncXLX7LA+bdfxSevvBEf/80vwf/x218IHPZoj6RMd//116Sc9yKgeWyN+JYT+B5YXPXwa4fFdYfl5xvEVRBJPzi4jcPmjR3iImLxYivnW0umQ1LX4UBS1P2ZAcOZAe1LLRCB9RMDhjMBm8cG+BOHuBoQViL0XboWh30p0Q4Aw558JmEln2F/scdwJqC52Uj/8JTU7w8D2ltpXES+ucAF+exCK5+lP5He3WEv5JsiYjMKaL12880S6XqNDXKqeXLN2vcbcw0XlQPyzRUY/2a2+kZHs1+9+cKW1jePbfWBXMK/TE2rNOfXKoSQ1wH/6B/9I3zXd30XvuM7vgNf+qVfip/8yZ/EwcEB/sW/+BfV8T/6oz+Kb/qmb8L3fu/34l3vehd++Id/GH/yT/5J/NiP/dg9WyMlNSGE1HiYyifvkpZlUrjWy7h8bauUtJ/uI8btJLKWyNb3dpWvnqSTk8xtUi9p76avW9nb9UCIiMfHiOs1vuSZ38E7f/j/BLyXlLWK38VyenwqwL2Tn7YVsdxtxn1YCV9buxXwtme2PReKlfC1FHl5Lst91dLdJQ/T9UkIIYQQQgghDwk1wbUlxwpR5jQFXRNfKS2t7zkr/FTI2bLKjXlN/2lo7x9vzRiY/aZ9uSBiUcdIyleSzs3aIaaewr6HCL1Wek8DqYT0kSR5pY+2w7Af0B47DGcDugtBtknSOuzLv4195xAOQj4O6V8tCeDmxKG71KM7E9G9oYeLwOrFFv3ZiP4woD87SH/kWw5wQL8v28ABq+dbDCvg5I2dyNpBei8Pq4jFiws01xv4tUN7pYUbgFtvG7C+JOWtwwJwf+GKnP+NR38Y8eRvBDzxiYDD53tcf2ePP/XUZ3D0vz+FS//Vo73aorm8xB//i7+Pgz92Des/OAs3OPibLcLze8DnVmhuOQz7khzfPBYQVsDyxQbNkZckcivrWrwssj+uosjslxo5P8FJqnpvQHPssbq8QJ9uBFi8LBK/vd6IbH55geamR3+xB9JNCHEhZb29FqFrxwtj8VILDNI33KcbAQD5LLqLA9ojL1J6JUI9LCJiK9eK3zhJ1gdJZEcft26MAJBvQgia4Ne/E3vtl9e/vmZvxEh93HOlAP07sX2u099MaDHp3Z6rCDTj319OZZdVCNJvTWNP/iYpqAkhDznXr1+f/KzX660xm80Gn/jEJ/Ce97wnv+a9x3ve8x4899xz1Xmfe+65yXgAeO973zs7/m5ASU0IIY8Cr7RcdJnoLctXA1MhXStfPVcG26aTa0nusjS2yvDBlOnW3tKL5SQlHY9P4JoGaBqg6+R308DZHtK6bdtikprWkt9tK/sZjAgvU+Rz56I83snxhfoYTYWX59Jypz3FCSGE3Buiu7c/hBBCCHlwKP+vuUgy51S0PrbbaN9cTXTaNLYRZZq2zmPTc2AcX5Xc9j8dokhF3Y+W8LbrnSRXoesSKRmWUdbXOSC4LAaHVURYxFyivDny0hv5lpeeymcDmhseGEQeN0cew9kB7Y0G0Uta19/ykrpeRYS9iOY4Cd3DgPblFi4CzbUGw0HA+okeiDJPe7ORstb7srbmWNLVfi19lYezA/wt2c+wilmyA9LLWUtVD2cCmotr9Bd7hEVEcwLc+m8XsTi/xvLCGm//ms+g/RuXcXzJ4/LXLLC42uB//IM/gaf+w+ewfyWgf6zD3pdcw//3t78A8T9flLmXAeFMj3A4YHisQ3cpoDl28Jc2wJkOw17A5k0dhjMBe59tgCByOCwj2hsNli95bC4FdBcD2uteEs17EcvnFwgtsHn7yZhsHuT4hr2I9mqDsJRzt7zcjtddAIaDgLCKUjb9RD6f2AD92ZD6abu8/9hIGfL2eoP+MEhf6rVPJbpFRocFcno5Nsjl4ScJZxXRJv2v1/GkUkAzPp78Hel1aHpP578fU4Egb6Nf33TIqf88jb1RJInqyXzOzKXrtn/f0fxtEELIveBef5eQ/kftrW99K86fP59/PvjBD24t5fOf/zyGYcCTTz45ef3JJ5/E5cuXq8u/fPnyHY2/G7SnDyGEEPJAUUtDl7J513Zz40oBXQpVfaxY0VoTqH0v6WgtkW3lbdn32a4h94+OQByMII4ytmngFkt5vF7Lvz+ScI4hSlrauXFeXaNvRDLnct1BXm/T82D2pWNVlNv+1iVzvb7L57o/ne925rrd9wghhBBCCCGEvDKM8MpyzsplNwo62/9ZU55ZGifpq72io50rveesjE5zh8Uo3rIMNwltqJiDjAUwlgXXOdoIF9wo4FTQLST17AZJUbvOSUlnl8pPtzZBq6JREtXdhQHNjQZ+I8K5WUuSud8PaFK/ai3fHBugP+zheg9/7ERcbxz8LY/+rCSwHRz8saSO/UbS2bENaK9KEtoNDv2FAe31BrGRdWtP5bAA4pkezdVWkr8Qqdvecti8qQM2HsOmERnaO2zOp97LXQPfRHz2//M2HD8ZEb4sIB4O2P/9JV74yhaX/x/n0H/W4eD3luiXS+xFYNiTctqrz7WSBD8r6e6wjNg82aP57B6Wtxy6swHumow5/mMbtJ9fwN9oAAf0BxH92YD2WhLO+9Iru73h0Z0P8GuH5tMrbN4woL3aYPPYgOaWzzczLG469AfAcCDftcQm5uOWOuIxn383AP5YPg+/cZL4PghwvciMYS/IjQmApK/TdeHXLl1/cq6RhD9SKXkXje9NslclsTN/MyqJfZ9ukjBVAezfkpXFuTqBpqWLPu/Rj38X2sc6l9gvHuv7VnDr33VOaFtxre/xKxZCyEPMZz7zGZw7dy4/X61W93E1rw5KakIIediY62W8i7nUrhXMOWVsxtZEtX2/7MVst1PZ7NxUAM+t15YMtzI9RhHUjQfgJfkc+tSDOvWiDnLXNVo3yuzJ+v04fxhkjMrsWilvu95dgnru3Nr3SkFv576TuQghhBBCCCGE3BNystn81kRoRCHC0os5MWr64QIY++LauYy0zn2o03PfY+zVa5Kp+XlKsQLjWC0brqJQJaPt6ev7JC8XYhtdJ6LaryV9OxyILI1I21jhB2TBGpOADMuI5qZHbOJYYrmRfbgIhCCSOLaACw4hlcb2G59KRTu4Xv7ZO+yLOHWbRkpPN0DcH7C63GL9+AB4oL3awEVgWALD2QHLywv0B5I2lpMEbB4b4G5Kc/D25QZuADaXBrgzPeL1BZaf2sP6jR1uflGPxZUGvvc491se3Vng5PGI+PuH2L/uMCyBzRcdy8fXe7jrC6zfugE6j/ZKK+85ALdaLI4cNudSCfVjh81jA9oXFnJOV0B84wnaP9gDbjbozslNAJL6Tv24rzToz0Rs3rLB6tMrbC4E+GOPYT9gcb1BdFL2PC4isHE5oex76dut/aT1OpG+0AHNiRchHRyaY48h9av2nRMRnHumSw/qsB+AQZLTpXCelPV25tot+qDnsvOp57m+lkWyH8dnIsbUdSohHv1Ypl57oOu1qHI7LIwI1/W2yD3at24KgfkbLKojUFATQh52zp07N5HUNR5//HE0TYPnn39+8vrzzz+Pp556qrrNU089dUfj7wYs900IIQ8zu2Sn/V2KbX1tkp6uyNhaOWtbtrq2j1Iw71rnrjXa172R5G079q4OAzAMRi7HsSf25DgDJqK9MX22fTOOGQImZcrteXB++7zWzlGZPN8S5jPJ89s9T4QQQgghhBBC7ioupUetqM6pTSOJAUxTmJq2RvFaNL9VtMViDhXQqZy4S+nVrbSnldVJbqt49t04XkVgLpO8lL7Q9hi1HLQLIq3DMk72KcJYUrrDXswyUiX8cBgmaW6/EWM+HARJ5/Yup76bI4/m2EuKN0Lm3ZM0d3Ms5cFjKyW8/cbB32ywuSQJ4NULDWIbsXmyQ9gPWL7UyLE4IOyllDAAeNl2cSP1vn7bGs2xx/7/bw/+2APvugEMDnuXWyxuSCL8pa/uceOLpRd0e+xw680DTp7qEdYNwo0F/LUF4tke/uUF9v9wgWE/wj2/gv9fe1i+2OLkCTHEi5seXVrvcCAf3nC+x/J/7GPzhh79GUlzNycO3bkB/bkBfu2xuSQnaPXpFdZPdblfuF97DOm8wwPtDQ84eQ/RoT8j/aSjk8/Rn8h5dVFuAJDe3nK+h4OQ0sbyWTbHaezg0KQS482RH8tpm7L1elOECmG5MJIINsn5yTVtQt6Tst7pJgx9DcCkkoAtZR8Wafw6pb5VLqf9ZEE+mHlMpYN844gbx+jat3pj8+sVQsjrgOVyia/8yq/Exz72sfxaCAEf+9jH8PTTT1e3efrppyfjAeCjH/3o7Pi7AZPUhBDyKLIrtVyT0HPPa6+XiecyKQwY+WvGV+fVemiVdHY5l0p0rZGm79ly2uV6S1md9+HHBLVu1/eSzNYy5TrOvu8dtkS+3WeZJp8T/q8kLX3a/ExhE0IIIYQQQsgrQst5R00wG/GsiVIteay/S/GlJYjttlbsjTszj40wK5PaAKYpUJ0nAH5wWaLr/nKiVNdb9hZuRlEdGxHMMUz368JYFtz1DmElEjauUhq7d2leSVPHVjb0J1IufNgL8GuPuAwYVgBcRNwb4I4bEeoRCHsR7ZGUy/YnXkpXrwLiMsJtHFZXGqwvDdJ3+aqU0948NgBtRHulhd80GA6lhLg/ajCcHTBciGiutXDXWkQHHH/JGjhq4f77WeDJHidPJbH8coPYeCBCXlsFNFdbuN7DxQbdxR7x0gbt51aIHjh544DFNRnfnQvo24jm2Mt7b+qwuNJKOfPDHnhxieULLfrDiMXLso7+Uo9wFkDv4E+8lPk+EfPbnQ1YXV5gcyGguyhlv4ezQc5lSgvHNkohuM34mbkIdOcH+I1HTuZHAMFhOCOfV3PkEVbStzosIvoLA5ojLzcFJPEd9DNN17ZLNw3YNLTvkNPVthKAJu/ztWpzDIUIzn9bpcBO13R+XZPTrfkbwrg/3c7K6cnf1Mw+899OGrd10wkhhDzCfOADH8C3f/u340/9qT+FP/2n/zT+yT/5Jzg6OsJ3fMd3AAC+7du+DW9+85tzT+vv/u7vxp/9s38WP/IjP4Jv/uZvxs/8zM/gN37jN/BTP/VT92yNlNSEEPKw80rl5J1uV5bhzr2iCwldlriu9s9O8le3rYlu27tZ37O9onVu2zPa7ifP46ayupxDx5eCGsAkBd2222usnZuJcPfb+yrHlHPseu2V3GBACCGEEEIIIWQ3cRRbtrx2loBaWMtI5Cy7TPp0ksbWlLRJobq5/SiaAnVmvpSezglSP93vVnI7pWJ9lx6nMsn2sRukp7PfOPiUuNVja04k0RtSL2MXAH9rLPMd9gNc6o/crCXZO5wd0F5rgM6hPydCVI7HwR+16C4OcGtpOhyWEd2FiMXLHv0Z2Wlz7BE3kpTWxPTiaoNhGdG9ZQOsPfb/cIHuXMSwL72dEYFhP6K91oq0jpL0bq974KUFhgs91o8DrhMRjgh0l3o0NxtJDfsIdysJ70WAWwS46wssn28RWilJjgj0hyLtF9fkmLpzac3XGynLfdBj73+usH5igBs8+gs99j67wMlbN9j79BKbiwHtkUN/JmI4lH7ew36E74H1E70ky280CKsIt06pcyefSXMsJbz9xiEcRAwL2Xd7vZFUeu/y5+H7dNNBA5mrc7nkd3PTS1LZyzb62cfUkzw2QFym8u9+vJZsX2l7/U1upnDmmod5XJYC1/kwvj9JRUfzXvpbgHl568YQ3Ze59vPflq6zcjPJ5O+KEEIecf7yX/7LePHFF/EDP/ADuHz5Mr7iK74CH/nIR/Dkk08CAD796U/D+/E/Rr72a78WH/7wh/H93//9+Lt/9+/ii7/4i/ELv/ALePe7333P1khJTQghDzu7xOYuEV2WpZ6jlNP2dTvPpD/1jMzN2xrpDNTT1pp0nshkI41VUNvj0edZkFckcQxTKa5zhSGVATfbTM7ljmOq9dLWbWpSunbua5/ZnNAmhBBCCCGEEHJ3KaQzgCyy3DAmRHWMLXfsRse7Jaqz4E5Pc+I6vzA+dhE5STqbIFVpaEsdQ56HRYQbXO7XqyXBc69h03dYFx4aTIRhfyhS1N+SicMyIvqY94GU5tUy1653WL7UoDsXgOCkl3USzYhAfy6gvdqgPzdgcV0Esd9I72gtBx6WEctrHv1BRH8Q0d7w6C4McJ1H+7mlJJffENAcOyyuS5J5WMm69PiHg4D2RoP+XIC/5bF4YZHP9bCXDveoQXPLofFAWMuHMLgAf7PF4rrHcBCxfksnY281iE1Ee+TRHwQMZ82HvAoYTjywF6Rs9xMDYhvRnx/QXm1x8tYNDv7nEre+oMPi5VZ6Vae5usc7+BstwiKO/bz3UinvRYQ7cVi95HHy9g2aKy3iMmKIUp47tFKefTiU8x72RNj3hwEhlZXX0vVSfh1AGBPxMkCuCb0JISzlmvFrh7BATjvnPtZart5IZ732dIz+fbiYvjox8lgT/LGoUGB7Wk+udZvELlLZkyoGOl9RbWByg0kway/FOiGEvE549tln8eyzz1bf+5Vf+ZWt197//vfj/e9//z1e1QiLWxBCyKPGrrRtrVf1rh7JOqb2fpmq3jWHLcutz22aWmV1uc7Tyo+HIQllPz638rmWmNbX9bFvZHv9revJiXDzu3Zc+Xhc/XW73jLhbc/bXM9qCmpCCCGEEEIIubcYUVw+z+WJjQDc6sWrsi2JZk1Dl6WQS4lWrsGmPFVk53SoTadCUtHRQcpvp3F+7cd1DMW6k0TUdfmNCEp4mSMspBS030iaNqyivJb6csOLlGw2KT29n3ogD1K62q+dyM/U8zouJK2rpacX1xp057VuOtAcNQiLKCWqB4fNhZDPSX8uwEUHeOmrPeyHLExFTqcUdyvbo3dobnkMexFxGRCWEb6TEt3DnuwvNhHNxmHzhgGbx3spcx2k97MbHDYXA7oLA9A5tC8u0N7waK81Us47nXe/9mhvNDj8H0ssrsnvsIzAuQ7ttQbtdUlmt1cWOHki5P7hw7kezS0R7+2VhZybtUdcSbLcrx3CMmDvcoPh/ID1GwYsP7fAcCZgcaXJx+QGKdMd24jmxMFvnEj5tR9Lr3fjdwiSqpbPKTYY+4Onz1wSzCKuc+Jer6WNjEUo5HAqyR09pql/YHIzhFyk45yyuPEatulpe61P/iRsqlr/Juzfqqk8oPuzSe88XzDbEEIIeaCgpCaEkEeJOVE8l3qeE6MlNclazq+i2ZbWntuHpq2zoA3TsXafdp5y/1n0VkqL1yRw+f4kUW3Kj9vfOqY8R/aYVWLPpaPL8eV5sb+ZnCaEkPtPvMc/hBBCCHmwsNLZyDibnM5Ja5sqjZiK41ZkXrT/9AxmTmBaonhGZOd9aWo7ybmcwvbj47iIY9nkRczjVTSGFjlVHRvkHsZxEbPQDKuA5sSLgDS9h4E0x17ah4voz8i/of2Jl5R16pUsC0glpHuH5oZHf35Af2YAItAfSBp4cd1jOAwIqyD7D7L/6IHhbECzdnAbl3tqh/2A9paX3tiN7G84E9A90aE5arB6oclrjKuA9uUW7ZHD+vGU1B6AcCgH4wbg8FMtli+2GPblXPlOzm3Yk1Lcyxcl5dwfRPQXezQ3PZpbHs2Rh+uB5csOJ48HuEHS3f1hAK4uMByG3M/bd3J+9/9wgeF8n3pXp77TByEnqFWuhwXQ3PI4/sIN9j6zQFwGxAZorzbSY7x38CcOw+EAf+zR3BR5HlrArSWB7U8cmrXDkFLZCIBfS29xuRFgvD70xgXfp6R9eh4WcRTCKbWt153KZteb6xdGSJuEc05028eAyGK9ycMWqyv+/nKC21Y2sD/6twMjy00qW2W4zpP3Yf8OCSHkXnCvv0t4BP83jJKaEEIeJWpy83b7GteSwLV5tkSxH4WuzlOTxbV9qChW9PGkdHeczmP7Pdty3yqJayK7LKFty4zr77yfooS4jrFz5cdJtGsJ8S0p7oEhYKsMeXkuynNSpqt3cTtjCCGEEEIIIYTMUwpjTWhW5DGAUbQVSU7fI6dCrWibJKsrqU4Xkcssq/jWPtITseyTVNUxKdUcliKGVdDlhGubSj5H2QeiiHRAZKMmat3gJK1sjkWksCyuOZIkrl8nWdzGLDxdLxJcUtmpPPbZIfWLbrC41iAcBLTHIky7CwGLlxv4tchqF+R1FwB/LCJa092uc9JDeiH7C3siUZsbHsvPSjnvzaUAeEkjt9cahDbm9PNwEBBWEc3NRlLIDXDyREB3UYRy93iPzdvX6C/0Io57h2FP+nHHZYA/anK5c792cMHh1hd2CHsRm8cHDPsB8WyP9qaXNPSepMg3jw1YXPVYf8kxDv7nUnpyd5IodxuJtA8HAauXPfrHO/g+lSv//AKbiwH+WPpdD2cD+rMDVi+lhPb1BsPFLn+mer3pNRCb1Kd6FeB7l1Ptfi2fcWzk/Gl/cU1SN8fyoavc1kRyMDc3RHuThN7E4MfX9W9EryHdFsAkhZ1thDPj9WsW26PaSmw3Xr95W/M3lNdgk9Oaqg7FeNO3mhBCyP2HkpoQQh515kp+3+42tcSvlcEqeE9LW+t7pUi2EthKXBXAdt5JkjnIjwrgUmKXx2P3Xc4djDAvS4SX+6+lo2tzquBeLoC+rwvs2xHqOn4Opq4JIYQQQggh5FVRlhW2MtcmT+1zJfokajW93GNMgRZ9oyeCrujbq3MBRgYm+WbXEpYxy3SRkUlWp3Ld0H7CKqr1eBby70pNDsfUTzi2kpJ2g5T8FuksEtV3Y1lxFdOSFJYToKXBZW2S2u5T+e72WObrzwYsrkqp72FfJG1/PiAuRGKHZUBcRjTH0hM5LFL56yTNYxsxnB0QFzGnmcMqIi6kN3OTU9YielWe+1s+3RTggDCuubnl0F6XbfyNBu6lJdxaJHx/fhAZfLORMuV7AWE/yLwtENqI1WcXItA3Iq2X/2uJ/nzq430i61hcabB5Q4/203u49cVrrF5o0KoIDnIDgOscTt7cYf9TSwznBiyvNIg+IpztsXzZIx4MWH6+getTKXQHxEWUMuD7qUd16jutPcJzr3Mva5X9ORHNbUST+ozr9eI66Ws97MfcW9recGHLdmtJ8FzyO11rSLJb/z70se/N34n+XQVsSWN7U0euQFAIap03v6TrLNLbeW6V2jBj9Gk/nYsQQsj9hZKaEEJeb9yO1KyVrrbv2VLaNTG8K4ltf+Z6OZdrLUuGq+TVvtY2dV3+1I6/LL3dtsi9qufI664krXf1ru57oPHTNZbblcdY27eF6WlCCCGEEEIIuWvk/rhGbLnin4e5/LYRb85IaN+NY53tw2vltqZJ9XWdQ6W4TYb2SWiaxCyc9BzOYq9PvaRbmNS1y+NzSfCUgrZyOq9Jk9idSNewF9Ece5G7kH2HZYQ/9tKL+swgcvRE9o0k45sTB6Qkb3Ps0Z+RNC8iEBrAH3ugSf2UjzwQpGx3cyzltLsnO7gBWL0kyen2ppe0bxvRXG+A3mFYRYR92Ud0QHPsEVrp6wxAEs0bSQ2HvYC4FxBXAeEgyBrXTvopNxChvIwIh4Mki891ItdvNOjPDnDBoTlqsLiaek0fBCxuOmwuDvBrKdPtTxw2b+6wuCLCOKTS68N+xPLFFv1+xOJzS6zf1OVk73AY0F9Ic1xvcPyWHs31Bt25gLAA2s8vcPKmDvt/uMD6rRu0N3wuRR72otw0sJCy582Jz9eL713uH62CHVH2hyhJ9WFP0taSnpYx/sTLZ9yO10yWvnq96330ZfUAk4TOojqMN2zo38lWmW77HOPfEDD+TU3+ZrQCgTNj7Rzl3MCk5H4+DhXq9u+TEELIfYWSmhBCXq+cls6dKzu9VfI6bo+rJYBLGV3rvTzXG7smxcMwSmXbk7r80f1pOW4dVya4ayXJ8/5tkzHdpznWspe1vpfLl/t6QtuOvxMRzfQ0IYQQQgghhNw9yt61+s8xlVtWlKUxWi7ZimAXxse5hLGV0xGT8sa593Qap/2m5QURbVpqWSV4dKYHtBNRrbhBejhr+WNN2vpeei5rP+Hcr3olUtV3UiLaDYDbSMlr3xUp1yYCPubksqSLRW4Dkm72a4dwvs/9kMMyYnHVYzg7AB5obnr4TrYNe0G2DSK7mysLuACsHx+kVHUDtEcuJ4SbEycluG9Jn+nhMGQ5ruuILsnWRcTy5Qb+qIFbe7i0ls2FIKLWi+Rtb3gsrrTwJx7tC0uRu2mu4TCgPQb6g5Q07hzWb+pk/YcBw6H01F5+doHNmzuEfZH7fu0AB2wuDlJS/NKA1R8t0T3ZSVnyYw9/7KUndpBEdU42p77R7bUWx1+4wfKzC7mBYO0x7EUR9WeDnNPDAaFNPcHTjQSSdpYbAdrrjZzzIy+l0pfymfq1RzgIcm1sHODHOcq+65KwH6/HLLDNTR3Rp2s8mIRyWdK+Jqd98b4mtLUcd5nCNkJ8q7e0m86Ve1Fbya1Ja4BJakIIeYCgpCaEkNcbuxLStTFzMtk+rvV7nhOvuxLDtifzaWXDSwkNTGVyuV4tS14em8XP/Eul7Etdrr8shZ7LiA9jCfFa2nqnGJ8R9nMwXU0IIYQQQgghrxhb6lheKKSYTXfCSGMt8Z0eT0oRe0zFnUq4QmBrmtoZoZYFsfb+1QS0E2HsBuSktZbFBlJiWdPdaz8mZHs3lvhO5aD9iSSAoya0k+DLpZsXSaSm537t8vr8xsn8q5COXca2LyzQX+qlB/IiojsXsXe5RXMigjWk1Lc/8dLrOfXG1vW7wUk6ej9g8/iQpWn/hm4UrnsRi2seYSkS2CXJ3l8Y4Dtg8bJHfxjhO1l7TD2tFzdECOtnOawiIoD2lpQtH/akXLjfODRHHuu3dLlMOByw/NwCbpD3FtfkPHdnIxaXF1i8LOeye6JDWEnJcL/2aG40WD/Ro7naimTfuLwueEmF9wdRencfyvFGH7F4YYH+jJRdb9YOcRWkd3Qvae72RpNubIi5pLtcr5KGHw5kX6GN+XyHVbpGTly+yUI/j6gp5dQPOveHbse/Ay1tD5gbKvTmCjduk/9Oir+niZwuRbIzc9vy+EZux6IEfzWVraI9jNtv9ZcnhBDywEBJTQghrxfm0stKmZCubX9br+m/XpvtMSqWa++dtl8rsO3x2O3mynXX+jyXj7XctxXdtfNRS5eXY3elrFVY3w67SqHvGksIIYQQQggh5PbxRoxhlMU5VVpiZB4wTX9GI+tyElXnCWbbMkENI9PiOMcktWp6DuvrMa1d5av2mNbHKtDzfEmqq7j1nRuPX6VeSCXAN6lstk14I6WwFymdPTj4XspfD2cHKTd9vZGk8bFDs3Y4ebJHaCTV6zvkctztTY/+bJj0P3YDEFdSlrq56dHeEgHdviiCODrpxb25KOlsf+IRzgyAk/mHMwHdJUlpD2ke10l56+58kPR479BsxuOMLXJfZ78WgdufGeCvthj2RQ7HNqI/jJBe4BFhmUR/J+W9u3OSLG+utVh+vpF1LiXB3NwSgb18sRVRv5R1ifR1cIMktturrZTlPgwpRS+J6GElor8/N+R0+XAQEFNSevKZDdKP2wU5fqcpfpf6WO+H8caIMN7oAF/coKDVAYYkqvsk/JO01uT1pMS2+XvRmyf0BowsiU3Z7lJU55LhZmz++7Hb2vnszSMqu7WUvsr1tniPwpoQQh4YKKkJIeT1Qq13tFITrLU0dZlw3iVRY5gXq7Y8d237Mp1diuq549kl4Mu5JusxyWxbzrvWY9r2tJ5LhteEvz2Pk1Ljc+eoSLbfabKaEELIKyfe4x9CCCGEPFhY2eZGYZ0Tzlq+uPwm1aY8TXpTe+ZqX9xJwtRIu1wa3MhunbcmrkvRZ/tL2z69OdGdjk1Lkmu5byAlmd20F7brZc3RSQpb59aS3rGVucMySunvYym93Z8bEPYi2msN+nMiT7XE9rAfsLjaiMAeRFC7ASJul0mctir6pfS3Wzu01xvEVva1fKlBbCOGM1qS3MMNThLAbURzo5Hy4nsR/paXOVcBcW/IEjOm9Ta35IUhyWq/cej3k0xOghpO+l3HpUji/twAf6KSVgRzf2ZAbEQoh1VAm8RwaIHNGwYR+KkceWjlfHYXU+q8SeJ6pVH4dOwqtW+K5G9uiXRvjxxO3thh+VKD7uIg+0rncThIczoRyc3aIRyEnEoOiyifa2t6i7dGTsdxTFiIhNfy3fa6DsuYH0/+PmCuS/2d/gYmvanL8XYbk5jWmyWc/Vsq+1Rb9G+3TFKXN3/odcD7+wkh95J7/V3CI/h9AiU1IYQ8jNyprDytfPZpJajnxPBcytm+dlrC97SEt93vaaJ27jhrktu+bgW8vq9lumv7tInoXX20a/vZNW7u9fJGAUIIIYQQQgghdxeVZfolsBuFliZKq7LMYdJ3OgsxP86Ry2hbMRen+5r04FVJqLK6tk9TghlI+7M/abykdtNTU2o8lwwfkJPgWRBGJIE69pZ2vchqTdu2R17KY7cpzZtEpkhxl0UvPNAfiDzuz0hP6LCURcRWBLffOCkHfhjQnMjiNRXsBof+MEoCep36Ny/HBLf2rPYbh/a6pIpDG9GceDQ3GylZjjHV3B9Kz2Y4IC4ihrNB5uuB/mwYxW0LYHDoL/Zob0pjcDckiT5IMjusAtrrDRbXG3TnBzQncjEsrjbSuzuIRG6PHIYzA5obHu01Lynv/ZhFfFya8u29Q2ykv/dwGKQc+LmA5nqL7lKQGwEOQ5byzbEaYzlX3WM92hteEvOdvB72pIR5bMbPX8qqy+ft1z59xm5yzWWp7LaT0+ONBWmIjgXyTReTmzv0Wi2/AjFCfJKq9mYeI7+3yoaXyWqYsXqt2/7Xc9URCCGE3BcoqQkh5GHkTks7l4K3lMkxvDIBWksJl0L2lfSWvp19njbXrnXqfmwautzWCuq5ObXP9Wnnrnz/tDLeu6T3nZwrQgghhBBCCCG3hxHDOdVp+knnx0ZIa8ravpflmhHKms7OCdQyeYpiG7OmnKSuyLVJKeVCgI8pUmeS10kOa1nvOIrE0BqB7aVHddiLWWyKwI557LAU8an9jGObekBvXBbD/fkB7Q0/HrPKdUjJbESgvd4g7AX0h5KqHvakl7KUwXZZnmqau78wSN9tSA9pFe3dxQH9WSll7XvpxRwd0F5t8nGHVeoJnXprhz1Zgz/2CHtSFjx/li5KWvx6K6npRcwS3QVZf3PUSB/qi72ktxtJiPdnk4xvRfIPB5IG7y/16A9jKkcdk4QGFldl/whyjL5zY8I9yk0AYS8AvcvlyqUUuJckdb7RIWLx+Rb9Qcgl4V0nPbSHQzn2/ozI9GEvSOn1Pt2w0NvvKcZrVp/ncvDpPd+bGxsKsT0plx/Hz3y8cM2PeZ5Lvofp8Mk85c0d9m/G3sxRCnItJV7MTQgh5P5CSU0IIa8namWvT+tFXXJaL+bTSnDXZG1tLfr6aSnwuf3U1l3KaBXRdh2nHY+dz8r/XaXEd61vLoF+2rEwVU0IIYQQQgghdw8jpxXfGwFtxziMpb31sd3WPlaZliedJkpzH2C7f7OfPLaQ2FZ45yR32ncuU64SWsf2blLuODogLCSFnBPVvQjn6AB/4sZ9IyWlXepJvRdyotUFkbNaehoRaNYiR8NC+iKHRYQ/SannLoliM6cKRL8RETscDhhWUcpl674c0NyQdHT0EYskwIezg6S5IxBXUfaZZGlcSKrabxzaGw3gJVHtgpPezamXt9tI3+noRcw3t1Li+ewg561N6eb9lOI+EVEMD/ijJgv1/pyIed/DyHaguxiwfLEFGtm/X3spud4Cm8eGlAIXWdyfHdAcO7RHHs2JQ39e0uZW3oa9iOFAxLqLIqPDUl5rTnwS7nLjwLAfpPz6npQQ7w/kGICpXJ6kpysyWKsEqJzO/dKBnATPJezN34CV3VvYcc78fcBsU85j1luW+s5zwkjpJMBDa8YSQgh5IKCkJoSQ1ytzPZRLYgScn5etu4TqXCK4Vj4776t4bEXw7ZQGn6NWqrz2/DRpv0vuz/X0ts/n1lY+3vl5nCLQCSGEEEIIIYTcEZP0piZJU2J0IsGMRM7Srkx2uumcWz2pTYI09+0t/wmocxUCerJt+mY3i2ftI2xEIiLGXtSahrX/BE0i13eSLo5tKtOd5o8+5mP0J6l/dBPhNz73uQ4rKced+zZ7oN+XlHJY2BvVRV6HVcwJ6biIY5nuVJo8tpJSdlFKd+djjEhlyh382mNzUfpCt1da6bM8uCxnw0LWEdp0jprUe7lzkvhONwf43G87wp+kXtcuyjlJCe7YpmNJZbOHvZBEN/L72i97cV3KcbtB1jGcCRj2A9rrHpvHBjQ3PdpbkozWmwHaaw36MyH3+m6vS0/qYRnRH0ivb+05HZfyWUlvaTkXcv6DHNcg/bbjQkT4sJ+S6encICbhvpGkfE5Qp2smaJ/zON6gkfueJymtZb5zafuIXCkgp53t9WpvvEC6JsM479bNH5rEbra3m/SWDsXrdn96A4lBRTohhJAHB0pqQgghwq6k71xv5l2yeZdEvd0+zOV7t9uX+jSs6K3J5NP6Y9dEdS2BXSuvPrfGuXNZ23/tfaaqCSGEEEIIIeQVk/vr2n9qqQi2Ehrjc31vkhRVeeZGSZbnNqnTTFnmu5xrsshxXSrobJ9pmKRpNBJdSx1PyiUX+9I+0dK7OOZj1wSvlgPXPsd+45KERk5Fa//jZu1yeW8RqSkh3QL9mQHtTZ8lrusdukuSFIZHlqa+h6SoVxHLl33q9wzEVZLWTURzy2fZqn2ctex4czImj4f9MIrUhYjh0Ioo1/LZfp3EcTrmsIgYDkTwat/n2EiJbjhJWocFEPZSsvpY9t2flbTycCg79yeyfXdxwOLlBv15SYj7lNxu1pKURpDUdWiB4WwYhTlSaXQkeX9T+keLVHcIq5DPg47VxyqqY5s+hwCE/ZAluJQ5N+cm9bHW61lv0NDU9JaUzqXRC+lsb9jQmyOieS9dt3rjgSxcHjsdrzeIVLDVAbaqFxR/g5MxwLQyAiGEkPsOJTUhhJB57rSU92mvl3PfqVidSzjXZHO5Tbm+uR7WtX7RuwTyrhLq9r05AW+F/u2ej5r0ZqqaEEIIIYQQQl45Rjrb12rieksgl88r6dFYCuSwPWbSM9fIZGdFnN3OCD8A8yltu07zkyWhHrtLKVyHlDhGTiS7kGRvmjsk+ewCEE0ZZX+S+kin8uHNLUlfh4VI5/ampIa1hLbrXEpoS6nt4cwA1zn0B1H22zlszouEjosIt3Zjgt30nna9w3AQ0Bx5RA/pCZ3kLoIbpWdMye9FmiOVyw6rIP2b1y6XA29u+XxuXOfQXm3Q3GjgTzyGM6mnc+eS1IaUED8Zy2vDyXEjOCyuNOguDmivN/kzc52kstvr0vg7ptLo/lgS5pIaH68JleSuH6WyCzKHppybI5HY2pc5rML0hoaN6Wu9iCLHzTUfFtPrKpeOH8x1axPLGK+fXOobRmiXwhhm23KeIo29dYOIEeST/vEontu/YVf8ZpKaEEIeKCipCSGEzHO7JcHzGPN/KzXZax+XvaDLcXPrqcntub7SJbV+2Lezv9sVyLtE9K5taqL7dvdTe04IIYQQQggh5M6wMsvIuEnas5baLLdFZbyZVx/bvtS5vHgtRV2+Xq7Djp9Z16RXcHrdRZNUTc+zyHVIkjQlq7VseOdSWW2IUDQJbTekfaTy2m5wYwI3AO2R9FqOTUx9oGMW1bp+v/YiensHeEky6/xhAUD7KDsgLuV9nR9RypFr0tkFEbJoJJ5rJWpzksTyMiAuYpK6ImuHlQhqoOiXDWSJHPYlveyS4FUpj4CcBHdJ7Mr5jBj2YxbILo1rNi6XD29OpEc1ghxrTts75DLtrndob0iC26fe4bpPLbMeVjHLeClJ7yY3RGhpepXOzdpVez3redXrVBPOKqq3Uvlpzkmv9uKGj3If+XXtmZ6OOdZks5XVKN63X8XsSlnzqxNCCHngoKQmhJDXC680tWzZJV5jlLLgtfdOk7dzJaxr1NLPc/Ptenw7lGnoV8qu0t+1sXb/hBBCXnNcvLc/hBBCCHmAscLYij0rmQv5XOtnXY61Jb63+uIaSZj3p89n/tvBlg8vU925R7btUW2TrRE5eavPc7noRZwkaXOaN60rek0uj2le/UEw+/Qxr9MFoD8T0N5osiiPrYjmuIhojkdR2l73iD5KSfCNCGs3uPzfUbFN8vxYXs/lydNa2xsePqWtNamtddf9ekxKx4WUC4+NJLh9L8fuNy6nbfUz017ZANCfG+DXDsMqYlhFOV9JBsMB/dlBSmyna8h1klyOCxkbm9R3u4noD0JOmw+pT7eWUo8euUR39DHfGNCfkRLk0aV+2qbstvYIz+I+XQ9hKf21razVfuuxieOxGhEsNwaYa8HMnUt9G2HsNOHsMElOT/pOR+QbJnRtui9NUZdVAibXt52zNg7mOoQZW5mDEELuBff6u4RH8fsESmpCCHm9cKeStUw5l49LmTqXCD4tRbyLMhV9O4J3Lm09N//c3Hdagvs07lR2s4Q3IYQQQgghhNwfColsU6E5BWrSmlvlu23qs5TCdnzaflLiG0bWAbk/b/mTE65lT2ubvIbZBiIZbc/e2GAsd72IcP0oPpHSsrGN+UvxnKxuUmK3G9eb08atJKTDQvobhxa5z3PU0tzpPPhjDziZS+Wx9FtOghRAaJAM6CiNRXyn9HAzHnxcRnQXBwyHISWm/f+fvf+Pvqyq78P/17nv98wA4oAYmYEoaH6JqKjBipMfjVEiISxXUllpYqmSxCTVjlbFGMtnGTXaiLVNzI+FGhOX2CbWxqbaaDSKGnEl4i8sq0ZSGo0pVBn4NhYGiMzM+33P949797n77Hvue2Zg7nnf953HY6275v44Z599fgw/zvO89m4C1LT94WodMaxiMN5eDKtYuW80JHlTBZ2O6biiuhn6fDWiOjAYh74R9Y5hrHxrMDqug1GgvHLvymie6nEgu37SeH7pg6M5p0cB9ChUT/0bnjBad7A26sPwpGEM0jDiq+M5srfXowrwA6N5qFNYn6rYh6upujqdh2iqlAcHR6F6tZYN511NHi5IwXFrXukYXQtNoDxeJlXfp/nWm+Hs0/WdrtnyWsyuoam/XylYTtdmft3mVdDp708aUjxvpxyqf5C1XWcvABaKkBqAjR1JJXLX94cLZQ8XYh+uKnqWWXNTd9mo7bL/XYH2RgH2kQw5fqR9AwAAYP7K/13LKzvTIllo1wrj8urQmASxrbazO7Gz5r+eCrvzEDrvSx765cF4koL08XcpLG5+Tt9vr5tK62ao7rXJdgYHqyYgrqtohvuuDlVNCDlI1bt1CjZTBXCxP8NqHKqOA+MThrFyz2BSsbuaOjUOdw9VzbDjqXp3cKgaDfV94rCpXk6VxTEchciD+8aB+Eo9ClcH9ShEXhuHroM66tU6BoeqWLmvGgX04/O5fvL6qLr5QDWuso6mWnnlvipWvjU6HsPViO3/v5VYP2k4mre7GgfMJw6bYb3T3M/D7aNQenCoivUHDWP13tGw3usPGrYq7NP5WL170IT1qYp/5VuDWDtxPE/3WhWDA2lo8Lp1vTVV89m10gTRq6MHB6aGmc8D4NXJgwhNW+l6yq7D1pDiqYI+v2bLBytSG3mwnD+skZR/B/NrPj2wUVz7VVfAPSzWd4sFYCEJqQE4MocLV4+24rgrBC4rtbuC2iOtpr4//dwofM6rqvO5qjfqR1fbwmcAAIDFNQ60piqUU+CbB3AbBHOd80vnc/Fm20rhW50Cw3y9IoCeCg2H08s2fa8nbachlVsVppHNQT2ucM3D7CZ4j0l42bQTMQl361GwPTxhMix2VDEKilNb1ajqebA2quodpCri8XzQKZwdhd5VVHU1CqLHw4qvHKhG/ds+GsK7Whv9Xq/WTfi68g+DUVX4uP3UlxS6jtobrZvaSPtQr4yHAL931K+1k0fzVacAtl4dzYE9PKEezR99KOLQqcNRVfa4unh9PFf18IQ6Vu8djIL8wSTQXX/QMFbvWolDp6yPKqfvq5qAO1I1+/p4XuxUNT4ehnz9pGGsHKjG80GPwvsU0Ec1emggr15P11D+wEGa23tqePp0vlZSVXbdtNu6VmPyMEKdtVkPsocy8ms9vbL1W9duHe0hvovfpob0zoPnweTvwsxq6VS1n9ZxOwZg4QipATgy5dDXR1tF/EDD5Xy5B+JIguVZw3yXQfWREE4DAABsGc2w1Wle3xT85nM6d4V8ZRtlBWfdsXwe6EVMzU09NXxyFIFcLvuuFXQPs76nUDvbdlPtPA70UlV0xDiATJXawxhVILfC+VFoneZsHs0THZMAsR4Pyb1jVEmcjm0zr+Y4bF351qhqeX37aAeGq3UMvlVFrEyC01FwW02C8nHlcrU+Gj57uC1i/cRRuDu4bxAxqJv9rFdHYe3gYBUxGM0NPdxRt4YyHxysohoPqx0Ro+G5D1VNJXW1Pp4be31UmT3cPgrCB4dG4fxo/ybDaq+dNBwF0Qcn822n9lfvXmkeZBgcGh/n7ZNK7ypVSKdQfq2Kwbcm81bXae7svFp6HHDnQ4A3wfO4Qr9pe3XyOQ+C84cT6tW6fc1my7ceXsiuo645opv1k3yZ9L4MqPMK7K6QeXwN1hslG3moXj4cAsDCEFIDcOQ2CmkPF+Aei5D2gc4PfTTh+eGGNjdsNwAAwNLJA958SO7WnLtJOaRxXh2aB8VdQw6XgXFejR3FcmUVaFc1dvl9Npf11HzDxbZTsJmG1R6stUPHFErWWYheNXNWT6p50/FK1c9pHujBfaOODbel0HU8rPU/jILWNCx2vTqamzoNr10dyEPiaOa0bg1PPRiV9a7cN0rZh6uT0Lwe9ynft9Te5AGBajI381oV1bBq9q9eidHQ5euj4zU4OFqpXhkNv12nobbHVd5pGOzhCaOhxOvBKHDP581O83+nfkWMtjU4MGo7VX2nYzqZt3rYzK0dw1Fon85JNRwd8/zc5/M251X9zXlLYXYasruefJ8P5Z1fV80w4l1BcpWFwfkrsmVy5XfFdd4aySDbTufw4F1/Z5LDhdkAbCr/iAbg6OShaxnUzqpAnse2j9X697fNo62kBgAAYLF1Bcl5QNcVuuVVzWU4nbdZfu4KsfP1cmXl6ay+l6Ff1n4T0BbLN0Mmr0xCyCZALYdbzvrdOcRzNR6+uwnH6xgcqJqq4DRMdDUcBdJrJ42H5U6VxuOhwGMcqA8OjYbSrlrV3VUz9Ho9Hpa6Wo9YP2H8fphC9vFQ3VXdPGAwODga4jsdk+FqjCqQ18Yh+o5hc0zS3NuDQ9Vo+OzBaDjvZLhtNOz4aI7rccg7DkQH91WtauVR+D3qb5qfOp2POg2vnh6GWK2bYLXKwujBgWp0HMZ9GW1wvI30oEE6d+MhvvN5wdODCnmVfD7Me1o/xu3NrGLOrqmpMHilY5m0Xj4CQD7EdzX5Lh+au+lPVoGfHoRohrxPbRzu4Y6yrwAsDCE1APffvCqm+1CGx/dniPIjsVGoD8Biquf8AgAWWxn2ZlXCnUFwUlZ/1h2fc2Xw16Wo0p5ZgVquVobMZQVs2q+VSb/rKgsKi37lgXRT1ZwF2ykYTRXEo0C1br6L8XdVHeOhsqvJkNwRrbvUKUwdzVc9CdDT3NHVofHczGtVE4q35ieOUZhdb69HldH1eLsnjIb4Tvs1ODR6O9wxmtu6CZPz/40fRGsO5ryaPM253QTx6fuVcdtVNMF5XaUq6KpzePdyiO06DaF+KMZV5lkAHdEM952GJ0/nb3BoHGTXxTVbZyFyCnuLYeubod3za+xw6UEeROdzoZfLlMsV13QztHwKptPnMvyO6c+RhfytIfMj2tXdAPM273sJS3g/QUgNwMaWJVjtqvrOf+sjcN8qAT4AAMDxqqz0zBUB79R3EVPhW9NmdLzP188/5+/LtvJlOtZNIXNriOcsaG7Nl13ub1ov35doV+JGHc0Q3/WgHoe13YFotV5NAt/UxqHR/NP1yjjc3V6PhpeOou9pePIyUI9xOLw6aj9VQcdgNJz4yoFxKL0+qmhOVcFpiPBUoV2tV02YOzg0GeY7VU1Xh6omZI96VJ09ODCaQzuF5am94Y46BgcGo+rq9dFv6XgMdwwnx3A1muHMVw5UzVDiKSweHJrsS3VwUjmdhkgf7fto34bbognBm6G2x5XZZVg83Bbtobqz49zMIT6MSXieP8xQnIOpIeXz5aP4PbJzmC1XZX1ohpQvttUM6R7tdVvrNQ8kTG8jXdet6xmAhSOkBqBtozB3s/pwtL932Wg/5j1MOQAAAFvHOCxrBWzJRoFyGeaV75Mj+d/PPJzOA8D8+/Q+r8hN7/M5qcfv03zOVR5W1tGanzofWrlVfTuuzK3WqqadwcHxsNbjoLMZwnpckdsMKZ3dgU4Vy3k1bxM+pz/HVclN9XI+H3iaP3p9tFxeGR2RVRanPq7FJCAfto9BtTYOmbfVzbaaIH6lHg0tHpOq3nolmvm1q7Uq6h11c/zqlTpW7huMq5+rJrwfhfmTY5CC6fUTh8081M3xjmjmhm72O5tDOj8nKQxP+94E0fk1m9pcnxzrplJ5fJ7rVMVcBNBTcz+XIXDE5Lopl8k+lyMQtObIztvLHrBIgXsToKfhy9cmx6DZfvYAwtT1m+0vAIvJP6IBaFuEat/D9WEefVyE/QYAAGBzZWFcE37Vk++mhio+kraOcrudgXYW0kZ0V6i2qkzzALGovJ4aLrnY5yprZ7AWzfzKEaNgOFU+N8NaRzSVz+m7NBR2HqQPDlXTxyxVPY+Hrx6F21XTz6aCOybh7eDQuOI5JoHw6FW3gvU0R3MKQEfhdhUxqGM4rpJOFd8RWWVxHuSO96mpxF4fDe1dr0RUB6rW8Rxur5s+NmFpnQLrugmLUxV52r/WdiMmQ4en05B9zCvHq/WqOT6DtWgPSZ4Ht+Njko5ZeW00y6d+5+FyHvxGe73WAxT5dVp+ly03NS96ejucbDNV0qeq8PSQQvqzKq/zrJ26Y9vNHNYALBwhNQBHbqtXG2/1/gMAADB/G1VIl8qq5K5K667vO8LamUN/l8FfqgbOh2cu28uD9Lrj+45tTc1HHZPQOg+c6yra1dvjzylAzUPYiPGywxgFw/kQzVmF9zDNCb02qpitV+pJOJ2C4nE7KTwvA/xqfTxX9XoWhmbHoB6Mw/OimrxeqZsK5lbleCvcTmHvqMJ6sDb5bZAqfVPFdRN+T4b7ThXVEdEEsPn+Nf0bTIbwboasTnNyj6vH09DfZYhejc9r8+BA2tzqZP10/Ifb2se3Od9Z1XrVHJ/sOObX7kbV/lWxbP5bPb18Ptf3pDNF2x19bG0vf7ggC97rYn0AFoeQGoAjt0jVxsd6yG8AAABIOsKx5vvDBcplONwVSpfV2EcSThfrp2CvNcdvGQpu1K+IyXzURSjbWmYYU6Fja0jqtNj2uhWw5nMFNwF4qsjOhr9uAsVBPQlq0/zM4wrbvCp6OJ4Du8qrbMf9G+4YVUg3FcfZ8Uz9GYW74zmpY7zssL1sKyDO50peGS1fDyIbTrxqvsvPQ1OlnVV3N9uvx+HxoVGYP9w26WO5zWpt9HtTYbwSU4F6qxq+qIIeHMp+H/dhMN5uc+xSO9l5byqsu4a9L6/b8tqa9fus5fN1ygrucgjzrr9LWRvNwwxZWwAsJiE1AFuTwBkAAIB52ChsK3WF2V1VpHkbRxLYHa6CO+9uNrxztUHoNxX0pVc+j3W2/bzaeWqI6DyIzkLBels9qRSuoz33cVGJW623hY38bQAAh2xJREFUw+Q8yE2V4q2hrsf9zec1buYtTiH72ngY7W11a5kU+jZV1oN6ehjorkA2O/75nNmteb631aP21qqNq9sjxlXi430bjteto6nMHm6vJw8gpH1dmRyLdDzyqvL8+FWpmriO1vDiTfCbHi7Ir8+OKuhm/ury967lZ9UQdP0dmvWAR0eVdj7X9FSbZft5FbXbRQBbhpAaAAAAACApK5nLMKzLrKrprqB6VpV2vs6s4Yw36kNMwtup7Xetl4eRWaVwq68p3K2LdQbRGjI78nmVx+vlw17HuPK4qWrOguYYTsLTyKqRW/tSRysoT/NiN11N66chsMdV2c1Q4Wm/htVoLucUBFfRGhq6syo9my+5Grc9WMsC4Ej7On1i8orodN6boDwL3SNGldXNvN3jfjVzVo/7kN43DwcU10ZTZV2NHhQoQ966XKdLVpneWaEfxT6lz7NGA8ja7Vxmlq7q7Y2C6HSeymMOwMJa3ewOAAAALJTD3Px9wG0DAFvDjArTDatQ6/byU1XZM6p0O8PA8veNAvCu/8Yol+8I7lLFcmuo6hRYp+/SsNr5UN1FcJvaatoYh9bDFF5mFcExiKjzcDxrs1VBnlfTDoo/x/ucD33dBNXjiuqIUVDbVGWvTdL2ZqjwQjP09WAS9jbB6HibaWjvVtV0CuHL0D+7PppwOqtMb459NZ6LejDeuexY5Ms05yWiPaR1Pmx7Hv7XEZGGBk9t5sNhd12Ps4Lp/LuyMj9fP7LvyzbKvx9dVdRdf2+y71tBe7mtWX/XAPowz3sJqf0lo5IaAAAAACBXBlwpTO2q7iyD4Py3ruU32kZXZWpZ1Zq3vVH7s7YR0Qp9m7C5DAVnba8IJ5sK36aiuhoNaz0YVTzXq/Vk6O+sOjsPVluV2fk+p7vXRZCZKqFbDw1kxyltrxlmvI5RAFxFVMNq0mb+yo9PajdVWKdhsrOq5jwUj+G4ujsFxvk+ZH0uHxRIQ3GP5qauY7g6Wb6pmE79K+ZmrurpbZTXY11l4XnW1851c7PC6zyQLo9dl40qp8tjnt6nB0I6/v40Dwbky+ahdf5awjAHYNkIqQEAAAAAunRVR88KkMuwraviOm8zit/LbZXrlZWrh+tzud6s6u70dlbAXhVVw+Nq6Px4NEH1+iiUzhur1qtJFXVXfyKaquWq3O8imM33Kc1DPRVkj/elqa5OYXw2NHfTXhlqVpO20341FdtZJfngUFaxXB6zLGRu9TuFxVm1eeRzU1fj/qZjWmXt5GH5+Bw0c013hez5+c9D87wavs62V4a9R6rcXhlel8H2rLC7Q90R9reqqMuHHsp+ALDwhNQAAAAAABvpCnhjxvtZ1cxl5XNXsF220xVm538ers/ldrrm681C0yYQzZfJwsG8urWpJE5Vy1moWK/U7WG4Uxt5SJvvdwqF0/si4K2G0Q4jI6tMLqqEu0LwZt/rUd/y4bNTUJsP/90KiNN3K9MheprTu6pjMgd0Vjld5fubh9OpP2m7dXeo3cydXTw0kK/f+i46visfWEj9yoLw1nFM63RVJZf96DqXXdvvqqIu/z50tVu2v1H4vNEDHgAsJCE1AAAAAECpHBJ5Vvg8q1p0VlVqFd0BYhkAliHgRkMsdwXhRxpkp8rhfOjsrlA0ssA0rZeF3mme5xRON1XNh6mibi1T9rk8Bl3zMJdBZ9cxy4a4boLmVMWc+t91bIuwNAXjU1XZ+T7lxyUfWjzvX1FV3IT8eZBfhtp5gXp2HJtwvSvAnVG53Gpn1vU06xor33etMys8L89XGSyX33VdL1XHMhv1FYCFJaQGAAAAACjNqsrcKITuCtwiZgeI6beuStV8ma7Qray4LvvbEYY2gXKxX2mu5Sb4zbcx/lwVbeeVx2nZNAdyNYwYrmZVynm7WSie96vO+59XG4/7l9ZrzW2dKqKj3VZLGYqmr4v9aYbSLtqoymA839Z4Lu2y2rmZu3o8H3dr++U1UQ7dXU33rXMfxt/lQ5o3/e1aLz8W6XzPCvk3Cv87KrNb33ddl6WuYLlrmdysgDsZFPsOwMITUgMAAAAAdOkKjGdVTs+q3iwD5DyonBU+zwq181fZl7RMuW4ZHuaBcLZ8XQbU42VTYFpXk9C5qbwetL+rxmFptZ6Ft9kQ4q3hr5MUAueBc1Z5nbafqo3r8pjl65ft522mfR9M9qcJ59P+l4FrOlZ5v+r259axHBbrRbTnrh5kxygPxLuGMm8+dOxLGWjnFe65FOTHZPm0vXzI86ltlcrrtavyOf0+6xqc9XfkSK7hrnC640GMzmsYgIV1VCH1W9/61jjvvPNi586dsXPnztizZ098+MMfbn6/7777Yu/evfHQhz40Tj755Lj00kvj9ttvb7Vxyy23xCWXXBInnXRSnH766fGKV7wi1tbWjs3eAAAAPEDpBuu8XnA8cj8B2PLyMGyjoYi7Arf8fVc43VX9m28zf+W6gvIoviu3UVYz18XyHWFkU+WbQs0UTufrjJerxv9YrlMVdZLmQE4BcbZ+q6q6a98i2nNe5/1NVcjZOany0DprI203ot33upperhW6FlXgeSCcz9FdHv/Wf/cNJuulsL8Z4jwd2yja6aokzvuXQvB8TusqO19pufycr2frltdHGZyXD1Pk131XxXXX9Tbrmi/2odm/InSeWn7WdRoxuy8APZn3vYRlvJ9wVCH1wx/+8HjjG98YN9xwQ3zhC1+Ipz/96fHjP/7j8eUvfzkiIl72spfFBz7wgXjve98b1113XXzjG9+IZz/72c366+vrcckll8TBgwfj05/+dLzrXe+Ka665Jl796lcf270CAAAAFob7CcCWd7gK0q7A7nCBWRk8d1VKl+uXgXVXkDn+rsoqmPNq3BSM5kNUt4aXztpsfV+E06lKerhtEgw3c1IXVcpNEJ1XC6fQdqW48Z71OVVjpyA5VWhX2fFu1q2zdiOm5nZO4XC1Hu2q6VJ5jrNj17Qb2TGoi+MUWahebj8FydUo0K+z4H9mtXE+jHfxYEBrv1eiu78dxyDS+UjLjT/X+TqzqqKT8tovr+dSuUwZpOfXXhlGl+ek/C5vB4AtY/VoFn7Ws57V+vxrv/Zr8da3vjU+85nPxMMf/vB4xzveEe9+97vj6U9/ekREvPOd74zHPOYx8ZnPfCae+tSnxkc/+tG46aab4mMf+1js2rUrnvjEJ8brX//6eOUrXxmvfe1rY/v27cduzwAAAICF4H4CsKXNqrBNv3WFaRtVTc8K0sqAsqvyNF+2K0jM3rfmSc4rozuGRJ4aQrsIolMYXKdlU0CcAu/Vcei6GpMhwAftbVV1RF3HZFjutM1s2PByCOomNE2BdlZylfpTjaupU0A+dbzS9vL2uh4qqMdtVZM2p6qQx6F6s05qN3u4IIX0qY/D1YjB2vh4Zm0281avTLabjulU1XjExkNZdz08kYfV9aTdOh27cojwja7TWdd1eU2Wy3YpK6K7Hsoo28iPy6x9zf8EYEu433NSr6+vx3ve85649957Y8+ePXHDDTfEoUOH4sILL2yWOeecc+Kss86K66+/PiIirr/++nj84x8fu3btapa56KKLYv/+/c3T010OHDgQ+/fvb70AAACArcf9BGDLOdywy2XYWS6Tr7fRsmXYPatidFY43bVsCpI30lWd27FfdapaLqqxmyG+UzhdbD+t2wSM+TzJRWV1UyGdgu1he1tNQDyY9Kcc7rrqCiy7KtyzPpYh/axAuM4C32bo7MiOSTbXcwrdB2ujoHrUwHj98XFMxy/tV2cQm63XOp/Z+a9SCL1SLB+TfubheusBhryt8touj1tXcF0qK6Lz78prvOvBixnt1x3XTKsdATXAlnPUIfWXvvSlOPnkk2PHjh3xghe8IN73vvfFueeeG/v27Yvt27fHqaee2lp+165dsW/fvoiI2LdvX+t/KNPv6bdZrrrqqjjllFOa1yMe8Yij7TYAAACwidxPALa0MnTrqq5O3x9J5XRZCV22tVFFdd5G/mdXeNdVOb1RmNc1lHSqGE5hbgqn8zmQ84ritG4+z3QRIjZhdhWT4aZTeJrNG53PF12tj7eZhZV1dryqvA/5vg7bn6thTM3rWeWV1l0VxlkVd1ORnFVL5+F0s/zq9LFqqqJXJus0FeCDaAexMx5SaAXRWdV385BAdk01Fdp18cq3MSvgnfUwRFfQf7jq6fJ62ujBj8OF1139EFADbElHHVI/+tGPjhtvvDE++9nPxgtf+MK4/PLL46abbppH3xpXXnll3HXXXc3r1ltvnev2AAAAgGPL/QRgS+sK17rC3K4hjLtCwKpoo6uKtKtSOn9fVqceSVCXbSMFo5GHqMX6zZzS2e/5vMr5/MyRBcyd2xz3MwXEzRzLZRhbT0LXqf6sZ8vmAXqqqM77XR7/oj+p+rg89mkbrTA4JuF2nU2g2QzXnVc5DyPq1brZRqu/+bzWg2IY8FQJnvYxn++63Jfs2LQeQph1nZQPRZTXSxlYR9aXrirq1L9yW12B8kZ9Kfs9K3Tu2n4ZnAOw5RzVnNQREdu3b4/v+q7vioiI888/Pz7/+c/Hb/3Wb8VP/dRPxcGDB+POO+9sPf18++23x+7duyMiYvfu3fG5z32u1d7tt9/e/DbLjh07YseOHUfbVQAAAGBBuJ8AbGmzAub8zy552NYVIpdtdbU3q2q7bKcrqOwI0qvh+OssGG3NT5wFlvV4vVTtW6dq36I6OSKrGC77k89BPYiItUkAnc+/3FRO11k4mlUwN++H2fKp/XHfyyrn1vHrqgLPA95sPyKiPZz3OAxPxyzN6dzqTzandrVWTeZ9zoLlZr7q1JeqWHcYTQV22k7r3K1Hu9p62G6/tVxRaT51LPLzlG8n62c+J3lLHrrPuu7K70rl342krCKfFWAf7fYAWDj3e07qZDgcxoEDB+L888+Pbdu2xcc//vHmt5tvvjluueWW2LNnT0RE7NmzJ770pS/FHXfc0Sxz7bXXxs6dO+Pcc899oF0BAAAAtgj3E4Atq6xKjTj6auauStGuILxr3byNPGDsCiI7Ar5m7ufD9btYv06Vwtnv+bDZrfmo87A7hbvj8HS4LZq5p5vANRtKe6oiPaLzeNXl/ubt5d9nn1N/W/Nbp+3PqgZO66S5r/Oq7SzAzcPtVkCdhihPgXwWukeakzofKjzfdBoOPAvgmxC/eKCgeXBgmJ3jcp+yY9vMq52+H7TXL4/dVKCdVbFP2ehYVtHe1/JazNcv25j1p2pqgC3pqCqpr7zyyrj44ovjrLPOirvvvjve/e53xyc/+cn4yEc+Eqeccko8//nPjyuuuCJOO+202LlzZ7z4xS+OPXv2xFOf+tSIiHjmM58Z5557bjz3uc+NN73pTbFv37541ateFXv37vVkMwAAsBhaZSdzaBuOQ+4nAEunq7K0DNbKgLWsVJ415HHXdjaqtO7afr5c+j5VxaYANat0bip80/u0bD48dUSr+jpVIldZhXFqs6lyTl3Ihghv2k+B+TgobULgNI/yrGrfrn3Lw/I8DK4n3+VBe7n/U+cr3+/s+6qOGG6ro1qvWlXHw9XR0N3Nf0am/YpiW6nN9F06dpGdg3y/xsu3QuOswr11fIr9bQLtsqK7qBif+bBDFJ/L63VWuNz1/kiqrQ93fmctfyQPhgD0YZ73ElL7S+aoQuo77rgjnve858Vtt90Wp5xySpx33nnxkY98JH7kR34kIiLe/OY3x2AwiEsvvTQOHDgQF110UbzlLW9p1l9ZWYkPfvCD8cIXvjD27NkTD3rQg+Lyyy+P173udcd2rwAAAICF4X4CsDQ6qnM7hyeeVWHdFTB3td1VaT1rm13rtBLi6d+bYLluh8atgDgPL4tQNa/AbULYbGjoOg++s8rdJsyNcaVvam88l3NEFnwX/a7WYzIUdsf+NcOY5wF4FshWdUS1XkW9Uk9XIG/04EAKeqtxX9eqSeVxXexrZH0d73sTGBfBc/65GVo8e5AgxsconafOqve0rfSQQDpk2TFszsFwsh95CN+E2MX10zxoUD7kcLiHIcr3+efymp1VTd1VtV0Xf+bfA7AlHVVI/Y53vGPD30844YS4+uqr4+qrr565zNlnnx0f+tCHjmazAAAAwBbmfgKwNLqGnz5ccN31vivQ62qnXCZ/31WFvVHQmALZiOk5plPgnNrMh/VOQ1KPA+JqPSYV18U+5QF2E5SOl6kjmuHCq2HEcPuoInmQD3cdxbrZn/VqtOdkHs89nQfReajemh+7iqjHyXgz1Hg+3HcWRG8YkOZtZu+rNJd01l5kx7isus5D/mb/0rFL3zWheLQr2LPtNwF46kteLZ/2pZq0UWfLNPNqdz0AEdGutC5+m/o863o+0ocrSke6LgBb2gOekxoAAAAA4LhSBsRl+Nw1BPHhAra8Ajv/rlw3r3DOlyn7FUXoOg4585C2yucULtsbV+lGZNXC4/mRmwrotE4+V3K2H2UFcargrgcRg0OjH5pK4VxW3ZuC6iZ4zQLfco7spqo6C8rzQDcdk2abWdDcDBE+nGwjHbsmWI7JMtU46G0F1OOK8OG2aA/TnVU8D9ai2e8mxB4H01PHLavybs7X+KGBVhV7cb6aquzxsRhui0kons5pCunr4jim9bsq1strL/9z1nUUMz7n33dVVOef0/vy71rX3zMAtgwhNQAAAADA0TrcEMbpfVfVdd3xytfJg7uuAC9VyG4UDqbAthiiOQ+nW0FzFnBXqTJ6dRyIjiuum6rniCaEnQo4U3PFfM5NKJrPb519bgW14740VdJp2Sx4nQq3s8A9DWk9WCuC9nGbeSVz6xwU28/7Va/GJIwf709ThTycBMdp+ao4r+U82IODVXv48qw/+XzSw+11RBUxOJQF26sR5fXQGlY87Us9Wac5D13zU6dQO52Djmttw2u02cnsu/K6zn8v1+164KNrexv9XQNgyxFSA8D9VRtnCgAA4LjUFcAdbjjiKmaHe3mbXVXTM0K6Zt7lruGQU9CcVfOm8DIfyjmvqG1WzYftzuY7zofIbg2znQ03nVc958NztwLuiOn5jcdzVjdDgmdhbRNAjyucm4rqWRW4Ec280HVH+FrPOgfNASjC2tRmqmBeieYhgRRUN9XUqVI9D4PzptOw39vrZtjt5vyOK6UHh8aHZFsdgwNVMxx482DAeMj1iEk/h2k49mKY82o920bWv6mQu6w+3+DhiNaDEeUDFWXbZRtd13gZTne1p3oaYOkIqQHg/qr8XxEAAMBxqaiWblUTj4PUJuTsqjaNmNyZnVWReiRVqdEOnKsyINwoNM+rh9NQ1/lw0EU1cUS0wuh6EFGtVZGGls6rs5tlUnvVJMwtQ9k8QG2GFE9Beqrszoa9zo9vMyT4yuT3Kg+ys3A6BdZ1eUyLhweaYcHzO+d1VsE8HtI7heD5sW5VgkfWfr4f40A5Dfs9zOeyTsdgHEoPDo2qrdOyqc0mqI7J8W6GEU/nMgvkW/NvtzaWHZ9iDurDXr9R/JYHyLNC5zKcjo7l8mM6aztlWwBsSauHXwQAAOA40nUT+Fi2DQAshyx8bALVLHBrvptVcV0GgF2h8KxtVh3v0+pd7XRVp+a/53Mzr0zeV8PxqnmFbUyC1OH2elQhndbLq49T+D3e16oev03tjoPlOg+e1yPq4aQPTWCcwuFsX/JhrPPK4lYFdx6+RtaPDYaPzocRz/e7riftVsOYDJE9zNpNQf9aNEOpt6rWx30aHKxiuL2ezGudhi8fjPY/PSyQHhRotjk+xtVwEnQ3ldz5wwrD4jjn1dXZMZwaIjyybafj0HX9Zsez9X3XNT8jsO/8vlxv1nVb9gNgEczzXkJqf8mopAYAAAAAuD9SJWpeAbpRUBexcWVpV3g6qzK3q9K6rELN+tGqRh73sxp29D+iGYo7hbnNHMlZ1W1at2u48Kl9jnFomlX3NlXc2f7ngWlTUVxN+tMK1VMV9mDSbhTtt6q0h9Oh8dSxztsZVzznQ42n4DdVP6cq8Tzcr9YihtuyALjYx6qOqLfVk4B9vHxTxV5UhKfPo8r10XdNtXl2zeVzgDfnLauMz49DK6BOxzNbps6GXW9dU/m1Vxffl+2U13LXtdnV/qxrvazSBmDLE1IDAAAAANwfqSo3ryAuw+IyqNto+ORZgWlaN29/1jDJM0LBch7nJgQuAuipKu2sT3kgXefbH2R/5v3PQ8u0ra7q7shC0bISvWwz+5xXGkcewqeq6nG1dQp0U8hcFdvO9zEPnpuAN190MKpgruqs2ji7BtI2W8ONZ9tK6zSB/+q4j2vRquIejoPsFEyntpuAfhhRr9ajfRlOttsM2148aNAc15X28W0NVZ+Fzc2w4dFevxUUV9Hal9axLB+cKL8rA+j8Nd526wGKrmprALY0ITUAAAAAwP1RFe/LoC7/raO6eSoQjpgO9rpC7o3CvnLdru2XczNHTOZ1HoeW1Xqx3YhJEFxKwWJX4JlCzPy3fA7sPEyNaM9ZnfpRBtYbVdKmfciC3TT0dhrqO1WCdwX8+VzYTYV0qmxO+5oHxnkFdHHsm6rq9Ziu9h4P793MLZ0PaV5FDA4MRn3Pvm8C9vH5GxyqmqrqVlif70d5feXnIaIZtrwaZuc8BdhlSN/1gEWVPXyw0YMU5XcRncesOX/DaA+9PuvaA2DLElIDAAAAANxf+fDR+Z9lZXNXhXO9wftZoXX526xK6rrjfT7/cDn8clnxu5ptswg2Z+5fV1CbAtPxMk1gncLarB/5ENRNeJuH33nFbkcfqvL39Fvebh7ilst1PGjQhOhZQJ7Ph936LdrrpyrpZs7uVMk9jKhX6snc2fn2x8sMt9dNWJu2M1yNVsV0Gs47DS8+dY2VquwhgPx8jQPhJrDOj309OQZT13I+tH3XgxT558iWK/s36/rOttsK3QFYCkJqAAAAAID7qxwCOf8+oh0IzgqqyyrTrkrqWYF22UZ0t5GGhZ5qJ1UJFxXITUA4o3p5as7iLMCssv6UYXBryO8i/Kyz0HMqRC63Ux7v8VzNzeJr7eXzsLhVRd0RnFblsew43s0w2lmVc9POjLmeUwg/3FbH4GC2wTxAH/cxDSnetFePvkvDlufHd7CW7XtZJZ5XoNfj+bSz35oAOqsKL4f6nqrKjkl7ndXV5bFtDmy2TNfyka1XzfgOgKUhpAYAAAAAeKC6wrj8+zKYy5ctw9KNqrK7hk0uq3Fj+vsmVK2yaubx59YQ11lFdSuILvqcqm7LCuBU8Rsxqcit0tDNGwXuEe0hnbuOWxZwp32oUzidhqtO+5T6kALwNOR32ZeOKvQUpOf737xPQX7qRwrVszZbw3+nYzMOkutBxOBgNen3+DhVw9FxS0Nup9+rbL/qahRItx4wSFXiZcicy4cRT3Ncjz/nyzZt5fsQk2Wnrr1ZD1gcLmjueuAgBeblAwLpT0kGwNLxj3YAAAAAgGOlDHTTd13B2waVz60/i3BvqlI2C5ynvu8IFuuyrSSv6B2MAssmaO6qpC2qcJv5m9cngWwKPgdr2XplyJ6qkweTbZfLVuvZ/qRQeNzXFNy2hs4uwuO0n+Vc3C2pgni8D8NtdbPu1JDeecV36l9ZER6T31JoPjg0Gp47HbdqrWoN452vmyq/80rmujke1VTI3Np29tBAHgLX6Xzl/c+r3vP36drIH4aYVfm80fWctzHrAY0ozlV+vXX9nQJgy1s9/CIAAADHj6qeVNzMo20AYElVWQhYhnVlRXT6bVa43NF23l6dB4MR7fUjpkLCqX6lZQZZW1k1bhNkpqA6rV+sm1fopkrhVlVsTNbrCmFjMF4vDUFdd/ye5kdezb6vo1UxPFUNvBLtocTrjv6n49EV5A4ihiujADn1fWq/s36mUL75nFUkp23X1SigrlejVR093DGMaq2aVHxnFeqDtUkInp/Tan00Z3X6fSpEH/c1nzu7Hoy7V7X7l0LzVvV3czCz7c4Kostru+v7cr1Zv6VrJp0//+0MbCHzvJeQ2l82KqkBAAAAAI6BqWrb9GdXVWk5bHIZDpahasR0+DerOjtVA6fQb1B8Vwa0+bp5++OgMK9abs23nAexKXwdTreTqqCb+aDLuaeLYcXzobWbSuK0SL5P+Xa6KoCz3/N5pps5s8v9z8LsFO42fVrPlsuD9CgC9K45vAeTgDq1Xa+OA+ZxQN0a/vtQ1d7HNJR3qhjPAv8mIG86E01FeFomD9Cb8Dodx9ViCPGI1r5FZOcjr77PK6lnhdKzQu5Zv+X7G1l7ACwlITUAAAAAwLEyq7o0/7NcPv+tDI3zIbjL9tPncujlrAo6r/ZthbgbVGS1hgCPaIe5WVBdrUcrWMyD1qadOgtn17I+5UN7N0NYj3c9DaFdT/rdqrIt9rPZ9/EyVR4kV5P9bgXcHfs8NaR5FsrW4/4183nX2Ssdn3Fl+HBb3a7QHkZr/um8Urg1R/a4wroeDzNehuMpDM+/a1VB15N20vmYqlauit9SlXzdXjYfcrucTzyvLG+WK4Y4nxzY9nloHbd8mTycLh/SAGApCakBAAAAAI6lfG7kPBxM33X9mQd4+ec0BPcgpsO96PiuCPxS8NpaP4XCXUM4R7vStrWpotI1n7M6H4o6hZat+ZpT2FlU9OahZb0aTUCaguFmyOqsgrsVbqegNzvmrSA+D1e7HgDIgte031XqWz409jiAr9Nxi8kxTMcxVUinYcKnjveh0fzTeUV3EzyvjbeRAv1D1WQ49jzEr7N9rcZDgmfHaGoe6rWsH3lwP6siv8q2UQbl2bU1Ffjn81d3XdulrtC6qGoHYLkJqQEAAAAAjqU8KIwN/syDuK5q03x45fz3iKkAdCrkTosVldN5MNw5TPS4/51zWCcpqM0qlJvQciUmFdBpm1kVc6u91GYWfqdQOIWfrfme88reYp+aIatz48rmPJRvzemZVUA3VcyDSejbfE5h/HjZJsAd71s573Y6Rnm4nOaRTu+r/PjnwfNwsmxe1ZwqrqsizE1V0OWc3ymsblW25xXX+Tkpr73yoYXsAYBWu2WVdC4PqvNXNvR8a1v5evk1DcDSElIDAAAAABxLXeFuWSFdhtgdw0y3QsKuEDoPJDeq2s6+G4wrdpuK6LKvqS95iNmxP3kVdb0SMUxzUq+PgtOmijqvuC2GlG50hOhT6+XrpH6VoXpk28zD27wyu6uCPFVPF+2nfRisjX8bxnTFcAq5IwvUi4cLUpX2YG2yneHqeLtp/unVetKPMvhPwXgKqsfBezOsedp2VmFddxzn1jDnw5g+J5Et31FtnlfkNw8hlNdw18MZ+e/pGJaheP5eFTXAcUFIDQAAAAAwD3lAXVZI50NG56FrWSEdMR0g5sM/59WyabmykjvrQxO2pqaybefhbhNilv3PtlNnweNgbRS8NhXQXcOUl/0pv8+C89bQ3F0V54Noh+zZdus89IysGrrsd3MQolUd3fQlsuA5W7+pcC7C2iYYHofseZt5lXa9EjE4NFp/uL0eBeEHx2F1FtLn7TWG0QwR3lR8D6NVbV7lxyWvFs+PX8f57Lxe86HVs2Wm5vUetn/vDKCL67h1vc16gAGApbW62R0AAABYKOWNwGPdNgBw/OgKmTtCvFQ52wpP60lVbauNmASgzbDX+bbyZdOfg2K5LEStq0kQ26q+7QgVW/0e/5bWHY4rjiPGbUVMh8jD4n1WCV5XWbCb9aGpcB4P3d2a17rK2snD7bRPg/aydVf42RWe5/0qK5XTNjc6NysR9bC9Xr5smke6XqmjWq9G66xOjms+FHiqTJ/a52p8PNId/uzBg9YxTP3revCh6wGCFMDnDynkQ7V3XQv5+/y7/EGC8kGEWf0UUANb1TzvJaT2l4xKagAAAACAeTlMFfXMIb1nVSFnofbUcN0x+Vyl8DY6lsvbSIFo0bdqo1AzJr+lYagHh8bBaxoGvAgnq/V2f/KAPYWhaWjuZp3UtxQ6ZyVXVd5+vn9Vtk+5cfhbzunc+SBBNgd0EwbnlckxY71xVXsaBr0Jn/NzkvVtcLCaCuartaoZCrypZs/2LZ/bu16dHOtm6O/s2E0OVsf65YMLxbKtgD/bv1YFfPl9eTyGxW8R3aF1FMsAcFwQUgMAAAAAzEtXZWgZVEfMDv1mVK62htXOA8JxOJ0qpBvlkNmRBaBVEWpGFmLnm09Bcx6e19EMYV2tTdZN22mGJB+HvZ2hdQqLUzA83q86DzrTcnmA3xUYp7A2bzfbv9YQ2uX7/NikYbfzeaazc9Ic23zu7bQPWeg+Nd92tp1Uyd5Uja+Phv9OFeldAXCrL+kYDbJwPDsnrTB5MNmX1hzmdfGK9jpNP7qC6SiWr2K6zxFTx661XleVNwDHBSE1AAAAAMC8dYXPZUgXM37fINRuzUedV/umIDfb/lSgnW2jaScLp6fml05BaDHPcRNErxYBaArLU3C+Mlk2D2ZbFdpFCN9UUXdUe0+F05F9zivJUyBcHI+8n1Mh7DDaQ3znVdh1NMNzp7C6qSAv+t3aVqpSz4/feLmqHs3p3QzvPcjar4rznPczq1yvszZbQ6vHZF+6hkFv/szD9jK4TvIHAMqAuby2Zl3D5XrCaYDjkpAaAAAAAKAvZXC3UZhXyoPBfCjvMnwth7POh3BOi3WE40043VG9W6XQdiWaILuZIzoPdYtK3xRURxZ0tyrCy+A6oj0k9bg/zTL5MSyHjM6PU368ygcABsWy6XgWYWsTDA+zz2WYngW7zX6Wleqpm+uT49kcn3q03nB1NFd1lbefPWgwOBSTBwjSAwPZ+s1+DYsQPBtivBnCvAz0i+ruzlA5HZu8/fLa7Whv6n1XgD3regdgqQmpAQAAAAD60hXSRbSD1jKE7ag6bYW2sypVy+0mKTjOK3ujoxo4GWaVyOMwerga7SGmY/K5mQ87D5fzyuIsNI2I1pDXU0NVp7C2rJouq6/zyu6O36s0b/N4f6aOb358OoatzufQbr5PIXoKg8sQvZDPr536mb5LQ3w3y6Rtjftej+epTscmzQHebC8m7baOX1Zdnyq1m0C+qKaf+q584CGdi1lV3Rsdz/T9Btc0AMcXITUAAAAAQF/KUDCiO6iOaAd5RRX1VMXrrMrijrC0qXhOi2SBbl0GrHn1dVYx3Jo3eTAOgFOYnc3FnM9P3WynHge06fNgVJXdqg5PbafANqsiboazzsPpOtpDYxdt1ONXlR3rqgydy3A1G6Z8cKgj/M6Hxo6irebgxiR4HwfUqcK6HoyPY6qm3lZPgubsXA5Xs/1Jxy4NN57NG17nxybtX9p2jLbVPIjQde0VAXVrePjyAYkyZO4KrMtrs+taBeC4JaQGAAAAAOhTUaU7FfKVy5RVrWUl8OGCwnwbKazN54IuAsumEnocPKff82C8VdmcKnyrbJ1USZ36OsjaTUFppl4dB9VZf6tUXTzebl0Gm6mdFNyn6ux8uPA8yK2iNQR3azjuGVXDKfxuhe9ZP6oZn/Ph1FPIHcOI4bas/fxcDSIGB6tmH/NhuZtjlY7DSnSG2U1/x/s8XB2vdiha52xqiPUZQXs+L3je53ye7qnrs+sYltf6jEpzAI4vq5vdAQAAgIVSZxU2c2gbAKAxq5q0rGROQz6XAV9XRWo5nPKsKu20TDlUdVolD3qLquTWdrMq5ia8TBXDKRTOws0m8M0rdtN3ecVwtD9XdTZcdRbWp+C4yockT/3LhzEv528uj0m5X9kxTsNyt4LhPMQf/z5YawfBafuDQ1nl87j/TX/T8Urze4/70gznXbXbj4io6/Z2UoV0/gBBqtKuq+w4pu3m1eZdD0t0HIPW8Sofmsi/61q2axmV1MCymee9hHH7y0YlNQAAAADAZtqg4jRVCreqfiPaIWBR+TvVbkR3QJiFpq3K2Cxsbqqio12R3MiHlE7rj8PjqmO/8urc1pzUqS9lBXZEM4d2K6DOhwavonse5ixMzof7rvJjUWft5KFsdue8Cdfz7aT9Xh23mYZQL4csL45NlR+HFNKvjSqsmyrstXGwnI5/Flq35pWOIqDODNay/mRhdBN850OCZ0Oyd4bI5fUx6zorw+6ywlpADUBGSA0AAAAAsFm6guQspJ0aWjmy5buGWM4rlDeqoh6vl6qMW2F1OZx4CpPzILhoJ8oAe9gRLJe7nobnTn0ZB7StYDfaoWxzbPL5qSOiDGmnAtdUeZxXd0exTEyC86ZqemX2smk7TQV0CqJT3/IHC8ZtDFejPST4eAjwFHI3YXe2j1U2TPggBdhp28W1UKWq8ryN/HgU56k19HdMfpuarzvbRivML6v6u6qxu65dAI57QmoAAAAAgM3SVYEaWcVxWZFaDsE8Sx6eztpetq0U3Oah8VQQnFfd5n0r2x4HsGn7TQjaUcGcQuC03eG28TprkzZTJXPqQ35sqjKEjWwfyhC13P8y7I9J6JuORzPEdtqXjmryFKJXWZjfBOnZ8UlzU7fC6LzNfN+ykDftfxM+5xXwg/YxaM5lNmz61L7m52w4eVCh3GZr3TJozq+LcplZD0UAQEZIDQAAAACwmcqwL6K7erUMXDeqYs2rZo9kKPDx57rcVvo9H8Z6UHzXEUzWVTbkdL5vRRia2kvhawpxm2rh8XLNMNV52BrRnoO6CPjz8LYqj1l5nNN+FeFsPn9zlYfIed+yubbTseua+7o5HsNoz8mdzf/dCt2zSuwq205eYd9UYJeVz+Wxyiqap4ZGr9t9b7ZfVlR3XRvlwxNlWC2cBmAGITUAAAAAwGbbKECOaFevdgV/2XLNfM75sNZ5m2Xg2DVMcxmydlVYj4Pd1hzPEVPzHLeqwst9ilE7qTK4Xh1XL5dBaFkZXPa1I3yemse7WL9VNT4OfKeqx9P3kQXD+XDoecg7riBvVSVnx6suj20eGqfAeRBTw29Xw9Ew4RHjNlJ/89B7MPlu6hwW19BgLab2sQyVq7xvWV+nrr+uBxq6gmsAKAipAQAAAAAWQVmNWoaM6f2sIDAFi3nVc2S/5+vnlbpZm2XAOjW8ddaXNKdyK1gdjIPUbGjqRj6UdWp73IdWlXDX9vNtl5XhR9DfqeGrq0n1cCuETousR/scpPB2raiSzqq08yG8c00Vdz6k+nhbzZzQMelPMwz4odGGhnlwn/W5Xm0fk2Y48PGxqdZico7z66PrWigr4dN6eSA/KNbpCq27rkkA6LB6+EUAAACOI2U1yLFuGwCgy6zK5mTWMNVdAWEZOs4KFMshoiMb9jmtmoa6TuFmFrSm36aGi+4aFjptL82XXI3C16YqOUbzUachsau1UQjb6k9+TPJ9zILsNL9y17DcrTay8Lmr762gv9znmPQ7DQeeD/fd9CGF4UUQnUL8VNU8FaCP2x/uGEa1Xo2WKardmzay9ZrQ/VAV9bY6hivRXjeiFTRX+Xkrj1F5jCPbx1LXQwP+uxc43szzXkJqf8mopAYAAAAAWASzAuiq+K0MsvNXLv8ur16eEUZWZeV1Guo6Ba3jyukmEM2Hxk5Vvvn6efiZ3g8nvw3Wxt+NhwxvAtvhKKBOwW6zTF7lXR6nspJ8RoXwzMrsMmjt+D0ftrwJm1PVeDGncz2e3zqvDh+uTpZJ1dWt8Dnb7nA1olqvJoF7PmR6eQ1k1dXVMGK4vR4d30PRHq67CLabSvd8Lux8P4rK6VZb5TGK6Ky2N9Q3ALMIqQEAAAAAFkUZRnf9PmOu4ZaiWrgaRmvu4qll8nA3q65NVcHN8N1VTA+FnQegZWV38bnK9imFpNX6uCJ5fLe6GUa8qPpu+pdXBef7mw9fHjF1TJpq8I5976wELgPkMkxO4XCdfc5l+1CvZKF81d6XJozPhkBPw3u35pout5MH/xGtqu6qDPrLhwbyhwzyOa3z+bCLObtbQ3/n20/vy2tWQA3ABoTUAAAAAACLpAx68/ddlbRlxXTHXd+6rMQdLztVnZyWKYcAj2gP7T2j361K7aKfabjsFMRW6zGZw3q8vda8yjFZJg+3G8MZn/NjkG2/7trPstq6K1gtqsrLELfZp6xKPF8vVY23ht2OyW/5/M+tocNj/JDAoWo0/3TE5Lh1Bejpt4hmKPa6K7gfjEPvPIwvq9CLILrKA+vy+uuq+BdQA3AYQmoAAAAAgEUzK+TLg8EyZE3f5WFpV2gak+/qakYbMb3sVDCa9Smfo7lzmRSA5kFsmtM6rR/jIbGHk1A0VQPnVd6tYL0Mj9MxGU6Wz49TlSqfyzC1CGunqpXLfcvbyOafzvc372f+e1PdXATkrQry8WtwaDx893CyTuuBg/R+XG2dh9JV1vcmuB8fr3p18n16aGDSkem+NUODd10bHdcDAByOkBoAAAAAYBHNqvydNcx3vcF3ZWB5uDC6azsdQzmncLlVXV0uNyuwzvqW1k9DYjeh6HC67ToLZtP81Z1DTachqot16/J4lKF1PrR1Ed52BuIRk/A8a6vOqsVbQf5qFgxn57SZ8znbfr06PiYzKrybSvO18XEYb6dVtZ4vO8yObX488wcb8mumfPBhVjU1ABwlITUAAAAAwFbQFUBvUCU99Tk6fi9D5MMNJd41FHi5vehYvly32G5TOT1etjWXcvp9ENP7kgLdrFK4s98xriwuh6nOK5yHxXopvM3D9FmBbB6ml8vnQ2nH5H0TYOfHKiZ/NkN2Z9XOVREmp3bqVIE+rjovh/tuKtdTlXXH/OFTQ3p3nb+u6yOKtgDgCAipAQAAAAC2mrKKtStMjuxzdISQXeFzFL/PCrrL7/JhssugM4r32edWOJ21Vxfbbap9822Vfcrnw+6o7C7bLPelGSo7by+yfmbvq6KyuCrD2uz8TAXCxT6VFc8pcM+D+iZ0zoZIb1Wh5xXtMyrIW1XbRSV71OOh1stK6lkPBnQdfwA4Cqub3QEAAICFMs8bbm7kAQDHwkbDMs8KhssguGv5chsxGTY6Dz1b35VV0Xmlbx4sl1W54/61wtLxcs3Q1eXc2l0hc1F93CwzIxiu8m3my+f7W87PnOaJzvuc62qzHE479aEjxB4cium5t/Ptp/0p2sj7WqXhwuuinVnXQ3ntxGhY8antd81v3tU/gOPdvB/eWcL7CSqpAQAAAAC2ojzYLaukc3nl8aBYPv0+I4jM5ytOQ043Q1UfbsjnWRW4s7YZ0cwx3bRf/l6G6lX7czkvdNmHZujsvD9dFcbldoswu9V22Z+8SjwLqKsZDwSkbbaOa95k0U7r3KR+r0wqr+uyr4fpZ6u9fJv5+Z1VUQ0A95OQGgAAAABgqymG+Z45N3RehZwNAz1VwVyGwHmYm34q18+Xz98XQ3nn/ewKR7uGwy6H/57Vx/JzM9x1R5V4GpK77livWaYMsPP32XqtuaFTW8UxbQL+tN2V9ufmzzTXdD0K6PPtNtXS+THqqmhOy6XAOt+PXL7erOC9iunrKb8WimMGAPeHkBoAAAAAYKvrCpzzStiuoahnVSSXlbUdIW1rvcNUCOftTwXSeSA6DnrLcLwqA9qI9j51VBl3LVdX0Z47umP/6yMMX/Nj0xlYl8dkHDQ31dTZ8WiG505hcHbO6pV8o8WfeSV99l1r2O48PO8471Uemrd2sN2PyQqdhwMAjpqQGgAAAABgqyqrYPMQtOtzvs5GIWYZiJbbmxF6dgapZehaF8vngW6qCM4C2NYc0F0BeV7Z3FUlPf6uShXaubIv5bHKv+96n1cuF5XZ+ZDo6X1r2Rj1pzkmXWFwWcGcjk0xDHde2T5VJZ8fm9S3YbbsoN2nWQ8dCKgBOJaE1AAAAAAAW1lZFTyrkroMn7tCzHz9yNbpqqrNl83b6xo+O92JHhbLd4XKeXgexe9RrDPIhsSOaIfFRV/rWceoDMq73nctk9YfRnse6HociOdzRqc2sr6m5av1bF+L9qviQYI073TzXR5i533N/ywfLEgPC3T1adY1IKAG4BgTUgMAAAAALINZ8w93Ba7R8VtXqFm2W1Tktr7vaL+pEu4asjvvQ1fld1lFnLffVTmcV0rPqgbOtz+rsrxrv8rlsvdV6k82XPdUxXjX0OmpmnqQBdX5MRjEZLjvNBd4qsRO68zaxyJcn6o0zyunu/rWda4A4Bha3ewOAAAAAABwjJSBcsRhh6vecAjvWVXV5ba6qneH0Q6ny3XLdcbf55XRU1XhybBj3S5l6Fz2o6yoLvcrDv97nSqaZ/Uvr3iecQxSUN2qsi6D/VS1nZZdienjMKPyu877n+9T2VcA6ImQGgAAIFOlapg5tQ0A0LtZQz8frqI4r3DOlyvXz79LgWxX+2kbZaBbhKtNZXSSh8BltXYZVJf7UlQ81xvtc9e+zdpevm6uDHvHw3nX48roqQcBsu205pLuejgge193HZNSORx41/nq6jMAR22e9xJS+8vGcN8AAAAAAMeDcpjvMgjNf4v256oMrQ+3ftfw3WVAfbjAN33ftc6sYbjLtrJQuC630VV13rUvhwvEu9bJtl3nQ4HPCv+7qqHHVeWtbRfLVMPZv20413jXfnd9BoA5EVIDAAAAABxvNhoeuqNyuh4UgWkU60XHuocLc8vPqRK7DMoPF+hGx7KHC7/LfqVlu8Lmw303/rPqmnc723610TGZsV+tYbo7wvPW3NczjlNrPupZx6aKjY8VABxjQmoAAAAAgGVXVu9GTIeuZSBafNcahjsPlWe12xXKzgrD80rr7Luqa2jwrv7ny0dM7nzPCqu7QtlyiPGyv/nnvJ3x753zaOeV3Plw30dwPqphtO/gd4X35YMD+b7l2y37BQCbTEgNAAAAAHC86ApmuyqdI6bD1vx9GSpHTIe5Xd/NGnq6DMfT12le5XKe6jJkTpXF+dDa+f4cbi7PrmHOu4Y432j5/PtZ1c8R0/OKzgjBp+adTsrK9yMZzvtw+w8APRNSAwAAAAAcT7oC3ojZVcKR/T7+virD6bydst2N3ncFtF1BbzkE+azQdYNw+LDL59sv28jbmnW8Zm1rfBe+Wh/9Xq+Mj19X8N+13Y2+6+pbeQwF1AAsICE1AAAAAMDxqGvI665hvzve113BahnwblRVPOtzx7zLU/2bFVgfLsiNjirmrqrkWeHuRv2Njt9SG+Nq6HzY7bo8bmndjaqkOyrHp/7cKJTv6i8AbJLVze4AAAAAAAALoCsEzd+XoWhu1rzNXUHqRlXOs8LpWe10Lb/BENd1+VtX9fGsfe7q80bDhE9tPHufz0+db2/WOl3Hrmv7JaE0AAtKJTUAAAAAAN26hvyeNcx0vk7+56xA+XCBa1do3LWNWcNwVzHdt3z9rurvKD5vVOm8Ub/y9bv2bVgs17Ev1TCm+1S2VbZffg8AC0pIDQAAAADAtK6hwCM2rmIuf4/oDnrT+642utorP3cFxYeb17k0K4w+XKg9q2L8SIPrst0Z69ZdfTqS4wUAW4CQGgAAAACAIzNrSPCuELoMdg9XqVyGwLOGCe/a/qwQeVa/y3U2GqJ7oz52LZ+/7/p8JNuNiBjEaA7tWQH6rCHCAWALEFIDAAAAADDbrCGzy9+7hgLPHa6yelbbZVB9JEF5Vxhc9qPs/0bbn9X/9Lnrfb69chjzWdvJ93UYUQ9i9nbzvhveG4AtRkgNAAAAAMCRKwPRDap5m3mVywrnrtD2cMOI58vOGnq87OPhqp5n9b1rSPFyna7K8PLz4Yb6njVcetdy+e9CaQC2OCE1AAAAAAAPXEfA3KoE7hr2u2sO6a5K61mV0UcaUB+u2jkpq7BnzVe9UbjcNed2V9/yP7v6uFHlNABscUJqAAAAAADunyMNTctK4K6q6VmVxrNsVIFcVm53DffdFQTPGq67q92yr13LHK4C+3DzUwukAVhSq5vdAQAAgIWy0bCPx6JtAIBlVlYaH24o71lV07muIHtWlXEZ9m40dHh0LJu3U27rSIb3nhW+dwXT+brlfgCwtczzXkJqf8mopAYAAAAA4NjLh8vu+q2rgnlWaDurynij8LhrO7mN5sk+XEX1RtXPG5nVH8N4A3CcEVIDAAAAADBfXXNDR0xXUefLdFWldVVPl+8PV8220TzWXWbNR10O8Z3/dqR9Ek4DcJwy3DcAAAAAAP2bFfKWy9Qdy8xavmy7a7jvo62gLvt4uO832t7htgEAxwmV1AAAAAAAbK6ucPpwy82qyj7S+ajLNjaqds7fp9dGVd5CaQDYkEpqAAAAAAAWz6whwsvvjnZe6LTOrLbLdjeq8gYA7hchNQAAAAAAW9esMPtw82AfLnTeKCQHAB4QITUAAECmqkevebUNAMAmEzoDcIzN815Can/ZmJMaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN6sbnYHAAAAFk692R0AAAAAthT3Eo6KSmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3q5vdAQAAgIVSj1/zahsAAABYLvO8l5DaXzIqqQEAAAAAAADojZAaAAAAAAAAgN48oJD6jW98Y1RVFS996Uub7+67777Yu3dvPPShD42TTz45Lr300rj99ttb691yyy1xySWXxEknnRSnn356vOIVr4i1tbUH0hUAAABgi3A/AQAA4Ph2v0Pqz3/+8/G7v/u7cd5557W+f9nLXhYf+MAH4r3vfW9cd9118Y1vfCOe/exnN7+vr6/HJZdcEgcPHoxPf/rT8a53vSuuueaaePWrX33/9wIAAADYEtxPAAAA4H6F1Pfcc09cdtll8Xu/93vxkIc8pPn+rrvuine84x3xG7/xG/H0pz89zj///HjnO98Zn/70p+Mzn/lMRER89KMfjZtuuin+4A/+IJ74xCfGxRdfHK9//evj6quvjoMHDx6bvQIAAAAWjvsJAAAARNzPkHrv3r1xySWXxIUXXtj6/oYbbohDhw61vj/nnHPirLPOiuuvvz4iIq6//vp4/OMfH7t27WqWueiii2L//v3x5S9/uXN7Bw4ciP3797deAAAAwNbifgIAAAAREatHu8J73vOe+OIXvxif//znp37bt29fbN++PU499dTW97t27Yp9+/Y1y+T/Q5l+T791ueqqq+JXf/VXj7arAAAAwIJwPwEAAIDkqCqpb7311njJS14Sf/iHfxgnnHDCvPo05corr4y77rqred166629bRsAADi+VPV8X3A8cj8BAABYZvO+l7CM9xOOKqS+4YYb4o477ojv/d7vjdXV1VhdXY3rrrsufvu3fztWV1dj165dcfDgwbjzzjtb691+++2xe/fuiIjYvXt33H777VO/p9+67NixI3bu3Nl6AQAAAFuD+wkAAADkjiqkfsYznhFf+tKX4sYbb2xeT37yk+Oyyy5r3m/bti0+/vGPN+vcfPPNccstt8SePXsiImLPnj3xpS99Ke64445mmWuvvTZ27twZ55577jHaLQAAAGBRuJ8AAABA7qjmpH7wgx8cj3vc41rfPehBD4qHPvShzffPf/7z44orrojTTjstdu7cGS9+8Ytjz5498dSnPjUiIp75zGfGueeeG8997nPjTW96U+zbty9e9apXxd69e2PHjh3HaLcAAACAReF+AgAAALmjCqmPxJvf/OYYDAZx6aWXxoEDB+Kiiy6Kt7zlLc3vKysr8cEPfjBe+MIXxp49e+JBD3pQXH755fG6173uWHcFAAAA2CLcTwAAADh+POCQ+pOf/GTr8wknnBBXX311XH311TPXOfvss+NDH/rQA900AAAAsEW5nwAAAHD8Oqo5qQEAAAAAAADggTjmw30DAABsafX4Na+2AQAAgOUyz3sJqf0lo5IaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN6sbnYHAAAAFklVj17zahsAAABYLvO8l5DaXzYqqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN6sbnYHAAAAFko9fs2rbQAAAGC5zPNeQmp/yaikBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3q5vdAQAAgIVSj1/zahsAAABYLvO8l5DaXzIqqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAABbUpz71qXjWs54VZ555ZlRVFe9///s3XP6Tn/xkVFU19dq3b18/HQYAAAA4AkJqAACABXXvvffGE57whLj66quPar2bb745brvttuZ1+umnz6mHAAAAAEdvdbM7AAAAsEiqevSaV9tH4+KLL46LL774qLdz+umnx6mnnnrU6wEAAABHb573ElL7y0YlNQAAQM/279/feh04cOCYtv/EJz4xzjjjjPiRH/mR+Mu//Mtj2jYAAADAAyWkBgAA6NkjHvGIOOWUU5rXVVdddUzaPeOMM+Jtb3tb/PEf/3H88R//cTziEY+Ipz3tafHFL37xmLQPAAAAcCwY7hsAAKBnt956a+zcubP5vGPHjmPS7qMf/eh49KMf3Xz+vu/7vvjqV78ab37zm+M//sf/eEy2AQAAAPBACakBAAB6tnPnzlZIPU9PecpT4i/+4i962RYAAADAkTDcNwAAwBK78cYb44wzztjsbgAAAAA0VFIDAAAsqHvuuSe+8pWvNJ+/9rWvxY033hinnXZanHXWWXHllVfG17/+9fgP/+E/RETEb/7mb8ajHvWoeOxjHxv33Xdf/P7v/3584hOfiI9+9KObtQsAAAAAU4TUAAAAC+oLX/hC/PAP/3Dz+YorroiIiMsvvzyuueaauO222+KWW25pfj948GC8/OUvj69//etx0kknxXnnnRcf+9jHWm0AAAAAbDYhNQAAQK4ev+bV9lF42tOeFnU9e6Vrrrmm9fmXf/mX45d/+ZfvR8cAAACA+22e9xJS+0vGnNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvVje7AwAAAAulHr/m1TYAAACwXOZ5LyG1v2RUUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQm9XN7gAAAMAiqerRa15tAwAAAMtlnvcSUvvLRiU1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQm9XN7gAAAMBCqcevebUNAAAALJd53ktI7S8ZldQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwSKp69JpX2wAAAMBymee9hNT+slFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwUOrxa15tAwAAAMtlnvcSUvtLRiU1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL1Z3ewOAAAALJR6/JpX2wAAAMBymee9hNT+klFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvjiqkfu1rXxtVVbVe55xzTvP7fffdF3v37o2HPvShcfLJJ8ell14at99+e6uNW265JS655JI46aST4vTTT49XvOIVsba2dmz2BgAAAFg47icAAACQWz3aFR772MfGxz72sUkDq5MmXvayl8Wf/umfxnvf+9445ZRT4kUvelE8+9nPjr/8y7+MiIj19fW45JJLYvfu3fHpT386brvttnje854X27Ztize84Q3HYHcAAAAemGr8mlfbcLxyPwEAAFhW87yXkNpfNkcdUq+ursbu3bunvr/rrrviHe94R7z73e+Opz/96RER8c53vjMe85jHxGc+85l46lOfGh/96Efjpptuio997GOxa9eueOITnxivf/3r45WvfGW89rWvje3btz/wPQIAAAAWjvsJAAAAJEc9J/Xf/M3fxJlnnhnf8R3fEZdddlnccsstERFxww03xKFDh+LCCy9slj3nnHPirLPOiuuvvz4iIq6//vp4/OMfH7t27WqWueiii2L//v3x5S9/+YHuCwAAALCg3E8AAAAgOapK6gsuuCCuueaaePSjHx233XZb/Oqv/mr84A/+YPzVX/1V7Nu3L7Zv3x6nnnpqa51du3bFvn37IiJi3759rf+hTL+n32Y5cOBAHDhwoPm8f//+o+k2AAAAsIncTwAAACB3VCH1xRdf3Lw/77zz4oILLoizzz47/uiP/ihOPPHEY9655Kqrropf/dVfnVv7AAAAwPy4nwAAAEDuqIf7zp166qnxPd/zPfGVr3wldu/eHQcPHow777yztcztt9/ezDm1e/fuuP3226d+T7/NcuWVV8Zdd93VvG699dYH0m0AAABgE7mfAAAAcHw7qkrq0j333BNf/epX47nPfW6cf/75sW3btvj4xz8el156aURE3HzzzXHLLbfEnj17IiJiz5498Wu/9mtxxx13xOmnnx4REddee23s3Lkzzj333Jnb2bFjR+zYsaP5XNd1RESsDQ8+kO4DAABLIv2/Qfp/BWCxbfb9hOF9981r1wAAgC0k/b+B+wn9O6qQ+pd+6ZfiWc96Vpx99tnxjW98I17zmtfEyspKPOc5z4lTTjklnv/858cVV1wRp512WuzcuTNe/OIXx549e+KpT31qREQ885nPjHPPPTee+9znxpve9KbYt29fvOpVr4q9e/e2/qfxcO6+++6IiLju//3h0XQfAABYcnfffXeccsopm90NoLBo9xP+z2v/zVz2EwAA2JrcT+jfUYXU/+f//J94znOeE3//938fD3vYw+IHfuAH4jOf+Uw87GEPi4iIN7/5zTEYDOLSSy+NAwcOxEUXXRRvectbmvVXVlbigx/8YLzwhS+MPXv2xIMe9KC4/PLL43Wve91RdfrMM8+Mm266Kc4999y49dZbY+fOnUe1PvOxf//+eMQjHuGcLBDnZPE4J4vHOVk8zsnicU4Wk/PSVtd13H333XHmmWceg8bGr3nwYDbHKfcT2Ih/py0e52TxOCeLxzlZPM7J4nFOFo9zMu2Y3U+Y572E1P6SOaqQ+j3vec+Gv59wwglx9dVXx9VXXz1zmbPPPjs+9KEPHc1mpwwGg/j2b//2iIjYuXOnv0gLxjlZPM7J4nFOFo9zsnick8XjnCwm52XCE8+wuNxP4Eg4J4vHOVk8zsnicU4Wj3OyeJyTxeOctLmfsDkGm90BAAAAAAAAAI4fQmoAAAAAAAAAerNlQ+odO3bEa17zmtixY8dmd4Ux52TxOCeLxzlZPM7J4nFOFo9zspicF4D7xz8/F49zsnick8XjnCwe52TxOCeLxzlZPM4Ji6Sq63oJp9oGAAA4Ovv3749TTjklzn3hG2Jlxwlz2cb6gfviprf+f3HXXXeZ/wsAAAC2uD7uJUQs5/2ELVtJDQAAAAAAAMDWs7rZHQAAAFgkVT16zattAAAAYLnM815Can/ZqKQGAAAAAAAAoDdCagAAAAAAAAB6syVD6quvvjoe+chHxgknnBAXXHBBfO5zn9vsLi2tT33qU/GsZz0rzjzzzKiqKt7//ve3fq/rOl796lfHGWecESeeeGJceOGF8Td/8zetZb75zW/GZZddFjt37oxTTz01nv/858c999zT414sl6uuuir+0T/6R/HgBz84Tj/99PiJn/iJuPnmm1vL3HfffbF379546EMfGieffHJceumlcfvtt7eWueWWW+KSSy6Jk046KU4//fR4xSteEWtra33uytJ461vfGuedd17s3Lkzdu7cGXv27IkPf/jDze/Ox+Z74xvfGFVVxUtf+tLmO+elX6997WujqqrW65xzzml+dz42x9e//vX45//8n8dDH/rQOPHEE+Pxj398fOELX2h+9+/5/j3ykY+c+rtSVVXs3bs3IvxdAXig3E/oj/sJi8f9hMXjfsLicz9h87mfsJjcT1gs7iWwVW25kPo//+f/HFdccUW85jWviS9+8YvxhCc8IS666KK44447NrtrS+nee++NJzzhCXH11Vd3/v6mN70pfvu3fzve9ra3xWc/+9l40IMeFBdddFHcd999zTKXXXZZfPnLX45rr702PvjBD8anPvWp+MVf/MW+dmHpXHfddbF37974zGc+E9dee20cOnQonvnMZ8a9997bLPOyl70sPvCBD8R73/veuO666+Ib3/hGPPvZz25+X19fj0suuSQOHjwYn/70p+Nd73pXXHPNNfHqV796M3Zpy3v4wx8eb3zjG+OGG26IL3zhC/H0pz89fvzHfzy+/OUvR4Tzsdk+//nPx+/+7u/Geeed1/reeenfYx/72Ljtttua11/8xV80vzkf/ft//+//xfd///fHtm3b4sMf/nDcdNNN8eu//uvxkIc8pFnGv+f79/nPf7719+Taa6+NiIif/MmfjAh/VwAeCPcT+uV+wuJxP2HxuJ+w2NxPWBzuJywW9xMWj3sJbFn1FvOUpzyl3rt3b/N5fX29PvPMM+urrrpqE3t1fIiI+n3ve1/zeTgc1rt3767/3b/7d813d955Z71jx476P/2n/1TXdV3fdNNNdUTUn//855tlPvzhD9dVVdVf//rXe+v7MrvjjjvqiKivu+66uq5H52Dbtm31e9/73maZv/7rv64jor7++uvruq7rD33oQ/VgMKj37dvXLPPWt7613rlzZ33gwIF+d2BJPeQhD6l///d/3/nYZHfffXf93d/93fW1115b/9AP/VD9kpe8pK5rf082w2te85r6CU94QudvzsfmeOUrX1n/wA/8wMzf/Xt+MbzkJS+pv/M7v7MeDof+rvTgrrvuqiOifuwL3lCf95LfmMvrsS94Qx0R9V133bXZuwvHHfcTNo/7CYvJ/YTF5H7CYnA/YXG4n7B43E9YfO4l9KuPewnLej9hS1VSHzx4MG644Ya48MILm+8Gg0FceOGFcf31129iz45PX/va12Lfvn2t83HKKafEBRdc0JyP66+/Pk499dR48pOf3Cxz4YUXxmAwiM9+9rO993kZ3XXXXRERcdppp0VExA033BCHDh1qnZdzzjknzjrrrNZ5efzjHx+7du1qlrnoooti//79zdO63D/r6+vxnve8J+69997Ys2eP87HJ9u7dG5dccknr+Ef4e7JZ/uZv/ibOPPPM+I7v+I647LLL4pZbbokI52Oz/Mmf/Ek8+clPjp/8yZ+M008/PZ70pCfF7/3e7zW/+/f85jt48GD8wR/8Qfzcz/1cVFXl7wrAA+B+wmLx3xmLwf2ExeJ+wmJxP2GxuJ+wWNxPWGzuJbCVbKmQ+v/+3/8b6+vrrb8oERG7du2Kffv2bVKvjl/pmG90Pvbt2xenn3566/fV1dU47bTTnLNjYDgcxktf+tL4/u///njc4x4XEaNjvn379jj11FNby5bnpeu8pd84el/60pfi5JNPjh07dsQLXvCCeN/73hfnnnuu87GJ3vOe98QXv/jFuOqqq6Z+c176d8EFF8Q111wTf/ZnfxZvfetb42tf+1r84A/+YNx9993Oxyb527/923jrW98a3/3d3x0f+chH4oUvfGH8q3/1r+Jd73pXRPj3/CJ4//vfH3feeWf8zM/8TET4ZxfAA+F+wmLx3xmbz/2ExeF+wuJxP2GxuJ+weNxPWGzuJbCVrG52B4D7b+/evfFXf/VXrXlY2ByPfvSj48Ybb4y77ror/st/+S9x+eWXx3XXXbfZ3Tpu3XrrrfGSl7wkrr322jjhhBM2uztExMUXX9y8P++88+KCCy6Is88+O/7oj/4oTjzxxE3s2fFrOBzGk5/85HjDG94QERFPetKT4q/+6q/ibW97W1x++eWb3DsiIt7xjnfExRdfHGeeeeZmd+X4U49f82obADaZ+wmLw/2ExeJ+wuJxP2HxuJ+w2NxL2ETzvJeQ2l8yW6qS+tu+7dtiZWUlbr/99tb3t99+e+zevXuTenX8Ssd8o/Oxe/fuuOOOO1q/r62txTe/+U3n7AF60YteFB/84Afjz//8z+PhD3948/3u3bvj4MGDceedd7aWL89L13lLv3H0tm/fHt/1Xd8V559/flx11VXxhCc8IX7rt37L+dgkN9xwQ9xxxx3xvd/7vbG6uhqrq6tx3XXXxW//9m/H6upq7Nq1y3nZZKeeemp8z/d8T3zlK1/x92STnHHGGXHuuee2vnvMYx7TDJvm3/Ob63//7/8dH/vYx+Lnf/7nm+/8XQG4/9xPWCz+O2NzuZ+wWNxPWCzuJyw+9xM2n/sJi8u9BLaaLRVSb9++Pc4///z4+Mc/3nw3HA7j4x//eOzZs2cTe3Z8etSjHhW7d+9unY/9+/fHZz/72eZ87NmzJ+6888644YYbmmU+8YlPxHA4jAsuuKD3Pi+Duq7jRS96Ubzvfe+LT3ziE/GoRz2q9fv5558f27Zta52Xm2++OW655ZbWefnSl77U+g+Ba6+9Nnbu3Dn1HxjcP8PhMA4cOOB8bJJnPOMZ8aUvfSluvPHG5vXkJz85Lrvssua987K57rnnnvjqV78aZ5xxhr8nm+T7v//74+abb25997/+1/+Ks88+OyL8e36zvfOd74zTTz89LrnkkuY7f1cA7j/3ExaL/87YHO4nbA3uJ2wu9xMWn/sJm8/9hMXlXgJbzZYb7vuKK66Iyy+/PJ785CfHU57ylPjN3/zNuPfee+Nnf/ZnN7trS+mee+6Jr3zlK83nr33ta3HjjTfGaaedFmeddVa89KUvjX/zb/5NfPd3f3c86lGPil/5lV+JM888M37iJ34iIkZPUP3oj/5o/MIv/EK87W1vi0OHDsWLXvSi+Omf/mnDTdxPe/fujXe/+93x3/7bf4sHP/jBzZwQp5xySpx44olxyimnxPOf//y44oor4rTTToudO3fGi1/84tizZ0889alPjYiIZz7zmXHuuefGc5/73HjTm94U+/bti1e96lWxd+/e2LFjx2bu3pZ05ZVXxsUXXxxnnXVW3H333fHud787PvnJT8ZHPvIR52OTPPjBD27mVUse9KAHxUMf+tDme+elX7/0S78Uz3rWs+Lss8+Ob3zjG/Ga17wmVlZW4jnPeY6/J5vkZS97WXzf931fvOENb4h/+k//aXzuc5+Lt7/97fH2t789IiKqqvLv+U0yHA7jne98Z1x++eWxujr5z3V/VwAeGPcT+uV+wuJxP2HxuJ+weNxPWDzuJywe9xMWk3sJbEn1FvQ7v/M79VlnnVVv3769fspTnlJ/5jOf2ewuLa0///M/T6Pot16XX355Xdd1PRwO61/5lV+pd+3aVe/YsaN+xjOeUd98882tNv7+7/++fs5znlOffPLJ9c6dO+uf/dmfre++++5N2Jvl0HU+IqJ+5zvf2SzzrW99q/6X//Jf1g95yEPqk046qf4n/+Sf1Lfddlurnb/7u7+rL7744vrEE0+sv+3bvq1++ctfXh86dKjnvVkOP/dzP1efffbZ9fbt2+uHPexh9TOe8Yz6ox/9aPO787EYfuiHfqh+yUte0nx2Xvr1Uz/1U/UZZ5xRb9++vf72b//2+qd+6qfqr3zlK83vzsfm+MAHPlA/7nGPq3fs2FGfc8459dvf/vbW7/49vzk+8pGP1BExdazr2t+VebvrrrvqiKgf+y/eUJ/3r35jLq/H/os31BFR33XXXZu9u3Bccj+hP+4nLB73ExaP+wlbg/sJm8v9hMXkfsLicS9h8/RxL2FZ7ydUdV0v4VTbAAAAR2f//v1xyimnxGP/xRtiZccJc9nG+oH74su/+//FXXfdFTt37pzLNgAAAIB+9HEvIWI57ydsqTmpAQAAAAAAANjattyc1AAAAHNnvCkAAADgaLiXcFRUUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQm9XN7gAAAMAiqerRa15tAwAAAMtlnvcSUvvLRiU1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQm9XN7gAAAMBCqcevebUNAAAALJd53ktI7S8ZldQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwSKp69JpX2wAAAMBymee9hNT+slFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvVje7AwAAAAulHr/m1TYAAACwXOZ5LyG1v2RUUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAAAch775zW/GZZddFjt37oxTTz01nv/858c999yz4TpPe9rToqqq1usFL3jBUW139YF0GgAAAAAAAICt6bLLLovbbrstrr322jh06FD87M/+bPziL/5ivPvd795wvV/4hV+I173udc3nk0466ai2K6QGAADIVPXoNa+2AQAAgOUyz3sJqf15+Ou//uv4sz/7s/j85z8fT37ykyMi4nd+53fix37sx+Lf//t/H2eeeebMdU866aTYvXv3/d624b4BAAAAAAAAFtz+/ftbrwMHDjyg9q6//vo49dRTm4A6IuLCCy+MwWAQn/3sZzdc9w//8A/j277t2+Jxj3tcXHnllfEP//APR7VtldQAAAAAAAAAC+4Rj3hE6/NrXvOaeO1rX3u/29u3b1+cfvrpre9WV1fjtNNOi3379s1c75/9s38WZ599dpx55pnxP/7H/4hXvvKVcfPNN8d//a//9Yi3LaQGAAAAAAAAWHC33npr7Ny5s/m8Y8eOzuX+9b/+1/Fv/+2/3bCtv/7rv77f/fjFX/zF5v3jH//4OOOMM+IZz3hGfPWrX43v/M7vPKI2hNQAAAAAAAAAC27nzp2tkHqWl7/85fEzP/MzGy7zHd/xHbF79+644447Wt+vra3FN7/5zaOab/qCCy6IiIivfOUrQmoAAAAAAACA483DHvaweNjDHnbY5fbs2RN33nln3HDDDXH++edHRMQnPvGJGA6HTfB8JG688caIiDjjjDOOeJ3BES8JAAAAAAAAwFJ4zGMeEz/6oz8av/ALvxCf+9zn4i//8i/jRS96Ufz0T/90nHnmmRER8fWvfz3OOeec+NznPhcREV/96lfj9a9/fdxwww3xd3/3d/Enf/In8bznPS/+8T/+x3Heeecd8baF1AAAAAAAAADHoT/8wz+Mc845J57xjGfEj/3Yj8UP/MAPxNvf/vbm90OHDsXNN98c//AP/xAREdu3b4+Pfexj8cxnPjPOOeecePnLXx6XXnppfOADHziq7RruGwAAIFePX/NqGwAAAFgu87yXkNqfk9NOOy3e/e53z/z9kY98ZNT1pAOPeMQj4rrrrnvA21VJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwUOrxa15tAwAAAMtlnvcSUvtLRiU1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL1Z3ewOAAAALJKqHr3m1TYAAACwXOZ5LyG1v2xUUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL1Z3ewOAAAALJR6/JpX2wAAAMBymee9hNT+klFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvVje7AwAAAIukquuo6npubQMAAADLZZ73ElL7y0YlNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0JvVze4AAADAQqnHr3m1DQAAACyXed5LSO0vGZXUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRmdbM7AAAAsEiqevSaV9sAAADAcpnnvYTU/rJRSQ0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRmdbM7AAAAsFDq8WtebQMAAADLZZ73ElL7S0YlNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9Wd3sDgAAACySqh695tU2AAAAsFzmeS8htb9sVFIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9Wd3sDgAAACyUevyaV9sAAADAcpnnvYTU/pJRSQ0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb1Y3uwMAAACLpKpHr3m1DQAAACyXed5LSO0vG5XUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb1Y3uwMAAAALpR6/5tU2AAAAsFzmeS8htb9kVFIDAAAsqE996lPxrGc9K84888yoqire//73H3adT37yk/G93/u9sWPHjviu7/quuOaaa+beTwAAAICjIaQGAABYUPfee2884QlPiKuvvvqIlv/a174Wl1xySfzwD/9w3HjjjfHSl740fv7nfz4+8pGPzLmnAAAAAEfOcN8AAAAL6uKLL46LL774iJd/29veFo961KPi13/91yMi4jGPeUz8xV/8Rbz5zW+Oiy66aF7dBAAAADgqKqkBAACWxPXXXx8XXnhh67uLLroorr/++k3qEQAAAMA0ldQAAAA9279/f+vzjh07YseOHQ+43X379sWuXbta3+3atSv2798f3/rWt+LEE098wNsAAAAAeKBUUgMAAPTsEY94RJxyyinN66qrrtrsLgEAAAD0RiU1AABAz2699dbYuXNn8/lYVFFHROzevTtuv/321ne333577Ny5UxU1AAAAsDCE1AAAAIWqnm/7O3fubIXUx8qePXviQx/6UOu7a6+9Nvbs2XPMtwUAAABMzPtewrIx3DcAAMCCuueee+LGG2+MG2+8MSIivva1r8WNN94Yt9xyS0REXHnllfG85z2vWf4FL3hB/O3f/m388i//cvzP//k/4y1veUv80R/9UbzsZS/bjO4DAAAAdBJSAwAALKgvfOEL8aQnPSme9KQnRUTEFVdcEU960pPi1a9+dURE3HbbbU1gHRHxqEc9Kv70T/80rr322njCE54Qv/7rvx6///u/HxdddNGm9B8AAACgi+G+AQAAFtTTnva0qOvZ44Vdc801nev89//+3+fYKwAAAIAHRiU1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0xJzUAAECurkevebUNAAAALJd53ktI7S8ZldQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwSKp69JpX2wAAAMBymee9hNT+slFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwUOrxa15tAwAAAMtlnvcSUvtLRiU1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL1Z3ewOAAAALJJqOHrNq20AAABguczzXkJqf9mopAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHqzutkdAAAAWCj1+DWvtgEAAIDlMs97Can9JaOSGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDerG52BwAAABZJVY9e82obAAAAWC7zvJeQ2l82KqkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDerG52BwAAABZKXY9e82obAAAAWC7zvJeQ2l8yKqkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6M3qZncAAABgkVT16DWvtgEAAIDlMs97Can9ZaOSGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6M3qZncAAABgodTj17zaBgAAAJbLPO8lpPaXjEpqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHqzutkdAAAAWCRVPXrNq20AAABguczzXkJqf9mopAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN6ub3QEAAICFUtej17zaBgAAAJbLPO8lpPaXjEpqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN6ub3QEAAIBFUtWj17zaBgAAAJbLPO8lpPaXjUpqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHojpAYAAAAAAACgN0JqAAAAAAAAAHqzutkdAAAAWCj1+DWvtgEAAIDlMs97Can9JaOSGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6M3qZncAAABgkVT16DWvtgEAAIDlMs97Can9ZaOSGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDeCKkBAAAAAAAA6I2QGgAAAAAAAIDerG52BwAAABbKsB695tU2AAAAsFzmeS8htb9kVFIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9EVIDAAAAAAAA0BshNQAAAAAAAAC9Wd3sDgAAACyUevyaV9sAAADAcpnnvYTU/pJRSQ0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb1Y3uwMAAACLpIqIqp5f2wAAAMBymee9hNT+slFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9GZ1szsAAACwUOp69JpX2wAAAMBymee9hNT+klFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvVje7AwAAAIukqkevebUNAAAALJd53ktI7S8bldQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvVje7AwAAAAulHr/m1TYAAACwXOZ5LyG1v2RUUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQGyE1AAAAAAAAAL0RUgMAAAAAAADQm9XN7gAAAMAiqeo6qrqeW9sAAADAcpnnvYTU/rJRSQ0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRGSA0AAAAAAABAb4TUAAAAAAAAAPRmdbM7AAAAsFCG49e82gYAAACWyzzvJaT2l4xKagAAAAAAAAB6I6QGAAAAAAAAoDdCagAAAAAAAAB6I6QGAAAAAAAAoDdCagAAAAAAAAB6I6QGAAAAAAAAoDdCagAAAAAAAAB6s7rZHQAAAFgkVV1HVddzaxsAAABYLvO8l5DaXzYqqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN4IqQEAAAAAAADojZAaAAAAAAAAgN6sbnYHAAAAFko9fs2rbQAAAGC5zPNeQmp/yaikBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3q5vdAQAAgIVS16PXvNoGAAAAlss87yWk9peMSmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3q5vdAQAAgEVS1aPXvNoGAAAAlss87yWk9peNSmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAerO62R0AAABYKHU9es2rbQAAAGC5zPNeQmp/yaikBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAeiOkBgAAAAAAAKA3QmoAAAAAAAAAerO62R0AAABYJNVw9JpX2wAAAMBymee9hNT+slFJDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAAAAAAEBvhNQAAAAAAAAA9EZIDQAAsMCuvvrqeOQjHxknnHBCXHDBBfG5z31u5rLX/P/bu//QOu96geOf0x6TrEIyL61JN4quTNYVx1o7NhMEBwZTEWwRxuY/XYtWKAyUjskYI2Oto6i4VVGogl0qIg7/2BSRijesf1xWp24Gp+hwoksHJvtxbUMLW+7Nee4f2Tkud22X9vb5POc+fb3gAc/Zcz7PN/vP73vfcyYmotFoLLn6+voSVwsAAADwzkRqAACALvXYY4/F3r1744EHHohnn302brzxxhgbG4uXX375nJ/p7++Pf/zjH53rxRdfTFwxAAAAwDsTqQEAALrUww8/HLt3745du3bFxo0b49ChQ7Fq1ao4fPjwOT/TaDRiaGiocw0ODiauGAAAAOCdidQAAABvVRTlXhExNze35HrjjTfetoz5+fl45plnYnR0tPPeihUrYnR0NI4fP37O5Z8+fTre9773xbp162Lbtm3xxz/+8dL/OwIAAAD+pey9hDf3E8rw0EMPxcjISKxatSquvPLKZf65RYyPj8fatWvjiiuuiNHR0fjLX/5yQc8VqQEAAJKtW7cuBgYGOteBAwfeds+rr74aCwsLbzsJPTg4GDMzM2ede91118Xhw4fjJz/5SfzgBz+IVqsVIyMj8dJLL5XydwAAAAD/v83Pz8dtt90We/bsWfZnvvrVr8Y3v/nNOHToUDz99NPx7ne/O8bGxuL1119f9ozmxSwWAACAi3fixIno7+/vvO7t7b0kc4eHh2N4eLjzemRkJK6//vr4zne+E/v3778kzwAAAADq48EHH4yIiImJiWXdXxRFHDx4MO6///7Ytm1bRER8//vfj8HBwXjiiSfijjvuWNYcJ6kBAACS9ff3L7nOFqlXr14dK1eujNnZ2SXvz87OxtDQ0LKe8653vSs2b94cL7zwwiVZNwAAAFCd5fx8WNn+9re/xczMzJKfJxsYGIhbbrnlvD9P9r+J1AAAAF2op6cntmzZEpOTk533Wq1WTE5OLjktfT4LCwvx3HPPxdq1a8taJgAAAJBkOT8fVrb2T5BdyM+TnY2v+wYAAOhSe/fujTvvvDNuuummuPnmm+PgwYNx5syZ2LVrV0RE7NixI66++urO/yndt29ffPjDH45rr702Tp48GV/72tfixRdfjM997nNV/hkAAADAJbDcnw+799574ytf+cp5Z/3pT3+KDRs2XNL1XQiRGgAAoEvdfvvt8corr8T4+HjMzMzEpk2b4ujRo53/Wnl6ejpWrPjXF2T985//jN27d8fMzEy85z3viS1btsRTTz0VGzdurOpPAAAAAC6R9s+GvZO77747du7ced571q9ff1FraP8E2ezs7JJvbpudnY1NmzYte45IDQAA8FbFm1dZsy/QXXfdFXfddddZ/9mxY8eWvH7kkUfikUceuYiFAQAAABetzL2E9vwLsGbNmlizZk0pS7nmmmtiaGgoJicnO1F6bm4unn766dizZ8+y5/hNagAAAAAAAIDL0PT0dExNTcX09HQsLCzE1NRUTE1NxenTpzv3bNiwIR5//PGIiGg0GvHFL34xvvzlL8dPf/rTeO6552LHjh1x1VVXxfbt25f9XCepAQAAAAAAAC5D4+PjceTIkc7rzZs3R0TEk08+GbfeemtERDz//PNx6tSpzj1f+tKX4syZM/H5z38+Tp48GR/5yEfi6NGj0dfXt+znitQAAAAAAAAAl6GJiYmYmJg47z1FsfT7xhuNRuzbty/27dt30c/1dd8AAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAIE2z6gUAAAB0k0ZRRKMoSpsNAAAA1EuZewnt+XXjJDUAAAAAAAAAaURqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgTbPqBQAAAHSVoli8ypoNAAAA1EuZewnt+TXjJDUAAAAAAAAAaURqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQJpm1QsAAADoKkVEtEqcDQAAANRLmXsJ7fk14yQ1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAIE2z6gUAAAB0k0ZRRKMoSpsNAAAA1EuZewnt+XXjJDUAAAAAAAAAaURqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQJpm1QsAAADoKkVEFEV5swEAAIB6KXMvoT2/ZpykBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKQRqQEAAAAAAABI06x6AQAAAF2lKBavsmYDAAAA9VLmXkJ7fs04SQ0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKQRqQEAAAAAAABI06x6AQAAAF2lFRGNEmcDAAAA9VLmXkJ7fs04SQ0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKQRqQEAAAAAAABII1IDAAAAAAAAkKZZ9QIAAAC6SaMoolEUpc0GAAAA6qXMvYT2/LpxkhoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQpln1AgAAALpKUSxeZc0GAAAA6qXMvYT2/JpxkhoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAIE2z6gUAAAB0laJYvMqaDQAAANRLmXsJ7fk14yQ1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAIE2z6gUAAAB0laJYvMqaDQAAANRLmXsJ7fk14yQ1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAECaZtULAAAA6CqtiGiUOBsAAAColzL3Etrza8ZJagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAECaZtULAAAA6CaNoohGUZQ2GwAAAKiXMvcS2vPrxklqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQBqRGgAAAAAAAIA0zaoXAAAA0FWKYvEqazYAAABQL2XuJbTn14yT1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQBqRGgAAAAAAAIA0zaoXAAAA0FVaRUSjKG82AAAAUC9l7iW059eMk9QAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGmaVS8AAACgqxTF4lXWbAAAAKBeytxLaM+vGSepAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGmaVS8AAACguxQRRVHebAAAAKBmytxLeHN+zThJDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQpln1AgAAALpKUSxeZc0GAAAA6qXMvYT2/JpxkhoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQpln1AgAAALpKq4iIosTZAAAAQK2UuZfQmV8vTlIDAAAAAAAAkEakBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKRpVr0AAACArlK0Fq+yZgMAAAD1UuZeQnt+zThJDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEjTrHoBAAAAXaUoFq+yZgMAAAD1UuZeQnt+zThJDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQpln1AgAAALpKq4iIosTZAAAAQK2UuZfQmV8vTlIDAAAAAAAAkEakBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0jSrXgAAAEBXKYrFq6zZAAAAQL2UuZfQnl8zTlIDAAAAAAAAkEakBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKRpVr0AAACArlJERFGUNxsAAAColzL3Etrza8ZJagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAECaZtULAAAA6CpFsXiVNRsAAAColzL3Etrza8ZJagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAEAakRoAAAAAAACANM2qFwAAANBVWq2IaJU4GwAAAKiVMvcSOvPrxUlqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQJpm1QsAAADoKkWxeJU1GwAAAKiXMvcS2vNrxklqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQBqRGgAAAAAAAIA0zaoXAAAA0FWKYvEqazYAAABQL2XuJbTn14yT1AAAAF3s29/+drz//e+Pvr6+uOWWW+LXv/71ee//8Y9/HBs2bIi+vr644YYb4uc//3nSSgEAAACWR6QGAADoUo899ljs3bs3HnjggXj22WfjxhtvjLGxsXj55ZfPev9TTz0Vn/nMZ+Kzn/1s/O53v4vt27fH9u3b4w9/+EPyygEAAADOTaQGAADoUg8//HDs3r07du3aFRs3boxDhw7FqlWr4vDhw2e9/xvf+EZs3bo17rnnnrj++utj//798aEPfSi+9a1vJa8cAAAA4NxEagAAgGRzc3NLrjfeeONt98zPz8czzzwTo6OjnfdWrFgRo6Ojcfz48bPOPX78+JL7IyLGxsbOeT8AAABAFURqAACAZOvWrYuBgYHOdeDAgbfd8+qrr8bCwkIMDg4ueX9wcDBmZmbOOndmZuaC7gcAAACoQrPqBQAAAFxuTpw4Ef39/Z3Xvb29Fa4GAAAAIJdIDQAA8FatIiKKEmdH9Pf3L4nUZ7N69epYuXJlzM7OLnl/dnY2hoaGzvqZoaGhC7ofAAAAuATK3EvozK8XX/cNAADQhXp6emLLli0xOTnZea/VasXk5GQMDw+f9TPDw8NL7o+I+OUvf3nO+wEAAACq4CQ1AABAl9q7d2/ceeedcdNNN8XNN98cBw8ejDNnzsSuXbsiImLHjh1x9dVXd37T+gtf+EJ89KMfja9//evxyU9+Mn70ox/Fb3/72/jud79b5Z8BAAAAsIRIDQAA0KVuv/32eOWVV2J8fDxmZmZi06ZNcfTo0RgcHIyIiOnp6Vix4l9fkDUyMhI//OEP4/7774/77rsvPvCBD8QTTzwRH/zgB6v6EwAAAADeplEURf2+xBwAAOACzc3NxcDAQIz+265orugp5Rn/3ZqPf//PR+PUqVPv+JvUAAAAQHfL2EuIqOd+gt+kBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDTNqhcAAADQTYqiFUXRKm02AAAAUC9l7iW059eNk9QAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGmaVS8AAACgqxRFRKsobzYAAABQL2XuJbTn14yT1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQBqRGgAAAAAAAIA0zaoXAAAA0FWKIiKKEmcDAAAAtVLmXkJnfr04SQ0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKQRqQEAAAAAAABII1IDAAAAAAAAkKZZ9QIAAAC6SqsV0WiVM7soaS4AAABQnTL3EiJquZ/gJDUAAAAAAAAAaURqAAAAAAAAANKI1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgTbPqBQAAAHSVooiIosTZAAAAQK2UuZfQmV8vTlIDAAAAAAAAkEakBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKRpVr0AAACAblK0WlE0WuXMLsqZCwAAAFSnzL2EiHruJzhJDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEjTrHoBAAAAXaUoIqIocTYAAABQK2XuJXTm14uT1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQBqRGgAAAAAAAIA0IjUAAAAAAAAAaZpVLwAAAKCrtIqIRlHO7KKkuQAAAEB1ytxLiKjlfoKT1AAAAAAAAACkEakBAAAAAAAASCNSAwAAAAAAAJBGpAYAAAAAAAAgjUgNAAAAAAAAQBqRGgAAAAAAAIA0zaoXAAAA0FWKIiJaJc4GAAAAaqXMvYTO/HpxkhoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADSiNQAAAAAAAAApBGpAQAAAAAAAEgjUgMAAAAAAACQRqQGAAAAAAAAIE2z6gUAAAB0k6JVRNEoypldlDMXAAAAqE6ZewkR9dxPcJIaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKQRqQEAAAAAAABII1IDAAAAAAAAkKZZ9QIAAAC6StGKiFaJswEAAIBaKXMvoTO/XpykBgAAAAAAACCNSA0AAAAAAABAGpEaAAAAAAAAgDQiNQAAAAAAAABpRGoAAAAAAAAA0ojUAAAAAAAAAKQRqQEAAAAAAABI06x6AQAAAN2kaBVRNIpyZhflzAUAAACqU+ZeQkQ99xOcpAYAAAAAAAAgjUgNAAAAAAAAcBl66KGHYmRkJFatWhVXXnnlsj6zc+fOaDQaS66tW7de0HN93TcAAAAAAADAZWh+fj5uu+22GB4eju9973vL/tzWrVvj0Ucf7bzu7e29oOeK1AAAAAAAAACXoQcffDAiIiYmJi7oc729vTE0NHTRz/V13wAAAAAAAAAs27Fjx+K9731vXHfddbFnz5547bXXLujzTlIDAAAAAAAAdLm5ubklr3t7ey/4a7Yvha1bt8anP/3puOaaa+Kvf/1r3HffffGJT3wijh8/HitXrlzWDCepAQAA3qpolXsBAAAA9VL2XsKb+wnr1q2LgYGBznXgwIGzLufee++NRqNx3uvPf/7zRf+5d9xxR3zqU5+KG264IbZv3x4/+9nP4je/+U0cO3Zs2TOcpAYAAAAAAADocidOnIj+/v7O63Odor777rtj586d5521fv36S7au9evXx+rVq+OFF16Ij33sY8v6jEgNAAAAAAAA0OX6+/uXROpzWbNmTaxZsyZhRYteeumleO2112Lt2rXL/oyv+wYAAAAAAAC4DE1PT8fU1FRMT0/HwsJCTE1NxdTUVJw+fbpzz4YNG+Lxxx+PiIjTp0/HPffcE7/61a/i73//e0xOTsa2bdvi2muvjbGxsWU/10lqAAAAAAAAgMvQ+Ph4HDlypPN68+bNERHx5JNPxq233hoREc8//3ycOnUqIiJWrlwZv//97+PIkSNx8uTJuOqqq+LjH/947N+//5xfP342IjUAAAAAAADAZWhiYiImJibOe09RFJ3/fcUVV8QvfvGL//Nzfd03AAAAAAAAAGmcpAYAAHiL/47/iije+b6Lng0AAADUSpl7CZ35NSNSAwAARERPT08MDQ3Ff8z8vNTnDA0NRU9PT6nPAAAAAMqXtZcQUb/9hEbx1i8RBwAAuIy9/vrrMT8/X+ozenp6oq+vr9RnAAAAADky9hIi6refIFIDAAAAAAAAkGZF1QsAAAAAAAAA4PIhUgMAAAAAAACQRqQGAAAAAAAAII1IDQAAAAAAAEAakRoAAAAAAACANCI1AAAAAAAAAGlEagAAAAAAAADS/A8k7Yu0eubRzwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "imshow(shift_left(fft2(image))*aperture(h=h, w=w, condition=lambda circle_dist: circle_dist>r, is_inv=True), figsize=[25,25])" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(torch.Size([504, 768]), torch.Size([504, 768]))" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aperture(h=h, w=w, condition=lambda circle_dist: circle_dist>r, is_inv=False).shape, fft2(image).shape" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from torch import nn\n", "\n", "def select_index_1dlut_linear(index, lut):\n", " b, hw, c = index.shape\n", " L = lut.shape[0]\n", " Q = 256/(L-1)\n", " msbA = torch.floor_divide(index, Q).type(torch.int64)\n", " msbB = msbA + 1\n", " msbA = msbA.flatten() \n", " msbB = msbB.flatten() \n", " lsb = index % Q\n", " outA = lut[msbA].reshape((b, hw, c))\n", " outB = lut[msbB].reshape((b, hw, c))\n", " lsb_coef = (lsb / Q).reshape((b, hw, c))\n", " out = outA + lsb_coef*(outB-outA) \n", " return out\n", "\n", "class ChebyKANLut(nn.Module):\n", " def __init__(self, in_features, out_features, quantization_interval=16):\n", " super(ChebyKANLut, self).__init__()\n", " self.in_features = in_features\n", " self.out_features = out_features\n", " self.lut = nn.Parameter(\n", " torch.randint(0, 255, size=(in_features, out_features, 256//quantization_interval+1)).type(torch.float32)\n", " )\n", "\n", " def forward(self, x):\n", " b,w,c = x.shape\n", " out = torch.zeros([b, w, self.out_features], dtype=x.dtype, device=x.device)\n", " for j in range(self.out_features):\n", " for i in range(self.in_features):\n", " out[:,:,j:(j+1)] += select_index_1dlut_linear(x[:,:,i:(i+1)], self.lut[i,j])\n", " return out\n", "\n", " def __repr__(self):\n", " return f\"{self.__class__.__name__}\\n lut size: {self.lut.shape}\"" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(ChebyKANLut\n", " lut size: torch.Size([3, 16, 17]),\n", " torch.Size([1, 20, 3]))" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = ChebyKANLut(3,16)\n", "inp = torch.rand((1,20,3))\n", "m, inp.shape" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[463.2381, 376.8301, 114.3476, 271.9085, 490.1937, 582.6370, 409.1758,\n", " 400.9393, 427.7816, 196.5997, 351.1473, 200.7222, 495.7486, 278.1267,\n", " 287.9622, 235.4593],\n", " [465.8668, 380.2632, 114.4513, 271.2806, 485.8594, 585.0460, 410.2136,\n", " 398.2844, 426.6433, 195.5223, 350.1196, 193.7059, 497.1382, 282.1424,\n", " 289.3316, 234.4068],\n", " [462.1194, 379.0745, 109.0163, 277.1783, 493.5525, 591.0010, 410.6595,\n", " 401.0636, 431.8007, 190.6285, 352.5268, 194.8572, 495.7587, 284.5918,\n", " 289.6667, 228.1012],\n", " [464.3282, 381.8761, 114.0047, 275.6982, 483.6394, 587.6432, 412.8979,\n", " 397.2225, 427.2900, 193.6885, 350.6945, 192.2639, 495.0728, 288.2772,\n", " 290.2244, 232.0959],\n", " [466.6015, 378.4167, 108.2795, 269.1100, 496.8093, 589.6433, 406.0382,\n", " 401.7880, 431.0631, 191.9368, 351.1408, 191.8252, 500.9969, 276.0202,\n", " 289.1382, 229.9864],\n", " [460.9582, 380.3485, 110.4867, 280.2570, 489.4376, 591.0630, 413.2714,\n", " 399.6020, 430.9707, 190.6549, 352.6010, 194.8588, 493.4827, 289.5420,\n", " 290.1617, 228.0952],\n", " [466.7912, 379.0564, 111.5888, 268.9156, 491.6213, 586.6354, 407.4547,\n", " 400.1718, 428.5495, 194.2639, 350.4013, 192.8883, 499.6754, 277.5738,\n", " 289.0416, 232.8825],\n", " [464.2467, 380.0354, 108.4765, 274.7819, 493.4974, 591.8239, 409.6070,\n", " 400.5066, 431.4833, 190.3398, 351.8704, 191.4326, 497.8258, 283.5001,\n", " 290.0175, 227.9137],\n", " [465.7054, 382.0335, 116.0645, 273.2125, 481.1367, 585.1102, 412.4897,\n", " 396.3918, 425.3724, 195.7032, 349.8054, 192.2900, 495.6638, 286.7256,\n", " 289.9668, 234.6712],\n", " [465.9137, 381.2795, 115.6473, 272.1096, 482.8379, 584.7443, 411.4819,\n", " 397.1049, 425.6763, 195.8887, 349.8375, 192.9588, 496.3343, 284.5851,\n", " 289.6560, 234.8909],\n", " [466.3246, 382.2674, 109.5005, 273.5905, 489.5425, 592.2322, 410.2520,\n", " 398.4519, 429.9391, 190.5274, 350.8851, 187.2025, 498.7480, 285.6379,\n", " 290.7738, 228.3469],\n", " [462.6424, 380.0729, 110.3244, 277.1738, 490.5533, 590.4008, 411.5419,\n", " 399.8566, 430.6127, 191.2550, 352.0583, 193.8354, 495.4180, 286.2660,\n", " 289.9371, 228.9362],\n", " [458.8596, 377.1616, 114.6963, 279.5137, 487.9479, 584.0563, 413.2886,\n", " 400.5944, 428.7974, 195.2103, 352.5837, 203.8983, 490.8944, 285.7299,\n", " 288.3788, 233.4713],\n", " [466.4693, 377.5376, 110.4697, 267.9792, 495.1900, 586.4482, 405.9689,\n", " 401.7078, 429.5837, 194.1656, 350.7776, 194.6360, 500.3556, 274.3826,\n", " 288.4987, 232.6956],\n", " [467.5288, 378.9879, 111.0775, 267.6999, 492.6083, 586.8731, 406.6165,\n", " 400.3940, 428.7082, 194.1439, 350.2493, 192.0780, 500.6722, 276.2162,\n", " 289.0169, 232.7812],\n", " [467.5460, 381.2665, 110.9246, 270.2031, 489.5041, 589.2909, 408.6991,\n", " 398.7177, 428.6255, 192.6713, 350.2089, 188.6326, 499.8680, 281.5363,\n", " 290.0713, 231.0367],\n", " [458.6791, 377.8389, 112.9487, 280.8663, 489.1894, 586.6778, 413.5627,\n", " 400.6783, 430.0646, 193.3502, 352.9731, 201.9151, 491.1156, 287.4231,\n", " 288.8980, 231.1896],\n", " [458.8704, 376.4196, 113.3303, 278.9200, 490.8099, 584.7945, 412.1794,\n", " 401.6234, 429.8482, 194.5641, 352.8717, 204.0885, 491.7181, 283.8260,\n", " 288.1948, 232.6546],\n", " [467.4784, 380.6939, 113.6064, 269.2151, 486.8178, 585.8462, 409.0083,\n", " 398.2368, 426.7443, 195.1322, 349.7171, 191.2635, 498.9868, 280.5707,\n", " 289.5113, 234.0449],\n", " [463.8289, 381.3396, 108.7854, 276.8581, 491.0757, 592.9225, 411.2770,\n", " 399.4143, 431.2746, 189.6700, 351.9166, 190.0531, 496.7646, 287.2490,\n", " 290.6060, 227.1003]]], grad_fn=)" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m(inp)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from torch import nn\n", "import numpy as np\n", "from src.common import lut\n", "from torch.utils.data import Dataset, DataLoader" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "class ChebyKANLayer(nn.Module):\n", " \"\"\"\n", " https://github.com/SynodicMonth/ChebyKAN/blob/main/ChebyKANLayer.py\n", " \"\"\"\n", " def __init__(self, in_features, out_features, degree=8, input_max_value=255, output_max_value=255):\n", " super(ChebyKANLayer, self).__init__()\n", " self.in_features = in_features\n", " self.out_features = out_features\n", " self.degree = degree\n", "\n", " self.cheby_coeffs = nn.Parameter(torch.empty(in_features, out_features, degree + 1))\n", " nn.init.normal_(self.cheby_coeffs, mean=0.0, std=1 / (in_features * (degree + 1)))\n", " self.register_buffer(\"arange\", torch.arange(0, degree + 1, 1))\n", "\n", " self.in_bias = self.in_scale = input_max_value/2\n", " self.out_bias = self.out_scale = output_max_value/2\n", "\n", " def forward_all_to_all(self, x):\n", " # Since Chebyshev polynomial is defined in [-1, 1]\n", " # We need to normalize x to [-1, 1] using tanh\n", " b, hw, c = x.shape\n", " assert c == self.in_features, f\"Input features count={c} is not equal to specified for this layer count={self.in_features}.\"\n", " x = (x-self.in_bias)/self.in_scale\n", " x = torch.tanh(x)\n", "\n", " # View and repeat input degree + 1 times\n", " x = x.view((b, hw, self.in_features, 1)).expand(\n", " -1, -1, -1, self.degree + 1\n", " ) # shape = (batch_size, inputdim, self.degree + 1)\n", " # Apply acos\n", " x = x.acos()\n", " # Multiply by arange [0 .. degree]\n", " x *= self.arange\n", " # Apply cos\n", " x = x.cos()\n", " # Compute the Chebyshev interpolation\n", " y = torch.einsum(\n", " \"btid,iod->btio\", x, self.cheby_coeffs\n", " ) # shape = (batch_size, hw, outdim)\n", " \n", " y = y*self.out_scale + self.out_bias\n", " y = y.view(b, hw, self.in_features, self.out_features)\n", " y = y.clamp(0,255)\n", " return y\n", "\n", " def forward(self, x):\n", " # Since Chebyshev polynomial is defined in [-1, 1]\n", " # We need to normalize x to [-1, 1] using tanh\n", " b, hw, c = x.shape\n", " assert c == self.in_features, f\"Input features count={c} is not equal to specified for this layer count={self.in_features}.\"\n", " x = (x-self.in_bias)/self.in_scale\n", " x = torch.tanh(x)\n", "\n", " # View and repeat input degree + 1 times\n", " x = x.view((b, hw, self.in_features, 1)).expand(\n", " -1, -1, -1, self.degree + 1\n", " ) # shape = (batch_size, inputdim, self.degree + 1)\n", " # Apply acos\n", " x = x.acos()\n", " # Multiply by arange [0 .. degree]\n", " x *= self.arange\n", " # Apply cos\n", " x = x.cos()\n", " # Compute the Chebyshev interpolation\n", " y = torch.einsum(\n", " \"btid,iod->bto\", x, self.cheby_coeffs\n", " ) # shape = (batch_size, hw, outdim)\n", " \n", " y = y*self.out_scale + self.out_bias\n", " y = y.view(b, hw, self.out_features)\n", " y = y.clamp(0,255)\n", " return y\n", "\n", " def get_lut_model(self, quantization_interval=16, batch_size=2**10):\n", " bucket_count = 256//quantization_interval \n", " in_features = self.in_features\n", " out_features = self.out_features \n", " domain_values = torch.cat([torch.arange(0, 256, quantization_interval, dtype=torch.uint8), torch.tensor([255])])\n", " inputs = domain_values.type(torch.float32).to(self.cheby_coeffs.device)\n", " lut = np.full((in_features, out_features, bucket_count+1), dtype=np.uint8, fill_value=255)\n", "\n", " qmodel = ChebyKANLut(in_features=self.in_features, out_features=self.out_features, quantization_interval=quantization_interval)\n", " with torch.no_grad():\n", " for d in range(len(domain_values)):\n", " lut[:,:,d] = self.forward_all_to_all(inputs[d].view(1,1,1).expand(1,1,in_features)).cpu().numpy().astype(np.uint8).squeeze()\n", " qmodel.lut = nn.Parameter(torch.tensor(lut).type(torch.float32))\n", " return qmodel\n", " \n", " def __repr__(self):\n", " return (f\"{self.__class__.__name__}\\n\" \n", " f\"cheby coefs size: {self.cheby_coeffs.shape}\\n\"\n", " f\"in/out bias, scale: {self.in_bias}, {self.in_scale} / {self.out_bias}, {self.out_scale}\" )\n", "\n", "from src.common.lut import select_index_1dlut_linear\n", "\n", "class ChebyKANLut(nn.Module):\n", " def __init__(self, in_features, out_features, quantization_interval=16):\n", " super(ChebyKANLut, self).__init__()\n", " self.in_features = in_features\n", " self.out_features = out_features\n", " self.lut = nn.Parameter(\n", " torch.randint(0, 255, size=(in_features, out_features, 256//quantization_interval+1)).type(torch.float32)\n", " )\n", "\n", " def forward(self, x):\n", " out = self.forward_all_to_all(x).sum(dim=2)\n", " out = out*127.5 + 127.5\n", " return out.clamp(0,255)\n", "\n", " def forward_all_to_all(self, x):\n", " b,w,c = x.shape\n", " out = torch.zeros([b, w, self.in_features, self.out_features], dtype=x.dtype, device=x.device)\n", " for j in range(self.out_features):\n", " for i in range(self.in_features):\n", " out[:,:, i, j:(j+1)] = (lut.select_index_1dlut_linear(x[:,:,i:(i+1)], self.lut[i,j]) - 127.5)/127.5\n", " return out \n", "\n", " def __repr__(self):\n", " return f\"{self.__class__.__name__}\\n lut size: {self.lut.shape}\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ChebyKANLayer\n", "cheby coefs size: torch.Size([3, 2, 9])\n", "in/out bias, scale: 127.5, 127.5 / 127.5, 127.5" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mm = ChebyKANLayer(3, 2)\n", "mm" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([1, 1, 3, 2])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_inputs = torch.rand(1,1,3)*240\n", "mm.forward_all_to_all(torch.rand(1,1,3)).shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[[[122.7208, 105.1765],\n", " [130.7248, 115.0563],\n", " [126.7512, 143.1962]]]], grad_fn=),\n", " tensor([[[[-0.0431, -0.1765],\n", " [ 0.0196, -0.1001],\n", " [-0.0118, 0.1216]]]], grad_fn=),\n", " tensor([[[125.1967, 108.4290]]], grad_fn=),\n", " tensor([[[123.0000, 107.7358]]], grad_fn=))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mm = ChebyKANLayer(3, 2)\n", "qmodel = mm.get_lut_model(quantization_interval=1)\n", "a,b,c,d = mm.forward_all_to_all(test_inputs), qmodel.forward_all_to_all(test_inputs), mm(test_inputs), qmodel(test_inputs)\n", "a,b,c,d" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[[0.0801, 0.0629]]], grad_fn=),\n", " tensor([[[0.0712, 0.0510]]], grad_fn=))" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "((a-127.5)/127.5).sum(dim=2), ((b-127.5)/127.5).sum(dim=2)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 out: 255 255\n", "1 out: 124 255\n", "2 out: 124 255\n", "3 out: 124 255\n", "4 out: 124 255\n", "5 out: 124 255\n", "6 out: 124 255\n", "7 out: 124 255\n", "8 out: 124 255\n", "9 out: 124 255\n", "10 out: 124 255\n", "11 out: 124 255\n", "12 out: 124 255\n", "13 out: 124 255\n", "14 out: 124 255\n", "15 out: 124 255\n", "16 out: 124 255\n", "0 out: 255 255\n", "1 out: 120 255\n", "2 out: 120 255\n", "3 out: 120 255\n", "4 out: 120 255\n", "5 out: 120 255\n", "6 out: 120 255\n", "7 out: 120 255\n", "8 out: 120 255\n", "9 out: 120 255\n", "10 out: 120 255\n", "11 out: 120 255\n", "12 out: 120 255\n", "13 out: 120 255\n", "14 out: 120 255\n", "15 out: 120 255\n", "16 out: 120 255\n", "0 out: 255 255\n", "1 out: 119 255\n", "2 out: 119 255\n", "3 out: 119 255\n", "4 out: 119 255\n", "5 out: 119 255\n", "6 out: 119 255\n", "7 out: 119 255\n", "8 out: 119 255\n", "9 out: 119 255\n", "10 out: 119 255\n", "11 out: 119 255\n", "12 out: 119 255\n", "13 out: 119 255\n", "14 out: 119 255\n", "15 out: 119 255\n", "16 out: 119 255\n", "0 out: 255 255\n", "1 out: 120 255\n", "2 out: 120 255\n", "3 out: 120 255\n", "4 out: 120 255\n", "5 out: 120 255\n", "6 out: 120 255\n", "7 out: 120 255\n", "8 out: 120 255\n", "9 out: 120 255\n", "10 out: 120 255\n", "11 out: 120 255\n", "12 out: 120 255\n", "13 out: 120 255\n", "14 out: 120 255\n", "15 out: 120 255\n", "16 out: 120 255\n" ] }, { "data": { "text/plain": [ "(ChebyKANNet(\n", " (stage1_S): UpscaleBlock(\n", " (stage): ChebyKANUpscaleBlockNet(\n", " (kan_layers): ModuleList(\n", " (0): ChebyKANLayer\n", " cheby coefs size: torch.Size([49, 16, 9])\n", " in/out bias, scale: 127.5, 127.5 / 127.5, 127.5\n", " (1-3): 3 x ChebyKANLayer\n", " cheby coefs size: torch.Size([16, 16, 9])\n", " in/out bias, scale: 127.5, 127.5 / 127.5, 127.5\n", " )\n", " )\n", " )\n", " ),\n", " ChebyKANLut(\n", " (stage1_S): UpscaleBlock(\n", " (stage): ChebyKANUpscaleBlockLut\n", " lut size: torch.Size([49, 16, 17])\n", " lut size: torch.Size([16, 16, 17])\n", " lut size: torch.Size([16, 16, 17])\n", " lut size: torch.Size([16, 16, 17])\n", " )\n", " ))" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "import numpy as np \n", "from pathlib import Path\n", "import inspect, sys\n", "\n", "sys.path.append('/wd/lut_reproduce/src/')\n", "from common.base import SRBase\n", "from models import AVAILABLE_MODELS\n", "\n", "def LoadCheckpoint(model_path):\n", " model_path = Path(model_path).absolute()\n", " if model_path.exists():\n", " model_container = torch.load(model_path)\n", " init_arg_names = list(inspect.signature(AVAILABLE_MODELS[model_container['model']]).parameters.keys())\n", " model = AVAILABLE_MODELS[model_container['model']](**{k:model_container[k] for k in init_arg_names})\n", " model.load_state_dict(model_container['state_dict'], strict=True)\n", " return model\n", " else:\n", " raise Exception(f\"Path {model_path} does not exist.\")\n", "\n", "m1 = LoadCheckpoint(\"/wd/lut_reproduce/experiments/ChebyKANNet_RGB_DIV2K_x4/checkpoints/ChebyKANNet_10000.pth\")\n", "m2 = LoadCheckpoint(\"/wd/lut_reproduce/experiments/ChebyKANNet_RGB_DIV2K_x4/checkpoints/ChebyKANLut_0.pth\")\n", "m1, m2" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAABZCAYAAABBjj4PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7AtyXoXiP2+zKpaj733efXpPn0ffXUfeiAEEkiCi2YwmPG1GWFjHDGeAE9gMPYfRIwFEVaEwygCy0FM2LL5S4FRoHHYngnsiQnMH2jGeJBnkBHCSEYgMegt3Xf3vf3u0+fss/dea1VV5uc/8lFfZmWttfY+5/R9UF/06b13VVY+v/eX+SUxM2OGGWaYYYYZZphhhhlmmGGGGWaYYYYZZphhhhlmmGGGGWaYYYYZvsFBfa07MMMMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwzPAuYA+AwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDDN8UMAfAZ5hhhhlmmGGGGWaYYYYZZphhhhlmmGGGGWaYYYYZZphhhhlm+KaAOQA+wwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDNwXMAfAZZphhhhlmmGGGGWaYYYYZZphhhhlmmGGGGWaYYYYZZphhhhm+KWAOgM8wwwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzPBNAXMAfIYZZphhhhlmmGGGGWaYYYYZZphhhhlmmGGGGWaYYYYZZphhhm8KmAPgM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwwzfFPAHACfYYYZZphhhhlmmGGGGWaYYYYZZphhhhlmmGGGGWaYYYYZZpjhmwLmAPgMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwzfFPDcAuA/8RM/gY9//ONYLpf49Kc/jV/8xV98Xk3NMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwA4iZ+VlX+nf+zt/Bn/tzfw4/+ZM/iU9/+tP48R//cfzdv/t38du//dt46aWX9n5rrcXrr7+Os7MzENGz7toMM8wwwwwzzDDDDDPMMMMMM8wwwwwzzDDDDDPMMMMMM8wwwwzfYMDMePLkCT784Q9Dqelz3s8lAP7pT38af+AP/AH8zb/5NwG4oPYrr7yCv/SX/hL+yl/5K3u//cpXvoJXXnnlWXdphhlmmGGGGWaYYYYZZphhhhlmmGGGGWaYYYYZZphhhhlmmGGGb3B47bXX8NGPfnTyffWsG2zbFr/0S7+EH/mRH4nPlFL4zGc+g1/4hV8Yld/tdtjtdvHvEI9/5Uf/Kmi1BPJD4AQwMYgJsAAxYDUAzYAhqB4Al0+Okw/1s2KwFvX5d2TCe/ccLL4L32qANQMMkCGQ9T8NAOW+ZQKgGKzg3veuEdswuGLA+u946Cox3HPfDzIAV4BpGCBXB1nfX8X+p/ueIPvHLrG9dfUpA+gNgXqCXTBszSBDUFtXn1kzzNrGuQD8twwQU5wTs7agpQG3CupSu76ENdNDn9wcsOtvL+aHgX7J4LMepC2UZoAY5qqGutRJ37mxUIsedlth8XoNvQP6E0Z/wmDN4KUFCKgfVqgfuTZU5/psVoCt/bz6NayugGoH7G4B2w/3gGZQpwADVBuF+jGBCejPGLbxa2spzinI9c1qP0Q/d6zh1pP9+oT1VH7+jJifStSLYb7IEFTrytuFxxF4fBbrmvzOBAJAHUG3fn0aMX/K4ZhuXT9tzbALTtZ2qNPhiMRnVoBduH7onesfV4BZeJxGChwQ2OMdeaSOz31/wYDqHN3ahmEXDomoUw7ve9cXJtfnWJ8d5jFp1K+xHA4BkS8EOmMFcD2MP9BzWAtbs8NZ9pXxUCbiNnvatJ7fyHW3Q1uun8PaknXjMUs70CV7nG3dvNiKwZXvmxkYAquBZ+WDZDX8HscV6o59Z9gqLSbrCf0sARkC9R4/A22tGWZlHf0sDQgMu6lArXL4vTQgAninAEPQVxrN+8OagoDujNHd7wFDWL5RoT53NNuv3Rz0JxZcM/SVQvVEgSygt46WzBIwK8e7zcL1ffW6wtlXLHRrUT8xIGa8951LXHzSAmGO/U/VAe1di/Unz7GqO7z91m1UD2voS8LyPcBWgP1vPMb/4OO/gi9uXsBvvvcAu67GblvBdhrNusX9s0ssqh7rqkOlDH799ZdBnzsBFNDeM6CVwUdffoh/68Fv483dHfxXn/0O8KPGzbX2dHmlIk8k4+mtduttV47PkrKoGgO2BPPOCvX7CmbF6O93oMqCWw2YbPE87fHKYHVrC2Zge74EbTX0hUJ9PvAo16ajc5DjT+z5HFccaSvWayjKhID3qve46MvZxvFnsgTVBsEqxLFvXLcAvDzqz0xyEQvtFKqtp0sNJ0eFjAz8g7VrL/YxyM2ehvFkG/8ifQa5Kfm29jqB4DehbqlOhHVztJXSj94q6CsCK4ZZO9qT8i+AWVjwyjoaudBeZxl0GbNyvII6guoo8q8gF1h53th4ZtYr1+9egVo/dwsLVAxqFfSVY9pmbcGVhb7QaN5Xji+dMkzD4IbBKwO0Cos3K9SXTqbY2s1lf+rWdvGuxupthq0I3alfhwpRr1G9W4dqC6jWvevXTn609yzsae/wIvI592/5Wo0Hv9TCKsIbf6RC88knuHprjbPPVwADu3sMs2LYFzp8+MH70Mpi11forcajz97FvV8lXL1I+NSf+Dz+xIu/iv/Pw+/Er771IfSdQretAUu4c/8C33rvXVgmtKZCZxW+8vgOLh8vQVcVFm9rMAHf+cc+h//9K38fSyLcUku8bTb4s7/xZ/H4116A2hKaJ269uhOHg3d/h3H7p38Tar3Ga/+jT+DqO7f4ro+9gR/+yH+J/+riu/Cz/4cfwMl//ksAKZDW0A/u450/9lFcvUS4/2sd1r/wWbAxIK2Busa7P/iteO/fbEFXFU6+qNE8Ydz7tQvQr3wO+N2fwpf/5Bm62xYnr2qcvGGxua9w/rs7qFUPthSRm4hhjULz1QaL9wl6x2jOGbYmnH8C6O5anHxR48E/vwSI8PhTK+zuELoTuPWunN7AirF4q8LpVxj9CeH8Uwa43eGl++f4rntvYGtrvPbkLjZ9jYtNg3ZbgwhQyoKZYN9ZYvGuGmgWgNo5ftyfMtoHHaixgw57WaF56JSt9uUOi7Md2JLjhUbBXtRQOwXVuTpYA92ZcfTQKuiNguoJ1bmXXR7HrPY6XuWZCSHiLNjhqA16QkBPI2Ry4AXyW5PxmN7RraM3p0+qlqB2vg+Nl/cK4No6fmo831aOxlAzFre3aGqDJ++vod+vXJ/vtqgqA2OUm4+tRvW4guoAfUWoNp4ea0d3u/sGuNNBa4vFqoMxhN0bJ2je1zBLx3uJCfX7CnpDbvxexzML15dqo1A9oUQOr961OP3KBu3tBm9/b432rsXZFxTu/fbO8zcF0yi8830K937vO7i72uD77ryKW9UG//zxx/Glx/fw8P0TNJ9dob4ATl83WL3d4vwTS7z76R5q1YPeWqJ+TOjPGOblHaq6x3rVYdW0ePvdW6hedbZh/8oWt+9c4Xvuv44/c/+f4Z7a4MMVcEoL/F/OX8F//LkfwJ3VBj/yif8C37fY4Wc3t/EPH38X/vGXP4WP/Q0Av/Qbce2qlx/g0b/xMWxeVFj98bfwH/+u/xQnpLBSNc5tiz/z6/8ezn/xRbQvWDz4NjcuYwmWCZ//9Y/iW/+TJ6DO4HN/9g6+43tfxW987iN46Z9oLB8arH/zDfRffQNv/qVP4//6F/+PqMniL/7mv4e3X72L+/9C495P/Srs1QZTQIsFvvC//h784//h38RttQIAvGcu8Zn/x1/GJ/6DXwY1NdSDF2HuneLLfxn4xT/0n0LT/hvOdtyhY4P/1Vf/m/jlv/d7cPK2xZ1ffhfm81/Cwz//B/Df/Ys/h7d3t/Gv/sZ34/Snfhlv/OXvx0/8z/4W7qkd/u7578eXr17A99/+En5w/TkAwNumxkO7wv/iP/sL+OT/7l/Bbnex71/9938f/tB//1/hQ4tzfPfqVZypLf7J5XfgVx9/BB9aPcZnbv86Oq7wv/kH/y4+9tMtdndrPP64hq0BvQN0B5x/0uJP/MC/hILFP/hH348Xfo3x+JMKy+99iF1XYfVfnuGFX7/AxStrPPqUhjLArS8aLB92sBXBNgpPPlrhY//uF/AXXv6nDldB+Febj+H//qufhnqnQf1IYfHIT5CfPtUy9A7Y3SE8+bYetDKgRzWqcwW7YpgXW0Ax6tcWWL5DaG8D2w93gGZU79WoLgY8JmLYVgM9ARVDNU5nBjEIgHl3ifXrKspRYqA9BfpbTt8wKyfXYZ0eFPQAUgy+0tBXGlDOzncVDr6GoBuZtQUvDNArqK3ydkNANG9bsNeZg+6uUhNE9e49k+PhtubBrvK2JOxgj0F5vqcH/4icY3g7qroirN4mqI5x9RKhvWeivUTW+TJUS+huMehDG6jKoL1qgJ0G7RTqSwJroH/QYnm6w+bxEvU7tbNflk6m8dpgcebWgr1y1+0q2J0GeoXq3OlktnLyinpCdeHKnX7fe/ihT/0j/PLFt+D/+SvfA31exfmhF3b4E9/+a6iUxf/rH/xBfPQfb/HklSXe/T4LXhu35paweq3Ch35hAyjgq394hfbjO3BPQKdAHWH5tkZ1Cazftrj1uQugIlx8dI3uROHxtwEnv/t9PHmywp1/vMTZay0WX3kM84VXQb/32/G5f7/B93z8K9j0NTZ9jY+fPsQPPfhH+Na6gQJBk8J/+OgV/J/+s/8OTt4AFu9bLB71OP9Eg4s/fIWX753jf/Kxn8d/b/0W/uevfQav/p+/FWSBF/6nr+I/+sR/AQuLHRv8y91d/C//8/8xXvoXFm/8UeBv/bf/I3yqusBdvcCCavzDqwZ/773vxe88fhGP/+kDnH6VsX6rxfLVRzB31njn+8+wvQv0ZxbmzKB+r8KH/78dFm9f4fF33MKTjyn0J4z2wy1UZVF/foWz13iwWyrC5iVGd8eifqhx+4tOru/+xGP80Lf/LH7u0bfjFz73SfDWOw2YcPLSJf7IRz6Px/0SP/+r347lGxX6U0Z/2/uENDt7o1NuLQxB7QhkCP2ZgT7tYC0BT+ro04u+Au9LMLd6VCcd+k2F+p0a1APtiwbNnS3aR0usXqugd4BZeN26YXQnjhaqLYF2BG4YZumeBd+C6p3fibXXxRv2tgoNdi4H+S9tOufrUkb4mqzXQxoe+AKc7LdCDyMmR5fRX+Knsgo+EcS5Vcb109lRg34U3aiB3nNnjdeDoBi01VBb5dv2xYMf1Xi70To/mWk49fWErijv1wCcjti7OTFB7+yEzhbaCPph7eeVAbVVaTlpx4r+R32QhW3t7cI4biv8WisLWvexXu4Vll9qsH6bsbtDuPqIAVeM6lI7v5tC9Cv3Zwa0NFCVRdX0YAb6XeV0/FWHO6cbXOwW6D53hvoxOTppBpqB8vJj6TvTOrtx8U6FxUOHE+0dh3svfMd7+OMf+Q384sOP43P/9SuoLpyPhzXQPCTc+XwPvbOwtYKtCY8/rtH+/gucrFss6w6NNtj1FS7bBpvLBda/vMLp6waPPqXR/54LdJsGL/5cjbMvb9DdqrG7rdGdEp58wo1z+bqzN6otY/VOC9UaPPzda5x/Ct4uccKF1j3qRYdu00C/1UC1fo17oLvFsK9sUNUG7bYGt46u9ZVzANiVdTr4wqBZdbCG0L+3gr5STv896YHe28MXnu80uT8AUVb0t9jP9+AHoc7hhfPxDYga9f4gnz0Ncs3RX8yeFtWVht6S98+475WPEQQ/P5TnC3XGF0L7WvhAAz2HuIXw/yT+lOAyDf7OxD8pXLCe9oPOEnzFgPMfUz/YVrENzxhkHAE84DvY2YgJTwNSXSX0Q7tHap+tFnQSRsTjwFuB4C/ydBzGb9w8svL+WQkWUGHNNI90pFiHaCP2K8RopP9Y+JoCnsRvScSrxFwBg+xx8Yg0rhXXOfML28bx+eCnC748amnw/eswfkSd0K0NR/0wrzddk6DrObwnQ1i8o9GcA+1tYPeScTTSe3/e0qI66QAApldgo6DOKzTvOXkQ+qTaIR7R3baw3lesN+R8wx/dYLHssb2qYTeViwluXXzB3OpRn7TON6Gdb2J3vgBdDToCMVCdK+ido/X+zMbxAl6GGj+13o7XLUFtnG4d7Oc4J4TBT2jJ0wfDnFjvDw6LjkGn8DEHsjQ8C1MrcTbgUcAHsSYs+I1qnQ5jay/fAahORd8GeZFvFw6P9Y68P4DRnbLjkYYinqmOIh7FuJaInUTwfaNe0JHOcDPQJQRfDThWwPMQF8ljPzm98WaLV/+3/wHOzs6wD555APzdd9+FMQYPHjxInj948AC/9Vu/NSr/Yz/2Y/hrf+2vjZ7Tagm1XA7MKypEGALLIW4bgtIewSLyFQLhxBgCyIFpUVpf4jiXC+CZcXgf27KCiSmvmA1+yIiwOiDAVKDLB8CjUqcBFRh/YMbkF1sigjReRQDcERCgLEFVBDQMNJ6wajde1QAIgikI6BAA99+DADQMrpzDTtc6MtxBCfTt1174G4pGbWDyasngxjil0BsbqqtQKceAQhCIawtoC1Ur0KkG1QS1YmjvjLeNU35Uo6EXfh7Xrh+K4IJwwtnKC4LpAFoxKtU4o6AioPJzs/SOgRWDFjwENAVBs2aQdn8r5Z0PGiAV1sczsYhoHs+GqUEw5COOKb8ZwdeLxs0zAuoG4U2IjFIq+1TBjQMOTwI+BHyiyq9hxfBTnAZUA11pMVYGSDmcALk6sCCQAnQQ9GFQcqwe92VguQRU+7mqGRQUsipslPAMGQBVwwaSuAYB30P/RTPuXVAcaFqBkYzXKzBUCcVBMnCGd05hUFbYl6+csqQUBvr3fZIBcFg/n41QsDyNK+36qWofLGMnLAbGIcaGQbhBCUeScMbLuSIGoICQ/WMykB7WLRekHTk8Z4AaX3zFUEsLVBbKB7tRaecsCBsgiEHaC0vtmCsbckqAAnjN0LcJbBRwWQPkeJFauQ0mamXBFUPvNBqvjNoT3/4Cjj5pIAu9IOCMwR0DyoIZsC9UwIst0Cmocw3VAVVHqHqAmcGLDrapoKo1Kq2hK4JeuHH2dYfz5h525gz1yQLca+i1AjOgVI1Luo0tLIxusah6YHECdbIEGKgUw7LFIwa+RB/FuVpBnyxhuPKbibxRsqJBVlmPY5VbB2oYrL2Tc+EMZVovoFoFXgKqqVxgU9PAE7wSSfCbmsiiQw0oQJ8RcErgZQWuFKgn6J1r1zRAv/J05pUOVoibb+ImnZ4SwyLSlhELAS/fAuoKzYJ4UFyIAdTeCVEDurbDph0CFCmoUGHgAYLmSXuFrXLvE4PNChkpDJ/ItJTgrYEmPP8kqdhLGpHg6woBcNIpqRI5mUIE0JKhvIIfDKXIHxaDcUtQgyFsAKXhguMKoNpvQvHyTNIqKx7ktR7wQPnJIq+ckiKQ8nOysqCKAdJgDLStQ6BzaQCtoFeVU2UqAI2TuWrl6zvR4NuuTTpx60Ca3d9m2HBC2vF6VQFq5crp2vEOwK19cDRRT1htCauLDqwV1ucrXD5ssNyqKN9rBShmtNzgHIDtCZtHS9BOY3Wh0cDCsMKb5gF+nbf4cvdh7DZ33IYTL4/Uqsf9OwatrfDWZgVjKmC7cnqmUrC9BmugPmnweHUCqB1erAzQV3j4+CW89IUa/Qpo7xD6JdB/+wYfefER3qk+hPs/ewqqF+C7S5w92OJTL13g995r8fnmAv9kuUKFCqQr0GIBuurxoZ9/H7yoQRcbsF4AjQatVuBlA7VeQtUVcAvY/C6F3Y5wdl7j5LOn4HqBSq9gKws6UbD3GLhF0LoGKwPVcHTi0lZDGwBnCt0SwAUB7PCWTgA6MeB7FXYfb0CGURNBXxGubhHaF3uHg568zQOFy1OCMoT1OUCPgXfNGf65uo1aG6xXLVYArrAC+gWYGNZvFNV1A7V0AXBeejmxgAvOLBmqqh0Red1VGQ21cgJJU4POLhxOV0450ZWGsg6vqXYd1LWTG9AAlgTbE7gicDvoFqoCaM1QwhEV+HDgNyrTA3LjnhB0Nzj+azLdKcjwwAMqx7NivZ5e4qZI3wfHPzxtVwyuNfrKQC0WoHXl7ICFBmrr+L1RICioVjudShN44dtVjo+opQXXNVhbdGTBmqCWC9ApQdWADjzoRIEqcrr7wvEYqhmkAGIFvXP9s2tXv2WG3dSglcKyc8GaBgw61WAiYElATaAVoW9O0DYaj5oXsFMtusUp1GqJqluAX1jALgj2ioFtjaqqsdgAxjK0JqhTglowLNcw1uKKe/TcA2oFtawcfq7cuB9X9/Cb+lvxoH6MD62+jFNN+IHmq7hc/BZuV1f4+MkWqwr4zOlD/NH7P4cfO9P4tXvfjVo1gN90re/cw5Pfs8bmIz2++0OX2K0XaFSH29rijBW+4yNP8E+/8wEAhbefvIx3rizu3b3Eg7MnoPUCetFD2Q6rqzU+++hjqNslcEZga1E1a4Bq6MUSp2cKX+pfQPdzr+C7/sEbwOMLmK2BorokdTxu1FDLJW6dKdzySl1rFNRyiYpqqPUtdK+8jO1LDe7cfx+3ztTBAPhja9Fbi+986TH+6aeB3Vsr3H7zRVRffAPLboF/vvlOnLcLLPsGdbWEbpagkxU2VOFzj78Fn9/exwt3LbYnr6KGxSkrEFu3vtTAemOHrMLtdxr87Bd+P27dv8SHvq3FncWbeKXZQK3fw+1qg3qxwNYuwfcb7D62BCvg5IKi854bQlVbPKruYaF78IsNNh/XMC8y1GoJ0jX4zgrmpQrmXgXcAdgQzAuMvrZRTVYrDb1eQp0u8XZ/C293t/BOdRfLuxo7XYFV7RyvFlC941/2lNDdc3qoWvcu4HymwZUCNwxa+qDNSQO0BLUCtKodX1ooZ2OuGLbSIM1QrABNLugWNrF5XV4vF1BrNWyehrPRtXa8BAs78I1gA4WAT6OgrOuLCrqY1Osbp6w4O9wCFUFBBMCDnla5v1XldVSBM8EGI+PtAgLUEs6WC34LRmoPh0B9NdiowT7mYGe2zhmre4KuCYoYekHQfpN02JioyPky9IJhKgWrLZSqQZWTTapxAXDSFYyuoaoGutKuXwuv59QWPTVQmqErA6UYtqoc0+wVyCqgI2gL1J33Od11gYDmtMb58h52/S2okyXIVDH4Z2uN3fIWlG6BW0uYF2vwbQ1dM6y2zrZXDLVqUGmHkw0t0VHl5JgGlFKoaoVaAQs2aHYXYKtR6yXsQkHXQKvPoNYVrr59if7BCi9WS9Svvg1lNPTmFr6w+SiuLhawlzUev3wX/MlfwB2vR2lSePvyJdx7bYlbX9xg++IS229RqBRw9ssrPDp9Af/wpR3+nZf+PuqTBjhdAQZYnWrcOlPYscXOEtaNhvo2xiM+weknH0OfLGCqLVYV41QpvG0e4NevPoHz3Qrq/gLbmrDe1ah/+z2ouw26Dy3RfbgDKgVdKaBvwHcasG3Qv7RA9xGHh4pqoAeqpgLfZlQbYPWOQ0q+W8EsDNSpQv+i28DFTYcvqG/Bpr6N5T2Nrq1gL90m7V4D5/VdbKhxPOOkcjbtwvukautkM2mQVSAQVO39RAsDLCqnpy+qaIck9gUxeFVBrTUUVVBrFwBXCwNbaahFDbVya621QzezYGgfLFIgkN/ARiunTATbS/WAJu/LaFygjYLuEuwi9r6f4KcJ3arh9A7v9wO7tik4r70NhEb4ZAKY1K8QgtYUAuDhYEBwcmseglWeBwSdJtBxrEfwAZCzExVR6ifTQ7CKas9TKkDXoX0kvlNWPGyyVN42rtjpxUAM+IQuMByPZII7lBOCb83ga2Mx7hyiOyzogN7/MxnoW1qgtkPfoVA1FXTj+J3zr7Cz5ZtBt2QFqJUBrZxPoA84p52fxlY9LqlBpyqoZul8mgvALp2/RAcTdG2gz1ywl7d+E/1tDUtO1qoFAxXQNyfYLW+hbc5QVStUlQsw2RqgjsB3LLhl2IZgKwKdEWhpYRcVWmXRKwtdM+6cGmChgFtL0CMLvVBoFUFpDZxq8N0K9pYG3yLQgtD0QHXFaECgNQM1YLCAtQy+U4FOnW2sg67c9FCrCgo11KpxMtKhA3jFQE0wmkHK0ywIauXt4aW3hxWjs+xsRV1BNwSqGaayIBD0UjvXQbCHCUPA2CBuZsMJgyoefIYWgw+tgpN1jGHzdx1wdwimWm/DRH9awEVyPtiwuSP4kiQi0tK1H4LiZL0M975qGYCP/hLvw2Hp280QXAcaFQfiJAFFmd8PbQV6I+WfKUBVGV2IzSuRhWZzFw6aBV9HOdjqfxUB8MQHFMYb3uk05gL49dQ8+GcDzVpyvqEhRlpcs9jvHERcKfZXxG2CTzkui/RVh28D7Yr6Uz9+dogD8l02Z0xQlefznveThYvV9HC8vXL8Pa4nhj7HDUlCx0vH5teJhu+cr4ygTpxDgU4ZtDbOvgwB8IbBde2rUSBFUEsNdep1a6/PKkWOlipn36Jmp8NqQC0A0xBM1QN1DWW0iwV42ejkcOM2Pipn9qllBVJuI1CMU5163tswaOXXVsoZ61G08TTawOvWcHET7eYzBMqVj6/F4LkCUAs9Pmyg6gVNs6P3XOZQjschduTXOwbABS6EGIXyPstIFl4nQPBB+81SVMHZ7wrQja8nHKTzPMXhjpf1Oc0EORhiD76dYhwmxDTg6TXgUaAziV+JsxXJIdc4P2H8odiBa7SfeQD8uvAjP/Ij+OEf/uH49/n5uUuBXmIoAl9GIJlImKecu6a/xu+KUxS1I1H31FwSA0Sj4OChfoYdg+U6J57nFUsaks9KFQeFkxzCJ7ss5Hin+sxOSU1e7Ssf22TBEd0/low5n+fI1CkhpMn6Qz8kUWR/x5P5cm44KwcxP4VhJSDaDeu4F48mFzqtL1mDLBCaQGEOErwbo376LReqvg4ulnAln9up77O/J/shhHZqjWD8ewloYvwZ05x8J/uR0EBKa6UlCnhHolxxt9wUJFE60T3OPo+4ni7IQbqcqq8EBQUM+XdMjqgFEnKYf7ExI6HlnE5FH0fdl7QdfvjmbOXat95AdsbqsDD5VDJTPPkR6xZ961jBsoKNQtRVykwwTGAAnVVQRoNZ9MvzR2MULroFNn09dDY6S0azmw5W8MTYR6Z0fqRDIpYnoVS405KDDOWouDoFNR17WKukD+TGwpGRHOh32HxSoh3xd5Q9Ix4g2ppqY98z/3w0jmAcZPw66Rsm/p6ASUMk9O26Mp32vC/yWPGPkKx90hcpA2S/gjzO+xrKKwYrihtaWM4rMaBooBe5SSvBBwCxTEbfUWcZTnYlG7s8DgfHj8RrsgTrTwKjV/GESpDvba9xaRp0vfbOO3L0QkBvFTamRm/z7dQe/HguugVe7e/hBX2BJT3GQ7sG7TSqHcM05HbTV4yqNljXrT/xoeL4mAmW1chfRlXlshppDbQdyBjAWmCxAFUVeL0EL2s3V52bf64ZFkC/UKD1CqapPG26MVst5shQ3MySjyts3GTtd/R7sBXQnrhNGoH/DfhSViLimrWEdleBG2DZEGo1BCvcNutMwQ28Hm66mD3FM/zuXjgZIrvvg8zhu0QnkOBxicnxOucsosE5YodxJTwg0MKEbIz9lm2HOgLvBKVkOsED9qmAuS3A7PA8sV283hzpfVRJSuvEAFuAKdQl1IScVmmg51yHjjqRp2eX8cHRgdvg6uq1lVsnK+admWA83QGAZQKRy07AQe5qv1aEIYsHxFg8frAh9N2Q+STo8wzgsm/wpe0LuLINflfzBs5oB40F7tdPsKQOW9Z4aFosCViSwkL1bkNYVYONAazz7FHv2r/oFnjbnKLFFda0QwdgoXroZe829LUabDV6o2DZ0apdDOY0G4KyE+sEoOMK1ZaBxxfg7RZ4ypvIaL3G+ceXuHpA+NTZ4/jcsKPJHgaGGZoIC6rRscEXO4Uv9S/izfYWqtqgX1qYhULV1CADvPnkDLu2wsuGQbUb2yU3MCC0xo39sl/gzf4MS9VBw2LL7rQttPZ05cZVbRn6cYXL1RJPzBJbrmE9wzGscGkbXPqNLqb2Divj8bfyfkoGtqaChXOm2Bou4OJpxJ0U8oGwoGcE3PL9YAX0rHBpF3hsVni/W+NJt3S0HDNopfKIleuDdC46Zw67b6KCOci7QR9Gwj84bA6OOh4QzkkGPjLSkQItT+mPE88of585hPPvEh4kf2blkv7lvLEEJR0mVCSVFDmPE7xS8nAOckPWKXmo/19iQgX+acnF5SOfGvc56iFgF1DxuHZlFthZnQYgfB07qwE0TuX3Uad4Uo9EBzVl/hpE30rENwW3o9/jZMBL0yuwdXzY1oBpFJq6AvsN1dYSbO9Ok/e9hvFtWjB67rAxDaodQ286kG1cgJFd4AkgvHV1hi/3GhfdwgW8NKCIYWFxyRYPbYNHZo266dGeWqzrDle8wBVX6LiHYccHtm0N2ykoCnoH+civcoGeelgcJic/bOXsOPaZjmQmPlYEl/2RB/z1thFXfj4s4bxforXaqbji5DFbha2psDWVr08SeboWI50n6tgZvu0R6gyvZrOzx8jLiYi/knZyuksbR+JfDO3mdJl9crREkTQu+5KXOQQTOtToce7XOjSXYsrlZujJ9jNH+aHustfjJsvkdSR9P6KB0vMMx5LDHUlbWT3BuS8NWi9XbLD7ZdcKQfsSrwv2WvjdMmFnK/RWOd4kD6J4HY+qQLMDOlpLsORwnRlRNoMG+ckheKvgNqnqwY4Jm1UB9956mU4Gw+nBZB7dmOOYMh3YvcfAX6W4Zq8XhDmTh57Ev2hnjfAAqcyfkodSUQ1oKeYyyFIS79gtwlBX1na0P8Lf0pefwV4+IHmR72YxLhF8lxDvSxVPzNFRnSrN3bF855hystoi/yhUUvC/litEUQc5qh95/yfWe18fEtuRCmVC/6YGkODxRJljBcoeHZMjrgt/X2BlUZcTMl88kjKyRIsRJ3lcIL6zQY767D8Mp1OICZc6Zqw+H0sJz8PPOIcHZMNUEUFr1wYKlfs/RT0Jb/Pt7KsnovO+vpTqyJkDZevnuxinaEJvGLVxIBZykzl75gHw+/fvQ2uNt956K3n+1ltv4eWXXx6VXywWWCwWhyuOiM1lgyogTSR0pCs4cpj5x6WTnwFKdYkqZbmwM6tcj3so17EYCAvONBJKikTW0JcpPVEQeOK8EwjoBCeDidKTdVYIUQzPY6cNu61gdg+i5cpD7JiYfjuMg5mG08JSMbAE9jtbo4MsONsZw8lDYAhsq5Txh+8AxHQ0UsBDLFdIE50oi9Kxma1FbGcPxQXnHsgrj1LzystJJu+Lxl8Fkyw2t0+58J13c5q+mwwCZf1I8KfUjqSRqX7IflJWP7IyJdr2nSKe2KWIlMSZsmoo+33P2IvAgmbjsz1C6kgFKDg09smhyW/3KSpHV4Lp+Q6QKMj+pXXBYApKfQArEJXgT6s6RUfSMIfgVqhbGhA87DINgZ1g+LDiwSBlZwDYCuiXfldjSEO3gD9lN6SiisNhjALgLqW6P2nEhMt+ga2p0BsNYwemYIyC6d2iMRN22qUot2EnLwGwQLur8MblLbS9hpUnp/0J5WGOKFE04vyz47M2ph0fvodJidEF+Pwu/LCj1wDcK3fapLKDA8377JR3eMWAuKA7FzTxDE45RRXCCZU7ahK82Kcgym/CuoYAmfVtjSZjoo59ZY6liTxLhV+/g5/njhvK3hGNulc0SMT30VHBBRksypKvLGwek1kvxo2GPiHKRql0hyDoyKkGL2+9Q5E1YmA4ODFsPTgsYmA1tOUh1G91qMd1KGbFCAE5scvYNtpvN0dMzWb9iZVwzQm1hK6tHP/pKJ5O7ZeODne7Gl+5vIPLTePSz4lA+m5b46uXd6CIocBQPhAXh+8doq+f38Lff+978GJzgd+9fh1vdbdRP1JoHnfoF7VLjbUCThYd7iw2sA1AlXPsUu/a2Zg69Y8TgW7fAr/8Aqi3wHuPwBdb0Okp8MIdmEWN9oUlzFLDVuTSVC8Y5l4PLBnbew34Q/fR3m2GQHUFmJU/8dYToBSYLJhI8GLEne2u3zRkn7GEfs24/Kjb/d2cA7oVaaoEranezTUZvw7s0tF25w36lcat9Ra1DvfleL5GasDDwIMCPmL4PRrDYUe5mDjqyaUkDfLEUsLPA86p3vFuVADXNuIvwC5Nunc+Rz0YmY6c4W/JxxlfS11GweklYUAG4w0+Xt9OQOigI97ALsMBB4YdPvVB4CA/JY0PG1Iy/crLC+tlimKxDsn3nGyUSMYYaNmnZzRLQnuq4sks5U9J9islAhnu285obLoa72xPsdQdOqPRaANdWXSafbpEoF8r2Aruygdib5vxgIOWYLcVLHG85iEsjrUKrz+6ha++fxunqx1uf3yDbvUFGBC+a/FVtKzx+e5F/BZX+FT9Nj5Zb6GIYZYEdfsMvNnCbragtsPqXQZI43defhG/cOfb8KB+DLt8FYoszuotHtw7x6PLFa4uTwAL7LoKm74GV4yrlxfQuwZm4WSoO0UcThKni2zYp9k7PwdMlkd/CvYIp/Zb7mPz7zzCH/vo5/Cn7v4yNCkYtthwi44t3rGMJ7bGHbXDxyqFC7vD33rnv4V/8uqnoBRjuWpxeVdhd2+B1f0XUF9ZXP32HXfycNtC3ToDCHitfQFL1eFJt0RnNF67vIOfbb4Tp3qHjzbvQRP703qV21zQd2DLWL+5w+3fWeFis8RnP/US7lUXeGxW2NkKBgrd7iWc90sAjreqDqiv3Hht4zf2WMLD7QkWugfCtRwLhrEKxhD6FbC9o9EvCWEjh61cphuAwORkxEW7wJd39/HFzX28dnkHV51LcaQbC1u5KyJAiBl6bO1w1F1H5v/VDKuEMew32NiQvtAgGiLxdFXkb+RPRCDK86h/wdFSZIHSJmKkdB8gDwLD1ets+sBk4uPhfejfhH4S+V7GKyI/kwGJ3D4SXR6cgumLUnAsrJkCDfa4rJvgMouQkxfBiRneRT4YgsA2CxwCbq12CtAMWylQzAHp9Z9w8oYB6gBUBK7c1Uy9UXizvYWHuxO3wS6kiPcZCN+6ugWtLMj4DUEA1M4JOuuzFpEF+lU1jK1Vg80En5WJCN1agRuXucnW5PHYpT1mnznOXQulQGenMOvGzY91mwP1RqFtK7fZBC0e2y2umPHm9gzN4x76vSdQD9awlbtmYPnIwFwQvvzV+/hPXvhDeO3RHdgztw5L3eOJ7fGVfoV/vvkk3upu4d7pFd55ReHFk0t8qb2Pra1xpr4CRTu80d7B5rG7fomVu+KqXxJ42cAsK5gVo1517jqP3sn39oRApkK/wnA9Wk9xDd11PHCbM6V8Vo5nsAb6rsIXntzHVVdDa5cRzJC7E890Cm9fnbmgXjhZSOyNoiA4OdJOchUSw2Utk6feBF5KmRs2m0VZbAHuld8kJspnQU8G0pOE0kaF62s8VSV5QXB4ZLKfOK1jL2S0GR/nBEqlhxlER0xaV3gXbcyQMTCckuXhfd4vl5kMXh8qMI59Y8p02eJ4ch47VdeB9ib9ZKGI1+Hic+93tX5DYembiCcW7tvAq8L6ssOvvqtgO+VMKJ8VNfJ/sSZRh7QZbQkd0liFR90Km67yp/uHPrHnO6wdT7KV33Rm3IabQdW1IFKw1p3Q7EO2zlZBtQqmJnQnCt2KYJY06JNevzMLAlWMzjuK4jWPEOM3Tv8LG2ijPynYG2YohyCTZbA4yE7PZ+LVdP53MPmso+nCRh1au4pKNlNYGwrqn/8nA/xJnbn9kcu2UHeQwaV93FP4W4JQZ4Geo3+h8Dy+z/UGBbfZIFXPi7J/RE976OsoFjY1btnWVD1iEIeCy3vbL7V5U8j1KcmfchDxpUnfeqhDyK5EhpbWibLvsjElfnYe6pB4EeI5wd/HOqM/8X3MjCBOBYfrhgc5kCEe00DzcHzQKC4fOGJyV82EzWSS/rN5in7RYyCMG0hwheUvlD2zYVMPT6/tFB3voW+5JlF/kWueP5NjEL+HtYy8K5ThoQ0Zz5R9K8Y0pJ/y0LyGMkIf4Kx/Odw0FDLlbr0xNE2D7/u+78PP/MzPxGfWWvzMz/wMfuAHfuDmFd8kSrSvrn1KmmwubzZjTDGIs4/JJkpt9tO/Ly3wWCAWFO5Rx49QWjOCzRE4n48ojO343VjoT/RrNGlDWSoUGX2bC1AvaGXa73weow6Rz2/eV0KkBJZrtQ9yIX+oz0fWdXAe9wFn/2Tdcr6PqXtPmSQYfKDOvW2NFuYa3x4Bk0HiQ+tSUgaSirNGjsTb0qaXfWztaccfu3CongnBm9BOHmhjpKeoRw0PdUiBmuAjYTTX+RzF7xXKa0LwwQ6K/1hxTH8Ulyf7Lp4aCnUG4w/uhJBhd7IrnroD4slTazSMUeiMRrh/ieVJA0PYtjXavkLinCzN1z4cs8MABoVS8M64s1nUH/4WpwdJMeK9KpJPCsVZ9iUxvvbgT9nYP4Lp+eD6PtiLshNNHOLduXMop43rGD+Tz2X/CoUOGiiHgJGmJJT8Z9865YMTu33zbkaDgnjEood3cAZNPucCl4JDJTEmgnFjh3FERV2Tc26KsUSnDCMGJJjdrv5wfxGAGLgzRmHT1bAh/ZWQT8YoXHW1e1/Uot2/3a7GG1e38dXtHbzR3cHb3RnUjqBbC7Ic73NrKoNG9d45pwGfss1aQscKhlP6orqGWTewywpsLHi7A4hgFzXsqkJ/qtH5NGF6605lk7ZQjYFZEMy6hlkOxxPjaVx/cgI+FWt0igkeGNbDho0NYT0rdwdlv+boBBs5BZHOf/ineoA65QLUAKq4GIJHeV4ieYzkySN6kHwy8J9wil/w0tG+j8APxTpCiVPGuRwDUtw9gqekev6A+3k9RWcChvdJ5SPi8r+G0zzZXLDA6bReTuczfkPDxqmJbyW7z20FqQMEGnObWsid6BP0GzbMhH+Al5mWsDMVrvoGPau48STyB+3kdry6KTgI8/EYcimKDY3YWbursXm8xKPzNd7qbuGRXcNA4Y7a4ETt8MSs8FZ32z33dGk1geoapLVzwluLasOoroDdpsZb7S2825/hkV3jyi6wUD1O69alLzYuZZ0xyulB5AI8/VrFDScOTzlNgRiGAgIZBretO4F+AA6lcutPa/yRj3wBf/H+z+F7mydufGBs2eCSLR7ZBu+YMzyyDSwsOjA+d/4itm+c4PLxErU2qJveOZmX7kqE5hGheURQxgI+PeETu8QTs0JvFawlXHUN3tjdxpvtLTw2J+4UNwPQ2l2BAwBsoS9bLN9n1E8Ij9slntgltraGgcLOVrgwC1wYtxGefSYBshjuYQUABnZGY2cqQJ4A93TCagiSxU+UkykhKwErV8djs8KTfoEn7QKbzo1NKZs6z2lwro02hoRrvIKDLjJ5DDa1YIfxl9wGSOS4LxjlpnjMNOhlESmyeoQxT7LeHAp2yLUh43GHNw5OPJ/Qg2KAYapdYOBtsg6pV06MM27qDAGOYMvI8j7IFnQUJlc3M2FjGoeD+VowsDNuQ4x09IWsFhTS5WKwV+J7edJZA1wH2a7ciWmfyQCAP0HpaMRqdimI6xqsVaJnkXXywrByNM+MS6uwNTX0zgK7Nh58IAb01qK+ssBlhS9evoBdW/kT5oAiiw7AuV3ijfY2HnYnOKlb3D7dYF21uDBLPDJrbFmjY+syfrTuFDqC7PAnwMOpT6XtcNiD4O+JJbHpUqyxkD+SDold2aDXWEO4aBu0fQWlLJQ45c3WZa7YddWAK5TZVFLe5nCIbkJ/M37g1sM/J2GHAWUcR5meij4s8W6sSxU26Sf0s+fbQhujeg5A7iMaQaLzHa4v3wBwlG/jSMhtw+vAtfsgcC1sQhrxrVEj4p2lQc+3wzMOOjIJGon/OPK0kd4Zyw86pLWE1rpDAHGzMg/lw8ZmWw1ylYW/hAGf/WeQaZHexAlwK/TFkM436pOeZ9jay3Wx4SquPSOe8I7zlONzRpM5vofMYs7GEHVlNmjMtCXaGfmeJX2FxmI/EGky8XPltMTZvxz24cd1ITqWpt4faLcACZ/KfUz76irM31FNHuIfe/nYgRZKfPE6kOPDdWGf/naoT4K/J/0R74bnnGSAGJU/EriE+769xJ9c6qvka7J/eXlRByX0yBhs5Il5C20EHarUf0nLJbjOnBT6GdX0XOfwHRhtfCjxlT2Q8r60/YH3UDp3pX7vodnR/OflxJhGc1nCvVAw079GMZNCXw/qGXvguaRA/+Ef/mH8+T//5/H93//9+IN/8A/ix3/8x3F5eYm/8Bf+wvGVPA3TKNZX4gYZCKPlJiDsz6cHqZ8UlN2bAPt6GUDRn7Jn/ENQJFWcymVpGhlDG86qD/+5VznhBsOIhr6nBVNFL8w/M0YnG5P++qbj71OMubiVZQLInRgvjvWo7/e826PwHINuvAeXwlxM4u6EIXYtPL8JXZW+YYE6gQHbofjzgoQJTzHmm3SghF/kK7sOkUslf1+Z/Pe9Qkn8rjilTe+cJ4JXKPLvCEn6R6lUAElwdkR3Yl6DQSSDJyPjPdyZRsNpUbcTlZJxRgc+uXdJai7Fwy5mBq76Bru+cum8xAlwtgTuFZgYvXfuOl6T9pONcun/spRkRWEe8HzE5IcxJDaKdwYlThsxH8k8+mDhEBhyPCrY3EUlT7SVZ5+4qdwp9S+07XRWgS+FoVwbMhy5NmT0EfndoXr3KKo5D3anuHPG7BvK6SFvNyqYHP+OdR0aczjlRIVuhm8VhjuEcqNIOuUlyDKS3nwdcjd5yFQQhsrknB390qXNZX96NNK2SLNMlmAZPgOF77Zydz9x5Whm11ewJktLzYBtNR5frrCoe9TaoFI2PUHmodtWeOvJKTZdjRPd4km/cKdcyQVTuEK8v6m32s1F4x3QcH1obYUtAztbO2fvYuHKNMqd7PWBfl4t0N1bwiwUurWCaVx/9MafIPPjtLULcvUL4XDSfkc1AdSROyCt4XY5h7VS7sRsdCr5O7OjA7ZimBCEbADb+WC15J+M4eR3kLdhPb0hyUwuNXHkSSnfgb+/cnDGCcYi1ig3zIjhNjson65Q8jzBP+NJfzvUxwSXmT7SpWSkQz1H6TNSZ5x6lzCJa0JO5yFjkejnkCYeRWY8UiWStRAMvES7hQ2kEbLNoYEupREcaBBADBgCQN8rtKpyNKmd3FXELjDh67PafWsrDH5ahnB2E9hylHlJOnsWmVl2Ch3VeHVzF59vXsLHm3fwcn2Jranwxd2LeGN7G6d6i2+r3wMAd8LyzhlIKVDfA5axfN9FXJ88avDq5V3sTIX71ROs1Q69VTipd2iqdZyQkM6dFha7uzVUxzBLBmnr+aQP6GgNWizABFxyhSu7EDv09yMfVZULQBPQsYVhO7rfmwk4qXY4UwY1ObP+LbPBP7z6JN7pz/AvH38Mrz65i++9/xp+5KV/hC0DX3j1Jbz4SwoXryywvbUFM6FfEcy9U6iecfaq9RtrGPb2KWwFvN+doFYGl22Drq3Qef3IssJjs4Iy7v5u3LsDVdfg994H9x3U+RXWby2wu73Eu5tTvNudYWNq7GxIrb7Ak34RT8QBLhsFWQZYR11w29Ywleez/jSYMe6UWczkk3k1mAROKlfHu7tTPNqtcLVr0FuVplANzno1rJ8N98MS/PVhPFzxkH8L19fIFrLgRhpwG683q4xEc/1wSidIKpHfDvOQvM/aH+mDgW8Ldl10ppZgSgfykxJiMaXvrBZzXBpWDI6mDUW9JPTVqDFL9noxsT/5aAhEKnW8lnQ4L0sNEx53S7dpIgScwv2hBDzZuWPaZLy8Y7jMKV6ZDqn4+9XAi8MB9DDJXAGGGGYJ2HUNrghm4eQzK7gguiWoztXNxOCTFfqVhm0s6rrHVg8XCm25xpXt8MgqvGPXuOwaVIYTvsMKsI07aU47wlee3EHXVqAFYGuGZYV3TIMvtC/ht548wFXvxnl76bJpvLm7jSvT4JXmPVh+jHd3pzHoz16+mAawpwv0Sz2c2GLEU9WmIfRLQb8s5IEPcpuGYBYKYB5SLxPinbzcKpxfuSsNdAiAh7W0hI23y1zWGYlUgLS54t9BN8jpRdJfhisjnVLYyGkQLdP1hfwd0Zn8tw+mFBkqXNUyBfvEUcZvpvwgU76kUD7o/U/tQ5FQGlyJXx0zCV63OFadG3wUBwYhdTc/F3Ija6n44Nv0p8cFfsW03pZdhgIRcI40RukwuBTsDRsSCc7fw4RtX8NYNWRDCAtGcFfgEA82HjHg/SXGuErd2QCCMQSt3NUmTIj3yrsNa+7Kgzj+MDXK8UGrXEXE4sSzHIylITMDxPvIOJzuS8Ku4PCeB7tB3u0r1ylUwf5ubfIMIa6LkPNyTaXfRkIxWBNsh1z5zmVzUlFW9Eg8PRauVZ8cyyEafFbwPOoMIPDkqeM5Jb3sGnwlgahQ7ql/qhulsUzZkEf0jwluEzMmNlmV+uX1gFLdzsYLlYt2VNrvqN+FNnJ5HDeOlzqNdP4jnZY6VPjedRTgQlahY77PldFnKfv2ymyhVDyLAOUNncFPw6OK7DEflsC7Y9t6LgHwP/2n/zTeeecd/OiP/ijefPNN/L7f9/vw0z/903jw4MHzaO7ZwnXwY4rQS9VOEtSBJjKBOTJSb9h+VIqOJYhoOB4oU3gfEJS8osEhRYUSncrnQTK2jGnK1FSDUsT+M6/kk1AoC0YGiTaGk2yclHtqpiTHsQ9KY48Glu/Is9JwSsrKkQztWStZB9u4zvxHOpkQ6gWIU3yTdZZKbjBGUOgyYb9SkTu2btKPokIxUV1RMQg4Vu5buuPep6u1Q6AkUSAYQ5oqYBi/pC8ZNBe2oHTuMxCdntIBH53u3vgIKS6VAkwn0uSHwqFtcXLAGuXuEA7903DBn9rRwaav0fpT3jYE+gGfro8AIhitYxvxxFdwaPQ+TXMwMvM5OrAccbD+GoiE58aNB6JcSckOwZKQztwb2iROOCVrIzszoZgdZBPHKlqe+Qp7+ihnw8jZ8gHC0brjFI1nE1fcJJbL9mJHhnlI5szTzaguSXeyPBVOb4eqxIk3Fzxgjys80OUhA0kPP5PTXCGIZYQMJvh03gpMNKRXV44myRB0SMPnTzXJAK2tXEo+69PwbTuXInS0Xq3C9rJB32icLFqorEBYY95UeGLX2K1rrOoOm66G6hF1ClsBXLvAV+8tNF4twOFKA+NOGl2xRsfanTRdrVz6z1oBFqiUAisFXi+wvVfBNITuxKcBZEZ96U9DsTM0bQ10Jy6973AlxKDjqN7Ni7ur1g+kcpFC8vMd5io485kYqAEoC1MTzOMKqnXvowMfDlfJuDSpgOOV8W5tf09v2FBkY1pFjmlkXUFksmDAXxb46U7nyUXBoHtigmbit0hpIIwzubM+/TyIiCnjquhAzdvPdaopOs7Gn+v2cmMMW++gl3xeBsD9d84RMfyU9aUGP41liZiAREYnY/bpjv16speXIR0vfB9ZE8xiqNylqWVYo9H3jG1fwbC7J14rO2Ro8ad2XeDSrX3EPbm2cPIwXPkR59j6uy87BX2pYS3hq5d38NnmAc7UBt/bvIsnZPClqxfwpfN7eLA4x5PlF2GZ0K+B/t4JKmNBVxvAWize2UJvGzQPF3j9/BY2fY079RVuVVt0rHFa77Co+rhegLsfVzcG2xfgToWvDbRmwfsIvKjdJhgaTlE7p/IBoUIEqipQ404pd8zoYaDzFCoKONNb3FYaC3JlXzcL/P13vhtfvbiNN7/0ApZvVvjp7zzFX7z/czAgrD/b4MX/9xdQ/+FvwVvf6VIGd2vC7oUlqq3Bnd++cGu4qNDfXcFWwKN+DQXGpq1hOoW21zDsMl6837lT96yB/v4ZqroCPbkAdy34/cdorMX6zst4eLnG27szAIBhgmV3N+9Ft3C8w/MWvXUZN8jq+GzXOTwCPC8jhjXK3xXu0tqH9PsJmourO7Ztjbe2Z3i0XWGzq+PJNYe3niT86bQQfGOf2jwui/ZZDPymyGiiyZOrnhClwz3pGKfl4mMRRIf4ZAjGifsTfbmoX0YdOhu/5GehfM63SqgY2i68O8q+EH2fLJv1gys43XeK3wZ9wmdfkmOPJxm9zCh20geJCE5Ws6YYFAqB8eF0sOi/YhijcN4uXWrgEMghxA1xm13jNucZDCerW0SZGDLP9CsV66WQptfzRFs7uWyWCt1p5Xmr45EguABSp6C35GQyAfZsif5UAzVjURk8EddHbLn2d3ev8WZ/G5dtgztioxgobEB0c6F3hHcfncJuKvQrhm2cnvPV/g4+v30Jn394H8YqfOT2Y7ywvIRlwuubW3hUrfBS8zK2dYOHuzVU67JkhM2UplEwpw36tXKZE+B1OR+8sg3Q22Euoy7gfUa29te4LJ3AinTiNzADAFqFzZMlqkWP0xMXnI+LaAi7XQX29xpHuRdw0PoJy+RkLLPvZJncrBFkVJhexnDfqA4fIPZhhOe5ziH4QJGOJgyT0uOgCrg/aH/hKSgZQ5yOt9hw/ncy+RmUxhkqn5qDaO8fsj2zv6faOhIG3prrTuJnzuuEbhZtCnkdZ+DPgacFn2mS1YqEfuzT+xrvO4k2m+hj6E+8Wo2SjRnS7rPW+UH6XkFlmeaY/MZkNQSu2R86YEuw3rdC5OqxRkOpYfOt6r2O5/XIcLpbohX7DTMx21nws+RzyRg2BeRzHudbzJPED/8snP4e2krHC4VwYH0I0vk5pSPxR/KAotwLhULfOX10U7i2n/8a9cb6E1qegGfZfqGpo/pwHXja7h75/VF+pYC3wLSedl2IC5g9krSB0a8pkHubBMFzli7xPepnhYqn6EKoqTHIGfgsk7MP8noy+RurEnp+0UbOYGrcUmxFngiM8XJKfw36qffN8DNZ0DJcl+xG6zgqcKDiZ0GD0RFHk4tQjGfeYBqfSwAcAH7oh34IP/RDP/S8qh/B5ODlRD0PPDtQ/wgfSgxs6tm+YuGP0rcZEg9CcFznuMMH3h3T91IdpXmaYDx5VcVuJ1xR6j/+JHZCqPLvcb8S5ZAY5ePx8pvCaW/RlyJMRmGP2Jl7Q6byXALWwUYs1T0K8qC8gE+jDE0ixLh919ZEHUd0ochUKbRzgzHss8uehjfx8H2UG1PjLj2bGk7R0MV4/jKFZfR7ifakwUKOmliMYXiXFi9CKBdOfhMnDrswH1Lniw4J/33YBMNM6K2CsT61qXQ2BiU7KD2J0ZVqjOH+7pKiGb6ZNKDkmoS2ivyTBhoL85aVY9kHMR+ThhsP+tmgiBTKTUApSJ4/i/Ko0PbhBvaXu44idF3+WKx7j8y/Fk2XaHZSA88+3aMo5uU4Etl0/ZFWSjhCoq8TtJ4424OxIuYk+ok4/cb608yS5t2JGY/YQm8IO+9lnwNvNkZE3CUvYYB7BVvboSo5d74MGQK3CqbR2PWVuzNS9kfxaHHdnagUacuywiVX2PoT4LRcwFYqvQML8Cn+wtUNACtv1Bmf/tePQzrJpA4Ycc2Qm5TgxPH80J38xbB5MYxBTp7yOk+cQwwBZ4nLUyoP+xPgI6uksD5CX8vVrEk83kfUoQ4pk47QpYtG+JFQ9IE/a74zovHAk8vvk7Uj+Z3HH7D4vQD7+E9ho0i8qkDK58KGVvZXAhhL0MrhiBb1RLldOhkw6k9Gq+ExI57ggXEZIC77BTqfC9uAcNXXuGprXJgFtlzFjSm2VkBdAVUFKAUyFqq3UB3Q9hW2fYXzfgUA6FmjJjvaOKOIobS7P1p5mnGsyG++0HAB8JM1WAHvmVM87E/c6eZDQArUNKC6BizhddPAYIcXC/c/umtbGJYsAI2H5hSff3gfj98/QfOeRvMIOL9s0PnIkeoB3mygOxfIhT/NZRsCtoDadAAAu6xhGwUol+JZEaPvNbhzJ6+1n4+ONSy7FPBmVUG1NUh5ZmcM0PXuhLxRsR5F1m1GsNqnksewqccwyAh5BcevY1aewEvg9L7In3O5FGSWx0/rU/J3foPjgEcDTgfcjOrTFA+RetpUWclrsvLDR7L8ARt0nw10LBypa0VdLTcDch0u9EnqFZI3SD0g0Vn9ZilRLwfZNTHnSTBe6MK+QtFGyqOSaoRuzHI9puYl4BoTOqsdDso1j2iuwNbxuIBvZAAKJ5n8PMX7fuV8AcnaWg130jJc7RTWwwq93+vWtnb8DHGD0VDl1ta4YkLHlaNP9kF+orhBBz7AHLNZefvFBa8ZvVW4sgtcmgXazmfHAqEii62tsDU1FDEe92usVYttSAMvcUFh0IFGyoEbr9IpPkhbMATobAXH6/1mBxa6Cxm3GcrWym1Q8XWH9eZg14U+xXa8bjy1WTmn2QkdINpc+Xc5PuY0fIiej6H3fTpNjmfxeYmwS0ZNoQ1OJnA/z5poumjXHgF505NlpF5T0B32d7BQflIP3aOfHmEzFm2tEgi+Gf8e8cBUVRrheXB87JlvZncVnLU0vq3M6zUJzxd9YW8PMLuDCc5840E/FHwr34g/QjOvG5b8Csn4M3YyWvPRGMJ3A38o1u2LxE2mGPo6aRSFj/ImC20ctVlEFhT0ebT/Ykp3mbCTDpLhPv0jzsuRcKiuA1U9Fx/3NSDxdRwzbC8kEjYr9aSk7B68lzDx/thvhyUYD+DolZzSscTzRDfmwu85b5uAkZuBsj+ucaKt5HNgjEXZlB58Xf9BLrcmuzolI24KBTobifqszI1pK+DtDT8fNV7oe8QtgTeDTXJ8y88tAP68oDixGQHdtN7nDkciVERMEoxSjm8f080ZSyiXK9t5EDcoA3IiJGNmDOli9ghyDgxoH2FHLWJKcxWMKVeSgCTtdZ42yH0iTnTToERNEnTppPioT9P9TdZnSkkL5SYYW1QSQz8KBF/6rqikT8Azw/E9SzcOEPlTucOfKYodUMTzuooB2evATecgN4KeB78QSnZq1BzX2N71nVK0aUIQy78Jw+kXCxD5ExPRiNjTrDQaQr0yg0NGl7Ev5NNOSgjBJ3YfExDTl4OH1Imun4SQLjwaX4GPGIKhwYEFJXYhM+GybbDrtTtZBPg8XEhSbbFRYGXLNM8ugAYgTc0lDL/JtWLxM955O9QR5ie/33hUR/jepgvAfi3DqciRAet/BhwsbvSRcIiplJhu4OUSd8KkHElXk07pWOC4emSf0sqxd2xTxsUzMcj29D0EHEsy9ij+LpTFacPT0QvHE7TyHVK88Ws5qi98GxIlhDpCRgSf3SAEdLkCzILSsmpI8R14DVlPh/6uYPInxSL9dgptW7k0oZlyTx0BVsMQ0BkNTcP9scDQrtoQwO6k4ZPThTtxSIBdqOEuOs+beqvcHNTaBcArgCqL1mq81r2A97oT9CvAvnQX/dnCO7QVUFWgqoJZ1uhO3EkK61MEVlt3akx1w3rZ2qVsNgtK7rYOp6z11i2ObQD280jKRoe58ndxhntz4yn+cJetGe5kBgOq8+tf8bDGIRNH4NkCD3uj/LURyvMPSmRKzLIDIeOAlF68bEiNMq8/2KAkCV1TkqnnWeGO+ARfQ/sjT94RIPl7Ti+BCeQieoqujtZz/D+TOeNtWjmF6wwwsPiR7uCDrPH0fLQJhs4EB99kd8K6AUMQoknHwxrD3ctizmyvQArojYYixGApETs8VjRKgZ5kAAjjJgz3z/tpZ7g5Mr0GenIB3Zbw6GqFV+u7+Nb1GTS5E8bvbk7x+HyN1+/extvGpd+2C6A/0dDbBfTuFEwE6gz0VY/qCri4WMAYhS/V93BStbjVbHBatdBqMECUYix0j6bpsVkxbA/Apx9m5TJTtFZh8+ET1GcLmAXw80++DV+4uI9qcxghqK5Ad2+DT9eoNsD/7eG/gW9bvYU/dfqbaCjFjQuzwBO2qNlgQTX+2eWnYP7xPbz8VYv60qDaGOxeaHDOC9yiHVQP2ItL6C27jUGKYRugO1FozgF67xGgNexLJ9jdrWAaxpN+gd4q7C4bqIsKuzsVVrpDRQY7W6G3GnZtcfHRBquVwvrVJfDkCexuB5fZosduU+O97QlWVYd11aJnhZ4VWqvB5LJdAIC+6qF6CzJNpN2+055nI9pttlNOHwsnykI6Vb+xJ/CucDK87zQeb5fumhqjB3wEnF0cgoAaMdAW+Z/XvxQxSAW+JGWIvC6IIv9xerZL5R9sbWK4vzP+4cbKQ5mSCsU+UMjCVh5eIujHKKlUx9joJRjxP9le+jyqc5O8cODnY1vDP5b8WvD8eK1FrCf7Nsx1yBgBJGtCXncAu5TCbMin5fV1lYJ5BJfG2yhnH3RVrDvKUAL6VoONQsWIKbpV6/DILNxCs3Z8IY4n2CnhNLkP7NoG2N12gW2zAuzC9QGG3JUwfpMca6A/qdCtFVTTotHG477Tld7qb+O1/hYemRNsuYZlwDYaWC5g/dUxxut7LojOsNsKYMCuGFxbXPUNPrd7gFcv72L7eAEA6O8prHSHi26B97crPCY3qFfre3j34sSdkMcwJrMA2tsVujWBw/UzwU5jfwKcvBwRsorYPbPEMJbQr903MVW6l0kAoHYE7jQMMXALUIJXw5K7KiNclxKyjAT8MV6AmgwnIw4G/MhkptCFAQi7bcDdsGmBPR4d5STOAmyct5OUzX4vVbwvYBf6GWy+yajyAbq+ju4T6lJ7+pTXfawOlVc5NZxDTQud9VgH2mSgNvtJAg/dXdoT9ZPIlsZj3AIPVw1Q8Dfktn3el4DL0vbxMtOd5hb6fKaTs7cjSGc46dORW1j4rYAuNbulJM17zJwRN/hgyOrhhutIyPNG63mBsyWHq3DCHLIJWaeG+Uo6K3hJ0e4VdRXxRIlTrplPmXJdNa/3mhBpiyfQ7QMJVOwByZMDmzjS6ZEXowSHsZc1HVM3Scb0AczTgG/X/WD83TFTWPQb5nwfgz0cfk/sbvH9tacornWu74VDhzxtK/tnrIZYQKK3xusFsvZI/B7qpcJ8BbpmRJ+rtJ2jXznoWqOx0fjPKf4ZKszb3ld+1N6R5Z4xRPI4andEoQjLFx/wIDJcCLrltfSCDL7hAuAAJpWpZ1rfTaua0h2vyyzzOp+mU1PtRk/ixPtRRybGdsT8pUGusAtxvzI+fDBNiMkdEVPCYc/cS+EwGRTYo4hQ1s+83qNhT9+K8Lx4Ty6Apt4dw3SmjLySjjJIxaO6+UGCdOZcq3slvBXvDjd8ZLlD9QtlKD4a0ZMY3JQykCusou68rdKjUbBjsqBvT6XlilPvywUDjicKCx9l3KEcFK54wFS5k+O9T5HO/sPopxMGEgeFSvZDtl0IfBdhit+E+S7OU2YEF8Yr65D3W0Y4tOknGIWlugOUiKGEs1JxnjA+k2r3NLmvO+OCRxLPPqLeh7M3oU8pc0f89biRjTasHDshsr/7JpkyeZjLxfy9bIIQd8undQzyMhpoGT8Kp5xk3+L1AvLbmApQGFChLQvn0LbDN7FfluKdk8a606jJ6S/v+Cbj7te0S0JntAt4ACKVdorHTHDBb/+eFMMy4YldYmdr2Ipg1g1so10Zgt+QQ+5+z3q41zvUq3oeUqP6ebDV4FSPbSuAesQU7SFNPDRceljPs8g7ykMgWK4dZWtJDO9I8wGe4EyXPCMaI65+wxT5ZVFvuI6BWKAz15vyx0X9eEJ3SVjCsYaToJvoCA28dUInSB7lgay9ep0XSIFfHkvbon8ilpfJiAOTXxqI7HP4XZzKCc5RFzzxRaWTwVJMkW9CWndRNxPiPZKj1M9Jvzl9J/kEY0hjaYC21bjoGmxtHcXcpqthdxoX3QJXduECtT4tr601dFMDzKDeAspAdQC3Cp2u8GTngr7LqkNFG3cCPMwxMSqyqJT1GwA4mTOX4YHRnSiwdtkg3t6e4b3NGk0vBhrudMmnnwi8aGBXNVRH+J3zlwAAVye/BS0ogtidwN4yofN5Ot9qb+HWlw3OPvs4biqonyywtTVu6Z3jCX0PCk5quDVwd3US+GoD1BVYEfqF422tqVygulPQrUs/X5FBTQYbbtyd3pVFe1qh2mpQ5XclGgPe7kCtBfc1dqZCrQ0syJ8AV8MJ8MgDLagzCe24K2ncH3FTJpPY7Ijk9HDga1E/JCcful7707rufRLvDN9kPxOeFx6RSGAoAkyxz5LHMJBc45Do06IDNM1XijpfoIE9/KgI1zFSS0Wvq/uEzwR/Sq5xCYFnKWskhGDNPjkS12j4Vw5IBT6LQa8X/HLURsAnxpA5IJQnxBTYtlcxxXAYQ9ikF+6YDbpOqLe4ARmOJwa6sxqwlcM1txFoOAXOivz93QApJBkqmIELs8QTu8KWa7R+l5Lb3KYHnYYG/QbAsNG3skDFMFbhcb/CRbsAWr/pjwm1cjS861y971drbE2NttXJfMLzeVNTTIUcbKiYmUT7YFdGM/GH32RlfYBcBgzdfeted+v9OiST6b/x6ZJJrGlc4iwomARTAr6E7/YFkzO56za6lIteC47Vnw7UUbxuStBNwNFnBgV9TrZ7FL+SMvVZ9m0CjuajU4Wus1ZSzgCRl0fektdTkhvBLvLfFDPqxG/SdqLNllXXW5fNYvRt6KsIWkd11ZKzbbxcZSDtEzDYcaKfkt8zCnUHuR7mKxmTkKmUP0/1sSLk8rcEPsi3V/YcgqPl8uFvbhz4ETgWcfwZ0NPROoeUz9co/3XoFh7DjdYjO4g4QeuJzb+HN4186ll9PDGf0YZm8UCIO/lqEq7D70pwnbnLO5XofamOPYoPHaKvfeNIJil9flS8RvjBWD6f+uYmtHkTPJRt4tBYnoJh3LBfB5u84Zi/MQPgh+DYyWBxZ+wzhBGTuUH91+7TvrYCcUqhmc1REqiUWpDXkA4SrDRqr9VvghRyQ8peju8462eusOSCnCF+D8pl5rSWndyr1EwxyH32T65wXYc4pSw8MNelb+R3kzg0IUGv5TzJ+3MM838W8JxoNjfKDvUB4GsofdebgKJDv2jMZMbJTbog107UF4yU6PCXbQYHPQunQV5nwMHgKFc5wSE6XEd0mdFu3nwyFZ62KQSf/LPkvjY/hrDTnA3Bkuh3cABpZ8C1fRXTKHMw6gB/T5Svw4Z7AyXT8c3ljn45tqTvbh7LDrpQRIxBzo/gt3m9xKEPwzqlL7M6s9dFRpDReFJkQkMerVVBRiWBIaGsPo0OdywcuQnyaIjjLQaSwlpkAq1Qx/5GZJUiXeSRukYJnwa56x+F0wAk7gn368+e3hKZGXiEiCKwYn+ioDAmFu3G730ATZBtbEOm+/VpjsEEZRBPPMS7Py3Bdnp0aoEY7g5hAMa4wHatrT/h4GlEAwyG6gjVpUuP3HWu8ZrcKVWuKAZYklTIRGDt0v8qZbEzFT63fYDXN7fc6e1btTvtUBOoV+CmBurGpQQNqc3zE29Cz7EV0K/JnQKTROLpULX+kcEYGEPKULG2sY5QTMy9c2ANVOgc5mJdwrA9TzRGoe0r5+iVhmaCI/L3FF+GflLSgAwOkCg36Fjij4wXRvkR2hZ4NSkP9zCeG/MK8mlaQ3+LlYv249+UzGU8QZrzWz9lk7u6WdzRlntS8v4F3VtWk62bwwXyd3L7zwJ+5Lqg8aeCrNsgYlmkyifELA/hFNCA92J4DOckynU0cv0NGSGUcaeo+rbCk+0CF8adVDQgbLsK2Ck8aRd4z5zi0jT+xDChX7tT4LAu4Ar4cfUKtmNc7hoYq3B3cYWazED3HoUrZaCUdQGZoB/404TuNDPhcuX4SHfL4lG7wpPtAvd7P3lKg+oKsAzuu0Q+0GqF3UfvYHevgt4Bv/nbH8WrL93Fv3XrN/Bt9buR3qm3ePXyLn7j1gP83uZN3NXAxtRonhio9y9ifXp7DzZPamo56kvhTnZWADODLMMslLt3VwEbH7ymnYLaAabXPpU5+6oI1Fh0t4B2S8CiAWnPwNmCjAU6wravsNA9eq1i+nMb7L1wUqwzoJ1JdUJDsJR6x8OGJxdYRDxlQoQh+1cI7imAjbu73Pp01YN9PPC66MAP3ySnjuE2UYLH93qWAg8T+lHo//A7Im+jQGuewSdkndNYSd0Qz0f2aP7NPmWL8jseeahcCuq9mwg50mvkyYUisWvBZthXKIwhsKsC/5QbyBKdM9z3ShAb6XL+4nhi4jchBluFzuh4z220P7S/dikEwCPtA8Q8BJQJ8T56OUYCRoFJW7mT4qxoyDxDiJvcQt9sBRifnYaIh2wGDMAQ3mtP8dX6LgBA+50wtlHgRTMEpH35cJKaenLZXxoLVVv0rPCoW+Oqq0GdW6DeKhgmtEZj29ZuUzExrqoafVuhEvjHXr/rlwTTCARgiptzbOVFAAFpBkB3SRyzywpma/duCJ4xoP3VMb3bvEg9DZlg/E8KNluO+2Gugp5hh28SyL7jbBhDPVkbQqbl+tZIzkq9BmnZQxnGczIc/GJc9ilkcC3fHQ8bMA7CPl4laYBHwz62K+XvBE/P/YVHQYo+zxSSzRY00Pao/Zx3yznPcCxsAgzlRzJjb4eQ4h6TuwZOZtAQ/7gCeJStCcMG5CDHFMbXk3gbIZwKt/nYPU0Pp6yH+kZgh/qScYS1PxJHAy4nZlHpu7h5mFMekM31Ub7b/PsSbci6p3D8BjRzXXgmAehj6Oga7UzR5Ujf2VfnFPP4gOb1KDjC552/u9Z6ybGG34N9fqxMOKbBwANKkDgBxWNAuiFSPrQPcrqP9H0kM78mzy9WK5WDwvzslbfXxL2DMZ8j60i+J059dM8YUh9yYcCHCPwZMKVvzgA4DttkH1QfngqeAdJFO0IqRFLwjoTuFNKF8oekzoFJl8rbvvEJgs59hyR3JdJQPDGaaWCWcfxyHPF7diexZF3+u6nu7TMmis6GY6H0bclYK31zLNwUKQ8R06H1nPrmGs0/D0PkpvDceEtJ8crHfR1j5ph+eprYK1dkv0pGWOLIE4vlT1WPFBcp+BJ8d8qe+xapAlYIEDEhpsAL6ZYBDEGtQvdgCBbKOzoQU/2yZrAhtLvKnQ4N6XTFyVH40xzwqbeK8xsC5d6QC/2dlPHCmEqCFck8pVNWrigdIzGcUz5XOnPjuARMyFMOTxpgR3QnV/YkDyW5lqGdrwNavxG/yRcn4PyUcTvZ8EQBL9CTDWl768IwELEbfiT/ZTlCTLMtcYW8UuXucETEydxJHE9xBXoUNBB+DieY3MMQeAn1UKBLf8qHvQAn6wLIsBhOPvvvmeAcn6TKzm+fep06Qt9r7Ih98MTXoZ2jVbWE5glgG0LbapACKuXTNNfwG25c5dbvugl3W7IGqspi21f4rScP8MalC4Dv7gyqtuoIaGrQchEd18HxLJ2wkT8xwTaM7nQ4PZUsGQN654wVJVK/U3B8skuVasIdvxrpPeS5jsGIgc3oQ1IuvTAJZ1N0WBo/n9qCjXKO5nhVhW9D4soUSFym4e/IH7KMIEkwxk9KdMpKvhmCYFL+lJrP9a8iv3sKwT+pNKbVhysu8jmEBcjfvciFfjiadvQXWYh0VE91PZfNoU+SDXk+EFOg+4O9OlxlkJ8Aj312QQdrFQxb51T1Ex2v4ghBDTEH+fzkzvEQVAED3JPDexvutda4qhZ41K0BAB1X2O0q6CuFJ9sF3u5u4aJbuBOWS4Jea6iugeos9IXbSUKGQS2BobGpF+hq7U41KwslJpKIUSkLrXgIgDNcUJ5c2l+zAHZ3GObEArc7vL9d4epyCeVPgJPWUIuFu4N2Y8F9P9S/XuH8WxpsHhDqC+DF/5/Gk2+5jV/51o/hjr4C9W7edGfx2vld/Mvb34IX9Tk+VQOXfYPm4RbmjTcBrUFEqK5eQctyR1GgGa/vVGGjjwKsW0izVOhPCLayuOgabNoa+kqhuiJsehU3BVj29wI3Pdo7DL1zp9ehtTsBbhlkLKhVuNw1aLTBqurcXaMB+RTD1s75TTsDajvn/IubF12K1SRNfsj4oeC+DQ71IL/UgLdMAHpCu6th/eYMFyASckvBbYZSQQ7xIA9LtJTRSDGQEcpNMcECz9rrSC99vw8EbwsbSiin8awfg47m5yZvsmSXUPZe6LZTvF86JRlw+jxPDCnnUdlaJPo/MAS6s+8oXCfBGAIowmZJ2gp6vHKyuOv8BtlQRgGkLbhXQE+gzvFf07hNeqoLnQx6EcM2gY+nY4iyDi4A3Z36TSkLHlJ+28FGCEGkEFgmJQkDgCG8uT3DSt/H7WqDU72FIh8wX9cwC6/TSFqB05G4YlQLg6o26IzGO9tTXG4bR9fanRC1rLAzFXbbGmwJfafd1StX1UhW2wbo10C/8gP1wW8KtkrFMEHnE+Nz6ZLdM64o6iEyaOj0RBf81hsCtS6AF7J1EMNtzgt6IWOMj3Y6qEs84NQkCDonpqgOD8pPfB1QYYybmKaTvFu5PAw/JV2P6tqng0TekNY74hMZne8zVY7iX3u+f1Y+n5uqbYNOeI0KMh44+an1qcCDbFIDWUj7mOUvkjFy1pDlyVTgkV/k8ofdSw4IGfDIAm2vEa9QE2sReI7T/THgg6dn9z0NfDT6QnxfZAA8bLbLaUBsqLTegcT+mokcQSlkBKPxKe3oKz60fBkP5pLsDWMQP6O9O1UnroHDh/A9H7t8/kHADWnoecDBOb3OnAhfV/z2WY/1OnUm9F6uR/KV4lxEOufr48cNxy/5NSUPOXYpbkaXsiQ0G+wQeVjRfx7rC7xoquvWHQpJroqQ/DI/fDJFTyU9Xr4XP12MKq3okK8h9btl/XgKmZn0cUqPOaa+Dyh4OhmHDH2g8mIHHv20MLUf42sOQUm8FhxCuucNGeEkOHSdvt10K+Q1IVGsDvUHeLZCISd60YVkN15wclJhF3z23d7g81PgRTRkZPOF+q4b/D5aMSrN+zMX0NMVPpURUlIib1jfcyWJ51X3VKcPCrAjvrvummXKRs5mRmxH0ljO03IrWbyb3GVXMMYP9fOgMiLqGSkduYIYftpCw1Ex8yeRpFMuOjHCPwwKZr4EUqGx03MxBA0La8jZP5Tnad9GhcSRk61jcEyOPj+0FseUL0GJd15nx9/zgOsaI/K7Z9XPknFz7Hd7+p9sJDjUZuF9QksFmk3ayNsU5bhUXjoG8/LypN0E7yFPV3GDS64HhOcFZ+XwvUvda1hchRC7xy743DOoh8/04N/JIKofwBC4IYTAIxGjNxqP2xWuds3g6Akn3DVcgClPQVqab8YQFBCbfPKdszJgPl6cYZ44TsS4HTmPoyJyfQrzGoKc0SiZ4q+yvgl+Q/malmSOL5QY3B+Mzfb8QRrvo3fux3BCLjxAkX8U5fU+3bXQ1mDws5AfhXpKp1897jHD40e4ekDS3IF293VU4HsMNliC7ZUPrDqwVoF6t1Hjwt9jHU8gVYCtfXYHTdEqjiePrEu9HU6ukyCO4PhQkmA8PQADzZgVg08MqqZ3p4dFnIrqCrRegZZLUFUhcagqhe6U0N5y9k/zxKK6BN7c3cY7/a24AYh6xuW2wevbO3hiV8P3hsHGgLsebKy7UxMKbW76Cz0jZqPwxOzSL7v16IxGb9XAb8S8hHTmWrsgtq0BaOVOgJNvL3zj+W/PKmYFiCfAPR6RQxokAZdkvVMZkONl8rfEW4ZfA0rqG/BuoKm9QRip/xVwVgYzhg6N5zz8PsrOIvuSf5fr6aVvYx2FR0XdcSwXjrdRaVR+n4N236bKSf4i3jsZOFFxkImFukubaw4NMokXseMFSeYADH0lS+Ju8LEuFsbGAs8nA4AiMBYz3JTGsEc2gwlbU+PSuKsPrC/k6lawQacQV7AQEDcxKW2htYVlQmu1y5jjdShjHY/tjAb3CtwrWEOwRqdyXPYz8NcCTcTMQ+MhxO8jLavxsxHtAUO2EYlvglZG+Frq9zUg50lJ3bK/WVeGgocaONyHYp2Sl5V4WsDDKZvyCCiS0R4SLdLiZOWFerM1P7b9MmMoNHlsfSXYV24fz5MN79PJ9jogD3wbfs/KF1WriXkPWcDyzCiJX0TSQok+S3w+Igei/Vi6dmpyXOHR1PTka3+DjQ37lmBfn65jnxzjb34muCjKXNutUdAVjvLnHdunvJqSPnYMD3iecAh/puZE2m37Py/K0WLBfV3LaS2ny3xuhaw4CFPlRPt7g/WF8vviBsmrgt5Z9BfId/LfEV3ZCzku5n2JFWY8/QCi7o0dHurc09DAM/Kh5HrxU/Gv/LMDa3cd+MY9Ab4PQZAZWEcqjXRk2etAFPR5WzlikPig2MH0+31Fj+sYRgyn1NekHNNkm8Vvp8Ab+wwuzzkjOp+CsjViABlDlXw9/gx44XeUTxrUmH53LBwtLHK46Xc3hWstVAbPgT6eCqQmeoPtQM+Ihx6GvUI/J8QD5Q/AtfCwpCjkhFT6hmk4WRH0uOA8yD71Ps2R4hXu38aE40Y6K3OHZoKGQTFSwykhAOPgM4l2LAE9BkcV+dPfmgEL2E4ejyRXPtyl61MDsyW/+1lq3766kIqM4AJqKtWCr8MnJwMXhbWLMiyMHyHQwKN64k7mgiwJLOJpWIWs6ygIi3odogx9k8GEpyVq6ZjhPd3ZxwunlL0SvV3H6ZNDOBEqPznWwPC75WNxyYeIXUA3PBaTGgIksbrC+4hf3nGRODoCThdOGNuaBpz0CChPA8Ux947/qJ7E3dauftW7AA9J2hRBYtW5f32v3ebS3gdzFIHJAoqgW6C5YPRrArfa3YNJ4WQk4voaq9Aa7d4tNLhyJ6OUcsGo88sluk2NFQHtmT+d1AJkFcxJAwDoV+TT9iLuak3uQvaZJmxj0Z3RyGkevtM7N75SCnQKfAtwmS4qx5dkG3G+vWJKJkUJd2oN7o7NUF9YRwsY49PF+xNWFJEFieM1BAXiKWEadMF9+uWUQ13+jIZRKBd2EMefE3U/Q0jEgWyvpFfvrcjx7zAn7J8VIW+zoCvvc+47e2QizbJcO7GGtgaod/FiAOmpILEuFPDXKBgCeqPQaXHfcwjyVPCZU8pzEeeEh7pB/sSTSMVOFqBWgZXGZd/AMGPLNcxOY7klbK8avLa5iyftAmbB6M4IxArEgN0pqNa6lOBw4yPlr1QgF0xZqs7d9+3lupsOHoLi2iN85/pqG8BWjOqlDT78wuOYNthtvHHtqNu30H/LS6DOQL0KEDO46wFrwOslLj5usfzEE5hHt3H65UuwPsXPv/FxXJoG9TnAlqEvW+xevYV/Yj+Jbz95E//2+vNuDMzuZDksuLdQPfBef4o17QZeEfgMu1Of7lSoX0RFMAtCv3ZzfrFZoG0rVDuC3gHcEwxcRo6dqdCaCnXdY3vLoL0imNMF9HoFbLbgjQExQ3VA11bY1DWWlYvgGz8vUOz5IbmU9L0ZcBQAekpPsYXfLZwOWIlsXhSC957HBjlhCKZVju8Z12Y4CR5wGTrF+xiADG0lzHGQlfucncRpWYnbFOv1pCd03QHfBS1AfFcCT+9Ppb9l/HX8Llc+D9STQ4mfkZM1U/Y6e/4zzGmmV/s5SjaD5fUI+8WlxeYhI03eraDf+J9sCaZ3AV8C3CnHkBGG3clj1bkGbe2TWHUQfNRf+dC4hqTcl/NCcO/CaWlbOR5JhgGR5YUJsHrAb7C73iUOwgLvXp0AAMyaUJOBse60uFlV6FeEfu2QLvID67LUGAssFx0WdQ8GcL5bous0wiHzbVfh/d0aT7YL8EaDjOcbmkGtz9IjTClbMfoVwSzgM4PR0C4jDfaLTYdhfsinfQ8nQ1mHzA1eh/DKk+oRNzspxVG/oZCeuQRelxnJn0RPCviAIVCf42nAuZQ1jGXvdeky18kRVbb93xzDAJL++3S7E9XJ9q8NhQ+jbjNRZ3x/CDzdJ/rPBP/wsyh03nEdxetksnKHYOTbjQ/TQTmcnkhxnOtz/gPKvh/rvvk3oaGJjid8Di6bQzgBXhpXBacnGf9x4KWE4ZlmMFSsI26w8fKTffXDZhaOv8dNORCkVtp8a4Ekm0myEZGiLpdMbk6v8nHGh/O1HuTPuC97wdd1MF4q0W6fo/+auPisIeFBSKf3oB4g6WwKX5PvjrzyMszFUzuBnhNEx5r7c5/KlEP0w+ybiOvqX6LunCRGsuqA7TnoyuMFTR6FzSx5NZJ3ScQQ8jP+LchiNB2MdBMap/3gnJ9lG5dzvhrb3CtnJQ+bKpMxGsYQ44rKwtCPqAPeVNZ+0CDXL4ep+TtEpkKPCn9O+oBuSPJftyfA94KQabkhmZa7JvZcWym9ZvkJuFZA5KbwtH3d45yMvOqY/kk+sG/gGQOeVA7Dz1zZDIpc6dsSER07P6LsSOiX/j0NBEb4vOR5gWk9U4Y7VdmzmJtDbXwdwMgZXSyQwbGKXgEpUnw8Hmn27qiaMFrdu8J3+bM99DfpMBTfpv/2jCmjueRu8nwdwglS+W0MLLm0mOzvh4x3I0/9yyE4dZITmUeMManjwDeyXPF5SAtW7l6JP41sfcnTJ9oZBUwmoLjET0u2GS4UTxQ8J9jvdBo/KuL4McrfviZkAOAmUKInsdb75GYsdgCHuIBnsfl8vQjJPdjxXUw1hygLw8lDkg7LYMhYcg7QiUAaWQIZH5QLG1XCgALvMC6luOoQ0+uy75+7r861ZRlDOueKYDU5Zzgx+l6hvWzAG+3Th7tUo9bXYRsNbipYHzSXzl9WwiINbSjALBlcC4NNzKvqGarn8rgxjK+UbjBx1sZ2Ka0rrE9IQyiM0OBYZrFR6JAcKIq+Kb4akHGfwDhAB0+lOj8rvnJIL5T63tQ8QDw/RvdJZPU1me4evh83uAhcdCnNh7sbh3Zd8Dicomam1A+rhvr2znVmECf9FP9cAEShNRUM3B3g6BWoA7hVOG+X2HaVS/ftU5T3C/I0quIVD2T8ac6A23DB7nDaW06nInbBMMIQIGX4O2uB05MtPnb2EPdWV+P+Lxdobzfoby1A/s7ssLGJFxXM3R7f+sK7sBWgH15g8ajH4/M1vvTkHqqtmxBqezSPFHYPV3i7vQVAnH4E4HbWMJRxGwKueFGcy+HU6fCtrdwVDEwucG07H2QyGJ0A71m5NPHLHrYBuNaguhb3gLtgo7XKbQbwdyr3VmyKCHLAMmAyhsaCxwAxcExMA3uQXg1PbwNv5bimMR2yzYLqXjZOOrXcVE6Dl1V5t4/B3bzfxfZLTd5Ez8z7J+uS3+2r80BdpbJJ/SUbNOctWT0H2VhYRnFH7Yj9JfNO5XUotWUJVl6bks0rGU8XNMj6fJ4YLhg8XHtSUhrhNwWyzx7D0+LP0wwI/m568coSrtoa57slLvsFOtaujHYbDm2NIXguAlTkM0s0lUGjjTsBbvRw7RO7TW9bU6HrNahVoM5fT9OpdHNN+FUPGTcSx6VfA6djcbTD3ACG4Ef86WWMlKchRX3QR4h91o6wcTnKVp/xpxB9IK8fjgJPQieSeqJcq31/76XNfPPoHjhoLx+o/5h2Btv+ug0dgIODu+G7o9vP6vE8Pvlb/rxRG4P8GPSiceeD35NyPnMDXhvrkboj9tQndEiJl2ObgOIGldi+oIdgD6U2A9J5FvdzR3tRNib0yKTpwPsVRzm8b35iSnU5j3IiJD3ndYTyUzgm6CHoFgfXagKOtSOOLfd17Poc4BqdzOf1RvP8QQa/b9LWs/LLJgUxQeuHyySy9YDeNgXSBtwLx6xl5EuU8sUS3WJiOvfM27WX7AiZnOghR+Jr7l89+m7yb1S4IW7l8Kyn6ev/BDinyFLE36CUfoC87wODqXHl21+Ypqk71JG/3yP8byxHin1FypTC79dhrlkbsdv+FwbcrvmJeo8Spl8PPGiqD0fOVyy7r65nCFLP/CB0jxIPOHqX8A3a2gu54+Y59GEEhTVN+OMh4zyHQwsXnb0MChfEyXq5cMfolALCWXkgGj+j4jTcS5XsICzQeKD9ZIewcFCFeYn3BHM4LSCnwTOV4LxW7HbcM+IJ8HBKhIFht7P0z0rjMt7FxXEaR/3Opj6UiY+CIgjsp2Wx6PFX9ifMRB0Fn8/QMOcTOu7vUF6Ukz+fM0z2/4jvPvBdwUcp++NCEQcSZwGn7+P3ELK1VNfgwHB4K+qSxUcMtfBQ4kLpZ9Z8cGDslbvSAaQYtvJ4qjJnrwxEMNz93t65EuWPPFlcogcgOnZdwFbBGo50Le9UJgPojt3dnYH+Vea4hUur3FoNJqBf+TvAFcBM6NsKdKGhWn9f5hoAEVTnxmkWCmQql3pZnGAPju/htITjPdAMbqzPXpHeAQp2d3yTmRCEuSEs72SX72S7jCHIIwzR2DeJD+wChMa40x6RnRQEdaTFcDI7vkqRJEdnyT+Td7KdKF/S9Y8ZpY/RAa8Jk2xlwmDfV09J183lA9uxvI5jpOxDYTulhFDom/x+JJgQ5z3igeaYBjhWH9QDKa/9mrAhMJEPeCqXStf3k+HvdwxOxql+ZmNGaCvwvyAqDYE6uOAMA1vbAD1BdwDtNB7vlth1NWzNMEuCaQlm54ZsGxWDzzGjgt9wEza7qGCAkA+Gh676DQDkM8wAANcuiLVuOtxrrtDaCorWyVjsrTUuPlyj2jHqd85A2y1A5O4CVwp62eOFxSV+RwHYtague/DDBb6q7+Cuj6fTtsXyPYArjbd2ZzBc3gmjW8avXHwUbzR3huA58zBGf7rfBdQcYtnanWQHMfqdBlrl+KjnjTtboSeNq77Bpq9BxKgXPdqVRX9SoTpdA70BXV359QFMp9D3GlddHeewC/cqKx6INgTiw3r7u5tllh2XKcH9zhVH/QvAcDe9QgwSwgLoZZYfhz8cJGSgBTXojanO4+sWcldmNBrKIerPiY0iSVHojImuxwXeFfubMdfreIVKsr7AqyU/SvQuythDic/nkPElJpombcFrbuZgRsoTcv4Zqg3/LCHeq1vSd6W8Yb9Rwsvkge/yoAoZisHfIZBPKX9V8Bkv2J86zpUnRDnN1bD5DuE0s+xewPuwwYMJbV+5vno5vdvVeAzgYrnAzlZuExIRWHnaXlqfVYcizwup3CttsKh6nG+X2PXaZ0pwbXdthUfbFXbbGnrn6NEyAE0uO09uVpAbN1cZ7gb7JAS/41pRDIKFDY/pwNN1ynVa02tYZQeV1wITbHGYd9+FklM/9im5lLRcx16a2CfXQkOlb3jiXV4mr1POzYSi4XRnwYueF5RsxsJ8PM94wFG+KgKe60TIeQhyQ+D+9HeZ/0Ti517cFgeYSjIg433MgPGbf/3nyU/yWTXdT456n+Rlg00zyOKkS6XMf2JjizwZ7uyiTCc9RGcY5vIofJoqm9uT0uEmr6t5Ch/DCCeF7s57C+YV4cjBfnMDH0VLk+zwmx9Kuk4OYXI8rUXxIuVMqKdUV4mvF/tC0/guF4iG9kdkkH/s6aDkL0t8CQWhmejdzwp8h5N+H+Dzz1cQZ/CNRgOlqbnBlH19B8Az4yU++3parAOTflTgdd+3xTa5/KcPeoy+8zp7/myq34eERvw+f36UkhGtySMKT7STV0feuAn6SGBuQVlRiAZrsf5ngU/PoI6bCOKio/hrAfvWn0sI+AHA85QhxwixvC/y92fdL6GTj0hdGgpynWTA9sguxfq9I764+3jCQIvfh1OXIciNctkQqAmOxpJTIipE0sEZ+ifrlTuNDUA8OFSC8z4qWwbO8ap5qEvsZiYGuC9nxCDGcDI1GH8S93NDc0pRL/Hrkq01wTRiACs3EjMlcpJhjPoTnFHjx2HH5teM93w9wJTvSDyXPqhSarkIHscoW7f8fbnB8fN0A2HZgM4DnqV6SjSdBqy8AA6bZnRWhsSnGV6GwAsAEfBmF/jlwRky3D2LIcNCaIvEsxAQD02R+0b1LgU6dwpGMeAd1iwsHtUDemOhWw3qyQXkNWD9Ke4wCMOEbV8BitGeKneft7bujtCNxvKhdk7hhl3aT1BMVW5WCiBCv3QBsqijMZzTO5wCD2k7NQOVdalXjfMShfSggAtskWEXCPdrycK5HDcBaU6DNCJI4E6FDe9y/GPv+07WNZTrVJzjohM48K+w0Uj+S3AiZzDyXVjvwZhMv81kXXhFcI6652U3lHh14e/S8OQ8JxsHsjrDmrrX/v9TtC+CskF2jsoW+HjaB8EnKO2OoweXOjhUFAKNBN9o+MB6+vIp0I1R6JV2J/NCP4LsZgDduH9yfkZgKbKcyCN6QDFh29fYssKlbaC2CnoD6EuF95+sXXBkyejIgoyC6hw91SvlNr4Q3OYVcm2wIVgQdMy17ngd+SC48rwKPRCuaQAA0zDs0uL+6hIfWbyPjanxFdxJhtC+sMb5JwG9VVi/eYLFdueGf3UF1oT1eodPrN/Fz2uALy9RvX+F9etr7LZrLN83TqG62uDWqz2qjcZrF3cLE+WgurT4F2+9glvLHerLQPiuv9y7jQhmAZiaAKUArV265KUbN11VLs1z3BgAXPYLKLJ40i6w6WpoxThb7/DuyQLtmUZzew3ddsC5juvDrULbVthoCyKGJnYp0D0uJc5xEmsbT21D8AMk35FIiR/0QiuyV4S1ibin2AfT/XMfOAw4OeIzHu8gZWZ4LarOIfCm5BoLSSeBF9DA5vYF2sIGtxHPew58bsSWy2rEGMLaHNI1pS5Q0PMnvyt1DoMeXtSPGC5QQxyzycSNW3m38nS3YfOdXGiCT5nscC+kQOcK7gr7cNI74qk71UjWXYtCZtCh5Ry5E9N+gbMTz3KMTIjXqFhDaHvtNicp16f2soHpNR6tV7hcL2CscnRRuXTkfGLArYJqtd8k6PoFC6zrDquqw0OzxnbTgMX1UP2mwvt6DXtRo944e8pY1w8Vr6AR46kYZul1DDWk2Q62kvVB/rDBMcrsMF6bBtUTPCFxUtSvQ9+5zUwkTq2TKfiBgoyUOFAqg4FsE/B9HGQopZsaBI2GJT4ax5N2OFn/cpm0nWNgrEcVR/ns4ZAvMNPxrjVnE+t3FJSG/yx4avDPij5FXJhIDVz0H0t+KaZw2PTFw7dAMpaoR2abg8Jcx298lhYIPS1eA0LR/eOzPmX98vyR/AlxMuS/Z8+zXJ22Cnxw4GOBjuKVdMCQjaaUAl3oAPm1bsnY82dhXkvrvA9Xgm2bkvdzkbmT8EEHx24Cefe+jvtc8pk+a7gOPx5//Ey7cq16Q7+L6H3NfsXAcontMwZeI/2MUq6GvwN/y3oV7VYvAEu+gIR38qBjFNdmz4IV+fJItufGQ6kiz4u/RlAae3z2PLt1zboDjRbXNNR3Azr5xkyBXoKvJW+l7F8BgnJRwvXjdiM+JRxSnIFBUfe/l94f+n6ynDDaYpmpNq5j0BejUBPtH2JozxKmxnfos6wfkwRfgpuM4QDePjXs63tprUdlnq5jN/r8unMu5++Qcfq1k3XFyThqs0vhWXTYyHKJoVUY6BRfyOclOELls7yjwX6bwF9ZPHGYBCVpatwl4zA+G/5RAXeHZxTfTfLTfXQXv6HRo7QcxXaLAXQmJPfh5G0fA3uNwSOfHQnXcaiWYEq+HgvPXQ99VvLnJrJF0m3sz57ykp8F5TI4Gkq6TMEYiGVGGnbafxa0MKS740FmS/r135eUdpbvCnMUnse7l6bkD2M4Tc2i/rDBJvSHKabttdUQHGcml4q99cF2f+KL/d22LlhILv15cNqINNDxNJfkVeTvGc02oXDS58JYMH4WTruPTl1jGNuUA5DDRMp19fPEdjh9PQqel8RB/kyuXdZu9ms6B7lueQQ8Na1L+XfdT/d9Jnn/FG7KtsW6lJ2lssBEm5NyKBeqiGs/xQPY43Ku77PHD2tdit5kT9ix+BHGIfuTPwOiQ7W3ChYEC5eSV/XsAiO9C8CzHu7WjXdEa4oO15BKd7irzYGKQfBC/0IgLARgNQDNqJRB7Y+GcvyfA9so9CeM/pRhVgq8XIDqOq/Z0ZixQG+gd4DeujEB7nl1ZVBfMbZ9BTux2KqzuLha4uHlGsowoNyuhZD6d0iBDpAPCLtnvr6eXAA57gNwac9bW6E1Gm3von2VNiDNLs1yowGtY30hqwUblzXCmOFe9MQ5He+8pRGvSegvyiZO5MWwJkhw1p1ypey6howXEoZUy7IqqZPl+m9J1smqD/GnwvuEzm7A52K/jmirRE/7eNVB9nfdfh5TJ1Be41LbpWJc+P1QP+W8BFyRm2dFfUnQfUo/irrO/oaZ4DbVxMBOYdNX+DVsmOPh6oOoPxiC7RQ6K5A56BwaoMoOm41J2BNMcXOP4RAQE2MxhL5zmwRD6nfVu38xO0+uB+SBPllGrOvo26QcirhamsDIUwSNh/GV9I+SnDxIvwUZva9M4iDPYR9eH/vuULmo/2E8CTeg2WuDb2PvxrabwB7eW7SRR9+jSKdjnQoF5Cm3X1ZsMML7ou6WVSPHkPsVrr0JKq8n5yuH9Fspk0bfev+IODSQtJHTcYk3ynfS7inSFo2fF3WzrJ/i2dGafKarfg1jV8fj29PU95R1XMt//TWGvbGPp6r4iIb3bQ68CRzAg6OX+tiCx9LFiJdOHyQa/RHlZqFwojcUgt8Zzz0oD47Ue0v880ZkJL45SlaFb56GvvJ5Td7dsM5rtX/zYlOfXpf9fX2fAP9GhSlBXSrKoug1vrsOeB9tofGpD7KfuAFR78HE0U7rCV2SgeQkV1HJCS+CsyboSUHRz5wH0cHydQTHEG3YuTnVdxnk2x/U3KfUlqzCA1BSoD8IyNr7IHbx3RSurZMeW/4IfjEodYetq7JTYNzIsIs4aydx2rsFibTrHSLsT9qMFAehmCQBMYK453eojwlxNyEr95E74eMrtO5XmVqVvREVdy4nhhi7O+R6AnUEVIOjxt0ZifROQQsQwr1Q4/khi3iSKAlqTDk9ppTAA86USeUx9CHsxt4TzEjqDG3GST6Cqr5GVqCMAeXK941tuWOdTEfATfox5eDc20BpbWUduTxniqeDks/EhDLxKPAT605SaI/TFg8Oe4FfBwQva/hT0kjvXhW0maQ5lzxBw6e+dSeXlCF3uqBC0v9w4srWAHoCK+VPBxHIcjyBTYb9ndpwJ4ZsOBlJ7rQ2A7CErtPYUA3WjN0d8qlNGcwEtVNozt2ppt19hjkzgK1QXTrG1S8JrAm2oeF+Tz/ucFd4OB3BhkAVQ1UMGxScsA5+8lUn7gAXhtEo8YpMrS5xg9id0Gq8E7ulIT1sWCPPc10/hTOe4U7GETyfpMiTIwGEYJISdRURQax94d2IVfoHUf74tLL59xEfc3ha1iXk1hHFjoaxPE0rGTkIQprdjB0UN4PQ8G5wxqffJPw0vI/yFoAOstyX9bjvPqDhrkQLl1GlV2BYGKPQdZULpoQ+KfYbQyZ4RGH80onP8eSTZxWt+/ty1+CRXeCRWUPvCNUGqC4Jm4va0U5twRWj3xLUzg2uXxKUP/mrWgDkUqSzcndWj+aQGLUy0MqC/NUNLgU7gRcMXhmoVY9KWXSs0VuNtq9cKmFrACJs72qsP3GO7abB+asrAGdYMwNvvQMyjO2mwWvbu9AtAGNAmx0WD91JyfqJOzLPV1dYvPEEarfGa0/W2HGH3uoRA2get+DPn+KyYdy9NNC3b6GrlTvtXivHh5cM05Afn9vYw40FbTWqK4LyJ8CJGdQR3tuewDLh0eUK7a7G6ckWt0+3eLjqsL3ToL5cQF+tQQ8XsJXbjEA9we40dgBIM6oq5I1GvAIDSgFKJSfCSdy/HHEt/NA88B0MuBoC+jFLiA/YsXa8GuF0OIa6SLlNEcQ83HUq8THXqxO+NWFHFXTpGKgNGU2AOIaS/ne0nbOPr7Gop1TuaXii5Mehub19KShJ+45leF5TdPwl+mzmWM3WT+rIHLPKkKNh0Y/R2ltvHwi5GXUUdqm/VeeuDLCaQZqGE+C+X6w40VcmIVx74tt1ffKnJtXQKbdxx+sMvcJuVzkaCRlirjSgFDb33KYaIn9aWhPMkrE+3WFDDfhcO97VA3rn9QAwFBhtW8FcVqBORVpUVxrcKlQXCtUWgIVLhQ5HO7ZJhyPvNAcQbbCIi4EODUEZh0iBfUX68GQ6BDb9dVYhgwg5WQKGO62uGMrP3WB/YsAHIUeI4TYRVkByJY7E5SzN9IiiS7IKkB0uPh46MaUYZW0cY1vknSvSOk+/wxFtTIHkASUd6XnZjGJtJ3XM8I7T8sX3++Bo+xj7x+v5RxQPPFGtfBfoRg/voo+wkO1I6oHJpnhJTwmPJNiQOSHXpRXA3g7inqLLJZzsjhtxlVgI/50cW+BZzs4a+hE3AodNd/m1IlLWhtPjSiB7QrDDo9GU5mPLZUq+vnKjQmLbXgOuQ09yvEe0NXIFCLl06PvEDtjXx327gfbRgn9XJJnnxAoSOJbf3JTflb49MJeT0/U0fSg2NF0/MUY681HtBzrIcXPfNJO/7qrwnQz6yjhHRN1g24qsMOGqmXxsUxsZiv7Up13vqfFK/ULObYmlRl6cM9pjF0MUK/QnivgSD3xOUIxrXmM4R8F15mcC5gD4BwBf211iiIwnwIQu7l/uqetIQbwX9hDCpM9gqio6SrYfL/yLL/FshOJEcNk5lfcbIYnW8KwYyFNFiW4IubI5BTckmJvE7583PIvNDcU6D9BFaa7z+UkN0vybcQOJYpEpUVLxmBS0wXAv3VVVNM4nuxLf58HysnPfOxaEITWqMjzwd+A5Y43iMxckwzCX/mo5UtlYufSPhDFzpNDOgx/I5mHKSBbD4bwf4uVBfEv6u6edgs15Y75y7GcH8P+Zwx6b71rfA3v5+D7bciiU0dexxuQeBTm+9zjB0ambfVtyZCQOAtkPHq/THvnOwODwkN8F2pb3wkpjyb9jDZBl59wJVxUgmx7vLAl3XCYOWEGnrgy7+vwdnSHFc3D+MgPWujuNQYBZIW6GYYZzIm8Y1DhnsFr3sJcatnZ8xNaud7byzWoeUosrGlKeCsOIiJPNNqE9kAvgU28jj0oyVsj530M76cnzfPIQ+WhyKjIssyV/tUVuxGHEm+XPYrAWhbKirjj2Y/hXqKPgsBqcoE+pOFyHb12zznyT2SHxkejDYj73sZaSPTAKHsm1CninhsZigJER74eMfQ40aXwqcU0xaB37vG89xdrE4dMwF7GvMQjlnre9xpZr7GwN1RF0a6FbArUKXDFoaQBlYRsN9hkcTD3IatW7cbmAqaN1heHeb5CbgvgszKN1KYAtAbQwqBqDiiwsK3SsYGTaUAD9ivAtd9/H+XqJ9+6ssT3XWJz46BEz+k7jcbdyqcONAfoezaUFawW1690y9z3U++eoAXTtCTq26AuXbKqrFqu33cYbvetAywVY+XuLDWKAjbUfHPkAnt/coHfufvXgfCIDXHU1LBN2uxpmp2HWhFXVoWl6mBWhPVVYLivoqvK8yuECeuXmSDOiL8sjsONDBGg14J+f25J+G9MlK4+bcTGCjEDU/wb9kwa5wiSQNtPtDtpn4lfCmHaSshnSTujUB+FonjNRMNf/jlRLy3UdwdgyPWG0oSCvLgsIpe/EdxN9Jp7AFdmmX/Nko194LhVb2V7IHpD3xb+X6fdlNheIahnwAVuh0ySdx6DzhE1FPTxDGbcZM24ouNPexkXt2acT162787sz/goCGjbccQWsmg5tq2HC5jivv7jrJRiKLEyvQZ1yPNw7zFVLwI6gN0PKdOWDX/1quE4ljHno54D7MhjH4aRnnGuBlEE3m8JRv06JLLPiO19TsvEjryzgzJSuHGgmp52kjC8g6wg65iEyOYKMjrIRrllnEojwdbt5uqFOVOjb1LqF9Xhurqh9fE0M7wN1h2W63aHgY1FHjoZTRh8k8Ft+I9sutV/gK44eBK+LFWKcZh0YNp7acL0cD1lWRJ8CLUR7ibLr7RTHwwoJvxB1xfUSfEFOi2wrDGcS9r3M7acS5PLsJu3k5Z6hI/N5+ERvYjIlvGuKxz4POKKjI5/lXpw48HdS8c37dB19rOjXPfB9PuZAU4kdfqif11m/KFyG/qVtDfWN7FhRbPANFJDw0JyNxjMhrEqBJSn3C+Me2dHH6NSZDnttGbRPJ8rbeRod/0gI6vKomQ+g7ZvAv7YB8GcWLMsXNVciSm3QDRSuKUPuGlDaYJI8kv3NmWiBSZUbKTS0t1OC34if0mjZy+iEwpczzARK6cYkUT4D7fdrEVMuwtN25OtiEANcpztfN10/huF7vJaOlMEpH/495wEdoudRedfByc0zh/SlXOmSp12yZuK7ktMh8IRwspAZUASWtU8Z3cExNgoOsb+zlLwTf9C8olNLKIZkuazUB/7F4/GOO5N9G57lA5btTOlwYQzBqUShn2mZGHBI+uE2SR2NCsHPU9ATZ7gm7OEVk3oKp++O3cwW7ltMjb1yB5h8QLnU34l+J8EsuXM/c6CMaFnRKMX4ELgMGRxEm6JfQ4ped/ei6uFSGYvTj4EWIx37FLjkg1GDv3vgRUOqXAaUO9EUgv9glxK0713FZun5lQ/ikyFUO0YPAjcWq1WLq1UNWysfAHd1yNPu3DjHj61VHGvQheK1yn4uR0HDMLaAF5neFv1le+RJPElvQuHUsUSeJ5NyaawTnmj8XczxBLq/73DEZzxeUVjgoY9JX8LPKAPHd7SG99Gu5vA7yQUVk/QBwjFNcvb7oW94GE7ukBzRTd5Oxv/jpzzMMYOGNc3ql47FmHEFWZnwXJ7+93gZT2kbBWPY3Wsv+6T9s2RMA/KO4oVhvALPAy6oHqAe2LYVLu0CT8wSqgV0y1AtQP6EOBRDVdafSmR3KrlG5HmOj7hrDKAIXUipzuTvDfbVkAiKh056HaNe9lguOrRW4+32DA93J7jaNkCn0K+B1Usvor1N+NjJ+zhvlvjqSw+gOoX1Ows0ikDbDurt2/iV9YexfsSAZbC10FtG1bhNLwy4520L2rawV7fx5V7jfLfESXYCnK62OHnDwjRef7l7C2bpTn2qjmCXHFPDg0LE2M0VWXcqPmwwAADqCeebJZgJ5qpy4+o1KjKotcF2DXSnBLOqUFVVPJ1JBi4LBxSYLWwl9LzQZqUArdM7wVnahUj4XQygeXlBQHq1hC+v/EYoG/hVJg/jt+HvcPdpbD9LrZx9N5KLsp8j2nQPojN/YGKOHqXeh8LvOVCq/hWLCNZYrKokrw9AInOmGjwGDm02kBDlzNS7qAJPN2ednkCF9YlBGqFzkHW0AoLLMBNEWMhokZzkx7CRLQwtoJHPwDM1M+z1J9J2qB9A2IAm9SF3V7j7B+vSnct7eVXrfrWW0KgemnxWA+Uy2qzqDld1PQTA7XBdhGGFnjVMr6C2gx5GzKA28A3Hb1XP/loG10+zkvLFTUA4oQqmeH9wEpTWbiHyq5uk7pbcyy6zvST6EA0bBqQuxBiR5zDpYeInFJKg0+TPM3m6H+GmXwEYsl/kz4+hh8mBhUpKzw59NNFUWBvJr4+oZxSMJfnzGnradbst+1niz6VPCs+LvKbEow/2R+i+ntYPfi+UnyC3ot6TyaKD9YQNiGH987FaAhs13swVeGKQxz6ADQx9iJny/GaZJCAkx+F5Vzj9HWWX1GeJPU+A2wTUpx2NfHuSkU78vq+c4NeD/ZHOwUjnTuqiKO+fGUyxJcq6d11R+4yc1lN+iqKv6esAnpuvfgrXpeEyiawZ7MOx63YrH+8+BbH0fSg+GeGcAN9ovjFl1KE9/CviEB/fflJ1thbJuwl5vVcUyXd+Yvb64ZDpOHmZ0t/XXJ+pNmfYD//aBsCBPQbgB9QG0wFCm6rwGcLgQBSUmTOKYKTjhvOVfygNDdFWsW7P8BKfpngX0h7CeodBSWHbo1w65lp4mSjmR4zxaWAfDuQCdPQtl/+cckB/gHDQ0XJduI5QuI5BcE1w45nuyNHGaqgs++55BBUTWi7gDCOlx1FfE6GfEUUwXvfMNwk8HhlE4PF8RqMwc8yL94F/BvpmJchV4oo0rIB4siHpR0x37h3eIHDt+V7YeWxFgNincg+OLDk28t9wCABMGUP5Iufzms+VjAJIA7oEsR/wJzMxWCkiqHiwT18L+Hrow3UgV+5vWkduyEqGEFJfS/BlJG2NQBrjhXLJt+F3GWiW9YguDTIYab88PSZ3PTLGgXRKv2c9vm8VgEtJ6k94xxS2lpJNQqzhUvIBMYOD6uEc1CELsB9POJ3pTjz6uysZ7v7qkF6XAQSnuAHIkDv9vWCfAp0AA9hOoWcCFNCdWcd/aseoVA80F9ZNxMLipVsXeHXTwKw0QASzcPxhOPUN8MqAKguz1O5Ocf9uOK3u/jGxP504rIkyDGWsCEAjOWWbOm18qmbO3lcMC7eBYORQI3anQn1gj0IWAJ+OXvV+DvsB3+Sp+tDPUXYBCQXdbQgIYeBpJTHFiHcORnkmFcYPkqeItpKgWAlKesoUHYsClD8OdOnp76i4f6QhLuvogv0MO0jggolw+CBZVDjVyJ5fhUwLIBdcZg1wp2CJwf1A7JHuQ4xHyryAY2JeEgeslJEKgAH0Bqi2jCebGg/NKR51a+gtUF1aVBuFakPoAVBlsVh0uGpqmIULYJllOBU8BI6qK4KxwK6rYkBIOpFVppyQIaiOAG1x9+wKJ02Lranx5at7eOPJGXbnC+grhfYWYfGxB9g8YPybtz6LS7vAr37iQzg/OcX6rRqN1qDLDW59nrC5uIXT17t4Ary+7AFUoF0HkAIbA3txCaU09JOX8V/vXsF7F2ucmj5d8vcf4c6vNOBFjf5sge1Hb6E9Ve6UqAbMiQWte9im8sfblUtTWrmUN9UGoJCyFG6OLs+XYEtQ5xV0S+huV6iUxbrpcH7HnbBdv1NhsVyAa+0DbOSC1r3Ts6xyvD46lBRgGw3VVzFLRphbEFx66IArlkCBOVQMNhzRhT3/t5UL7JPn86p3JTgcmbMB4RD5Y6QfGXCLFUPIVqH7Sjoq0HVCZkF284DHUp9Ngt/yd4S2DxhW++j/UOArf5U7MkU1RVZOw3iS/mT1jmwpGreRfxA35hWC38M7r/uKPRzigH+iE4X054lfInTOb/YKOEKdO/nMCkBtBx7pBx11C3gc1l5u5jgRNwnlE4eBJyuG8vqECRuINPtU4UAIhtsa6FcMrh198E7FK0nIEKpLN09dr7FWLRZ1j11FMDXDLizuLa9w2dbYaG9rmWGjS2/d1Q+81dBXPkvGyuGd3hH01qVLD5uL1u8a6I0BqHHXwoQJD7oacQz2sVFxAyIAoLJOfyLtsnABw3UqfjNi4M1MGDJJxOwPAzIQw+kiCqntuCfAHdKsFzOUQeg04m+5pomNK+oIuEcY4o5JedG1vbrCMXCArI+GffpD9q4YbMjLTvXpafp6nbHmUZCJIrnucVQfSr9PNuKLShlCw9UdwR4ZtxME46CKxc0kvl4y4u9sXCChO1shd2QZ+QezCzbLjYoBFAOV35ij1DBuXy8FHqgBJaKfEW1826zdVRBs4DbGBRoO+p12PJBqCyKGtTrOgaw0bgYI85SNxc0VJ38PYx78QFFnlnQs5i9uOMrXOVHGn5L4cvyQ9QNZ38X7p2n2Kb5NfFsHospfdwG5Z8Urp2Ck/z0NY3+Kbjxls0EuJcPJ6GBfG6PgN+UvhsdTewNiEJyQ8Mrk+4wvJBXLMoK2rhubOHouS3rCRH94otLI47N5pn14W5K/14SvOzp9jrDvtqUi/NzP/Rz+5J/8k/jwhz8MIsJP/dRPJe+ZGT/6oz+KD33oQ1itVvjMZz6Dz372s8+qvyP4hlmsZ9DRp6rh2PZzZV4+5zF9TTU1CvqU9M+juCYGza1UPHFy8qiJtA6kddxEMGSK42SZZwg3RR3Ox3uo7NM0NgE3kr2lPnyj0LmEkjB6Wv246G069uPrfbuP3JKIcq54TI0zRqwpeZQEdzHBN8JnxCmuSt4gq86dY4J/xOBioY/DvdniZ87LcPh5/F3+LIDsb15WGkF7173Uh1J/MMz3dXjDJDxLfZ73/nk8fG1sjOMgMcwPvN9XTn5yBI6l9Y0bOZblD84hLm7eG2hZ/EsqKHSD0t/jv5wH5O1JuhD/KDhE5LzktM4ZnfPEPAbasX7MGonDia2/Jw/u9BVXDFIcDRTqXTukLU7qFroysOG0VriXVpwAp8pCVzY94SS7M8EXXQdYjIdQ4g2HjDf2Tvf0IdK5HgWDfFs+7WGupo03OxXGUHp0pHGdfHuAFko4e2MoBF/29gm4Fm+K+jOPn09uNpPLLvTto5rNZHD4dlS/3MAgy/vAFMv0laGOQGM+2OHuv6ZhA4avcyTGSvzyUD8Z/o5pAIbQcoWdrVxQp7MxeEs+dqV81gb2/2wILoV644YalwI9ngD362MZsJ6I40basHYELKseC92jtwpXfYNdV4O2Gqoj9EuF3QtL9GuLO/oSL+gL3Du5Qn3WwiwBIgKMQX0B1OdAtfEeH8ugnkE+0EtauzuBfXBctYTX27voWr+/Xen4j7sedLFx/4z1d2cOc+KKDxtzhgs+kTi3yTMjZQjcaqB194hT506aKmJUysI27O5Drsjd6R2WL9y5HFKviywBkd9r5U6B53JB3AUc6wuQ44YMZnv6j+17Gnb/cnszU1cLcqnorJN4nz8LzwMN53+XZF7+vaw717Un+FspKHWUzC/RmujbpD6Ty6b8933t5W3sKZc4M/NlB1I7o9TP8LeYj4PzwgPvcE0I4cjDezmGHLWGd2ljSXDD/1PktgdMXRHBBJ+5BcNG/8Bb/biUcZt6mYFaGcenQn0KqJSBlimHMehRzEPGC9WHk6eCz4VNZza0w6g2BqrnEU5E2eG/Hc23QnIYIQ6XKZ2uKbmA7LnUXUJ/Je0V6XI8x6EPh3TsGP8qlSvQx8gGO6Sf7KMJHPj2UJ9KzR3DI54FHDG316tP/H6k3nk0n9tT/GjIlbQp2i41JuaKRgUxpofSsEo4WtKphB4jm0/6nPGM8E3UX7Psc0kTkj/KOYi8wvELUm7D7yTuH7MWku5HncB+nCnRZUnGHduXQ1Dq5zF4vI9/PVV/Juo9tq1jZP9N4Kb1Pg0ePSM4mn9cY4xTNuNB8Pj2rPn9aJOG+DmKD03BiC9kryf0uXEHxHuk0zq94egIeBq6EE2N5qNQx7G+i+OD9OOCxKnd8zXas/GBwbUD4JeXl/ie7/ke/MRP/ETx/V//638df+Nv/A385E/+JP7ZP/tnODk5wR//438c2+32+r07MPnfMMHvY+B5CS9gWuErGGAJE93HXKaaOub9IeYn+3DIECYMaaMSZikaIJ50Kh8EHn5eG9+eVkn+gPB7tENLwteKAU5N9nXmZN+4jv32ecAhIT0FU0q4rLfYVlpwtBn6WEXEl012ygvlKfo3EmMizUIQy1lKDSD/MrH1gjM90ndw0gz0zgr+RAQPASUqoE8oL8aQ9NM7gMKdeapzv5OheEKERGA8jjPML6cncePpNzH4o3hjHDyla+dfTvLorO7IZ/3JCbJUKDDMy9BumYU+NRSU869X5erayt916MjDPkPlGCOGIHD4WLzi8c7/UZsTMj/5LvFGjounNI0y3/K0G7umEVMRh74CwfkR7qV1j2OwRhatrDvh17vTS+SDKtLpGVOEB5rwd/smjppIb+654wUErgC7suDa3auJnoBWgXcuUsQnPfjEQFfutILqCfVFj2rLqBqDj528j9unW5gzi37NsAt/Dzi5dlkz1qc7vHDnAmaZnkBkYpeSsFcuTXTUdcYZXoLjmizFNO9A4Is8Xou4aHAnqarsJH7gQwrg2vr3nLAl8ifAqROZOiQ+if6OAuh5H2SzKutvCT+DkyzD0/wU17PZ8JPi5vW+zX4eaqagI6RjJIzoMYyxNMdTfCLXsUs8OsMbVv7kjh6+i5sjAg5Vw7pQ72iIOnL3yLZqSLPvv2PNiTUq1ysxVTKdP9IyD8tSbRnNhQVtFR6bFS77xtHhxqDasr+zlqArg1XTQS0M7MIFas0SLjuDdinCVQdUV+5f27mAsmU3Durcvbo9K/fM3z/txuzG9PLJOT60Osemr/HmkzNcvn2C0y9qLN8hPPoO4LXPaHzsd72Fj1fv49uat/Fvv/wb+KOf/ByuHhCoacBti9tf2OCF3+jQvH4+4IixUJ0FlIK6dQq1Xrt5a90d33/v1e+BeWMFrhT03dvQt06hT09AWoMfnwPvPUL1eIv6SYf6klFtAL0loLJYrXcwDZAEv8mtY3XFqDY8nADfAfqxRvWoQvOY0JwT7E6jIot13QJ3WuzuG+zOFLh2KdBV5wJyegeoHUHtFNApx1OZYgp2s6pg1jVsTf6Ki7HeGXHWUkxp73Q5h3/hWoew8QiKY4aQ0I8oKyJ+Y5A3FQ8pWCm05duLisJAM+HRMewmCRhIeSZPmhGKZDvwiEIrhUfpZpJUtzzIzq7DOw/ZkAfqCXxk0l4npGuxh6/tO80by3DQ04d68niT42NuQVRH0FuK2SECz2JfT9RNCH5TDdKNbvF+8EwWJvoV+5PeDKUtlLYuFbrEaxU23QFmyehPLczKOl67dbwJ7PpTXQL1BcNahbVqsa47mAXQLxy9L3WPRpuBb7OX58Zd+7AzFdRWobpyp77DfMXsLz7ArltG82iH6p0nqK9swrM5jDfQExBPl0ZTpLLQtRnSQee6p/89BP2BgXapMJ9kvA4kbbASTgT5GjbkTOnTUu7u0bmDfA66sPiR4m/x4z3v9sGR3+R60I0CJteEo+zIiQ2FRwdJYj3lj0fuTqm3PEM4WF+uu8n+BP/HoTFk9kp4rsygf+c+l6T9XIYK/Tz6FwLtiM08sU7laJUqG7N8ERCzLwV9T3UiI4bQM2N/lOCRQZTGbA6IV0BobaErU7zGMspOeQq8NF9yLqTczXlMAaRMivpwHHRpko94fgTE6p8zfQJ7uvkBtP3M4RCPLZW9CXy9OrBwLM8tlD92vQu8dLozw8/SZkz3kwb+kenSzkbkhC9MxweEXh6alW0cQ/NB776OjD4U0RdjKj0fjeFZwhFrG/cBXaPpDyT+muHZs56aa6dA/8Ef/EH84A/+YPEdM+PHf/zH8Vf/6l/Fn/pTfwoA8Lf/9t/GgwcP8FM/9VP4M3/mz4y+2e122O128e/z8/O0QDB0/jWHYFTfGI75OFGU0g+C3H8WCEiMmBIqJ6LrEFWizAedsjRPvqGY+ue68BTfHGNg7N+5O+EBuQ48LQ19QDtNIo7ftLmgZEt4Cnxlmh760VOyb+5vSky5AJayNzgJRm3t7577ZujsoQ0q8fvwnTAsRg34hSkpWRxS1OXzlNF2NH5ihwO9+5SIKtw3FST5uC8snGbFmSd3zyX1gNIEMj4YJIPfcp4Bn75GDmgwSI/G4yk0YBrz3Kz9/LF8QMCQQjDOpUv7SfvaRYYXB9D0RuyhVGdwDuyBo+Tg87RLEufxDRmVROWSMi1Opx2sJ5Q5wvFyECcDw5tamxxKoong0zalb5iyG+azNpjgUyi7312WK4ZSTq+M92kGh0fOK3yQgtgHN0IqQYs0ezwPdZAoQ7owxpjGGS7g1ljHCzpyY2FPWxVDLQ2U4hgAZwuonYFuNara4EFzjlvLLd5dGlgL2EpDhVNbfgynyx3ura7wVmMBUqnCH05I5mnNE97DKR/OA0XyO4l3QW6Ge0mVZLDiG+XWZHSpGzteSdJgRYF3TP2e1BX6xiODZyTXJvA0lvP4zDTu8gii1X2g3HUhFQ1DW6V1SfB0gvcLvdKljRyYSeCNLJYooEhxeEJfcveyU/ougFxXsb6sxQYMH/wNgoW9nIH1fTGOMbDKZE+oS959OqLDvK9iYCzuqfQsWbcuSKtahSuzwNZULtjZGpeqN9xZqxjLqoeuDLqaYQ3D1jRs6rAAsdcJmLAzBMMKxioXRDWAtQpdvKuAUx5FjPvNJVa6xW+bl3C1bVCda6zfsugXhCff2eHDH32IP/zS53FPGWgi/MDJZ/GJxdv4R7e/G6grcNuh/upDVE0NvC8C4L2FMi69slouwbQDrgAYg+YR4903b2H5SIErBbVaAcaArQV2O5jzC5Ai6KtbUE0Fva2hWg21cOu4ajpc6thUdPoSu6A1WQZXLsCjeqC6dPNRXfn7f3uCIoul7rBYd9gxwSwboNIxJbHqSOATwxpK6IM1YBsFYu3vI3f/kuCVX+8o1xSDwkYKXz7wV9ZwJ/19FgLVe93T0JB6ncV3QqaEk6txE6GU/YkMzoQxD8VzVh3ej4J7flcHI/SrJGQDjh2h6EwUCe0eZHc5zy7oK9cKUpXmIHs+XJ0yJbsG+ZTwyGxdyCLZpJP3mUO7dqg6nurP9SqhN6geLq15zpuzFNoxYBIrx3A/rhy0xKGgg/krAYgQT2xTvtHfB2VsDfBi0E1UT3FDERlA7xzPY0tYqxa1MrC1+44qRq0Mau0CTDGwbN11AcYqdACoI+gd3MYYMUfJCfCeoS5a4PET6O29BP+jfhHWVm468OumNENrRifpMcxVQmeIC09hEcmfEvWvEie3XEqJbwJdYuAvkzU5HKuTj8rJ/icdGv99jFvgA3LJPD0EfN7T31GANh+/fJbzH7GGI74cmp/q0hHzvA8ODGvvdxJHLDmel8oX+QFSmhNtB19q5GMyP678LlTLbmNfuWPidy9fkoC60BWV38SS6OfAwAP9BjkKmyKTTbX+R+AHmt1VE0IfcN+6zc9KW6iwEbrUb3bXPY7GENriibWKPGACEaQ+kAffpaos9fopGK0pl/lEBtkSHgd7+Nf+7yZ0jdCXa3RkVPYpaW3cwDWfP+vmSzznGYPkXYN/9ng4qmdcmLIok6e/iQ3sazz7GeyIeFWt5GlTNBq6UtJ/ZIHAMzL5Ha5Ci/I9H8MhEPrB1Lup55O+yn3y7TnJ9YgLhXV9Kjn4Qeghz7GNa58A3wdf/OIX8eabb+Izn/lMfHb79m18+tOfxi/8wi8Uv/mxH/sx3L59O/575ZVXnmWXbgzPS8EsBnyPbatgfD5dZ44pc4OJkMZL6d2+74BBEHvKTFJnjfqX/yuUzRWUiT7kjCAxXkvtPmvYV+c1uFSyZFR4dhN4DuOd3DT1tAw5N6iu++1152ofnux7Xix7ROOij6Xik6hyRNVHGfjInAWlOvYpB0e2MVQo/gHpfHpHUOLwjMrEUFAqTnn/kgAJO8c27GAASoM1H/fkfGVGLrI6hv6XK0idMZyOfx8vyIzY6KQq8IRi8PWDgmNo7BqOoNz3PMiCI6zMD3In79M2RWl3c/zay/tynCx9F+dRyEq5qcT3YVImSnoUJ5ZySHb3BsMoZHxA6Kc3XoidczacNohpeMX6xwwOzhEb6DefDwp3e/uTo/LkXwL+HuV4n12481OxT93rnc07p0IvVy2WqxZVZZzTmgHV9i4wVBncqy5xVu+gGgOuOaZBj7SoGCdNi3uLK3dKKp9XID2lKOeVACgCNA3FMyOWcydULBMWw38YMmlk/IaJ3b1/lL9DnM+wg3vURtqVaQiFAi8v8PujZEuB16Xy4+mV+8l+HOPRCpDg5jUYQ4Hnsae3cNJu0peV0/lNoXRiOzg0RaBDZouh3t+9bMilvfZzGO+FlU5GEvhaYuFSlsuU2IEHdO40ZMcarU+BTp2B7tidPO4JdWVw2uywXHZAY2Eb6wJDFeLJTSCcFnYnKAHAwtO/AbpO46qvYayC1hbKn2AMQa6TaodTvcNJ3aJpetD/v703jbVtqc5Dv1E151xr7e70ze25YDC2aUwgkPtwZCcgY4QiO4n8/CwikTgRMrl+gWAltn/YRFYSUPKSpzjyw+lkLDkvJI6EE1sB5wbsazkBDBhsMMmlu6a77bmn2c1as6sa78eoqllzrrnW3vucw23Oq0/a2nvPpqpm1RijRo0xapQFplcMJnsMNTG4a/sqbiuuIidCDsIZtcDF7Brs1II2NkDTKWAsqG6kLdMJUORgrcCK0J6Yob3rLHD+jOwYNxbTqxaTbxaYPgVAKfDGFHxqB3zhNOjUSdkFbhlYlFD7C+TztgsM0BYbeQObA9BaFCOSVMywQFYxdM0ybkr6IJwDXDF0xQATZrrBVl5he6PEZLOWXfWZkuC7eAd2DZc6XTJyyEcCrBlmQjAT3RuLQEtjc5hvp+qO6GByY+nT3Hu5HhnqabBL1BvqhK863Yt7Treo3vDSagzn7NjxvXwT3TcsZcGgwbuDdoRy1jbnWDia7F5z71jrH6An/1eob0zdbskxWUxjfTvS1qFqPbwfXyNLXYaZFp1uzpDAimge5Ggt0nOEj81Nw3r9DifFUEoC6sL6JHqHXWYcmzNoaoDcusw2Imu9jqMaQDcs2WMAZEqOWeFM/m+slsCLiEfYVWisgmGR26pm6Eb41QewsAtOIeOCBZsWqBtQGykrXg/U7jxfzaHf4jmMiKG17dHA0twffXfosyD7o871YxHrrMBStoe43KF+HHRUrFRju7Kj+uPAlFFSutnrruvVawZ9c9PaMSz/sPqvt/wbwXHLitfMQK/tMZ2sLeKw76Wo3BUyKP571Im0aj1Dyw2mAf/1HvcZpJj69Op1LEJYc4WSI1tJ4CWfRQ/L05w/55uVy3gRBz45+UdKAhXVYB6kwXev7Kt1fBu/H/XlUtDpCn6VIM+oX6K2Ldl4jsCbh9HQ6P2wAI7aewwciSZvBHEfjeFG1iGDcTmUB9fxlr8+pksdFUcY5h4pHMbjvjkr14yr29H9fTOF5k3EKh1rMAfH9B0c6Ksm46OOHUfjMOifeN2wivaHesGRxuQIbbrhNflNQG8+WPWNN7XC5fquC55MVun8K3DsHeDr8NhjjwEALly40Lt+4cKFcG+In/mZn8E73/nO8P/u7u6RneBR4Ie7gOueCJ5W+IXT01XdoJ+I0dt5tPTgWLSa13RuRrMHitsQfedP9zM0vMIbCLwyxVEKzqFiQuifR4PB/aUGUFf/Ud65UVxHmb0Io9HvGL7gLsdD7OaS3pCvIIObhm+FQD1ECV7qi2/FIpTX/H+ssqJduutwpMl+ddrjIQ/6Jq916iJaaEViwV8PAZGDhcMwmjHA89pYXf7doVMsHk9nOGfA7cpgIEoFFuCMqiGlOaO/O4Rkhyp5w6yGM5ZQcCiFVFtAOJNvyakUPTt6L35suKAbU6b8p4edZePjuURusUKwtAscXUpk//Ix0JtPaGQePiKW5iQ/3tfxfv/GEa8N6j0W1lrExhH6KeaRpYewukFxn/sCwcvyO6qsZwh28+ro2aXwNLtCcPl3gf5uheFjnle9Q4tJnF2eTnzpQ9qj7vl4kaioO5eXNbozfGPeIEBlDOPT29ZuJ6LbSL2kF/odiODgKGe/e9r3r5v/xVFD4IyRzxo0XIQzgb08sJvAxRN7yJXB5cUGyiYDG0DNa6h6io2iwfMnj+OhjYv48tYZzAkwUzkH2HoNXDPu2LyKF20+gY9O7wU4X5KhYddUr8+El60mKNUxUOeQpsDvvTTo7MeUwHDjpMQ47fva6wFeX6TCnU9eDgSbDxYCJI0qOfXJyi5GHn6Hk/nB0TRGbmPz86gXoX+PnIwE4nOMGSF6/lvp/B42E+j01pH0jV1Zy7wUDAGI5EYscny3eb5S6HYCucaRiSbnFXr2kXsjbqJiOXKgpW5cnTGTgk4uLyjn1GTjHHosDlB/5EFIaac7p0aQkUropNcXvi2BJ/yOTBdQAnHS5vstVJ1jYXJUJoOuGbSoke0bFHsa7SZha1rhrs0rWLQ56jpDrXOYfQ2QtFscs+IwJwPYVhrYWiVyoSJUVYbL5SYqozGdNKiIJbs7S/vP5ns4oRc4N9tHZTI82pzExpeuoD2zidlmix848zm8uHgUG5RDE+EeMrjAB8CJBvbMDtTuHHwwB9pW+mJzEzSbgjMFmysszuaotwkbl6bYeuIp2MtXsfXla1DNDlRjYTMFPr2J+uQEzZbC7LEpsicugQ9qmCtXQXv7yIsc+R0TmAlBZYzzG3t4ZMqgLAMycUArbYEWyPdka1e9rcAK0LVLZd4y8n0OTreT+QI7WYn6ZIarsxm+tr0NO3Ep0Gt2qZQRzli3E4K1gNFCW6YAmk0FmzNM4eSKO7LC03jQKbnrb51Z2UHqCIkzd7tgCSyyQvSqGZC30/UCffu0/D0lJdK94jToNsrW4IO/hjouOn2eu+Z16aRjmaK63wyMOjWGMugQP294xovcQ9dg1C/z6AFMI4rpuueHyoif02hExyD0ed/131KQgLvX69eR+wR0qXP9T6wvYfm6ruUYAFbRfQbYKElBbABlXIWZo7/M6UDw482dbuTbEo+l2xUpO6KtyMzhOom8DJWjWba2S5SLAmRyZAuCmTAsJFV7PrfQNYOd/MrIwk4AUwMgRmkyOcIhs+Bc9QJOjCUAGrok5Acyp2YzCk59MwH0QmSwri2oqmEXC6g2Os6KEJzfWdGCrULbZj2dFAB0ZlBkLQ7i88jj9YXfjeoCWnxmDoT+iUjQ81asZxqnyylJG79ED73U0OM6cEcbA/3Vf2rUzuX3uud7tpubAI7LPcKkvvRM3JhVPHOsBg3+Huun+Lmb2RmHted6sYIsQhVH+IaezhX0YqcH2e6ZlRV4+uL+9XjX9Wo57GRqbCMda7Mbf8WuTL9+iNYdSktlxvMqd7Tv56uQ+jzSwwEKa1B2MoENiS4Yrf0YkN3fyjoHuMusNdLOdWvpnn4wvBfT4Jh+7G/5eX3sOTd2N2wr9ZWN0dghZcfrg+vCKnm3du7GofzQlTHuBF/rCL4BHMfh3ltSrpJRx8RKF8q69vSUrdXlrnwfA9l/k/v0SDjMJuZlhR3poJh+h/MrRbvGo0yAq2RXb53oy47q6NlxeaSrDuPlnmJzhMfWIdaBjyNDvhXzZdynXr1dd4TQzar2iDrLEm6CLeemOsCvB5PJBJPJ5IbK8P0wJnR8CoSbgnVK4Y0ojEdt3hHKX2k7jxdyhy1KMSLEvfAYExgYPHfUe+sEenxvbHEb3xtOxmPGAFpOwTrKeKsUkDV9tux8WP1sV+aKySIW9scpb03b1irU7uaYTD+inF9TOY7d9r5zbWSiPKy+b/VC6gjK6NKzN1MZuQFZNqqvXm+fRWNLw7+BTolZxzvrFmDD5+Lrw3fixX9klxpVduOyVimq/iwai5CWefh9R2XxntFkrK/XLECXnlsnPweGlV47B3J71Phy2GJmQHe9CMiR64dibL01JvOH7YqdWeNNu6k4VDlb871j7zGhM7LFg3ScxVdvXpZyRkXloIzOGDDo1LFrg3mgJ5MP42mgi9Id8qwzgizJyVDmgMFIjjXwvoZQxJBHXH29HaeM7ogC7j8a6zNrjQeRQUdrRuvO+PWOG2902sxrFKrFtWratd9YkGVoZbFJNWa6Rq6NGLXdGbNxf25lNU7oheyQGvTnGIJO4973u7b8eIbjIGj44wgu7sf43ooxJpLo6zgCOtzzxmmWdISrgiz6Lw1oMP59iM51WHHdxWEF/toxdYshjipzBjJt1LE/9k48Lt3r43qx1xnj636Ix9TMkY4KgWWDx8bGGoSQjq4XxOWzMDDAfuHsHEzijABgfRq7obwZaagvf4Q/2ckF6ZNI1wAkfa+xksIX7nxuC8BK2nDVSiBcriy2dIVZ1iDPDdpWu53C1MskowzDB8RaJqFxJxfYECojOygzbWAy1TnACZhSiynVshO8qKQvygqqmkApi9N6HxuqgSYNBYWJy+OrMwuzkYPqAjiYA8YAkwloOgFPCmkjAe2UUJ8gZKWSHdtsQfMKxdU69AMUgTVgcgLnXfAKNy1gDKhpnSyTbBubWS2ySSn4HeBEwtuq8Yzu+sfI7lK/q9unV506D/OJfAEA+JOc3a51RDuv5Ycz97dzKhIBUIDNqJ/GOnaKMoIcCwZzQrdbNshE97hzKrLivvx3zgRvlPd0N0qTke5I7IKmBvQ6lFtL/L5GbnR2DK9sUjhWoscaI7ph0O9C9MghOKp+sXb+6dp8mPp4lLYsy5kV3xLGgXqPhvp55Fpc5Mi1cHmg1/Yed/O+8ud899qCQEeeNsMxEBENREML784J9ItBO8hpun6N7soMzXH0DsUosha1zkTetwBlBGRC6ypkxen6S3ZRy/+t1bDxwmHAO9bxichO2QHO7vgW/xMcv8aCjQXFvOHKI8XIMou2jfuUom8B9Fgww5AOYp6KeXY4ttG8EQfLBCdbrxzqxg8jtBiXOXY5lg0jj/ZpTCofW1uMBrIEebS6/puGEZY7toF6MK0fLXjGv3DIc2Ode8w2HdqosVuHycsR3QkYrFmiso7kqFoj+kbbNaInrSr2sMeEn0eOSvPfE9NkpKNR9Dusdan/blwWUZe1CMyy6zzck4YQDVf8Awx1Yh75WffuyHw6LNfrm/H/hyLmpTVyY9kGvUyfR7XZHNdkOoajlnFkmXCD7TkObuTbV9pQbrT9kT7SuxZkAK2u/6h1j738rZwrrrdP4ml80OQlHS6WLeg/y+v03FVzSdTnh9LuGN+uChQZvhrrHEeRxzeBZw/Dt4wUng6dZKTOUfvSQO84Cm6qA/zixYsAgMcffxy33XZbuP7444/ju7/7u2+8gpvZ0bECclwFb12Z3ypCPoRLjsNEPYV6RVndP1i7oDw2grBfU1KsuKz7Jn/PRwRhfOdsnMZuJcOuqmfAbKv6eW2Em3sgOOgOW0StKuMZxErDLY/NFN8CrOi3tc4L/86N8KQrY1QBvcEyb+j9MQxn3MP6ZV0x66pmyE5qBswwXS/gUodz/4zSqE1k+zKoV98ob3qrAoGtmPr9O+EcKUB2XBhIKs3BWZHhTDy3Q4kswQ7OlGL3XaqBGGVbEutP1AzfcOXKt1lXf5A9niYHkdqE8Yl7SQn0zgj32d7RMNgAEhUwLDAq1HK3oyjIS+eg8jttVkZNDSu6OYhl6PDbe9WvqftbqTCOGj9HH7yxOnjMQ+VZZt2C2T/qjAt+h+3KBRxT57QdS1M9LM+1Q651tBg7miRtMS0ZOMI8Eac0DrtquucwHH9Cb1dU7HS2ZGWngTPYqqbfP8SyQ9Eo2RUkDhlpd+yH98ZgNr4M6pXRMa+rx8juT0kHzNiYVmjqTAxDFtBzgq6B6jbgO3Yew1Q1eKrcxO58KkZylwp0mrU4pw9wx+QKzm0eAACuzmZQraRbtjmDCotzxR5uz69Aa7tMA5rlxxLQUNR//rxcAlkV6CBEObsuDbu6vJPSpXFncNi1SIplJ33GItc8LMLuSi9Lpbxu4R7O/NPR+pMhqWHVYLAc/QRNLabRiEZ605n/puHctazsOYv94MEj8OpxjLWHPjtkMuo/P5xjgzwIAxbNF6N6V1eOp1v2k4X/9Fi0rBNmMa2N6Qax7seQ1LwZw2Q2ZCBgBZCWcxoBN+6ELluDg7UE0izn1uYUHJOUuTSYrg4e1jvWTle+ap1vx61mVc0u+wJQ2wxVm4lMKGtkezUmVzNUJxV2JiVeOHscBgqZsnjiYAuPXysAq6HdEQWKJP05GYBbBQOF1qounftC4+r+BmaTGhe391CZDA9PtuEdxxPV4KSe476dL2Nvc4bPn7xbUgRXBpqAHVViSgYKOZT72Jw0zp7aw9UXncfsqQk26wZoW9i7zuPg7k2AAV2JgJxfJBy8qEazWeDMxkwI5qmrKBrnZTIW0ApMpwEU0AdNp4SwFX2pbpAfWDQbGllucMf0KsymBW9vgDMFM2FM8xYNA9lB68akkN2gC8bkGoOMS38OoYW7i6cwVQ3O57u41m7g90+8CM1ODpsr6FoGU9fSt21Dku58yjCbshPVTBj1toJqADPxtCEZeoDh2so1STHyzKDS3VENnDn5ljP0xMC4DECSxp2CuJfjMDja+Y1wBnhHvNTpr24HeJxRCNrpoxTxIEU/YztDfcbnWFcMO8BdYMuYsY+jXefo+CbwRoxDvXorELy1y/UfZkPol+Nf6v4ODpJIjpKb3sLOe7NcOHvvJTqdJpw5Elfp+zMeg1Bh1x5lXCCDC0jzYxFKi+U2i6zJFgxTuIvuSBTJREGg1skKRz/s5lLP24HeMtupTQYgHQlepwspZTHJWzATKm1hfYqLiFZYAWrW4q6da3hEMXabTWQLJ5NdYImuLHRpgUbjmpmhZRXOAOdW4dJiEwdV4ZxRIvdshkCHEvgi3+371BaExXlGs8XI5gpkWIJjrAUb0z+uxa3Rstxga1ahajI0B0U/ZTLkqJgiayW7iD/Gg/pj4HmaMwZq6ros3lHvaMk78XyGAGLR15gAbEb9HdHDEg9FdNrREoc2sRuDTtGkLqvAME17DEevjJGshaHj+jpz7MS/Efg+DaW7spVv56ryR+TLTbObDsodxVAnXFfeoKyxrj2suqPUNSpS1+lsY30caGrkpaGc5Y62Yz07ZC8Y6szDeqI5ZylDXURj/ogXyQrmdMtgR5CU5HHWBS83Q4Y6dG3y5B2CCsM8J2sKZgkqhCE3p7rbbvc3EcvRJgNdkKIfINKF42nL3x86r4KO3NmL/fyzvMbgaA4Z9Oc6rLsftSfQ2bD868Uq+jvm9P+04NjRNWNldH9etzNxzTvHKnNV3w+fOcone5ngmX1UiK0oKKb9kWJvSr8fFX7+VgjZA5eqDrzInWyL+c4tCjkcqzfeyYHnCcG0tuS7YJFv3QJ7vL0ru2eMT9fxbk+vWNZTeu0cq+sZxFoSi+emp4mUlhtwYxXfVAf4vffei4sXL+LDH/5wcHjv7u7i4x//ON72trfdWOE3sYOXbFMjZS8N/Lr6n8bBXxu4GARH/ALGmWioII4JpCXly0mVowj5wxDVd6TJxT3TW5P7P1jOqCRFvcVS7934Z0XZh14ffjetHvpYCV1b7hG+PZL/S/hWRw6NN8ZX/i2uhwHQyI7445ZzE9tyXR1+k8Zo1WTUc5aw24G3qikcdI0eey+xP8V/9+8GB8tQkYtpnv2CInKwckfL8eL7UHgDAwPd0QRuJzChc0DrzqlCFn3Hb/Sx5BdZ8eznrC3+DGHrDNx+p1X87fF308g3hP6JZNZaeTAAxWX3VrldPy6VNTancfd7aV6I+mQpO8ZRMTCMXvfCY2mxSVHbBv0Q6n36EAy04YK/OOz0QwoarsH92Iy9N1zUjS6A4gZy7/6SqGL0+XbQ3lDH6MIEGHNQxr+DbIqMJJL+mpbH2L0nCxO/k5S7XQCMYOQlYiiX9iqMQ7QDy1/T2sqZcX53oWWX2nz5W2RnJPlTU/rtCzzLQRaohgDN2Cwa7GnjAmUk9W8mGxzxoqk4wD+m7oUxCtoAaFqQYeTK4LQyOJft4cz0AJXJcGViYUstxlwNUGZxKjvAuWwXWWaW6V0BKrNgo8BNv62sWFKga+7IktHt+CJ0KdDjc5W984ABcYSL0d343elR9SAJMmAmtLrTteKyxOHd7+9Va8zQ/hX6UaCNeO5fV87w3xEaj9u1EkfVbdcuWpcr6BaLh8iuw4RopP/2dqyGsXDBTdx3nI1WG8bnmAtJkhSYxu3oFfpyRlEfGUYEQx1d+OIVALbuTPlobiPn9Og1T0XzuX88+mZfBrUAMvcNDKjagsoGqgUqk8EwoWgYXNdQiwb5fgtdaezkJe4qnkLJeajz8eKkpAHOZNc0kztOwVlHLZOQiNu9rCqFapEjz1tcmIkD/Cu5Uz6IUVCLHVXijuwqcrL4v7deD7YWZAyIFKbUIHcfpcl7nIALG/v44u0XYHONjYcnIKVRnZ3h2r0augK2vikph+tTjG973uP4UnMbeFoAAMy1XdB8HoL3SCtkmzPYiYYqG8CGdA3yuzXQpYGuFbLM4LbiKnhqYGfurHEt5wY3DOhFI0fNQBxl1AL5vhEHWMvuGBqFO/Ir2FAVzuld7GUz8GaLdsOnl5fJKSsZWSV9pUtHxAwoxWhzi3amoDIC5xx0vC5NsScS6uS6YmTayHEAjkbg0yXnFlnewmTKHYHhOppknL3xPqTTdrvSwhEOMRF6J5flLkNIrGMN9SJHxxS32X3AUJ8MIHYBXz6QNG5CdCwAYzzQNK5q6eJAfqzDyFp6NMhuzft+/UCDBXNQ6Ue/faRu35543llTPY316/B/l0Y7yCMn1H0mg95RQXCpviuh9V5bvBPcyA8AF7Qmc6llhoqOpPCpzUObenqZ6E5aMwptwICTre4BjgIPCcgKgzs3ruKgLbBnCLpiCShxx0NQyyITmxxzU6C1IrdtJu0+qArUrQ50749AsZpDG1UD6FKyaiij0MyA+UXAbsgxC8qwZMowZqAESBtJMfLcYHtSQRFjl6TfY9rPlEWhTcgk0vFSvyx2Qcfxepj8gFM07r4ZXnd0cwUprx/355clRHQ2+gyhW5tGtNA7/mpIqzHNEJyMHiH0NQGj6zZRHIobeZcHHXIclWHFs4MS+9VE7zKw7LBdh1hmjymI0eUxGRkHXNzwcnPwcWHzj2+DoyORQWq5Xz3tjswVQb92MuHQPmL0bBNLn+btKhYh2CzoeBHdam1D9onwjp8XuauHTLfkiOcwAMEBbplgLYGJgEqFISOvUx7ySeFDRgaqpyvE7Yjmz16bhs/4v6kvL+LnlhxsqzBclMfvePWVuseO9N3fIsTq+c0pcM29NeuPo9qUrodHRZauedHresct/AiP37A9e0SXHKvjpo7hCvi1+uHPDXSmgWgeO4Iv6I5xJp1V/Ob0iZVrY9/M4c8YYl6Nn4vn7rGuv54OXwrOYYQj4nB0Hhi+3/2Ppb4efWdd874FwuhQ1hqbu5cKubE2HNsBvr+/jy996Uvh/4cffhif+cxncPr0adx99914xzvegb//9/8+XvjCF+Lee+/Fz/7sz+L222/HD/3QD91YS28QXZTVskNtOcJzTSHrhE2sNMWvHAFPs01/CcG4fDPasYZuffkhNf2o9tkJsTjie7TN5F+Q3UzkGP+4TLtKiPsFx00XAtdb1nEWMM+kBrUON7QIG7w7NjldT3uus009vhnWH5c3vOfp7biz25ICFN2Ki1u2G4x/3xEmxu6cWPQWN75On92091q0GFtaOAzrXDXRBXncV5x65XlHm/vbpxUOzi8ns72DjZVbpEXGERB3zj+/cIvP1IoXlX7B5Ha2GUY495hCtKYK8muUrEZodqgMLC123RlhY/K5N+7x+DO63Qhe7kZ9t5TGa53CES+AB9eXyhhc47HnhgtBXnG9V8g4ehHUw7aN0nyk2PohW138Mg5T+NcqddEzA14NqSSP05h1zw4HLOKHlc/HB5SiW1D02uV3Pa2QX2GuJDjeHDxDGN19EDsbgmGCxAjLFJ0RHBtZXNHBQMwQ4/XAuOrLjFOks0JnlHRtCO8Yv6vR7QAnxixrkGUWta/TyA5GMLCtF5hSAwuCabXIDmNAzMiURU6EbbXA6WKOeVvgqxMDW6iwmynLDKbUoICBckbontM/s8gKA9MCpla982olnTrBZp0g7pEowWXA4O6iJVDr+5WDHIUzavm+8c/6vg67PrRL7xr1bc+Ifxgd93ibem3tBmt5/Hjk716xPPLPYXP78P7g2VGHz0jQySjGdICxqS4We77YoUwb8EYPo3KYjq7XhG/C8jtD2U/OMOnO7fY/WsuOHQBgZhj0+Q0cHT9po0qco9GqaLzin7iNQ1Hi5kTVil9XteJgpaaFaoC9doKyzjHxzpmmhaqMOG6VwbYqcS7bQzPRuNbMnCNeiEu1zvFTW6H1llDZDI3R3Xe1BNsoMBO2sxIzrXvOO+OE1pQMNsiAtE8dw2itwgEXaFAuDcfztp7CH951D2yR4dSZGYr5pjhqnczJ5ga6srA6w/O2LuMrW2fBue4EojGhLDaAmpfIr2ZQ+yWMGTiojIFurHwvMU7qObJZi/rMDKwIZmYxKxrMFYDWgiJ+VS2QzcUBDgVY973baoFtVaOkBgUZ6I0W9XYuz7Fk6dA1Qy8sMu12ZmqIE1FbIGOYqTvj2J8VT53e1Z3V28kCn0KZiINOyu5MccqsGO3jICnlgh2zoU4oMpDcTnJyvBGfUU8WgInOJPdKyJjxKUZPznTza++el7E+AITGdcjw3QzwOka/kfXWOgyNhMeB52WvZsRyP85U0tMLh4K5f8mPU/f8mqZ58e31CEtCK9z/LER6ByDjrlp059v6h+NAH4bItIzBkaM82BI0kOVGgskQ6VehwQS2EsC0mddoWUEpC/GmU78eAHlucPvkKh7Jd0Q+1K6N/tsMgyxDNcDVdgONlcA7m8v9qsnQtkqydkRtCaoCu8DgxjnAWwagZS01MbB5Fjo6HAvgfnu7CmlGrg1mWYPG6OWBIQm+K5Tp1nOhgG5eCAEJg+wMY46MztbUjbcENS892j0f60w0HJd4iMTWNLQLBdng3l/pyBqb3zCgvajd4zePgJE5M9YRh7229L3HrO56caiIiuXDqjWivz0YuGOtqeJvjuta18DBOi4upyfbh7I/fmfFvLFyuFl2S8avx/Js5HEAbhodc5RHstirtaoVmWjdWsQHncCtA7wDnP1JKcN6uV+X7CSPPsjpjNYSkBNsSDnhmuTrGP3+wU/4zmFmqRH56r83Liu6HkjA/zHU24e8OzZGPHJvbD0+bNNA9h6KsbXLGD3eKA4ra0RWHEVUXY9Ii8tf20+HlNvTLY7S4YNHjtv2I1Uz0HN4jE7X1cmHPwKs0BkH8/F4I9YVOlLJWMWeyVww0HDt2+Ppsbkrko3kXurNs57vKaghvfuj8mAEvfEKAiF+YHAp5rs1XbZkoz/ie716BsOzZD8ZewdYHtcjC5q4rPWEP1riceTZ9bwTz1189FeP7QD/5Cc/iT/35/5c+P+d73wnAOAtb3kL3ve+9+Hv/t2/i4ODA7z1rW/F1atX8T3f8z340Ic+hOl0etyqbhqWDJwxhuN4CH0c1rlLjgj/0rDOm61YrmKeQyXhIcX6PjjKBHhIe+JyyBXOY4wZl0foUvWOFaijAWGfZrxbHPHg76NG8AWB6Q34rn3XO1nH9R0LR+HkYyge1yPvVtXTK+8YQieUddy2jNGYL2qdY2ddG8badB1jvG6x7O+HalYpGmNtGtwLTw+j07wxDd2kv25BdGwMvi0YgMYWPQxJPRend6b+fb+j1afEGa3Pj4X2u0lVcMaIDGUxNLn7FnBpE5Wk8IpT72qWFOm1M+YYwADBeQ1LgCF3Xp4YmVVLYLeA68kIdgYmb9h36YK5QWegbZ3ffEXfh3nEf4czdILhjLFdajx2/eS3rPbkqFf2huX7HbTO0RAcDhTJxIhOuhfH2+vRk9fUVyxXPb90P27v2GItlsmRshWzSui/Ff07yo9jDV3H72Fs0J9brkdA0Mjf0dgNZfaoNIsU9/j+Wn10yLerUqD7MRnRd3qGBkKX0nqQhioEkblnlHY86RxKns57vBT9VrkNm4ckJa1UoZTtUtOCnEEXvbErshZlVghvRruwet/ac3zIu1ZH3+abYiHO79Ki2JMdikTAudk+njzYRE0SFKQqID9gwBLuzi4jJ4PWKrRlBl0x2FjAMjKy2KAcd2RX8ZLNb2Azq/DFnbOYu/TgpBibsxqns32cUBWmeYuycG1z/VlMG5zZOcB+OcHuYlPklUuLbjOgnYjc82fsspcjJPLL5rLji5y+JDvZIEZsJbJRa4s8N2hyCztht8vVn5/seFAxUFgwVBgPL7N6gQkRLfV0Zhr8IHrP05GXdX4y82cRcvdar7whBuMZ64BLc81xWNnLoRBAMcKla2VJ/37grTEGjnkuurakQ0fOsqFcYRWld/Tjh0F2GCcTQpDKUB4HWcyuzUIveW5gWudIcbt089xAKQtNDMOEmjpnkT+2gIxLvau6OsjRncmcQ50RAjbYp7Z1xhLEfUYUjiwBAF2SZGU4aMB7+8jmjCfm2ziYT3C6tOCqhpqXyDKNrJxhU9e4Q+/jpCrxgvwJ5GTw3yf3oskykJGUv/mCke/LVihVTrDXTlE2WfgmXQF2IWeAP3/2JADgg5PvAlMGIsBAwYBwQhmc0xPo3IjjhBl1neGx9iROqkVv6DUp/IWTnwZeDfyPx+7FtYfP4mR7UnZEN5J1Yvr4HLSoYSdn8JfPfBJf2j0LO90BaQ02RhxvgdAI9rEngKeuwDYNuG169XHTQO/XyOc5JnmLF+RP4LYz13D1+RdFLp8ucWY2xyXNoLIClApOnqy0KB7fAyzDbk9BkwxQCrfrOU4qBQODOVe4cHoX127fQHZA2HjSynvXWmR7NVQzQbOpnM5Dch77rEV9SoNagtmwoNyClQ705LOAhCNttDjQplkrx2HA0W1hoScGedFiWjSo8lzGtmKYaNe3rt056YXIQtIWKrdQxLLr3xLYREeJtF3qc4pTdcdZNkL/u99u7vX6b3CWRfO6X++CRO4JH0S6oZeBjpdiHWzsSPL+PyPBaEfBQG7JNafzDuQZ9/5ZIVOGcm1Yl5b+Z/JbD1c/umTwYggdxXXEuqT7Pz6L3htLKUNnf3ZyLjhLyZXbAtnCQtdRdJoLJiNPmxbi5J60aAyBle4WAwRwztic1rAMXKMt2Wnpz7kHZN5uFbS2uLCxi9pmuHywgabOJKgoELf8OrGxwGs2v4Snmk18oXkhJnsMMyN3FJXLYlMb6JLwtYNT2KsmsFMObS8PCtFvDbk0xP3xYQC6luMPyFhQY5GdnID1BJsnStTTQr67FX2nf2YcRLfIDDYmNc5N97t7np/ceMzyFpt5JZlsXL/LGsh9q89iU1jJhqM682U4esN3cxzAnEkRZGV3PGtHUy6oeIy+ujlvhF8cPfn1QBzw6ddcIbjY8QHF3RLN173jp1x1o+pAmMhXtGmsjVGQ+qF2q0G5N+KYWsJxHEzr6ozXnEcobi2GDmdEZTJCAI4oUmsata69EQnEdQTZ7x7xx8CgHbw+oKtRe07U5nDs0aBtQyeaP9YqHPVBnY5MLrCZDEHVgM0J7I4g6bIaSFAvOfsr5yyyw7fBPxYyrbjm++NIXJtVbjDJG2hl0WYGNeUwlMlRTugCKtUq27CzeYV+GfYX0KVbZu5PScO5KCaqEbU+VDCc24e74+P2+b/HaOQ6HK5xecOAVAZ1y/KBCAZuIi/7Tlz1vUvPD37fZKwNMPL31wmz2I56PaqRo5/rkkkDubBcePTMSPuCaWqsTSN1HLlNY/S/Dl6YjfTfcmCjL596elvv1Vini+nHPxz7fIZN8XYI/y06OtbAX3MBi0v1xm32sn/V/L/U6SPXRhs4eM7LTKIQeH0kDPv7CLR7bBkwRgs9PaT/bCwaRuXhjc7ZQ0R2nWPTrMOxHeDf933f10V5jrWJCD//8z+Pn//5nz9+a24EvKLjlxZuOCKhHlMDXFXXqseje0cVnIcauccEXzwRrKrnsIiOSGk4NG3aSFTPUn/Hgh/XwZj+nVgI+HGNFduBkjAckEOjZpYevHEcNg+P3/TtiK7dSJvHeOWIuBmLj9EyrndSGXtn7PphCPQTXVpXxgi/j/Zn/Jzjsxvqw8HER25Cp6EMWGVQX4VjyK9Rp/qQ3w97BhEPHwIiiAM85vWI3/35b3HK5aXUV4TerpLeuWvRArO3oLIdn3h9iKP3QxmD8+eASFaO9UVEAH4nwdDRuzSew34aPhP1TdDd/DOrxuE4c+Hw/1Vjd1SZMkZvqxYB68rwf659boThhvWvWgDF88rQoHuzEayBa9oz0jQACJbbNfJrlBZ8QVhxz5c95KVIrxgtj6RCf2LBqGyhbmgYcDsKfMHD53lpvOIFlI53N0ev8KAvY6cD3Kaq5e8FyFgoY8NORQCY6QaZ2xUIQHZVOSPrlFrkZGGsAoJzRASEIgtNhCm1OKnnOKEXmOQtysIIvxKQZ0Z2ShJDKxvSkPq6ssxiK69Rt1l/PnELy2AcBtx4dX0R5KzbHcmOxkJQjNvdQYo7WesMVdQuDx2c4WtIa7Q8BKE/R7FO/hDGAxbXlTlyrTNEr6nL30e//aPBrFFdPcfLUr1dWUfSs0YqHi1/OC8APQf/UnvX6eEjOJJuQrJTmJTtznVUCM5vpSxgu908PqCEGGAtQWY2NpS61Pt+fl7S7eP2D+fDUL4YW1UDoLVAKzvA500O0yooY6XStgVaI8ZZspgQoNBiqg1O6jm0ZjTeOeYC4ah2O4FbQmUyWKv6R8C4b9lQtTTNizAGGtYwrKABZNCdzZ0ZbZPhyXYbd2RXAPSd0uf0AV668Q18Y+ckvrx9Ds1WBlYku6YrBi1qUFUDCriod3GiKDHPT4G0dk6obgc4mGGrCqibrmG9fmVQa0WeEWNDNdgqKlzdlMbmRYuNrBanobEyBO7blQGodN/dFkAhZU8JmJA3LzTYyBtcnkqfinwFqLGguoWqM3HSuXtKWSjNMBMGaUiAodfdQqCNk3GxfuVkJ0WCyNOW1hbaGdPFecxQisKu+l52HcdPyumWygI2yqZAkOfjVOSrDEOH6rhBR6P+BTd/dgxJiGk+6Hd+OI+rk/DRXhnK4DgYpidTh/qBe/ZYa0zXV6QOadygq1ZOIUfRD4fz1uCd3vfC6w8cUqSHMlzwBjE7+wdJxgF3LAlF+g4rRpG1oitQdESUr8MS2MpcPdNNJ1Njuo7GPFcWJ9UCM904pxO7TAtunmdRhFRLOGgKNK2WnZ0usw1bcincKQTe+iMBujYxVGtBjXE8mwME5NqgOiztMkmGnlxZFKpF5hZOw3lGEbsU6Labt4d05bKFUEgZ7eZK6tK193mKw1h63Y8Jy0TjSfoIc2TXHkbIskIYb3Mof6TSNbKBht+9sg2Dvzn67esNCvawTfKzZKs7Sh8csZ9isXZoeatUvSPKkJ4sWKfIrFu7DJ/j9UWFqnoXDik3plOvdw6WWEO5M7pGi2lqhSw81CYVl8/9Z7y4CWuLSB/2u7O74wo6ebNUl69vpE6tGMyiU4TjczwvunrGEKYgXj82cXm9SwTQsL3RGtrv3QhNHvYPDV5bU1ensy7fjNcIK79j1TeOyjEaoZvjCLVx9OXRMctbM/cuVXJkZl9d5li3jL4/eGjcljFGPEepoF9XEMvr5OEoXx6hIk+oK+a0wxBIZtWcs5amR54f+z9cl2ycob7hN4/pk6PlrLkX2z9i2XMkwojKX8Vzw7quk7/Cm66NPfI/qt68SgaMPXeccsZoYQXPjPpyrgNLwUkrHzzCUB5xSG7qGeDPBJYGYFSIuWdxSOceVVuLmTYaCc/US/Q3RiXDqoLC3jVymSGi2XJFm5aUIPbKyyFnKY9MPusWl2u7KO6fIVPx4FOApTHz98n/4xcaGDRRQSLF/eJNyXPe6NAzDMYCcCC8Q1qtkTFdGWG21GAs9+EhSnPv77UadvRzSGNG23udAmlYhm/nEh1dhwLauz5o37GDQ1aUcxSsNNIEjeWQescUloj2Aw9RRPh+kGhFGYgUEj+ZD3lkjVLid+f0lIyjwJNvzHODb/Ft6isw7iP89w55zH1750iOFBTizuk1+D4yLpKeJIVeCHGNvtWn0QIApQiW3c4AZ8AJ56FnDF1YGO12NvrzrbwDrJVd4z6FKjeym4zFct05o1y/+jSDsADlbuFWifOrO2MSvVSdvju88bQbMHT85Rdl8Q6GoQI3SLdIjOWzd/27freI5U4e+t9jO++PA1+WgshgxeO8NIRvMyFEVPeNwO6xqF+O2tLYXjyc70fXV+sUzrjf7Zrnxt4b4bl4eg82KX/uaFzf+mJ6vEXAsgE84r++nB4z2HcVCR1Rd33ks0AQoy6AcGa3/zhPCy49siKGVYPBc8/Zomur7GRj5EULawktJmFnX9s6AlEI6cJZOfnh7SVaDMpeDpA7mzWeN73x06dHJyNihzN0xh3Hq7phqLIBNRbT2kKXBdgQzhV72J5UuDRh2IZ6O4AnZGBB2K8KqH0NPchqrKBwWhk8v5CdpnefeB4eceeAWgbOb+5jgypoME5MSlw+4c7izBnIGKc353jZqW/iy/lZPPXUFrhR8OeCW7cL17odgZ6+PI1Jv0lZSjNgAGplhwc2Ab3RQmmDomiRKQuVMYw7x5jgZKWFpCqE26mvGKy19G3YidmnrXBMhnJyeEDMwbkS7x73PD+U9a4ejsbJz4tBfxrs6Onx04huNyDJJYwtSL2cWqcarAoKOY4zyO/mIY2wSCaOf0cZVggyN/rIeJY+7QIi0MmvgTxYuuj1u7gx0Zms7M5tnBUNjFUoC0lVzbnFJDPItAm7Zq8RuzNoZQehjDHDGoLKXXmakWUWG5MGZVGAM2kOa8j3qI53e2k73TEMYSf2QlL8FgcMtTcHlxVmVyy+8fVTyK9q6P1dcNuC2xZUN+JwJUZBhKn72NN6H9OiQZlPoEtg69EW2UGL7Kl9QCvk+5t45OAEFvMCmz4NsgK4YMyKBmf0PoxjQLIAaoWvVWeQk8EL8ivQpIJBl+Yl8ocu4v9R34vv/7b/hVfd9iBy6qJxbtcGf2b2MOanJ/iD73gBmq0C21+zOPOH+1DzBrh0WXaWAjirG5yb7uMLpwpsnT8He/Ua7N5en6B8SoixCGbrHOAGKLTBadXirs0r+OKFe8AE3Hv6Kr5j6zF8YvoiwFqQtc4RT9ALC97bB0iBNqagVtqkicL3TGFx5+ZVfOn8bSgyDf4m3LnEBrSooXONbDGBdWeLT/MWepMxd2s77fqsVbkEJbTizCOLkLGHtQRAzrIGeW5QZUKz+aTFdFZjkhlMs1Yc2g0jKyVYye8wlRTsBGyITFVa5iOlGNYSjFGwfqe3o0fldchYT9Dcl13BUh/pOJHjnoa7lRndDvBMhqy3Axzdc71jPGJ9e4hV78a6wJgwG9ERjgzyHxN9l7/FUZvHDPYue4zxda4QnCGVvQbYB5HGc8matvnsJcqNox0LhFMi14J+BIhuX9uQAYrd7m9VdZkoWBHshHFyo8I1o2BJhJ3INACFxbnZAWqr8aQS+RgfKaUqAtca1ircPrmGhjW+kJ/DgZfDbl6yE9ERTk8PcEHX2NYlVA3kBwaqVt3c7AJNimvA1584DSJGflIUFGs0bEvgVkHtaeiKMLnCmD1lUe9olHUOZmBaAuqgkuChqoaa5WA1xeakxp7LgBWGkTo+AQF6YrAxrbFVVNjSFa7oVnZ/N6Kks9PtNvIa21mFLLOolOh/ukRwwrUzhpnKUTBKW9RUdHqupzc3H7D24xONp5V1GznZAM1hF3qnH3ZjsWTLifklJkkC4qxaXfBAR4Rd37jnvE2OILPtUIfHSrIf1V/Gn+t2nofWjBzntbKOkTb5T1grCsba01v8oL+mi+o6so7kSWy4XPF6byS7VvooxhySdtAGR1cM6rJnrWpktI7qYSDfvRwJdXn9zc8bLG3rBbUOmh1sPC6IN+z+Hgv8B3r1D9sYz18MCcghI/YP69YgtrAuK5cUmGkLrSRLiiksuOmOhVE+oMxAgoXYZTLJ4l3kcgzE9qRCYzRqI/KujcbKB1Rmfl1H6JzWkR4c5oh4HnYfFjLy+XeiMYnNIXF/haJG6FzmjW4gmACK9ey4PcNBW4OgJsRl9CqOihiOr11j1/fPHBOH8uEK2TBW97HtufHDxzL+YFmfOEIVAPoBHr6sMbkxUnQ/AII6whm2O1R2nIXgSJuuB6PGr37ZY93GBBdQOkKTUZtYRYF8o885YeX4x+tovSxqrixiODkTN6qrnxTLvD42N/k53LXF+GB+5xuK7SO9tvZ4yguGke+4AXBcppdHvsuOSrJ0TBKP+W/gm4if6f1eUU7v76PQ4lHK83NY3F4c4fscr4cz4o8jVyI85x3gAY4qlhSiMdDI6I0oTkHx4f5zsQH6OO2jsffi8qJnu3auaP7wGiImGt4/jDqGgn6N8jv2+LCqMAcsfWeXyvJYWJpIXJHE3ZmD4VxSDJgefcYfgL3yOazHGwLXfWz8zqo+Ho3G4fX/995H51SM61zbpuWba/WIIyszXbmdM/OQd1bdH12QjFyP+XDFK9eL4+ghNxUxc6xqQ6Tkr+zi3kIgmtu4u9d7FhgvbEy/iXloQB9hATZQmoJzgKNG+11dqhvBzgnH8McbjMljSXfuduGQnBHae5ZFGcqybreTtQo1oWfIYJKUijozMEpSYPrdRiF1rIXs3GxlAcdu9xc7oyezU5LdYlM1co4lWYLKZSVr3BlXsnvM7eweUywZYTE9dPLGC6FuBwYHBW6071nOAwu0wt0YRZnPO3iF0I1X164BEQwWLz1Q/5mwQz9qMg2+vTet8YDdh/0UvxyPefzSGpG73OdycZWSv6qcoNgHYXcUBWMFBsp8mLNXWmjGGhU1I27OYL7tKfixczDiCfkdzcmetgb1henT1+doJxxfEOpAl75aMZS2sPHE4w1yzuAJAqimYFSZ5K2kECeENLfWOA+Ycs5vvzM6kjNM4rjxDvCY9vyPTzsYeC8yjnLcPmcQp7IBcQ19zUI1W4Cd4VR+gO28cmmfuQvcIUZBFjUrlHWO7EB2aoLlGUUMBcK2yvA8qqFxCS/YehKKLFrWaK3ChekepqqBAnBiskC77Qzv7niHs7N9fPfm12CZ8If6Tuly7yjIGJyRGLK9LIvoJKQezCyUsrCsOwcOMYpJgzw4LwGlDYzOnNAjlwadpA9JAo5YibwLdGZHaCd2uoo/vU+gisJ78W6znhyJ6NDzzPGMKCv+vg70jVRYZlkveEYWmXzchrs+YctdlgI3JyzV73iSnHEhGAciubk0Nqs+0L/XO2oEHW8TQqrpJleYu2AQKiwmmQRQaOUyIQBurhXntOyaJJBlmJZCu7PcYLOocS2fwmYM5VI/yxnMOqTypYimfTv9jsdsDkyvGmQHBrQ/h6kqTK40mD4yRb4PqHkNa4zsAG9ascXAYkIKOTRy0jip55gWDSizyBaMyeNzqHkFXNkFFTmyg3O4Mp/Blto5rZxxJZNvP6kP0LBkaBAdQOHRcgcbqkY563vYuCxx4isWe+0mfn/nbpQXDbai+2f1Js5qoOQv4v99/qvw2OwUNr+Zg/7wC7B1DTBDbW4CBJxWBc4Ve/jcjoI9vQ2qa2DoAAew0srCVhxbrUWuDU6qDHdNr6A92wDEeP72JXzb9HHYqQWMeE59ZoysNOD9A0BrULMDsjkAIAf1HPq3Ta4hP1WhaWZCQ8Y5wMsaqsihS4ssF5ortDirT8xKWJagorrN0OqIloyTGd7Q7oJ/prpB5o7MAIkTe3NSI1fybUpJAKSqbMdjpKBqgsoAMEFpSdlcZJLSvzUaSsmOfc9Lvv6wfvTHdOkoCDDSgX1wI0V8G1ScePe511P8OciO73oqSJjLhJeOZDyLVAyC6zs3f640rMe/h38fAo54tKevHdJWv6YPx5j1lJquTGIK4+fT2/aODhrKR3RlMdClQA9jOdIW57QBEOQhMUM1FqrtdB9qqTsX3FVjJxYnZwvMqxwVdddZAWpicGZygMpmjhf63aRqKZcZuK24isrmKBzthoKIJTVxZnGqWOC0KrChalmXzFuoNu++z+3czvcY9tIEvNXiwm1XMcsbPLm3hcVcAvyyA0I2J0yvWkwv1Zifm2LeuICWmkGLCmhaOUqi3AArYDOvV56p7ZuqM4ONosFWXmErq1AoI85oH0SgZI6b6habWSV6nAsM0JWMZ7vB4vAvZL5QilH74ChGdzSRlXWZzZfXXl7nCUPt15Nu3ROciF5nPIze4/VRvCyI+TmWBV4f8zd9CvbDMLpo6bejp5wM13F+fRG1N8ToDNs5Vs+YLhavscbkhv871pmwok+Po8+tKyd6JoiOeM051sZV7w6fG/vW6Jnh2rZfJoVHvW0myH3neAsBP3G58bj2ZCj1/49otsts549u7NrUI5Fef8Q33TsukIQsJAg3d3TldEutLHJlkWUGttDgUi3J0y5bC4KeJGnXCayALDPYzGvUSkOrDHWrMffzHMkWAaUsMh2dZxW+f5m/fX+J04668YiDAoZz0RjbxOvlGHFgmy/Dp3RnLDmi19J8LBcOkzOef7n/PFPkdFzzat8WcEhdY+1dRfs89vAIjiRMu7p7Tx5rsRe1a217jvEslpt+aJPG7Dmen4/xOfHYxV04assfrPeWr/tCB21YMSxLQUCHyW03rw2PGAuyhgB/XKW3UQSxM0pXrhExf3FU6Bh/uoYPj2EAuSMc1s1xvUa7bzmEWUbpgAb31433dZB2eHWge4SifF9zRD/H4D/4x125iH+vunZchDIG7TpqmTfQb0M8+x3ghxDZys6IFQg6wrPufpBRjgGHE9pqJjpEusUzbES8Rx7zMaHXq3tVvdGPXf6AUO4xhPOhjw09ELESPFDGoEfK44GSFimXPaFCwx8eH/fwf6cUxVExHKKSaHmCwDEUmOFzFH38WFCDp4O4rMhIEn/CaF3Dvhhr31GF38jcufK7h4rn2N+HsEKoYJ02cUyFYfTddUrfuoXloUrp4JmgqRzyHBA6duh7XGoesGzcivtkTHEgwBvGwiIhauIq3We0mykKKIoaGNbTYbHV3Qh82+NR1wgfheehRq5FlRBHtDtkBq8gkUQI+11nVjEq75gJfCRCTrk0yWFh5pSynnyxkHStBnIGuHZO8Ijv5Axx7qKLgc6oAfScS2EnQJ/tx+nM8Wpo3yAyrvvuPg+JEYkQGzRjY85SGbGc9P2zip8HEBqSF0P69rj8MfkwBKPb+Twma3tyfHDPVzFUNIEukwf3x+tQHSK+dgR5s9KIQ4eItCH9jsjsnvF88I089v4q+RbxR6/cYVsIwZHd2/0Q9f/wm8g7wIdzVzT3Soo8SWtpXHmeLllDnLIAlJWdU4YJk7xFZhXmfpwNoW10l2ZPs+xIcAZX67PCeMefk3thJ3Loh+5/drvpJH05SYIEjd6ZoKplUNO6lMkGVIrVVIORKSOGnEzBFO7sbfctFtLerCKo1kKy0YgDXHtHG1tsUIsz+QH2pxNYVrBMODvZRyE9he2sAm+1wttadmSfKEqc0fvYyqpOXJKkoe6lQI950G2hs5qBwoIKC61ZnKpeLGlgc1qHlKyWSeRkCExCJEvdCdLOOAV2AUPuR9Jcd0d8hHOn/fl7QznjP8PQSp4hS7LbM3YSeDoKMlQCj9hlHwh9EJ1ZKPpvnwl6KupQnvTmr+ilVby9bmL1Mi26tnJxHM9FBghZpP3cFM9rcRS8AiizrkwFb/wMZcXBCO6DR1XDER2wO5Nd+lFrxkS3qDINLizMlKAKIw5wkhTUyj0r6YLdfGl9P/g5iwHNyDODadYgyyxaz9/xjoyxvor1BhYHTb7XQs8bcCNbMbP9BrMnJsjnAJU12DLYyA7mXgpjSK6DKTU4MSlxdWMDrKZQpaQZ56aW9OMVMF8UoEp3wXUKoIyR6y4Iz+9M1/sKn33idlza2cL3bD2E70L0TNNi+pSBKQhXdzdW+kG2VYN7dy6jbjWazTOu0n7bNRFOZAvMzytMrm1hY14Bjz+xosT4o7VkZ5hOYXZmaLYznMga5KRxQi+Qb9RQinGu2Mc5vRt2b8BaqIZlN2VjwS7tM8LPclUT1SIvWjS5BSsldKUJyDQkaNCllVaEWd5golts5RUA4BGcwDWrRN+IghdhAeWy9rAWdSdTVnaMZRJAVLid38rTJCL9ja3TQ2QOUq2Qp/JnjypJmw4YSXtP7NJEi1zyTnfAyUXABQJ2etiY/CCgc9J6no6NdipKLcsMVqpTAKJ5Ldb7ujmh42lGVP9Qv4tlwhBj+sI6uG9dF6S9pGOuqBfkv3/QuKGw9vOLm7PDOAyd+oh0ylUfNWy3f14hyqqBzsTjZBosyQ7ilqAa6skEZIwTxQKXixlKd1w4u7OttbbYzCoo4+kxMhz7cbEyXxbUAgrdmbuuaVYD2GxRzBqcnexDB9uGzLWyPiEpu7GgqsH0qsXsMY3yXIYTzyvlfHGjYYxCOc+QHxDyfaDYM9D7NbLFFLbWALnjCZoWMAZgmXzJArXVLgCFxb4EwG+J9GOQ5wZbRYWZjo558PwDBF2j0C1yMiiyFvuFBRkl/WoA3gLszIKmBnkU8ExG6N+nP5fMNgxVeB3B052MozIugxCA7lgFCn2ufDAER2wbzaM+kcbSnDTky5ifh/pEWPdGc9gIlkj2sPWJv++HwfM5Oh2ew43+Gaw9OF1v6SjDQduO1OaoHb31xMpvcAV7C3/PfjuyuKK4Y6P2D7FK14rGLayZPLPHc1nkXFr6dr9u79HDcNGEfiK/4WcQ9xysXl6M6Z5BnyMsjbX/rLih4Xzo2EFLgx/vaPIy2AUW+t3blFuwk3UgDkc15blBWxhYnQmtuWC0no2FZH5WmTvayV0rMoONrAZQoLE6BD35+9rNv7kS+w65PqDBmAW9ePhd8fO+z1bwbH8wsAzfN3EQkrseAsGj+uI2Ert5euhAj8r2O+Mpbueqdcfg7758Wa6Dh30SlzOsZxUOm7uPiM4p19W7JIfisTxmvbH8WStnRl8e1D+8N3J9TNatWlN17eEueHLlS+Plj63PVmJsvI+Ang0IK0gkonH2z66iUQ+n1zJF8iFbfj72f/Q3PI0MQiSze7wT3x/Ig6X3V7U37odhJ6ybx0Yuruo/HrsZ+QmHNsD+H+MY6r6e5lYxw9A1xYN6x54fDkvvca8/916K7kV1Ljfe/R7YvpeeP4yWj8j4z34HOHA8xvWTfu9sHrnepU+hZYKO6xlVoIaSp3ufArOOvDckBv+nOipFdI8dmwj8Y06R8ukm++X6lKJ95YyAfmrVEUHcm2i8kAiM3U34S0Y7RjB6GuIuytoX5u97g4vvvxGHDvl+VBLxyJpDlGKv7avOqdKQ6EYAqAkwjrvduPUyAIwN2Yr+ie/1hPLY82PKWtRnPhXmkRDR/JGMGJHiHozHK8oc3osVvSOn8Bi820sFPawTQwFOyxPlOnh6IyxFqfeE9qpv9r/XTJo9vl/R58H4P2ywPyYzVoRCu2lk11z0Z1iER1oKd/d6KbswqDr6pmH7wyfGC6L4Xa+oB0NB94A35HmjBDHCDkbOJJVkvEuCNYMyK+l8o44g/z0GIfW41gxDHAwaoX80Y3taBQNnaxX2s61e9LGQjtspTs5h07h5wqfvM+RSlzOyBXfGLC3fYg2F3adkJZWerp2RyS3OLHc7SPMDhplQ3xkXxhaBr6WvGXDpP6kFqHGG3Sbq/9h420bEy/3v9OWqRv7mDP1AIp9W1u9Wj+ZEcv26lAbOv87o0ukN6Mkrcj2+WsGfweCEjie6ncTdmId02ky9BTr7siP5E7cFJOcaHir+It1guGiKHfFx/olRpXeo642wup8PJD0qdXKJOh5k7YIzOBqDVXNDXG3gUxc0gq6PrSa32zqqF+gyM2TueguoJuJlbcGklsaTXcYFqxRMKTsgPQ2x4nBeq9IMra3wvJIgEjn3FaJ1TqQh6ppGvkdoTxDObhzAMuGp7BR8loV2P5N+mVjQhoFZaLTT/k46noiBhFl4T9cWqtXhjG/VSrAFK8C41Ouqlj5otgg2dzzRCs9lCyNpfdsWXFZQRIDdQU5isNEzA2MJzbYcm5DNWigADSs0+wU2rwD53IKyDJyp4HjJoLGlFM6hxMs3vorbiytQkDR/m6rCtqphAdy7cQl33X4OZZthUcuOyufNnsJLiqfwzeaUnzhBmpHnBo1Lga6iKGeyYgjmnGCmFhsnFnLWuDYoISc1AGJUfsGpS5jpBo8cnMBBUyDLLOrcgqNznGEpOIGUlomFDKAruD6T/5stT4txlg2AiKDAMP6oGgURXK12Ozq7cYhBDTlZKzRKhKAbxgtIziRewRvYJEU7B0cY3HNhm03P4z3gVdd/co87fo4d0L1GDt6n6LKfHz0vx7qkn+8i/YvdrjBPi5xJNxHcd7v5hJxs9wWo3CAvWjATTAuXrllHQR3u0WgzDWykUnl54Bw+IbBJsejHLkUnKcZsUuPEZAGtLK6cLFFPc5zYWuBEsQi0Xrvdjb5uXTNU61L1a6DZInDB0DODUxsL3Laxi6vlDE9OtkI7/Jzf23HrnRaawe5ccdUCk2sGk4efBJcV7P4BwAz1tcdxoW5BjYG9dBmwBjAG3DQgAxhHbJoImhTOqDlefuqbmOoWf6K3gScvw1Y1uKxAxmJylbH75BT5nnLGYcDmjHzWYDOvkZNBwxm4UdAlY/MbhObyaXzp1Cl89MwL8brZ/wo0YvYPsPHJP8HmxhTXXnQnyteOT5a3a40fv+238SdnzuIf3v7Do88AwLdPH8XuyyuU5wrc0ZxG/sWvrHzWQxU5aDoBnzmJ/Xs2cHBR40XTPUwoxz3Fk3jRxSeRkcWrNh/GS4srUBvCgGwtsrlBsU/QpTjFGIAyNpw9rAaOnRPZHKc2F1hsTGFyDdYEW2RQswk41+JQb+SohnPTfZyf7uG7N78GAPiIejG+zGexq7aRlbLzXPmUqw3CcRNMjM2sxmZR48rMgIhxcmOBc7N91CZD7fJc6wbQB03gO13lKE8qYQYLTCayizzX4nTUClDUYlHlsFbmSb/jlxXABuCMnJ5qYV0wVVhra2HYbkcuQG7ODc6CaG5XmTvz2aGpddAVFNxzxr2vOpkHoNN/VKdjhOsKIQhe3nU7yAf6ypjBfGmNsgpeF4ne7wWWDx3hYYHS1StntjOaoQPJy89IxyUXXcdGeJEUurWBf90bXaOA1V55vuneUR3JQjUxYEvgWm6SBVTZQlcWqlGwjYKuAL2QuZAVYDMg36rxXTuPYt4WuFKckvZNZB20Oatx1/QyrrUbAAv9mmmnV6uGQA1gjMK2KtGwRq66HeBkRW+7545LeNGJJ/Dqza9AIZ6rJUtCVgL5HFD7C/C1Xex8NsPGI5t48hWb+I7vfQzft/O/8DvFi/HH+W340t4FbH3DYnbJYPbVq8Bjl7Bxfgbsif6VHxjwwdz1p6yJVEPYryZQNUl/1DLJkPYRitLPJzYWuGfrMrZ0BQVGywpUK+iSYAt3HI4W3j2RLbAzrXBlq4U1ObI5oCvG4jbG5vkDFFmLrUmNxirssehxordK3+UlML0mefHrHQJlCE45ZeAy8wAgkuNj4Bz4br6V89N9gFafB7x+TS4gun9GuvytGjnuI3qlW6PB6duZ7dZgcTBilJkr1j/G7C5jDtaefSDSV3pptOPyAi+M1OFsCD2nXc+71H9+yYo+xGC9KHVS3yns137c8WrvtbBm7K/PfPVe3wrHnjlepnjdA5kngmxi6mUqkmAacsc8UdCLDgP5dwd9suSY9dlK3BgzMaAlq4FxwSYgWbNx3nUAuRWor0e1bj7QBOvXA+44iF4/KwCGAaskNbmjB3YZRnp6spfTkPktmwP1NkAzCbSpzARoZD03yVpMdIudWYlcG1w5yKEaLeuBlru50clDnlgUkxZVkYO1gs0ZJ2Yl7phexePVDhZtLmJFs8jxTALZCm1wcrqAAuNRvSN6rZ9H0fWFNW5cXSZQ9inl3XyjWoTAlzCcjj/8XO1347NTBTxNhHlL23DcHbdK+svpy0wIwTphjmP0xn9p2cDdeESLgM42EDU22Gbc/Bp4I16XjBLm4PfYI4zlY9QOo/nB2uUoPNIrO14HDWRXr4rjlBvZsvzRiX2hOPZO9Goswga6wVK7D0EQlV6fYBJdLZITIps51L9kox22czA+sc1q6XsGz/iL/ToG84cvSy23J8jXmB5DyopBX4/1EUl2pCw3qJFD1c4+lXNvwxS5tS8sAxMgHLM3Rpsxj3mZYNCTwxRlBR5rY+B/RPQ2/OFBf6yigzDe6Pf1yLj6tvrNC0TdZwbbtX916Fw8Dk8gmv+jbz2ac2gFhnTVu8eHlz2k1yGdcfwPlnxLvdKD3Ly+73l2O8CPKGwAjM8A3rB9FKVs6d6I45P99RWRkYMV1UonwlHGalWbxwTjmv/HFrOHlunLGU6eI01acgis6tN44RsLrfFhW47kicsZPk99pXbpe3ue2kGTnAIaP8qDd4MTnPrvhhfWYdXE7n8PZ5lYIHhnn1dQBmWsJOujKjLrFjTx+2MCj4Gh8Fr5fvzOWBMOeZcx8q2jtNGvb3ShGD9+SNvW9XGvDO8oG/TRUv1BfozUH7cjUi5D9RHNBCO8e27M6dgz1K/kyejekGaGiumAfYbOuLiOrn3oeI/gDFH9iTzsmMFyOSvpK66bgInf4QOGVqqXNid2koQdFHF0sj86wTfJAmRYzpY0BAsxeChiWLf49u/7s676baOwi9Rmg/MdPcZ23riFryhA1F+Uj/XtsC/Q6Xi9/o/HLYzFmvnQy2UVvePvrZoHDqHjlfWM8TRxWBD2ZHpUzyhfxnQc8ddK8Td2Y5ViexQMZM/otTXyZikIZTjGI0V48U3AynPAyZE3DftsoOQT0J0hF1cULRw8v6nBGUwhXZTnJ+V3gHPgueC0dRkRSNuOVxqpd+p3CPlFgiFQo8BOUVDKpfvW8nzQbZRkf2BnoJadyFGbHS36xZ03Fvk+CtH30SIKbQuuG9i6ATUNyJCc7wsx0BtnqLEFQWcGmiD3DbnAGEinK9mPCwCalMTbkcJJNYfRCgUZ5NRiSg1ytzrZ0iVOThdYtLk4jAFs6ArbSmMaDhqFawsHnhEDqhtPlv6zSvp6Wsh7iqT9CM8zTuQL2aGpt8R45Q1J0Y7yMSNJvGM+3gEenvH9aZ3O3Ju3uvK9Y5d0NxaeuCWgiLqAq97819GoDyCJzxgUbxKWcZj8WrrPfVm2at6Mn3c34/lnDKPzAxCcYr0MIp6nRxaxpJzzzSpY4k5++zJsXN9QURn8DOWE52kXzKYVo1AGU91g4pzus6JBEe2CtmxCfbFhgghQzC64j6G0wUS32NQ1Cm1CNoZuh1zUlrgP/Dzh/leNBR/MwYsS3IgjhvcPoC5lgDGwZeUaZiG7F5c7PSfgbL6HS5MtPKwArmpwXYPbBmQy6IahKtUPFPJ8EcPpBqpl5AdC35earcEzBuapy6DdDNnBXTAr5p0J5Xheto9NqsVJRjQ6RW2rBbZPzbFXabQbCrm3qKyD1gAp2GmGakeh3ga2c/Em76gS56b7yMjitN7Htsq6gGS3W5ssACNOHNJA2AE+gN9dv5nXEvDoDc2Fgp3l4Fw7x5Jcn+kGJ7IFLmbXoGCxk1XInUPYn/nd8YfTtbwDCrIzTSkLpa3QViYeqZYlgEeyhDhnvbVQuYJuGK2LCgq7yH03kQRXEqFLuR4ZqaRP5Bd5uo3006HTyd/rAgExCJKWB4KqHKdAR/x+J0p7CHWOC50lNTD8puVdamMkNFxjrXpuiHjt48uJP8Dr515XDzqIvx/V5ed6Lw/J92EkEyM9cEmvGsrvWP6FdzgE2MfGcbK223lu5IiQEBBBIr90ZnEqO8BGVrud3xTmu0xZTKlFpSQIY3QdAXS6U68PERzLZ6YHuGd6GWf0PhQIKniFXDv9nNwa2LqBuraHvGmRH2zgRLbAXdllnM33hT+Ikc8Z+V4D2l/A7B9AVxbU+p2dDG5bkFYQr7L0f912O8Al+KX7EN/8QhvsZCXyyDLdBSj7rDLCuznJfJDlBo3OwtzBmrE1rVxgiunXwV70uEBOF2wFyLwX2MHzrncSRjQRdL8Rm9SSE8GiC6Qb8rWNstWM0Z3TScg76IYK/Sp+jsc/bljU2GHa1pVrn3Xw4iv6vdyGsQXYyFx4FJnQK2C5LaProDUfFtruH/fDFB8n1lPlXJ852eTXUsEJyVj+9jEM2+oJwL0f222WMm+QC3jqBRtEP/Hz3ibo11/r+ogcTdDgWIhY5rnfRAjB2SHTistMoTIJtK39Riol82HmjsIBgCs+eDvaAQ4CrMu4BeJwtIGXkbk22MoqXG6MZO9jhHVHXEeh5Ggd5YNDYhnu+6L3XSNzH3fB4b3pZnTuXDHM7tv9MPTmpaCbRhk8XV3ECOuSJdYZjgmi/8MPj68RYif08P7IOB8Wo3KYrXPl84cJmp4NdCA3ewWiPz8fti47KtY5XA5rx2h564uNh6ubA7j/wtj3revHgV7SCbaBbhS1b7S8NW0PDntXh8u54Krr/l/SoXxdPLg3JHbVHVnb06EHwRQh0CmcWzemcKInr2O5ONxcEmOV/fRYYxE/M6gg6OmH0GpYh/vseMMH4nEa9O1Kv8W6b+jx1hE+bgV9xMNxmDzpFccj1Y7ZIY6AseGKbQPHwbPXAT5QBoOiq1ZIp6DfdAJ2GMEpEzR1jlev4AyLGu7aQzTIwUAfjZ8n+pgS4sknVoKDAkT9Z2IBOVwwR21ghX7Kbt8mX96Q6P2uLM1gVqCagnGMlShHcn62/+5uF6MtEM6P5DIq2KeaDJFrNE54/po/wy/6DlVJP7Am8Mx/j7vvjOKsheP8eWjxIqXXzcRQGcDsDOHDtLw+2lZFNOWFV87IN2qACU2pZHdlRhJ9Gb6jH6U07IdhejcfPcy5H8dO+QqKUBzt67djefpgR6dBuXONVkPFK0q75r81nvw0hzTDypXXBUREGlqI0B+bMRCi1JYUR44U6yyqnKNihjQZfWeogqP2DyZhr1Ay0EXOWQovdTuVu1mEXcZAWAqRn73UqIjqAMI3xJOj1a7/vMyImx8Z1ZfSVA2+kRiyG9UwMKRLPwbeEBal9AzOKJ8u2O0Mi50Cvi2sR85IH1NSou9WDDn3sAHMjGEmHMnMwUturJmkPSAGeadE69ofV9ECyhJMIXxHng5DGignqzKLrDCoa90pL1GbQypUANYS2J+55x0mlqAyg3MzMdRaJtnlE4+JJdlJbmQHo+cBcZhAZCPJ4tPmGkCGbGFgjXKGF0AZBZMTbCa7FbzRFSzR/ovdAiBAL6Q/9QIo9qyk02v1sl4yPNubIbv5FED7hHwPnZKhHf21yu2GpNCukNXA86WB7Oppu93jTQaYqZyfh8K69NXUpfKzCHwifQu3Yxay8y8oX5E88gtM6srwCg7FdOp5AOifweyjtjM/nyMYqmwG8IazIBkZqDDXoKMHRtdmX5cl2WHj6wDLHLLkMoiV+XAtkuX+Ex3twMmSYETzItPPw40YQRk8OK+3G0cAsJEMCjIMkayL5JHUzYDbwT88WynuMy/TvawJZfgMChmD3Xf4naDI3LxqZQx0qZGVEIerZmRFi8aQpP9vCFR18jfP5Y8WeWiK3/2tZy20ltR4ityCx6UrppagS8BOyMWcMLJ9wsYTjPK8wp0bV6Fh8anJvWCtoVqguKpgJwSz3WBjo8Lufg5WGpwB9QkLO5W0mJf2N1HvTlDsM7KDBrqWMzBj/c7mQLNJ0CVj46oFWaA8o2Fm4sDVJclPZcBlBTYWYAsYg2xX4WNXn4/HDnakfzMLM2M0hjCbNG4HuIY+UJhctcgOWkBrWN3tAPfIobGtagD72FY1tqmFt49bABuqxlZWiYNRS3DP7flVTCmDYYKZZ9AHGnZT7tHEoj4BmBmh2WKYGUPPCdOnCLYg0AsbfPe5R7AwOXabKXbzKb5+YgNkMxQnKtwzvYxctbhUbaExGos8R1W0MMQwUx10RS41oFzWHgDFgpDPGbqSHbiqZZRnZHeHYoJuZC7wznnFspOOMwYXFtm0RVsqOaO5BeptgvHZgFj09OyAUOw6mduII6GdAqQdTzhrp9m0MJ5PrOheNLFQhdvBZ51eWHslalndCU4PjvQqN+cxScp8P9fFO8S8ekbcrQ2CjuPLCbv3nK4VqwJOp7WgkAVCNd2OQpUj6MRBhrLsevGyVikJcmiNlrmSNdAQ9IKga9nNAwDtZqenebnMXsfzKX/dNxFE98g3a3cuL0DE2JmWOF0c4GSukJ21qE2GrbzCyXwBC8J+W8DGHjuWrAzUyq5BJkC1ClRYzKYNzs32cdf0Mh7b2MbXN8/AZBrIrbyuRDdRSua9rCGYKWSu1LY3D4rDuoF3wnDdwO7uAdaCjcgsbltgUUK1DA2LKWXInNA+oTRes/FlnNYH+NjGy5zQ8AqhDUFvTECzLe2ZPkngp7bw+TrD5Tu2oGBlPm1EB9h4pER5YYJvzE9iCU62rFu0KxBOqwxALRkStO70RCWToWHG87Jr+N+f/2l8/txteOjTL8ZsdZFd9VUFGIP5nZu49v0HeP75p/ADJz4LAHh+vosfPPNpKFg8P9tHThOnm4keV+9kKE8qzLYKaL/js2lBZQNYwA4W1i+ePIo/e24bizbH3vQ2tFOF3bunqE7NUOwCJ79YSxBDRrh7dhl3FpdxV3YVALCTLcTpxUB+YKEXBrrWXXaBUui3ZsJEt5hlDWazGpk2ODs9wNliHzM9wVWSM0tVA6h5Le2tGjn7/GAqR0Uo4PzWPhqr8cTeFtpWY2tWYWdaghnI5oT8AP1jM/w8QzI31gphFykIkvqVEJwDuiaw3/3tdYoo9XKWGeS5CWmv21qDdSZrSL/7vHFrZLeGtmBQAfkGAmzugo5Uty4K6x+/hrbR9Xi4OhE5RpCdnjTitBXCQiQ/OyHbM3hGKV/BLnObApBZTCaNZCopJuCcl/QjRA5nvwtc1mSS7SQ+/gHROpxap8M1CCnLbS4/ZirHq4A4ODEtu8BXErkPC0n7f1Ain0+RLXLYHMgWQHYgQbO6kTqnRYPnFZdwaXsbX7h4Dov5BO1BDqoUjFXY1gs0rEENIZ9btDMFagAugPJ8C0wsTk1rPLj77WhZ40o5gzEKVEnGHM5EX/rfNr+Ie7JdaNrCST3H/CJhd28GMDB7ymJyxYDnC8mMYS2oqpGVF7GlS5zTNSY+oK5WmD5VI3v8Gnj/oJOXhdshygyua9DODnD+NJpTM+R7hL1v7mDncULx5AFofy4ZM4xBfBTNiaLEHZMr0I7INv0Wab/0coEEB6bAnpnijo1rKG43+HJxBs3XT0g2g1M1XnrmUViW53brqQxv43eAyvEt2ZxRXK1hiwmyuYKZwu0wF5mcHxiZe6wO2WR0RSGjVzj32K+F/VpSdWtOsIyxzQFbCH+pStYA2QFQ7DJqN5cL7UU7kAsLXUiADkj0R7AW3V3LmkLWe+75rFtngCH2OoP+moakPeHHRvzr5FKcVQvodJYheg5kv64D0GV2Q2SH6nSovjNjRNfxjs+lxbCTo5Dv5IzD/OltOCJvEOwwQVZQZNdBV3ZIL+w+hBzfyj30dC8AYf0bbG4A4OwbNhMeWILvV++wrWRtw269zZpdYK+0hXOxYWZuDc9KdCvWAOWiu1VVHmQ05wyatZIdr+6yO4S+bhECarz+I8cfULClBZ3O2XNVTeG6n7+CvurSeLPrP1WL/jI/p7CxWeLC9j6+0WqUhpDlXQDKudk+ZrrBk1e3oJoCWRllU1OS2cJMAJoabEwazCcGZqZhpoxz033cUVzBw/MzeOzaNppG9D67CUynLWZ5g1nW4FSxQK4ko4tqqDdvhYwqflw1hw0NcQCKzzLVt7lHY+n/9HYAJfNqIGc33jqzYCbYxj2sOWRLC3aHqFzVOPulZtgoYNNXJjZ9hj8Ggribz+wkylwS7XwHumdUQ1CV+97MjW303YE3PC04GwH5e9H6JaYxhp9TB+wSy5UgW6IsMtH1XnmK3EYzFzzP1LP1heJ5IH+9/hLZkzp9hrvrzp4SAmh9/3qdHV4G9rP99fSQXqAJIrssi+0G3o5O3Uu+r30f+jIiu7S3ScG4MqPg+3hnQlwsI1yWvvDrYj9mQVBB7DuOf5eCEqJCgtM1bruVJnRzBAd5JxsBqPs+L9dd33j7mzXU2Vmc7crbyeIAKpVZFHmLEqIzkQXMlEBZFzwTf1a7Ke8AUge0k1+tcvKZQtAsMVzwm8g6M+n4gVxmX2qpRxPB5mw7G2M4Rg3CjzKO0Zih+55gLwe6gDjls490/Eq+X1hslJL9SeY4WwBWDYq2wteWWMpz6KbSfQAAJaJJREFU2e78ojzI+4EvjIHe3NyLOQl6rZMV3s7veaDHV10f9CbsiHf8vdgeAR4875s8nD6jMQ5t8de50yNGHev++137g+8M6NP32LsjePY6wGO4xRZFwnl4O/gElwRAXEZUjh2MVTRpdIrbYKSiZ3uOSETnOQwHN56M/AUGCLxcf/Bk9OXU0gd7g48nvEiQj7WVcgvKLGytOqEUGNgLu45wfEooZE54K0a3paT7ps6Z2n1CPDeFz/EBB55ZmZxCJoKqN4GwtEXVzgkJRA5wGigQ7j5FZ4YxYP3B4t4ZoLqzJzxC2zOLzVkNw4Tm6kQcGd5hF4Oj+v0lLzSl0s5J4TQKUdQZsKrrX99vkXIahKu/5yfeIKDl7/Be9A1j5DlsX29ghhHt/tvc72HEa49+vYCJxzVO54Lu7/A9jIHQHGtoVAcNvpPYrWOo/x1e4QnPDYokOAckgpSL5YSknXYP+/PbnAIh9VuZeECIj24MHxjaOeBVoAuw8bwe8VvoU6AbGx9EEMkw/wMgOMBDahiWSHcA4MJ9l+rSg/s+HdGBen3u07WZqatjKDN9f/szWglO2aVo11+nHHh69IZJZdyJAs4JxoMd4JQxiqJFo/NOeYva6vnQO/bYT+DuN7EYCy9Od6FhYaCwMHlIUwV0/GMtyS6hiPDl/E4L5YxuVVaAOIOeN5Jis9XgTL5P5wRTEFq/08gAZMX5o/e1rIUqOQswWzDy3RrgHGR1n779uNoBXZAsDFRDyPfF0eNlozdWeqWJjHfADuZE961yJq/bFZoR7ASwEws9EUK2TWSNsBHt+3FrZOHvxyHQYhifLmjKK5RgcjQ48nwsr5nC/ELkdo55OcYy5npTjHJmkYkhyO2kBdClwLUdoXYR4NylJIPIY44EUC/yfqhdRXNZbzHX+0ZPmO6daPEUok4j5bT3rNclvNPcQAJCgtYXtcXLVYIYodxvD3bfr9ycYvw5ldFnxcqxl2OeNsBC9+IA7/pWl66rNKMoDKzRMHXn6fNO+1ybsOOOODJCacZ0KsZrv/vbuLTZDOesqIC2kTmbWc6c3HiixbUywx2TK9hQNWhiwDoHtUAxB9opwSpge1phbzID61yMR2dqbG2XqOsM8/0J1J5Gvm+g9yroegpi1ZcpGdDOJMAj37fQlQFZDZ5YWCKX2hhQlYGtKoTVm7EodgkPXTqPxsgAk2bYKaNli81JDQ3ZAa7nhOnlBnrRAFqJkWKw5UMTidNbMc5pi1NK3FX7tkLJFpuqwsliAcOEU8UcE9XinN7FhCTggEqNbAFUrZJz8gqDZpthWqDdYPDEQpcaxTUJ2MmnNf63E1/CpXYbX1mcxVRv4rET22iYcHHnAM+fyHnBDxfnMG8LzPIG5SRDTUA9dcYdBaCJlEwWZ1C2sMhKxuRqI2eNtrmkMHSpy1UNZ9h1TprG8YRiFJMGLRXI9+U84XZK4sQONEzI5kBxLdJ5MnFEW+vmQgtxUM+MBKzVkl6VM0ZWSFpwYxSsUSHldYzenOjo2Ac7Erp5iOK5PFrYdkGV5IJJEMn6KDBsoOMGZvXyMD7yh2Ve1iXD5hSMfmqY3s0Z5BmSln6zaFC2jLrJYIihWjm3WpdAPndGqjb+4KgdXufyqTD95JSLfhynZD5RLHAqnyMng7uml6HIorI5GtYobQ7DhNbqYIwjZlDL0FVXhmoz6MJge1rhwmQX9xSX8M3ZSfzhRotWASp3Z95qlyKXJFhG1854oSzY8VdwgNdyXncY26b/PwBw24KNgWrk2IQMGtqdWbtFE/yposRF/WX8o81Y0Wc559rKgpsVo90kUANsPsLYuGTw2MYEV1+9gZN67naEssiBz30FW5cv4In59nK/M4ujaUwndtCksEVTACU4Y5DWIK0ldW6Eu7MZ/s/Tn8ZXdz6D/+Pcd6wucNgXbYv5eY3/65X/EX9+dtnJGI27sy3coXddG2T3OrnFIymFZlOhPkFoNzQyrcDMklq+zkAtwYBh2ErWC1L4tnwXG9ufxSPVSfze9DaYgrD7AsbZ73wSj3/tNHb+RCE/aIFc4Z7JJdyVP4U7M3Gkn8jEAC4yx0DPW6i6kH5uIEZ3LUa4jAy28grb0wqTrMXZyT7OF7u40mwCkF1nqmXQvBSn4HwBZS3yvW3YLAMT4Y6Na7hSz/D18hSaMkOey9n2zOLkyPcZ7YboZ94A748jyLWR9aa/TpLKv1V+V123JorXxcGID3GiT/MWk0x2vu3PJ2id7uyD+OVYAaF9mwOKpM9BDCgC596KjEjeyI83si/tRAS6YJiwpunrMD7gV/hhzerTBwxqMR5TpGf6eoBInvl6NWOatyi0wbXCwBQjZ3/ZzoCoWgCtl9P+GzuFmxX3gtl9gKeunfo7gQS25pDnvI7kHQ2K4c8CJkPQDYMOFtAHm9DVDLoi6EVn0FWGYXISB3j2FA5mE3zh7Hk8udjCV9szoANxA2+oCqXK5bikfYt6U4Lv7YQxObvAxZN7AIA/unyHpPteTNG2CqqUgDAzA543vYRXT0rkJPrDSX2A6kKLvTLD5qOMzcdaFFcrYFF2svDgALpibKgaJ5TG1C0kqVXIL83Bj18CLxYSXUUQOnLzEtc1aFKgOreJZitDvg9MH9HYeMKCnroKezCXd9kGBzgxsFMscFd+GQ1r1KyxmVWenLodoy1hv5lg30xw2/QaXrz1KADgoa0dAISTJw7wZ3a+jGtmA19ZnJMAKzjHVkswVoGtC0a4ukA+y5AthCDMTI5XoRYSmGh1Z1xyzlF/lItq2M1/kDWrOz6ISXUBKrXU3WwzeOoyhNVu7XcgjkNTiM7EGQdeBwBdWBSTxunHgGk6WxUrC+QWzApqxInn+Q4q4kmHYLT3DtlIsfE6TGyD6G76Sro1hF/3xElEOsM0ertZQX6t5d5RCDweOyp7x+vF8sjbFRz/cibjRE4vCmXHazC4FMfxN3i+97binq2jHywd4OREvDHKl+cDhZlcYPMquD5QBsgWMie0W1Yc3tbZabwTjLq2WCe3mUTX2SwaHGQGjR+jXDYHtIA7fiEeLwTeArBs4/P97QM4HH3qSo6A4hwDBwiHtbufM3TFyA4MVJvhxMYCd29ewbVyiqbOkOcm8N8d06u4OLmGP5jeCV0zdCU6qziSCLYQG29WGMzyBnpixOkztTg/3cPd+VNo7bdjvjsVp9rEQE0MZpMas6zBVl7hdHGAnLwD3HVDcPojsp9Gdl5Pmz5Izdk2wvBTX1f35pCwBvDOMOpoj4mhMznWK+juiqFy2XwR7B5+bovnkkl3Xe71eTgEuUDW9SZn2MIKL5dKUucDIctI2FTWSNA2CGjjjQKeNhHxqbf1A9263x+ZFusJHJET8YCZ0H/e8y1B2sj9Z2LOCRsGYhty14ToQXc92P9krcduDo79IwA6u63qjymAzj7pAgyW5F9kT+8FPaPTz5jR69dgIyb05bN32hEkG4nPFOw2ncg3O5nj6YSB3mYMGowHUzi2sNd2PZD5g3b4mnrvcL/tcT3iVHT6XW7l70o7GSx9HhclwYfum/xaxI1P2MARzy0AlLKYFQ12ER+ZJvbJeMNfCAw18u0EgAsDNkp4qSWXeQfBTib2bLc+bCQzH2dOvjYEOHt0T9/2dVhH48Hwjo7uPY9E/rHQncpnD+nawW5c5Ggx3wcdbflOFBst3NFJfbrsNoCiC2pD9H7IxNWXIT2eRURXYzSuut+BHmL5FZzSAyYe0FP/p2/DH0VE90tlxvJnTTmcRXbm4Fcb6APr2hDhWecAZycNbVnCRxmTIcBFBFoDWDP4WESMPbBxcXyzobAA9Q5wazmc6xqMQ57W44Wg30Gr5ZyymNDIpcGSBSJ6RMJAZ/RuqasjdmQO/4gEfH9icmfD+O/3Ec22I4RhGkjWDOgWpC3swoBKZzQyvPx9pfuOGkAjBku7MIBi2DKDqQhsWPRExWGXLLUEVNSnaxVNeG3k0GVptyoBbgBbArYUayK5CClTElQFGAXYRQOghV0Y2NKd6+mUU7swsHnt0qU5umk0rFEu2IFc/RakLGyVAaWcHefbjqyFXZQwVsEuctiFhjUMy7Y3joiFuh8OPzFF9yVtqzjRrZtBqVaAP6fKrXdCZI/bYRc7yTjaecj+fEx2UWixw9dQcM72FAJ331qnQDUk55sPaMvTFzVu7FSf5tkrifEO8FjINQT4zJIAjOXeQinsxvK7mNHRQLyrMZx96ZUK1z8xQZF132ARRTlFfeHHJHZIl0LLnAMWw4ATDg5w4cvu20TfkkVM4FnPZ7Zz+IT+CcLHNSUYtqKdZIOd4qwAbt21touY892MmsA1wVqGzU3kAJd+J5eRwVox4ITJIJ5E4rb48cxE5qEFTKmABrClU7Z7/QMwOSOXd4A72JJgaqFNUxFs6ZzU7lwXbjxvM+yiArSFXWRAq4BSwZTioLBlBVuUsAsClTZa4IoD1lordKMbCeApc9CilfaUQrNmXqHeb5CRQcsaxlrh54phrGuDZdhFA6Mr2IWCqTKgYdgSkjJVM4xpYSsDUwNtW4JJw2gtm7SUhoWkQDZ+MdBIyj9TadiF9J0tCdwQTM1o2xJta2AqC1tGY29lbMEi96yPpnb0YqoMpnYOcEDODiwZnFnwQsFUsoA2bi70C0CZKhncypiYWnjKlLKr0mYGNBdngG2VyJhKgypxEqpGHDioAVQk82zGQls9hdY117h7TLCOd0KqzpgWuWMPiYQlUCk0bFuGdY5jb0Cx2gLzCgTAlpkou3HkYjSneLnp67JkwbBSr3EOW4POeRXR1xDsdlp4+S26ht9B1ck81Uo/+TmC2M19jczNtpWhtm0n34Se3XygGVRqmEq2PViIccRaBrfiILSlArcEbkXX6OkDnqctwK2XAby08EMLoHVzeG4AC5gqgyo7viRi2EYDhsL8LnNuDVNUsAvhW2oU7ELaZBeN8Fedwy6UpCj3stoamHkF7dLiETFMY2HnVubl0sCWIi/svJRI+gpomxqmzNHsN1goNx9XskhBJSxj5yXsrJR7JSQ4b1HCZhVslcHUGahktI1Bayq0TQlTZrDWJRJQwkvUQni8qcGNhSkBWzayM6vUoFL4n7iBX5kz1zBVCRzUaI2CrVvZcVQaoFJoDyrs7VkctBa2LNG2NchUYFuhbUs0BzV29zpvQ8UWe61FxcCeZuSKYcE4sBYlWyzKFvW+BOVpYtRkcaANdo3FYt/1z0LDLmrYRQk7J3DlxltZMFvYMoOtRE7wvEJ9UKNsGtSLGqbJpD8X0q/zfQMFi3q/RrOo0ZYaZuG+cwGJoB7oBmQJpmolQKJmtHUNMham1qJnViKrUDNMJnTFrSxcbM7gsobNatiFlrMPq24usZZhlRXDdqVhKzcOBJHHFQlNsOcpgK0BZQyuOge4zWtY08K24gC3RgEL0x2AHs3bALqgxNbNL+z409pOx3VGTW6lLdZ5wr189AEkYACVAlrhTwuv41KnK3oZUYnslwxGDFSiA6Nmkd9ufWKiLAwQESdziLUw0xI2L8FtBjMXPZhKgi2lfFOLbI7na7J+2rGyplAMtOIAp4UWelq0MPNK1g9OdjZZjUo3YGrBykCDUVtGzRkqC9SNRtMqJyc0VM1o2xbcdjxgapEBdir8MYdBvd/ItSoDWhPWLLY0gNM1UIn8wryUoIbaz7c1iBswN+MCvifsAdOUqPYbHGw6gQrAsPDkwhjhY67BrkxihbYpYUsxRrMzwNiKYaoWdpFhsd+iUMZ9N6FtalC7ADULtAeM3T0LMy/R2hptaCfBVCX29ix2o8C9IeYWoU2WGzAzFAv/7+5Z5ESomFG1BqYupfzDUqA7tE0Js1+iMhoNGHrJMyr/23mJ1laAZZimhKkU2rZx/QQoW4OsjPvenpXgHMde89ZiYQzafZGlprGwFYDFArZcoG0J1LSwC4XFfouDzGC3tmBmlPsN2oMKPK/QNi3QNDC1Et6ogLaxMnfNS9T7DZq6lrZqgzpvUDYtmraWwJC5zA2trcBtBTYlVJvDNCXaJoNdENqDCk2tAy2aSYVWVfJ/KfqZUaKfBUe3AexCZLMtFUwpBj67aGGLGnZhYapMzgt365ywHnY6M3l9dVHCNAatbiXQY+F05JaCjokKoErWViYTeWRzC6uDMtgZmj0ZuJ0ephRHqoHID2//gHXB37GzjNzw+4Dj1skJ54QmK3YDuHNYrY3W/Oxkn7VOzoke11t/Gk9hDGssiESHsLqFnReiW4eHI4ostdgjmu66yZwtAYCpFKgCTOVsGACo1KBa1ilwDnADAIal7e5oBnLrTLswsBORM2FOawitrWFMCVMVTn8QOQAG2DKMJqiDCvN9g0Ut8tMuMthFCSotzLzCfM9gYYRe2qaFqTOYkmA1gxYleLKAZXHstlbWTLZWbv0i9FXutzjQDAXh//ncyR63hmibBqqtYW0FG8nFtimFx0jKaA5EjrRtCTalk3ktTFvCLiSjVtsCihvAVmhNibbNYKoMtgRMbdGYKnrXAG3p7rPI98KgAdAwi5wvRX54mrELi+agRokW07xCoxuYgwqmKkEVyTrvoEZtMrSLyumfJUypZQzmJayVdanofzlMbYVPS8ASw1bk1mVa5s156fhShzkSNUu7SgmAlzU6g5x+HBuzbc6wWmhbLQi2IZkPagvrxkh0MS1674RhFwsY00Ip0Y/t3IIW4iy12siCvlLi9IJfH9hOT2GAajUI5kVnr7IIfEmVo2PjbEGEzl5VKpDbsWxdoBmVSnQRQrBjWiNrSmsQ1q1hp2nseK2dbTXegemqjO1KPedSbE+jSFa0sgYiI3Y6v24MNjG3Uz7erRcH2HhnhIXoNVRq0afg5GsW79ogoFTh2/w6z9s75LQDUZTI7zp0MhvK3VMQmV+RPL8wQjeVAipnC3S70WVuILFvQOQOz0u00wpmnsGWWux9iwaWatg6Ay8kqMwuXHmNyH4oCG2Dw5rfMnXf6BzgVMvaBrVbD7DYqf260SoDoJVNBosM1BBMrdC2tciRgwq1qsFzkQeWW7RZhSZvUKFB0zTgRQlTl1C1HEfCGjCa0NaAUSzvTkvwfAJbEWxm0O5XWKhG5M+8cut2Z2/WJVpVoclrVNyAVCNytJQjWrwD3LjsDaYC7KIBsQHXsqZFKbKSfdC3szUsOS8jW57NLKx1dtla5iprWNab1MIo0XXswgCNAhkLtEbW0aUBKgplkoH8b/36nzs68vOyszNYx9C21DCLaN2uAFQKqhba4trTtrMfViRyCWKvs1nflupERufchF+DUBc8gO7ZHj8OMqLEz3lHJytHR56njTcAoQerIRnV4O2Yjp8byTpgEe1ibjt5IBmx/Ad3NpVg/3V+HeJOJgQbMiAy0DkTxZ6DJQTbJkd0AYSNUTaX9bmXc+QzJPpgC78RwjlaQ98pljqNyO8QZFM725W3S9CgMdFYkJXMk8FfEx7rPtIHaVHj5Fi0gY4Nw7aun9yGpZ5N31flHLesWYSeYrEP1tIhsX3a07Apnd1tYkWGWJK5Kwoo8rZ/1rLeExusrAvJuPVoxuDK2QUdTRI7u+e8dPY0Z7N0tIuWYEstupyfWxpZD3DLwZbFurMxohHdj4zIT2IE3YC19BXHOi5Htn8n+3v+N4OebRDkbBzer+ODASq3ViThc6qdXGpcUgDnm/B6N5WiK4v/zW3Eqx39DP1qLXUDQ904dsEHCP1DjdMJANng5ObwpYAP3dWx1pEcbVrr7dr2vOj8pMHW4OmaVpTn5t3gG4roredDip4NwXaRk4PcWhlA8CevAvFhTzzN+MY3voG77rrrmW5GQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQsKzDF//+tdx5513rrz/rHOAW2vxyCOPgJlx99134+tf/zp2dnae6WYlJCTcJOzu7uKuu+5KvJ2QcIsh8XZCwq2JxNsJCbcmEm8nJNyaSLydkHBrIvF2QsKticTbCQnXB2bG3t4ebr/9dii16nzoZ2EKdKUU7rzzTuzuyvljOzs7ifkTEm5BJN5OSLg1kXg7IeHWROLthIRbE4m3ExJuTSTeTki4NZF4OyHh1kTi7YSE4+PEiROHPrPaNZ6QkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkPAcQnKAJyQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCTcEnjWOsAnkwne9a53YTKZPNNNSUhIuIlIvJ2QcGsi8XZCwq2JxNsJCbcmEm8nJNyaSLydkHBrIvF2QsKticTbCQnfWhAz8zPdiISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhBvFs3YHeEJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwnGQHOAJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCbcEkgM8ISEhISEhISEhISEhISEhISEhISEhISEhISEhIeGWQHKAJyQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCTcEkgO8ISEhISEhISEhISEhISEhISEhISEhISEhISEhISEWwLPSgf4L/7iL+J5z3septMpXvOa1+D3f//3n+kmJSQkrMHv/u7v4i/8hb+A22+/HUSEX//1X+/dZ2b83M/9HG677TbMZjO8/vWvxxe/+MXeM5cvX8ab3/xm7Ozs4OTJk/jrf/2vY39//2n8ioSEhCHe/e5340//6T+N7e1tnD9/Hj/0Qz+Ehx56qPdMWZa4//77cebMGWxtbeEv/+W/jMcff7z3zNe+9jW86U1vwsbGBs6fP4+/83f+Dtq2fTo/JSEhIcJ73/tevOxlL8POzg52dnZw33334YMf/GC4n/g6IeHWwHve8x4QEd7xjneEa4m/ExKee/h7f+/vgYh6Py9+8YvD/cTXCQnPXXzzm9/EX/krfwVnzpzBbDbDS1/6Unzyk58M95M9LSHhuYfnPe95S/M2EeH+++8HkObthISnE886B/i///f/Hu985zvxrne9C3/wB3+Al7/85XjDG96AJ5544pluWkJCwgocHBzg5S9/OX7xF39x9P4/+kf/CL/wC7+AX/qlX8LHP/5xbG5u4g1veAPKsgzPvPnNb8Yf//Ef44EHHsBv/uZv4nd/93fx1re+9en6hISEhBE8+OCDuP/++/Gxj30MDzzwAJqmwfd///fj4OAgPPO3//bfxm/8xm/g137t1/Dggw/ikUcewV/6S38p3DfG4E1vehPqusb/+B//A7/yK7+C973vffi5n/u5Z+KTEhISANx55514z3veg0996lP45Cc/iT//5/88fvAHfxB//Md/DCDxdULCrYBPfOIT+Bf/4l/gZS97We964u+EhOcmvuu7vguPPvpo+Pm93/u9cC/xdULCcxNXrlzBa1/7WuR5jg9+8IP4/Oc/j3/yT/4JTp06FZ5J9rSEhOcePvGJT/Tm7AceeAAA8MM//MMA0rydkPC0gp9lePWrX833339/+N8Yw7fffju/+93vfgZblZCQcFQA4A984APhf2stX7x4kf/xP/7H4drVq1d5Mpnwv/t3/46ZmT//+c8zAP7EJz4RnvngBz/IRMTf/OY3n7a2JyQkrMcTTzzBAPjBBx9kZuHlPM/5137t18Iz//N//k8GwB/96EeZmfm//Jf/wkopfuyxx8Iz733ve3lnZ4erqnp6PyAhIWElTp06xf/6X//rxNcJCbcA9vb2+IUvfCE/8MAD/L3f+7389re/nZnTvJ2Q8FzFu971Ln75y18+ei/xdULCcxc/9VM/xd/zPd+z8n6ypyUk3Bp4+9vfzi94wQvYWpvm7YSEpxnPqh3gdV3jU5/6FF7/+teHa0opvP71r8dHP/rRZ7BlCQkJ14uHH34Yjz32WI+vT5w4gde85jWBrz/60Y/i5MmTeNWrXhWeef3rXw+lFD7+8Y8/7W1OSEgYx7Vr1wAAp0+fBgB86lOfQtM0Pf5+8YtfjLvvvrvH3y996Utx4cKF8Mwb3vAG7O7uht2mCQkJzxyMMXj/+9+Pg4MD3HfffYmvExJuAdx///1405ve1ONjIM3bCQnPZXzxi1/E7bffjuc///l485vfjK997WsAEl8nJDyX8Z//83/Gq171KvzwD/8wzp8/j1e84hX4V//qX4X7yZ6WkPDcR13X+NVf/VX82I/9GIgozdsJCU8znlUO8EuXLsEY02NuALhw4QIee+yxZ6hVCQkJNwLPu+v4+rHHHsP58+d797Msw+nTpxPvJyQ8S2CtxTve8Q689rWvxUte8hIAwrtFUeDkyZO9Z4f8Pcb//l5CQsIzg89+9rPY2trCZDLBj//4j+MDH/gAvvM7vzPxdULCcxzvf//78Qd/8Ad497vfvXQv8XdCwnMTr3nNa/C+970PH/rQh/De974XDz/8MP7sn/2z2NvbS3ydkPAcxle+8hW8973vxQtf+EL81m/9Ft72trfhb/2tv4Vf+ZVfAZDsaQkJtwJ+/dd/HVevXsVf/at/FUDSxxMSnm5kz3QDEhISEhISEp79uP/++/G5z32ud95gQkLCcxff/u3fjs985jO4du0a/uN//I94y1veggcffPCZblZCQsIN4Otf/zre/va344EHHsB0On2mm5OQkHCT8MY3vjH8/bKXvQyvec1rcM899+A//If/gNls9gy2LCEh4UZgrcWrXvUq/MN/+A8BAK94xSvwuc99Dr/0S7+Et7zlLc9w6xISEm4G/s2/+Td44xvfiNtvv/2ZbkpCwv8v8azaAX727FlorfH444/3rj/++OO4ePHiM9SqhISEG4Hn3XV8ffHiRTzxxBO9+23b4vLly4n3ExKeBfiJn/gJ/OZv/iZ++7d/G3feeWe4fvHiRdR1jatXr/aeH/L3GP/7ewkJCc8MiqLAt33bt+GVr3wl3v3ud+PlL385/tk/+2eJrxMSnsP41Kc+hSeeeAJ/6k/9KWRZhizL8OCDD+IXfuEXkGUZLly4kPg7IeEWwMmTJ/GiF70IX/rSl9K8nZDwHMZtt92G7/zO7+xd+47v+I5wxEGypyUkPLfx1a9+Ff/tv/03/I2/8TfCtTRvJyQ8vXhWOcCLosArX/lKfPjDHw7XrLX48Ic/jPvuu+8ZbFlCQsL14t5778XFixd7fL27u4uPf/zjga/vu+8+XL16FZ/61KfCMx/5yEdgrcVrXvOap73NCQkJAmbGT/zET+ADH/gAPvKRj+Dee+/t3X/lK1+JPM97/P3QQw/ha1/7Wo+/P/vZz/YW5Q888AB2dnaWFvsJCQnPHKy1qKoq8XVCwnMYr3vd6/DZz34Wn/nMZ8LPq171Krz5zW8Ofyf+Tkh47mN/fx9f/vKXcdttt6V5OyHhOYzXvva1eOihh3rXvvCFL+Cee+4BkOxpCQnPdfzyL/8yzp8/jze96U3hWpq3ExKeZvCzDO9///t5Mpnw+973Pv785z/Pb33rW/nkyZP82GOPPdNNS0hIWIG9vT3+9Kc/zZ/+9KcZAP/Tf/pP+dOf/jR/9atfZWbm97znPXzy5En+T//pP/Ef/dEf8Q/+4A/yvffey4vFIpTxAz/wA/yKV7yCP/7xj/Pv/d7v8Qtf+EL+0R/90WfqkxISEpj5bW97G584cYJ/53d+hx999NHwM5/PwzM//uM/znfffTd/5CMf4U9+8pN833338X333Rfut23LL3nJS/j7v//7+TOf+Qx/6EMf4nPnzvHP/MzPPBOflJCQwMw//dM/zQ8++CA//PDD/Ed/9Ef80z/900xE/F//639l5sTXCQm3Er73e7+X3/72t4f/E38nJDz38JM/+ZP8O7/zO/zwww/zf//v/51f//rX89mzZ/mJJ55g5sTXCQnPVfz+7/8+Z1nG/+Af/AP+4he/yP/23/5b3tjY4F/91V8NzyR7WkLCcxPGGL777rv5p37qp5bupXk7IeHpw7POAc7M/M//+T/nu+++m4ui4Fe/+tX8sY997JluUkJCwhr89m//NgNY+nnLW97CzMzWWv7Zn/1ZvnDhAk8mE37d617HDz30UK+Mp556in/0R3+Ut7a2eGdnh//aX/trvLe39wx8TUJCgscYXwPgX/7lXw7PLBYL/pt/82/yqVOneGNjg//iX/yL/Oijj/bK+ZM/+RN+4xvfyLPZjM+ePcs/+ZM/yU3TPM1fk5CQ4PFjP/ZjfM8993BRFHzu3Dl+3eteF5zfzImvExJuJQwd4Im/ExKee/iRH/kRvu2227goCr7jjjv4R37kR/hLX/pSuJ/4OiHhuYvf+I3f4Je85CU8mUz4xS9+Mf/Lf/kve/eTPS0h4bmJ3/qt32IAS/zKnObthISnE8TM/IxsPU9ISEhISEhISEhISEhISEhISEhISEhISEhISEhISLiJeFadAZ6QkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkHC9SA7whISEhISEhISEhISEhISEhISEhISEhISEhISEhIRbAskBnpCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJBwSyA5wBMSEhISEhISEhISEhISEhISEhISEhISEhISEhISbgkkB3hCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwi2B5ABPSEhISEhISEhISEhISEhISEhISEhISEhISEhISLglkBzgCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQm3BJIDPCEhISEhISEhISEhISEhISEhISEhISEhISEhISHhlkBygCckJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQk3BJIDvCEhISEhISEhISEhISEhISEhISEhISEhISEhISEhFsCyQGekJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkHBL4P8DEyLncIbeDZMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.rcParams[\"figure.figsize\"] = (25,5)\n", "a = m2.stage1_S.stage.lut_kan_layers[0].lut.detach()\n", "a = a.view(a.shape[0]*a.shape[1], a.shape[2]).permute(1,0)\n", "plt.imshow(a)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADF8AAA09CAYAAACgvUajAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3wVZf7//3d6JYGEFpoEpEgQAQWFlaaoFEFBmoIUUZaODVgBF6miIigIiOCCBdaC+sVFQUFxl1W6iLhEQSBSQ4cQQki7/jf85/w4JDk5AS5OTvJ6Ph7c4Dozn7nmZD5zXXPNXGd8jDFGAAAAAAAAAAAAAAAAAAAAAAAAyJWvpysAAAAAAAAAAAAAAAAAAAAAAABQmDH5AgAAAAAAAAAAAAAAAAAAAAAAwAUmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfeJGLFy9q9OjRqlChgkJCQnT77bdr9erVnq4W4DHJyckaP3682rRpo6ioKPn4+Gjx4sWerhbgMZs3b9bQoUMVFxensLAwValSRd26ddOuXbs8XTXAY/73v/+pa9euqlatmkJDQ1W6dGk1b95c//rXvzxdNaBQmTJlinx8fFS3bl1PVwXwiO+++04+Pj65/tuwYYOnqwd41I8//qiOHTsqKipKoaGhqlu3rmbNmuXpagEe0bdv3zzbCx8fHx06dMjTVQSuu927d6tHjx6qVKmSQkNDVbt2bU2cOFEpKSmerhrgMVu3blWbNm0UERGhEiVK6N5779VPP/3k6WoB10VB7t3Fx8erTZs2Cg8PV1RUlB599FEdP378+lYYuA7czYtNmzZp8ODBuvXWWxUQECAfH5/rX1ngOnEnL7KysrR48WJ17NhRlStXVlhYmOrWravJkycrNTXVMxUHLHK3vViwYIFatGihcuXKKSgoSLGxserXr58SEhKue50B267k2cD09HTVqVNHPj4+mj59+vWpKHCduJsTed3LqF279vWvdBHl7+kKwH19+/bVsmXL9OSTT6pGjRpavHix2rVrp7Vr1+rOO+/0dPWA6+7EiROaOHGiqlSpoltuuUXfffedp6sEeNRLL72k77//Xl27dlW9evWUmJioN954Qw0bNtSGDRt4oBbF0h9//KFz586pT58+qlChglJSUvTJJ5+oY8eOmj9/vgYMGODpKgIed/DgQU2dOlVhYWGergrgccOHD1ejRo2cym688UYP1QbwvK+//lodOnRQgwYN9Pzzzys8PFx79uzRwYMHPV01wCP++te/qnXr1k5lxhgNHDhQVatWVcWKFT1UM8AzDhw4oMaNGysyMlJDhw5VVFSU1q9fr/Hjx2vr1q1avny5p6sIXHc//vij7rzzTlWuXFnjx49XVlaW5s6dqxYtWmjTpk2qVauWp6sIWOXuvbuDBw+qefPmioyM1NSpU5WcnKzp06drx44d2rRpkwIDA69vxQGL3M2LL7/8UgsXLlS9evVUrVo1flwNRZo7eZGSkqJ+/frpjjvu0MCBA1W2bFnH9cY333yjb7/9lklKKFLcbS+2bdum2NhYdezYUaVKldK+ffu0YMECrVixQtu3b1eFChWub8UBi67k2cDZs2dr//799isHeEBBciIoKEgLFy50KouMjLRcw+KDyRdeYtOmTfrggw/0yiuv6Nlnn5Uk9e7dW3Xr1tWoUaP0ww8/eLiGwPUXExOjI0eOqHz58tqyZUuOh6SA4ubpp5/W0qVLnW5KdO/eXTfffLOmTZum999/34O1AzyjXbt2ateunVPZ0KFDdeutt2rGjBlMvgAkPfvss7rjjjuUmZmpEydOeLo6gEc1a9ZMXbp08XQ1gEIhKSlJvXv3Vvv27bVs2TL5+vICXaBJkyZq0qSJU9l///tfpaSkqGfPnh6qFeA57733ns6cOaP//ve/iouLkyQNGDBAWVlZevfdd3X69GmVKlXKw7UErq/nn39eISEhWr9+vaKjoyVJvXr1Us2aNTVmzBh98sknHq4hYJe79+6mTp2q8+fPa+vWrapSpYokqXHjxrrnnnu0ePFixm1RpLibF4MGDdLo0aMVEhKioUOHMvkCRZo7eREYGKjvv/9eTZs2dZQ98cQTqlq1qmMCxuU/kAB4M3fbi7lz5+Yoe/DBB3Xbbbfp3Xff1d/+9jfbVQWum4I+G3js2DFNnDhRo0eP1t///vfrVEvg+ilITvj7+6tXr17XsXbFC3dNvcSyZcvk5+fnNNAUHBys/v37a/369Tpw4IAHawd4RlBQkMqXL+/pagCFRtOmTXP8GlSNGjUUFxen+Ph4D9UKKHz8/PxUuXJlnTlzxtNVATzuP//5j5YtW6bXXnvN01UBCo1z584pIyPD09UAPG7p0qU6evSopkyZIl9fX50/f15ZWVmerhZQ6CxdulQ+Pj565JFHPF0V4LpLSkqSJJUrV86pPCYmRr6+vvxqOYqldevWqXXr1o6JF9KfOdGiRQutWLFCycnJHqwdYJ+79+4++eQT3X///Y6JF5LUunVr1axZUx999JHNKgLXnbt5Ua5cOYWEhFyHGgGe505eBAYGOk28yNapUydJ4v43ipyreQaqatWqksT9bxQ5Bc2Lv/3tb6pVqxYPnKPIKmhOZGZmOsZwcW0x+cJLbNu2TTVr1lRERIRTeePGjSVJP/30kwdqBQAo7IwxOnr0qEqXLu3pqgAedf78eZ04cUJ79uzRzJkztXLlSt19992erhbgUZmZmRo2bJgef/xx3XzzzZ6uDlAo9OvXTxEREQoODlarVq20ZcsWT1cJ8Jg1a9YoIiJChw4dUq1atRQeHq6IiAgNGjRIqampnq4eUCikp6fro48+UtOmTR03uYHipGXLlpKk/v3766efftKBAwf04Ycfat68eRo+fLjCwsI8W0HAAy5evJjrg7OhoaFKS0vTL7/84oFaAYXLoUOHdOzYMd122205PmvcuLG2bdvmgVoBALxFYmKiJHH/G8XeyZMndezYMW3ZskX9+vWTJO5/o1jbtGmT3nnnHb322mvy8fHxdHUAj0tJSVFERIQiIyMVFRWlIUOG8KMg15C/pysA9xw5ckQxMTE5yrPLDh8+fL2rBADwAkuWLNGhQ4c0ceJET1cF8KhnnnlG8+fPlyT5+vqqc+fOeuONNzxcK8Cz3nzzTf3xxx9as2aNp6sCeFxgYKAeeughtWvXTqVLl9bOnTs1ffp0NWvWTD/88IMaNGjg6SoC193u3buVkZGhBx54QP3799eLL76o7777TrNnz9aZM2f0z3/+09NVBDzuq6++0smTJ9WzZ09PVwXwiDZt2mjSpEmaOnWqPv/8c0f52LFjNXnyZA/WDPCcWrVqacOGDcrMzJSfn58kKS0tTRs3bpT050PnQHF35MgRScrz3vepU6d08eJFBQUFXe+qAQC8wMsvv6yIiAi1bdvW01UBPKpixYq6ePGiJCk6OlqzZs3SPffc4+FaAZ5hjNGwYcPUvXt3NWnSRAkJCZ6uEuBRMTExGjVqlBo2bKisrCytWrVKc+fO1fbt2/Xdd9/J35+pA1eLb9BLXLhwIdcBpuDgYMfnAABc6tdff9WQIUPUpEkT9enTx9PVATzqySefVJcuXXT48GF99NFHyszMVFpamqerBXjMyZMn9fe//13PP/+8ypQp4+nqAB7XtGlTp1fYd+zYUV26dFG9evX03HPPadWqVR6sHeAZycnJSklJ0cCBAzVr1ixJUufOnZWWlqb58+dr4sSJqlGjhodrCXjW0qVLFRAQoG7dunm6KoDHVK1aVc2bN9dDDz2k6OhoffHFF5o6darKly+voUOHerp6wHU3ePBgDRo0SP3799eoUaOUlZWlyZMnOx42534e8P/yIL9730y+AABcburUqVqzZo3mzp2rkiVLero6gEetXLlSqampio+P1/vvv6/z5897ukqAxyxevFg7duzQsmXLPF0VoFB48cUXnf7fo0cP1axZU2PHjtWyZcvUo0cPD9Ws6PD1dAXgnpCQEMds1UulpqY6PgcAIFtiYqLat2+vyMhILVu2zPEra0BxVbt2bbVu3Vq9e/fWihUrlJycrA4dOsgY4+mqAR4xbtw4RUVFadiwYZ6uClBo3XjjjXrggQe0du1aZWZmero6wHWXPdb08MMPO5U/8sgjkqT169df9zoBhUlycrKWL1+u++67T9HR0Z6uDuARH3zwgQYMGKCFCxfqiSeeUOfOnfX222+rT58+Gj16tE6ePOnpKgLX3cCBAzVmzBgtXbpUcXFxuvnmm7Vnzx6NGjVKkhQeHu7hGgKel32twb1vAEBBfPjhhxo3bpz69++vQYMGebo6gMe1atVKbdu21dNPP62PP/5YEyZM0BtvvOHpagHXXVJSkp577jmNHDlSlStX9nR1gELrqaeekq+vr9asWePpqhQJTL7wEjExMY5fxblUdlmFChWud5UAAIXU2bNn1bZtW505c0arVq2ijQBy0aVLF23evFm7du3ydFWA62737t166623NHz4cB0+fFgJCQlKSEhQamqq0tPTlZCQoFOnTnm6mkChULlyZaWlpfGLUSiWsq8jypUr51RetmxZSdLp06eve52AwuT//u//lJKSop49e3q6KoDHzJ07Vw0aNFClSpWcyjt27KiUlBRt27bNQzUDPGvKlCk6evSo1q1bp59//lmbN29WVlaWJKlmzZoerh3geTExMZKU573vqKgo3noBAHCyevVq9e7dW+3bt9ebb77p6eoAhU716tXVoEEDLVmyxNNVAa676dOnKy0tTd27d3fc9z548KCkP+9jJCQkKC0tzcO1BDwvJCRE0dHRPAtyjTD5wkvUr19fu3btUlJSklP5xo0bHZ8DAJCamqoOHTpo165dWrFiherUqePpKgGFUvar7c+ePevhmgDX36FDh5SVlaXhw4crNjbW8W/jxo3atWuXYmNjNXHiRE9XEygU9u7dq+DgYH6dFsXSrbfeKunPduNShw8fliSVKVPmutcJKEyWLFmi8PBwdezY0dNVATzm6NGjub4hLD09XZKUkZFxvasEFBqlSpXSnXfeqZtvvlmStGbNGlWqVEm1a9f2cM0Az6tYsaLKlCmjLVu25Phs06ZN3PcGADjZuHGjOnXqpNtuu00fffSR/P39PV0loFC6cOEC975RLO3fv1+nT59WXFyc4753s2bNJElTp05VbGysdu7c6eFaAp537tw5nThxgvt71wiTL7xEly5dlJmZqbfeestRdvHiRS1atEi33347r0wCACgzM1Pdu3fX+vXr9fHHH6tJkyaerhLgcceOHctRlp6ernfffVchISFMUEKxVLduXX322Wc5/sXFxalKlSr67LPP1L9/f09XE7iujh8/nqNs+/bt+vzzz3XvvffK15fhExQ/3bp1kyS9/fbbTuULFy6Uv7+/WrZs6YFaAYXD8ePHtWbNGnXq1EmhoaGerg7gMTVr1tS2bdtyvFXyn//8p3x9fVWvXj0P1QwoXD788ENt3rxZTz75JNcWwP/voYce0ooVK3TgwAFH2TfffKNdu3apa9euHqwZAKAwiY+PV/v27VW1alWtWLFCISEhnq4S4FEZGRm5vpF406ZN2rFjh2677TYP1ArwrOHDh+e47z1//nxJUt++ffXZZ58pNjbWw7UErp/U1FSdO3cuR/mkSZNkjFGbNm08UKuih+nAXuL2229X165d9dxzz+nYsWO68cYb9c477yghISHHTXCgOHnjjTd05swZxy9v/utf/3K8OmzYsGGKjIz0ZPWA6+qZZ57R559/rg4dOujUqVN6//33nT7v1auXh2oGeM5f//pXJSUlqXnz5qpYsaISExO1ZMkS/frrr3r11Vf5JXMUS6VLl9aDDz6Yo/y1116TpFw/A4q67t27KyQkRE2bNlXZsmW1c+dOvfXWWwoNDdW0adM8XT3AIxo0aKDHHntM//jHP5SRkaEWLVrou+++08cff6znnntOFSpU8HQVAY/58MMPlZGRoZ49e3q6KoBHjRw5UitXrlSzZs00dOhQRUdHa8WKFVq5cqUef/xx2goUS//5z380ceJE3XvvvYqOjtaGDRu0aNEitWnTRiNGjPB09YDrwp17d2PGjNHHH3+sVq1aacSIEUpOTtYrr7yim2++Wf369fNk9QEr3MmLP/74Q++9954kOd4MM3nyZEnSDTfcoEcffdQDNQfsyS8vfH19dd999+n06dMaOXKkvvjiC6f1q1evzo8RosjJLy+MMapcubK6d++uuLg4hYWFaceOHVq0aJEiIyP1/PPPe7L6gBX55UXDhg3VsGFDp3USEhIkSXFxcdz7RpGTX06cPn1aDRo00MMPP+x4A+tXX32lL7/8Um3atNEDDzzgsboXJT7GGOPpSsA9qampev755/X+++/r9OnTqlevniZNmqT77rvP01UDPKZq1ar6448/cv1s3759qlq16vWtEOBBLVu21L///e88P6fJR3H0wQcf6O2339aOHTt08uRJlShRQrfeequGDRumjh07erp6QKHSsmVLnThxQr/88ounqwJcd7NmzdKSJUv0+++/KykpSWXKlNHdd9+t8ePH68Ybb/R09QCPSU9P19SpU7Vo0SIdPnxYN9xwg4YMGaInn3zS01UDPKpJkybau3evDh8+LD8/P09XB/CoTZs26YUXXtC2bdt08uRJxcbGqk+fPho1apT8/fn9LxQ/e/bs0eDBg/Xjjz/q3Llzjpx4+umnFRgY6OnqAdeFu/fu/ve//+npp5/Wf//7XwUGBqp9+/Z69dVXVa5cuetYW+D6cCcvvvvuO7Vq1SrXZbJ/EAEoSvLLC0kuf6m8T58+Wrx4sY2qAR6TX15UqFBBo0aN0tq1a5WQkKALFy6oQoUKat26tcaNG8czUiiSruTZwISEBMXGxuqVV17Rs88+a7mGwPWVX06ULFlSw4YN04YNG3T48GFlZmbqxhtvVM+ePfXss88qICDgOte4aGLyBQAAAAAAAAAAAAAAAAAAAAAAgAu+nq4AAAAAAAAAAAAAAAAAAAAAAABAYcbkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+SIfFy9e1OjRo1WhQgWFhITo9ttv1+rVq91e/9ChQ+rWrZtKliypiIgIPfDAA9q7d2++66WkpGjOnDm69957FRMToxIlSqhBgwaaN2+eMjMznZZNSEiQj49Prv8++OCDPLeRnp6uOnXqyMfHR9OnT3d7nz7//HM1bNhQwcHBqlKlisaPH6+MjAy314f3Iy9yIi+Kj//973/q2rWrqlWrptDQUJUuXVrNmzfXv/71rxzL9u3bN9djsHbt2m5v70qPrV9//VWjRo1S/fr1VaJECcXExKh9+/basmVLjmVfeOGFXOsZHBzschv//e9/HcueOHHCrf252vMHvAvtRU60FyhqebFgwQK1aNFC5cqVU1BQkGJjY9WvXz8lJCS4vU8//PCD7rzzToWGhqp8+fIaPny4kpOT3V4f3q2o5cSlaCtwpciLnMiL4mPz5s0aOnSo4uLiFBYWpipVqqhbt27atWtXrst/9NFHuuOOO1SyZElFR0erRYsW+uKLL9zeHtfc8Ga0FznRXoC8yIm8KL4Kci8jL2fOnNGAAQNUpkwZhYWFqVWrVvrxxx/zXS8rK0uLFy9Wx44dVblyZYWFhalu3bqaPHmyUlNTcyyfV05MmzbNablPP/1U3bt3d+xTrVq19Mwzz+jMmTNu71N8fLzatGmj8PBwRUVF6dFHH9Xx48fdXh9Fy5QpU+Tj46O6deu6vQ5tBYoi+lA5kRfFR3JyssaPH682bdooKipKPj4+Wrx4cZ7LZ2Vlad68eapfv75CQkIUHR2tu+66S9u3b3dre4xFobAryPisJ+8THzhwQBMmTFDjxo1VqlQplS5dWi1bttSaNWtyLLt48eI825DExMQ8t7Fnzx4FBwfLx8cn11zLTVZWll5++WXFxsYqODhY9erV0z//+U+31oV3oh+VU3HpR/l7ugKFXd++fbVs2TI9+eSTqlGjhhYvXqx27dpp7dq1uvPOO12um5ycrFatWuns2bMaM2aMAgICNHPmTLVo0UI//fSToqOj81x37969GjZsmO6++249/fTTioiI0FdffaXBgwdrw4YNeuedd3Ks8/DDD6tdu3ZOZU2aNMlzG7Nnz9b+/fvz+QacrVy5Ug8++KBatmyp2bNna8eOHZo8ebKOHTumefPmFSgWvBd54Yy8KF7++OMPnTt3Tn369FGFChWUkpKiTz75RB07dtT8+fM1YMAAp+WDgoK0cOFCp7LIyEi3tnU1x9bChQv19ttv66GHHtLgwYN19uxZzZ8/X3fccYdWrVql1q1b51hn3rx5Cg8Pd/zfz88vz/hZWVkaNmyYwsLCdP78ebf2R7q68we8D+2FM9oLSEUvL7Zt26bY2Fh17NhRpUqV0r59+7RgwQKtWLFC27dvV4UKFVzu008//aS7775bN910k2bMmKGDBw9q+vTp2r17t1auXOlyXRQNRS0nLkVbgStFXjgjL4qXl156Sd9//726du2qevXqKTExUW+88YYaNmyoDRs2OD0UNXv2bA0fPlzt27fXtGnTlJqaqsWLF+v+++/XJ598os6dO7vcFtfc8Ha0F85oLyCRF5cjL4q3gt7LuFxWVpbat2+v7du3a+TIkSpdurTmzp2rli1bauvWrapRo0ae66akpKhfv3664447NHDgQJUtW1br16/X+PHj9c033+jbb7+Vj4+P0zr33HOPevfu7VTWoEEDp/8PGDBAFSpUUK9evVSlShXt2LFDb7zxhr788kv9+OOPCgkJcblPBw8eVPPmzRUZGampU6cqOTlZ06dP144dO7Rp0yYFBga6XB9Fy8GDBzV16lSFhYW5vQ5tBYoq+lDOyIvi5cSJE5o4caKqVKmiW265Rd99953L5R977DEtWbJEvXv31tChQ3X+/Hlt27ZNx44dy3dbjEXBGxRkfNaT94mXL1+ul156SQ8++KD69OmjjIwMvfvuu7rnnnv0j3/8Q/369cuxzsSJExUbG+tUVrJkyTy38dRTT8nf318XL150WZdLjR07VtOmTdMTTzyhRo0aafny5XrkkUfk4+OjHj16uB0H3oN+lLNi1Y8yyNPGjRuNJPPKK684yi5cuGCqV69umjRpku/6L730kpFkNm3a5CiLj483fn5+5rnnnnO57vHjx80vv/ySo7xfv35Gktm9e7ejbN++fTnqmZ+jR4+ayMhIM3HixAKtW6dOHXPLLbeY9PR0R9nYsWONj4+PiY+Pd3v78F7kRU7kBTIyMswtt9xiatWq5VTep08fExYWdsVxr+bY2rJlizl37pxT2YkTJ0yZMmXMX/7yF6fy8ePHG0nm+PHjbtdt3rx5Jjo62owYMcLtda/2/AHvQnuRE+0FinJeXGrLli1GknnxxRfzXbZt27YmJibGnD171lG2YMECI8l89dVXV7R9eI+inBO0FbhS5EVO5EXx8v3335uLFy86le3atcsEBQWZnj17OpXXqFHDNGrUyGRlZTnKzp49a8LDw03Hjh3z3RbX3PBmtBc50V6AvMiJvMDl8rqXkZsPP/zQSDIff/yxo+zYsWOmZMmS5uGHH3a57sWLF83333+fo3zChAlGklm9erVTuSQzZMiQfOu0du3aHGXvvPOOkWQWLFiQ7/qDBg0yISEh5o8//nCUrV692kgy8+fPz3d9FC3du3c3d911l2nRooWJi4tzax3aChRF9KFyIi+Kl9TUVHPkyBFjjDGbN282ksyiRYtyXTa7f/Tpp59e0bYYi4I3KMj4bG6u133iX375JcdxmpqaamrXrm0qVarkVL5o0SIjyWzevDnfOmVbtWqVCQwMNOPGjXN73YMHD5qAgACna5usrCzTrFkzU6lSJZORkeH29uEd6EflVJz6Ub5XOGejWFi2bJn8/PycfvkjODhY/fv31/r163XgwIF812/UqJEaNWrkKKtdu7buvvtuffTRRy7XLV26tOLi4nKUd+rUSdKfr0TNzfnz55WWluYytiT97W9/U61atdSrV698l822c+dO7dy5UwMGDJC///97acrgwYNljNGyZcvcjgXvRV44Iy8g/fkLAZUrV87z1daZmZlKSkoqUMyrPbZuvfVWp18xkKTo6Gg1a9Ysz1wxxigpKUnGGJexT506pXHjxmnixIkuZ4Ff7mrPH/AutBfOaC8gFe28uFTVqlUlKc92MVtSUpJWr16tXr16KSIiwlHeu3dvhYeH57tP8H5FOSdoK3ClyAtn5EXx07Rp0xy/OFyjRg3FxcXlOAaTkpJUtmxZp19NjoiIUHh4eL6/esw1N7wd7YUz2gtI5MXlyAvkJr97GZdatmyZypUr5/Q2sTJlyqhbt25avny5y19/DQwMVNOmTXOU55cTFy5cUGpqap5xW7ZsWeCYl/rkk090//33q0qVKo6y1q1bq2bNmoxDFTP/+c9/tGzZMr322msFWo+2AkURfShn5EXxExQUpPLly7u17IwZM9S4cWN16tRJWVlZBXpDBGNR8BYFGZ/NzfW6TxwXF6fSpUs7lQUFBaldu3Y6ePCgzp07l+t6586dU2ZmpsvY6enpGjFihEaMGKHq1au7XPZSy5cvV3p6ugYPHuwo8/Hx0aBBg3Tw4EGtX7/e7VjwDvSjnBW3fhSTL1zYtm2batas6XSCl6TGjRtL+vPVR3nJysrSzz//rNtuuy3HZ40bN9aePXvyPMm7kpiYKEk5Gg9JmjBhgsLDwxUcHKxGjRrp66+/zjXGpk2b9M477+i1117L8UpXV7Zt2yZJOfapQoUKqlSpkuNzFG3khTPyovg6f/68Tpw4oT179mjmzJlauXKl7r777hzLpaSkKCIiQpGRkYqKitKQIUOUnJycb3xbx1ZiYmKuuSJJ1apVU2RkpEqUKKFevXrp6NGjuS73/PPPq3z58vrrX/9aoG1fzfkD3of2whntBaSimxeSdPLkSR07dkxbtmxxvMY1t3bxUjt27FBGRkaOfQoMDFT9+vXJi2KgqOYEbQWuBnnhjLyA9OeN4qNHj+Y4Blu2bKlVq1Zp9uzZSkhI0K+//qohQ4bo7NmzGjFihMuYXHPD29FeOKO9gEReXI68QDZ372Vcbtu2bWrYsKF8fZ0fJ2jcuLFSUlK0a9euAtfFVU4sXrxYYWFhCgkJUZ06dbR06dKrjnmpQ4cO6dixY3nmOTlRfGRmZmrYsGF6/PHHdfPNN7u9Hm0Fiir6UM7IC+QlKSlJmzZtUqNGjTRmzBhFRkYqPDxc1apVc2sSJ2NR8GZ5jc9mK0z3iRMTExUaGqrQ0NAcn7Vq1UoREREKDQ1Vx44dtXv37lxjvPbaazp9+rTGjRtXoG1v27ZNYWFhuummm5zKs3OCNqTooR/lrLj1o/zzX6T4OnLkiGJiYnKUZ5cdPnw4z3VPnTqlixcv5rt+rVq13K5PWlqaXnvtNcXGxjrNdvL19dW9996rTp06qWLFitq7d69mzJihtm3b6vPPP1f79u0dyxpjNGzYMHXv3l1NmjRRQkKC29s/cuSIU/0v3ydX3weKDvLCGXlRfD3zzDOaP3++pD+Pt86dO+uNN95wWiYmJkajRo1Sw4YNlZWVpVWrVmnu3Lnavn27vvvuO6dZnpezcWytW7dO69evz3GBUKpUKQ0dOlRNmjRRUFCQ1q1bpzlz5mjTpk3asmWLUyfx559/1vz58/Xll1/Kz8+vQNu/mvMHvA/thTPaC0hFMy+yVaxY0fGLh9HR0Zo1a5buuecel9vPLy/WrVvn9r7AOxXFnKCtwNUiL5yRF5CkJUuW6NChQ5o4caJT+axZs3TixAkNHz5cw4cPl/TnDYVvvvlGTZo0cRmTa254O9oLZ7QXkMiLy5EXyObOvYzcHDlyRM2bN89RfmlOFOTBdUl6+eWXFRERobZt2zqVN23aVN26dVNsbKwOHz6sOXPmqGfPnjp79qwGDRrkMuZLL70kPz8/denSJd/9ubT+l4qJiXGcB4KCggq0T/A+b775pv744w+tWbOmQOvRVqCoog/ljLxAXvbs2SNjjD744AP5+/vr5ZdfVmRkpF5//XX16NFDERERatOmTZ7rMxYFb5bX+Gy2wnKf+Pfff9enn36qrl27Oh3PoaGh6tu3r2PyxdatWzVjxgw1bdpUP/74oypXruxYNjExUZMmTdL06dNzPFCfnyNHjqhcuXI5HlYnJ4ou+lHOils/iskXLly4cCHXAZbg4GDH567WlXTF6+dm6NCh2rlzp7744gunB3arVKmir776ymnZRx99VHXq1NEzzzzjlByLFy/Wjh07rugVLvntU1JSUoFjwvuQF87Ii+LrySefVJcuXXT48GF99NFHyszMzPFarhdffNHp/z169FDNmjU1duxYLVu2TD169Mgz/rU+to4dO6ZHHnlEsbGxGjVqlNNnl/8i6EMPPaTGjRurZ8+emjt3rv72t785Phs+fLjatm2re++9t0Dbl67u/AHvQ3vhjPYCUtHMi2wrV65Uamqq4uPj9f7777v1quX89ol2oegrijlBW4GrRV44Iy+Q/TaLJk2aqE+fPk6fhYaGqlatWqpUqZLuv/9+nTt3TjNnzlTnzp21bt063XjjjXnG5Zob3o72whntBSTy4nLkBbK5cy8jN9e6bzF16lStWbNGc+fOVcmSJZ0++/77753+/9hjj+nWW2/VmDFj1LdvX4WEhOQac+nSpXr77bc1atQo1ahRw+X23c1zJl8UbSdPntTf//53Pf/88ypTpkyB1qWtQFFFH8oZeYG8JCcnS/qzLdmwYYNuv/12SVLHjh0VGxuryZMnu5x8wVgUvJWr8dlsheE+cUpKirp27aqQkBBNmzbN6bNu3bqpW7dujv8/+OCDuu+++9S8eXNNmTJFb775puOz0aNHq1q1anr88ccLtH2JnCiO6Ec5K279KN/8Fym+QkJCHLPyLpWamur43NW6kq54/cu98sorWrBggSZNmqR27drlu3xUVJT69eun3377TQcPHpT05yvQnnvuOY0cOdJpxp678tunguwPvBd54Yy8KL5q166t1q1bq3fv3lqxYoWSk5PVoUMHGWNcrvfUU0/J19c331/UuZbH1vnz5x0Poixfvlzh4eH5rvPII4+ofPnyTvX88MMP9cMPP+jVV191e9uXuprzB7wP7YUz2gtIRS8vLtWqVSu1bdtWTz/9tD7++GNNmDAh319RJC9Q1HKCtgLXAnnhjLwo3hITE9W+fXtFRkZq2bJlOX59r2vXrtq/f78WL16sLl26qF+/fvruu++UlpamsWPHuozNNTe8He2FM9oLSOTF5cgLZLvSexnXsm/x4Ycfaty4cerfv3++b7KQpMDAQA0dOlRnzpzR1q1bc11m3bp16t+/v+677z5NmTIl35jXOs/hncaNG6eoqCgNGzaswOvSVqCoog/ljLxAXrL/9rGxsY6JF5IUHh6uDh06aNOmTcrIyMh3fcai4E3yG5/N5un7xJmZmerRo4d27typZcuWqUKFCvmuc+edd+r22293yokNGzbovffe08yZM+XrW/DHqsmJ4od+lLPi1o9i8oULMTExjlehXCq7zNWJOioqSkFBQVe8/qUWL16s0aNHa+DAgTleFeZKdgKcOnVKkjR9+nSlpaWpe/fuSkhIUEJCgiNxTp8+rYSEBJe/dJL9Opi89snd/YF3Iy+ckRfI1qVLF23evFm7du1yuVxISIiio6Mdx2BertWxlZaWps6dO+vnn3/W8uXLVbduXbfWk/7Ml0vrOXLkSHXt2lWBgYGOfDlz5owk6cCBA/m+Huxqzh/wPrQXzmgvIBW9vMhL9erV1aBBAy1ZssTlcuQFilpO0FbgWiAvnJEXxdfZs2fVtm1bnTlzRqtWrcrxt967d69WrVqljh07OpVHRUXpzjvvzPHryZfjmhvejvbCGe0FJPLicuQF8uLuvYxr1bdYvXq1evfurfbt2zv9omx+XI1Dbd++XR07dlTdunW1bNkyp1/0zEt+OZF9HkDRtXv3br311lsaPny4Dh8+7Di3pqamKj09XQkJCS7HPWkrUFTRh3JGXiAv2X/7cuXK5fisbNmySk9Pd/lr/4xFwdvkNz6bF0/cJ37iiSe0YsUKLV68WHfddZfb612eE6NGjVKzZs0UGxvryIkTJ0446rR//36X8WJiYpSYmJhjojs5UXTRj3JW3PpRTL5woX79+tq1a1eO151s3LjR8XlefH19dfPNN2vLli05Ptu4caOqVaumEiVK5FuH5cuX6/HHH1fnzp01Z86cAtV/7969kuR4Zeb+/ft1+vRpxcXFKTY2VrGxsWrWrJmkP1/1Ghsbq507d+YZL3t/L9+nw4cP6+DBgy6/DxQd5IUz8gLZsl+ddfbsWZfLnTt3TidOnMj3dcbX4tjKyspS79699c0332jp0qVq0aJFvutkM8YoISHBqZ4HDhzQ0qVLHbkSGxur119/XZLUsGHDfGfOXs35A96H9sIZ7QWkopcXrly4cCHfNrFu3bry9/fPsU9paWn66aefyItioKjlBG0FrgXywhl5UTylpqaqQ4cO2rVrl1asWKE6derkWObo0aOS/vxVs8ulp6e7/KVBiWtueD/aC2e0F5DIi8uRF8iLu/cy6tevrx9//FFZWVlO5Rs3blRoaKhq1qyZ77Y2btyoTp066bbbbtNHH33k1iSJbHmNQ+3Zs0dt2rRR2bJl9eWXX7r1S8+SVLFiRZUpUybXPN+0aRM5UQwcOnRIWVlZGj58uFOfe+PGjdq1a5diY2M1ceLEPNenrUBRRR/KGXmBvFSoUEHly5fXoUOHcnx2+PBhBQcHuzzeGYuCN3FnfNaV63mfeOTIkVq0aJFmzpyphx9+uED13Lt3r1NO7N+/X//5z3+ccmLkyJGSpI4dO6pevXou49WvX18pKSmKj493Kicnii76Uc6KXT/KIE8bNmwwkswrr7ziKEtNTTU33nijuf32252W/eOPP0x8fLxT2bRp04wks3nzZkfZr7/+avz8/Mzo0aPz3f6///1vExwcbFq1amVSU1PzXO7YsWM5yg4ePGhKlSpl6tWr5yjbunWr+eyzz5z+zZ8/30gyffv2NZ999pk5c+aMMcaYtLQ0Ex8fbw4fPuwUt3bt2uaWW24xGRkZjrJx48YZHx8fs3Pnznz3Cd6PvCAvirujR4/mKEtLSzMNGzY0ISEh5ty5c8YYYy5cuGCSkpJyLDty5EgjyXz66adO69s4tgYPHmwkmfnz57tcLrd8mTNnjpFkZsyY4Si7PFc+++wz0717dyPJvPvuu+bbb791LHv8+HETHx9vzp8/7ygryPkD3o/2gvYCORW1vEhPTzenTp3KsezGjRuNn5+fefTRR53K4+PjzR9//OFU1qZNGxMTE+PUZi5cuNBIMitXrsx3n+DdilpO0FbgWiAvyIviLiMjw3Ts2NH4+/ubL774Is/ljh07Znx9fU3Lli1NVlaWo/zAgQMmPDzctGnTxlHGNTfX3EUR7QXtBXIiL8gLOHP3XoYxxhw+fNjEx8ebtLQ0R9kHH3xgJJmPP/7YUXb8+HFTsmRJ071793y3v3PnThMdHW3i4uJyHT/KlltOJCUlmerVq5vSpUubixcvOsqPHDliqlWrZipUqGD27dvncvu///67+f33353KBg4caEJCQsz+/fsdZWvWrDGSzLx58/LdJ3i348eP59rnjouLM1WqVDGfffaZ+fnnnx3L01bQVhQX9KHIC/w/mzdvNpLMokWLcv18xIgRRpL5+uuvHWXHjx83ERERpl27do4yxqIYi/Jm7o7PFob7xC+//LKRZMaMGeNyudxy4osvvjCSzPDhwx1lX331VY6cGDZsmJFkpk+fblasWOFY9syZMyY+Pt7Rphjz59h0QECAGTJkiKMsKyvLNGvWzFSsWNEp91E00I8q3v0oJl/ko2vXrsbf39+MHDnSzJ8/3zRt2tT4+/ubf//7307LtWjRwlw+lyV7YKhs2bLm5ZdfNjNnzjSVK1c2FSpUyPWAvlRCQoKJjIw0ISEhZs6cOea9995z+rd9+3bHsn379jXNmjUzL7zwgnnrrbfMmDFjTHR0tAkMDDRr1651uZ19+/blOAFcWt6nTx+n8n/961/Gx8fH3HXXXeatt94yw4cPN76+vuaJJ55wuR0ULeRFH6dy8qJ4efDBB81dd91lXnjhBbNgwQIzadIkU7t2bSPJvPrqq47l9u3bZ0qWLGkGDRpkXn/9dfP666+bdu3aGUmmTZs2JjMz02nZa31szZw500gyTZo0yZEr7733nklOTnYsGxISYvr27WteffVVM2fOHPPwww8bHx8fU79+faeL59yMHz/eSDLHjx/PtfzyfHP3/IGigfaij1M57QWMKVp5cfr0aRMWFmYee+wx8+qrr5o333zTDBkyxISGhpqoqCiza9cupzpIMi1atHAq27p1qwkKCjINGjQw8+bNM2PHjjXBwcHm3nvvLcC3Cm9WlHIiN7QVuBLkRR+ncvKieMm+id2hQ4dcr2Uv9fjjjxtJplWrVmb27Nlm6tSpplKlSsbPz88pX7jm5pq7qKK96ONUTnsBY8gL8gKXcvdehjHG9OnTx0hymtCQkZFh7rjjDhMeHm4mTJhg5syZY+Li4kyJEiXMr7/+6nLbSUlJpnLlysbX19dMmzYtR0788MMPjmXHjx9vbrnlFjNu3Djz1ltvmQkTJpgbbrjB+Pj4mPfff98p7i233GIkmVGjRuWIeelDkMYYc8MNN5gbbrjBqWz//v0mOjraVK9e3cyaNctMnTrVlCpVytx8880uH1RB0daiRQsTFxeXazltBYoL+lB9nMrJi+Jn9uzZZtKkSWbQoEFGkuncubOZNGmSmTRpktOD1YmJiSYmJsaUKFHCjB8/3syYMcPUrFnThISEmJ9++smxHGNRjEV5M3fHZz19n/jTTz81kkyNGjVyrWdiYqJj2RtvvNF07drVvPTSS+bNN980AwYMMP7+/qZy5cpOy+Vm0aJFOR6Ov7T88sla2T/IO2DAALNgwQLTvn17I8ksWbIk332Cd6If1cepvDj1o5h8kY8LFy6YZ5991pQvX94EBQWZRo0amVWrVuVYLrfkMObPGW1dunQxERERJjw83Nx///1m9+7d+W537dq1RlKe/8aPH+9YdunSpaZ58+amTJkyxt/f35QuXdp06tTJbN26Nd/tFDQ5jPlz5mv9+vVNUFCQqVSpkhk3bpzTL6Gg6CMv+uRYh7woPv75z3+a1q1bm3Llyhl/f39TqlQp07p1a7N8+XKn5U6fPm169eplbrzxRhMaGmqCgoJMXFycmTp1ao5jw8axlX2zJK9/l95Eefzxx02dOnVMiRIlTEBAgLnxxhvN6NGjc31zx+UKevHt7vkDRQPtRZ8c69BeoCjlxcWLF82IESNMvXr1TEREhAkICDA33HCD6d+/f66/PpjboJoxxqxbt840bdrUBAcHmzJlypghQ4a41QahaChKOZEb2gpcCfKiT451yIviI/u4zuvfpdLT083s2bNN/fr1TXh4uAkPDzetWrVy+lU+Y7jm5pq76KK96JNjHdoLkBd9cqxDXhRf7t7LMCb3yRfGGHPq1CnTv39/Ex0dbUJDQ02LFi1yPHSUm+xjMq9/lx6rX3/9tbnnnntM+fLlTUBAgClZsqS59957zTfffJMjrquYl4855Tb5whhjfvnlF3Pvvfea0NBQU7JkSdOzZ898H7hC0VaQyRfG0FagaKIP1SfHOuRF8XLDDTe4NcZjjDF79uwxnTp1MhERESYkJMTcddddZtOmTU7LMBbFWJQ3c3d81tP3ibOPybz+XXqsjh071tSvX99ERkaagIAAU6VKFTNo0CC3rgMKOvkiMzPTTJ061dxwww0mMDDQxMXF5ZhUjqKFflSfHOsUl36UjzHGCAAAAAAAAAAAAAAAAAAAAAAAALny9XQFAAAAAAAAAAAAAAAAAAAAAAAACjMmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAv+ntpwtVdnWIudFZplLbbxMdZi+0akW4vtcyTYWuysEHvft3zshU4Y9Ky94Feg6uxXrcX2TbP3RWYF2fv7B5ZPsRY7c2+4vdgh9s4TNiUMe8bTVcih9viZ1mIHnrEWWj4WT4sXytqL7W8v5RRw3l7sC2Xsxd71/FP2gl+hqnOmW4vtl2JvXq7xs3duzAy3l3Q+GfbaUN+L9mIbi1Os940ofO1F7Gv2+lHGz1pohSTa+0NlNjhnLbbZZa8flRaVaS12QJK9P+bvo562FvtKVZ1nr70IOGPv2E2LtncMRPxqbwjkfGV7bZHfBXvtRVrZDGux/3h8lLXYV6L6K/bGoTIi7B23snh56ZNuL5cDkiwet2Xsfd++F+x9J4WxD1X7eXvX3FmB1kLL+NpLjPSS9s7nwYn2+iIZYfa+k6Az9vL5f9MK3zV39ekW71sE2Ps7+VhsioKP2zs32jxXXKhgr59jc6wgYUjhum8h2e1H2Ry/UMUL1kKX/DbEWuzTcRbPFRbHrZVlLy/2PlP4rrljZ9kbiwq0ec0dafGensV62+zr+KZZC62McHv13je8cF1f2MwJm/0cm216oMV+9MVoe7mcFWAttNVnFgpjW2HzmSibeWFznKvsenvXxWdvtHg/z96lhVLL2vu+C+O1xY0vWcwLi33dzGCL97lL2TvA/I/ZO6nbvH9q8xy3pxDez6s5yeYYrb1j1z/F3nnXZv8/y+Kx62fx2sJmP+q38cVsjNZmXpy393cKOmUvdnJV77zPafMZN3faC958AQAAAAAAAAAAAAAAAAAAAAAA4AKTLwAAAAAAAAAAAAAAAAAAAAAAAFxg8gUAAAAAAAAAAAAAAAAAAAAAAIALTL4AAAAAAAAAAAAAAAAAAAAAAABwgckXAAAAAAAAAAAAAAAAAAAAAAAALjD5AgAAAAAAAAAAAAAAAAAAAAAAwAUmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfAAAAAAAAAAAAAAAAAAAAAAAAuMDkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFf09tOCvQWIvtk+ZjLXbQaT9rsct9Ye87OdjSWmj5n7M3hycrwN53Utj4WjxufbKshZbxt/c3qvqSvYr/NjTNWmy/UwHWYhc3vvb+TEqLtBc7tYy9Y7fEXnvnXGOxV3C+or1zRUiivfNnoWRzd700doDF/pnNNjStbIa12D4p9r6T4sYn017sizenWIvtuyfcWuzMUO/so2eEeGe9r5TfeXt9hsxgi9fz6fYajKj2h6zFTjleylrsjGPB1mIHHvfYsNB1lxlur1G3mW8l9tmLfbamve/Ev06StdiKj7AWOr1E8WorsoLs7a/fBXvn88i99uodcN5e7HOV7MVOy7T3fadFFq+8yIiwdwEQcMredVp6tL3ry6Ht/mUt9vSf7rEWW0mB1kL7XixeY1E22wtj8ass9V2ItdgX25+1FjvriL3r+UCLY2jpJS0OohVCNs8DaRa/y4Ake/W+WNpeG2pC7MX2t3hPzze1+LQXNu9zG1977VBGpL1jq8Ff9liLvXlnNWuxA07ZGyvKtNinKIx80+3FTo+yeF48a6+/UH/YT9Zix58uby32iXUx1mL7phav30zOtHifxmb/LHq7vdgXStu7dk0raXEsKtri2PLZ4pUXNp+NtHnN7ZdqL3bqjRetxS672l7OHW9oLbTnHvL2EB97Q53ysfgoTVq0vT7a7O6LrMUe8d4T1mLbvAYwHn4sqni1VgAAAAAAAAAAAAAAAAAAAAAAAAXE5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfAAAAAAAAAAAAAAAAAAAAAAAAuMDkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF5h8AQAAAAAAAAAAAAAAAAAAAAAA4AKTLwAAAAAAAAAAAAAAAAAAAAAAAFxg8gUAAAAAAAAAAAAAAAAAAAAAAIALTL4AAAAAAAAAAAAAAAAAAAAAAABwwd9zWzbWQmeFZliLnRpub77KdwMXWIsd++Xj1mL7R1y0FtvsDbcWu7DJDMu0FjvwpJ+12CFlU6zFXvWvJdZit+z/hLXYJwckWYt9YW+EtdiFUcgxe23F2ZrWQqv2nOPWYv86NtJabJNpr40r/d8Aa7HTw6yFLpR8MnysxQ49ZC/2LT3+Zy32zrfjrMU+2STdWuygQxbzooS982dh5JNlL7ax141Sie9DrcUu9Zu9PvrZEeesxc5cXdpa7KQa9vrbhZLF00BWtL1zo0mxl3SB9/xhLXbUoxWsxT7bIdla7MxidM1tQuydA8J2BVqLfXOvX6zF/u+Wm6zFLvVPe8fWkQdTrcX2OxRsLXZhFHTaXv/f115XRLeN3Got9p0Ru6zFfv7jR6zFDkm0FlrG195xUhgFHrfXF0mPsnfhUvZ7e7d6PhtU3lrsmhH7rMU++0G0tdgntpSzFrswMgH2Li7Krrd3jlk0+VVrsZ+s2tRa7D8mNrEW2y/O3r0L81vxunfhY3GIIeyAvXH6mHb7rcX287XXziV8U9Va7NSy9v6YIUcsDiwWMlmB9tqKoBP2ciItxuIY6p0nrcX2mXOjtdh+qfba5syg4nXfIr2UvfNL6B/2+v833JtgLXZC4wvWYofcUcJa7ItD7NU78PcQa7ELo6wS9p7nK7vRXl6UGZhgLfYv+ypai12n6mFrsfd9HWstdnpE8WovMkPt7W/kr/ba9dO32MvnOuOOWYs9Yu1X1mJPGNPfWuyjtxevvMiy2G805exdA5T6r717TK8OtPdcVMjn9q5dMtfaG6NNvsHig0Ju4M0XAAAAAAAAAAAAAAAAAAAAAAAALjD5AgAAAAAAAAAAAAAAAAAAAAAAwAUmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfAAAAAAAAAAAAAAAAAAAAAAAAuMDkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF5h8AQAAAAAAAAAAAAAAAAAAAAAA4AKTLwAAAAAAAAAAAAAAAAAAAAAAAFzw99SGjZ+xFrvst4HWYm98aZ612PdVqG8tdp3Y49ZiH25f0VrslGbJ1mIXNhWqnbAWO/J1e/Osvly7zFpsm4JWbrYW+4XX91qLPXVlT2uxC6PU0j7WYqeXzLAW+3CbctZif9/qZWuxY/zDrcVu90wra7HjX7rRWuzCKKDCeWuxy31or714d/R/rMW+b2GStdjRC62FVtY3la3FPrLaXuzCyJS/aC121UX28mLvw/baubJztlqLvfXdn6zFbj/8AWuxU1+KsBa7MPJNsxe7SiV715f+rfdbi23TgDGfWYv92qLO1mJfrGnxQClkojYEWIs9fuRia7Hn1KhpLXYNbbQW+6vDP1mL3a51N2ux94zPtBa7MAo8a298NrmtvTG93c3t5fOs389aix3WfZG12HM6dLAWO35kpLXYhVFm9QvWYkd9G2It9sZp9u5baJq90DbviUypsc5a7BErB1qLXRhVqG6v/x++KNRa7JsC7cW26Ya/r7cWe/H+/1qL3eHLkdZiF0b+5+2N6cS0s3ddnDy/krXY4R9tsBZ75+EvrcWOe2OwtdipZbKsxS5sskLsXUv5pdobn/37rf+yFrv3YXv3/jddtHefe/CU4dZip1YoXtfcEbvsPY7l1+qktdjpWX7WYq+2OF50y6abrMUO/a+9e+jnY4tXXoT/Zu95vsgn/rAW+2KLRGux9x5eZS32z2mp1mI/8x9718W/97d3HiqMbF5bZAbZiz2s2RprsZ/eaO+5O5tjUYfn2zunBx+yNyZeGAWdsHcNEFbb3r2LErvt1dvmfbdqn95uLXaYxUM3K9Sz/SjefAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF5h8AQAAAAAAAAAAAAAAAAAAAAAA4IJ/QVc4ceKE/vGPf2j9+vVKTEyUJJUvX15NmzZV3759VaZMmWteSQAAAAAAAAAAAAAAAAAAAAAAAE8p0JsvNm/erJo1a2rWrFmKjIxU8+bN1bx5c0VGRmrWrFmqXbu2tmzZYquuAAAAAAAAAAAAAAAAAAAAAAAA112B3nwxbNgwde3aVW+++aZ8fHycPjPGaODAgRo2bJjWr19/TSsJAAAAAAAAAAAAAAAAAAAAAADgKQWafLF9+3YtXrw4x8QLSfLx8dFTTz2lBg0aXLPKAQAAAAAAAAAAAAAAAAAAAAAAeJpvQRYuX768Nm3alOfnmzZtUrly5a66UgAAAAAAAAAAAAAAAAAAAAAAAIVFgd588eyzz2rAgAHaunWr7r77bsdEi6NHj+qbb77RggULNH36dCsVBQAAAAAAAAAAAAAAAAAAAAAA8IQCTb4YMmSISpcurZkzZ2ru3LnKzMyUJPn5+enWW2/V4sWL1a1bNysVBQAAAAAAAAAAAAAAAAAAAAAA8IQCTb6QpO7du6t79+5KT0/XiRMnJEmlS5dWQEDANa8cAAAAAAAAAAAAAAAAAAAAAACApxV48kW2gIAAxcTEXMu6AAAAAAAAAAAAAAAAAAAAAAAAFDq+nq4AAAAAAAAAAAAAAAAAAAAAAABAYcbkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABc8PfUhn1T7c37ON44y1rs2JWPW4tdO/gXa7G7rlxvLfYr73SxFjvzYKi12IXN8R/LWYudOMhYi13/xcHWYpeb/YO12JmtGlqL/ez3t1qL7VfDWuhCKSXG3vn8hs/t5cXzb8y3Fnv2yabWYm9tYK9t3v16LWuxo7b6WIste83+Fcs4EGYt9u+97OVFjXcHWYv9zM7PrcV+e3pHa7FPJKRbi62qGfZiF0I+R4Osxf6jnbXQUpq9du6zg5usxa722TBrsX2H2DunZx2zd44rjDLC7e1v4jeVrMV+Ot7esds/MtFa7PaN21uLnfZqsrXYgbvt9SsKm/P2DltN+u1+a7HLxNk7L/46uKS12I3GNbEW++RAe+2nEi1eWxRCKeXt7e/Fw/bOL7/OqGst9n0VUqzF3v/xzdZim4fDrcX2TSpefSjfhBBrsc9VtRZa1Zb91VrsrZ1mWoud3O0Oa7GfWGavLTJVLLZFhdCZ78pbi31h/Alrsds88Ki12F8dfs9a7Jrv2BtDa/7f+tZi+1csXv2o1LL2zgP7NlW2Fludz1sLHXaovrXYsf/X2FrskOJ16Frjd87PWuyUSvbybfy3na3F7tLxDWuxx/a11/dLHZFkLXbArxHWYhdGKeXsXUtF+2dai330S3vtUHpte/X+xy3vWIv9+JonrcU2/sXr2iIz0F7s3YfLWotdq4a9+5D3WexH75ti75o78C/26u17pnjlhSwOvZ2rZu+7/Hz03dZi95//P2uxd8+53Vps/7P2nrnKCiheY7Qple0975K1uYy12FFj/7AW26bhrb6yFnv+R/YeuPE/7bHpD5J48wUAAAAAAAAAAAAAAAAAAAAAAIBLTL4AAAAAAAAAAAAAAAAAAAAAAABwgckXAAAAAAAAAAAAAAAAAAAAAAAALjD5AgAAAAAAAAAAAAAAAAAAAAAAwAUmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfAAAAAAAAAAAAAAAAAAAAAAAAuMDkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF/w9tWHjZ7wytl9IhrXYuyc1sBZ7yv/Zi21KZ1mLnRVg729Z2GSUsPc9Bpy1N8/qfJMUa7E7DjppLfb0DRbnnl20F9v4F5+ckKTg4/a+y2O32Ys9ZVA/a7FP3hRoLXbSwjRrsUP32vu+08OshS6UsoLsnQf8kyz+nUplWov92rKO1mL7VPGxFlvp9r5vv/PFa461zT5jwDl736V/sr3LsQe7PmEtdmRDP2uxz9ySbi22zwV79S6MbF4Xp0faiz3t807WYi9Zba+vc3beOWuxM38LtRbbx17XstBJK2nvmvvE4UhrsU+OtFfv0mVOWYt9MiLcWuyA/cHWYqdF2+uzFkYZofbO5yGJ9vpQPo3snXMvfl3VWmzftSWsxc4MsdgftjiuWBhlVLpoLXbAgSBrsX2i7PVzGq8bbC12Rmt7512/cHvXFlmn7P0tC6OLUfbOMWn/i7YWO+aVBGuxmw8aYC12+cGJ1mIf3VLeWuz0EsXr3oVvmsUxQ4uhg360108//7y9Y9dvRzlrsW2OcdgcVyx0jL0D19deN0dBJ+2Nz3a5p6e12HvHWAutwO32xjgyLY7NFEb+Kfby4uQvZazFzqps7+9011B71xbnKtsb/8+w13wq+EiAveCFUHqEvXbX97C9McNfR9gbSPeNirAWO2yzvfPQ+Ur2zhV+qRY7xIWQT6a9/fWzN8ylgy3t9aM6PTbMWuyS1S0+Q1nBWuhi9xP7vmkWn10Kt3f+OvVOFWux2//nAWuxD3WoaC12ZozFeQIefo62mKUlAAAAAAAAAAAAAAAAAAAAAABAwTD5AgAAAAAAAAAAAAAAAAAAAAAAwAUmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfAAAAAAAAAAAAAAAAAAAAAAAAuMDkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF5h8AQAAAAAAAAAAAAAAAAAAAAAA4AKTLwAAAAAAAAAAAAAAAAAAAAAAAFzw99SG/S7Ym/eRFWisxfbZH2ItdkZUhrXYvuf9rMWWj73QsljtQsfeYav0EhZz4miwtdj/eO1+a7F9bs6yFzvDZlIUL/4X7MXOCrQXO7GxveAZ4fbyufw39roFSVWthVZGqL3YhVKmvXNMVoC948s/yV6jnhZpsZ3Lshj7osX+sMd6+Z7hm24vL9Ij7fUZ/JPtHQOHR9q7triw3953YvO6xeZxUhj52jzHWGwvMsPsHV9/9LEX229HtLXYPhbP6TbHT4oT/9P2/kg+mdZC68IvZazF9i1r79hKi7b3pfhaHK8sjPwuWGwbLYYOXhlhLfbx0pHWYoecsJcXF0p759+yMPI7EmQtdrrFMR2/g/bGaINP2jsI0iIsthd+Fsc4zhev9sJY/C5l7B1fu/9b1Vrs9HvsXVsEbClvLXZGmL2/pcU/ZaHka7GfbvO7vFDG3jGQ9W97x66iLd7T89JxxULH1+L5xWIzlFbSXvAj0+yNc/rF2+v7pZWyOPabWrwaC5v3dG0+W2Iz9sGO9u5bSPZih+6yd5140WLOFTsWv8qgExYfXjtu72GH5Cr2vhRj8T6R1XNcIWTzmts3zVpo+afYa9f397X4DG1CgLXYPt45fFIo2ew3ZgXZ+0OduM1iY9TN3rOIZ4/YO1kEHLeYcxafn3NH8RohBgAAAAAAAAAAAAAAAAAAAAAAKCAmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkCAAAAAAAAAAAAAAAAAAAAAADABSZfAAAAAAAAAAAAAAAAAAAAAAAAuMDkCwAAAAAAAAAAAAAAAAAAAAAAABeYfAEAAAAAAAAAAAAAAAAAAAAAAOACky8AAAAAAAAAAAAAAAAAAAAAAABcYPIFAAAAAAAAAAAAAAAAAAAAAACAC0y+AAAAAAAAAAAAAAAAAAAAAAAAcIHJFwAAAAAAAAAAAAAAAAAAAAAAAC4w+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF5h8AQAAAAAAAAAAAAAAAAAAAAAA4AKTLwAAAAAAAAAAAAAAAAAAAAAAAFxg8gUAAAAAAAAAAAAAAAAAAAAAAIALPsYY4+lKAAAAAAAAAAAAAAAAAAAAAAAAFFa8+QIAAAAAAAAAAAAAAAAAAAAAAMAFJl8AAAAAAAAAAAAAAAAAAAAAAAC4wOQLAAAAAAAAAAAAAAAAAAAAAAAAF5h8AQAAAAAAAAAAAAAAAAAAAAAA4AKTLwAAAAAAAAAAAAAAAAAAAAAAAFxg8gUAAAAAAAAAAAAAAAAAAAAAAIALTL4AAAAAAAAAAAAAAAAAAAAAAABwgckXAAAAAAAAAAAAAAAAAAAAAAAALjD5AgAAAAAAAAAAAAAAAAAAAAAAwAUmXwAAAAAAAAAAAAAAAAAAAAAAALjA5AsAAAAAAAAAAAAAAAAAAAAAAAAXmHwBAAAAAAAAAAAAAAAAAAAAAADgApMvAAAAAAAAAAAAAAAAAAAAAAAAXGDyBQAAAAAAAAAAAAAAAAAAAAAAgAtMvgAAAAAAAAAAAAAAAAAAAAAAAHCByRcAAAAAAAAAAAAAAAAAAAAAAAAuMPkiHxcvXtTo0aNVoUIFhYSE6Pbbb9fq1avdXv/QoUPq1q2bSpYsqYiICD3wwAPau3dvvuulpKRozpw5uvfeexUTE6MSJUqoQYMGmjdvnjIzM52WPXz4sHr16qVatWqpRIkSKlmypBo3bqx33nlHxhinZX/77Tc99dRTatq0qYKDg+Xj46OEhAS390eS4uPj1aZNG4WHhysqKkqPPvqojh8/XqAY8F7JyckaP3682rRpo6ioKPn4+Gjx4sUFinHmzBkNGDBAZcqUUVhYmFq1aqUff/wx3/WysrK0ePFidezYUZUrV1ZYWJjq1q2ryZMnKzU1NcfyPj4+uf6bNm2ay+3cc8898vHx0dChQ93epx9++EF33nmnQkNDVb58eQ0fPlzJyclurw/vUZAc6Nu3b67HYO3atd3e3ueff66GDRsqODhYVapU0fjx45WRkZHver/++qtGjRql+vXrq0SJEoqJiVH79u21ZcuWHMu62zacPHlSr7zyipo3b64yZcqoZMmSuuOOO/Thhx+6vT+S9Pbbb+umm25ScHCwatSoodmzZxdofXgPb+hHXW7JkiXy8fFReHh4js/yald8fHx0zz33uLVPV5rTKDq8IS8SEhLyPNY/+OADp2UXLFigFi1aqFy5cgoKClJsbKz69etXoGsM+lHFGzmREzkBb8iLgoxFSdKaNWvUqlUrlS5d2rHse++95/Y+kRfFz48//qiOHTsqKipKoaGhqlu3rmbNmuW0TMuWLXM9N7dp08bt7Vzp9enmzZs1dOhQxcXFKSwsTFWqVFG3bt20a9euHMte6diAq2uTvFzpmBu8kze0FwXpR10qPT1dderUkY+Pj6ZPn+72PnHNjaKYF1d7T468KB4K0jeR/rzfNm/ePNWvX18hISGKjo7WXXfdpe3bt7u1vas5rqZMmaKOHTuqXLly8vHx0QsvvOBy+Q8//FBNmjRRWFiYSpYsqaZNm+rbb7/NsdzV3He42nMHCqeC3M/btGmTBg8erFtvvVUBAQHy8fEp8Pau9Lr1wIEDmjBhgho3bqxSpUqpdOnSatmypdasWZNj2cWLF+fZhiQmJua5jT179jju/+V2nzA3WVlZevnllxUbG6vg4GDVq1dP//znP91aF4VXQduLbNe7f16Q+9wvvPBCrjkRHBzschv//e9/HcueOHHCrf2hvSia3M2Lgj6vlBfaC3iDvMYzs/8dOnQo1/XOnDmjsmXLysfHR8uWLXN7e4zRwpvt3r1bPXr0UKVKlRQaGqratWtr4sSJSklJcWv9wjgWlY0xWtf8PV2Bwq5v375atmyZnnzySdWoUUOLFy9Wu3bttHbtWt15550u101OTlarVq109uxZjRkzRgEBAZo5c6ZatGihn376SdHR0Xmuu3fvXg0bNkx33323nn76aUVEROirr77S4MGDtWHDBr3zzjuOZU+cOKGDBw+qS5cuqlKlitLT07V69Wr17dtXv/32m6ZOnepYdv369Zo1a5bq1Kmjm266ST/99FOBvo+DBw+qefPmioyM1NSpU5WcnKzp06drx44d2rRpkwIDAwsUD97nxIkTmjhxoqpUqaJbbrlF3333XYHWz8rKUvv27bV9+3aNHDlSpUuX1ty5c9WyZUtt3bpVNWrUyHPdlJQU9evXT3fccYcGDhyosmXLav369Ro/fry++eYbffvttzkGw+655x717t3bqaxBgwZ5buPTTz/V+vXrC7RPP/30k+6++27ddNNNmjFjhg4ePKjp06dr9+7dWrlyZYFiofAraA4EBQVp4cKFTmWRkZFubWvlypV68MEH1bJlS82ePVs7duzQ5MmTdezYMc2bN8/lugsXLtTbb7+thx56SIMHD9bZs2c1f/583XHHHVq1apVat27tWNbdtmH9+vUaO3as2rVrp3Hjxsnf31+ffPKJevTooZ07d2rChAn57tP8+fM1cOBAPfTQQ3r66ae1bt06DR8+XCkpKRo9erRb3wu8hzf0oy7f5qhRoxQWFpbr57k9ILhlyxa9/vrruvfee13uj3R1OY2iw5vy4uGHH1a7du2cypo0aeL0/23btik2NlYdO3ZUqVKltG/fPi1YsEArVqzQ9u3bVaFCBZf7RD8K5IQzcgKSd+RFQcaiPv/8cz344INq0qSJ44b4Rx99pN69e+vEiRN66qmnXO4TeVH8fP311+rQoYMaNGig559/XuHh4dqzZ48OHjyYY9lKlSrpxRdfdCrL71yb7WquT1966SV9//336tq1q+rVq6fExES98cYbatiwoTZs2KC6des6LV/QsYH8rk1yczVjbvBO3tBeZHOnH3Wp2bNna//+/fl8A8645oZU9PLiau/JkRfFR0H7Jo899piWLFmi3r17a+jQoTp//ry2bdumY8eO5butqz2uxo0bp/Lly6tBgwb66quvXC77wgsvaOLEierSpYv69u2r9PR0/fLLLzke9rra+w5Xc+5A4VWQ+3lffvmlFi5cqHr16qlatWr5Poh+uau5bl2+fLleeuklPfjgg+rTp48yMjL07rvv6p577tE//vEP9evXL8c6EydOVGxsrFNZyZIl89zGU089JX9/f128eNHtfRo7dqymTZumJ554Qo0aNdLy5cv1yCOPyMfHRz169HA7DgqXgrYX2a53/7wg97mzzZs3z+nBWD8/vzzjZ2VladiwYQoLC9P58+fd3ifai6LJ3by4kueVLkd7AW/x17/+Nce51hijgQMHqmrVqqpYsWKu6/397393+4HzbIzRwpsdOHBAjRs3VmRkpIYOHaqoqChH27B161YtX77c5fqFcSzqUozR5sMgTxs3bjSSzCuvvOIou3Dhgqlevbpp0qRJvuu/9NJLRpLZtGmToyw+Pt74+fmZ5557zuW6x48fN7/88kuO8n79+hlJZvfu3flu//777zdhYWEmIyPDUXby5EmTlJRkjDHmlVdeMZLMvn378o2VbdCgQSYkJMT88ccfjrLVq1cbSWb+/Plux4H3Sk1NNUeOHDHGGLN582YjySxatMjt9T/88EMjyXz88ceOsmPHjpmSJUuahx9+2OW6Fy9eNN9//32O8gkTJhhJZvXq1U7lksyQIUPcrtuFCxdM1apVzcSJEwu0btu2bU1MTIw5e/aso2zBggVGkvnqq6/c3j68Q0FyoE+fPiYsLOyKt1WnTh1zyy23mPT0dEfZ2LFjjY+Pj4mPj3e57pYtW8y5c+ecyk6cOGHKlClj/vKXvziVu9s27N271yQkJDiVZWVlmbvuussEBQWZ5ORkl3VKSUkx0dHRpn379k7lPXv2NGFhYebUqVMu14d38cZ+1OjRo02tWrUcx6Q7+vfvb3x8fMyBAwfyXfZqchpFg7fkxb59+3LUsyC2bNliJJkXX3wx32XpRxVv5ERO5AS8JS/ykttY1D333GMqVKhgUlNTHWXp6emmevXqpl69evnGJC+Kl7Nnz5py5cqZTp06mczMTJfLtmjRwsTFxV3Rdq72+vT77783Fy9edCrbtWuXCQoKMj179nQqv5KxgSu5NrmaMTd4H29pL66kH3X06FETGRnpGKN1d12uuVEU8+Jq78mRF8VHQfom2X2GTz/99Iq2dbXHVfa9h+PHjxtJZvz48bkut379euPj42NmzJjhMt7V9uuu9tyBwqsg9/MSExNNSkqKMcaYIUOGmII+RnM1162//PKLOX78eI66165d21SqVMmpfNGiRUaS2bx5s9t1W7VqlQkMDDTjxo1ze92DBw+agIAAp3vlWVlZplmzZqZSpUpO1/zwLgVpL7J5on9ekPvc48ePN5Jy5JEr8+bNM9HR0WbEiBFur0t7UXS5mxcFfV4pN7QX8Gbr1q0zksyUKVNy/XzHjh3G39/f0V5cOkaZF8Zo4e2mTJliJOUYE+rdu7eRlO8xXBjHorIxRps/36ubulG0LVu2TH5+fhowYICjLDg4WP3799f69et14MCBfNdv1KiRGjVq5CirXbu27r77bn300Ucu1y1durTi4uJylHfq1EnSn68Zzk/VqlWVkpKitLQ0R1lUVJRKlCiR77p5+eSTT3T//ferSpUqjrLWrVurZs2a+e4TioagoCCVL1/+itdftmyZypUrp86dOzvKypQpo27dumn58uUuZ1AHBgaqadOmOcrzy4sLFy649Zq/l19+WVlZWXr22WfzXTZbUlKSVq9erV69eikiIsJR3rt3b4WHh5MXRdCV5EBmZqaSkpIKtM7OnTu1c+dODRgwQP7+/+9FVYMHD5YxJt9X9N166605XnsXHR2tZs2a5cgVd9uG2NhY3XDDDU5lPj4+evDBB3Xx4sV8X3u2du1anTx5UoMHD3YqHzJkiM6fP68vvvgi3zrAe3hbP2r37t2aOXOmZsyY4ZRzrly8eFGffPKJWrRooUqVKrlc9mpzGkWDt+WFJJ0/f97pesIdVatWlfTnK1VdoR8FcsIZOQHJO/PiUrmNRSUlJalUqVIKCgpylPn7+6t06dIKCQlxGY+8KH6WLl2qo0ePasqUKfL19dX58+eVlZXlcp2MjAwlJycXaDtXe33atGnTHL82XqNGDcXFxeWZK+6ODVzJtYl0dWNu8D7e2F6424/629/+plq1aqlXr175LpuNa25IRTMvruaeHHlRvBSkbzJjxgw1btxYnTp1UlZWVoF+8ftaHFfZ18j5ee2111S+fHmNGDFCxpg8+3tX26+72nMHCq+C3M8rV65cvtenebna69a4uDiVLl3aqSwoKEjt2rXTwYMHde7cuVzXO3funDIzM13GTk9P14gRIzRixAhVr17dzT3689fV09PTnfLKx8dHgwYN0sGDB7V+/Xq3Y6FwuZJrWU/0zwtynzubMUZJSUkyxriMferUKY0bN04TJ050+QaAy9FeFF3u5sWVPq+UjfYC3m7p0qXy8fHRI488kuvnI0aMUKdOndSsWTO3YzJGC2+XfSyVK1fOqTwmJka+vr75vrG0MI5FZWOMNn9MvnBh27ZtqlmzplOnR5IaN24s6c/XgeUlKytLP//8s2677bYcnzVu3Fh79uzJs+PjSmJioiTl6FBJfz5gfuLECSUkJOidd97RokWL1KRJkyseKLjcoUOHdOzYsTz3adu2bddkOyjatm3bpoYNG8rX1/n007hxY6WkpBT4Na6S67xYvHixwsLCFBISojp16mjp0qW5xti/f7+mTZuml156qUA5s2PHDmVkZOTIi8DAQNWvX5+8gFJSUhQREaHIyEhFRUVpyJAhbj0Ukn3sXH5sVahQQZUqVbriYysxMTHXXLkarnLwUnnt06233ipfX1/ypYjxtn7Uk08+qVatWuV4xZ4rX375pc6cOaOePXvmu6ytnIZ38ba8mDBhgsLDwxUcHKxGjRrp66+/zjPOyZMndezYMW3ZssXxauO7777b5bbpR4GccEZOQPK+vHBnLKply5b63//+p+eff16///679uzZo0mTJmnLli0aNWqUy22TF8XPmjVrFBERoUOHDqlWrVoKDw9XRESEBg0alOsPa+zatUthYWEqUaKEypcvr+eff17p6en5bsfG9akxRkePHs01VwoyNnAl1yaSnTE3FF7e1l6424/atGmT3nnnHb322mvy8fFxe9tcc0MqenlxtffkyAvk1jdJSkrSpk2b1KhRI40ZM0aRkZEKDw9XtWrV3JrYfD2Pq2+++UaNGjXSrFmzVKZMGZUoUUIxMTF644033KqTu/26qzl3AJK969bExESFhoYqNDQ0x2etWrVSRESEQkND1bFjR+3evTvXGK+99ppOnz6tcePGFWjb27ZtU1hYmG666San8uy8oA0pWlxdyxa2/rmr+9zVqlVTZGSkSpQooV69euno0aO5Lvf888+rfPny+utf/1qgbdNeFC+u8uJy7j4rQXsBb5aenq6PPvpITZs2zXUy9ccff6wffvhBL7/8coHiMkYLb9eyZUtJUv/+/fXTTz/pwIED+vDDDzVv3jwNHz5cYWFhea5bGMeishW2PmBh5f60rGLoyJEjiomJyVGeXXb48OE81z116pQuXryY7/q1atVyuz5paWl67bXXFBsb6zTbKdvrr7+u5557zvH/u+++W4sWLXI7fn6OHDkiSXnuU/Y+X/pLhsDljhw5oubNm+covzQvbr755gLFfPnllxUREaG2bds6lTdt2lTdunVTbGysDh8+rDlz5qhnz546e/asBg0a5LTsM888owYNGqhHjx4F3p9L63+pmJgYrVu3rkDxULTExMRo1KhRatiwobKysrRq1SrNnTtX27dv13fffedydnR+x5arNigv69at0/r16wt80ezKqVOntHDhQjVr1izXul7qyJEj8vPzU9myZZ3KAwMDFR0dfUX7hMLLm/pRX3zxhb7++mtt377d7XiStGTJEgUFBalLly75Lmsjp+F9vCUvfH19de+996pTp06qWLGi9u7dqxkzZqht27b6/PPP1b59+xyxKlas6PiljujoaM2aNUv33HOPy+3TjwI54YycgOQ9eZHNnbGo559/Xvv27dOUKVM0efJkSVJoaKg++eQTPfDAAy63T14UP7t371ZGRoYeeOAB9e/fXy+++KK+++47zZ49W2fOnNE///lPx7LVq1dXq1atdPPNN+v8+fNatmyZJk+erF27dunDDz90uR0b16dLlizRoUOHNHHiRKfygowNXOm1SfY+XesxNxRe3tJeFKQfZYzRsGHD1L17dzVp0kQJCQlub59rbkhFLy+u9p4ceYHc+iZ79uyRMUYffPCB/P399fLLLysyMlKvv/66evTooYiICLVp0ybPmNfruDp9+rROnDih77//Xt9++63Gjx+vKlWqaNGiRRo2bJgCAgIcD81ebb/uas4dgGTnuvX333/Xp59+qq5du8rPz89RHhoaqr59+zoept26datmzJihpk2b6scff1TlypUdyyYmJmrSpEmaPn16jofF3dmncuXK5XjQirwomvK6li1s/fO87nOXKlVKQ4cOVZMmTRQUFKR169Zpzpw52rRpk7Zs2eJ0/P/888+aP3++vvzyS6fccnefaC+Kj7zyIjd5Pa90OdoLeLOvvvpKJ0+ezPVHKS9cuKBnn31WTz31lKpWrVrg9oIxWnizNm3aaNKkSZo6dao+//xzR/nYsWMd98PyUhjHoqTC1wcszJh84cKFCxdyHbQMDg52fO5qXUlXvH5uhg4dqp07d+qLL77I9YHdhx9+WLfddpuOHz+uFStW6OjRowXehivu7hOTL+DK1eRVbqZOnao1a9Zo7ty5OV4L+f333zv9/7HHHtOtt96qMWPGqG/fvo5f4ly7dq0++eQTbdy4sUDbvrS+ee3TtcxBeJ8XX3zR6f89evRQzZo1NXbsWC1btszlZJ/8ji13XoN3qWPHjumRRx5RbGxsvr8u666srCz17NlTZ86c0ezZs/Nd/sKFC3m+Uo18KXq8pR+Vlpamp556SgMHDlSdOnXcjpeUlKQvvvhC7dq1c+u1xNc6p+GdvCUvqlSpoq+++spp2UcffVR16tTRM888k+uD5itXrlRqaqri4+P1/vvv6/z58/lun34UyImC7RM5UTx4S15kc2csKigoSDVr1lSXLl3UuXNnZWZm6q233lKvXr20evVq3XHHHVe8T+RF0ZOcnKyUlBQNHDhQs2bNkiR17txZaWlpmj9/viZOnKgaNWpIkt5++22ndR999FENGDBACxYs0FNPPZXvsXUtr09//fVXDRkyRE2aNFGfPn2cPnN3bOBKr02yXesxNxRu3tJeFKQftXjxYu3YseOKXj/PNTekopcXV3tPjrwo3vLqm2T/quvJkye1YcMG3X777ZKkjh07KjY2VpMnT3Y5+eJ6HVeX1vODDz5Q9+7dJUldunTRzTffrMmTJzsmX1xtv44+FK7Wtb5uTUlJUdeuXRUSEqJp06Y5fdatWzd169bN8f8HH3xQ9913n5o3b64pU6bozTffdHw2evRoVatWTY8//niBti+RF8WJq2vZwtQ/d3Wfe8SIEU7/f+ihh9S4cWP17NlTc+fO1d/+9jfHZ8OHD1fbtm117733Fmj7EnlRnLjKi8u5el7pcrQX8GZLly5VQECA03GVbdq0aUpPT9eYMWMKHJcxWhQFVatWVfPmzfXQQw8pOjpaX3zxhaZOnary5ctr6NChea5XGMeipMLVByzsfPNfpPgKCQlx/FLlpbJfcZ/94HZe60q64vUv98orr2jBggWaNGlSnq8zuuGGG9S6dWs9/PDDWrJkiapVq6bWrVtfs5P2td4nFE9Xk1eX+/DDDzVu3Dj1798/x5sschMYGKihQ4fqzJkz2rp1qyQpIyNDw4cP16OPPprrr3jmJ7+8ICdwuaeeekq+vr5as2aNy+Wu5bF1/vx53X///Tp37pyWL1+u8PDwglU6D8OGDdOqVau0cOFC3XLLLfkuHxISorS0tFw/I1+KHm/pR82cOVMnTpzQhAkT3I4nSZ988olSU1Nz/XWH3NBeQPKevMhNVFSU+vXrp99++00HDx7M8XmrVq3Utm1bPf300/r44481YcIEvfHGGy5jkhcgJ5yRE5C8Ly/cGYsaOnSo/vWvf+mDDz5Qjx491LNnT61Zs0YxMTE5bpAXdJ/Ii6In+2/68MMPO5U/8sgjkqT169e7XP+ZZ56RJLeuua/V9WliYqLat2+vyMhILVu2zK1fz8xtbOBKr02yXcsxNxR+3tZeXCq3flRSUpKee+45jRw50ukXON1FewGp6OXF1daJvCi+XPVNsv/usbGxjokXkhQeHq4OHTpo06ZNysjIyDP29TqusuMEBAQ4vXXY19dX3bt318GDB7V//37HslfTr6MPhat1LfMiMzNTPXr00M6dO7Vs2TJVqFAh33XuvPNO3X777U7XFhs2bNB7772nmTNnyte34I8EkRfFg6v2ojD1z6/kPvcjjzyi8uXLO+XFhx9+qB9++EGvvvqq29u+FHlRPBRkjKegzyvRXsBbJScna/ny5brvvvsUHR3t9FlCQoJeeeUVTZky5YqeQ2KMFt7ugw8+0IABA7Rw4UI98cQT6ty5s95++2316dNHo0eP1smTJ/NctzCORRWmPqA3YPKFCzExMY5XoVwqu8xV5yUqKkpBQUFXvP6lFi9erNGjR2vgwIE5XqHnSpcuXXTgwAH95z//cXsdV7JfB5PXPmXvM+DK1eTVpVavXq3evXurffv2TrOy85PdMJw6dUqS9O677+q3337TX//6VyUkJDj+SdK5c+eUkJCglJQUl/tzaf0v3yd39wfFR0hIiKKjox3HYF6u1bGVlpamzp076+eff9by5ctVt27dglc6FxMmTNDcuXM1bdo0Pfroo26tExMTo8zMTB07dixHHU+ePEm+FDHe0I86e/asJk+erCeeeEJJSUmONiA5OVnGGCUkJOQ4XrMtWbJEkZGRuv/++92qB+0FJO/IC1cu70flpXr16mrQoIGWLFnicjnyAuSEM3ICkvfnxeVjUWlpaXr77bfVvn17pxt4AQEBatu2rbZs2ZLnzRWJvCiOsv+m5cqVcyrPfvX86dOnXa7v7rn5Wl2fnj17Vm3bttWZM2e0atUqt9e7fGzgaq5NLt2na5H/8A7e3l5cnqvTp09XWlqaunfv7jj+s2/6nT59WgkJCbQXyFdRy4urvSdHXhRP+fVN8uprSX/2t9LT012+ufF6HVdRUVEKDg5WdHR0joemLu8XXm2/jj4Urta1zIsnnnhCK1as0OLFi3XXXXe5vV7lypWdroFGjRqlZs2aKTY21tG3OnHihKNO2ZOX8hITE6PExEQZY3Lsj0ReFAX5tReFpX9+Nfe5L8+LkSNHqmvXrgoMDHTs05kzZyRJBw4c0OHDh13Go70o+goyxnMlzyvRXsBb/d///Z9SUlJy/VHKv//976pYsaJatmzpOIYSExMlScePH1dCQoKysrLyjM0YLbzd3Llz1aBBA1WqVMmpvGPHjkpJSdG2bdvyXLcwjkUVlj6gt2DyhQv169fXrl27crzuZOPGjY7P8+Lr66ubb75ZW7ZsyfHZxo0bVa1aNZUoUSLfOixfvlyPP/64OnfurDlz5hSo/tm/Mnj27NkCrZeXihUrqkyZMrnu06ZNm1x+H0C2+vXr68cff8zRudq4caNCQ0NVs2bNfGNs3LhRnTp10m233aaPPvrI6TVJ+dm7d68kqUyZMpKk/fv3Kz09XX/5y18UGxvr+Cf9OTEjNjZWX3/9dZ7x6tatK39//xx5kZaWpp9++om8QA7nzp3TiRMnHMdgXrKPncuPrcOHD+vgwYNuHVtZWVnq3bu3vvnmGy1dulQtWrS40mo7mTNnjl544QU9+eSTGj16tNvr5bVPW7ZsUVZWFvlSxHhDP+r06dNKTk7Wyy+/7NQGfPLJJ0pJSVFsbKwGDBiQY70jR45o7dq1euihh9yeeHotchrezxvywpXL+1GuXLhwId/rEPpRICeckROQvD8vLh+LOnnypDIyMpSZmZlj2fT0dGVlZeX6WTbyovi59dZbJUmHDh1yKs9+CCK/c6675+ZrcX2ampqqDh06aNeuXVqxYkWBXkN/+djAlV6bXL5PVzvmBu/h7e1FbmO0p0+fVlxcnOP4b9asmSRp6tSpio2N1c6dO/OMxzU3pKKXF1d7T468KH7c6ZtUqFBB5cuXz9HXkv48NoKDg10e69fruPL19VX9+vV1/PjxHA92XN4vvNp+3dWcOwDp2l23jhw5UosWLdLMmTNzvAkwP3v37nW6Btq/f7/+85//OF1bjBw5UtKfD4LVq1fPZbz69esrJSVF8fHxTuXkRdHgTntRGPrnV3OfO/sB2Uvz4sCBA1q6dKlTXrz++uuSpIYNG+b7C9G0F0VbQcZ4rvR5JdoLeKslS5YoPDxcHTt2zPHZ/v379fvvv6tatWqOYyj7uBw8eLBiY2NznDcvxRgtvN3Ro0fzvP8lyeWbJQvjWFRh6AN6FYM8bdiwwUgyr7zyiqMsNTXV3Hjjjeb22293WvaPP/4w8fHxTmXTpk0zkszmzZsdZb/++qvx8/Mzo0ePznf7//73v01wcLBp1aqVSU1NzXO5Y8eO5VreoUMH4+PjY3bv3p3r56+88oqRZPbt25fr57///rv5/fffncoGDhxoQkJCzP79+x1la9asMZLMvHnz8tkjFDWbN282ksyiRYty/fzw4cMmPj7epKWlOco++OADI8l8/PHHjrLjx4+bkiVLmu7du+e7zZ07d5ro6GgTFxdnTp06ledyueVFUlKSqV69uildurS5ePGiMcaY+Ph489lnn+X4J8m0a9fOfPbZZ+bw4cOOGPHx8eaPP/5witumTRsTExNjkpKSHGULFy40kszKlSvz3Sd4L1c5cOHCBadjItvIkSONJPPpp586ytLS0kx8fLzTsWaMMbVr1za33HKLycjIcJSNGzfO+Pj4mJ07d+Zbv8GDBxtJZv78+W7vU35twwcffGB8fX1Nz549TVZWVp5xzp8/b+Lj483x48cdZSkpKSYqKsrcf//9Tsv26tXLhIaGmpMnT7pdTxR+3tCPOn/+fK5tQKtWrUxwcLD57LPPzIYNG3KsN2PGDCPJfPPNN7nGtZXT8H7ekBfG5N6POnjwoClVqpSpV6+eoyw9PT3X/tjGjRuNn5+fefTRR53K6UfhcuQEOYGcvDkvjMk5FpWRkWFKlixpatas6bgON8aYc+fOmUqVKpnatWs7rU9e4McffzSSzCOPPOJU/vDDDxt/f39z6NAhY4wxZ8+ezXGMZmVlme7duxtJZuvWrY5yG9enGRkZpmPHjsbf39988cUXeS7n7thAQa9NbIy5wbt4c3uRWz9q69atOY7/+fPnG0mmb9++5rPPPjNnzpwxxnDNjbwVtbwwxv17cuQF3O2bGGPMiBEjjCTz9ddfO8qOHz9uIiIiTLt27Rxlto+r48ePG0lm/PjxuX4+c+ZMI8m89dZbjrILFy6YatWqmTp16jjKCtKvO378uImPjzfnz593lBXk3AHvld897UsNGTLEuHqMxsZ168svv2wkmTFjxrhcLrc25IsvvjCSzPDhwx1lX331VY6+1bBhw4wkM336dLNixQrHsmfOnDHx8fGOvpYxxhw4cMAEBASYIUOGOMqysrJMs2bNTMWKFZ3yH97F3faiMPTP3b3PnVtezJkzx0gyM2bMcJTlds2dPYbw7rvvmm+//daxLO1F8VKQfpS7zysZQ3tBe1E0HDt2zPj7++e4v5Vt3bp1OY6hSZMmGUlm1KhR5rPPPnOMXzJGyxhtUXT//febwMBA89tvvzmVP/jgg8bX19dxP8MY7xiLKgx9QG/C5It8dO3a1fj7+5uRI0ea+fPnm6ZNmxp/f3/z73//22m5Fi1a5LgIz37Qu2zZsubll182M2fONJUrVzYVKlTI8yZ1toSEBBMZGWlCQkLMnDlzzHvvvef0b/v27Y5lR4wYYW677TYzbtw489Zbb5lp06aZRo0aGUlm2LBhTnHPnDljJk2aZCZNmmTatGljJJlnnnnGTJo0ycyePdtp2RtuuMHccMMNTmX79+830dHRpnr16mbWrFlm6tSpplSpUubmm292mcAoWmbPnm0mTZpkBg0aZCSZzp07O46rSzvaffr0yfEQd0ZGhrnjjjtMeHi4mTBhgpkzZ46Ji4szJUqUML/++qvL7SYlJZnKlSsbX19fM23atBx58cMPPziWHT9+vLnlllsceTFhwgRzww03GB8fH/P+++/nu4+SnC4QLi1v0aKFU9nWrVtNUFCQadCggZk3b54ZO3asCQ4ONvfee2++24F3cicH9u3bZ0qWLGkGDRpkXn/9dfP666+bdu3aGUmmTZs2JjMz0xFv3759RpLp06eP03b+9a9/GR8fH3PXXXeZt956ywwfPtz4+vqaJ554It86Zt+YaNKkSY5cee+990xycrJjWXfbho0bN5rAwEBTpkwZ849//CNHzD179jiWXbt2ba43TrIHu7p06WIWLFhgevfubSSZKVOmFORPAC/hDf2o3PTp08eEhYXl+fmtt95qKlSo4JTHl7KR0yg6vCEv+vbta5o1a2ZeeOEF89Zbb5kxY8aY6OhoExgYaNauXetY7vTp0yYsLMw89thj5tVXXzVvvvmmGTJkiAkNDTVRUVFm165dTnWgH4XckBMtnMrICRjjHXlRkLGoyZMnG0mmQYMGZubMmWb69OnmpptuMpJyXJ+TFzDGmMcee8xIMt26dTNz5swxXbt2NZLMc88951hm7dq1pnz58uapp54yc+bMMdOnTzd/+ctfjCQzYMAAp3g2rk+zH1rs0KFDrtfc2QoyNpCbvK5NrvWYG7yTN7QX7vajcpN9bX3pw02XlnPNjdwUtbxw954ceQF3+ybGGJOYmGhiYmJMiRIlzPjx482MGTNMzZo1TUhIiPnpp58cy9k6rt59910zadIk89xzzxlJplWrVo77EwkJCY7lUlJSTNz/x959h9lVlnsDfqaXVNJIIiQQQw1CAKlKld6UEoogHaRjoajAoQkHEImCSBEP4DEIGOCgglQREZEqChI6IQkhIQXSJm1m3u8Pr8yXYWb2zCR5yUzmvq+LP9hZ+7fX3rPe9Za1nr1HjEhlZWXprLPOStdee23aYostUklJSXrwwQcbZbZ1XHfhhRemiGjS1tp67qDzaes17fHjxzc8vtVWW6WIaPj/X/3qV40yV/S89d57700RkdZZZ51m2++UKVMath0+fHgaNWpUuvLKK9ONN96YTjzxxFRaWprWXHPNRts159Zbb21yY9fSj3+6MGXJzYgnnnhi+sUvfpH23nvvFBFpzJgxrb4nOq729Bef9lmOz9tznbuqqiodffTR6cc//nG6/vrr02GHHZaKiorSyJEjGxVPNGdJv7D0jcBLP66/6Bra2i7ac79SSvoL/cWq4brrrksRkR566KE2P2fJWuzSxQdLP26NllXJk08+mUpKStKAAQPSJZdckq6//vq05557pohIxx9/fKNtO8ta1KdZo22Z4otWzJ8/P5111llp4MCBqaKiIm2xxRbNdijNNY6U/lPledBBB6WePXum7t27p3322afFX6JY2pIOp6X/lu6IHnnkkbTPPvukwYMHp7KystSjR4/0pS99Kd16661NvpV8yUHf3H+fLrRorvgipZReffXVtNtuu6Xq6urUu3fvdPjhh7c6OGPVMnTo0BaPo6UHFM0NMlJKaebMmem4445Lffv2TdXV1WmHHXZoMnBvTqHj99Mn80ceeSTtuuuuaeDAgamsrCz17t077bbbbi1+S/mntaf4IqX/VPNuu+22qbKyMvXv3z+deuqpzVbNsmpoSxv4+OOP0xFHHJGGDx+eqqurU0VFRRoxYkS6/PLLG1U9p9TygCSl/3wLx8iRI1NFRUVaY4010vnnn9/k+c1Z0v7a0lbb2jcsmVC39N/SE+2WJk4ppXTzzTen9dZbL5WXl6fPf/7zafTo0QV/RYPOqzOMo5pTqPji9ddfTxGRvvOd77T4/BxtmlVHZ2gXd9xxR9p+++1T//79U2lpaerXr1/af//9G32DdEopLVy4MJ155plp4403Tj179kxlZWVp6NCh6bjjjmv2F5SMo2iONrFDk8e1CTpDu2jPWlRKKY0ZMyZtueWWqXfv3qmqqipttdVWaezYsU220y5I6T/fmHTRRReloUOHprKysjR8+PA0evToRtu8++67adSoUWmttdZKlZWVqbq6Om2++ebpxhtvbHIM5pifLml/Lf23RHvWBprTngt7KS37mhudU2foL9o6jmpOey/spWTOzarZLtpyTU67oK1jkyXeeeedtP/++6eePXumqqqqtPPOO6fnnnuu0Ta5jqtC+/rpmz6mTp2ajjrqqNSnT59UUVGRttpqqxZv/GrLuK6lm2nbeu6g82nrNe1C5/FPz1FX9Lx1yXHZlnZx3nnnpZEjR6ZevXqlsrKyNGTIkHTyySe36V6N9t5MW1dXly6//PI0dOjQVF5enkaMGNGmLzikY2tvf7G0z3J83p7r3Mcff3zacMMNU48ePRrWEM4999x2tb+2Fl/oL1ZNbW0X7blfKSX9BauGrbfeOg0YMKBdv2LS3uKLlKzR0rk9++yzac8992y4R3XddddNl112WVq8eHGj7TrTWtTSrNG2rCillAIAAAAAAAAAAAAAAIBmFa/sHQAAAAAAAAAAAAAAAOjIFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGlK+uFh95yVb7w0pQtuqg4X3ZZ1eJs2YtmV2TLjqJ8n0mU5Mt+/6jvZcteFmv/5MfZsnP+iVLGEq7UZ1G27JKp+dpEfVnGDzyj98787srehSaG/s+V+cLrirJFl8zO173Wda/Llh35PpIoqs0Y3r02W/T4IztWXxERsdbPr86WnfXvlFHKOPaLnKf0nNkZ++fxp5yVL3wZDRudbxyVMjaL0vn5whetnm9uUTqjLFt2XWW+hlGyMN/n/c5Z38mWvazWuj5ff1G8IN9JJmUcS1fMyLffC1erz5ZdlHHcWl+Vb787Wn8x9MYf5QvP+dUm5RmPrZqSbNmRb7cjVeQMz9fe3j/x7GzZy+qLx16TLzzjWLe2Omd2vmOgalq+D6W2Mlt0lNXk2+/nftXx1qKG/Thju8h4bSHqcx67+bLnD8h4Ts84l8u5Jt4R12iHXZNvzp1T3Wr51gyr3ynPlr2wb86xTr7onG3u3W93vHZxxLPHZcv+YF7vbNkVJfnaxdtT+mfLHj5wWrbsnFavmpMt+/Yt/ydb9rLIOYbKeZ0759w159pvXVW+D6U+41JBUcbP+52zO9767HqXjM4XnvGzzHmvQ/XUfO0i51pBXb5LIlFfke/zfvP8jtcu1rk8X39RnPE69+Lu+Rpd8eJ8+12U89aSnOehfNOtePucjtcutjyyc86560syHrs5p8UZxzrFtfnO6ako3+f9/O0dr118/qqMa7Q5743LeN6tnJFvx+etmfFaZMZ+rjjfEke8fW7r7cIvXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAACihdaa9cnFbaSy+XWWXZorv/rTxb9pydarJlL/6kIlt21HfS46SjqS/KF92tLlv20DtLsmVP2Ls+W3bRonyfd2SM7pBqM9YIluQ7v6w5cnK27NkL8p1zZ07plS27uOeibNn1MzP2Qx1Rxq4xZRyfpap8593SmRmHtBk/79rVarNlFy3sWjXWKd+QIYoW5+t8F62+OFt2z1fyzS3mDck4jsrY5urLutbcoqg24xygPGN/UZlvftFr22nZsqdM7JMtu7gm30mueH4X6i9yvtWMc4uyqfnWoeozDqF6rPtxtuxZ7+ebt0TGMUVHVJSvS4+6fEORqJyZr831/lO+vmL2Rn2zZafifCe5+pKutRhVX5mvYRRnXDNMgxZky95ux3HZsv/4ykbZsks+ztfR5Tx/djX1lfnO6dVv5+uMKredni27ZmrPbNnFczIOALtWdxFTa/L9nYb1mJEt+61Z/bNlv7nD7dmyv/vhZtmyJ85fLVv2rEWV2bI7mqJ8yzlZzy911fk69fJ15mbLrnsr3znIOGfFKc53aTRqq/ONoXqMzxYdpQd8lC37k4n5zufd3su3Ppcy3svTEeW8nleb8bpFj/H51l1qq7JFx9xh+a5Fl87K98csyXj+7IhSUb7zQM412qqZ+QYN8/vma3M9JuVrF7OH5ptzl8/uWte5i/P9mSJlvF6Ycyy98YGvZct+5bcbZsteuFq+Y7c+3xCtTbrQVXYAAAAAAAAAAAAAAID2U3wBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAWUruwdyKG4rC5feN982S9edGu27LUfOCFbdkXf+dmyF35cmS27wynKmZ2yRZfOKsmW/fAt12bL/tKFZ2TLnrn9wmzZxR+VZ8vuiIoW52sY3QfOyZZdfXx9tuz52/XJlt39wNnZsheO65Utu261jP1+B5RK8p3Tyz7Jd06vzVjyWzY737li8YiabNklH1Rly66vzHce6oiKF+U7BnK2uZ6v5OvXB+43IVv2W699Llt2+cx856HFPbpYu8g4jqrttzhbdvkHZdmye37znWzZMy8bkC17Ub/abNkldfnaXEdTVJ3vc6x8K9/aRb8vf5gtO6ea3w7Mll2yc751qLqZFdmyO6L6jCvDVTPz9btzB+U7dz32+B3Zsrf58beyZfd8P9+8uKZ/1/r+ptI5+d5vba987WLQ/fnmFu/8dkG27M8dmK89f7B3vr6/dHq+MWtHVNct37Hb8418ndEu3/h7tuzXduyWLbvkgL7Zsmfskq89F3/Yha7nRUTfynnZsl+cuka27MOGvZAte/fBI7Nl7/PvGdmyJ85fLV/27HzZHU3KuLxQWpNz7Tdf9hoH/jtb9ls/2ypbdsX0jOuz3fKttXdEi3rme7/dJuc7djc87tVs2VO3yXcteu6522bLXtg339+yYkbOG4U6ntqMc4t+L+Wbz5ccMjVb9tS3+2XLXu1f+c7pc9bOFh1F9V2rXSzuni97tTcWZcuetmm+tfTyT/KddyftlG8dYsgj+T7vWWt1rfsFU8ZrF7Xd8/VF5TPz9UXTtv0kW3b1H/P1c/V/Wj1b9vzVV+79H13rygkAAAAAAAAAAAAAAEA7Kb4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAJKV9YLF5XVZ8su+aAyW/avD7k2W/bug7fIll1258J82c/3yJe97SfZsjuass/Ny5Y96JcV2bIf+Z+bsmWXFZVly+77y79ny97h5KJs2Y+8unW27I4odavLlr3g9d7Zsn/9119myz5s+E7Zsi+56KVs2Wf+44Rs2dE7Xx/XEZX1WZAte9CD+cZQT958c7bs3QePzJZdVFaeLXvhg4OyZX/4zOBs2R1Rbb/F2bIHPZxvyvTHH/84W/bBa2yTLfsvE+7Mln3EN7+dLXvCofnGFR1RUca322/A7GzZfY5/J1t2FOUbp3f7wsxs2enffbJlL+7dddpFxbv5xjlnHHZ/tuz7NuyfLTunv0y+L1v2Nt89KVv2x/vnW5vpiLpNrc2W/f6++c65Pd7MFh3VxfnG/z869RfZsn88fES27OkXbZstuyNaPDDf3KJyQr7j6/qrRmfLHvnTfGvLu2ecuo6+4u1s2RfcfGS27I6oPONaVJ/X8x1fPx6Ub61z9zkjs2Wvdvsz2bK/9t352bLvePUr2bI7ovdm55unbTJgcrbsL1ROypb9+68dlS27V8m92bKPWD1fm7t89l7ZsjuaVJqyZZcszDe3WDgo37rIw5Nfzpb9UM24bNnnX3lstuyZG+e7R6gjqp6a79ids3a+z3L87L7Zsv8y+S/Zsr/1Yb5rOS9cvnm27Klbda3vTC7/uCRb9vSd881b1tkz33WLZybfky37//boni37h1d+I1v2zI27znWLiIjifEtREfm6oqjLN52PFy69IVt2zntLJp+Vbx2154SuNY6qnJbv4K1fd2627F5/yXcf9S8n/DVb9qjv5bsfdeHG+eaKRXUZT3Jt0LVGcQAAAAAAAAAAAAAAAO2k+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKCAFV58MXHixDj22GNXdCwAAAAAAAAAAAAAAMBKscKLL2bOnBm33377io4FAAAAAAAAAAAAAABYKUrb+4Tf/e53Bf/93XffXeadAQAAAAAAAAAAAAAA6GjaXXzxta99LYqKiiKl1OI2RUVFy7VTAAAAAAAAAAAAAAAAHUVxe58waNCguPfee6O+vr7Z/1566aUc+wkAAAAAAAAAAAAAALBStLv4YvPNN48XX3yxxX9v7VcxAAAAAAAAAAAAAAAAOpPS9j7h7LPPjnnz5rX478OHD48nnnhiuXYKAAAAAAAAAAAAAACgo2h38cV2221X8N+7desWO+ywwzLvEAAAAAAAAAAAAAAAQEdSvLJ3AAAAAAAAAAAAAAAAoCNTfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUULqyXjjNz/fS9WsuyJb99XtOz5ZdenG+WpjP9f0gW/bE1auzZdd9UpUtu6Opfb97tuyJu2SLjg1/fVq27GHnPpMte9L3t8mW/ebztdmyS/qnbNkdUbfe87Nllz9fli17tZJ858Xef+qWLfvHw0dky+79x6nZsqe9OiBbdkdUOzXf8TVxj3znmGH3fjNbdrox47mxoi5bdNEbGYfifevzZXdAJTPyndOnbpXv+Nr8N9/Jlv325BuyZQ977Ixs2SU75msXxdNLsmV3RLXV+Y7duS/0y5b91Zf/lS37/H6vZ8ve9ZCR2bJnnZhvjaP0g8ps2R3Nol75+sbrxu2YLbv3qHxrBd0+yHdsrX3/ltmyY/uM45zpXWcdKiJiUY98fWPvf+Vb56zLeOrae8u9s2VPGjU0W3bF0fn6/W6TutZaVOn0fHOLVJQtOvZ/4tRs2X2ezfiZnJwtOs6+L9/6bxrQtdpFvJlvPfKDo+dly95zz8OyZd836fZs2Xsfd0q27NvHLcqWnXp3rXaxUZ8p2bL/PjnfmGGTHhOzZdeV5evoXpi7drbsZ6bky96gb77jpKMpWZjv77+gX745YHFNvjlRTX2+c+4Fl+cbRM348uJs2eUf5BtXdkSL813Oi/qqfO1i8W2rZ8se99812bLn1VZky57fN98aR1HXupwXJfmWI6OoON94tKg037WrjX6ab/w/b918fVHPHvn6/pL5Xeu7xMtq8h2707+Q79y45o9fzJb9yLH5xgwzj823XlQ1Ld/fsq48W3SHVDMw32dZMq5ntuyZo+Zmy16jNN/1wnVOfy1b9icPbZQtu7bbyl2L6lq9FQAAAAAAAAAAAAAAQDspvgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAkpX2itX1GWLrluUr6akcui8bNmLPuiWLXv8+/2zZUffxfmya7tOfVAqS9myixcUZcuu7VubLXvjl/Lt91t/zXcOKlqcb79TSb7jpCOaN606W/aC7eZny97s0pOzZc9dM1t0DH/i/WzZU97uky07euY7D3VEqaw+W3ZJTb5+t65HvvNu8bySbNkln+TLXtw7Y1+0KF9f1BHl7B+LO+ln+eUzvpktu3SzfOeK2m75/pZF+Zpcx1Sa77Nc3D1fX/SrP+yULft3b+TLnnnSgmzZaXpFtuz6iq4zv6ivzncSqJmWbz2nblRNtuzomW+NKyaXZYsumptvfJYq8p3fOqKa/vn69KoZ+T7LWcPy7fdr530uW3a/5/Odc+vydRVR1LWm3FHbM+OgsT7f+Svq8s1bqvafmi37gwl9s2UXZbxOlHP9tyOqq844Zvwg3/rvpItmZ8v+yjlnZMue+vVF2bJL3s83bq2v7Dpzi4iID2p6ZcveoH++8+61L+ycLfvOq36WLfuct0Zly96g75Rs2RPmZLwu0sGkjJf0Sxbm63dzrhfud8RJ2bJnHJBvvlX+Qb75fH3GeUtHVJRxiaFqYr5bvWYNzxYdx5/znWzZC3rnO1fM758vu2xWtugOKec1oLJ3K7Nlv3HjyGzZ3d7OFh3dx5Vny64ZmO9vWbIwW3SXUzkj399p6nGbZ8sevWm+Y7dq53wDwAW9M167KOpaa1HFGW9HzrlEW/5sj2zZO91yfLbsqV/M1+bqqzKuF63kS3pd5852AAAAAAAAAAAAAACAZaD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKKF1pr7w4Y91HccoWvWB6Vbbs6LU4W3RRSb7PJM0vyZYdZfn2u8PJ+FbrK/OFF8/L9/d/6M5tsmUXDazPlp1V0cregc9YXb43XDenLFv2J1stypZd0S1f9psvDM2WHT1r82V3sVLSotp87aK+ImN/kXG8UF+Z75yeyvJ93kWLM57Uu1h/UdRJx1FFGU+Nk/fLN7conlaeLbso4xCtKOO4oiMqXpCxv8g3jIr6qnwHwbQv5csunVSZLbs443w+59+yw0kZ+/SM47OFGdehpr3TPVt29MnXyaWKjJ1FF+srKmblO7/UVub7LHu/le8Y6PN6xv4z4/m8tirjsduFlmcjIkrm5Ju71lXl+zBLZufb75l/HZgtu7hfxvl8zil3Xb7sjihlvASUc21k4Ru9smXPyzi3KPmwIlt2ynnNrWsNo7Kqrc+34L3RWpOzZZ/678OzZW/U78Ns2ZPn5TtXDKieky27w8k4TavPeEdLUcbrS+NPyHfOLX87X+dc2y3fH7M45zWRDijrulvGY7co36WF+OiL+Y6BnOP/ipn5suvzDf06pKxzi4x9UeWEfNfFFnfPuF6UMbukpnO2546oviTfGy6uy3cMVH6cL3viqV/Ill31UcZr/xnXi3L+LTukTnof2IJ++f5O73894zh9WsZ1roUZr8+u5GbRSQ9TAAAAAAAAAAAAAACAz4biCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAooCillFb2TgAAAAAAAAAAAAAAAHRUfvkCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPiiFQsXLoxzzz03Bg8eHFVVVbHVVlvFo48+2ubnf/DBB3HwwQdH7969o2fPnvHVr3413n333TY995FHHonjjjsuNtpooygpKYm11lqr2e0uuuiiKCoqavG/p59+utH2d999d2y99dbRu3fv6Nu3b+ywww7xwAMPtPk9/e53v4vNNtssKisrY8iQIXHhhRdGbW1tm59P5zF37ty48MILY4899og+ffpEUVFR3Hbbbc1uW+gY3HXXXdv0est6bL3++utxzjnnxMiRI6NHjx4xaNCg2HvvveOFF15osm1L7aWysrLga/z1r39t2Hb69Oltej/Le/6g83j++efjtNNOixEjRkS3bt1iyJAhcfDBB8ebb77Z5oxPPvkkTjzxxOjfv39069Ytdtppp3jppZdafV59fX3cdtttsd9++8Waa64Z3bp1i4022ih++MMfxoIFCxptO3/+/IZ+pVevXtG9e/fYZJNN4qc//WksXry40ba33XZbi216ypQpbXpP48aNiz322CO6d+8effr0iW984xsxbdq0Nn8mdH4raxxVU1MT119/fey2224xaNCg6NGjR2y66aZxww03RF1dXZPtL7vssthvv/1i9dVXj6KiorjoootW+D4t8be//S2+/OUvR3V1dQwcODDOOOOMmDt3bpufT+fXGdrF+PHjW+wD7rzzzkbbPvfcc3HKKafE5ptvHmVlZVFUVNTm97KEdtG1dYY2MXny5DjiiCNivfXWix49ekTv3r1jyy23jNtvvz1SSk2yH3vssdhpp52iX79+Ddv+7//+b5vfkzbRtbVnHt6SZZ1bRLTvvD516tQ45phjYsCAAVFVVRWbbbZZ/Pa3v22y3X333Re77757DB48OCoqKmKNNdaIgw46KF599dU2vydzi67j6KOPLrjG9MEHHzRsu3jx4rj44otj2LBhUVFREcOGDYsf/vCH7Vqn/OUvfxkbbLBBVFZWxjrrrBPXXXddm57XnnWAlt7T+uuvX/A1xowZE0VFRdG9e/c2v5/laf90Liuzv2jPWlREy+vGV1xxRcHX2XXXXaOoqChOO+20Nr8n4yhWtfnFvffeG4ccckgMGzYsqqurY7311ovvfve78cknn7T5PRlH8dJLL8V+++0Xffr0ierq6thoo43i2muvbdNzO1qbWOKuu+6KbbbZJrp16xa9e/eObbfdNv70pz+16T3pK7qOf//73zFq1KiGc2i/fv1i++23j9///vfNbr+y7qFwnZuVoS19Q2eZc396nzfccMMoKiqKq6++utG/tee6R0vMuVdNbe0v2jsXbsmyjkUmTpwYF198cWy55Zax2mqrRb9+/WLHHXeMxx57rMm2jz/+eBx77LGx7rrrRnV1dQwbNiyOP/74+PDDDxttV6hdFBUVxQknnNCm97SsbZ2O7a233opDDz001lhjjaiuro71118/LrnkkqipqWm0XWfpL6zRsiJddtllUVRUFBtttFGTf7v88stj6623jv79+zcc09/61rfatRbzWcwtPq2ltdhC9w8WFRXFmDFjWs1eVecWpSt7Bzq6o48+OsaOHRvf+ta3Yp111onbbrst9tprr3jiiSfiy1/+csHnzp07N3baaaeYNWtW/OAHP4iysrIYPXp07LDDDvHyyy9H3759Cz7/jjvuiLvuuis222yzGDx4cIvbHXDAATF8+PAmj//gBz+IuXPnxhZbbNHw2HXXXRdnnHFG7L333nHFFVfEggUL4rbbbot99tkn7rnnnjjggAMK7tMf//jH+NrXvhY77rhjXHfddfHKK6/ED3/4w/joo4/ihhtuKPhcOp/p06fHJZdcEkOGDIlNNtkk/vznP7e4bXM3E73wwgvx05/+NHbbbbdWX2t5jq1bbrklfvnLX8aBBx4Yp5xySsyaNStuuumm2HrrreOhhx6KXXbZpclzbrjhhkYDo5KSkhbz6+vr4/TTT49u3brFvHnzWn0vSyzP+YPO5corr4ynn346Ro0aFRtvvHFMmTIlfvazn8Vmm20Wf//735sdbC2tvr4+9t577/jnP/8ZZ599dvTr1y9+/vOfx4477hgvvvhirLPOOi0+t6amJo455pjYeuut46STTooBAwbEM888ExdeeGE8/vjj8ac//anhhqn58+fHv//979hrr71irbXWiuLi4vjb3/4W3/72t+PZZ5+NO+64o0n+JZdcEmuvvXajx3r37t3qZzJp0qTYfvvto1evXnH55ZfH3Llz4+qrr45XXnklnnvuuSgvL281g85vZY2j3n333Tj99NPjK1/5SnznO9+Jnj17xsMPPxynnHJK/P3vf4/bb7+90fbnn39+DBw4MDbddNN4+OGHs+xTRMTLL78cX/nKV2KDDTaIa665JiZNmhRXX311vPXWW/HHP/6x4HNZdXSWdhERcdhhh8Vee+3V6LFtttmm0f8/+OCDccstt8TGG28cw4YNa1fhYYR2QedoE9OnT49JkybFQQcdFEOGDInFixfHo48+GkcffXS88cYbcfnllzds+7vf/S6+9rWvxTbbbNNwQfzuu++OI488MqZPnx7f/va3C74nbYL2zMObszxzi4i2n9dnz54dX/7yl2Pq1Klx5plnxsCBA+Puu++Ogw8+OMaMGRNf//rXG7Z95ZVXYrXVVoszzzwz+vXrF1OmTIn/+Z//iS233DKeeeaZ2GSTTQruk7lF1/LNb36zyTpOSilOOumkWGutteJzn/tcw+NHHHFE/Pa3v41jjz02vvjFL8bf//73uOCCC2LChAlx8803t/paN910U5x00klx4IEHxne+85146qmn4owzzoiampo499xzCz63vesAFRUVccsttzR6rFevXi3mz507N84555zo1q1bq+9jieVt/3QuK7O/aM9a1BK77rprHHnkkY0e23TTTVt8jXvvvTeeeeaZdr0n4ygiVr35xYknnhiDBw+OI444IoYMGRKvvPJK/OxnP4sHH3wwXnrppaiqqir4noyjeOSRR2LfffeNTTfdNC644ILo3r17vPPOOzFp0qRWn9sR20TEf24+v+SSS+Kggw6Ko48+OhYvXhyvvvpqoyLdlugrupb3338/5syZE0cddVQMHjw4ampq4p577on99tsvbrrppjjxxBMbtl2Z91C4zs1nra19Q2eacy9x3XXXxYQJEwpmt+W6R3PMuVddbe0vlmUu/GnLMxa5//7748orr4yvfe1rcdRRR0VtbW386le/il133TX+53/+J4455piGbc8999yYOXNmjBo1KtZZZ514991342c/+1n84Q9/iJdffjkGDhwYERH9+/dv9l6vhx56KMaMGdOme72Wp63TcU2cODG23HLL6NWrV5x22mnRp0+fhuP9xRdfjPvvv79h287UX1ijZUWYNGlSXH755S0eFy+++GKMHDkyDj300OjRo0eMGzcufvGLX8QDDzwQL7/8cqvH02c9t4govBa7/fbbN9tXjB49Ov75z3/GV77ylYL7FLEKzy0SLXr22WdTRKQf/ehHDY/Nnz8/ff7zn0/bbLNNq8+/8sorU0Sk5557ruGxcePGpZKSkvT973+/1ed/8MEHadGiRSmllPbee+80dOjQNu/7hAkTUlFRUTrhhBMaPb7OOuukLbbYItXX1zc8NmvWrNS9e/e03377tZq74YYbpk022SQtXry44bHzzjsvFRUVpXHjxrV5/+gcFixYkD788MOUUkrPP/98ioh06623tvn5xx13XCoqKkoTJ05sddvlObZeeOGFNGfOnEaPTZ8+PfXv3z996UtfavT4hRdemCIiTZs2rc3v44Ybbkh9+/ZNZ555Zpufu7znDzqXp59+Oi1cuLDRY2+++WaqqKhIhx9+eKvPv+uuu1JEpN/+9rcNj3300Uepd+/e6bDDDiv43IULF6ann366yeMXX3xxioj06KOPtvr6p512WoqIhvaeUkq33nprioj0/PPPt/r85px88smpqqoqvf/++w2PPfrooyki0k033bRMmXQuK3McNW3atPTqq682efyYY45JEZHeeuutRo+/9957Dc+LiHThhReu8H1KKaU999wzDRo0KM2aNavhsV/84hcpItLDDz/c6vPp/DpLu3jvvfea7GdLpkyZkmpqalJKKZ166qmpvVNM7aJr6yxtoiX77LNP6tatW6qtrW14bNddd02DBw9OCxYsaHhs8eLF6fOf/3zaeOONW83UJljeefjyzC1Savt5/aqrrkoRkR5//PGGx+rq6tIWW2yRBg4c2GR+1NzrlJaWpm9+85ut7pO5BU899VSKiHTZZZc1PPbcc8+liEgXXHBBo22/+93vpqKiovTPf/6zYGZNTU3q27dv2nvvvRs9fvjhh6du3bqlmTNnFnx+e9YBjjrqqNStW7eCeZ927rnnpvXWW69hf9pieds/ncvK7C/auxYVEenUU09t877Nnz8/rbXWWumSSy5p13ONo1gV5xdPPPFEk+1uv/32FBHpF7/4RauZxlFd26xZs9Lqq6+e9t9//1RXV9fu53fENvHMM8+koqKidM0117Tjnfx/+gpqa2vTJptsktZbb71Gj6/Meyhc5+az1Na+oTPNuZeYOnVq6tWrV8M84tPXN9pz3aM55txdS3P9xYq4L2N5xiKvvvpqk3P4ggUL0vrrr5/WWGONRo8/+eSTTdr4k08+mSIinXfeea3u51e+8pXUs2fPNH/+/ILbLW9bp+O67LLLUkQ0GdMfeeSRKSIa/radqb+wRsuKcsghh6Sdd9457bDDDmnEiBFtes7YsWNTRKTf/OY3rW77Wc0tlliWtdiamprUo0ePtOuuu7a67ao8tyhe3uKNVdnYsWOjpKSk0bceVFZWxnHHHRfPPPNMTJw4sdXnb7HFFo1+eWL99dePr3zlK3H33Xe3+vqDBw+OsrKyZdr33/zmN5FSisMPP7zR47Nnz44BAwY0qrbt2bNndO/evdVvyHnttdfitddeixNPPDFKS///j6accsopkVKKsWPHLtO+0nFVVFQ0VDy318KFC+Oee+6JHXbYIdZYY42C2y7vsbX55ps3+Xmvvn37xnbbbRfjxo1r9jkppZg9e3aLP1m8xMyZM+P888+PSy65pE3f9r/E8p4/6Fy23XbbJt8Sts4668SIESNaPAaXNnbs2Fh99dUbfXNO//794+CDD477778/Fi5c2OJzy8vLY9ttt23y+P777x8R0abXX2uttSIiWvy5+jlz5jT5KfDW3HPPPbHPPvvEkCFDGh7bZZddYt11121TH0jntzLHUf369YsRI0Y0ebyldrGkDbRmefZp9uzZ8eijj8YRRxwRPXv2bHj8yCOPjO7du2sXXURnahdLzJs3LxYtWtRi7uqrr97qPKIl2gWdsU0sba211oqamppGbWT27Nmx2mqrRUVFRcNjpaWl0a9fv1bbijZBxPLNwyOWb24R0fbz+lNPPRX9+/ePnXfeueGx4uLiOPjgg2PKlCnx5JNPFnz+gAEDorq6usU5yNLMLbjjjjuiqKio0S+qPPXUUxERceihhzba9tBDD42UUtx1110FM5944omYMWNGnHLKKY0eP/XUU2PevHnxwAMPFHz+sqwD1NXVxezZswvmRkS89dZbMXr06LjmmmsarZO1ZnnbP53LyuwvlnUtav78+bFgwYJW9+2qq66K+vr6OOuss1rddgnjKCJWzfnFjjvuuFyZxlFd2x133BFTp06Nyy67LIqLi2PevHlRX1/f5ud3xDbxk5/8JAYOHBhnnnlmpJRi7ty5bX07+goi4j+/ELHmmms2mYuuzHsoXOfms9TWvqEzzrm/973vxXrrrRdHHHFEweyI1q97NMecu2tprr9Y3vsylncsMmLEiOjXr1+jxyoqKmKvvfaKSZMmxZw5cxoe33777aO4uPEtodtvv3306dOn1f388MMP44knnogDDjggKisrC267vG2djmvJGubqq6/e6PFBgwZFcXFxwzm6M/YX1mhZHn/5y19i7Nix8ZOf/KRdz2vtvrwlVsbcYlnWYn//+9/HnDlzmtyb3pxVeW6h+KKAf/zjH7Huuus2GvRERGy55ZYR8Z+fA2tJfX19/Otf/4ovfvGLTf5tyy23jHfeeafRwGdFGzNmTKy55pqx/fbbN3p8xx13jIceeiiuu+66GD9+fLz++utx6qmnxqxZs+LMM88smPmPf/wjIqLJexo8eHCsscYaDf8OEREPPvhgfPLJJ206yeY6tqZMmdJk8rHEsGHDolevXtGjR4844ogjYurUqc1ud8EFF8TAgQPjm9/8Zrtee3nOH6waUkoxderUFo/Bpf3jH/+IzTbbrMkEeMstt4yampp488032/36U6ZMiYho9vUXLVoU06dPj4kTJ8Z9990XV199dQwdOjSGDx/eZNuddtopevbsGdXV1bHffvvFW2+91eprf/DBB/HRRx+12AfqL7qGjjiOKtQuWrO8+/TKK69EbW1tk+eXl5fHyJEjtYsuorO1i4svvji6d+8elZWVscUWW8QjjzzS7vxCtAs6W5uYP39+TJ8+PcaPHx+333573HrrrbHNNts0ugi/4447xr///e+44IIL4u2334533nknLr300njhhRfinHPOKfja2gQrQo65RXMWLlzY7A0o1dXVEfGfn1X+tE8++SSmTZsWr7zyShx//PExe/bsVn+O2NyCxYsXx9133x3bbrtto6LpJRepPn0cFjoGl9bSWtTmm28excXFy3RsFVoHqKmpiZ49e0avXr2iT58+ceqpp7Z4s+C3vvWt2GmnnWKvvfZq1+t/Vu2fVcNnvRZ12223Rbdu3aKqqio23HDDuOOOO5rNmDBhQlxxxRVx5ZVXtqvI2ziKiFVzftHezKUZR/HYY49Fz54944MPPoj11lsvunfvHj179oyTTz651WK4jtomHn/88dhiiy3i2muvjf79+0ePHj1i0KBB8bOf/azV19ZXdF3z5s2L6dOnxzvvvBOjR4+OP/7xj03moh3xHgrXucmhrX1DZ5tzP/fcc3H77bfHT37yk0ZFVM1Z1use5tyrvrb0F81p6/g811hkypQpUV1d3dA+WzJ37tyYO3duq/t55513Rn19/XLd67U8bZ2OYckXARx33HHx8ssvx8SJE+Ouu+6KG264Ic4444zo1q1bRHS+/sIaLcujrq4uTj/99Dj++OPjC1/4QsFtU0oxffr0mDJlSjz11FNxxhlnRElJSbNfsrG0z3pusaxrsWPGjImqqqpGRUYtWZXnFoovCvjwww9j0KBBTR5f8tjkyZNbfO7MmTNj4cKFy/z85fHvf/87/vWvf8Vhhx3WZGJx7bXXxo477hhnnHFGrL322rHBBhvE3XffHY8//nhss802BXM//PDDRvu/tEGDBmV7P3ROY8aMiYqKijjooINa3TbHsfXUU0/FM888E4ccckijx1dbbbU47bTT4qabboqxY8fG8ccfH3fddVdst912TSpb//Wvf8VNN90U11xzTZSUlLTr9Zfn/MGqYcyYMfHBBx80OQabk+N4ueqqq6Jnz56x5557Nvm3e++9N/r37x9DhgyJAw44INZYY434/e9/36hqtrq6Oo4++ui4/vrr47777otzzjknHn/88dh2221brTptrU0v6SNZtXW0cdSiRYviJz/5Say99tqNvq2trZZ3n4yjiOg87aK4uDh22223+NGPfhS/+93vYvTo0fHRRx/FnnvuuUK/pUa7oLO0iSV++tOfRv/+/WPttdeOo48+Orbeeuu48847G21zwQUXxMEHHxyXXXZZrLPOOjF8+PC44oor4p577ml1AUqbYEX4rOai6623XkyaNCnef//9Ro8v+aarDz74oMlztt566xgwYEBsvPHGcffdd8f5558fxx13XMHXMbfg4YcfjhkzZjS54LveeutFRMTTTz/d6PFCx+DSPvzwwygpKYkBAwY0ery8vDz69u27TG2lpXWAQYMGxTnnnBO33npr/OY3v4n99tsvfv7zn8cee+wRtbW1jbZ94IEH4pFHHolrrrmm3a9vLYr2+CzXorbddtu47LLL4v/+7//ihhtuiJKSkjj88MPjhhtuaJLx3e9+NzbddNMm35jYGuMoIlbN+UVzrrzyyigpKWn12otxFG+99VbU1tbGV7/61dh9993jnnvuiWOPPTZuvPHGOOaYYwo+tyO2iY8//jimT58eTz/9dFxwwQXxve99L+66664YOXJknH766XHTTTcVfH19Rdf13e9+N/r37x/Dhw+Ps846K/bff/8mBTsd7R4K17nJpa19Q2eac6eU4vTTT49DDjmkYHtd3use2sWqry39RXMK3ZextBz9xdtvvx333ntvHHjgga2e63/yk5/EokWLWr1/ZcyYMTFo0KBGv3jckhxtnY5hjz32iEsvvTQeffTR2HTTTWPIkCFx6KGHxumnnx6jR49u2K4z9RfWaFleN954Y7z//vtx6aWXtrrt1KlTo3///jFo0KDYfvvtY8KECXHHHXfE+uuvX/B5n+XcImLZ1mJnzpwZDz30UOy7777Ro0ePVrdfldtE238TpwuaP39+VFRUNHl8yc9qzZ8/v+BzI2KZn788xowZExHRbBVqdXV1rLfeerHGGmvEPvvsE3PmzInRo0fHAQccEE899VSz33q+RGvvqS0/yUTXMHv27HjggQdir732atNPmK7oY+ujjz6Kr3/967H22ms3+XbZT387yYEHHhhbbrllHH744fHzn/88vve97zX82xlnnBF77rln7Lbbbu16/YjlO3/Q+S35RpxtttkmjjrqqFa3X9HHy+WXXx6PPfZY/PznP2+2De60007x6KOPxieffBKPP/54/POf/4x58+Y12ubggw+Ogw8+uOH/v/a1r8Xuu+8e22+/fVx22WVx4403Fnw/Ea33gc39O6uOjjaOOu200+K1116LBx54oF0/C7mi9qm15+sXuobO0i6GDBkSDz/8cKNtv/GNb8SGG24Y3/3ud2Pvvfdu1+u0RLugs7SJJQ477LD44he/GNOmTYs//OEPMXXq1CavUVFREeuuu24cdNBBccABB0RdXV3cfPPNccQRR8Sjjz4aW2+99TK/J22Ctvis5qLHH3983HjjjXHwwQfH6NGjY/XVV4+777477rvvvhZf59Zbb43Zs2fHu+++G7feemvMnz8/6urqmnwD1KffT4S5RVd2xx13RFlZWaP5aUTEXnvtFUOHDo2zzjorqqurY/PNN49nn302zjvvvCgtLW31WJ8/f36Tn6RfYlnOuYXWAf77v/+70f8feuihse6668Z5550XY8eObbiwsWjRovj2t78dJ510Umy44Ybtev0Ia1G0z2e5FvXpC/DHHntsbL755vGDH/wgjj766IZvVXviiSfinnvuiWeffbZdr730/hpHdW2r4vzi0+6444745S9/Geecc06ss846Bbc1jmLu3LlRU1MTJ510Ulx77bUREXHAAQfEokWL4qabbopLLrmkxeOoI7aJJd9IO2PGjLjzzjsbbhw56KCD4gtf+EL88Ic/LPjt/vqKrutb3/pWHHTQQTF58uS4++67o66uLhYtWtRom450D4Xr3OTU1r6hM825b7vttnjllVdi7NixBTOW97qHdrHqa0t/8Wmt3ZextBU9FqmpqYlRo0ZFVVVVXHHFFQW3/ctf/hIXX3xxHHzwwQWLKt5888148cUX49vf/nbBNdslVnRbp2NZa621Yvvtt48DDzww+vbtGw888EBcfvnlMXDgwDjttNMiwhptc/QXq6YZM2bEf/3Xf8UFF1wQ/fv3b3X7Pn36xKOPPhoLFiyIf/zjH3Hvvfe2+CsrS/ss5xbLuhY7duzYWLRoUZt+ISli1W4TfvmigKqqqma/9WXJz+0V+qmVJf+2rM9fVimluOOOO2KjjTaKjTfeuMm/jxo1KiZMmBC33XZbHHTQQXHMMcfEn//851i0aFGcd955BbNbe0853g+d0z333BMLFixo80l2RR5b8+bNa1gUu//++6N79+6tPufrX/96DBw4MB577LGGx+66667429/+Fj/+8Y/b/NpLW57zB53blClTYu+9945evXrF2LFj2/RtMivyeLnrrrsavkH25JNPbnab1VdfPXbZZZc46KCD4oYbboh99tkndt1114afxGzJl7/85dhqq60atZXmrKw+kI6lI42jfvSjH8UvfvGLuPTSS9v9s5Arap+Mo4jo3O2iT58+ccwxx8Qbb7wRkyZNavPrFKJd0NnaxNChQ2OXXXaJww47LMaMGRPDhg2LXXbZpdGi0GmnnRa///3v484774xDDz00Dj/88Hjsscdi0KBBTS6Qt/c9aRO0xWc1F914443jjjvuiHfeeSe+9KUvxfDhw+Paa6+Nn/zkJxERzc7Ft9lmm9h9993j5JNPjocffjh+/etfx/e///2Cr2Nu0bXNnTs37r///th9992jb9++jf6tsrIyHnjggejbt28ceOCBsdZaa8WRRx4Z//Vf/xV9+vRpdT2oqqqqxQvo7T3nLss6wJKL2EvPr0ePHh3Tp0+Piy++uM2vvTRrUbTHZ70WtbTy8vI47bTT4pNPPokXX3wxIiJqa2vjjDPOiG984xvL9GuVxlFErJrzi6U99dRTcdxxx8Xuu+8el112Wav7YBzFkr/vYYcd1ujxr3/96xER8cwzz7T63I7UJpa8XllZWaNffikuLo5DDjkkJk2aFBMmTFjm96Q9rLrWX3/92GWXXeLII4+MP/zhDzF37tzYd999I6XUsE1HuYfCdW5ya2vf0Fnm3LNnz47vf//7cfbZZ8eaa67Z5swl2nPdQ7tY9bWlv1hae+fCK7K/qKuri0MPPTRee+21GDt2bAwePLjFbV9//fXYf//9Y6ONNopbbrmlYG6hL3tuzops63Qsd955Z5x44olxyy23xAknnBAHHHBA/PKXv4yjjjoqzj333JgxY0ZEdJ7+oiXWaGmr888/P/r06ROnn356m7YvLy+PXXbZJfbZZ5+44IIL4vrrr4/jjjsu/vCHPxR83mc1t1ietdgxY8ZEnz59Wv3FpyVW5Tah+KKAQYMGNfyUy9KWPFZo8NKnT5+oqKhY5ucvq6effjref//9ZgdC7777bjz00EOx3377NdnXL3/5y02+gerTlvzUS0vvKcf7oXMaM2ZM9OrVK/bZZ582bb+ijq1FixbFAQccEP/617/i/vvvj4022qjN+7zmmmvGzJkzG/7/7LPPjlGjRkV5eXmMHz8+xo8fH5988klEREycOLHVnzxanvMHndesWbNizz33jE8++SQeeuihNv+dV9Tx8uijj8aRRx4Ze++9d8Ffpvi0gw46qOGmltZ8uq00p7U2vaSPZNXWUcZRt912W5x77rlx0kknxfnnn9+m5+TYJ+MoIjp/u1hy8aK1fqCttAs6e5s46KCDYuLEifGXv/wlIv4zH/nlL38Ze++9d6NvhSorK4s999wzXnjhhYLflKVNsCJ8lnPRJd8E99xzz8UzzzwT77//fgwbNiwiItZdd92Cz11ttdVi5513brig1xJzi67t//7v/6KmpqbFC74jRoyIV199NV599dV46qmnYvLkyXHCCSfE9OnTWz0GBw0aFHV1dfHRRx81enzRokUxY8aMNreVZV0HqKqqir59+zaMq2bNmhU//OEP44QTTojZs2c3rEXNnTs3Ukoxfvz4Jvva3HuyFkVbrey1qE/PLX71q1/FG2+8Ed/85jcbjv/x48dHRMScOXNi/PjxUVNTU/D9LL3/n35Pjv+uYVWbXyztn//8Z+y3336x0UYbxdixY9v0q67GUSw5ZldfffVGjw8YMCAiIj7++OMWn9sR20SfPn2isrIy+vbt2+RGqra8J30FSxx00EHx/PPPx5tvvhkRHeceCte5+Sy0p2/oDHPuq6++OhYtWhSHHHJIw7G+pIji448/jvHjx7f6ywVtve6hXXQ9n+4vlrYsc+EVORY54YQT4g9/+EPcdtttBX/JYuLEibHbbrtFr1694sEHH4wePXoUzL3jjjtivfXWi80337xN+7Gi2jodz89//vPYdNNNY4011mj0+H777Rc1NTXxj3/8o+GxztBftMQaLW3x1ltvxc033xxnnHFGTJ48ueG4WLBgQSxevDjGjx/f6jhi2223jUGDBi33NbEVNbdY1rXYCRMmxFNPPRWjRo2KsrKyNu3LqtwmFF8UMHLkyHjzzTeb/FzLkp9aGTlyZIvPLS4uji984QvxwgsvNPm3Z599NoYNG9bqoGZZjBkzJoqKihoq05c2derUiPhPBeynLV68OGprawtmL3m/n35PkydPjkmTJhX8POg6Pvzww3jiiSfiwAMPbPPC/Yo4turr6+PII4+Mxx9/PO64447YYYcd2rzPSwZIS/8s1MSJE+OOO+6Itddeu+G/n/70pxERsdlmm7X6DdHLc/6gc1qwYEHsu+++8eabb8Yf/vCHdv383MiRI+Oll16K+vr6Ro8/++yzUV1d3eqEZMm2+++/f3zxi1+Mu+++u00X4JZY8s1Rs2bNanXbd999t9WfUPvc5z4X/fv3b7YPfO655xz/XURHGEfdf//9cfzxx8cBBxwQ119/ffvewArep4022ihKS0ubPH/RokXx8ssvaxddRGdvF++++25ERJt+SrMttAs6e5v49BhqxowZUVtb2+Kcu76+vtl/W0KbYEVYEXOL9igvL48tttgitt566ygvL2/4hqhddtml1efOnz+/1TmIuUXXNmbMmOjevXuTm6CWVlRUFCNGjIgvf/nL0adPn3jiiSeivr6+1WOwpbWoF154Ierr69t0bC3POsCcOXNi+vTpDeOqjz/+OObOnRtXXXVVo7Woe+65J2pqamLttdeOE088sdX39Fm2fzq3lb0W9em5xYQJE2Lx4sXxpS99qVEbiPjPxcC11147HnnkkRbzjKOIWPXmF0u88847sccee8SAAQPiwQcfbNO3oEcYRxENN8198MEHjR5fctN1ofWdjtgmiouLY+TIkTFt2rQmN9K25T3pK1ji08dWR7iHwnVuPivt7Rs6+px7woQJ8fHHH8eIESMajvXtttsuIiIuv/zyWHvtteO1114r+Dptve5hzt31tDQ+X9a58Ioai5x99tlx6623xujRo5v8is3SZsyYEbvttlssXLgwHn744YYbelvy7LPPxttvv93mX72IWDFtnY5p6tSpLY6NIqLJ+Kij9xctsUZLW3zwwQdRX18fZ5xxRqPj4tlnn40333wz1l577bjkkktazVmwYEGr18Q+q7nFsq7F/uY3v4mUUrv7ilV2bpFo0d///vcUEelHP/pRw2MLFixIw4cPT1tttVWjbd9///00bty4Ro9dccUVKSLS888/3/DY66+/nkpKStK5557brn3Ze++909ChQwtus2jRotS3b9+03XbbNfvvH330USouLk477rhjqq+vb3h84sSJqXv37mmPPfZolDVu3Lg0efLkRhnrr79+2mSTTVJtbW3DY+eff34qKipKr732WrveE53L888/nyIi3XrrrQW3u+aaa1JEpMcff7zZf891bJ1yyikpItJNN91UcLuPPvqoyWPXX399ioh0zTXXNDx23333NfnvkEMOSRGRfvWrX6U//elPDdtOmzYtjRs3Ls2bN6/hsfacP+j8amtr03777ZdKS0vTAw88UHDbyZMnp3HjxqVFixY1PHbnnXemiEi//e1vGx6bNm1a6t27dzrkkENaff3XXnst9e3bN40YMSLNnDmzxe2mTZvW6Py/xGmnndak3TbXVh544IEUEemMM85o9Pjbb7+d3n777UaPnXTSSamqqipNmDCh4bHHHnssRUS64YYbWn1PdH4rexz15JNPpsrKyrTTTjulBQsWtGmfp02bliIiXXjhhc3+e3v2ady4cen9999v9Ngee+yRBg0alGbPnt3w2C233JIiIv3xj39s0z7SuXWWdtFcHzBp0qS02mqrpY033rjF55166qmp0BRTu+DTOnObSCmlfffdNxUVFaW33norpfSfMWHv3r3TuuuumxYuXNiw3Zw5c9Iaa6yR1l9//UbP1yZoTWvz8Bxzi6W1dl7/tDfffDP16NEj7bPPPo0enzp1apNt33vvvdSjR48ma1jmFizx0UcfpdLS0vSNb3yjzc+pqalJm222WZPz6Lx589K4cePStGnTGm3bp0+fJsfrEUcckaqrq9OMGTMKvlZb1wHmz5/faF+WOPvss1NEpHvvvbdhH5tbi9ppp51SZWVluu+++9Lf//73hufnbv90Liujv2jrWlRz46jZs2enz3/+86lfv34NY6Zx48Y12wYiIu21117pvvvua7SebBxFc1a1+UVKKX344Ydp2LBhafDgwem9994r+PrGUXzaSy+9lCIiff3rX2/0+GGHHZZKS0vTBx980PBYZ2kTo0ePThGRbr755obH5s+fn4YNG5Y23HDDRs/XV9DcXHTRokVps802S1VVVWnOnDkppY5xD4Xr3HxW2tM3fFpHnHO/+OKLTY71m266KUVEOvroo9N9992XPvnkk5RS+657mHN3LW3tL1Jq+1w4pTxjkauuuipFRPrBD35QcLu5c+emLbfcMvXo0SO98MILreamlNIZZ5yRIqLJnGKJHG2djmufffZJ5eXl6Y033mj0+Ne+9rVUXFzc6foLa7Qsj2nTpjV7XIwYMSINGTIk3Xfffelf//pXSuk/59+lx9VLjB07NkVEuuCCCxoeW5lzi/auxS6x8cYbpyFDhjR772FKXW9uofiiFaNGjUqlpaXp7LPPTjfddFPadtttU2lpaXryyScbbbfDDjs0uSC95CLCgAED0lVXXZVGjx6d1lxzzTR48OAWF5KW9s9//jNdeuml6dJLL03rrbde6t27d8P//+53v2uy/e9///sUEenGG29sMfP4449PEZF22mmndN1116XLL788rbHGGqmkpKTRe3rvvfdSRKSjjjqqyWsUFRWlnXfeOd18883pjDPOSMXFxemEE05o9f3QOV133XXp0ksvTSeffHKKiHTAAQc0HIdLJqpL23zzzdPgwYNTXV1ds3k5jq0li63bbLNN+t///d8m/82dO7dh26qqqnT00UenH//4x+n6669Phx12WCoqKkojR45stvNb2oUXXpgiotFAcOnHn3jiiUaPt/X8Qed35plnpohI++67b7PH4NKOOuqoFBGNLpbV1tamrbfeOnXv3j1dfPHF6frrr08jRoxIPXr0SK+//nrB1549e3Zac801U3FxcbriiiuavPbf/va3hm1Hjx6d1ltvvXTuueemm266KV199dVp1113bdj3pQ0fPjyNGjUqXXnllenGG29MJ554YiotLU1rrrlmmjJlSqNthw4d2qRAcMKECalv377p85//fLr22mvT5ZdfnlZbbbX0hS98oc03wtP5raxx1Pjx41OvXr1SVVVVuv7665u0i3/+85+Ntv/Vr36VLr300vT973+/YZy0pK8bP378Mu1TRKQddtih0WMvvvhiqqioSJtuumm64YYb0nnnnZcqKyvTbrvt1taPlFVAZ2gXRx99dNpuu+3SRRddlG6++eb0gx/8IPXt2zeVl5c3Ge+MHz++ob1stdVWKSIa/v9Xv/pVo221C5rTGdrEmWeemb74xS+m888/P918883piiuuSFtssUWKiHT66ac3yv3hD3+YIiJtuummafTo0enqq69OG2ywQYqI9Otf/7rRttoELWnrPHxFzy1Sat95fYMNNkj/9V//lW655ZZ03nnnpT59+qShQ4emSZMmNdpuwIAB6bDDDktXXnlluvnmm9PZZ5+d+vTpkyorK9PTTz/daFtzC5a47rrrUkSkhx56qMVtRo0alc4888x00003pR/96Edpgw02SBUVFemxxx5rtN0TTzzRbJH1kpuUDjrooPSLX/wiHXnkkSki0mWXXdbq/rV1HeC9995LvXv3TieffHL66U9/mn7605+mvfbaK0VE2mOPPVpcP1viqKOOSt26dWv28RXd/ul8VlZ/0Z61qAsvvDBtsskmDeOoiy++OA0dOjQVFRU1GRs1JyLSqaee2uzjxlE0Z1WbX2yyySYpItI555zTJPORRx5ptK1xFM059thjU0Skgw8+OF1//fVp1KhRKSLS97///UbbdZY2UVNTk0aMGJHKysrSWWedla699tq0xRZbpJKSkvTggw822lZfwde+9rW08847p4suuij94he/SJdeemlaf/31U0SkH//4x422XZn3ULjOzWetrX1DZ5hzN2dJO136Br+U2nfdw5y7a2lrf9GeuXBKK34scu+996aISOuss06z7WLpezi++tWvpohIxx57bJPt7rvvvibZtbW1afXVV09bb711i6+fo63TcT355JOppKQkDRgwIF1yySXp+uuvT3vuuWeKiHT88cc32rYz9BfWaMlhhx12SCNGjGj02D/+8Y/Ut2/fdMopp6Rrr702/exnP0tHH310Ki0tTWuttVaaPn16w7Yre27RnJbWYlNK6ZVXXkkRkb73ve+1+PyuNrdQfNGK+fPnp7POOisNHDgwVVRUpC222KLZi37NLUql9J9vRDjooINSz549U/fu3dM+++zT6Bs6Crn11ltTRDT736cbXUopHXrooamsrKxg1d/ixYvTddddl0aOHJm6d++eunfvnnbaaadG326QUsuNO6X/fFPCyJEjU0VFRVpjjTXS+eef36iCj1XL0KFDWzwOP/1NS6+//nqKiPSd73ynxbwcx9aSwUxb9vP4449PG264YerRo0cqKytLw4cPT+eee26zFa6f1t5FqbaeP+j8lvQBLf23tOYG3ymlNHPmzHTcccelvn37purq6rTDDjs0+kaplixpU23pL55//vk0atSoNGTIkFRRUZG6deuWNttss3TNNdekxYsXN8o977zz0siRI1OvXr1SWVlZGjJkSDr55JObFF6k1PyFvZRSevXVV9Nuu+2WqqurU+/evdPhhx/e7PNZda2scdSSiXtL/316Ql+oDX/63N7WfWpuQS2llJ566qm07bbbpsrKytS/f/906qmntqkPYtXRGdrFHXfckbbffvvUv3//VFpamvr165f233//9OKLL7Yr99NtQLugOZ2hTTzyyCNpn332SYMHD05lZWWpR48e6Utf+lK69dZbm/1mjzFjxqQtt9wy9e7dO1VVVaWtttoqjR07tsl22gQtaes8fEXPLVJq33n90EMPTWuuuWYqLy9PgwcPTieddFKz3xR34YUXpi9+8YtptdVWS6WlpWnw4MHp0EMPbfgmoE+/d3MLUkpp6623TgMGDGj07U6fduWVV6b1118/VVZWptVWWy3tt99+6R//+EeT7Vq6sJdSSjfffHNab731Unl5efr85z+fRo8e3eK3Ni2tresAH3/8cTriiCPS8OHDU3V1daqoqEgjRoxIl19+eZvXvNp6YS+l5Wv/dD4rq79oz1rUI488knbdddc0cODAVFZWlnr37p122223Fn81+dNauuBnHEVLVrX5RaHMT7cB4yias2jRonTRRReloUOHNlwTGz16dJPtOkubSOk/30591FFHpT59+qSKioq01VZbNdvO9RX85je/SbvssktaffXVU2lpaVpttdXSLrvsku6///4m267Meyhc5+az1ta+oTPMuZvTUvFFe657mHN3LW3tL9ozF05pxY9Flpyv23JNu9B6QXNzhoceeihFRLr22mtbfP0cbZ2O7dlnn0177rlnw5rOuuuumy677LIm9xZ1hv7CGi05NFd8MW3atHTiiSem9ddfP3Xr1i2Vl5enddZZJ33rW99qMg5f2XOL5rS0FptSSt/73vdSRDR7bW+Jrja3KEoppQAAAAAAAAAAAAAAAKBZxSt7BwAAAAAAAAAAAAAAADoyxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUEDpynrh/Z46LVt2cVF9tuycBlfNzpY9eX7PbNn1KV8NT2lxXbbse790Q7bsZTH8imuyZRelbNGR8c8fi3vn+/uXTy/Jlp1W2pl1+bx97ndW9i40sdb1V2fLTqX5GkbprHzHV31Fvv1OJfmyi+qKsmXXV+br99//5tnZspfVumMvyZZdW5vv2C3O2BkVFWdsF/X5jt2cikvytYs3D/qvbNnLau2f/DhfeMZDoHhRvvDa3rXZsktm5xvspLKcfVG26Hj329/NF76Mht78o2zZOfv1lLG/KJ2dr5+r7ZXvACvK2Bel0ozjqBPOyZa9LDZ94LyVvQvLpFv54mzZcxZUZMuurc+3WFBemrGPyziufGHPy7NlL6ttD8435y5ZmO+zXNgz3/GVSvKdc8vn5Dvn1mdciypZlO9v+df7Ot6ce9iP863R5lx3KV6c79gtm50ve2G/fO0i5/g/5zyxQ84tbso3t8ipqFvGMcOHGcdRPTMevBmvFeX0/kkdr79Y62f5xlE559w5lc3Jt9+Le2Q8eDN+3DmvQ40/5axs2ctig/NH5wvvpOeu4nzT+agvy5eds03k/FuOu+zb+cKX0ebH55tb5Jyn1VblOwi6T843PlvcLd/a7+KMn0nO+fxLv+h493/kvJ5XXJvv71RXnW/uWrww44k347WFnPeh1ZfnC3/vjI43595uv4zX8+rzfZb1ZfmOr+LFGe//KM7YLuoyft7l+fa7I67Rbvj9jPOLjHKeGytm5Auft0bG9rwoW3RkvLU8/n1F6/MLv3wBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAWUrqwXLi6qz5idsmXPWlSVLfvBfw7Lln3gl57Llv3vWYOyZdemLlQfVJQxuy5jdHW+9rbmQ9miY8o2+bIj30fS5RTV5WwY+ZSvMztbdlHGj2TelG7ZslNFxn6/piRbdkeUUr6DIOcYqlv1wmzZs2ZVZ8tOGc9D1T0XZMtevGilDfNXipTxNFC8OF92ba98g7Ser5Vly547NN85Pec4Kudx0tWk0oz9erfabNnD1pucLfutSQOyZaf5+c7pRbVdZ86dcwzVvWJRtuzJM3ply8459tth2NvZsv8+eWi27NLijH1cB1SyMN8xsLg63/mlrCbffvd4bXq27IWfy9eeF/bpWuP/nOrL8x1fxfmGOVG3er6+aPMvv5ct+9l/Dc+WXTI33wQgFXetBeCi+nzjqFSRb15cNqEiW/agLT/Mlj1hSp9s2Wl+xolxJ13LX1bFi/O937qqfGPSkvn5xmirbfFRtuwp7/XNll1Um/HY7UrtopN2jfXl+bLnD8rXx3V/P9/5vC5f99nllCzKOefOd35Z7c181/PeOTjf3LV6Ur4+rvukfH/LjMtzXU5ddb4xVPXEfOfdRb0zHl/D5mXLrp2c7/p88aIuNIaKiKL6fMdAXWW+c2P5J/kWuhb3zNfmymbnG6Mt6JuvnyvPuN8dUcZby7PKuf47e5eabNl9Hsh3T/z8fvnOQyt77tJ1rrIDAAAAAAAAAAAAAAAsA8UXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFBA6cp64fqUr+6jV3lNtuya2vJs2e8eeFO27H3e3DNb9rDuM7JlT6rpnS27K0ll+bIrZuRry3tc+kS27LE37Jwt++ON67Jll88syZbd1RSttihb9ho/yvd3qu2Wr0G/e0jKll0+Ld+QY3GP+mzZHVFxcb6/08IF+f5Oc+qrsmVHvo8k1hw8M1v25Om9s2WXlObrizqi4sX5slPGrrd6Qr4298XD/pUt+08vbZgtu3R2vg+8vjzjyaIDKlpclC27uE++Rlf2Vr7+oui4admy4+rP5cvuXpstOi3oOvOLAd3nZst+4/2B2bIPHvlitux5tRXZsh/682bZstffYny27Mmze2bL7ogWV+db0ymfnXE8mvHrhO5+/NfZsnc+79vZsnu+vzBb9tzP5VsP74hK5ucbQ9VlXL/o+5d8f6ePj843Ly7774xraBk/76JF+Y6TDqlbvvFo5fh845HNd3stW/aUHwzLlt1z48ps2XO3znf9tG5W1+ovcq4xlM7Nd26s65bv3Nhzz3eyZX/063zj9DQj33moZGEX6i8yvtWSfEPdrNY549ls2eMv2yZbdsWMfH/M2oyXiTqixdX5PsueE/KNz949Nlt0rHvkc9my63bMtxb1yefz9RUVc7rWdYv6bvnWi3r9O999FJt+/ZVs2c/f94Vs2ZWPdMuWPWPrfOehkhkr7XbWlWJx93zj/+7j52XLnrFx92zZC/rm60N7vZsvu2pavuuni3p3rXaRc35Rm2/ZJUrzLbvE2of9M1v2rAeHZ8suu6d/tuzajOPttvDLFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAkpX1gtXly7Klv36xwOyZX9l0JvZsncfPDJb9i8n/DZb9nZ/+E627CO/9HS27I5mcb/abNlDfleULfu71/w6W/Z+3WqyZT/163znie5j+2XL/uTtQdmyO6L6yvps2dX/rsqW/fC9P8+WnbOvKNt1m2zZi3vk+1um8pQtuyMa2Ht2tuxP/vy5bNn/OK9ztovStYdmy97j7teyZT/wj42zZXdEdavlG0f1e7osW/Zjl/w4W/bBa+Q7p//0rXzjv0uuOCpb9oxt8h0nHVFRbb45wOp9Z2XL7n3O1GzZtQsXZsvuN2xmtuyZr/fNll3Xsy5bdkfzxvh8c6mHv/LTbNmnr719tuyoz9cm3p58Q7bsL/zklHzZXx2XLbsj6j5pQbbst75Rni17w0snZcvuXlyZLXuXb+Vb53xx03zfsTT/W9tmy+6Ianvn6xvLZpZky97mlBeyZV/7w5ezZe85LF+b2/SZfGvL9//2y9myO6LSysXZsnu8l6+/+PVaf86WvfufP8mWvfqfs0XHugfnm1u8/Jd1s2V3RMUL8825I99Senx5s3zj3V9Nfjlb9jbf3Tpbds0h+dY45o/rnS27o6nPt4QaZXPzZdfl64bi4Yxt4gdT850onrgq3/j/4w0ynjs7oKoZ+f5OMzbM1+iKS/ON/XK2i4PfzTfOqfhG92zZE/fPd222IyquyTcvnrVhvmtAH546JFv2q7/Pdw19zJx87eLy2w7Jll0zpGtdz8upeGG+zzLla87x6pkZ7y353KbZsqefmG/e0uu9fP1zR1Q5Pd99YDO2z3ff+tpXzcmW/d5F+cbpa393Wrbst/Ld/hGV0/Nlt4VfvgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKaHfxxfz58+Ovf/1rvPbaa03+bcGCBfGrX/1qhewYAAAAAAAAAAAAAABAR9Cu4os333wzNthgg9h+++3jC1/4Quywww7x4YcfNvz7rFmz4phjjlnhOwkAAAAAAAAAAAAAALCytKv44txzz42NNtooPvroo3jjjTeiR48e8aUvfSkmTJiQa/8AAAAAAAAAAAAAAABWqnYVX/ztb3+L//7v/45+/frF8OHD4/e//33svvvusd1228W7776bax8BAAAAAAAAAAAAAABWmnYVX8yfPz9KS0sb/r+oqChuuOGG2HfffWOHHXaIN998c4XvIAAAAAAAAAAAAAAAwMpU2vom/9/6668fL7zwQmywwQaNHv/Zz34WERH77bffitszAAAAAAAAAAAAAACADqBdv3yx//77x29+85tm/+1nP/tZHHbYYZFSWiE7BgAAAAAAAAAAAAAA0BG0q/ji+9//fjz44IMt/vvPf/7zqK+vX+6dAgAAAAAAAAAAAAAA6CjaVXwBAAAAAAAAAAAAAADQ1Si+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGlK+uFZyzoli17836TsmX/5pUvZsvu9buabNnfer9ftuyBa8/Ilv3v2YOyZXc05R/la45Tt8gWHd/5v6OyZV9/9jPZsidc+IVs2Ytfrc+WXbJaypbdERVV1WbLLlmYr839aObns2XP/mO+7OGnT8mW/d5/d8+WXftevuyO6IPpvbNlF+8wJ1v28D8fnS277taSbNnbrf9WtuyH39ogW3Z5r4XZsjuiko/zndNnbpSv791s7LezZb8z+cZs2cMeOS5bdvH62aKjZNZKm/6uFPVV+cakU19ZPVv2Rve9nC37pjXyZW999tbZsov2XpAve0ZFtuyOprrX/GzZF03aJ1v21NPyjRc+d/c72bL3eXPPbNnl203Plj1uer7zW0e0qGdZtuzVn8r3nT9zN1sjW/ZeG+6QLfuTPfK159Kv5uv3e75fly27IyqZ2zm/r+oPT2+eLfu1+/Kto350SmW27Lcey7iO2sXWaGunVmfLrvnq7GzZOx53QrbsHf75t2zZfz7/S9myp0zPt/ZX261rtYv6ynzvt2xWUbbsv76Ubzyy8W83ypY9Z/t814pK3+ydLbuue74xWkdTknE5emHvfNk5vbN4brbsR6/L11d8MjJbdFROz3d+64hqqzrn+x18V3m27K8P3Slb9gvvDs2WPWTDfNchc54/O6LSefnaRdnQedmy04v/zpa967h9s2XPWpBvzp1T8cLOuTazrMrm5lt7m7lx72zZ/W7Kd0/fQUfski17/n7DsmV3/yDf37K+tHOOK5ZVzer53m/1uHzXRt84Id81l3cO+Xm27BFfODxbdrc/5/tbLu6RLbpNulZvBQAAAAAAAAAAAAAA0E6KLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACggNKV9cJ9K+dly56+qFu27H03fCVb9vPThmTLri5dlC17nd7TsmXPXlSVLbujSSX5sotqi7Jlp7L6bNlVT66eLbvubylbdlFdxs+7q5XMzSrLFj1nw3znxf/9n92zZddmPC3OuWpWtuyFk6qzZUe3fOehjqikNN/7XViTr8117zU/W/a8usps2U+9tm627KpeC7Jl19V1sQ4jX9cbxRnHUZFvOBJf/K+Ts2UXb5Bvx1NJxg+lq8k4Tq/LN+WOx/62SbbsjSdumi17wT751jhqZ5dny46yrtPmulXmG/+/MbN/tuzho97Mlv35Y6Zny37yw+HZshfV5lvO7FaR7zjpiOb3y/dZVs2szZY9d3C+/Z78vQ2zZff7V75zbm1VvvF/cW3X6SsiIuorO+eaYZTm2++Pvzs3W/bcCfnWIYoW5vu8i7pWs8h6DWDe1HyTi5JvzsmWff8tO2TLnnXAwmzZMblHvuyKrrVGW7Q43zlmcc98n2X5jHxjhjkb5RtLl07L11/UVef7vHNen+1o6jNe5y7Nd2kh6jPeLXPKIadky567e75jq+LjbNFRn68pd0j1Jfn+TpUz8g1I5/fJ16Cnn5XvnqjPDcx3gM1bPV//WT6na00u6jMudS98u2e27Lf/N9+1hW4P5LsBJOfnvWBgvjFU8aKuM4aKiKzXi6tmZFyjPXjrbNnFu76cLbts27ps2Yt75OtDi7rWlDuKF+fLznmPbu/X852/dj3kmGzZZSPz9UUp45yrKF9zbpMudlcWAAAAAAAAAAAAAABA+yi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACSlfWC9fUlq+sl14u4z4ZmC179eo52bJLilK27GkLumfLLi+uzZbd4eT7E0V9Rb7w4oVF2bLfvf/z2bKjX77PpCjnYZvv4+6QiuozvuGakmzRc9bNdxAUVeXLLn6nZ7bsKM94kqvLmN0B1dXmq50tq8x3fM2vqciWXVG1OFt2XXldvuw6ddArSsrYXaSc56/6fNEzts7YX8zOOI3M2Swyft4dUdGCfGOdVJKvXdRX5zvvzv1Cvv4iplXmyy7NeB7qQl1RXca5RX19vg/y3Y/7Zst+eeIa2bJX7zM7W3Z5ab4+blFtvnNnR1QxO985t7YqX7uo/ijffvd8P9+Aob4033moriLjCb2LrUUVz8/3WWZdo12Q7w9V80K/bNlFq+VrcxkviUTkXLPsiHKeYmrzfZZzJuRb60ybLMqWXTQ335w751yuy8l5Gsh4jlncI98xUDKjLFt2XbeM/cXijH/MLtRdFGVcd6vPd2hlvT7/9qHV2bK7TcwWHbX5djuKMy7NdUSpk6675WzPU7fsli07561FFbPyfSi1FV2os4iI+oxr3TnngCUT863/z1sj41pUt3xraCU5rxV2Makk33mgeHG+46tsbr7ja8ahm2bLrvwk337nvF+wqIvdF5U66aWaRb3ytefx++Tri8pnZYvOOgfIOW5ti0463AcAAAAAAAAAAAAAAPhsKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAA4P+xd+dxPtX////vr9l3e2NkG9lC1iIiSxIpSrZWWymytLzxFt7KFlKUJNSber9peVO/FpWQSpQoUiEi2fd1jDHb8/eHz7y+XuY15/Ua42m22/Vy6XLJmed5nHNmzuM8t/N8vQAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLmOMye2TAAAAAAAAAAAAAAAAAAAAAAAAyKv45gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDii/+TkJCg0aNHq23btipevLhcLpfmzZvnteyPP/6o/v37q0GDBgoODpbL5cr28VavXq2mTZsqIiJCpUuX1qBBg5SQkODXvjNnzlSXLl1Uvnx5uVwu9ezZ07H8smXL1KpVKxUpUkTR0dFq0KCB3nvvvUzlTp8+raFDhyo+Pl6hoaG6+uqr1blzZyUmJvo8p/T0dE2ePFnx8fEKCwtT7dq19c477/h1Pci7fv/9d3Xp0kWVKlVSRESESpYsqZtvvlmffPKJ1/Lvv/++brzxRhUtWlQlSpRQ8+bNtXjxYr+P9/HHH6t+/foKCwtT+fLlNXr0aKWmpvrcb8uWLRo6dKjq1q2r6OhoxcXFqX379lq3bp3PfW+99Va5XC4NGDDAY/vZs2fVp08f1apVS0WKFFFUVJTq1Kmjl19+WSkpKX5dD3lRuJw7d07Dhg1TmTJlFB4erkaNGmnp0qV+779371517dpVRYsWVUxMjDp27KgdO3b43C8xMVEzZsxQmzZtFBcXp+joaNWrV08zZ85UWlqa477z58+Xy+VSVFSU15+np6dr5syZqlu3rsLDw1WiRAm1atVKv/zyi1/XdKk5jYIjt/JCkr788kv3czwwMFAVK1Z0LL99+3bdd999uuqqqxQeHq4qVapoxIgRmcq9+uqruvbaa91tpaeeekpnzpzx+5rICxS0+mLOnDlq3ry5YmNjFRoaqvj4ePXq1Us7d+70+5py0jdC/pcfciK7/Y2c1F8SOQHpp59+Utu2bRUTE6Po6Gi1adNGGzZs8Hv/K9WG+vPPP9W5c2cVK1ZMERERatq0qVasWOFRJj09XfPmzVOHDh1Urlw5RUZGqlatWho3bpySkpL8vibyovAaP368XC6XatWq5fXnycnJmjBhgqpXr66wsDDFxsaqffv22rNnj1/x33zzTV177bUKCwtTlSpVNH36dL/2W7t2rQYMGKCaNWsqMjJS5cuXV9euXbV161bH/VJSUlSjRg25XC5NmTIl08/9ySsnJ06cUN++fVWqVClFRkaqZcuW+vnnn/3eH3lTduYucrN9vnv3bj333HNq2LChihUrppIlS6pFixZatmxZprLz5s2Ty+Xy+t+BAweyPMb27dsVFhYml8vl19ivxBhtYZMf+hfSpd2XvuqQrDAWBUn6+eef1aFDBxUvXlwRERGqVauWXnnlFb/2zWtjUVLuzUcif+nZs2eW7Q2Xy6W9e/dKytm9eqErMc/97LPPer2WsLAwx2N899137rJHjhzx63pyWqci79q2bZu6d++usmXLKiIiQtWrV9eYMWMyvReUkpKi5557TpUqVVJoaKgqVaqkcePGZet5eal97uz0gST/5+5y2jegz10wff3111nWFT/88INH2ezOP3uTk3bI+PHj1aFDB8XGxsrlcunZZ5/NsuyyZcvUsmVLlSxZUkWLFlXDhg31n//8J1O5kydPaujQoapSpYrCw8NVoUIF9enTR7t27fLrnKgvCq7szFPkhzHarNqG1atXdzyGr76JN9QXBU9BHJ9dvny5evfurapVqyoiIkKVKlXSww8/rP3792cqm9v1X55lYIwx5q+//jKSTPny5U2LFi2MJDN37lyvZUePHm2Cg4NNgwYNTNWqVU12f43r1683YWFhpl69embmzJlmxIgRJjQ01LRt29av/StUqGCKFy9u2rZta4KCgkyPHj2yLPvvf//buFwu06ZNG/Pqq6+amTNnmieeeMK88MILHuVOnDhh6tSpY0qUKGGGDx9u3nzzTTNx4kTTvn17c+zYMZ/n9M9//tNIMo888oiZPXu2ad++vZFk3nnnHb+uCXnT4sWLzW233WaeffZZM3v2bDNt2jTTrFkzI8nMmjXLo+wrr7xiJJn27dubmTNnmqlTp5o6deoYSWbRokU+j/XZZ58Zl8tlWrZsaWbPnm0GDhxoAgICzGOPPeZz36efftoULVrU9OnTx8yaNctMnjzZXHPNNSYwMNAsXbo0y/0WLVpkIiMjjSTz+OOPe/zs6NGjplGjRmbIkCFmxowZZubMmebBBx80LpfL3HvvvT7PyRjyorDp3r27CQoKMv/4xz/MrFmzTOPGjU1QUJBZuXKlz31Pnz5tqlSpYq666iozadIk89JLL5ly5cqZsmXLmiNHjjju++uvvxqXy2Vat25tJk+ebF5//XVz9913G0nmoYcecjxmmTJlTGRkpImMjPRapkePHiYoKMj07t3bzJkzx0ybNs306NHDfPnllz6vKSc5jYIjt/LCmPP3b1hYmGnSpIkpW7asqVChQpZl169fb4oUKWJq1KhhJk6caObMmWNGjRplevbs6VFu6NChRpLp3LmzmTlzphk4cKAJCgoybdq08Xk+xpAXOK+g1Rf9+vUzPXr0MFOmTDFvvvmmGTlypImNjTUlS5Y0e/fu9XlNOe0bIf/LDzmRnf5GTusvcgI//fSTCQsLM1WqVDFTpkwxkydPNhUrVjQxMTFmy5YtPve/Um2oXbt2mZIlS5rY2Fgzfvx4M23aNFOnTh0TFBRkvvnmG4/zkWRuvPFGM27cODN79mzTq1cvExAQYFq0aGHS09N9nhN5UXjt3r3bREREmMjISFOzZs1MP09OTjatW7c2ERERZvDgwebNN980U6ZMMV26dDG//fabz/ivv/66kWTuueceM3v2bPPggw8aSWbixIk+973nnntM6dKlzcCBA82cOXPM2LFjTWxsrImMjDS//vprlvu9+OKL7rGoi8dn/c2rrKSlpZkmTZqYyMhI8+yzz5pXX33V1KhRw0RHR5utW7f63B95V3bmLnKzfT59+nQTHh5u7r33XvPqq6+aadOmmfr16xtJ5t///rdH2blz5xpJZsyYMeY///mPx39nz57N8hh33nmnO4fWrl3r85yMYYy2sMkP/QtjLu2+dKpDssJYFIwxZsmSJSYkJMQ0atTIvPTSS2b27Nlm2LBhZsiQIT73zYtjUbk5H4n8ZfXq1ZnaGW+//baJiIgwNWrUcJe71Hv1Qldqnnv06NFGkpk5c6bHdS1YsCDL+GlpaaZu3bruOuTw4cN+XVNO6lTkXbt27TJFixY1FSpUMM8//7yZNWuW6dmzp5FkOnTo4FG2a9euxuVymT59+piZM2eaHj16uNsv/shJnzs7faDszN3lpG9An7vgWrFihZFkBg0alKneuPiZmZ35Z29y2g6RZEqXLm1uu+02I8mMHj3aa7mPPvrIuFwu06RJEzN9+nTz6quvmptvvtlIMi+99JK7XFpamrnhhhtMZGSkGTJkiJkzZ44ZNmyYiY6ONldffbU5deqUz3OiviiYsjNPkV/GaHv06GFCQ0Mz5fnHH3+cZXx/3qu6GPVFwVQQx2cbNGhg4uPjzdChQ82cOXPM8OHDTXR0tImNjTX79+/3KJvb9V9exeKL/5OUlOS+adauXeuYIAcOHDCJiYnGGGMef/zxbC++aNeunYmLizMnT550b5szZ46RZJYsWeJz/507d7onpyMjI7NcfPHXX3+Z8PBwM2jQIJ8x+/XrZ4oWLWp27Njh30VcYM+ePSY4ONjj5fX09HTTrFkzU7ZsWZOamprtmMi7UlNTTZ06dUy1atU8tlepUsXccMMNHi9OnDx50kRFRWXqqHtTo0YNU6dOHZOSkuLeNmLECONyuczmzZsd9123bp05ffq0x7YjR46YUqVKmZtuusnrPmfPnjUVK1Y0Y8aM8br4IisDBgwwkjJVMhcjLwqXNWvWZJr0Onv2rLnmmmtM48aNfe4/adIkI8n8+OOP7m2bN282gYGBZvjw4Y77Hj582GuHpVevXkaS2bZtm9f9hg0bZqpVq2buv/9+r52E9957z0gyH3zwgc/z9yYnOY2CITfzwhhj9u7da5KTk40xxrRv3z7Lxn9aWpqpVauWadSokbt9582+fftMUFCQefDBBz22T58+3Uhy7JRnIC9QEOsLb9atW2ckmeeff95n2Zz2jZC/5ZecyE5/I6f1FzmB22+/3RQrVszjRaZ9+/aZqKgo06lTJ5/7X6k2VP/+/U1QUJDHRMuZM2dMuXLlTP369d3bzp07Z1atWpVp/+eee85IcvzAhAzkReHVrVs306pVK9O8eXOviy8mTZpkgoODzZo1a7IdOzEx0ZQoUcK0b9/eY3tGm8fXh9GsWrXKnDt3zmPb1q1bTWhoqLn//vu97nPw4EFTpEgR91jUxS/O+ptXWcnox//vf/9zbzt06JApWrSo3x8kgrwpO3MX3lyp9vlvv/2W6cWUpKQkU716dVO2bFmP7RmLL/xdQGGMMV988YUJCQkxI0eO9HtfxmgLl/zSv7iU+9JXHZIVxqJw8uRJExsba+6++26TlpaW7f3z4lhUbs5HIv9buXKlkWTGjx/v3nap9+qFrtQ8d8biC38XUBhjzMyZM02JEiXM4MGD/d43p3Uq8q7x48cbSZnu+YceeshIcveFf/zxRyPJjBo1yqPc008/bVwul/nll18cj5PTPre/faDszN3ltG9An7vgylh8ceHfNiv+jp1mJaftkL/++ssYc77uclp8ceutt5oyZcqYpKQk97aUlBRzzTXXmNq1a7u3rVq1ykgyr776qsf+//73v/16V4T6ouDKzjxFfhmj7dGjh99z3RkuZZ6c+qJgKojjs998802mcYJvvvnGSDIjRozw2J7b9V9exeILL7KTINldfHHy5EkTFBSU6dNEzp07Z6KiokyfPn2yda5Oiy+GDRtmQkJCzIkTJ4wx51fjeftEwePHj5uwsDAzdOhQ97lc2ADzZcaMGUaS+f333z22L1iwwEhiNWsBdMcdd5jY2FiPbbGxsZkaQ8YYU7p0adOtWzfHeL///ruRZGbMmOGxfe/evUaSGTt27CWdZ6dOnUzx4sW9/uy5554z5cuXN4mJidlafDFlyhQjyeeDn7woXIYMGWICAwM9Gj7GGDNhwgQjyezatctx/xtuuMHccMMNmba3adPGXHPNNZd0Th9//HGWL4Rv3brVhISEmMWLF2fZwWjUqJFp2LChMeb8y+kJCQl+H9tWTiN/yUt54dT4//zzz40k89lnnxljzr/c5G2AddGiRUaSWbx4scf2jMGt++67z/EcyAsYk7fyIkNO6wtvjhw5YiSZYcOGOZa73H0j5D/5LScu5q2/kZNzIidgjDHR0dGmS5cumba3b9/ehISEZHoh42JXqg113XXXeT1OxjiZr09w2rhxo5FkXnnlFcdy5EXh9c0335jAwECzceNGr4sv0tLSTJkyZUzXrl2NMecnkM+cOeN3/MWLF3tt369evdpIMv/5z38u6bzr16+f5UKJXr16mYYNG5odO3Z4fXE2p3nVpUsXExsbm2nCpG/fviYiIiJb473Iuy5lci+32+dPPfWUkeTxiZkXLr44deqUzxedkpOTTbVq1cyQIUOytXCDMdrCJb/0Ly7lvvRVh3jDWBSMOf/StSSzadMmY4wxCQkJ2VqEkRfHovLifCTyj379+hmXy+V+edWJv2NEV3KeO2PxxaFDh8zJkyd9fpvk0aNHTYkSJcyMGTOytXAjp3Uq8q5hw4Z5vQ+GDRtmAgIC3PPBL774otf2SkZ/5JlnnnE8zuXsczv1gbIzd5fTvgF97oLrwsUXp06d8ngx1El2Xz69nPWFr8UXjRo18vpBJo0aNTKNGjVy/ztjnvzihScZ2z///HPH86C+KLj8nafIT2O0Gf2L1NTUTPesN5c6T059UfAVlPHZrBQvXtzxw+Bys/7LawKEK+rXX39Vamqqrr/+eo/tISEhqlu3rtavX3/ZjrVs2TJVr15dn332mcqWLavo6GiVKFFCo0aNUnp6urvcd999p6SkJFWuXFmdO3dWRESEwsPDddNNN2nDhg0+j7N+/XpFRkbq2muv9djesGFD98+Rv505c0ZHjhzR9u3bNXXqVH3++ee65ZZbPMq0aNFCX3zxhaZPn66dO3dqy5Ytevzxx3Xy5EkNHjzYMX7GPXJxXpQpU0Zly5a95HvowIEDKlmyZKbtu3bt0sSJEzVp0iSFh4c7xkhOTtaRI0e0e/duffjhh5oyZYoqVKigypUrO+5HXhQu69evV9WqVRUTE+OxPePv7fQsTU9P18aNGzPd/xn7b9++XadPn872OR04cECSvObAE088oZYtW+r222/3uu+pU6f0448/6oYbbtAzzzyjIkWKKCoqSpUqVdL777/v89i2chr5S17MC2+WLVsmSQoNDdX111+vyMhIRUREqHv37jp27Ji73Llz5yQpU70REREhSfrpp58cj0NeQMqbeZGT+uJCR48e1aFDh7Ru3Tr16tVLkjK1Fy92JftGyJvyW054K3thuZyeEzkB6Xybw1s/NSIiQsnJyfrtt9+y3PdKtqGczlPy3TbyN9fIi8IpLS1NAwcO1MMPP6zrrrvOa5lNmzZp3759ql27tvr27avIhvn7NQABAABJREFUyEhFRkaqdu3aWrFihc9jZNU+b9CggQICAi7p3jLG6ODBg17v6x9//FFvvfWWpk2bJpfL5XX/nObV+vXrVb9+fQUEeA75N2zYUImJidq6dau/l4ICIC+1zw8cOKCIiAj3vXyhli1bKiYmRhEREerQoYO2bdvmNca0adN0/PhxjRw5MlvHZoy2cMkv/Yvs3pf+1CHeMBYF6fzYZ0xMjPbu3atq1aopKipKMTEx6tevn5KSkhz3zatjUXlxPhL5Q0pKit5//301adJEFStW9Fne337rlZ7nlqRKlSqpSJEiio6O1gMPPKCDBw96LTdq1CiVLl1ajz76aLaOnZM6FXlbixYtJEl9+vTRhg0btHv3br333nuaOXOmBg0apMjISEn25sRy0uf2JjvnmdO+AX3ugq9Xr16KiYlRWFiYWrZsqXXr1l3W+FeyHdKiRQv9/vvvGjVqlP78809t375dY8eO1bp16zR06FB3uYy58VGjRumrr77S3r179c0332jo0KG64YYb1Lp1a5/XRH1RMPk7T5HfxmgTExMVExOjIkWKqHjx4nr88ceVkJDgNU525skvRH2BDPllfPZCCQkJSkhI8Gue3F8FuR/O4osrbP/+/ZKkuLi4TD+Li4vTvn37Ltuxtm3bpt27d6tXr17q3bu3Fi5cqHbt2mncuHEaMWKERzlJGj58uHbv3q23335bM2bM0Pbt29WqVSv3OTtdU2xsbKZB34xrvJzXhNzx9NNPq1SpUqpcubL+8Y9/6O6779arr77qUeaVV15RixYtNGjQIMXHx+vaa6/V+++/r+XLl6tx48aO8W3kxcqVK/X999+rW7duXq+nXr166t69u884H3zwgUqVKqXy5curU6dOKlu2rD755BMFBQU57kdeFC779+/P8v6VnP/ex44d07lz5y55f2+Sk5M1bdo0xcfH64YbbvD42eLFi/Xll1/qpZdeynL/7du3yxijd999V//+9781efJkzZ8/X6VKlVL37t31xRdfOB7/StZ1yLvyWl5kJaMd1LVrV1WvXl0LFy7UsGHDtGjRIt15550yxkiSqlWrJklatWqVx/4rV66UJO3du9fxOOQFpLyXFzmtLy509dVXKzY2VjfccINWr16tV155RbfeeqvjPuQF8lNOXMxbfyOn50ROQDrf5vjhhx+Ulpbm3pacnKw1a9ZIcm5zXMk2VLVq1bRx48ZML1t99913Ps9TkiZPnqyYmBi1a9fOsRx5UTi9/vrr+vvvvzV27Ngsy2S046dOnaqvv/5as2bN0ty5c5WUlKS2bdtq48aNjsfYv3+/AgMDddVVV3lsDwkJUYkSJS7p3po/f7727t2baSzKGKOBAweqW7dujmNkOc2rnNSrKHjySvv8zz//1AcffKB77rlHgYGB7u0RERHq2bOnZsyYoQ8//FBDhw7V8uXL1aRJE+3evdsjxoEDBzR27FiNHTs20wsdvjBGW7jkl/5Fdu5Lf+sQb2hHQTrfZkpNTVXHjh112223adGiRerdu7def/1198sfWcmrY1F5bT4S+ceSJUt09OhR3X///T7LZmeM6ErOcxcrVkwDBgzQrFmztHDhQj388MN677331KxZM506dcqj7MaNGzVr1iy99NJLHu0wf9C3KLjatm2rsWPHaunSpapXr57Kly+v7t27a+DAgZo6daq73OWYE7vcfW5vsnOeOe0bkBcFV0hIiO655x69/PLL+uijjzRu3Dj9+uuvatas2WV9IfRKtkNGjRqlrl27avz48apSpYoqV66siRMnatGiRerUqZO7XMmSJfXee+/p5MmTuuWWW1S2bFm1aNFCZcqU0VdffeXXe1HkRcHk7zxFfhqjjYuL09ChQzV37ly988476tChg1577TW1bdtWqampHmWzO09+8TWRF5Dy/visN9OmTVNycrLX920vVUHuhzvXkrjszp49K+n8pytfLCwszP3zyyEhIUHp6emaOHGihg0bJkm65557dOzYMb388st65plnFB0d7V7B53K5tHz5ckVFRUmS6tWrp8aNG2vGjBkaN26c4zVldT0ZP0f+9sQTT6hz587at2+f3n//faWlpSk5OdmjTEREhKpVq6ayZcvqjjvu0OnTpzV16lR16tRJK1eudPymCF95cfFgkS+HDh3Sfffdp/j4eI9V25K0YsUKLVq0yN0g9KVly5ZaunSpTpw4oeXLl+uXX37RmTNnfO5HXhQuOfl7+7r/fe3vzYABA7Rp0yYtXrzYo0OcnJysJ598Uo899phq1KiR5f4Z9cLRo0f1ww8/qFGjRpKkDh06KD4+XuPGjVPbtm0v+Zqym9PIn/JaXmQl436/4YYb9N///lfS+fZSRESEhg8fruXLl6t169aqX7++GjVqpEmTJunqq69Wy5YttXnzZvXr10/BwcE+z4e8gJT38iKn9cWFPv/8cyUlJWnz5s3673//63d7SboyfSPkTfklJy6WVX8jp+dETkCS+vfvr379+qlPnz4aOnSo0tPTNW7cOPfgZF5pQ/Xr10+ffPKJunXrpvHjxysyMlKvvfaa+xPhnI4zYcIELVu2TK+99pqKFi3qeBzyovA5evSo/vWvf2nUqFEqVapUluUy2vGnT5/W+vXrVa5cOUlSq1atVLlyZU2ePNndvvfm7NmzCgkJ8fqzS7m3Mj5xuXHjxurRo4fHz+bNm6dff/1VCxcudIyRk7zK+DljUciQF9rniYmJ6tKli8LDwzVx4kSPn3Xt2lVdu3Z1//uuu+7Sbbfdpptvvlnjx4/X66+/7v7ZsGHDVKlSJT388MPZOr5EXhQ2+aV/kZ3z9LcO8YaxKEjn20yJiYl67LHH9Morr0iSOnXqpOTkZM2aNUtjxoxRlSpVvO6bV8ei8tJ8JPKXBQsWKDg42KMNkhV/x4ikKzvPffG3u9xzzz1q2LCh7r//fr322mv65z//6f7ZoEGD1K5dO7Vp0yZbx5doQxV0FStW1M0336x77rlHJUqU0OLFizVhwgSVLl1aAwYMkCTdfvvtqlChgv7xj38oIiJCDRo00Jo1azRixAgFBQX51T+9nH3urGRn7i6n9zV5UXA1adJETZo0cf+7Q4cO6ty5s2rXrq3hw4f7/GBKf13JdkhoaKiqVq2qzp07q1OnTkpLS9Ps2bP1wAMPaOnSpbrxxhvdZUuVKqV69eppwIABqlmzpjZs2KDJkyerV69e+t///ufzmsiLgsnfeYr8NEb7/PPPe/y7e/fuqlq1qkaMGKGFCxe6P8D5UubJL0ReIENeH5+92LfffqvnnntOXbt2VatWrbJ1HCcFuR/O4osrLOMrmTK+/u5CSUlJXr+yKSfHOnPmjO69916P7ffee6+++OILrV+/XjfffLP7mHfeead74YUk3XjjjYqPj9fq1at9Hier68n4OfK36tWrq3r16pKkhx56SG3atNGdd96pNWvWuD8ZoEuXLgoKCtInn3zi3q9jx46qUqWKRowYoffeey/L+JczL86cOeMebP3uu+887unU1FQNGjRIDz74oM9PKckQGxur2NhYSVLnzp01YcIE3Xrrrdq2bZtKly7teE3kReGRk7+3r/vf1/4Xe+GFFzRnzhyNHTs209ffTZ06VUeOHNFzzz3nGCPjePHx8e6FF5IUFRWlO++8U//973+Vmpqa5YDzlazrkHflpbxwkhHn4vbSfffdp+HDh2v16tXur1RdtGiRunXrpt69e0uSAgMD9dRTT+mbb77RH3/84ddxyIvCLS/lxeWoLy7UsmVLSVK7du3UsWNH1apVS1FRUe7JGm/IC+SXnLiQU38jp+dETkCSHnvsMe3evVsvvPCC3nrrLUnnv4p36NChGj9+vMc9d7Er2YZq166dpk+frn/+85+qX7++JKly5coaP368hg4dmuV5vvfeexo5cqT69Omjfv36+TwOeVH4jBw5UsWLF9fAgQMdy2X87W+66Sb3pJ4klS9fXk2bNvVrPPPiDxbJkN1768CBA2rfvr2KFCmihQsXenx61KlTpzR8+HANGTLE4zy9udS8uvCaGItChtxun6elpal79+7atGmTPv/8c5UpU8bnPk2bNlWjRo20bNky97YffvhB//nPf7R8+XIFBGT/i9zJi8Ilv/Qv/D3P7NQh3tCOguQ89jlr1ix9//33WS6+yKtjUXllPhL5S0JCgj766CPddtttKlGihGNZf8eIMlypee6s3HfffXr66ae1bNky9+KL9957T6tXr9Zvv/3m97EvRBuq4Hr33XfVt29fbd26VWXLlpV0flFeenq6hg0bpnvvvVclSpRQWFiYFi9erK5du+qee+6RdP6FucmTJ/scn5Iub5/bF3/n7nJ6X5MXhUvlypXVsWNHffDBB0pLS8v2Nwh5cyXbIQMGDNAPP/ygn3/+2d2X7tq1q2rWrKnBgwe7P6x2x44datmypd5++213rnfs2FEVK1ZUz5499fnnnzt+czF5UXD5O0+RX8Zos/Lkk09q1KhRWrZsmXvxxaXMk1+IvECG/DQ+u2XLFt19992qVauW3njjDb+P4Y+C3A/P/mg1ciTj61MyVgJeaP/+/X5NQvgrI1bGi+MZMr6q6fjx447lMspmlMtKXFycDhw4IGOMx/aMa7yc14S8oXPnzlq7dq22bt0q6XyD/IsvvlCHDh08yhUvXlxNmzbN9DWPF7tceZGcnKxOnTpp48aN+uijj1SrVi2Pn7/99tv6448/9Oijj2rnzp3u/6Tzq3B37typxMREx2N07tzZPUDn65rIi8IjLi4uy/tXcv57Fy9eXKGhoZe8/4XmzZunYcOG6bHHHtPIkSM9fnby5EmNGzdOjzzyiE6dOuW+/xMSEmSM0c6dO3Xo0CGP42VVL6SkpDiuyL2SdR3yrrySF774216Szn8t4HfffaetW7fq22+/1Z49ezR58mTt3r1bVatWdTwOeQEp7+TF5aovsnLNNdeoXr16mj9/vmM58gL5IScu5Ku/kdNzIieQYfz48Tp48KBWrlypjRs3au3atUpPT5ckxzbHlWxDSecn8Q4ePKjVq1dr3bp12rJli4oUKZLleS5dulQPPfSQ2rdv7/GJ5k7Ii8Jl27Ztmj17tgYNGqR9+/a52yFJSUlKSUnRzp07dezYMUmXZzwzLS0tU7smOTlZR48e9fveOnnypNq1a6cTJ07oiy++yLTflClT3F/TnXE9e/bskXS+r7Fz506PCcbs5tXF13Sl8h/5S260zx955BF9+umnmjdvXrY+Ka1cuXLuPJekoUOHqlmzZoqPj3fn0JEjR9zntGvXLsd4jNEWLvmlf+HvfZndOsTbcS6Me/GxuP8Lh+yMfV4sL45F5ZX5SOQ//9//9/8pMTFR999/v2M5f8eILnSl5rmdXNyGGjJkiLp06aKQkBB3Tp04cUKStHv3bu3bt88xHn2Lguu1115TvXr13AsvMnTo0EGJiYlav369e1vNmjX122+/6bffftPKlSu1b98+PfLIIzpy5Ihf/dPL0ef2h79zdzntG5AXhU+5cuWUnJzs1yeV++NKtUOSk5P15ptvqn379h4fYhAcHKx27dpp3bp17n7EvHnzlJSUpDvuuMMjRkZby5+2FXlRcPkzT5FfxmizEh4erhIlSrjbUZdjnpy8gDd5eXx29+7datOmjYoUKaLPPvtM0dHRfh/DHwW5H87iiyusVq1aCgoKcn9dfIbk5GRt2LBBdevWvWzHatCggSRp7969HtszOtOlSpVyLJdRNqNcVurWravExERt3rzZY3vGStnLeU3IGzK+DujkyZOSpIMHD0o6v2LuYikpKUpNTXWMl3GPXJwX+/bt0549e/y6h9LT0/XQQw9p+fLlWrBggZo3b56pzK5du5SSkqKbbrpJ8fHx7v+k8wsz4uPj9eWXXzoe5+Jrd7om8qLwqFu3rrZu3Zrpq7D8+XsHBATouuuuy3T/Z+xfqVIlvxo2H330kR5++GF16tRJM2bMyPTz48ePKyEhQZMnT/a4/xctWqTExETFx8erb9++ks439kuXLp1lvRAWFuZ4Tpcjp5H/5YW88Ie/7aULValSRc2aNVPp0qW1adMm7d+/3/3tGFkhLyDljby4nPWFk7Nnz/psL13JvhHypvyQExn86W/k9JzICVyoWLFiatq0qa677jpJ0rJly1S2bFn3t1J6cyXbUBkiIyPVuHFjNWjQQIGBgVq2bJnCw8N10003ZTr+3Xffreuvv17vv/9+lt+idzHyonDZu3ev0tPTNWjQII92yJo1a7R161bFx8drzJgxkqTrrrtOwcHBORrPlDK3z9etW6f09HS/7q2kpCTdeeed2rp1qz799FOvX0O/a9cuHT9+XDVr1nRfT7NmzSRJEyZMUHx8vDZt2uSxj7955e2afv75Z/ckaIY1a9YoIiLC58sxKNiuZPt8yJAhmjt3rqZOnZrpk9Z92bFjh0f+7tq1S99++63HM2HIkCGSzr8MUrt2bcd4jNEWLvmlf+HvfXkpdcjFx5EYiyrsLmXsM0NeHIvKC/ORyJ/mz5+vqKioTAt3LuTvGNHFrtQ8d1YyXgS8MJ93796tBQsWeOTUyy+/LEmqX7++z2/0yEmdirzt4MGDWT5DJWV6jrpcLtWsWVNNmzZV8eLFtWLFCqWnp1/ynFh2+tzZ5WvuLqd9A/rchc+OHTsUFhbm17cQ+eNKtUOOHj2q1NTULHM9PT3d/bODBw/KGJOpbFbPhItRXxR8vuYp8ssYbVZOnz6tI0eOuM/zcsyTU18gK3lxfPbo0aNq06aNzp07pyVLlrgXSlxOBbofbpDJ2rVrjSQzd+5cn2Uff/xx4/Rr3Lx5s/n77789trVt29bExcWZU6dOube98cYbRpL5/PPPs3WukZGRpkePHl5/9uGHHxpJ5plnnnFvS0tLM02bNjXFixc3SUlJ7u116tQxMTEx5vDhw+5tS5YsMZLM5MmT3dtOnDhhNm/ebE6cOOHetnv3bhMcHGwef/xx97b09HTTrFkzc/XVV5vU1NRsXRPyjoMHD2balpycbOrXr2/Cw8PN6dOnjTHGHDp0yAQEBJgWLVqY9PR0d9ndu3ebqKgo07ZtW4/9N2/ebPbt2+cRt3r16qZOnToe98vIkSONy+UymzZt8nmu/fv3N5LMrFmzsiyzefNm8+GHH2b6T5K5/fbbzYcffug+r8OHD3tcS4YBAwYYSWb58uXubeQFfvjhByPJvPDCC+5tSUlJpnLlyqZRo0YeZf/++2+zefNmj20TJ040kszatWvd27Zs2WICAwPNsGHDfB7/m2++MWFhYaZly5Yez/YLnTlzxuv937JlSxMWFmY+/PBD88MPP7jLDx482EgyX375pXvb4cOHTUxMjLn99tvd22zlNPK/3M6LC7Vv395UqFDB68/2799vQkNDTdOmTU1aWpp7+/Dhw40k8+OPP2YZNy0tzbRv395ERER4tPfIC2Qlt/PictcXKSkp5tixY5lirFmzxgQGBpoHH3zQY7vtvhHyn/yQExn86W9k95zICfjr3XffNZLMlClTPLbnZhvKm1WrVpnAwEAzYMAAj+2bNm0yJUqUMDVr1vRab1yIvCjcDh8+7LUdUrNmTVO+fHnz4Ycfmo0bN7rLd+zY0QQGBnrkwaZNm0xgYKDp37+/e9uZM2fM5s2bPcY9ExMTTfHixc0dd9zhcQ4PPPCAiYiIMEePHnU819TUVNOhQwcTFBRkFi9enGW5n376KdP1zJo1y0gyPXv2NB9++KHHeNLFssqrffv2mc2bN5vk5GT3toxnxf/+9z/3tsOHD5uiRYuabt26OV4P8g+nuYu80D6fPHlypjkJbw4dOpRp2+LFi40kM2jQIPe2JUuWZMqhgQMHuuvFTz/91F2WMVrkl/6Fv/dlduoQxqKQlZ9//tlIMvfdd5/H9nvvvdcEBQWZvXv3urflh7GovDAfifzn0KFDJigoKFNb6EL+PsNzc54741ouNmPGDCPJvPTSS+5t3nKqW7duRpJ5++23zVdffeUue/jwYbN582Zz5swZ97bs1KnIX+644w4TEhJi/vjjD4/td911lwkICPCoFy6WmJho6tevn6m/YKPPfaHsvL9lTNZzd9npG9DnLly8PVs3bNhggoODTYcOHbLcz2ns1HY75PDhw0aSGT16dKafpaammqJFi5qqVauac+fOubefPn3alC1b1lSvXt29bcqUKV7za9q0aUaSeffddz2OSX1RuGU1T5EfxmjPnj3rUXdlGDJkiJFkPvjgA/c5Zue9KuqLwqmgjM8mJCSYhg0bmujoaLNu3TqfcTPkZv2X17D44gLTp083Y8eONf369TOSTKdOnczYsWPN2LFjPQbsd+7c6d7eqFEjI8n977ffftsjpiTTvHlzj20//fSTCQ0NNfXq1TMzZ840I0aMMGFhYaZNmzZ+nefHH3/sPl5ISIipV6+e+9+//PKLu1x6erq55ZZbjMvlMn379jUzZswwt956q9eO+1dffWUCAwNNtWrVzEsvvWRGjx5toqOjTdWqVd0v2BtjzNy5c70+PDIqo759+5o5c+aY9u3bG0lm/vz5fl0T8qa77rrLtGrVyjz77LNmzpw5ZuzYsaZ69epGknnxxRc9yj788MNGkmnZsqWZPn26mTBhgilbtqwJDAw033zzjbvcX3/9ZSRlWjT0ySefGJfLZVq1amVmz55tBg0aZAICAswjjzzi8zynTp1qJJnGjRub//znP5n+S0hIcNxfkkcnOyNmtWrVzLBhw8ysWbPMlClT3Plz5513epQlL2CMMV26dDFBQUFmyJAhZtasWaZJkyYmKCjI4/43xpjmzZtnWrR36tQpc80115irrrrKTJ482UydOtWUK1fOlClTxmtn/0I7d+40RYoUMeHh4WbGjBmZ7v8L6wVvevToYSIjIzNtP3DggImLizPR0dFm9OjR5qWXXjJVq1Y14eHhZsOGDe5yNnIaBUdu5YUxxvzyyy/u9lG1atVM0aJF3f/++OOPPcqOGTPGSDK33nqrmTFjhunbt69xuVzm3nvv9Sg3aNAg07dvX/Paa6+Zl19+2TRq1Mi4XK5M7T/yAk4KUn1x/PhxExkZaXr37m1efPFF8/rrr5vHH3/cREREmOLFi5utW7d6lLfRN0L+lx9yIjv9jeycEzkBb7755htzyy23mEmTJpk33njDPPzwwyYwMNC0bdvWpKSkeJTNzTbUzp07TcOGDc24cePMG2+8YZ588kkTHh5u6tWr5zEgfOrUKVOuXDkTEBBgJk6cmCl/Vq9e7XF88gLeNG/e3NSsWTPT9t9//91ERUWZuLg48/zzz5vnn3/exMXFmVKlSpk9e/a4y61YscLrhHTGS0qdO3c2c+bMMQ899JCRZMaPH+/znDI+sODOO+/0Wjc4yegvXDgxbYz/eWXM+baZJPPXX3+5t6Wmppobb7zRREVFmeeee87MmDHD1KxZ00RHR5stW7b4vCbkbf7MXeR2+/yDDz4wkkyVKlW85sWBAwfcZStXrmy6dOliJk2aZF5//XXTt29fExQUZMqVK+dRzpuMsdgLXwS+cDtjtIVbfuhfGHPp92VWdQhjUXDSu3dvI8l07drVzJgxw3Tp0sVIMsOHD/col9t5cbGs5i5ycz4S+dP06dONJPPFF194/Xl27tXcnucODw83PXv2NC+++KKZMWOGuffee43L5TJ169b1eBnWm9GjRxtJHi88Xrh9xYoVHtv9rVORv3zzzTcmMDDQXHXVVWbMmDFmxowZpl27dkaSefjhhz3KdunSxQwePNjMmjXLvPDCC+baa681oaGhZtmyZR7lbPS5jfH//S1/5+6M8b8NRp+7cGnZsqW5/fbbzbhx48zs2bPNE088YSIiIkyRIkUyvRDq79iprXbI22+/bcaOHev+EMGWLVu6j79z5053uXHjxhlJpl69embq1KlmypQp5tprrzWSzH//+193uSNHjpjSpUubkJAQM2jQIDNr1izz6KOPmsDAQFOzZk2PxRvUF4VLduYp8sMY7V9//WWKFi1q+vXrZ15++WXz8ssvm9tvv91IMm3btvX4kE5vsuqbUF8ULgVtfLZjx45Gkundu3emch9++KFH3Nyu//IqFl9coEKFCkaS1/8ufEhmVAbe/rs4GbxtM8aYlStXmiZNmpiwsDBTqlQp8/jjj3tdYedNxoPb238XTyycPn3aDB482N1Yuu666zwaUhdaunSpufHGG01YWJgpXry4efDBB83+/fs9ymQ1gZGWlmYmTJhgKlSoYEJCQkzNmjWzPA7yj3feece0bt3axMbGmqCgIFOsWDHTunVr89FHH2Uqm5KSYqZPn27q1q1roqKiTFRUlGnZsqXHJ2cYk/VD1pjzn8JRt25dExoaasqWLWtGjhzpsTo0K045cXH+euNt8cXatWtNly5dTPny5U1oaKiJjIw09evXNy+99FKmhiR5AWPOr5T+xz/+YUqXLm1CQ0PNDTfc4HUg19sEhjHnP22jc+fOJiYmxkRFRZk77rjDbNu2zedxneqkrD7t4EJZdRKMMWb79u3m7rvvNjExMSY8PNy0atUq07cA2MhpFBy5lRfG/L9ns7f/Lr5f09PTzfTp003VqlVNcHCwKVeunNf7de7cuaZOnTomMjLSREdHm1tuuSVTPWcMeQFnBam+OHfunBk8eLCpXbu2iYmJMcHBwaZChQqmT58+XttfNvpGyP/yQ05kt7/h7zmRE/Dmzz//NG3atDElS5Y0oaGhpnr16ub555/3mOjKkJttqGPHjpmOHTu6x5vi4+PNsGHDMt2rGe0if9tl5AW8yWrxhTHnJyJat27tbqN37Ngx0wRGVhN7xhgze/ZsU61aNRMSEmKuueYaM3XqVK/fhOrtnJzubSdZvTjrb14Z431iLyNGnz59TIkSJUxERIRp3rx5phfUkT/5M3eR2+3zjBcxsvrvwhc0RowYYerWrWuKFCligoODTfny5U2/fv18LrwwJvuLLxijLVzyQ//CmEu/L7O7+MIYxqJw/pMnn332WVOhQgUTHBxsKleubKZOnZqpXG7nxcWymrvIzflI5E833nijueqqq7L8xqvs3Ku5Pc/98MMPmxo1apjo6Gh3PmfVZ7hYdhdf+FunIv9Zs2aNadeunSldurQJDg42VatWNePHj8/0DsSkSZNM9erVTVhYmClWrJjp0KGDWb9+faZ4Nvrcxvj//pa/c3fG+N8Go89duLz88sumYcOGpnjx4iYoKMjExcWZBx54wGt7x9+xU1vtEKfxqIuf4/PnzzcNGzY0RYsWNeHh4aZRo0Zm4cKFmWLu2bPH9O7d28THx5uQkBATFxdnHnnkEeqLQi478xTG5P0x2uPHj5sHHnjAVK5c2URERJjQ0FBTs2ZNM2HCBL/ba/4uvjCG+qKgKmjjs07Xc/E3W+R2/ZdXuYwxRgAAAAAAAAAAAAAAAAAAAAAAAPAqILdPAAAAAAAAAAAAAAAAAAAAAAAAIC9j8QUAAAAAAAAAAAAAAAAAAAAAAIADFl8AAAAAAAAAAAAAAAAAAAAAAAA4YPEFAAAAAAAAAAAAAAAAAAAAAACAAxZfAAAAAAAAAAAAAAAAAAAAAAAAOGDxBQAAAAAAAAAAAAAAAAAAAAAAgAMWXwAAAAAAAAAAAAAAAAAAAAAAADgIyq0D91nbM7cOnSPpxmUtdmzoKWuxT6RGWIt9Ls3ebRQamGot9usN/mMt9qWo9tzU3D6FS2MvJZQck24tdugxe2vPTK49WXPmj389mdunkEn8yy9ai22CjLXYQaft3V/pwdZCSwH2fidKt/ewSA+xd947Bz5tLfalemTdQ9Zin04JsxY7PDDFWmyb0m1WdBaFBNhrQ825/m1rsS9VxVen2Atu8RZwpVp8NkbbuwcCEuw1dkxg/qyL8mJ9Eb9ggrXYJjWffo7DGYsN9SiL9ZzFcYiAYHt9rh33PmMt9qWo88mo3D6FSxIabO95nphsr3ORlmbvORESlGYttstlrx7acMc4a7EvVc2h9saiAiw+Fi0Oc8riLWD1d2KVxd/Jb1Py3lhU5YkvWYttAq2FVkCyvdhBZ+21RZJj7N1gVnvz9ppQ+vOfT9kLfokqvz82t0/hkoSH2XvwnjoaaS12cKTFhLbJYr/lz24jrcW+VJVetFdfuCw+Y2zW60FJ9u6B1DCLJ26xwrA5zrXjqbw1FnV9L3s5EZBm7/eYHmhxzCU1f963Nn8nNq2bm/faUHUft5cXQYnWQiu5iL17oPimc9Zin4kLsRY7LdRaaKWF2ft9//JK3utzV3hror3gFueAgsLtjdGmpVh8d+mczYEIi/15i/MWOx8cbi32pWrZ2l5euEw+bUdZbP8Zl83ztnfvpgXbe1Z8/eU/rcW+VBVmv5Dbp5DnBJ2y90xPLWlzQsdm58Ve7L/7DvFZJp++MQEAAAAAAAAAAAAAAAAAAAAAAHBlsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHLD4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMABiy8AAAAAAAAAAAAAAAAAAAAAAAAcsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHLD4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMABiy8AAAAAAAAAAAAAAAAAAAAAAAAcsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHLD4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMABiy8AAAAAAAAAAAAAAAAAAAAAAAAcsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHATl9gng//nf5vrWYj983SprsX9PiLMWOyU1xFrsPMdlMXSqvdipEcZa7HLL06zFPnhDPl17Zu/XnScFpNhLjHRrkaW0cknWYrss3rrpR0LtBXfZ+40HJuXTfL5EqemB1mKHBtqrMIqHnLEW++/E4tZiJ6UFW4tdMfKotdinU8Osxc6T7KWFXDbrokh7bZ3IP+21oxPL2Dtvq22dwELWkLIoINhevR4Wnmwtdo3KB6zF/nV/GWuxz521VxelpxSedlRqur1rjQy1d98eOR5tLXZAoL3neY24g9Zibz1cylrswECbPcW8JyDFXux0i0N6Ns877Ji99kK6xZH45Bh7bdYAi02/vMjY7FtYbI4ml7L3h4qNP2wt9r7fYq3FDjhrsS9XyGbW0tMsjkWF2WtHndpnrx3Vqv4ma7HXHihnLXZKir2bNy3V4iRXHmSzfkwLtVdhBJyz93cyNU5bi52+N9JabJvzUK70wpMXNts5NhmLwyJnS9kLHrXX3kMoPcJm3yKf3iiXyGbfNamkvb9TyV/OWYt9+PGz1mKf3WFvDDX6L3v57CpkeSGLdWNgmL1nY+C2CGux0yrae7fk2ip7rcXevMPenIgpRPMWkuQy9p4DaaH2+vPBp+1VdCnR9p7pQQkWzzvG3nkHn7H48mdelE+rR5fFsZGiNey9X3RqfQlrsVOK2Jt3MyG5e6MUrtoKAAAAAAAAAAAAAAAAAAAAAAAgm1h8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOAgKLcOnG5c1mLHhZ20FnvN0YrWYo+o/5m12D+ermQtdmzoaWuxT6REWItdmKSHGGuxQ0/Yy+XAJw9aix353tXWYh+/1t7vO+Rk4VozZwLt/S7To9KsxS7/XrC12IHJ6dZi72llL59dqfZip0bau0/yoqAAe/fu8WR79W6AIq3FLhNur+1XLCjRWuxtZ66yFjs0INVa7DzJ4jPGZl0UdMxed+ymTuutxV62tbq12DoUai20CS5c9UX6uUBrsaOK23s2Jv9exFrsM0+eshb73FB7dWjoVfZ+3+fO2mu35jXFIs5ai73vSFFrsdtW3WQt9pFke+2zNb9Uthb76kpHrMU+cy7EWuy8KC3MXuzAc/Ziu+x1i/X5c1OsxW42Z4i12BEH7LVzkkrYa2vnRQEp9mKnRtn7OxXdaK9vEf7YX9Zip71WylpspdtrD9t8DuVFMdH22qMndhe1FrtrkzXWYq+ceKO12El17T13i1x31FrsU2csNizyIIuPGAUlWhxLj7BXF1Xq+qu12Ftfa2gtdkCKxfqiEA3RWnz1Q4EW22fG4rRr6WmrrcU+/Fhja7HDjtt7TqREFK6+RVqYveu96ucka7G332fvuVj1bnvjXAqwd97Hetqrh4LPFK55i4ii9sZo03+xN7fwXu+XrMXu/4/B1mLvL13RWuxibez1LY4fiLEWOy9KDbf3/Ao7aLE/Xz3aWuzE0vYaaVf9bO99m+BT9hquaWEWO6GFTbC9gT1j8bsQwucUtRb71mdXWYv9vyU3WYudGpa7ne7C9RYvAAAAAAAAAAAAAAAAAAAAAABANrH4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMABiy8AAAAAAAAAAAAAAAAAAAAAAAAcsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHLD4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMABiy8AAAAAAAAAAAAAAAAAAAAAAAAcsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHLD4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMABiy8AAAAAAAAAAAAAAAAAAAAAAAAcsPgCAAAAAAAAAAAAAAAAAAAAAADAAYsvAAAAAAAAAAAAAAAAAAAAAAAAHLD4AgAAAAAAAAAAAAAAAAAAAAAAwAGLLwAAAAAAAAAAAAAAAAAAAAAAAByw+AIAAAAAAAAAAAAAAAAAAAAAAMBBUG4dODLonLXYG09ebS12cECatdjvVC9jLfaSfT9Yi13pyz7WYj/d8EtrsfOac8Xt3Vvll6Rbi13r2Y3WYr969RprsW9fcbe12GfaRFmLHfpXtLXYeVF6sLEWO3pzsLXY38x+zVrs28rUtRb7moPXWou95VF7964rpXCtJb02cr+12K/8eJu12Ds6zbIW22ZenLr3Zmuxp46fYS32qL/ushY7TyqSYi10zE+h1mKvGDrFWuzu5ZpYi/3E719Ziz37rfbWYidUT7YWO09KdVkLXSIy0VrsgG8jrMVO/Xu3tdglKoRbi31kT1FrsQNjCk9e7N5dwlrsV1v811rs6dfWthbbpByzFvuvfbOtxa7zQn9rsePv2m4tdl4Ufshen/tcxxPWYpe+a7O12CX/GWktdtP2v1iLvX2Uvf786Xh74yd5UWqkvbwIPmWvfZbS+qS12EtGbrAW+/YW11iLfe41e/3EA8vLWoudFwUF2ptfCN8TaC32pNgN1mLf9p610Iq2GLv8Gnv13LI9Na3FzossThcr4Jy9+qL1rRusxZ61z17s2+tdZS329ldKW4vt+sNezuU16RbfOglItdc+s3neSyzmRL211a3FjpocZi320Zr2xs/yorBj9tpQe1ram7cYd/P71mJv/cXeM/e5UhusxW5X2d7ve/uoOtZi50VJiSHWYqdXsDfWff+rT1mLrXh7oZcPesFa7CbvPW0tdnBZe3NQeZK95r8CEu3lxbmi9t7T2fh0/nzn6njPxtZiF/nzrLXYeVHQSXvjRXH1DluLnTo31lrs8I/svf+99mh9a7Fjhh21Fvv4X8WsxfZH4XpbEQAAAAAAAAAAAAAAAAAAAAAAIJtYfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADgINuLLzZv3qy5c+dqy5YtkqQtW7aoX79+6t27t7766qvLfoIAAAAAAAAAAAAAAAAAAAAAAAC5KSg7hb/44gt17NhRUVFRSkxM1IcffqiHHnpIderUUXp6utq0aaMvv/xSrVq1snW+AAAAAAAAAAAAAAAAAAAAAAAAV1S2vvlizJgxGjJkiI4ePaq5c+fqvvvu0yOPPKKlS5dq+fLlGjJkiCZOnGjrXAEAAAAAAAAAAAAAAAAAAAAAAK64bC2++P3339WzZ09JUteuXXX69Gl17tzZ/fP7779fGzduvKwnCAAAAAAAAAAAAAAAAAAAAAAAkJuytfhCklwu1/kdAwIUFhamIkWKuH8WHR2tkydPXr6zAwAAAAAAAAAAAAAAAAAAAAAAyGXZWnxRsWJFbdu2zf3v77//XuXLl3f/e9euXYqLi7t8ZwcAAAAAAAAAAAAAAAAAAAAAAJDLgrJTuF+/fkpLS3P/u1atWh4///zzz9WqVavLc2YAAAAAAAAAAAAAAAAAAAAAAAB5QLYWXzz22GOOP58wYUKOTgYAAAAAAAAAAAAAAAAAAAAAACCvCcjtEwAAAAAAAAAAAAAAAAAAAAAAAMjLWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4CAotw585FyUtdgNiu6yFvvtXxtZi23mxVmL3XbL1dZi14rfay3272fsnXdeE3o00Frsw3XsxV6yor612LcNPWct9u5R9vItbZuxFju5qLXQeZIJsfe7TA+xFlqdt7e2Fvvcl/bqz+CxYdZiuyLSrMUOOmDvGZcX/XK6nLXYtzbcaC12h21trcUO/cZaaM2qMM1a7Il721mLXT7yuLXYedLJYGuhT1Wx9/yqv2SQtdh/7XvDWuz4JX2sxQ4ok24ttut0rnV/c0VAZKq12H//Vcpa7Bv+tcNa7PfnbbAW+7ppTazFjmp8wlrshBPh1mLnNeFFk6zFnrW3hbXYBx6rZC126dk/WYt92+Y7rMUObHnUWuztx0pYi50XpUS7rMVOW1PMWuzT3W+0FvuWBxtYi324bqi12K5rrYVW+EF7sfOiwLP28sJY/Cis1N9irMVuOfsRa7GPdLTXlzv3o71xRUVbjJ0HHT1ubzyyfCt780v1JvS3Frvaqi3WYv/xTnVrsQMTd1qLHRCZYi12XpQeZO85EGBx+OKrr+pai13V2IudOsLeeFHwn/Yq6NTC0+VWUJK9nDhXxN7fyGVv6FfTjle0FjvmDXttv8N17T2Ewo7by+W8KCXCXt8iOMFe7Emzu1mLHdziiLXYb/9gb3y2THt7z6GQk/b+lnmROWXvJY06tXZai322j73BkSX7NliLPe9UvLXYASkWxxVTCtf7H4Fn7dWPZyrbG6ONm/+7tdjxdeyNRcW3tvf7jtqTbC22CS5cn7GfWtReQ333rpLWYgfcYe9d19UvbbAWu+XvFazFPvG7vXd0jcV3Ef1RuLISAAAAAAAAAAAAAAAAAAAAAAAgm1h8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOCAxRcAAAAAAAAAAAAAAAAAAAAAAAAOWHwBAAAAAAAAAAAAAAAAAAAAAADggMUXAAAAAAAAAAAAAAAAAAAAAAAADlh8AQAAAAAAAAAAAAAAAAAAAAAA4IDFFwAAAAAAAAAAAAAAAAAAAAAAAA5YfAEAAAAAAAAAAAAAAAAAAAAAAOAgKLcOXDI0wVrsoymR1mI/dN0aa7E3J5S2FrtSxBFrsVNMoLXYx5Lt/S3zHFdun8ClcaXZi312Sby12Ga1tdAKSLUX2xSyJXOBZ+xd8JmK9v5QWxZXtRbbZs6deTjJWuyAI8HWYqeFGWux86IQiw+Zg2djrMWuFn3QWuxtp6+yFnvojnusxa4Qdcxa7NR0e+2zwsaVZq+RFnDCXnes9pT+1mK74u1VRsZmmzigcNUXARav14TZuwfWbrXXB6i2op+12GFNjluLnZAQZi22K7Dw5EVosL021M7jxazFLtFhr7XY5R6wVw+tOxBlLXZyqr12TlhIirXYeZHFIVQFJdqLfbyqvbGC/S3s3V/hu62FVoDFsQKXxXGuvCg9xF7dGHjWXmM3NcLeee/tkWwtdvoee3WRzbwoPC2o8wID063F3nu0iLXYFe629+Bd/3U1a7EDmp+2FvvPgyWtxQ4Mtph0eZDN8SKbz/SgRHvnnRJt77yDT9pr/6XZ63LLZe/xmeekhdi7t4IT7d1bNs97aevq1mIntrXXbwk9ae/GTQvOpy9EXKJ0e1OjVvvcNs+7xMQIa7EDqtnrW5yJs3fvhh4vXL0LE2zvGfPLH+WtxS75qb1+S62Xm1iLnWov5ZRW6ay12Olnc+111lwRkGYvL4LOWAutszfaey/q2mF/WoudWqOCvdjhvKNx2VjtS9mr110HQq3Frv2ivfc/zpSz9ws3Nuei03O3f1HIXuMFAAAAAAAAAAAAAAAAAAAAAADIHhZfAAAAAAAAAAAAAAAAAAAAAAAAOGDxBQAAAAAAAAAAAAAAAAAAAAAAgAMWXwAAAAAAAAAAAAAAAAAAAAAAADhg8QUAAAAAAAAAAAAAAAAAAAAAAIADFl8AAAAAAAAAAAAAAAAAAAAAAAA4YPEFAAAAAAAAAAAAAAAAAAAAAACAAxZfAAAAAAAAAAAAAAAAAAAAAAAAOGDxBQAAAAAAAAAAAAAAAAAAAAAAgAMWXwAAAAAAAAAAAAAAAAAAAAAAADhg8QUAAAAAAAAAAAAAAAAAAAAAAIADFl8AAAAAAAAAAAAAAAAAAAAAAAA4YPEFAAAAAAAAAAAAAAAAAAAAAACAAxZfAAAAAAAAAAAAAAAAAAAAAAAAOGDxBQAAAAAAAAAAAAAAAAAAAAAAgAMWXwAAAAAAAAAAAAAAAAAAAAAAADhg8QUAAAAAAAAAAAAAAAAAAAAAAIADFl8AAAAAAAAAAAAAAAAAAAAAAAA4YPEFAAAAAAAAAAAAAAAAAAAAAACAAxZfAAAAAAAAAAAAAAAAAAAAAAAAOGDxBQAAAAAAAAAAAAAAAAAAAAAAgAMWXwAAAAAAAAAAAAAAAAAAAAAAADgIyq0Dn0kNza1D58ihc9HWYkcGJluLnZgeYi32seQIa7FDA9KsxS5M0iymW0CKvdinP4mzF7yEvdCudJfF4PZC50kWf5eBZ+ytP0wsY+/ZZcLSrcUO3m/vYZEeZKzFdqVaC50nJafba76VCD1jLfaR5ChrsctHHrMW22abNTU90FrsQsdl7xljgq2FlrF4C5yuYa9v4Uq0eOIB9v6WhU1acv78OwWGWmxHVbGXF6eORlqL7Qqy1/4rTP2LNGPvYo3F2EfP2Btz2X24irXYMVFnrcUODLSXEylphat9FmTvzyRjcdQ52F63RWEb7Z24zd+JsfgRSzbbrHlR4Dl7z/R0m2O0yfbOO+g3e+2clCL5s/1f2KYtXBbb/+lp9h5gO/aXtBY7pGqCtdgpyfYqjIAAm32L/JnPeZHNOaY0e9PFVuvQtAiL8wsphahjbFFgir2/UWqovb+RzUfX7vsqWYsdtddivzjc4txsMnXF5RJgMedsDhjuui3cWuzgBHvnHXrM4jMuopDVQ8EW26MWHf2rmLXYpvo5a7EjYpKsxT533F4+F7a5QhNg7zkQkGYx5+xNuelUq6rWYgcn2BvUsVk/u9ILV14o0OL1WpzTS4uwl3OJDew909PPWHwpJtViWyeX04JvvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAABy5jjMntkwAAAAAAAAAAAAAAAAAAAAAAAMir+OYLAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4gsAAAAAAAAAAAAAAAAAAAAAAAAHLL4AAAAAAAAAAAAAAAAAAAAAAABwwOILAAAAAAAAAAAAAAAAAAAAAAAAByy+AAAAAAAAAAAAAAAAAAAAAAAAcMDiCwAAAAAAAAAAAAAAAAAAAAAAAAcsvgAAAAAAAAAAAAAAAAAAAAAAAHDA4ouL/Pzzz+rQoYOKFy+uiIgI1apVS6+88kqmcqtXr1bTpk0VERGh0qVLa9CgQUpISPD7OG+++aauvfZahYWFqUqVKpo+fbpf+yUkJGj06NFq27atihcvLpfLpXnz5nkt27NnT7lcrkz/Va9ePVPZP//8U507d1axYsUUERGhpk2basWKFX5fz4kTJ9S3b1+VKlVKkZGRatmypX7++We/90fe9PXXX3u9h1wul3744Qd3uZ07d2ZZzuVy6ZFHHvHreFciLyTp1Vdf1bXXXqvQ0FBdffXVeuqpp3TmzBmPMs8++6zjNa1atcrneZEXhcu5c+c0bNgwlSlTRuHh4WrUqJGWLl3q9/579+5V165dVbRoUcXExKhjx47asWOHz/0SExM1Y8YMtWnTRnFxcYqOjla9evU0c+ZMpaWlOe47f/58uVwuRUVFef25P7ni5OOPP1b9+vUVFham8uXLa/To0UpNTfV7f+Rv2X02e5OT5+iPP/6o/v37q0GDBgoODpbL5cqybFbP+okTJ3qUy6puCAsL8/uactqGRP6XH+qLLVu2aOjQoapbt66io6MVFxen9u3ba926dZnifvjhh7rttttUpkwZhYaGqmzZsurcubN+++03v69p8+bNatu2raKiolS8eHE9+OCDOnz4sN/7I3/LDzkhSePHj1eHDh0UGxsrl8ulZ5991mtc6gpkx9q1azVgwADVrFlTkZGRKl++vLp27aqtW7dmKjtnzhw1b95csbGxCg0NVXx8vHr16qWdO3f6fbxLvbd2796t5557Tg0bNlSxYsVUsmRJtWjRQsuWLfNaPjttuJz0GdLT0zV58mTFx8crLCxMtWvX1jvvvOPXvsi7fv/9d3Xp0kWVKlVSRESESpYsqZtvvlmffPKJR7n09HTNmzdPHTp0ULly5RQZGalatWpp3LhxSkpK8vt4VyIvli9frt69e6tq1aqKiIhQpUqV9PDDD2v//v2Zyn755Zfq06ePatWqpcDAQFWsWNHva8lAX7zgGz9+vFwul2rVqpXpZxMmTNCNN96oUqVKucdYn3jiiWy1ry/1HspOP8LfNlN26yBvqC8Kl9zqX0j+P8Mvde4hJSVFNWrUkMvl0pQpU/y+JuqFwsvfOT4nV6LPvW/fPj3wwAOqVq2aoqOjVbRoUTVs2FBvvfWWjDGZYi9btkwtW7ZUyZIl3WX/85//+PdLEX3uwuann35S27ZtFRMTo+joaLVp00YbNmzIVC432+E22lAX++6779xljxw54tf15LRORd7kb59byt77RlnJSTvE3/FYyb+6Yd68eY5tsPnz5/s8J/KiYMpOXuTmGK0kzZw5U126dFH58uXlcrnUs2fPLMsuXbrUfZxixYqpc+fOXs+zYsWKXnPiscce8+uc6HPnb9l9p+NS5nR9vZfkzaW+J5LdMWN/3xO52K233iqXy6UBAwb4fU30Qwqu/DAWJUn79+9X3759FR8fr/DwcF1zzTV66qmndPToUXeZ3J53yW+CcvsE8pIvv/xSd955p+rVq6dRo0YpKipK27dv1549ezzKbdiwQbfccouuvfZavfTSS9qzZ4+mTJmibdu26fPPP/d5nFmzZumxxx7TPffco6eeekorV67UoEGDlJiYqGHDhjnue+TIEY0ZM0bly5dXnTp19PXXXzuWDw0N1RtvvOGxrUiRIh7/3r17txo3bqzAwEANGTJEkZGRmjt3rtq0aaPly5fr5ptvdjxGenq62rdvr19++UVDhgxRyZIl9dprr6lFixb66aefVKVKFcf9kfcNGjRIN9xwg8e2ypUru/+/VKlSXgc2v/jiC82fP19t2rTxeYwrlRfDhg3T5MmT1blzZw0ePFibNm3S9OnT9fvvv2vJkiXucp06dfK4xgzPPPOMEhISMv0+LkZeFD49e/bUwoUL9cQTT6hKlSqaN2+ebr/9dq1YsUJNmzZ13DchIUEtW7bUyZMn9cwzzyg4OFhTp05V8+bNtWHDBpUoUSLLfXfs2KGBAwfqlltu0VNPPaWYmBgtWbJE/fv31w8//KC33nory2MOHTpUkZGRXn/ub65k5fPPP9ddd92lFi1aaPr06fr11181btw4HTp0SDNnzvS5P/K/7LZZLpbT5+hnn32mN954Q7Vr11alSpW8vsR4oVtvvVUPPfSQx7Z69ep5LTtz5kyPwYHAwEC/rimnbUgUDPmhvnjjjTf05ptv6p577lH//v118uRJzZo1SzfeeKO++OILtW7d2l32119/VbFixTR48GCVLFlSBw4c0L///W81bNhQ33//verUqeN4TXv27NHNN9+sIkWKaMKECUpISNCUKVP066+/6scff1RISIifv1nkV/khJyRp5MiRKl26tOrVq+dXW4i6Av6YNGmSVq1apS5duqh27do6cOCAXn31VdWvX18//PCDx0u169evV3x8vDp06KBixYrpr7/+0pw5c/Tpp5/ql19+UZkyZRyPlZN766OPPtKkSZN01113qUePHkpNTdXbb7+tW2+9Vf/+97/Vq1cvd9nstOFy2mcYMWKEJk6cqEceeUQ33HCDPvroI913331yuVzq3r27z/2RN/399986ffq0evTooTJlyigxMVGLFi1Shw4dNGvWLPXt21fS+Rf6evXqpRtvvFGPPfaYrrrqKn3//fcaPXq0li9frq+++spxAbZ05fJi2LBhOnbsmLp06aIqVapox44devXVV/Xpp59qw4YNKl26tLvsggUL9N5776l+/fo+89ob+uIF3549ezRhwoQsx3N++ukn1a1bV927d1d0dLQ2b96sOXPmaPHixdqwYUOW+2XIyT2UnX5EBl9tpuzkWlaoLwqX3OpfSP4/wy917mH69OnatWuX4zlcjHoBku85vqxcqT73kSNHtGfPHnXu3Fnly5dXSkqKli5dqp49e+qPP/7QhAkT3GU//vhj3XXXXWrcuLH7JfT3339fDz30kI4cOaInn3zS8ZrocxcuP//8s5o2bapy5cpp9OjRSk9P12uvvabmzZvrxx9/VLVq1dxlc7MdbqMNdaH09HQNHDhQkZGR2fqAtZzUqci7/O1zZ/DnfaOs5LQd4u94rL91w8033+z1nZapU6fql19+0S233OLznMiLgik7eZGbY7TS+fHk06dPq2HDhl4/1CPDp59+qo4dO6p+/fqaOHGiTp06pZdffllNmzbV+vXrVapUKY/ydevW1dNPP+2xrWrVqj7PR6LPnd9l552OS5nT9fVekjc5eU/kUsaMs/OeiCR98MEH+v777/2+Hol+SEGXH8aiEhIS1LhxY505c0b9+/dXuXLl9Msvv+jVV1/VihUr9NNPPykgICDX513yHQNjjDEnT540sbGx5u677zZpaWmOZdu1a2fi4uLMyZMn3dvmzJljJJklS5Y47puYmGhKlChh2rdv77H9/vvvN5GRkebYsWOO+yclJZn9+/cbY4xZu3atkWTmzp3rtWyPHj1MZGSkYzxjjOnfv78JCgoyW7ZscW87c+aMKVeunKlfv77P/d977z0jyfzvf/9zbzt06JApWrSouffee33uj7xrxYoVmf622XHLLbeYmJgYc/bsWcdyVyov9u3bZ4KCgsyDDz7osX369OlGkvn4448dj7Nr1y7jcrnMI4884ljOGPKisFmzZo2RZF544QX3trNnz5prrrnGNG7c2Of+kyZNMpLMjz/+6N62efNmExgYaIYPH+647+HDh81vv/2WaXuvXr2MJLNt2zav+w0bNsxUq1bNnWcXymmuGGNMjRo1TJ06dUxKSop724gRI4zL5TKbN2/2uT/yv+y0WbzJ6XP0wIEDJjEx0RhjzOOPP26cmr2SzOOPP+4z5ujRo40kc/jwYT+uILOctCFRMOSX+mLdunXm9OnTHuWOHDliSpUqZW666Saf53ngwAETFBRkHn30UZ9l+/XrZ8LDw83ff//t3rZ06VIjycyaNcvn/sjf8ktOGGPMX3/95d5Pkhk9erTXuNQVyI5Vq1aZc+fOeWzbunWrCQ0NNffff7/P/detW2ckmeeff95n2ZzcW7/99lumezopKclUr17dlC1b1mN7dtpwOekz7NmzxwQHB3u04dLT002zZs1M2bJlTWpqquP+yF9SU1NNnTp1TLVq1dzbzp07Z1atWpWp7HPPPWckmaVLl/qMe6Xy4ptvvsk03vzNN98YSWbEiBEe2/fu3WuSk5ONMca0b9/eVKhQwed1XIi+eMHXrVs306pVK9O8eXNTs2ZNv/ZZuHChkWTeeecdn2Vzcg9lpx/hb5spO7nmDfVF4ZKb/QtjcvYM9zX3cPDgQVOkSBEzZsyYTNfohHqhcMvpHF9uzFtc6I477jCRkZEez+pbb73VlClTxiQlJbm3paSkmGuuucbUrl3bZ0z63IXL7bffbooVK2aOHDni3rZv3z4TFRVlOnXq5FE2N9vhNtpQF5o5c6YpUaKEGTx4sN/75rRORf7irc9tjP/vG2Ulp+0Qf8djc1I3JCYmmujoaHPrrbf6PB/yonDJKi+8uVJjtMYYs3PnTpOenm6MMSYyMtL06NHDa7kaNWqYypUre4w9b9iwwQQEBJinnnrKo2yFChUyvavlL/rc+V923um4lDldp/eSspKT90SyO2bs73siGc6ePWsqVqzo7pv7uy/9kIIrv4xFzZ8/30gyn376qcf2f/3rX0aS+fnnn40xuT/vkt8EXI4FHAXBggULdPDgQY0fP14BAQE6c+aM0tPTM5U7deqUli5dqgceeEAxMTHu7Q899JCioqL0/vvvOx5nxYoVOnr0qPr37++x/fHHH9eZM2e0ePFix/1DQ0M9Pg3NH2lpaTp16lSWP1+5cqXq1avn8ekOERER6tChg37++Wdt27bNMf7ChQsVGxurTp06ubeVKlVKXbt21UcffaRz585l63yRN50+fTpbX0W9f/9+rVixQp06dfL5VadXKi++//57paamZlpdnfHvd99913H/d955R8YY3X///T6PRV4ULgsXLlRgYKDHpx6EhYWpT58++v7777V7926f+99www0enz5VvXp13XLLLT7rlZIlS6pmzZqZtt99992Szn/t38W2bdumqVOn6qWXXlJQUOYvwcpprmzatEmbNm1S3759PeL3799fxhgtXLjQcX8UDJfSZrlQTp+jsbGxCg8Pz9Yxz54969dX5RljdOrUKa9fe5+VnLYhUTDkl/qiQYMGmb76tUSJEmrWrJnXeuViV111lSIiInTixAmfZRctWqQ77rhD5cuXd29r3bq1qlatSl4UAvklJyQ5fk2rN9QV8EeTJk0yfRpUlSpVVLNmTb+etxn3pa/nbU7vrZo1a6pkyZIe20JDQ3X77bdrz549On36tHu7v224nPYZPvroI6WkpHiMI7hcLvXr10979uzJ9idPIW8LDAxUuXLlPO71kJAQNWnSJFNZp77wha5kXtx8880KCPAchr/55ptVvHjxTOdZpkwZBQcHOx47K/TFC75vv/1WCxcu1LRp07K1n7/1RU7voUvpR/hqM2Un17yhvihccrN/IeXsGe5r7uGf//ynqlWrpgceeMDvmNQLuFB25/ikKz9vcbGKFSsqMTFRycnJ7m2nTp1SsWLFFBoa6t4WFBSkkiVL+hwLps9d+KxcuVKtW7f2+LTYuLg4NW/eXJ9++qkSEhLc23OzHW6jDZXh2LFjGjlypMaMGaOiRYv6d0HKeZ2K/MVbn/tCvt438uZytEP8HY/NSd3wySef6PTp036//0FeFB6+8uJCV2qMVpIqVKjg8xPHjx07pk2bNunuu+/2GHuuU6eOrr322izf9UhOTs7WNyRJ9LkLguy805HdOV1f7yVlJSfviVzqmLG/74lMnjxZ6enp+sc//uGzbAb6IQVbfhmLymjLxcbGemyPi4uTJHebKbfnXfIbFl/8n2XLlikmJkZ79+5VtWrVFBUVpZiYGPXr18/j4frrr78qNTVV119/vcf+ISEhqlu3rtavX+94nIyfX7x/gwYNFBAQ4HP/7EpMTFRMTIyKFCmi4sWL6/HHH/cYSJCkc+fOee10RERESDr/VeVO1q9fr/r162eaRGzYsKESExO1devWHF4FcluvXr0UExOjsLAwtWzZUuvWrfO5z7vvvqv09HS/OqpXKi8yGmAX3+/+3uvz589XuXLldPPNN/s8FnlRuKxfv15Vq1b1aDhI5//e0vmv1MpKenq6Nm7cmOn+z9h/+/btPieSvTlw4IAkZZqglqQnnnhCLVu21O233+5135zmSlY5XaZMGZUtW/ay13UomK70c3TevHmKjIxUeHi4atSooQULFmRZtlKlSipSpIiio6P1wAMP6ODBgz7j57QNiYIhv9UX3spmVe7EiRM6fPiwfv31Vz388MM6deqUz6/p3rt3rw4dOpTlNZEXBV9+zwkn1BW4VMYYHTx4MMt78OjRozp06JDWrVunXr16SZLP562te+vAgQOKiIhw9xMk/9twOe0zrF+/XpGRkbr22mszHefC+Mi/zpw5oyNHjmj79u2aOnWqPv/8c5/3uuT/c/xK5oU3CQkJSkhIyHF9cyH64gVbWlqaBg4cqIcffljXXXedY1ljjI4cOaIDBw5o5cqVGjRokAIDA9WiRQvH/WzdQ079iEtpM2XE9CfXqC8Kl7zYv/CX09zDjz/+qLfeekvTpk3z+aLVhagXkOFS5vhyo8999uxZHTlyRDt37tRbb72luXPnqnHjxh7zFC1atNDvv/+uUaNG6c8//9T27ds1duxYrVu3TkOHDnU8Nn3uwsfpHYjk5GT99ttvl+U4ebkNNWrUKJUuXVqPPvpoto6dkzoV+YO/fW5/3jfy5kq2Q3JSN8yfP1/h4eEeL/hmhbwo+LIzFpWXxmgvltW7HtL5OnDfvn3uNlmGr776ShEREYqKilLFihX18ssv+3Us+tyFx6XM6fp6LykrNt4TceqH+PueyK5duzRx4kRNmjQpWx8CSj+kYMsvY1EZHxA1ePBg/fDDD9qzZ48+++wzjR8/XnfddZeqV6/uuH9uz7vkVf4vKyvgtm3bptTUVHXs2FF9+vTR888/r6+//lrTp0/XiRMn9M4770g6/2n+0v9b9XOhuLg4rVy50vE4+/fvV2BgoK666iqP7SEhISpRooT27dt3ma7o/PkMHTpU9evXV3p6ur744gu99tpr+uWXX/T111+7VxVWq1ZNK1eu1OnTpxUdHe3e/7vvvpN0vgL1dU3eBoQzfkf79u3zOSGEvCkkJET33HOPbr/9dpUsWVKbNm3SlClT1KxZM61evVr16tXLct/58+crLi5OrVq18nmcK5UXGd/usmrVKrVs2dK9PSNvne7133//XRs3btTQoUP9muAgLwqX/fv3Z1kvSHK8h48dO6Zz58753P/CbyfyJTk5WdOmTVN8fLzH6lhJWrx4sb788kv98ssvWe6fk1yRfNeVl7OuQ8F1JZ+jTZo0UdeuXRUfH699+/ZpxowZuv/++3Xy5En169fPXa5YsWIaMGCAGjdurNDQUK1cuVIzZszQjz/+qHXr1mXqUF18PRee/8XX5KsNiYIhP9UXF1u5cqW+//57jRw50uvPb7zxRv3xxx+SpKioKI0cOVJ9+vRxjOkrLzKu+cJPrELBkp9zIivUFcip+fPna+/evRozZozXn1999dXuCbQSJUrolVde0a233uoY08a99eeff+qDDz5Qly5dFBgY6HEsf9pwOe0z7N+/X7GxsZn65/48P5A/PP3005o1a5YkKSAgQJ06ddKrr77qc7/JkycrJiZG7dq1cyx3JfPCm2nTpik5OVndunXL9nGyQl+8YHv99df1999/a9myZT7LHjx40OM+KFu2rBYsWOBzEs3GPZRVPyInbabs5Br1ReGS1/oX/nKaezDGaODAgerWrZsaN26snTt3+h2XegE5mePLjT73yy+/rOHDh7v/fcstt2ju3LkeZUaNGqW//vpL48eP17hx4ySdf4lw0aJF6tixo+Px6XMXPtWqVdMPP/ygtLQ0d5shOTlZa9askeR7rstfebUNtXHjRs2aNUufffaZzzaTt2u61DoV+YM/fW5/3zfy5kq2Qy61bjh27Ji++OIL3XXXXR7vSWWFvCj4sjMWlVfGaL2JjY1V0aJFtWrVKo/tR48e1aZNmySdrwMzvu2gdu3aatq0qapVq6ajR49q3rx5euKJJ7Rv3z5NmjTJ8Vj0uQuP7M7p+vNektOxLvd7IlmNGfv7noh0/hlRr149de/ePdvXc+H5X4h+SP6XX8aiatSoodmzZ+sf//iHGjdu7N7eo0cPvfHGGz73z815l7yMxRf/JyEhQYmJiXrsscf0yiuvSJI6deqk5ORkzZo1S2PGjFGVKlV09uxZSfL6AlBYWJj751k5e/asx9d6ZXf/7Hj++ec9/t29e3dVrVpVI0aM0MKFC92VQb9+/fTJJ5+oW7duGj9+vCIjI/Xaa6+5P/nEn2vK6vfhz/7Iu5o0aeLxVUIdOnRQ586dVbt2bQ0fPlxffPGF1/22bt2qn376SU8++WSmlajeXKm8qF+/vho1aqRJkybp6quvVsuWLbV582b169dPwcHBjseZP3++JPn1TR4SeVHY5OTv7ate8bW/NwMGDNCmTZu0ePFij4Gv5ORkPfnkk3rsscdUo0aNLPfPSa74c03Z/WpaFE5X8jl68eBT79691aBBAz3zzDPq2bOn+5MLBg8e7FHunnvuUcOGDXX//ffrtdde0z//+c8sj5HTNiQKhvxSX1zs0KFDuu+++xQfH5/lJ0XNnTtXp06d0o4dOzR37lydPXtWaWlpjm1Bf6+JxRcFV37NCSfUFciJLVu26PHHH1fjxo3Vo0cPr2U+//xzJSUlafPmzfrvf//r11fBX+57KzExUV26dFF4eLgmTpyY6Vj+5GVO+wz0uQu+J554Qp07d9a+ffv0/vvvKy0tTcnJyY77TJgwQcuWLdNrr72mokWLOpa9knlxsW+//VbPPfecunbt6teHlviLvnjBdfToUf3rX//SqFGjVKpUKZ/lixcvrqVLlyopKUnr16/XBx984Nen017ue8ipH3Gpbabs5JpEfVHY5LX+hb+c5h7mzZunX3/9VQsXLsx2XOoFXOocn5Q7fe57771X119/vQ4fPqxPP/1UBw8ezHSM0NBQVa1aVZ07d1anTp2Ulpam2bNn64EHHtDSpUt14403XvI1UScUPP3791e/fv3Up08fDR06VOnp6Ro3bpz7haDL9TfPq22oQYMGqV27dmrTpk22ji/RhioM/Olz+/u+kTdXsh1yqXXDwoULlZyczPsfcMvOWFReGKPNSkBAgB599FFNmjRJw4cPV+/evXXq1CkNHTrUfT0XHuvjjz/22L9Xr15q166dXnrpJQ0cOFBly5bN8ljkReGRnTldf99LcjrW5byvnMaM/X1PZMWKFVq0aJF7EW920A8p2PLTWNTVV1+thg0b6vbbb1eFChW0cuVKvfLKKypZsqSmTJmS5X65Oe+S1/l+K7qQyHhY3nvvvR7b77vvPknS999/71EuYwXrhZKSknx+rVB4eHiWjTN/9s+pjJfhL/yErHbt2mn69On69ttvVb9+fVWrVk2LFy/W+PHjJZ3/5Fon4eHhWf4+Mn6OgqNy5crq2LGjVqxYobS0NK9lsrtQ4UrmxaJFi1SnTh317t1b8fHxuvPOO9W1a1fVq1cvy3vdGKMFCxaoVq1aql27tl/HIS8Kl5z8vX3VK772v9gLL7ygOXPmaOzYsZm+vm/q1Kk6cuSInnvuOZ9xLiVXMuS0rgSk3H2OhoSEaMCAATpx4oR++uknx7L33XefSpcu7fPTR8kLSPmnvrjQmTNndMcdd+j06dP66KOPsqwDGjdurNtuu039+vXTkiVL9N///tfj0wq9udzXhPwnP+bEpaCugD8OHDig9u3bq0iRIlq4cGGWn0rZsmVLtWvXTk899ZT+97//6bnnnvP5bQCX895KS0tT9+7dtWnTJi1cuFBlypTJdCx/8vJyjK9RfxRs1atXV+vWrfXQQw/p008/VUJCgu68804ZY7yWf++999zfvHXxp5J5cyXz4kJbtmzR3XffrVq1avn1iVLZQT1ScI0cOVLFixfXwIED/SofEhKi1q1b64477tCoUaM0Y8YM9enTR59++qnjfpfzHvK3H3EhX22m7ORaBuqLwiUv9S/85TT3cOrUKQ0fPlxDhgxRuXLlsh2begHe+DPHJ+VOn7tChQpq3bq17r33Xs2fP1+VKlVS69atPV7OGDBggD755BO9++676t69u+6//34tW7ZMcXFxmV5Kz+41kRMFz2OPPaZnnnlGCxYsUM2aNXXddddp+/bt7gUN/rRP/JEX21DvvfeeVq9erRdffNHvY1+INlTBl90+dwZv7xt5cyWfuZdaN8yfP1/Fixf3+QnOGciLgi87eZHbY7S+jBkzRn369NHkyZNVtWpVXX/99QoKCnJ/Y71T/eJyufTkk08qNTVVX3/9teNxyIvCIzv9g+y8l5TVsS7XfZXdMWNv74mkpqZq0KBBevDBB71+g58v9EMKtvwyFrVq1SrdcccdGj9+vAYPHqy77rpLL774okaOHKmXXnrJ/c1IF8vNeZf8gMUX/ydjoD42NtZj+1VXXSVJOn78uKT/95UoGZ+IcKH9+/f7HPCPi4tTWlqaDh065LE9OTlZR48e9WvCICfCw8NVokQJHTt2zGP7gAEDdPDgQa1evVrr1q3Tli1bVKRIEUlS1apVHWPGxcVl+fuQZP2acOWVK1dOycnJWa7eXrBggapVq6YGDRr4Fe9K5sXVV1+t7777Tlu3btW3336rPXv2aPLkydq9e3eW9/qqVav0999/+72YRCIvCpuc/L2LFy+u0NDQy3K/zJs3T8OGDdNjjz2W6auIT548qXHjxumRRx7RqVOntHPnTu3cuVMJCQkyxmjnzp0eOXgpuZIhp3UlIOX+czRjUvviNlNWZX2VIy8g5Y/64kLJycnq1KmTNm7cqI8++ki1atXyK36xYsXUqlUr94LcrPjKi4xrRsGV33IiJ6gr4OTkyZNq166dTpw4oS+++MLvv/U111yjevXq5fh5m51765FHHtGnn36qefPmef3Efn/z+nKMrx04cCDT5Cd97oKrc+fOWrt2rbZu3ZrpZ0uXLtVDDz2k9u3b6/XXX/cr3pXMiwy7d+9WmzZtVKRIEX322WeKjo72+xj+oB4pmLZt26bZs2dr0KBB2rdvn3s8JykpSSkpKdq5c6fPNkaTJk0UFxd3xeqLS+1HSM5tJn9z7ULUF4VLXulfZIfT3MOUKVOUnJysbt26uXN/z549ks7PWe7cudPxW6GoF5AVX3N8Ut7oc3fu3Fm7d+/Wt99+K+l8/fLmm2+qffv2Ht+0GhwcrHbt2mndunXkBDIZP368Dh48qJUrV2rjxo1au3at0tPTJfl+B8JfebENNWTIEHXp0kUhISHuOuTEiROSzvdL9u3b5xgvt+dncOU59bkvlNX7Rhe7Us/cS60bdu3apZUrV6pLly4KDg7261jkReHjb17kxhitLyEhIXrjjTe0b98+ffvtt/rjjz+0ZMkSnTx5UgEBAapcubLj/v7Ok9PnLjz8ndPN7ntJWR3rcjxvL2XMWMp8/7/99tv6448/9Oijj7qvZ+fOnZKk06dPa+fOnUpMTHS8ngvP/+JrIk/yt/wyFjVr1izFxsbq+uuv99jeoUMHGWO0evXqTPvk9rxLfsDii/+T8ZL43r17PbZndDwzvs67Vq1aCgoK0rp16zzKJScna8OGDapbt67jcTJ+fvH+69atU3p6us/9c+r06dM6cuSI168nj4yMVOPGjdWgQQMFBgZq2bJlCg8P10033eQYs27duvr555/dAxUZ1qxZo4iIiMs2cIG8Y8eOHQoLC/O6GnrNmjX6888/s7VQITfyokqVKmrWrJlKly6tTZs2af/+/WrdurXXsvPnz5fL5XJ/E44/yIvCpW7dutq6dWumr0jN+Mo5p3s4ICBA1113Xab7P2P/SpUq+fVCxkcffaSHH35YnTp10owZMzL9/Pjx40pISNDkyZMVHx/v/m/RokVKTExUfHy8+vbtm2m/7ORKhqxyet++fdqzZ4/1ug4FQ24/R3fs2CFJXttMF8oYJPBVLqdtSBQM+aG+yJCenq6HHnpIy5cv14IFC9S8eXOfsS909uxZnTx50rHM1VdfrVKlSnm9ph9//JG8KATyU07kBHUFnCQlJenOO+/U1q1b9emnn2b7a7j9ed5erntryJAhmjt3rqZOnZrpm2Mz+NuGy2mfoW7dukpMTNTmzZszHefC+Cg4Mj7x+OL7fc2aNbr77rt1/fXX6/3331dQUJBf8a5kXkjS0aNH1aZNG507d05LlixxT0JcTvTFC6a9e/cqPT1dgwYN8hjPWbNmjbZu3ar4+HiNGTPGZ5ykpCSf9cXluIdy0o9wajP5m2sXo74oXPJC/yK7nOYedu3apePHj6tmzZru3G/WrJkkacKECYqPj8/ykwkl6gVkzWmOL0Ne6HNf3P47evSoUlNTvX5jR0pKitLT0x2/zYM+d+FVrFgxNW3aVNddd50kadmyZSpbtqyqV69+WeLnxTbU7t27tWDBAo/248svvyxJql+/vs9vfc1JnYr8Kas+98Wc3je60JVqh1xq3fDOO+/IGJPtd1rIi8LF37zIKHulxmizIzY2Vs2aNVPVqlWVlpamr7/+Wo0aNfL5zUr+zpPT5y48/J3TvdT3ki50Od4TudQxYynz/b9r1y6lpKTopptu8rgm6fzCjPj4eH355ZdZxqMfUrDll7GogwcPZtleks5/w8vFx8/NeZd8w8AYY8zPP/9sJJn77rvPY/u9995rgoKCzN69e93b2rZta+Li4sypU6fc29544w0jyXz++efubWfOnDGbN282hw8fdm9LTEw0xYsXN3fccYfHcR544AETERFhjh496vc5r1271kgyc+fOzfSzs2fPepxfhiFDhhhJ5oMPPnCMvWrVKhMYGGgGDBjgsX3fvn1m8+bNJjk52b3t3XffNZLM//73P/e2w4cPm6JFi5pu3br5fT3Iew4dOpRp24YNG0xwcLDp0KGD130GDRpkJJk///zT689zMy+8SUtLM+3btzcRERHm77//zvTz5ORkU6JECdOsWbMsY5AX+OGHH4wk88ILL7i3JSUlmcqVK5tGjRp5lP3777/N5s2bPbZNnDjRSDJr/3/27jvMrqrsG/AzfTLphUBCIAQIBEILPUgLvQZFpEsRRJogIiACH1KVIoj0oqAICqK8CAhIk5depUmQlkDogZBepq3vD77Ml2FmzswkWZkZct/XleuCPfv8zj4ze+1V9nnOefbZhm2vv/56KikpSSeddFKrz//II4+kysrKNGbMmDRnzpxm95k5c2a6/fbbm/wbM2ZMqqysTLfffnt66qmnWnyOltpKdXV1GjduXPrwww8b7T9ixIi09tprp9ra2oZtp556aioqKkqvvfZaq6+Jr5fWrs25r6NHHXVUamnY21xfN23atLTSSiulAQMGpLlz5xbc9/LLL08RkS666KJG28eNG9ekX2nrGJKvr67QX8xz5JFHpohIV199dcH9Pvnkkybbxo8fn3r27Nlk/PTWW281GSMefvjhqVu3bum9995r2PbAAw+kiEhXXnllay+JLq4rtYl5Jk2alCIinX766c3+XF9Be9TW1qaxY8em0tLSdPfdd7e4X01NTZo8eXKT7U8//XQqKSlJ3/3udxttz3FunX/++Ski0s9+9rOC+7VnDNfWOcOUKVPSuHHj0pQpUxq2TZw4MZWVlaWjjjqqYVt9fX3abLPN0rLLLtsok66lubFFdXV1WnfddVO3bt3S9OnTG7a/9tprqX///mnkyJHNtpH5dWS7mDFjRtpwww1Tz54903PPPddq7jw777xzGjp0aLM/MxdfckyaNKnZ9ZyRI0em5ZdfPt1+++3p5ZdfTil9ea7NnDmzScZtt92WIiKddtppDdtynUNtnUe0Z8zU1ramv6Cj5xfzK3QNn6e1ew/PP/98k7Z/9dVXp4hIBx10ULr99tsbznf9As1pzz2+jpxzN3ecKaW06667pqKiovTmm2+mlL6cP/Xp0yetssoqjdZsp0+fnoYMGZJGjBjR6PHm3DRn3pz1wgsvbHGfjhiHL+oxVHPjx7322itFRPrDH/6QHnrooYZ9J02alMaNG9doHNmePpWupa1z7va83yj3OKTQemx7+4Z51lprrbT88sun+vr6Fp9Tu1hytLVddIY12vl17949HXjggW3ef97Y7rbbbmvY9vnnnzeZF1dXV6dvfOMbqby8PH300UcN2825v/5ae09HW+7ptvd9STneJ9LWNeO2vk9k3Lhxzb6miEg77bRTuv322xv1geYhS5aushZ19NFHp4hIDz/8cKPtP/rRj1JENGqXHX3fpStRfDGf733veyki0p577pkuv/zy9J3vfCdFRDr55JMb7ff888+nioqKNGrUqHTllVemU045JVVWVqbtttuu0X4PP/xws5OAeRPgPfbYI1177bXpgAMOSBGRzjnnnDYd56WXXprOOuusdMQRR6SISLvvvns666yz0llnndUwyBk/fnzq06dPOuKII9Ill1ySLrnkkrTTTjuliEg77LBDqqura8ibMGFC2nDDDdPZZ5+drrvuunTcccelbt26pVGjRjWZUB144IEpItL48eMbttXW1qaNN9449ejRI51xxhnp8ssvTyNHjkw9e/ZMr7/+epteE53TmDFj0k477ZTOPvvsdM0116Qf/ehHqaqqKvXu3bvZCXFtbW1aeuml08Ybb9xiZke2i5S+LA457LDD0hVXXJEuueSStNFGG6WioqL0hz/8odncO++8M0VEuuqqq1p8bu2ClFL6zne+k0pLS9MJJ5yQrr766rTJJpuk0tLS9MgjjzTab4sttmjyJvB5A/iBAwem888/P1188cVpueWWS4MHD27xxsM8EyZMSL17907dunVLl19+ebrxxhsb/XvppZcKPv7AAw9M3bt3b7K9rW1l/PjxKSKaTOzvvPPOVFRUlLbaaqt0zTXXpGOOOSYVFxen73//+wWPh6+Xtl6bc1xHJ0yY0PBcG220UYqIhv+f/zw+/fTT09prr51OPfXUdM0116QzzjgjDR06NBUVFaU//vGPjTK7deuWDjrooPSrX/0qXX755WmfffZJRUVFaZ111mnyBpeISFtssUWjbW0dQ/L11hX6i4svvjhFRBo9enST/W688cY0Y8aMhn0HDhyY9tlnn3Teeeela665Jp1wwgmpX79+qbKyMj3++OONjmHo0KFNJvzvvfde6t+/f1pppZXSb37zm3Tuueemvn37pjXXXLPNb4ana+sKbSKllP7whz+ks846K5188skpItKYMWMa+pUJEyY07KevoD2OPfbYFBFp1113bfZ6O88XX3yRunfvnr73ve+lX/3qV+mqq65KRx11VKqqqkr9+vVLb7zxRqPcRX1u/e1vf0sRkYYPH97scX788ccN+7ZnDNfWOcP111/f7E2feTf8DzvssHTttdemnXfeOUVEuummm1p9TXRe3/zmN9NWW22Vfv7zn6drr702nXXWWWnEiBEpItKvfvWrhv2mTZuWlltuuVRcXJx++ctfNjkvn3jiiUa5HdkudttttxQR6Xvf+16T/W6//fZGuS+99FJD/7LqqqumPn36NPz/3//+94b9zMXZYost0siRIxtt+/e//5369++fjjzyyPSb3/wmXXbZZemggw5KpaWlaYUVVkifffZZw745zqH2zCPaOmZqT1vTX5BSx80vUmr7NXyettx7+Kp5bXf+m/rzb9cvML/23OPryDn3sccem9Zff/2G9dlf/vKXaYMNNkgRkX74wx82yj377LNTRKRRo0aliy++OF144YVptdVWSxHRZC3XnJtHHnkkbb311um8885L1113XTr00ENTSUlJ2mGHHVJNTU2jfTtyHJ5jDNWc008/PUVEow9InH/7V9+I1dY+la6lrXPu9rzfKNc4pK3rse3pG1JK6ZVXXkkRkX7605+2+NzaxZKlre2io9doU0rp73//e0M7KC8vT6NGjWr4//nHVzfeeGP65je/mS666KJ0zTXXpD333DNFRDr00EMb5V1//fVppZVWSieddFK66qqr0rnnnpvWWGONFBHp3HPPbbKvOffXU1vf07Ew93Rbel/Son6fSHvWjNvzPpHmRESjwqP5t5uHLFm6wlrU66+/nrp375569OiRTj755HTVVVelffbZJ0VE2nbbbRsdT0fed+lqFF/Mp7q6Ov385z9PQ4cOTWVlZWnllVdOF198cbP7Pvroo2mTTTZJlZWVaamllkpHHXVUk0KFlt5knlJK11xzTVp11VVTeXl5WmmlldLFF1/cYlX1Vw0dOjRFRLP/5nVGX3zxRdp///3TyiuvnKqqqlJFRUUaOXJkOvfccxtVC6aU0uTJk9Nuu+2WlllmmVReXp6GDRuWTjrppGYr2Zvr9OZlHHLIIal///6pqqoqbbHFFo0qsuiaLrnkkrThhhumfv36pdLS0jRo0KC0//77N3zKzFfde++9KSLSb37zmxYzO7JdpPTlhGDttddO3bt3Tz179kxbb711o0/3+Kq99947lZWVFfz2De2ClL78BJCf/OQnaZlllkkVFRVpgw02SPfee2+T/ZobTKX05acC7LHHHqlXr16pR48eaZdddmmxrc1vXptq6V9Ln8o8T0uTnLa2lZYW1FL68pN11llnnVRRUZGGDBmSTj311CZ9EF9vbb0257iOFmob8w/+//nPf6Ztt902LbPMMqmsrCz16dMnbbfddunBBx9sknnooYem1VdfPfXs2bNhrNjSmKm5SUZKbRtD8vXWFfqLeW2yLe339NNPT+uvv37q27dvKi0tTYMHD0577713w6fvzq+54ouUUnr11VfTdtttl6qqqlKfPn3Sfvvt1+hNVHy9dYU2Mf/zN/dv/ptw+grao9B5Nf/5Pnfu3HTsscemtdZaK/Xq1SuVlZWloUOHpkMOOaTJ+CmlRX9uzbvh3JY2kFL7xnBtmTO0dGOvrq4unXvuuWno0KGpvLw8jRw5sk03Rejc/vSnP6VtttkmLb300qm0tDT17ds3bbPNNumOO+5otN+8uWhL/746R+3IdlFoXvTVsdG8872112QuTnPFF5MmTUqHHXZYGjFiROrevXsqLy9Pw4cPTz/60Y+avMkuxznUnnlEW8dM7Wlr+gtS6rj5RUptv4bP05Z7D1/V3uKLlPQLS7L23OPryDn3P//5z7TLLrukwYMHp7KystSzZ8/0jW98I11//fXN3iO86aab0oYbbpj69OmTunXrljbaaKNGn+A8jzk3b731Vtpuu+3SgAEDUkVFRRoxYkT6xS9+0ejT8efpyHF4jjFUc9pbfNHWPpWupa1z7va83yjXOKSt67Eptb1vSCmln/70pykimr2HMY92sWRpa7vo6DXalAr3GfPPhZ9++um0+eabp759+6bKysq09tprp6uuuqrJ2Oq5555Lu+66a1p22WVTeXl56tGjR9p0003Trbfe2uS5zbm/vtr6no6UFvyebnuKL1Ja8PeJtGfNuD3vE2lORNuLL1IyD/k66yprUa+//nraY4890nLLLdfQh/3kJz9pVMTd0fddupqilFIKAAAAAAAAAAAAAAAAmlXc0QcAAAAAAAAAAAAAAADQmSm+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUUNpRT7z1wz/uqKdeKLNryrJlD+k5JVv2rNrybNnT5lZmyy4rqcuW/eCYi7JlL4hhl/yqow9hwRTli079qrNlF39SkS07laVs2TmNP+b4jj6EJla8OF+7qM/YA5bOytcwUkm26EgZ23NWxfna3DvHdb52ceFr22fLnlWfb7xQVZzvmp5TTc5Gl1FFcU227B+vdn+27AU19Prz8oXnvDbW54suqarNll03K2MnmvPjATIO0d49+KR84QtoxT+fky8846Chvi7jOGpuvmt6cbd8ba4o43WoqChfw3h771OyZS+IYTefmy0759+ouDhfZ1FXl++imzK25Zx9c1HGucX4fX+WLXtBrXhRvjl3cW2+P1Rt93ztonhuxn4o4zinKGeby+id4zvfPYKRP704W3Z9xullydyumV3TI192xmFO1rnFf847Ll/4Atrpf4/p6ENYID3K8p28E6b2y5bdp3J2tuzSjGPL2vp8Hd0/t/x1tuwFtcKl+cZRWa9fOdeiMo6j6svz/VJyjtFyZk/4Yee6d7HFTud39CEskKxj9Iztrag+Z5vomnOi/73rxHzhC2jYTfnWouqr800uSirzvUen/vN89yFTj3zHnXO9qKgk38Vi/H6dcC3qT/naRU4512hTxvstdbX5Lrw520VxxuzOdt8iImK7jc7s6ENYIKkk37lbVJuxzZVmbBdd9Ljvf+K0bNkLavMHTujoQ1ggJRn7i0kzumfLHtJ7arbsmoyL4jV1+bL/d5sLWt3HN18AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGlHX0AXU2/brOyZT/z/PBs2TuMfilb9pu1S2XLnl1Tli17SVJUny+7viJly1729nx//w83z3fcWXXRw15QRbVF2bKLU75fZs3AmmzZUZzvuIunZrzmZrwOFWc8T5Y0ZUV12bJ7lMzJlv1pTa9s2VNru2XLXrbii2zZ9WnJqrEuKsl3bUw1+X6Xxd1qs2WXjM937tYtk7GfyznWydiHdkY5e8ei4nwde88ec7NlL9dnSrbstz/rny177tx8Y7T6+iVnHJUyvtaSsnxjqJrp5dmyc14oei41I1v2jClV2bJzniedUc45d31pvn63qCbjWkHG30nJnHzZNT3y9c1FS1i7SBlfbs412rn987W52uXzzecrx+Wbt5TMzhYddRm7585obl2+W4m9y/P9oV6btHS27JNW+2e27Ns/HZUtuz7jRa62fslqGMX5lnSivjzjPYC6jGOdlfPNAWo/yjcHKMr4O2HRKKrPuaaXc4yeb12526TqbNk13fP1+8W1S9b6bMrY75ZV5Vujr5lSkS17yw1fy5b96meDsmVPm1mZLbtm7pL1tr36nGOR0nyT7rpP8s1dSwflex/isgOmZMt+78N890TqlrD7eTnVl2W8zz0736Sorke++WXJjHzjqLru+e7nlczJOAnthHKuX+TMnlmd79wdPXhCtux/jc/3vvUeVfnWlntW5GvPbbFkvSsLAAAAAAAAAAAAAACgnRRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABpR31xLNryrJlr9rn02zZD720Wrbs6FGXLfr9WX2yZXcrrcmWvUQpyhddX5GyZZdNzVfDtfFpT2XL/ueNo7NlTx81J1t20eTybNmdUSrNd+7Wda/Plr30Q/m61/IZ+Y77i1Xytee5ffP9LXNe4zqj4qJ850CkkmzRX9R2z5a9ftX4bNkf1PTNlv1Zbc9s2WVF+caVnVGqzTiQKsl4/ZqTr839YLf7smX/ZeKobNkfT+yXLTvneLszqqvJ16/36TszW/bMl/OdA7U35bs2zvl+vmt6txWmZ8ueM3vJmV9UVlVny579Rbds2UNXmJQtu19lvrb84ssrZssu7Z9vzp3SktVZZJ1LZYwum56vj3v9+1dkyx521/ezZVd+kG+tfe7AJWtukXMqVdsjX3bfcfkaXe9T/p0t++1fbZwtOz7z2WOLygo9JmfLfvqj5bNl/2TE/dmyL7x0r2zZU9bNN27dbLU3smXXZlxX7IzqM95hL56bb0yac/w3dP9859cb5+dbi8q5XlS8BN1CTxm73eLqjJOLjG25+21PZ8ue9a2NsmWXT63Nll3XzfhsUan/MN9aVFXGtchnb18zW3ZRxktF9fCMF/Sc97c6oe49863rzXq3V7bsX+z0p2zZvzl572zZn66ebyGi9/r55olTp1Zly+6M6iryzaVKp+Vrc7OXy3dfbNry+QZpSz8+O1t2Sb5bLpEynidLmorSfOPdXhX52twj9+SbF//joPOzZe/2/A+yZferytee28LsBgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQQGlHPXGvijnZsl/4ZEi27KLafPUqw3/wdLbsv3/4YrbsEdcemS17112fzJbd6fSfmy16mbsrsmXv8rOHsmX/bMB/s2W/8r+rZ8teZpep2bLff335bNmdUSrJl93r9Xxd4FMXXJEte/vB62TLrqrId6347yVrZ8sunrVk1ZKuUP5ZtuzTXh2bLfuqtf+YLfvMFdfNlj3+F6OzZd+z7wXZsi/9bMts2Z1Rec/qbNnF/+mRLfvVH1yWLXunZfO1ix+8/mi27HNe+na27Fh+dr7sTijV5esfy0vrsmWXvZEtOurGvZktu75vr2zZMyd3y5ZdWlWbLbuzmfNBvuv5AVvmuy4+u1n/bNlzu1dly37n+auzZa//f47Ilp12+zxbdmdU+Wm+vmLTb/07W/aEDfP16Wd/a0S27JM2/Ue27GsvyTeXm7Ncvn6/M6rLtzQSpTPzZX++ZlG27Kcy3lvY+rvrZcsef2DKlt3nyYwnSic0tz7fIu30TzKO0TbMt4Z202VPZMseWJSvPW/x2kfZsn/z3zHZsjujoozdY9mMfGO07+1wX7bsE8a/nS17+8H57qF+eHu++4VzX++dLbuzqS/Ld+0qn5qvwdWnfO3tvoxjqBX/snG27BGXTs6WPX3NgdmyO6NUk+/8qhw2PVv24xtely17z2/nu+eWs82tcUm+90R12yzfmLUzmjunLFt2fe+abNkn/WvPbNmr/DXfewXPOP+VbNmHPvi9bNnlvfON/TqjVJqvvyieNitb9syBfbNlv3Daldmyc77naua3N8qW3eOdGdmyO6PPZ+S7f7Xf8OeyZd9w91bZsoednm8t6vD7j86W/YOrH86WfcM7+dpcWyxZ71YEAAAAAAAAAAAAAABoJ8UXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUsEiKL1JKiyIGAAAAAAAAAAAAAACg01kkxRcVFRUxbty4RREFAAAAAAAAAAAAAADQqZS2Z+cf//jHzW6vq6uLX/7yl9G/f/+IiLjooosW/sgAAAAAAAAAAAAAAAA6gXYVX/z617+OtddeO/r06dNoe0opxo0bF927d4+ioqJFeXwAAAAAAAAAAAAAAAAdql3FF+eee25cc8018atf/Sq22mqrhu1lZWVxww03xOqrr77IDxAAAAAAAAAAAAAAAKAjFbdn55/+9Kdxyy23xBFHHBE/+clPoqamJtdxAQAAAAAAAAAAAAAAdArtKr6IiNhggw3i+eefj0mTJsX6668fr776ahQVFeU4NgAAAAAAAAAAAAAAgA5XuiAP6tGjR/z+97+PP//5z7HNNttEXV3doj4uAAAAAAAAAAAAAACATmGBii/m2XvvvWPTTTeN559/PoYOHbqojgkAAAAAAAAAAAAAAKDTWKjii4iIIUOGxJAhQxbFsQAAAAAAAAAAAAAAAHQ6xR19AAAAAAAAAAAAAAAAAJ2Z4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACggNKOeuLJs6uyZa+79PvZsp98tl+27E+P2iRb9or3r5stu/96n2XL/u/0pbNldzqfVWSLnjSqKFv2717Jd94+sl+3bNlv/qZHtuz0Zvds2SX967Nld0apLGXLrsn3Z4rRL307W3bvh+Zky55+1XLZsiPynbvF1fmucZ3Rf+cMypZ9yCpPZMv+0+ejs2Wv9nxdtuz7Bl2ZLfvUT/P9TpavmJwtuzOqnl6eL3z56mzR6z67X7bslz78U7bslf91ULbsugE12bJjVodNfztESWVttuxPJ/XKlj1o30+yZd/3yxezZQ+/Md81vWL4tGzZs2dlvH52Nr3zXV/ufHeNbNlF++Rbhxpw9ZPZstd4Kl8fV7PtzHzZk/OtFXRGNb3zzbnvf2qtbNkDDsz3eUK3X5YtOqatnC+7aFi+7NLPyvKFd0Il+Yb/kTJ+FFbVh/nWRrY47LBs2VNH5hujV/0nW3TU9MyX3Rl9Mivf+H/X9V7Mlr3iXw7Plv3tF57Olv3XJzbMlv1Jzb+yZffrPitbdmeUSvONo2or82Vf84/tsmVfOTBfJ5quKsmWXfpmvuy6qnx/y86mdHa+e0Bz++VbuyiZm++4c94rHHZHvjWO6WsOzJZdNj3femVnVFSW7/yaNSPfe0u+8cyh2bJrbsl3zR12z/rZsmPlfG2uZmZltuzOqGZWvjWGFZaflC275uplsmXf9+GL2bJvmJbvml40N98iR6pfst7/UTInX/9YPSTf/YWB947Plr3mgCOzZS+7fr57bt0/mJ0tO0qWrHbRt3u+3+UTk1fMlr3iRu9ly743Y39x+qR8Y53fvZXvHnpHr0X55gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGlHfXE/brNypY9taYyW/boXV7Olv32tAHZstft9Vm27Jl15dmyP57ZK1t2p1PU0QewYOqml2XL3uSl6mzZbz+Q7xdeny05IpVkDO+Eiufk+zvNGVyXLTseXzpb9MzZ2aJj+jY12bJLpuU7eevLU7bszqiiON/f6aPqPtmyR/V4N1v2K7OGZMv+0UfrZ8tevmJytuziopy90RIm5euLpn3YM1v2KjcckS27blC+MVpWS9hHDxQXZ7wOlOZrFx9/1jtb9vA/5msX3Vadki179qyKbNlFxUvOOKqoNF+bmDKle7bsym2nZ8ue+a0Vs2XP+TzfWlF9Tb4Lekl5xnliJ1RXke8aUDIr399p0kb5/k6VS+WbdNdO6pYtu3huvt93UW0XXbRcQPUZ75iUzM2XXVuVL3viDvnOgW4fZIuO4tp82WkJm1sUFeXrLybM7J8te5dvPJ8t+2+vrZMte5XV38+W/dQXw7JlV5RkbHSdUFFdvmtjXVW+uUvWMcPkfPcLS6vz/b5ru+W7xmW8fHY69WX5/kalM/ON/+sq87WJ3rvmuycyZ7t+2bJLZ+e7BtWXL1mDqOKSrnkRqJ6bb1JU93G+eXHJwHwTrpzj4ZqMv+/OqKgs3zXm3Y/yzS36HvhFtuzhf8h336I+49pf6TIZ19Bqlqw3RhXNzTfWydnz1g4dmC17uRvezJZdPzTf+7noGqbNzffe8ulz8t3THXbvodmy+/SfkS27oizfelFNXcf2F0vW7AYAAAAAAAAAAAAAAKCdFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGlHfXEs2rKu2T2+9P7ZMuuLK3Nlj1pbo9s2ZNnV2XL7lZWky17SVLXrT5bdlF1UbbsW/+8ZbbsNDDj76Q+3+9kiZPxd1k8J1t0zO2f7/yanbE9l07ONyxIJdmio6guX3ZnNKOuMlv2oPIp2bI/q+2ZLXt4t0+yZc+tL8uWnVN9WsJqrHN2vSX5rrtRku/A65bPOI6uznhRX8JO3ZzqavP9nYqKU7bs4oztuWSFGdmyZ0ztli27uDTf75tFJOOfaO6cfGORDz4bkC27pGfGfijjNaiudsnqiIrnZrzoZvxVlszKF17/er411NKuObXIOp/vjIrzLdFHxul8FFfny+49Lt9JUN0rW3TknBYvaWtR5SX5XnB1Xb7z65UvBmfLHrncR9myZ9fm6zDqU8a15eKM6ydLmpRzjJZx8pLxsGurMt7Tq3VPb1Eorsk4T6vM16kXZbx0Td1z/WzZVR/nm3Pn/H0X1y5Za1wZu91IdRkHuxnnrr1WnJIte8bMfBOunOtFRUVLVrsoLsn3enP+Lid/mm/yWjwk3xtXevTIlz19Wr57IjnvQXVKGe8XF83NN59PFfnm83PXXD5bdsmcfIt/xTXmxYtKRcb3UdfV5+vXu1fkW6RdbdW3s2VPmpPvvsjsmi56Y6QNlqw7igAAAAAAAAAAAAAAAO2k+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAACihKKaWOPggAAAAAAAAAAAAAAIDOyjdfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfzOfNN9+MvffeO4YMGRJVVVUxYsSIOPPMM2PWrFmN9qupqYkzzjgjVlxxxaioqIgVV1wxzj777KitrW3zc/32t7+N1VZbLSorK2P48OFx6aWXtulxM2bMiNNPPz122GGH6NevXxQVFcUNN9zQ7L4HHXRQFBUVNfk3YsSIRvtNmDCh2f2Kioriz3/+c5uOa8qUKXHYYYfFUkstFd27d48xY8bECy+80KbH0nm1dA7N+/fBBx9ERMSsWbPi8ssvj+222y4GDRoUPXv2jFGjRsWVV14ZdXV1bX6+v//977HuuutGZWVlLL/88nH66ae3uV2dc845MXbs2Fh66aWjqKgofv7znze73worrNDi6xk+fHijfa+88sr4zne+E8svv3wUFRXFQQcd1ObXEhFRX18f559/fgwbNiwqKytjrbXWij/96U/tyqDrmDt3bpx00kkxePDg6NatW2y00UZx//33t/nxH3zwQey5557Rp0+f6NWrV+y2227xzjvvtPq49rS/9l7vx40bFzvssEP06NEj+vXrF9/97ndj0qRJbX5NC9Om6TraOjapr6+PG264IcaOHRvLLbdcdO/ePdZYY404++yzY86cOW1+vieeeCI23XTTqKqqimWWWSaOOeaYmDFjRpse29br+g033NBiW/n4449bzH/77bejsrIyioqK4rnnnmvTMekrliztGcu3ZEHH3QvSBtsyZ/n5z3/ebFuprKxs82tamHZN19cVxlARbZ9v/Pe//43jjjsuNtlkk4Y+YcKECW1+PRELPwaj6/jPf/4T3/nOd2LFFVeMqqqqGDBgQGy++eZx5513Nrv/rbfeGhtvvHH06dMn+vfvH1tssUXcfffdbX6+BR2fv/7663HiiSfGOuusEz179oxBgwbFzjvv3OJ4Z0Ha5WOPPdbQh3z22Wdtej0Le/2gc2pvu5inpqYmVl999SgqKooLL7ywzc+3ONaiIiIeeOCBGDNmTAwYMCD69OkTG264Ydx4441N9ps6dWqceOKJMXz48OjWrVsMHTo0DjnkkHjvvffadEzaxddTV1mjbU9/cfvtt8f2228fgwcPjoqKihgyZEjsscce8eqrrzabPX369DjxxBNj2LBhUVFREcsuu2zsscceTe7dNMe8e8nSUfOLiIh//vOfccghh8Qaa6wRJSUlscIKKzS7X3vWaK+99trYYostYumll46KiooYNmxYHHzwwe2aY5hzL7meffbZOProo2PkyJHRvXv3WH755WPPPfeMN954o80ZnW0dypyblrR33bWt50F7xvzNWZh+6W9/+1vstddeDXOjVVddNY4//viYMmVKk31buv99+OGHF3yO73//+1FUVBS77LJLm1+TNvT105H3LSIinnnmmTjyyCNjvfXWi7KysigqKmpx37bOmdvznpCWGEMt2f71r3+1eA499dRTbcpYHHOLiIi33nor9thjj+jbt29UVVXFpptuGg8//HCT/cwtaE57+oD2XK/nt7jX/o2hWNy6wlrUPG+//Xbsu+++MXDgwOjWrVsMHz48TjnllEb76C/arrSjD6CzmDhxYmy44YbRu3fvOProo6Nfv37x5JNPxumnnx7PP/983HHHHQ377r///vGXv/wlvve978X6668fTz31VJx22mnx3nvvxTXXXNPqc1199dVx+OGHx7e//e348Y9/HI8++mgcc8wxMWvWrDjppJMKPvazzz6LM888M5ZffvlYe+2141//+lfB/SsqKuK6665rtK13797N7rvPPvvETjvt1Gjb6NGjW3099fX1sfPOO8dLL70UJ5xwQgwYMCCuuOKK2HLLLeP5559v8+SFzucHP/hBbLPNNo22pZTi8MMPjxVWWCGWXXbZiIh455134oc//GFsvfXW8eMf/zh69eoV9913Xxx55JHx1FNPxe9///tWn+uee+6Jb37zm7HlllvGpZdeGq+88kqcffbZ8emnn8aVV17Z6uNPPfXUWGaZZWLUqFFx3333tbjfr3/96yYX83fffTdOPfXU2G677RptP++882L69Omx4YYbxkcffdTqMXzVKaecEr/85S/j+9//fmywwQZxxx13xL777htFRUWx9957tzuPzu2ggw6K2267LX70ox/F8OHD44YbboiddtopHn744dh0000LPnbGjBkxZsyYmDp1avzsZz+LsrKyuPjii2OLLbaIF198Mfr379/iYxek/bXlev/+++/H5ptvHr17945zzz03ZsyYERdeeGG88sor8cwzz0R5eXnB17SwbZquo61jk1mzZsXBBx8cG2+8cRx++OExcODAhrHWgw8+GA899FCrE/QXX3wxtt5661httdXioosuivfffz8uvPDCePPNN+Oee+5p9Vjbe10/88wzY9iwYY229enTp8X9jzvuuCgtLY25c+e2mj2PvmLJ0t6x/FctzLi7vW2wvXOWK6+8Mnr06NHw/yUlJW16TQvbrun6usoYqq3zjSeffDJ+85vfxOqrrx6rrbZavPjii+36fSzsGIyu5d13343p06fHgQceGIMHD45Zs2bFX//61xg7dmxcffXVcdhhhzXse+mll8YxxxwTO++8c/zyl7+MOXPmxA033BC77LJL/PWvf43dd9+94HMtzPj8uuuui9/+9rfx7W9/O4488siYOnVqXH311bHxxhvHvffe22jdYEHaZX19ffzwhz+M7t27x8yZM9v8+1uY6wedV3vaxfwuvfTSNhcozLO41qL+/ve/xze/+c0YPXp0Q+HqrbfeGgcccEB89tlncdxxx0XEl21h2223jddeey2OPPLIWGWVVeKtt96KK664Iu67774YN25c9OzZs+AxaRdfT11ljbY9/cUrr7wSffv2jWOPPTYGDBgQH3/8cfzud7+LDTfcMJ588slYe+21G/adOnVqbLHFFvH+++/HYYcdFiuvvHJMmjQpHn300Zg7d25UVVUVPC7z7iVLR80vIiJuvvnmuOWWW2LdddeNwYMHt3qsbVmj/fe//x3Dhg2LsWPHRt++fWP8+PFx7bXXxl133RUvvfRSq89jzr1kO++88+Lxxx+P73znO7HWWmvFxx9/HJdddlmsu+668dRTT8Uaa6xR8PGdcR3KnJuWtGfdtT3nQVvH/C1ZmH7psMMOi8GDB8f+++8fyy+/fLzyyitx2WWXxT/+8Y944YUXolu3bo32X2eddeL4449vtG2VVVZpMf+5556LG264oV0foqMNfT115H2LiIh//OMfcd1118Vaa60VK664YotFgu2ZM7fnPSHNMYZinmOOOSY22GCDRttWXnnlVh+3uOYWEydOjNGjR0dJSUmccMIJ0b1797j++utju+22iwcffDA233zzhn3NLWhOe/qAtl6v59cRa//GUCxuXWUt6sUXX4wtt9wyll122Tj++OOjf//+8d5778XEiRMb7ae/aIdESimlc845J0VEevXVVxttP+CAA1JEpMmTJ6eUUnrmmWdSRKTTTjut0X7HH398KioqSi+99FLB55k1a1bq379/2nnnnRtt32+//VL37t0bnqclc+bMSR999FFKKaVnn302RUS6/vrrm933wAMPTN27dy+Yl1JK48ePTxGRLrjgglb3bc4tt9ySIiL95S9/adj26aefpj59+qR99tlngTLpvB599NEUEemcc85p2DZp0qQmbSellA4++OAUEenNN99sNXf11VdPa6+9dqqpqWnYdsopp6SioqI0bty4Vh8/fvz4hmOJiHT66ae3/mL+n7POOitFRHr88ccbbZ8wYUKqr69PKaXUvXv3dOCBB7Y58/33309lZWXpqKOOathWX1+fNttsszRkyJBUW1vb5iw6v6effrrJdXT27NlppZVWSqNHj2718eedd16KiPTMM880bBs3blwqKSlJJ598csHHtqf9ted6f8QRR6Ru3bqld999t2Hb/fffnyIiXX311a0+fmHbNF1HW8cmc+fObXKdTSmlM844I0VEuv/++1t9rh133DENGjQoTZ06tWHbtddemyIi3Xfffa0+vq3X9euvvz5FRHr22WdbzZzn3nvvTeXl5enUU09t82P1FUue9ozlm7Mw4+72tMH2zFlOP/30FBFp0qRJbX4d81vYdk3X1lXGUCm1fb7x+eefp2nTpqWUUrrgggtSRDQ8ti0WdgxG11dbW5vWXnvttOqqqzbaPnz48LTBBhs0jGVSSmnq1KmpR48eaezYsa3mLsz4/LnnnkvTp09vtO2zzz5LSy21VPrGN77RaPuCtMsrr7wy9e/fPx177LFt7lMW9vpB19JSu5jnk08+Sb17905nnnlmu9Y4F9da1LbbbpsGDx6c5syZ07CtpqYmrbTSSmmttdZq2Pb444+niEiXXXZZo8f/7ne/SxGR/va3vxU8Hu1iydIZ12jb01805+OPP06lpaXpBz/4QaPtRxxxROrTp0965513Ws34KvPuJUtHzi9SSumDDz5I1dXVKaWUdt555zR06NBm91vYe3LPPfdcioj0i1/8otV9zbmXbI8//niaO3duo21vvPFGqqioSPvtt1+rj++M61Dm3LSkPeuu7TkPFub+88L2Sw8//HCTbb///e9TRKRrr7220fahQ4c2aUOF1NfXp9GjR6fvfe977XqsNvT11JH3LVL6ch4wa9aslFJKRx11VGrpbWwLO2du6T0hzTGG4uGHH25yXrfH4ppbHHnkkam0tDS9/vrrDdtmzpyZlltuubTuuuu2+jzmFrSnD2jr9Xp+HbH2bwzF4tRV1qLq6urSGmuskTbaaKOGdtwe+ovmFS9QxcbX0LRp0yIiYumll260fdCgQVFcXNxQYfboo49GRDT5RKS99947Ukpxyy23FHyehx9+OD7//PM48sgjG20/6qijYubMmXH33XcXfHxFRUUss8wyrb+g+dTV1TW8vtbMnDkzqqur25V/2223xdJLL93oUxaXWmqp2HPPPeOOO+5o16c/0/ndfPPNUVRUFPvuu2/DtgEDBsTIkSOb7Putb30rIr786qxCXnvttXjttdfisMMOi9LS//+FPEceeWSklOK2225r9bha+9qkQm6++eYYNmxYbLLJJo22Dx06tM1fk/ZVd9xxR9TU1DRq60VFRXHEEUfE+++/H08++eQCHy+dz2233RYlJSWNPoGzsrIyDjnkkHjyySebVIk29/gNNtig0acmjBgxIrbeeuu49dZbCz52Qdtfa9f7v/71r7HLLrvE8ssv37Btm222iVVWWaXVY1oUbZquo61jk/Ly8ibX2Yi29xXTpk2L+++/P/bff//o1atXw/YDDjggevTo0ep5GbFg1/Xp06dHXV1dwX1qamri2GOPjWOPPTZWWmmlNmfrK5Y8CzKWn9/CjLvb0wYXZM6SUopp06ZFSqnNr2dRtGu6tq40hmrrfKNfv36tfip5IQszBuProaSkJJZbbrkmX4E9bdq0GDhwYKOxTK9evaJHjx5NPqnpqxZ2fL7eeus1+najiIj+/fvHZptt1qSttLddTp48OU499dQ488wzC37D2Fct7PWDrqWldjHPT3/601h11VVj//33b3Pm4lyLmjZtWvTt2zcqKioatpWWlsaAAQMatd9C69MR0Wpb1y6WLJ1xjbY9/UVzBg4cGFVVVY3a+pQpU+L666+Pww47LIYNGxbV1dXtut9g3r1k6cj5RUTE4MGDo6ysrF3HvCD35Ob1Py31i/OYc7PJJps0+QTV4cOHx8iRI9t0Xe6M61Dm3LSkPeuu7TkPFub+88L2S1tuuWWTba2N66qrq9v0qdI33nhjvPrqq3HOOee0uu/8tKGvp468bxHx5Ry4tfluxMLPmVt6T0hzz2MMxfymT58etbW17XrM4ppbPProozFq1KhYddVVG7ZVVVXF2LFj44UXXog333yz4OPNLWhPH9DW6/U8HbX2bwzF4tRV1qL++c9/xquvvhqnn356dOvWLWbNmtXq+6Dmp79onuKL/2fehfeQQw6JF198MSZOnBi33HJLXHnllXHMMcdE9+7dIyIaJgZf7UzmfbX1888/X/B5/v3vf0dExPrrr99o+3rrrRfFxcUNP19UZs2aFb169YrevXtHv3794qijjmry9XrznHHGGdGjR4+orKyMDTbYIP75z3+26Tn+/e9/x7rrrhvFxY1Ppw033DBmzZrVpq+ZomuoqamJW2+9NTbZZJM2LTZ9/PHHEfHljb9CWmoXgwcPjiFDhizydvHV5x43blyjG5WLKrd79+6x2mqrNdq+4YYbNvycr49///vfscoqqzQaOET8/793oa++rq+vj5dffrnJ+T/v8W+//XZMnz693cdUqP21dr3/4IMP4tNPP23xmFo7fzuyTdP1tLWveOWVV6K2trbJeVVeXh7rrLNOlvNqzJgx0atXr4ZFqpYWqH7961/HF198Eaeeemq78vUVtFeOcXdzbXBB5iwrrrhi9O7dO3r27Bn7779/fPLJJ60+d0e0azqXrjaGym1hx2B0XTNnzozPPvss3n777bj44ovjnnvuia233rrRPltuuWXce++9cemll8aECRPi9ddfj6OOOiqmTp0axx57bMH8XOPzjz/+uFFbWZB2edppp8UyyywTP/jBD9r13Atz/aBraEu7iIh45pln4ve//338+te/bleh9eKct2655Zbxn//8J0477bR466234u23346zzjornnvuuTjxxBMb9lt//fWje/fucdppp8VDDz0UH3zwQTzyyCNx4oknxgYbbBDbbLNNq69Ju1gydLU12q/2F/ObMmVKTJo0KV555ZU49NBDY9q0aY3a+mOPPRZz5syJlVdeOfbYY4+oqqqKbt26xTe+8Y02ndPm3UuWzji/KKQ99+Q+//zz+PTTT+O5556Lgw8+OCKi2X5xfubcNCelFJ988kmb5rydeR1qQZhzE7F4z4Mc4/NC47qHHnooqqqqokePHrHCCivEJZdc0mzG9OnT46STToqf/exn7XrDvTZESxbX+4UWZs7cnveEGEMxv4MPPjh69eoVlZWVMWbMmHjuuedafczinFvMnTu32TfDF3oPo7kFi0tnWvs3hiKXrrIW9cADD0TElwVX88ZUVVVVsffee8fkyZObfYz+onWlre+yZNhhhx3irLPOinPPPTf+/ve/N2w/5ZRT4uyzz274/3nVoo8//ngMGzasYfu8b8T44IMPCj7PRx99FCUlJTFw4MBG28vLy6N///7x4YcfLvRrmWfQoEFx4oknxrrrrhv19fVx7733xhVXXBEvvfRS/Otf/2r49Kri4uLYbrvt4lvf+lYsu+yy8c4778RFF10UO+64Y/z973+PnXfeudXXtPnmmzf7/BERH374Yay55pqL7HXRce677774/PPPY7/99mt13+rq6vj1r38dw4YNa1Sd15yPPvooIv7/OTO/QYMGLdJ28VU33XRTRESbXlN7fPTRR7H00ks3ufE/f7vg6+Ojjz5q8fyNKPz3njx5csydO7fVx8//aQWtaan9tfV631qbnHfM839q5/w6sk3T9Zx//vnRq1ev2HHHHQvu19p5NW8stihUVVXFQQcd1FB88fzzz8dFF10Um2yySbzwwgux3HLLNez78ccfx1lnnRUXXnhhkwlVa/QVtFeOcXdzbbA9c5a+ffvG0UcfHaNHj46Kiop49NFH4/LLL49nnnkmnnvuuYLtYnG2azqnrjKGWlwWdgxG13X88cfH1VdfHRFfjtl33333uOyyyxrt85vf/CY+++yzOOaYY+KYY46JiC9vFDz44IMxevTogvk5xuePPvpoPPnkk42KT9vbLl9++eW4+uqr4x//+EeUlJS06/kX5vpB19CWdpFSih/+8Iex1157xejRo2PChAltzl+c89bTTjstxo8fH+ecc07DOnNVVVX89a9/jd12261hvwEDBsQtt9wS3//+9xvdxNh+++3jtttua/RNBM3RLpYcXWmNtrn+Yn4bb7xx/Pe//42IiB49esSpp54ahxxySMPP530IwsknnxwrrbRS/OEPf4ipU6fGGWecEVtttVX85z//afZ4539N5t1Ljs42v2jJgtyTW3bZZRs+HK5///7xm9/8JrbddtuCz2POTXNuuumm+OCDD+LMM89sdd/OuA61MMy5iVi850GO8fl5550XJSUlscceezTavtZaa8Wmm24aq666anz++edxww03xI9+9KP48MMP47zzzmu075lnnhndunWL4447rl3PrQ3RksX1fqGFmTO35z0hxlBEfDkO+fa3vx077bRTDBgwIF577bW48MILY7PNNosnnngiRo0a1eJjF+fcYtVVV41HH300pk+f3ujbwR577LGIaP49jOYWLA6dbe3fGIpcuspa1Lw11j333DN22GGHOPnkk+Oll16KX/ziFzFx4sR47LHHmqyf6i9ap/hiPiussEJsvvnm8e1vfzv69+8fd999d5x77rmxzDLLxNFHHx0RETvttFMMHTo0fvKTn0RVVVWst9568fTTT8cpp5wSpaWlMXv27ILPMXv27CZf8TpPZWVlq49vj1/84heN/n/vvfeOVVZZJU455ZS47bbbYu+9946IiOWXXz7uu+++Rvt+97vfjdVXXz2OP/74VosvZs+e3WwHUFlZ2fBzvh5uvvnmKCsriz333LPVfY8++uh47bXX4u6772715vC8c6Sl82jeV0guavX19fHnP/85Ro0a1eTTzxaWdrFkWZi/d2vnf2uPb05L7a+t1/u2HlNLg/+OatN0Peeee2488MADccUVV7T6VZOtnVeL8rq65557NurrvvnNb8b2228fm2++eZxzzjlx1VVXNfzspJNOihVXXDEOPfTQdj+PvoL2WtTnTEttsD1zlq9+2vq3v/3t2HDDDWO//faLK664In7605+2+PyLs13TOXWVMdTisrBjMLquH/3oR7HHHnvEhx9+GLfeemvU1dVFdXV1o32qqqpi1VVXjSFDhsQuu+wS06dPj4svvjh23333ePTRR2PllVduMX9Rj88//fTT2HfffWPYsGGNPrW/ve3ymGOOiR133DG22267dj3/vBzjqK+3trSLG264IV555ZW47bbb2p2/OOetFRUVscoqq8Qee+wRu+++e9TV1cU111wT+++/f9x///2x8cYbN+y71FJLxahRo+Loo4+OkSNHxosvvhjnn39+HHzwwfGXv/yl1dekXSwZusoabUv9xfyuv/76mDZtWrzzzjtx/fXXx+zZs6Ourq7hU3PnfYt3UVFRPPjgg9GjR4+IiBg1alSMHj06Lr/88kYfntXca9IulhydbX7RkgW5J3fPPffEnDlzYty4cfHHP/4xZs6c2erzmHPzVfO+PW/06NFx4IEHtrp/Z1yHWhjm3EQs3vNgUbehm2++OX7729/GiSeeGMOHD2/0s/k/XDTiy09q33HHHeOiiy6KH/7whzFkyJCIiHjjjTfikksuiT/96U/tfo3aEC1ZnGPuBZkzt/c9IcZQRERssskmsckmmzT8/9ixY2OPPfaItdZaK04++eS49957W3zs4pxbHHHEEXHnnXfGXnvtFeecc0507949rrjiioZv6GjuecwtWBw609q/MRQ5dZW1qHlrrBtssEH88Y9/jIgv39dRVVUVJ598cjz44INNvkVMf9E6xRf/z5///Oc47LDD4o033mi4cO6+++5RX18fJ510Uuyzzz7Rv3//qKysjLvvvjv23HPP+Pa3vx0RX54s559/fpxzzjkNi/8t6datW5MbhfPMmTOn2a8DW5SOO+64OO200+KBBx5oKL5oTr9+/eLggw+OX/7yl/H+++83/E6a061bt4Yqp/nNmTOn4ed0fTNmzIg77rgjtt9+++jfv3/BfS+44IK49tpr46yzzoqddtqp1ex550hL51Guc+iRRx6JDz74oN1VqW2hXSxZFubv3dr539rjv6q97a+56/3CHlNHtWm6lltuuaXhEy2POOKIVvfv6PNq0003jY022qjh6/giIp566qm48cYb48EHH2zydcptoa+gvRblOVOoDS7snGXfffeN448/Ph544IGCxRcd3a7peF15DJXDon5NdB0jRoyIESNGRETEAQccENttt13suuuu8fTTTzd80sx3vvOdKC0tjTvvvLPhcbvttlsMHz48TjnllLjllltazF+U19uZM2c2FH889thjjdbB2nMO33LLLfHEE0/Eq6++2ubnnp9x1Ndfa+1i2rRpcfLJJ8cJJ5zQ6Jvp2mpxjkOOPvroeOqpp+KFF15omDfsueeeMXLkyDj22GPj6aefjoiId955J8aMGRN/+MMfGtadd9ttt1hhhRXioIMOinvuuafgNwZqF0uGrrJGW6i/mN/839609957N7wZ6sILL2x0TLvuumujjI033jiGDRsWTzzxRKuvSbtYcnSm+UV7tXZPbsyYMRERseOOO8Zuu+0Wa6yxRvTo0aPhg+OaY87N/D7++OPYeeedo3fv3nHbbbe16dNnu8o6VFt1dDunc1ic58GibEOPPvpoHHLIIbH99tvHOeec0+r+RUVFcdxxx8V9990X//rXv2L//fePiC8/SGeTTTZpmG+0hzZESxbXmHtB58ztfU+IMRQtWXnllWO33XaLv/3tb1FXV9fieGpxXi933HHHuPTSS+OnP/1prLvuug3Hec4558SJJ57Y7Fzc3ILcOtPavzEUuXWVtah5Ofvss0+j7fvuu2+cfPLJ8cQTTzQpvtBftK797xL7mrriiiti1KhRTRY0x44dG7NmzYp///vfDdtGjhwZr776arz66qvx6KOPxocffhjf//7347PPPotVVlml4PMMGjQo6urq4tNPP220vbq6Oj7//PMYPHjwontRzejWrVv0798/Jk+e3Oq+825ctrbvoEGDGr4yZn7ztuV+TSwe//M//xOzZs1q9asYb7jhhjjppJPi8MMPb/Hr5L9q3lcNtXQe5TqHbrrppiguLm7SsSwKgwYNio8//jhSSo22axdfTwtzHezXr19UVFQskuvogrS/iKbX+9ba5LxjbklHtWm6jvvvvz8OOOCA2HnnnRt9i0QhneG8Wm655RqNi0488cTYbLPNYtiwYTFhwoSYMGFCfPbZZw3H9N577xXM01fQXotq3N1aG1wUc5avtpfmdIZ2Tcfq6mOoRW1hx2B8feyxxx7x7LPPxhtvvBERX95cvvfee2Ps2LGN9uvXr19suumm8fjjjxfMW1TX2+rq6th9993j5ZdfjjvuuCPWWGONJsfT1nZ5wgknxHe+850oLy9vGEdNmTIlIiImTpzY6leHW4ta8ny1XVx44YVRXV0de+21V8M59P7770dExBdffBETJkxo8U18EYtvHFJdXR2//e1vY+edd25UsF1WVhY77rhjPPfccw3HecMNN8ScOXNil112aZQxr+23pa1rF19/XWGNtrX+oiV9+/aNrbbaKm666aaGbfOec+mll26y/8CBA+OLL74omGnevWTpLPOLBdXWe3IrrbRSjBo1qlFbaY45N/NMnTo1dtxxx5gyZUrce++9bf7bd6V1qLYw5yZi8Z4Hi6oNvfTSSzF27NhYY4014rbbbmvzt7V+tV956KGH4t57741jjz22YQ41YcKEqK2tjdmzZ8eECRMKftOZNkRLFtdcdEHnzO19T4gxFIUst9xyUV1dXfDTvxf33OLoo4+OTz75JJ544ol47rnn4vXXX4/evXtHRLT6HkZzC3LoLGv/xlAsDl1lLaqlNdaBAwdGRLS6xqq/aJ7ii//nk08+ibq6uibba2pqIiKitra20faioqIYOXJkbLrpptGvX794+OGHo76+vkkF0Fets846ERENX/E1z3PPPRf19fUNP89l+vTp8dlnn8VSSy3V6r7vvPNORESr+66zzjrxwgsvRH19faPtTz/9dFRVVbU6mKNruOmmm6JHjx5N3uwxvzvuuCMOPfTQ2H333ePyyy9vc3ZL7eLDDz+M999/P0u7mDt3bvz1r3+NLbfcMsuFfZ111olZs2bFuHHjGm2f92mGuds6i9c666wTb7zxRpMBdVv+3sXFxbHmmms2Of/nPX7FFVeMnj17tnoMC9r+Ippe75dddtlYaqmlmj2mZ555ptXztyPaNF3H008/Hd/61rdi/fXXj1tvvbXNk9w11lgjSktLm5xX1dXV8eKLLy6W8+qdd95pNC5677334n//939j2LBhDf9OOOGEiPhysXettdYqmKevoL0Wxbi7LW1wYecsKaWYMGFCq/OIztCu6VhdfQy1qC3sGIyvj3lfuzt16tSI+HLNKiJaXLf66prVVy2K8Xl9fX0ccMAB8eCDD8bNN98cW2yxRZN92tMuJ06cGDfffHOjcdQll1wSERHrrrtuq5/QvjDXD7qmr7aL9957L7744osYOXJkwzm02WabRUTEueeeG8OGDYvXXnutxbzFNW/9/PPPo7a2tsX2W19f3/CzTz75JFJKTfZtaX36q7SLJUNnX6NtS39RyOzZsxvaeUTEeuutFxERH3zwQZN9P/zwwzbduzDvXnJ0hvnFwmjrPbmIpm2lOebcRHz5yZK77rprvPHGG3HXXXfF6quv3ubHdpV1qLYy5yZi8Z4Hi2J8/vbbb8cOO+wQAwcOjH/84x8tfptYc77ar8z7sKjdd9+90Vz8gw8+iIceeiiGDRsWv/vd71rM04ZoyeJ6v9CCzJkX5D0hxlAU8s4770RlZWXB63FHzC26d+8eo0ePjvXWWy9KSkrigQceiG7dusU3vvGNVh9rbsGi1hnW/o2hWFy6ylpUS2us84qhrEUtoERKKaVddtkllZeXp//+97+Ntn/zm99MxcXF6YMPPmjxsbNmzUrrrrtuGjRoUJo2bVrD9pkzZ6Zx48alSZMmNdq3X79+aZdddmmUsf/++6eqqqr0+eeft/mYn3322RQR6frrr2/ys9mzZzc6lnlOOOGEFBHpb3/7W8O2Tz/9tMl+77//furbt29aa621Gm3/8MMP07hx41J1dXXDtj//+c8pItJf/vKXhm2TJk1Kffr0SXvttVebXw+d16effppKS0vTd7/73Rb3eeSRR1JlZWUaM2ZMmjNnTov7VVdXp3HjxqUPP/yw0fYRI0aktddeO9XW1jZsO/XUU1NRUVF67bXX2nyskyZNShGRTj/99IL7/e1vf0sRkX7729+2Kbd79+7pwAMPbPZnU6ZMSePGjUtTpkxp2DZx4sRUVlaWjjrqqIZt9fX1abPNNkvLLrtso9dJ1/fUU0+liEgXXHBBw7Y5c+aklVdeOW200UaN9n333XfTuHHjGm375S9/mSIiPfvssw3bXn/99VRSUpJOOumkVp+/re2vPdf7ww8/PHXr1i299957DdseeOCBFBHpyiuvbNiWu03TtRQam6SU0muvvZb69++fRo4cmSZPnlwwa9y4cendd99ttG2HHXZoMt667rrrUkSke+65p13HWui63lxbufvuu1NEpGOOOaZh23333Zduv/32Rv9++MMfpohIF154Ybrrrrsa9tVX8FWttZcc4+62tsH2zFmaay+XX355ioh00UUXNdqeu13T9XSVMdT82jrfSCmlCy64IEVEGj9+fLM/f+utt9Jbb73VaFtbx2B8PXzyySdNtlVXV6d11103devWLU2fPj2l9OW1tri4OG255Zapvr6+Yd+JEyemHj16pB122KHR43OMz4888sgUEenqq68uuF9b2+VXx1C333572muvvVJEpD/84Q/poYceath30qRJady4cWnmzJkN29pz/aBraWu7eP7555ucQ1dffXWKiHTQQQel22+/vWHs3ZFrUbW1talPnz5plVVWSXPnzm3YPn369DRkyJA0YsSIhm0XXnhhs+PDX//61yki0p///OdGz6ldLHm6whptW/uL5tr6+PHjU8+ePdNmm23WaPvaa6+devXq1eg+y3333ZciIp1//vkN28y76ej5xfx23nnnNHTo0GZ/1tY12pqammbn7k8//XQqKSlpci0w5+aramtr09ixY1NpaWm6++67C+7bVdah5mfOTUtaW3ddkPOgtfWgHOPzjz76KK244opp8ODBLZ7nKaX0+eefNxnTVFdXp2984xupvLw8ffTRRymlL/u+5ubiSy21VFp//fXT7bff3qjNaENLpo64bzG/o446KrX0Nrb2zJnnact7QoyhaE5zY/YXX3wxlZWVpbFjxzba3pFzi+Y8/vjjqaSkJB199NEN28wtaIvW+oD5Fbped/TavzEUi1NXWYv66KOPUkVFRdp0001TXV1dw/aTTz45RUR65plnUkr6i/YqSukr37e8hPrf//3f2GqrraJ///5x9NFHR//+/eOuu+6Ke+65Jw499NC49tprG/bdc889Y/DgwbH66qvHtGnT4ne/+1288847cffdd8fWW2/dsN+//vWvGDNmTJx++unx85//vGH7FVdcEUcddVTssccesf3228ejjz4af/jDH+Kcc86Jn/3sZ60e62WXXRZTpkyJDz/8MK688srYfffdY9SoURER8cMf/jB69+4dEyZMiFGjRsU+++wTI0aMiIiI++67L/7xj3/EDjvsEHfffXfDV90ffPDB8fbbb8fWW28dgwcPjgkTJsTVV18d06dPj/vuuy+23HLLhuc+6KCD4ve//32MHz8+VlhhhYj48pMXN91003j11VfjhBNOiAEDBsQVV1wR7733Xjz77LOx6qqrLuifhU7isssuix/+8Idx7733xvbbb9/k5++++26svfbaUV1dHRdeeGH06tWr0c/XWmuthk//njBhQgwbNiwOPPDAuOGGGxr2ueuuu2Ls2LExZsyY2HvvvePVV1+Nyy67LA455JC45pprWj3GG2+8Md59992YNWtW/OIXv4gxY8bEVlttFRER3/3ud2Po0KGN9t9jjz3irrvuik8++aThK/e+6s4774yXXnopIiLOOuusGDlyZOy+++4R0fgTzW+44YY4+OCD4/rrr4+DDjqo4fEnnnhiXHDBBXHYYYfFBhtsEP/zP/8Td999d9x0002x7777tvqa6Fr23HPPuP322+O4446LlVdeOX7/+9/HM888Ew8++GBsvvnmDfttueWW8cgjj8T83e/06dNj1KhRMX369PjJT34SZWVlcdFFF0VdXV28+OKLBStM29P+2nO9nzhxYowaNSr69OkTxx57bMyYMSMuuOCCGDJkSDz77LMNX3uXq03TtbRlbDJ9+vQYOXJkfPDBB3HuuefGsssu2yhjpZVWitGjRzf8f1FRUWyxxRbxr3/9q2HbCy+8EJtsskmsvvrqcdhhh8X7778fv/rVr2LzzTeP++67r9XjbOt1ffjw4TFq1KhYf/31o3fv3vHCCy/E7373uxg0aFA8++yzTb6Kb37z+oRnn3021l9//Sbb9RW0pb1ELPpxd3vbYFvnLFVVVbHXXnvFmmuuGZWVlfHYY4/Fn//851h77bXj8ccfj6qqqoZ9c7Rrur6uMIaKaPt8Y+rUqXHppZdGxJdfdX/vvffG8ccfH3369Ik+ffrE0Ucf3ZA5r21PmDChYVtbx2B8PXzrW9+KadOmxeabbx7LLrtsfPzxx3HTTTfF66+/Hr/61a/ixz/+ccO+3//+9+O6666LMWPGxO677x7Tp0+PK664Ij766KN46KGHGtpLjvH5r3/96zjuuONi9OjRceSRRzb7Orp37x4RC9cuf/7zn8cZZ5wRkyZNigEDBjTZ/vDDDzeas7T1+kHX0p528VXzzv8LLrggfvKTnzTZ3lFrUeecc06ceuqpMWrUqDjggAOirq4ufvvb38a4cePij3/8Y+y3334R8eW3ZKyxxhoxefLkOPzww2PkyJHxwgsvxHXXXRcjRoyIF154IcrLyyNCu1hSdfY12vb0F0svvXRsvfXWsc4660Tfvn3jzTffjN/+9rcxa9asePDBB2OTTTZpeNzDDz8c2267bay88srxgx/8IKZOnRoXXXRRDBo0KJ5//vmGTy807yai4+YXEREvv/xy/P3vf4+IiD/+8Y/xySefxPHHHx8REWuvvXbsuuuuEdH2NdopU6bEkCFDYq+99oqRI0dG9+7d45VXXonrr78+Kisr46mnnorhw4c3PL85N1/1ox/9KC655JLYddddY88992zy8/3337/hv7vKOpQ5N4W0dd21PedBW8f8Ocbn66yzTrz00ktx4oknxpprrtnoZ0svvXRsu+22EfHlGOjss8+OPfbYI4YNGxaTJ0+Om2++OV599dU499xz4+STTy74PCussEKsscYacddddzXZHqENLSk66r5FxJfzmBtvvDEivpyPPP3003HWWWdFRMTQoUPju9/9bkS0b848T1veE2IMRXO22mqr6NatW2yyySYxcODAeO211+Kaa66JsrKyePLJJ2O11VZr2Lcj5xbvvvtu7LnnnjF27NhYZpll4j//+U9cddVVMWLEiHjkkUcaPjHd3IJC2toHtPV63ZzFufZvDMXi1hXWoiK+fI/U//k//ye23Xbb+OY3vxkvvfRSXHvttbH33nvHzTffHBH6i3brwMKPTufpp59OO+64Y1pmmWVSWVlZWmWVVdI555yTampqGu133nnnpREjRqTKysrUt2/fNHbs2PTvf/+7Sd7DDz/c4icgXHPNNWnVVVdN5eXlaaWVVkoXX3xxo08vLGTo0KEpIpr9N69i74svvkj7779/WnnllVNVVVWqqKhII0eOTOeee26jKvSUUrr55pvT5ptvnpZaaqlUWlqaBgwYkL71rW+l559/vslzH3jggc1+isjkyZPTIYcckvr375+qqqrSFlts0agii65t4403TgMHDmzxk8Dmnest/Zu/DYwfPz5FRLOfNn777benddZZJ1VUVKQhQ4akU089tcn52pItttiixed/+OGHG+07derUVFlZmXbfffeCmfPO9+b+zV/pe/311zdb/VtXV5fOPffcNHTo0FReXp5GjhyZ/vjHP7bp9dD1zJ49O/3kJz9JyyyzTKqoqEgbbLBBuvfee5vsN+9c/aqJEyemPfbYI/Xq1Sv16NEj7bLLLunNN99s9Xnb0/7ac71PKaVXX301bbfddqmqqir16dMn7bfffunjjz9utE+uNk3X0paxybxzpaV/Xz2HIiJtscUWTZ7r0UcfTZtsskmqrKxMSy21VDrqqKOa/bav5rT1un7KKaekddZZJ/Xu3TuVlZWl5ZdfPh1xxBFNzv/mzOsTvjoO0lcwT1vaS0qLftzd3jaYUtvmLIceemhaffXVU8+ePVNZWVlaeeWV00knndRsu8zRrun6usIYav7nb22+UaitffXTRoYOHdrsJ5C0ZQzG18Of/vSntM0226Sll146lZaWpr59+6Ztttkm3XHHHU32rampSZdeemlaZ511Uo8ePVKPHj3SmDFjGn1KVEp5xueFxlDN9VUL2i5PP/30FBGNPtl8/u1fndu39fpB19KedvFV887/+T9lav7tHbkWddNNN6UNN9ww9enTJ3Xr1i1ttNFG6bbbbmuS+f7776fvfe97adiwYam8vDwNGjQoff/739cuSCl1/jXa9vQXp59+elp//fVT3759U2lpaRo8eHDae++908svv9xs9v3335823njjVFlZmfr165e++93vNnwC4Tzm3aTUcfOLlP7/OdjanLuta7Rz585Nxx57bFprrbVSr169UllZWRo6dGg65JBDmv30TnNuvqrQWOWr539XWYcy56aQtq67ptT286CtY/4c4/NCbWj+6/1zzz2Xdt1117Tsssum8vLy1KNHj7TpppumW2+9tc2/t5133rnZ7drQkqOj7lukVHge89WxTVvnzCm1/T0hxlA055JLLkkbbrhh6tevXyotLU2DBg1K+++/f7Nzg46cW0yePDnttttuaZlllknl5eVp2LBhzd6jM7egkLb2Ae25Xn/V4lz7N4ZicesKa1EpffltwJdeemlaZZVVUllZWVpuueWarPvqL9rHN18AAAAAAAAAAAAAAAAUUNzRBwAAAAAAAAAAAAAAANCZKb4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABRQ2lFPvPKtZ3XUUy+U2rn5fmV9+s7Mll1TV5Ite27G30lOb+15WkcfQiNDf3deRx/CgslYwtWn/4xs2VM+7pktO0pSvuyMv+93DzopX/gCWvGiX2XLri/LFh2ls4uyZaecZZMZT92sx53RO8f/uKMPoYlf/GenbNk1Kd94oaK4Jlv23JwNuovK+fs+afV7s2UvqJxzi6J8l/SsKioytrm5+dpcytgX5fxbvvmdzjW3iOi6c+662nx9UarPdxIUZ5wDFBfXZ8uOonzH3enm3Ndc0NGHsGByzi9rumgnl1POOfdhJ+QLX0Ar/uncbNl1czPOLXrMzZZdPas8W3ZpRW227NrqfL/vouJ816Hx+/0sW/aCWvcHF2XLrs/3Z4qS6nzZpXPynQNze2Ucn9Vli47IODx74drOtxZ15qu7dvQhLJCyonwnwTuzB2TLXqZiWrbsnL+TnOuKZ635P9myF1RXXYuqr8s34K3LOB4pLst34S0uydlh5NPZ5tzbfOPsjj6EBVPcNefFRTX5zttUknFinPH3/cCjp2TLXlDr35NvvjOnJt97dMoyXhdnzanIll1Znu+eSM712ZKMc+7ndsy37rOg1vtH52urbVGasV3UZnw/X33GpeWcykrytblndvhFtuwFtePKnW/duC1yjhmKavKto6ayfH1oVz3ue//b+d6zevjz382WXZNxkbaiON858PGcfO91HVI1JVt2bcbfd33km19ctd6Nre7TRd8KCQAAAAAAAAAAAAAAsHgovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQQGlHH0BXM3Cpadmypz86MFv24G0mZst+d1LfbNm1c52inV1RSX227O439s6WPWWblC07ijNm5/t1d0pFtUXZsnP+mWr61uYLz1g2WTyzJFt2UcZfSVFdvvOkM6pJ+f5OZUV1XTJ7bpRly55a2y1bdu/S2dmy69OSVWNdWpqvg6yem+/8qqiszpY9491846iyZWZly46Use/POG7tjIoydo9FRfkGUj165Tu/+lblu+5+Mq1ntuzq6nx9f339EtRf5LwElOZrE0Vz8v2Ncs63Ut+abNkxM+NaUcbD7ozqa/KdXyUV+cb/KeN4obwq3/hs7uR8c4uSXvmOO+d5ssTJOD6bMyBf+Oyl8/Vzvd7KFh3F+ZpF1FXky+6MptdVZsseVD4lW/ZzU1fIlv3r5e7Oln391LWyZedcn/usJt+cqDOqr8u4RluebzG9LuMcYPUVPsyW/eYnS2XLrq/LN9ZZ0taicimqy/d7zHnvqq4i33WiZG7G60RVebbsopp8/dCSpmfl3GzZ02bnG/uNWeHNbNn/nZrv/VY5Tcn4++6M6urzjUVKMr4B5LMv8o11B/bL9z7EQd3zZb/xeb7xGYtOKsl4f6Em33gkVeW7NhbNmpMtO1VkHEfNzbjQ1QnV1OcbS8/NmP1Fdb57ACN7fZQt+7FJK2XL7l2e7/58/4qM71tpA3dOAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFlHbUE9fOzffUKw2ZlC178i1DsmUPueaJbNkT11sjW3Z9XUm27Mru1dmyO52MpVBFJfX5sr8oz5Z98Fn/ky37oht3z5ZdvtHkbNlTPu+RLbszSmUpW3ZdVb520f/ZfH1c6ex8v5PabkXZsqetnC066kvz/U46o4rimo4+hAXyaXWvbNnf7PN8tuwnZg3Plj23vixbdnFRvmtcZ1Rbm28gVVxSly27JOMY7aqdf5st+3efbJYt+/l3l8+WvaSprc43T+vTZ2a27Bkv9c+WPfCv07Jlz90rXz/XY7UvsmXPnFWRLbvTqczYN87J1w8V9cm3LjJqhYnZsv/9fL4JQH3Ov2X5kjW3KK2ozZZdVJzvd1n/bvds2c/te1G27J1e3S9b9kdvL5Utu2rQjGzZnVLGS0xdZb51l/7/ybdWUHH+s9my3z1jk2zZPd7Ldx1K+YbandLIbu9ny3506qrZsg9e+tFs2d/4w0+yZfdY6/Ns2d9d8Zls2T1L5mTL7oxKSvOtF9VU57u/kPO408H57hfWnpnvwltanu93UluzBHUYxfnGOZHvTxQp42EXP/ZituzqrdbLll06I986RH35EtQmIqKmNt/rnTwl33sGqrrn69PveX6tbNlRke9i0b13vt9JfX3GC1En1Ldqdrbs9z/vky37p6PuzZZ92aX53rv0wur51otWWu3DbNmfz6zKlt0ZpbJ84/+iWRmvX/3z3Rebsnq+7L53vZYtu2hAv2zZOc+TzqisOOMkIKNN+o/Lln3FG5tny355wz9ly979rW2zZVcU57vH1Ra++QIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUEBphz1xRW227LffXypb9qApKVt22b8GZct+bZU/Zsse/ZPDs2X3P+zjbNmdTY++s7JlV9zVO1v2pkc+my37kN75/v5//t98v+/lx76fLfvR/6yZLbszSiX5snu9nq8LfO7MK7Jlbz94nWzZUVSULfrzKzfIll0yY8mqJV2qdHq27OsmbJote90BE7NlnzYs3/n15u/XzZb9u01vyJZ955R1smV3Rj2q5mbLnvp232zZL+91VbbsnP3FPq+/mi376ddXzJbdLeN50hmllK9fz5ld+VnG4/73f7Jlxz6js0VPnVqVLbss49pMZ1P2cVm27PW3eD1b9tS9u2fLfu2AVbJlv31UvjnR6OPzrUNN2nVOtuzOqO7jbtmy/7BbvnPgzL3yjdHHPnpstuzHr74mW/aIp4/Mll2+3JLTV0RE1Jfnyy6Zk+/ewpQV8/VzL374YrbsjU/YOFv2Z+vkG1cOfD7f37IzmlzXI1v2f6cMzJa99XJ12bJXOOXJbNklvXply97+5deyZZ/1wc7Zsjuj+rp8a9L1n+frjN7a4+ps2TWP5Wtzuyy7XrbspZ7oky378f+ulC27s0ml+frdkqk12bKjJN9x35NxDLXWrzbJlr3czR9ky547YnC27M6ouLg+W/bgAVOyZf/vmrdny8553+Kv7z+VLXvNO4/Jlr326u9my+6MZlbnG+eUl+dbv7jirc2zZQ+84ols2Ze980K27CNf3i9bdrfyjH1/Z1Sa741RacbMbNlzRuZ7n+uTF2a8h37zOtmy69ZdOVt2xYTPsmV3Ru9M758t+6Bl8113f/7SLtmyh+75SrbsnUbulS37l3f/Plv2z9/bNVt2WyxZ71YEAAAAAAAAAAAAAABoJ8UXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABZQuzINnzpwZt956a7z11lsxaNCg2GeffaJ///6L6tgAAAAAAAAAAAAAAAA6XLuKL1ZfffV47LHHol+/fjFx4sTYfPPN44svvohVVlkl3n777TjrrLPiqaeeimHDhuU6XgAAAAAAAAAAAAAAgMWquD07v/7661FbWxsRESeffHIMHjw43n333XjmmWfi3XffjbXWWitOOeWULAcKAAAAAAAAAAAAAADQEdpVfDG/J598Mn7+859H7969IyKiR48eccYZZ8Rjjz22yA4OAAAAAAAAAAAAAACgo7W7+KKoqCgiIubMmRODBg1q9LNll102Jk2atGiODAAAAAAAAAAAAAAAoBMobe8Dtt566ygtLY1p06bFf//731hjjTUafvbuu+9G//79F+kBAgAAAAAAAAAAAAAAdKR2FV+cfvrpjf6/R48ejf7/zjvvjM0222zhjwoAAAAAAAAAAAAAAKCTWKjii6+64IILFupgAAAAAAAAAAAAAAAAOpvijj4AAAAAAAAAAAAAAACAzkzxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFBAaUc9ce3cfE89ZJkvsmUXzxiQLbvumN7Zstfc/shs2TO3n5Mte8YXfbNldzYzvqjKlj1z3fps2e9kbBPbD14nW/b4m7NFx7sTVsyWXdO/Nlt2Z5RKUrbs6oyXl5FP7pcte+jD+fq4j/6yQrbsouq6fNl1RdmyO6NPavKNF3Yb8lK27Ilz+mXLXv7p7tmy71vud9myj/9o3WzZfctmZcvujGbMrMyWXbLM7GzZu7+1bbbsmyb+T7bszZ/+QbbssqqabNlzZpdny+6MSsvy9b3TZnTLll2x2dRs2fed+GK27GF3bpAtu3uPudmyqzOuzXQ2NX3ytYmn31khW3afnfL1ccud80S27BWHH5ItO22bcV48ZcnqK1LffP3u9549KFt2z0Pzjf+nrpwtOlb+10HZsuuWq86WXf1Fvt93Z1Sc8RJTV55v/aJ8er41tC0P+X627NrB+X4nvd7OFh1zey1Za1Ff1Oa7Duy73DPZsjd4Yc9s2fv9J99x/+39YdmyJ9fnG1uu2P2zbNmdUXFJvvtu9X3z9evD7ss3Tt91zZezZU++K1+7ePONntmyyzOuc3U2xbPzDaJq+2Rc+52bb61g2P8cli175efyrVlXr7RMtuzSGUtOm8ht8sx87y3Z+rWx2bI//EvG90Tdk299ts/gadmyP56Zrx/qjGZXl2XLHt5/Urbsl55fKVv28x++mC37rzP6ZMueMzff37KqIt94uFOqzTceiQH53hhV9dLEbNljvpdvLapqyIfZsks+mJItO4qXrM/YX7Yq3/3it+YunS37G8uPz5Z90ruPZ8t+avb72bLPnLhLtuzB3fKN0dpiyWqVAAAAAAAAAAAAAAAA7aT4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKKO2wJ66ozZY9Y255tuz+x3+cLfvtSX2zZa+yzPhs2Z/N6p4v+4ue2bI7nfp80akkZct+dcLgbNl/Gf/3bNl7/HODbNl1Zfl+35EzuxMqnluULXtu/7ps2eX/6ZUte+L03tmyZ6yRr28umZWv3jOVLmHtoihfh/Fpdb5zd9WqfGOo/85aJlv28R+tmy27b9msbNkVxTXZsjulonzXgVSf7/r14oTlsmVvMO5H2bKrBuQ7d3MqKl6y+ouS0owTjNp87aKmOt8yxYq3/SBbdvchM7Jl12b8fee8fi5J6qeXZcuevGG+Pn36mLWyZadp+c7bopqMc4uM6yedUXF5vnlxzZx81/NZO0zPlr1i3ynZsj+c9n/Zu88wq6qzYcDPNJhGRymiCIrYotgwGBvRGBSDsffYorEbU7DHilE0dkUkiSbGGqJfYkyMmhhD7Nh9xViJitiw0BmYWd8P35mXcWbOnGHYMOPc93Xxgz17P3ufc/Za61lr7XVOdv2tRRnW59VZtkNtUE1RdrGLF2T3OS0pyyx0zNw6u/Jc/l52Y39Zvt81K21mbeWoTtnVA59Xl2cW++i1/pVZ7Dvf2zyz2CNWzW4+79H5QzKLXZThmGVblDJMGzuVZjdOv2Rxdg3dn1/KsH9Rk1170amiKrPYWd4nbU1Np+zuraIF2fWLa0qz68+vc9xTmcWOLTbMLHQqye6zzPI+aYtKirJrG0uKFmUWe15Vds9bZdm/7LPap5nFLi7M7rOcX5VdPdQWFWX4Xv738+yeuRs67O3MYg9+4PDMYheVZPd+9+6R3fhc1ZKO1V4ULMowHy3JcACjrDS70I/+J7PYqU/vzGJnqqZj9bmz9N8FvTKLvSjDQcNjXts/s9g9Omf3/Ed5cXZ1XJbvdz461swJAAAAAAAAAAAAAABAC1l8AQAAAAAAAAAAAAAAkIPFFwAAAAAAAAAAAAAAADlYfAEAAAAAAAAAAAAAAJCDxRcAAAAAAAAAAAAAAAA5WHwBAAAAAAAAAAAAAACQg8UXAAAAAAAAAAAAAAAAOVh8AQAAAAAAAAAAAAAAkIPFFwAAAAAAAAAAAAAAADlYfAEAAAAAAAAAAAAAAJCDxRcAAAAAAAAAAAAAAAA5WHwBAAAAAAAAAAAAAACQg8UXAAAAAAAAAAAAAAAAOVh8AQAAAAAAAAAAAAAAkIPFFwAAAAAAAAAAAAAAADlYfAEAAAAAAAAAAAAAAJCDxRcAAAAAAAAAAAAAAAA5WHwBAAAAAAAAAAAAAACQg8UXAAAAAAAAAAAAAAAAOVh8AQAAAAAAAAAAAAAAkIPFFwAAAAAAAAAAAAAAADlYfAEAAAAAAAAAAAAAAJBD8co6cU11UWaxZ88pzyz2Z59WZBY7S//9tEdmsRfM75xZ7MKi6sxidyQFZUtW9iUskwNuOSm74H0XZxeb5aagpiCz2IWLMgsdS8pTZrEXrZJdvVg8O7u2OVPZ3SZt0tzq0sxir9ppdmaxP12SXQ41uOyjzGIvqinJLHaWalLHWmNdkGE9UFSSYb2bYeyC8qrMYi9ZkmF7UZBdG9rRVC/JsB5op59T537zM4u9cEGnzGJn2i9OHSiRyrJprMkw9uLsLrx6ZnbjZ1GW3ZuS2mkd1BbVZHh/ZamqKrsh7Vdf659Z7MKK7MaiUnV2n2VhSZaVXNtTmGGzu6Qsu3a3aGF2dWOPl7OLXdU1s9CRsuy2dLBpiy5FCzOLvTjDD+rVhX0zi73NKq9nFjvL9yTLca7ywuzGIdqkDPtSNRk2vSnD6y4uzS7XyXLsrybDPKojKazKrnGsLsuu7iqozjDP+fbmmcXuPCu7tjnVZPeeFFR3rL7F4gzrl8UZPm9V3im7+nxwn48zi/3JguzGuaoyfL87mqLC7OqYosLs6ph3P++WWezuPeZlFrtXRXZzIh/OqcwsdnFHe1awMLv2omBxds8Lps7ZzYvF6v2yi70kw/n5DN/vjqasKLt8pCbDh8wW1WSXM4xc9dXMYr+/KLt2bkF1+3zmKh9GEwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgh4KUUlrZFwEAAAAAAAAAAAAAANBW+eULAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4osveeaZZ2LMmDHRs2fPKC8vjw033DCuuuqqevvU1NTE9ddfH8OGDYvKysro06dP7LzzzvHoo4/mfZ5f/epXsd5660VpaWkMGTIkrr766ryOmzt3bpx99tkxatSo6NmzZxQUFMRNN93U5P7XXHNNrLfeetG5c+dYbbXV4kc/+lHMmzevwX41NTUxfvz4GDRoUJSWlsZGG20Ut912W96v57PPPoujjjoqVllllaioqIiRI0fGM888k/fxtF2vvfZa7LfffjFgwIAoLy+PddddN84777yYP39+g30fffTR2HrrraO8vDz69u0bJ554YsydOzfvc62oclFTUxMTJkyIYcOGRVlZWfTq1Su++c1vxvPPP19vv9dffz322muv6NGjR5SXl8fWW28dDz30UN6vR7noWBYtWhSnnHJK9O/fP8rKymLLLbeMBx54IO/jZ8yYEfvss0907949unbtGrvttlu8+eabzR43f/78uPbaa2OnnXaKfv36RZcuXWKTTTaJCRMmRHV1dc5jb7nlligoKIjKyspG/37nnXfG17/+9ejevXv06tUrtttuu7j33nvzfk1/+tOfYtNNN43S0tJYY4014uyzz44lS5bkfTztxz//+c8oKCho9N/jjz9eb9/2kkcdeuihjb6eddddt95+7733Xhx00EExdOjQ6NKlS3Tv3j2GDx8ev/nNbyKllNd1tbb+oP1o6r6q/TdjxoxmYyxrexERcf/998cRRxwRG264YRQVFcWaa67Z5L4zZ86Mo446KgYNGhRlZWWx1lprxY9+9KOYNWtW3T41NTVx0003xZgxY2L11VePioqK2HDDDeOCCy6IhQsX5nVNEa3PIWnf2ksOlW+fedKkSbHddttFnz59onPnzjFo0KA47LDDYvr06Xm/JmWi42hJDtWSOrwpy5qfv/LKKzF27NgYNmxYdOnSJfr16xejR4+OqVOnNrp/PuXynXfeiXPPPTeGDx8ePXr0iN69e8f2228fDz74YN6vp7VjWbRNTz31VBx//PGxwQYbREVFRayxxhqxzz77xKuvvtpg3yeffDKOPfbY2GyzzaKkpCQKCgpafL7W1LkTJkyIvffeO9ZYY40oKCiIQw89tMl9n3766dh1112jb9++UVlZGRtttFFcddVV9dqcWbNmxSWXXBLbbrttrLLKKtG9e/f4+te/HnfccUeLXtOy9pdo255++ukYNWpUdO3aNbp06RI77bRTPPfcczmP+eyzz2LVVVeNgoKCmDx5ct7nWlFjtPmOO40bNy7GjBkTffr0iYKCgjjnnHPyfi0R+twdzcrqX0Qse76Wa4w23/GpXIzRdlwtyauasqzzXMsyZpRP+3POOec0WiZKS0vzfk363F9NLclDWtqPaE1+3Zp26a677op99903Bg8eHOXl5TF06ND48Y9/HJ999lmDfddcc81Gy8bRRx+d8xxHHnlkFBQUxK677pr3a5o2bVqMGjUqKisro2fPnnHwwQfHRx99lPfxtE3tJYfKZ96ilnluWqs9lIumcqPaf4888ki9/fN9hrApysVXTxY51E033ZTzvrzllluava4VlUMt7Y033ojS0tIoKChoMPfx97//PQ4//PBYZ511ory8PAYPHhzf//73Y+bMmXldU0Tr6gTatvbQXkyfPr3JMnn77bc3GX/x4sWx/vrrR0FBQVx66aV5v6YO014k6vztb39LnTp1SltuuWW67LLL0g033JBOOeWU9NOf/rTefj/60Y9SRKSDDjooTZw4MV188cVp8ODBqbi4OD3xxBPNnuf6669PEZH23HPPdMMNN6SDDz44RUS66KKLmj32rbfeShGR1lhjjbT99tuniEg33nhjo/uOHTs2RUTaa6+90oQJE9IJJ5yQiouL00477dRg31NPPTVFRDryyCPTDTfckEaPHp0iIt12223NXlN1dXXaaqutUkVFRTrnnHPSNddck9Zff/3UpUuX9OqrrzZ7PG3X22+/nbp3754GDhyYfv7zn6eJEyemQw89NEVEGjNmTL19n3322VRaWpo22WSTNGHChHTGGWekzp07p1GjRuV1rhVVLlJK6ZBDDknFxcXp8MMPT5MmTUpXXHFFOuSQQ9L9999f77X37t079enTJ40bNy5dccUVaeONN07FxcXp4YcfbvaalIuOZ7/99kvFxcXpJz/5SZo4cWIaMWJEKi4uTlOmTGn22Dlz5qQhQ4akVVddNV188cXpsssuS6uvvnoaMGBA+vjjj3Me++KLL6aCgoK04447pvHjx6frr78+7b777iki0ve+972c5+zfv3+qqKhIFRUVDf5+1VVXpYhIo0ePThMmTEiXX3552njjjVNEpD/84Q/Nvqa//OUvqaCgII0cOTLdcMMN6YQTTkiFhYXp6KOPbvZY2p+HHnooRUQ68cQT080331zv30cffVRv3/aSRx1yyCGpc+fODV7Pn/70p3r7Pf/882m77bZLp59+err++uvT1VdfncaMGZMiIp122mnNXlNKras/aF8effTRBvfUb3/721ReXp7WX3/9Zo9vTXuR0hf3dWlpadpqq63SgAED0sCBA5s8z8CBA1Pv3r3Tz372szRp0qR0/PHHp5KSkjRs2LBUXV1dt19EpK9//evpggsuSDfccEM67LDDUmFhYdp+++1TTU1Ns9fU2hyS9q+95FD59pmPOeaYdMghh6RLL700/epXv0pnnnlm6tOnT+rdu3eaMWNGs69JmehYWpJD5VuHN6U1+fmPf/zj1L1793TEEUekiRMnpvHjx6e11lorFRUVpQceeKDevvmWy6uvvjqVlZWl/fffP11zzTXpiiuuSJtuummKiPTrX/86r9fUmrEs2q4999wz9e3bN51wwglp0qRJ6fzzz099+vRJFRUV6cUXX6y379lnn51KSkrSZpttltZZZ53U0qHu1ta5AwcOTD179kyjRo1KxcXF6ZBDDml0v6lTp6ZOnTqlDTbYIF122WXp+uuvT7vttltd+a91zz33pJKSkrTbbrulK664Il1zzTVp5MiRKSLSz372s7yuqTX9Jdqup59+OpWWlqYhQ4akSy+9NI0fPz6tueaaqWvXrumVV15p8rgTTjghVVRUpIhIv//97/M614rqc7dk3CkiUt++fdO3v/3tFBHp7LPPzuu11NLn7lhWVv8ipWXL15obo813fKopxmg7tpbkVY1pzTxXS8eM8m1/zj777BQRacKECfXKxK233prXe6LP/dXVkjykJf2I1ubXrWmXevXqlb72ta+ls846K02aNCmdeOKJqVOnTmnddddN8+fPr7fvwIED07Bhwxq0F7nmXJ566qlUXFycSktL0+jRo/N6Pe+8807q3bt3WmuttdKVV16Zxo0bl3r06JE23njjtGjRorxi0Da1hxwq33mLlMxzs3y0h3Lx/PPPN6j7b7755rT66qunHj161KubW/IMYWOUi6+mLHKoN954o9H7ctNNN01FRUVp5syZzV7Xisqhlvad73ynbhztqaeeqve3zTbbLA0aNCiNHTs2TZo0KZ122mmpS5cuqU+fPnm9ntbWCbRt7aG9qC3r+++/f4OyOX369Cbj/+IXv6grF5dcckmz15NSx2ovLL74X59//nnq06dP2n333esl5V+2ePHiVFZWlvbaa6962998880GE2aNmT9/furVq1eDDuyBBx6YKioq0ieffJLz+IULF9ZV2k899VSTjd57772XiouL08EHH1xv+9VXX50iot7A7LvvvptKSkrScccdV7etpqYmbbPNNmnAgAFpyZIlOa/pjjvuaDCB8+GHH6bu3bun/fffP+extG3jxo1LEZFeeumletu/973vpYiod7/uvPPOqV+/funzzz+v2zZp0qQUEelvf/tbzvOsqHKR0v/dr3fddVfOmMcee2wqLi6uN4E5b968tPrqq6dNN90057FLn0e56BieeOKJBonGggUL0lprrZVGjBjR7PEXX3xxioj05JNP1m2bNm1aKioqavbh7Y8++qhBGU0ppcMOOyxFRHrttdcaPe6UU05JQ4cOrStnXzZkyJC0xRZb1JsE+fzzz1NlZWWDxVeNWX/99dPGG2+cFi9eXLftjDPOSAUFBWnatGnNHk/7UvvgYHMPc7SXPCqlLzopjZWNfO26666poqKi2TyqtfUH7d+UKVNSRKRx48Y1u29r2ouUUpoxY0aqqqpKKaU0evToJjvft9xyS4qI9Oc//7ne9p/97GcpItIzzzyTUkpp0aJF6ZFHHmlw/LnnnpsiosEDuY1pTQ5J+9decqjW9pmnTp2aIiL9/Oc/b/Y1KRMdS745VEr51+FNaU1+PnXq1DRnzpx62z7++OO0yiqrpG984xv1tudbLl966aUGC0wWLlyY1l133TRgwIBmX09ryyVt1yOPPNLgoZ1XX301de7cOR144IH1tr///vt1E2bHHXdcixdftLbOnT59el2fuaKiosnFF0ceeWTq1KlTmjVrVr3t2267beratWvd/998880GEx01NTXpm9/8ZurcuXOaO3duzutpbX+JtmuXXXZJPXr0qDfh9t5776XKysq0xx57NHrMiy++mIqLi9N5552Xd1uzIvvcLRl3euutt1JKX+RvLV18oc/dsazM/kVKy5avNTdG29rxKWO0HVtL8qrGtGaeqyVjRi1pf2oXX3y5L5Evfe6vrpbkIfn2I1qbG7W2XXrooYcabPvNb36TIiJNmjSp3vaBAwfmvYAipS/6GSNGjEiHH354i4495phjUllZWfrvf/9bt+2BBx5IEZEmTpyY9/lpW9pLDpXvvEVK5rlpvfZSLhrz9ttvp4KCgnTkkUfWbWvJM4RNUS6+mrLIoRozf/781KVLl/Stb32r2X1XZA5V67777kudOnVKZ555ZqOLLx5++OEGzxM//PDDKSLSGWec0ew1tbZOoO1qL+1F7eKLfBdQpJTSBx98kLp161Y3vpzvsR2pvSgMIiLi1ltvjQ8++CDGjRsXhYWFMW/evKipqWmw3+LFi2PBggXRp0+fettXXXXVKCwsjLKyspzneeihh2LWrFlx7LHH1tt+3HHHxbx585r9mbvOnTtH3759m309jz32WCxZsiT222+/ettr/7/0z8X88Y9/jMWLF9e7poKCgjjmmGPi3XffjcceeyznuSZPnhx9+vSJPfbYo27bKqusEvvss0/88Y9/jEWLFjV7vbRNs2fPjohocL/369cvCgsLo1OnTnX7PfDAA3HQQQdF165d6/b73ve+F5WVlXHnnXfmPM+KKhcREZdddlkMHz48dt9996ipqWnyJ/SmTJkSm2yySQwdOrRuW3l5eYwZMyaeeeaZeO2113KeR7noWCZPnhxFRUVx1FFH1W0rLS2NI444Ih577LF45513mj1+iy22iC222KJu27rrrhs77LBDs+Wnd+/escEGGzTYvvvuu0fEFz//+2WvvfZaXH755XHZZZdFcXFxo3Fnz54dq666ar2fCuzatWtUVlY229a9/PLL8fLLL8dRRx1VL/6xxx4bKaWYPHlyzuNp3+bMmdPkz8W1lzxqadXV1XXtYUusueaaMX/+/Kiqqsq5X2vrD9q/W2+9NQoKCuKAAw5odt/WtBcREf3794+SkpJm98uVA0ZEXVnt1KlTbLXVVg2Oz9UGffk8rckhaf/aSw7V2j5z7U+8NveTxspEx5Yrh4rIvw5vTGvz88022ywqKyvrbevVq1dss802Der6fMvlBhtsEL179653bOfOnWOXXXaJd999N+bMmZPzmlpbLmm7ttpqq7rxplpDhgyJDTbYoMH91qdPn2b7EE1ZHnXuwIED6/WZc52rtLQ0unfvXm97v3796l3/oEGDYuDAgfX2KSgoiO9+97uxaNGiZn9qvLX9JdquKVOmxI477hi9evWq29avX7/Ybrvt4s9//nPMnTu3wTEnnXRS7L777rHNNtvkfZ4V2eduybhTbS61LPS5O5aV2b+IaHm+ls8Yba1lGZ8yRktL8qrGtGaeqyVjRsvS/qSUYvbs2ZFSavZ11NLn/mprSR6Sbz+itblRa9ul7bffvsG25sZdq6qqmpz7XtrNN98cL730UowbN67ZfZf2hz/8IXbddddYY4016rbtuOOOsc466yhD7Vh7yaHynbeo3dc8N63RXspFY2677bZIKcWBBx5Yt60lzxA2Rrn46soih2rMPffcE3PmzKl3XzZlRedQixcvjpNOOilOOumkWGuttRqNue2220ZhYWGDbT179sy7b9WaOoG2qz22F/PmzWv2OaaIiFNPPTWGDh0aBx10UN6xO1p7YfHF/3rwwQeja9euMWPGjBg6dGhUVlZG165d45hjjomFCxfW7VdWVhZbbrll3HTTTXHLLbfE22+/HS+88EIceuih0aNHj3oFqTHPPvtsRERsvvnm9bZvttlmUVhYWPf31qod8Ppyo1deXh4REU8//XS9a6qoqIj11luv3r7Dhw+vd81NefbZZ2PTTTdt0MgMHz485s+fH6+++uqyvQhWutqE5Igjjojnnnsu3nnnnbjjjjtiwoQJceKJJ0ZFRUVERLz44ouxZMmSBvd1p06dYtiwYXndQxHZl4vZs2fHk08+GVtssUWcfvrp0a1bt6isrIzBgwc3aLAWLVrUaNLYWBlqjHLRsTz77LOxzjrr1Buwj/i/evS5555r8tiampp44YUXGtz/tce/8cYbzT541Jj3338/IqLBA00RET/84Q9j5MiRscsuuzR5/Pbbbx/33XdfXH311TF9+vR45ZVX4rjjjovPP/88TjrppJznbqpM9+/fPwYMGLDcyjRtz2GHHRZdu3aN0tLSGDlyZEydOrXe39tLHlVr/vz50bVr1+jWrVv07NkzjjvuuEYfaomIWLBgQXz88ccxffr0+M1vfhM33nhjjBgxotkBiNbUH7R/ixcvjjvvvDO22mqrZh8oyqq9aEztANJJJ50Ujz/+eLz77rvxl7/8JcaNGxff/e53Y9111815fK42aGmtzSFp/9pLDrUsfeZZs2bFhx9+GFOnTo3DDjssIiJ22GGHnOdWJjqu5nKo1soqP3///ffrlZXlUS7ff//9KC8vr+t7N6W1Y1m0Lyml+OCDD5rNLVpiRda522+/fcyePTt+8IMfxLRp0+K///1vXH/99XHXXXfFaaed1uzx+eZWK7q/xIqTa5yyqqoqXnrppXrbf//738ejjz4a48ePb9F5VuQ91Jpxp5bQ5+5Y2mL/Ipd8xmgjWjY+tTRjtDSmJXlVFvNcTfW5I1rW/gwePDi6desWXbp0iYMOOig++OCDZs+tz01LtTY3yiIPydU3+Mc//hHl5eVRWVkZa665Zlx55ZWNxpgzZ06ccsopcfrpp7foy6pmzJgRH374YZNtpTLUfrWXHKol8xbmuWmt9lIuGnPLLbfE6quvHttuu23dtpY8Q9gY5YLWuuWWW6KsrKzewu6mrOgc6oorrohPP/00zjzzzBbFnDt3bsydO7fZvtXKrhPIVntrL84999yorKyM0tLS2GKLLeL+++9vdL8nn3wyfvOb38QVV1yR1xdQ1epo7UXur1LpQF577bVYsmRJ7LbbbnHEEUfEz3/+8/jnP/8ZV199dXz22Wdx22231e37u9/9Lvbdd996q3oGDx4cjzzySAwePDjneWbOnBlFRUWx6qqr1tveqVOn6NWrV7z33nvL5fXUflv/I488EiNHjqzbPmXKlIj4onO89DX16dOnQUGpXSHe3DXNnDmzXtLW2PFf+9rXluFVsLKNGjUqzj///LjwwgvjT3/6U932M844Iy644IK6/8+cOTMi/u8zX1q/fv3q7rumrKhy8cYbb0RKKW6//fYoLi6O8ePHR7du3eLKK6+M/fbbL7p27RqjRo2KiC/K0JQpU2LOnDnRpUuXuhj//ve/I6J+GWrqNSkXHcfMmTObvP8jctejn3zySSxatKjZ45f+FZbmVFVVxRVXXBGDBg2qtzo2IuLee++N+++/P55//vmcMa666qr4+OOP48QTT4wTTzwxIr7oiPz973+PESNG5Dy2uTpheZVp2o5OnTrFnnvuGbvsskv07t07Xn755bj00ktjm222iUcffTQ22WSTun3bQx4V8cW9Onbs2Nh0002jpqYm7rvvvrjuuuvi+eefj3/+858NvpHwyiuvrPfg1A477BA33nhjs+dpTf1B+/e3v/0tZs2alde3fGTRXjRl/fXXjxtuuCF+8pOf1KvzDznkkPjlL3/Z7PHjx4+Prl27xs4775xzv9bmkLR/7SWHWpY+82qrrVY3odGrV6+46qqr4lvf+lbO8ysTHU9LcqjWyCI/nzJlSjz22GP1JiRaWy5ff/31uOuuu2LvvfeOoqKinOdv7VgW7cstt9wSM2bMiPPOO2+5xVyRde6RRx4Z//M//xMTJ06sy6WKiorimmuuiaOPPjrnsZ988kn88pe/jG222abRa13aiuwvsWINHTo0Hn/88aiurq6rH6uqquKJJ56IiPrjlAsWLIif/OQncfLJJ8eaa64Z06dPz/s8K/Ieas24U0voc3csba1/kUu+Y7QtHZ9amjFaGtOSvCqLea7Gxoxa0v706NEjjj/++BgxYkR07tw5pkyZEtdee208+eSTMXXq1AYPvHz59Sx9/V9+TfrcfFlrc6Ms8pCLL744ioqKYq+99qq3faONNoqtt946hg4dGrNmzYqbbropfvjDH8Z7770XF198cb19zzvvvCgrK4uTTz65RedurgzVtqWdO3du4atiZWsvOVRL5i3Mc9Na7aVcfNn//M//xAsvvBBjx46tN27akmcIG6Nc0BqffPJJ3HffffHd73633vN3TVmROdT7778f559/flx66aU5+xKNueKKK6Kqqir23XffnPutzDqB7LWX9qKwsDB22mmn2H333WO11VaLN998My677LLYeeed409/+lOMHj26bt+UUpxwwgmx7777xogRI1o8vrz09S/tq9heWHzxv+bOnRvz58+Po48+Oq666qqIiNhjjz2iqqoqJk6cGOedd14MGTIkIiK6dOkSG2ywQYwYMSJ22GGHeP/99+Oiiy6K7373uzFlypScK9oWLFjQ4Cdea5WWlsaCBQuWy+vZdNNNY8stt4yLL744VltttRg5cmRMmzYtjjnmmCgpKal3ngULFjTaCS4tLa37ey6tPZ62bc0114xtt9029txzz+jVq1fce++9ceGFF0bfvn3j+OOPj4j/+4ybug/yuYdWRLmo/TaoWbNmxeOPPx5bbrllRESMGTMmBg0aFBdccEHd4otjjjkm7rnnnth3331j3LhxUVFREdddd13dN5AqFyytNZ93c+WnueMbc/zxx8fLL78c9957b70JuKqqqjj55JPj6KOPjvXXXz9njPLy8hg6dGgMGDAgdt1115gzZ05cfvnlsccee8SUKVNi7bXXXubXVPuzsHx1bLXVVvV+Rn7MmDGx1157xUYbbRSnnXZa3HfffXV/aw95VETEz3/+83r/32+//WKdddaJM844IyZPntzgZ1n333//2HzzzeOjjz6KP//5z/HBBx/kdT3ai47t1ltvjZKSkthnn32a3TeL9iKX1VZbLYYPHx677LJLDBw4MKZMmRJXXXVV9O7dOy699NImj7vwwgvjwQcfjOuuuy66d++e8xytzSFp/9pLDrUs1/nXv/41Fi5cGNOmTYvf/e53MW/evGbPr0x0PC3JoVpjeefnH374YRxwwAExaNCgGDt2bN7nWXqfL5s/f37svffeUVZWFhdddFGz1yCH6jhqv51yxIgRccghhyy3uCuyzi0qKoq11lorvv3tb8fee+8dpaWlcdttt8UJJ5wQffv2je9+97uNHldTUxMHHnhgfPbZZ3H11Vc3e54V2V9ixTr22GPjmGOOiSOOOCLGjh0bNTU1ccEFF9RNZi392V500UWxePHiOP3001t8nhV5D7Vm3KkltBcdS1vrXzSlJWO0LR2fWpoxWr6spXnV8q5Dmxozakn78+VvK99zzz1j+PDhceCBB8Z1110Xp556apPn1+empVqbGy3vMnTrrbfGr371qxg7dmzdcyu1lv4SxYgvfmFz5513jssuuyxOOOGEGDBgQEREvPrqq3HllVfGbbfd1uJFEvm2lRZftD/tJYeKyH/ewjw3rdWeysXSbrnlloiIBl/61pJnCBujXNAakydPjqqqqry+jDBixeZQp5xySgwePDi+//3vtyjmv/71rzj33HNjn332iW9+85s5912ZdQLZay/txRprrBF/+9vf6m07+OCDY/31148f//jH9RZf3HTTTfHiiy/G5MmTW3yejtZeWHzxv2p/Wmv//fevt/2AAw6IiRMnxmOPPRZDhgyJJUuWxI477hjbb799vUmvHXfcMTbYYIO45JJLGnx7wJfPU1VV1ejfFi5c2OjPhy+rP/zhD7HvvvvG4YcfHhFfTPT96Ec/iocffjj+85//1Lum2m/k/PL11P49l9YeT9t1++23x1FHHRWvvvpq3aDMHnvsETU1NXHKKafE/vvvH7169ar7jJu6D/K5h1ZEuaiNM2jQoLqFFxERlZWV8Z3vfCd+97vfxZIlS6K4uDh23nnnuPrqq+PUU0+NTTfdNCIi1l577Rg3blyMHTs2Kisrmz2XctFxtObzbq78NHf8l11yySUxadKkOP/88xv8ZP3ll18eH3/8cZx77rnNxtl7772juLg47rnnnrptu+22WwwZMiTOOOOMuOOOO5o8trV1Al8Na6+9duy2225x11131X07Z3vKoxpz8sknx1lnnRUPPvhgg8ntgQMHxsCBAyPii3zyqKOOih133DH+85//NFsHaC86prlz58Yf//jH+Pa3vx29evVqdv/l3V7k8sgjj8Suu+4ajz/+eAu337cAAQAASURBVN1PQn73u9+Nrl27xrnnnhuHH354ow+I3HHHHXHmmWfGEUccEcccc0yz59Fe0F5yqGW5ztpvj9p5551jt912iw033DAqKyvrFrA3RpkgovEcqrWW5701b968uknrf//73/X6xstaLqurq2O//faLl19+Of76179G//79m70OOVTH8P7778fo0aOjW7duMXny5OVSHmqtyDr3oosuiiuvvDJee+21ujKzzz77xMiRI+O4446LXXfdtdFvLj/hhBPivvvui9/+9rex8cYbN3ueld1fIjtHH310vPPOO3HJJZfEb37zm4j44qfbx44dG+PGjau7r6ZPnx6XXHJJXHvttc2OXTZmRd5DrRl3agntRcfSlvoXubRkjLYxucanlqZ/wdKWJa9annVorjGj1rY/BxxwQPz4xz+OBx98MOfiC2WClmrtvbk8y9CUKVPiiCOOiG9/+9sxbty4ZvcvKCiIk08+Of72t7/FP//5z7pfIj/ppJNiq622ij333DPvc9dakW0lK1Z7yaFaMm9hnpvWai/lYmkppbj11ltjww03jI022qjB3/N9hrAxygWtccstt0TPnj3r/fpdLisqh3r88cfj5ptvjr///e9RWFiYd8xXXnkldt9999hwww0b/PJSY+RQX23tsb2o1bNnzzjssMPioosuinfffTcGDBgQs2fPjtNOOy1++tOfxuqrr97imB2tvci/5viKq53Y7dOnT73ttT8j+emnn0bEFyvXXnrppRgzZky9/YYMGRLrrbdePPLIIznP069fv6iuro4PP/yw3vaqqqqYNWtWXhPM+VpttdXi3//+d7z66qvxr3/9K959990YP358vPPOO7HOOuvUu6b3338/Ukr1jq/95qzmrqlfv351+y7L8bRd1113XWyyySZ1Cy9qjRkzJubPnx/PPvtsRPzfTwU1dR/kcw+tiHLRVDmP+KKsL168uN430h5//PHxwQcfxKOPPhpTp06NV155Jbp16xYRUa8MNUa56Fha83n37NkzOnfuvFzul5tuuilOOeWUOProo+PMM8+s97fPP/88LrjggjjyyCNj9uzZMX369Jg+fXrMnTs3Ukoxffr0ujL45ptvxn333degrevZs2dsvfXWebV1S1//l1+T+7/jWH311aOqqqqubm1PeVRjysrKolevXvHJJ580u+9ee+0V77zzTvzrX//KuZ/2ouP6f//v/8X8+fPz/paP5dleNGfixInRp0+fugmMWmPGjImUUjz66KMNjnnggQfie9/7XowePTquv/76vM6jvaA95FC119maPvNaa60Vm2yySd23TjVFmaDWl3Oo1lpe91ZVVVXsscce8cILL8Qf//jH2HDDDev9fVnL5ZFHHhl//vOf46abbmr2W6JqtbZc0vZ9/vnnsfPOO8dnn30W991333L/TFdknXvdddfFN7/5zQYPw48ZMybee++9Rn+2+9xzz43rrrsuLrroojj44IPzOs/K7i+RrXHjxsUHH3wQU6ZMiRdeeCGeeuqpqKmpiYj/G6f82c9+Fquttlpsv/32deM+77//fkREfPTRRzF9+vS6Yxqzou6h1o47tYQ+d8fSVvoXubRkjLYp+Y5P6V9Qa1nzquVVhzY3ZrQ82p/VV19dmWC5a+29ubzK0PPPPx9jxoyJDTfcMCZPntzowu3G1D4sVVs2/vGPf8R9990XJ510Ul37M3369FiyZEksWLAgpk+fnvObaJsrQ7VtKe1Pe8ihIvKftzDPzfLQXsrF0h555JH473//2+S8Y77PEDZGuWBZvf322zFlypTYe++9o6SkJK9jVlQONXbs2Nhmm21i0KBBdXnRxx9/XHeut99+u0HMd955J3baaafo1q1b/OUvf4kuXbo0ex0rq05gxWiP7cXSvtxnuPTSS6Oqqir23XffunLx7rvvRsQXz89Pnz69yQXqER2vvbD44n9tttlmERExY8aMetvfe++9iIhYZZVVIiLigw8+iIgvvpXvyxYvXhxLlizJeZ5hw4ZFRMTUqVPrbZ86dWrU1NTU/X15GjJkSGyzzTbRt2/fePnll2PmzJmx44471rum+fPnx7Rp0+od98QTT9S75qYMGzYsnnnmmQYTN0888USUl5c3m6TRdn3wwQdN3usRUXe/b7jhhlFcXNzgvq6qqornnnsur3soIvty0b9//+jbt2+Dch7xRVkvLS1tkBhVVFTEiBEjYrPNNouioqJ48MEHo6ysLL7xjW/kPJdy0bEMGzYsXn311QaDkvnUo4WFhfG1r32twf1fe/zgwYPzStj/+Mc/xve///3YY4894tprr23w908//TTmzp0b48ePj0GDBtX9+8Mf/hDz58+PQYMGxVFHHRUR2bV17733Xrz77ruZtHW0TW+++WaUlpbWPWTUHvOopc2ZMyc+/vjjurwwl9qf0/v8889z7tea+oP27ZZbbonKysoGEwBNWV7tRT7yzQGXPv/uu+8em2++edx55515TwC2Noek/WsPOVTtdbSmzxzxRbvQXJugTFDryzlUay2P/Lympia+973vxd///ve49dZbY7vttmuwz7KUy5/+9Kdx4403xuWXX97g12ibe02tLZe0XQsXLozvfOc78eqrr8af//znRn9xq7VWZJ3b0tzq2muvjXPOOSd++MMfximnnJL3eVZ2f4ns9ejRI7beeuv42te+FhERDz74YAwYMCDWXXfdiPhiQvv111+PwYMH14371Natxx57bAwaNCjnA3Ur6h5q7dhAS+hzdyxtoX/RnJaM0TYl3/EpY7REtC6vWh7zXPmMGbW2/alduNRcmdDnpqVae28ujzzkjTfeiFGjRsWqq64af/nLX1o0TvDmm29GxP8951L7AOEee+xRrw2aMWNG/OMf/4hBgwbFr3/96ybjrbbaarHKKqs02lY++eSTylA71h5yqIj8+9bmuVke2ku5WNott9wSBQUFccABB+Tcr7lnCBujXLCsbrvttkgp5f1lhBErLod6++2341//+le9vOinP/1pRHyxsO/LvyAza9as2GmnnWLRokXxt7/9re4h8+asrDqBFaM9thdLa6zP8Omnn8YGG2xQVy622WabiIi48MILY9CgQfHyyy83Ga/DtReJlFJKzzzzTIqIdMABB9Tbvv/++6fi4uI0Y8aMlFJKU6dOTRGRDjnkkHr7Pf3006mwsDAdffTRddvmzZuXpk2blj766KO6bfPnz089e/ZMu+66a73jDzrooFReXp5mzZqV9zU/9dRTKSLSjTfemNf+1dXVafTo0am8vDz997//rdv+zjvvpJKSknTcccfVbaupqUnbbLNNWm211dKSJUvqtr/33ntp2rRpqaqqqm7b7bffniIi/f73v6/b9tFHH6Xu3bunfffdN+/XQ9uz6667pk6dOqX//Oc/9bZ/97vfTYWFhXXlIqWURo0alfr165dmz55dt+2Xv/xlioj017/+tW7byi4XJ510UoqIdP/999dt++ijj1LXrl3TLrvskjP2I488koqKitLxxx9fb7tyweOPP54iIl1yySV12xYuXJjWXnvttOWWW9bb97///W+aNm1avW0XXXRRioj01FNP1W175ZVXUlFRUTrllFOaPf/DDz+cSktL08iRI9PChQsb3WfevHnp7rvvbvBv5MiRqbS0NN19993p8ccfTyml9OGHH6bCwsK0/fbbp5qamroY77zzTqqsrEyjRo2q21ZVVZWmTZuW3nvvvXrnW3fdddPGG29crw0588wzU0FBQXr55ZebfU20Lx9++GGDbc8991wqKSlJY8aMqdvWXvKoBQsW1GvPav30pz9NEZHuuuuuum2NvfaUUvrOd76TCgoK0muvvVa37aOPPkrTpk1L8+bNq9vWkvqDr44PP/wwFRcXp4MPPrjJfbJoL5Y2evToNHDgwEb/dvzxx6eISA899FC97T/84Q9TRNS1Fyml9PLLL6devXqlDTbYIH3yySc5zzlt2rR6/ZCU8s8h+WpqDzlUSvn3mRcvXtxoOXjiiSdSUVFRgzKvTJBvDvVluerwrPLzY489NkVEmjhxYs79WlIux48fnyIinX766TljfvbZZ2natGnps88+q9vWkrEs2pclS5akMWPGpOLi4nTvvffmfdxxxx2Xcg11Z13nVlRUNOjn1Npwww1Tz54908cff1y3bcmSJWmzzTZLXbp0aTCeVFhYmA488MB6/fEvy7q/RNtXO/Z46aWX1m2bMmVKg3Gf888/P0VEGjt2bLr77rvr7reV2eduybjT0j766KMUEenss89u8u/63B3byu5fLK2pfK0lY7QtGZ8yRktjWpJXZTHPle+YUUvan8b6UNdee22KiHTZZZfV267P3XG15BmKXP2IltybWeQhM2fOTIMHD079+/dPb731VpP7zZo1q0EfuKqqKn3jG99InTp1SjNnzkwpfdH2NdYGrbLKKmnzzTdPd999d3r99dfrYrz++uv1/p9SSkcffXQqKytLb7/9dt22Bx98MEVEmjBhQrOvibapPeRQKeU/b2Gem+WhvZSLWlVVValXr15pm222yTtuU88QKhcd1/LKoZa20UYbpTXWWKPJcc6VmUP97W9/a5AXnXDCCXXjbX/+85/r9p07d24aPnx46tKlS5o6dWrO82ddJ9C2tJf2orG+9Lvvvpt69OiRNtpoo7ptTz/9dINyMXHixBQR6dBDD01333133Vyd9iIliy+Wcvjhh6eISPvss0+69tpr0957750iIp122mn19vvWt76VIiLtvvvuacKECelnP/tZ6tGjR6qoqEivvPJK3X4PPfRQo5MBtYNAe+21V5o0aVL63ve+lyIijRs3Lq/rvPrqq9P555+fjjnmmBQRaY899kjnn39+Ov/88+tNRJ944onpqKOOStddd1268sor05ZbbpkKCgrSb3/72wYxawdrjzrqqDRp0qQ0evToFBHplltuqbffIYcckiKiXuO0ZMmS9PWvfz1VVlamc889N1177bVpgw02SF26dKn3ftD+PPzww6moqCituuqq6bzzzkvXXntt2nnnnVNEpO9///v19n366adT586d0yabbJImTJiQzjjjjFRaWpp22mmnevut7HLx/vvvp379+qUuXbqks88+O1122WVpnXXWSWVlZem5556r22/69Olp+PDh6YILLki//OUv08knn5zKysrSJpts0mDCQ7kgpZT23nvvVFxcnH7605+miRMnpq222ioVFxenhx9+uN5+2223XYNOyOzZs9Naa62VVl111TR+/Ph0+eWXp9VXXz3179+/yQe7a02fPj1169YtlZWVpWuvvTbdfPPN9f49//zzOY8/5JBDUkVFRYPt3//+91NEpJEjR6arr746XXjhhWnAgAGpqKio3mt66623Gn2Y/p577kkFBQXpm9/8ZrrhhhvSiSeemAoLC9ORRx6Z83pon0aOHJl22WWXdMEFF6Qbbrgh/fCHP0zl5eWpW7duDZLn9pBHvfXWW6l79+7pmGOOSVdeeWW68sor0y677JIiIo0aNSpVV1fXxTvppJPS5ptvns4888x0ww03pIsuuihtscUWKSLSCSecUO/cZ599dqMDw/nWH3x1XH311Ski0n333dfkPsu7vUgppeeff77ufh86dGjq3r173f//9Kc/1e33yiuvpIqKilRZWZlOO+20dP3116f9998/RUT61re+Ve96Vl999VRYWJguuuiiBm3Qo48+Wu/8EZG22267etvyzSH56movOVQ+feZPP/00VVRUpMMPPzz94he/SNdff3067rjjUnl5eerZs2d69dVX68VUJmhJDpVvHZ5Ffn755ZeniEgjRoxoUFZuvvnmNHfu3Lp98y2Xd911V4qINGTIkEZjvv/++3X73njjjY1O+uQ7lkX7UvulGd/5zncavTeWNn369LpysOWWW6aIqPv/l8c/s6hz//SnP9Wdr1OnTmmTTTap+//S7cjvfve7FBFprbXWShdffHG66qqr0ogRI1JEpAsuuKBuvyeeeCJ16tQprbLKKunXv/51g9f+xhtv1O2bVX+Jtunhhx9OO+ywQ7r44ovTL3/5y/T9738/FRUVpVGjRqXFixfnPLb2Xln6wdmlt6+sMdp8x51SSum3v/1tOv/889Npp51Wd0xtzOnTp9ftp89NSiuvf5FS/vlaYxobo23J+JQxWhrTkrxqec9ztXTMKN/2p6ysLB166KHpF7/4Rbr22mvT/vvvnwoKCtKwYcPqPbCVkj53R5RvHtKSfkS+92YWecjGG29ct4j2y2Vo6S8ZvPHGG9Naa62VTjnllHT99denCy+8MG244YYpItKFF17Y7HkGDhyYRo8e3ej2Lz+89fbbb6devXqltdZaK1111VXpwgsvTD169Ehf+9rXcn6xCW1fe8ih8p23SMk8N8tHeygXte65554UEen6669vMma+zxAqFx1PFjlUSim9+OKLKSLSqaee2uS5V2YO1ZjauYilH4RPKaXddtstRUQ6/PDDG8S8++676+2bRZ1A29Ye2otDDz00bbPNNumcc85JN9xwQzr99NNTr169UqdOnRqUvy+rbReWXmCy9PaO3F5YfLGUqqqqdM4556SBAwemkpKStPbaa6fLL7+8wX7z589P5513Xlp//fVTWVlZ6tatW9p1113Ts88+W2+/piYwUkrphhtuSEOHDk2dOnVKa621Vrr88stzfpvZ0gYOHJgiotF/Sw+K3XjjjWnjjTdOFRUVqUuXLmmHHXZI//jHPxqNWV1dnS688MI0cODA1KlTp7TBBhuk3/3udw32a2zwLaWUPvnkk3TEEUekXr16pfLy8rTddts1aIhon5544om08847p759+6aSkpK0zjrrpHHjxjU6sTdlypS01VZbpdLS0rTKKquk4447rsFChZVdLlJK6Y033ki777576tq1ayorK0vf/OY305NPPllvn08++STttttuqW/fvqlTp05p0KBB6ZRTTmn0m6aUC1L64pvIfvKTn6S+ffumzp07py222KLRh2obS6ZS+uLbNvbaa6/UtWvXVFlZmXbdddd635jflNoy1dS/pr4NsFZTiy8WL16crr766jRs2LBUWVmZKisr08iRIxu0I00lUymldPfdd6dhw4alzp07pwEDBqQzzzyz3jdn8dVx5ZVXpuHDh6eePXum4uLi1K9fv3TQQQc1eg+3hzzq008/TQcddFBae+21U3l5eercuXPaYIMN0oUXXtjgHr7//vvTrrvumvr3759KSkpSly5d0je+8Y104403NrimpgYP8q0/+Or4+te/nlZdddWc38q9vNuLlP5vwKixf1+ux1955ZW01157pdVXXz2VlJSkgQMHpp/85Cf1JrJr24B8YzY26Z1SfjkkX13tJYfKp8+8aNGidNJJJ6WNNtoode3ata7sHHHEEY1+u44yQUtyqHzr8Czy89o+b7597nzKZW1e1NS/pfOlphZf5DuWRftSW9839W9pueryL9evWdS5ucrGl+/X++67L2233Xapd+/eqVOnTulrX/tagwnxXOX8yzGz6i/RNr3++utpp512Sr17906dO3dO6667bvr5z3+eFi1a1OyxLV18kdKKGaPNd9wppdz1wtLthT43Ka28/kVKLetzf1ljY7QtGZ8yRktjWpJXLe95rpaOGaWUX/vz/e9/P62//vqpS5cudXP5Tc3d6XN3PPnmIS3pR6SU372ZRR6SqwwtfZ1Tp05N3/nOd9Jqq62WOnXqlCorK9PWW2+d7rzzzrzft3wXX6SU0ksvvZR22mmnVF5enrp3754OPPDAel+gQPvUXnKofOYtUjLPzfLRXspFSintt99+qaSkJOcvVub7DKFy0fFklUOdeuqpKSLSCy+80OS5V2YO1ZimFl/keo++nC9lUSfQtrWH9uLWW29N2267bVpllVVScXFx6t27d9p9993T008/3ew5Wrr4IqWO014UpJRSAAAAAAAAAAAAAAAA0KjClX0BAAAAAAAAAAAAAAAAbZnFFwAAAAAAAAAAAAAAADlYfAEAAAAAAAAAAAAAAJCDxRcAAAAAAAAAAAAAAAA5WHwBAAAAAAAAAAAAAACQg8UXAAAAAAAAAAAAAAAAORSvrBOvefUvMotdUJNZ6ChcXJBZ7OqyDC88QwVLsntPsvTWST9e2ZdQz8DrL8kueDtdZlXSfWFmsZd8VJZZ7FSUMoud5Wf536N+ml3wZTT48uzaipqS7D6nogXZfVBZ3l8FNdnV56kww3KRoTd/1LbaioiI7/772Mxidyqqzi524ZLMYs9d3Dmz2O1VZcmizGL/bstfZRZ7WW39wNjMYlen7OrGksLs8v+iDGNX12TXzi3OMHaW7/e/dswwl19G6/+/c1b2JSyTqqqizGIXttN8pKiofY4VTNv9nJV9CfVkOQ6VqSzz/wzHuFKGfdeC7FLWiAyHuNraOFRExIZ/+llmsaurs7sJupZnN1706ZzyzGJ3r1yQWez5VSWZxc7SS2POW9mX0MDXTr48s9jVpZmFjpJ52cUuWpBdW7SoZ3YVb3F2RS5Tz1918sq+hAZ+/eo3VvYlLJPqDBOST6orMovdsyi7Al1auDiz2AtrsmuLjhw6JbPYy2rw7eMyi12Y5ZjOkuz63GlJhp2ADPvzhcXts8/95n5nrOxLqGfUBqev7EtYNoUZzucVZxe7oCq7+ZZMZfh+3/fiBZnFXlbD7zsts9jzFnXKLHZJhnOFi6uza4eyvO6CgvY5rvzs6OzylWU1ZsrxmcUuzPBhweIM87OF1e1zTGdJhvN5pUXZ9Vv+39bXZRZ7We086Ecr+xKWTYbteizOMNcpyvC6qzPsW5Rk95j3X9+4NLPYy+q8l76TWewsx4uyHHf5eHFlZrF7l8zNLHaWFqfscsufbXhPs/u000eyAQAAAAAAAAAAAAAAVgyLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAAByKF5ZJy6oWVlnbp0lXaszi132TnYfx4IBSzKLHTUFmYUuWpRdbJaTDMty39tLM4s9Y/vs7q3UOcM3ZUnHKhMF1dm93sKUWehY0i27tiJLBVUZvt8Zxi7IsB2ifehUlF2Z+2xRWWaxs7zujqYkw/dywcLs8pGSTlWZxX5rRu/MYg/o+2lmsWtSdnV6lrHbooKC7JKd4sLs8t0u3RZmFrtzhnXF7IWdM4tdtSS7sYLq6o7znRwFGTa7qSS78pZljl60MLvYi7tn94YXZHjfFi7uWG1FlnVA55LsxiJThm364FVmZRb79fdXySx2RfmizGIvqek4bUXWUoZv5bwB2bVFi1ddnFnsiv90yix20YLs3pOqbh2rvZhTnd3YyOqdsqt3X16wWmaxT+/9n8xi3zKnV2axKwqzay/mVGc3ftIW1SzJMCftlF2fO2U4lt4vw/GiDz/pmlns6gw/y6LidvpARFtTneH7uDi7fkvB4uzurYKq7PKzVJbdGFeW73dHU5phn7s6w7bia6vOzCz2m59nl0N16ZxdDjVrXnlmsduiqpqiDKNnF3v2/Oxy3QFdPsss9upl2eVnz306ILPYWc5BdTiFGQ5G1WTYbynNbryoIMt8pCTDR7E7WB61sKYks9iLarL7nD6q6pJZ7FU6zcks9ivz+mYWu6wou75Lz5J5mcXOh5kTAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMiheGWduHBxQWaxl3Stzix27yeLMovd89ePZhb7jUu/nlnsgiXZfZbVZSmz2G1OlkuhCrN7H0s+y64aWevUlzKL/cn/+1pmsauGzc8s9uLPSjOL3RbVdMru3q3pVJNZ7K7TsisXxQuye086f55d7A83z66tSEUdqK2IiMqSRdnFLq7KLPbLn/bNLPZ5a/+/zGLf/NE3MoudpUU12eWsbdHi6uxeb6fiJZnFHlD5WWax/7zD7ZnFnvDZBpnFvuudYZnFLizoWO3FokXZ5SOV3eZlFnvWc6tmFnvAQ4sziz1nh5LMYvf62keZxf58XllmsduamtLs8v+C6uxy3cgw9Kbb/Sez2E8+MySz2AXZfZRRXZ5h8DaovHN29WLnDHOomdOyayvWG/E/mcXu1D+7MeuX3u2fWez+vT/LLHZbVJjdx5TpWHf/f2VX5jr/ZWpmsV+dtEVmsTvNzi4frsku9WuT1i99N7PYzy8YmFnstUvfzyz2oHuOzCz2euvMyCz2nn2fySx2l6KFmcVui4qKs8sbazIc5yrM8LrLL+iaWewlB2dX8ZZ0y268fUnVSnsUY8Ur9J2fX1b96huZxS7YfMPMYhfOy65MpE4dK4maX5Xd650/v3NmsSNlNxj12KzBmcUu75pdLvLZ3OzGUIuKOtZYVM/O2T1LM3N+drnIyYMfzCz22b86KLPYT31tQWaxt1/7tcxif7SoMrPYbVEqyS5nLFic3XhRltc9d8NVMotd9v+ezCx28aDsxjgiw/e7LcpyjKGkILscbe8e2d1fTy3ILo86e5WXM4v9w5mbZxZ7ZY9F6QUDAAAAAAAAAAAAAADkYPEFAAAAAAAAAAAAAABADhZfAAAAAAAAAAAAAAAA5GDxBQAAAAAAAAAAAAAAQA4WXwAAAAAAAAAAAAAAAORg8QUAAAAAAAAAAAAAAEAOFl8AAAAAAAAAAAAAAADkYPEFAAAAAAAAAAAAAABADhZfAAAAAAAAAAAAAAAA5GDxBQAAAAAAAAAAAAAAQA4WXwAAAAAAAAAAAAAAAORg8QUAAAAAAAAAAAAAAEAOFl8AAAAAAAAAAAAAAADkYPEFAAAAAAAAAAAAAABADhZfAAAAAAAAAAAAAAAA5GDxBQAAAAAAAAAAAAAAQA4WXwAAAAAAAAAAAAAAAORg8QUAAAAAAAAAAAAAAEAOFl8AAAAAAAAAAAAAAADkYPEFAAAAAAAAAAAAAABADhZfAAAAAAAAAAAAAAAA5GDxBQAAAAAAAAAAAAAAQA7FK+vEqTBlFrtwQXZrSgpqMgsdf3vvucxij/yfgZnF/vyu/pnF/nST6sxitzVFXasyi135WHlmseeOmJ9Z7BvXmJJZ7G1fWS+z2NXbz80s9sdvVGQWu6Pp+p/smsDnT7kus9jf7j8ss9hZmjlyeGaxi+Z2rLWklcXZtRcPvLZuZrFrPizNLPa4nYZlFvu13w7NLPbhwx7NLPa/P14rs9htUdfOCzOLPe3dvpnFfmSjuzKL/e3+X88s9p7TPsws9pLqosxil5cszix2R1O1JLvPqbo0u7GCkvunZha7aOsRmcX+ZHZ2/bnOnZdkFrutKX0/u/y/7zYzMovdeWxlZrEP/052fe7b9/xHZrG3PvEHmcWeMarjjENFRHz8YdfMYk8emV2/+Myx38ss9nsnz8ks9t/ey67MDXrlyMxiR+/sQrdF1Z2yi11YVZBZ7DkDsmvn/pnhvMU6/9oos9ifbpzd+73qI9nlw23RO4t7ZRb7P/P7ZBb7pB6vZxb7Vz94KrPYacPsxue+9Zfs3pPrZ22VWey2KKXs6ph4v3NmoV/f//rMYm9Uvn9msdf57nOZxS56KLt57mlvZhe7rUnF2c3TFH4yL7PYqXNJZrGzfPbjGz/Mbuy3231vZxY7Bq2WXew2qLxTduPRXUoXZRY723mLYZnFvvitJzKLvfuDx2cW+2vrvJNZ7LZo/pLs6t3FGc4v3f3xppnFXu3i7OaLb3r735nF/sFbe2UWuzCymydqkwqzy6PS7OyeX6sZnF2u+6/rbsgs9i4Pj8ws9uK+3TOLXfLOx5nFboten79qZrG/2+vpzGJfOmNUZrE/33pWZrH/Mii7du7WKbdnFvsnM3bMLHY+OtbTigAAAAAAAAAAAAAAAC1k8QUAAAAAAAAAAAAAAEAOFl8AAAAAAAAAAAAAAADkYPEFAAAAAAAAAAAAAABADhZfAAAAAAAAAAAAAAAA5GDxBQAAAAAAAAAAAAAAQA4WXwAAAAAAAAAAAAAAAORg8QUAAAAAAAAAAAAAAEAOFl8AAAAAAAAAAAAAAADkYPEFAAAAAAAAAAAAAABADi1afPHMM8/EW2+9Vff/m2++Ob7xjW/E6quvHltvvXXcfvvty/0CAQAAAAAAAAAAAAAAVqYWLb447LDD4o033oiIiF/+8pfxgx/8IDbffPM444wzYosttogjjzwyfv3rX2dyoQAAAAAAAAAAAAAAACtDcUt2fu2112LIkCEREXHdddfFlVdeGUceeWTd37fYYosYN25cHH744cv3KgEAAAAAAAAAAAAAAFaSFv3yRXl5eXz88ccRETFjxowYPnx4vb9vueWW8dZbby2/qwMAAAAAAAAAAAAAAFjJWrT4Yuedd44JEyZERMR2220XkydPrvf3O++8M9Zee+3ld3UAAAAAAAAAAAAAAAArWXFLdr744ovjG9/4Rmy33Xax+eabxy9+8Yv45z//Geutt1785z//iccffzzuvvvurK4VAAAAAAAAAAAAAABghWvRL1/0798/nn322RgxYkTcd999kVKKJ598Mu6///4YMGBAPPLII7HLLrtkda0AAAAAAAAAAAAAAAArXIt++SIionv37nHRRRfFRRddlMX1AAAAAAAAAAAAAAAAtCkt+uULAAAAAAAAAAAAAACAjsbiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcilf2BWShprQmw+hFmUXe5vgfZBZ79urZXfe8tbJ7vwsWdZz1QdWzO2UWe+6a2X1GG642M7PY3+4/LLPY795UnVnsgo+6ZRY7dc2yfmt7UlHKLPaCvtnFXvuhwzKLPfDBWZnFfv8fAzKLXTQvw3u3ILvQbdEnVeWZxR4x6M3MYn/Yt0tmsT+5d0hmsd/c5NeZxd7h5TGZxV6lbG5msduiTxeWZRZ71V6zM4t9xadrZhb7uv/+O7PYB718SGaxOxUvySz2/MUlmcVui4oyzKOqlmQ3lFCw6qLMYv/tvecyiz10ykaZxS7tvDiz2NXVHafPvahXdvno9LdWzSx29xHZ1V2/WHuDzGIffc2WmcVOO2X3WRbO/koOlTapvNuCzGIfN+2AzGLPG9Uzs9gF562XWeytXxicWezOPRZmFvuzBaWZxW6LCrIbMoyU3RB91HTKbnBkm+Oym7coWyO7N6VzdsPtMb9vdrHbopIMC8a23V7NLPaP3x+eWewtnsuu3/JR1X8zi70wZVdXrFX6YWax26KCguz63NW9qzKLPeieIzOLfco2f8ks9qR7vpFZ7E+mZzduXVyW3ThXW1NQld1rrelWmVnsgoXZ1ecbXnVsZrH7vzsvs9ixWp/MQhcsyK5+a4uqlmT4jM6C7OYKt31x98xiz7w1u+co9rg3u7GoHmt8llnsGbO7Zha7LVqSYcd4vR7vZxZ76gerZxb76ff+mVnsfy3Mrg39LMO52b4V2c3Ntkk1GT53WZFde1H4+fzMYo/ebFRmsSOyy/9K3v8ss9hR1HHm8yIienbKLt+dtSS7unFg+SeZxd7+9Vcyiz2v5q3MYp/9wTaZxR5Ylt0zlPnoWKUSAAAAAAAAAAAAAACghSy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMiheGWdOBVlF7ugpiCz2B99vTqz2AWLslsLkyqqMosdi7O77qJ5HWh9UE2GoTulzGI/P21gZrF//p8nM4t9+v1bZha7pii79ztKMozdBhUsya4+X1KZXaEreqc0s9gfvDAgs9gLBmTXxhVWZfdZpg7UVEREdCpcklnsz6rKM4u9esVnmcVeuKQks9hjXhuVWeyKkuzysy7FizKLzfLzm9e/nl3syC72qpVzM4s9u6pzZrFLCjNMuNugkpLs2ouamuwa39Ky7OrGQfcemVnsyt7zMoudpYLsUrQ2pyC7VDcK5mU3yPX5+tld+Ge/3Dyz2AULMwsdRbOze79rsksr26ROxdndX/OrsnszK7b/MLPYvcuzq88XVWc3FF9eml37uSTDdr8tynLeouzD7Mb1qrpm16i/u0t2eXTZf7N7wzN9v7t1oCQqIuZUZzfW2bM4u/7lVl1eyyz23z9bP7PYQ8s/yCz2y1V9Movd0WQ5U1NUkl29mzKMffGUXTKLneXXSRZXLM4ueEdSmN2HVLAww7Huzp0yC73aRY9mFrto7UGZxU6l2Y3PFmR4n7RFWfa5iyqyG3iZl2F/Pku91vw0s9idirMba1/QTt/vtuiDBV0zi715n3cyi73Z0/tkFruiU3Z5Tt+K2ZnFrspwDK0tKliY3bheKs0u18nyujPVq3t2sas71lx0lsoLs7u/3lq0amaxO2f4PNc/Z6+XWewF1dnVFRUZPrtUvZIfGOxYvRsAAAAAAAAAAAAAAIAWsvgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIIfilX0BWShcUJBh9OxiFyzJLnZ1YVFmsQsXZXfdKbvL7lBS55qVfQnL5Ow798suePcM35Msl7W1z49ymRVUZxo9s8ipOGUWe96g7N6UojnZVboF2b0lHa5czF3cObPY3TvNzyz2nCXZXfeQbh9lFntRTXbloqomu1Q8y+tui4oyrGRKCrOrZMorFmcWe3F1dvfAgiUlmcUuzPCzzDJ2W1RdnV1SWpBhlztl+DF1WWVuZrGrqrKr04uLs6uHsrxP2pwsh4raafVSPCu7+ry6PLv7NmV42xZ0sL5FdcqyYLRPr85cNbPY3bosyCz2osXZtUOdijMdnGlzshyLWtgruzJXMiez0NHr8ezurwXZFblYUpbd+12cXXFuk7oULcws9vya7MaLFtZkl+sM7/JWZrGz9Fl1eWaxizpaIpVlHpXh+EXNkuyS6eIu2Y1zZammRk68XCxeklnoVJpdW1FQnV3yV7DF1zKLHZ9nN5eT5XvS0SzOcNytakl2OXpF56rMYq+x6ieZxf50fllmsbN8v6trOtD4bEQUZjiQ2qkou7bonXk9MovdpzK7eYt+ZbMziz1jfrfMYpdm+Fm2SUUZzuctzK5OT+WlmcUuyDC3zFRNhv3i6o7V5y4tzPA5igwfSJ5f0ymz2GuWfpxZ7I8Xd8ksdpbv98rWsbI4AAAAAAAAAAAAAACAFrL4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACAHiy8AAAAAAAAAAAAAAABysPgCAAAAAAAAAAAAAAAgB4svAAAAAAAAAAAAAAAAcrD4AgAAAAAAAAAAAAAAIAeLLwAAAAAAAAAAAAAAAHKw+AIAAAAAAAAAAAAAACCHgpRSWtkXAQAAAAAAAAAAAAAA0Fb55QsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHiCwAAAAAAAAAAAAAAgBwsvgAAAAAAAAAAAAAAAMjB4gsAAAAAAAAAAAAAAIAcLL4AAAAAAAAAAAAAAADIweILAAAAAAAAAAAAAACAHCy+AAAAAAAAAAAAAAAAyMHii//1z3/+MwoKChr99/jjjzd53GeffRarrrpqFBQUxOTJk/M+369+9atYb731orS0NIYMGRJXX311Xsc99dRTcfzxx8cGG2wQFRUVscYaa8Q+++wTr776aoN9n3zyyTj22GNjs802i5KSkigoKGgy7oQJE2LvvfeONdZYIwoKCuLQQw/N+7VERNTU1MT48eNj0KBBUVpaGhtttFHcdtttLYpB2/Taa6/FfvvtFwMGDIjy8vJYd91147zzzov58+fX7TN9+vQmy09BQUEceeSReZ1rWcvF3Llz4+yzz45Ro0ZFz549o6CgIG666aYm96+pqYkJEybEsGHDoqysLHr16hXf/OY34/nnn6+33+uvvx577bVX9OjRI8rLy2PrrbeOhx56KK9riviifjjqqKNilVVWiYqKihg5cmQ888wzeR9P+7Jo0aI45ZRTon///lFWVhZbbrllPPDAA3kfP2PGjNhnn32ie/fu0bVr19htt93izTffbPa4+fPnx7XXXhs77bRT9OvXL7p06RKbbLJJTJgwIaqrq3Mee8stt0RBQUFUVlY2+NukSZNiu+22iz59+kTnzp1j0KBBcdhhh8X06dPzfk2PPvpobL311lFeXh59+/aNE088MebOnZv38bQv+bQXERGLFy+Oc889NwYPHhydO3eOwYMHxwUXXBBLlizJ+1wror049NBDG23T1l133Xr7vfLKKzF27NgYNmxYdOnSJfr16xejR4+OqVOn5v16Wlt/0Pa0JGePiLjzzjvj61//enTv3j169eoV2223Xdx77715n+9Pf/pTbLrpplFaWhprrLFGnH322XmXqXHjxsWYMWOiT58+UVBQEOecc06j+6255ppN5npDhgxpsP+yltMIZaKjWVk5VETE/fffH0cccURsuOGGUVRUFGuuuWaT++bbN8i3/cilNWWa9iXfsaiV3efOYizqnXfeiXPPPTeGDx8ePXr0iN69e8f2228fDz74YF7XFGEsqiNZ1nHbpa2o9iIi4o033ogDDjggVl111SgrK4shQ4bEGWec0WC/lZkD0ja1pM+ab327YMGCuvu3W7duUVlZGRtvvHFceeWVsXjx4ryuqzX17cyZM+PUU0+NkSNHRpcuXaKgoCD++c9/Nrl/VVVVXHjhhbHuuutGaWlp9OnTJ0aPHh3vvvtuvf2efvrpGDVqVHTt2jW6dOkSO+20Uzz33HN5XVNE6+oE2rb20r9YWq4x2pbM8zXFGG3HtjLzqJbOXbSkvcl3nq8p8qivnizyqIiIzz//PMaOHRtDhgyJsrKyGDhwYBxxxBHx9ttv53VdrWmX7rrrrth3331j8ODBUV5eHkOHDo0f//jH8dlnnzXYt6mx26OPPjrnOY488sgoKCiIXXfdNa9rioiYNm1ajBo1KiorK6Nnz55x8MEHx0cffZT38bRN7SWHmjlzZhx11FExaNCgKCsri7XWWit+9KMfxaxZsxrse80118R6660XnTt3jtVWWy1+9KMfxbx58/J+TdoK2ku5iMh/LKrW4sWLY/3114+CgoK49NJL835NysVXT0uft8s3D2hJfd2Y1jxvl0Wud8455zSaa5WWluZ1TRH65l9VLS1DjVlR9/vS/v3vf9fdxx9//HGDvz/44IMxcuTI6N27d3Tv3j2GDx8eN998c96vqcPc74mUUkoPPfRQioh04oknpptvvrnev48++qjJ40444YRUUVGRIiL9/ve/z+tc119/fYqItOeee6YbbrghHXzwwSki0kUXXdTssXvuuWfq27dvOuGEE9KkSZPS+eefn/r06ZMqKirSiy++WG/fs88+O5WUlKTNNtssrbPOOinXxz1w4MDUs2fPNGrUqFRcXJwOOeSQvF5LrVNPPTVFRDryyCPTDTfckEaPHp0iIt12220tikPb8vbbb6fu3bungQMHpp///Odp4sSJ6dBDD00RkcaMGVO339y5cxuUm5tvvjkdeOCBKSLSnXfe2ey5WlMu3nrrrRQRaY011kjbb799ioh04403Nrn/IYcckoqLi9Phhx+eJk2alK644op0yCGHpPvvv7/ea+/du3fq06dPGjduXLriiivSxhtvnIqLi9PDDz/c7DVVV1enrbbaKlVUVKRzzjknXXPNNWn99ddPXbp0Sa+++mqzx9P+7Lfffqm4uDj95Cc/SRMnTkwjRoxIxcXFacqUKc0eO2fOnDRkyJC06qqrposvvjhddtllafXVV08DBgxIH3/8cc5jX3zxxVRQUJB23HHHNH78+HT99den3XffPUVE+t73vpfznP37908VFRWpoqKiwd+POeaYdMghh6RLL700/epXv0pnnnlm6tOnT+rdu3eaMWNGs6/p2WefTaWlpWmTTTZJEyZMSGeccUbq3LlzGjVqVLPH0v7k216klNI+++yTCgoK0hFHHJEmTJiQDjnkkLocIh8rqr045JBDUufOnRu0bX/605/q7ffjH/84de/ePR1xxBFp4sSJafz48WmttdZKRUVF6YEHHsjrNbWm/qBtaknOftVVV6WISKNHj04TJkxIl19+edp4441TRKQ//OEPzZ7rL3/5SyooKEgjR45MN9xwQzrhhBNSYWFhOvroo/O61ohIffv2Td/+9rdTRKSzzz670f3uvvvuBuXhggsuSBGRjj322Hr7tqacpqRMdDQrK4dK6Yu6vrS0NG211VZpwIABaeDAgY3u15K+Qb7tR1NaW6ZpX/Idi1rZfe4sxqKuvvrqVFZWlvbff/90zTXXpCuuuCJtuummKSLSr3/962avKSVjUR3Jso7b1lpR7UVKX/SFu3XrltZff/100UUXpUmTJqWzzjorHXroofX2W9k5IG1TS/qs+da3s2bNSltuuWX66U9/mq699to0YcKEdPDBB6eCgoK0//7753Vdralva8vvkCFD0ogRI1JEpIceeqjRfauqqtKOO+6YysvL00knnZR+9atfpUsvvTTtvffe6aWXXqrb7+mnn06lpaVpyJAh6dJLL03jx49Pa665ZuratWt65ZVXmr2m1tYJtG3toX/x5XPmGqNtyTxfY4zRsjLzqJbOXbSkvclnnq8p8qivpizyqOrq6rTFFlukioqK9NOf/jRNmjQpnXLKKalLly5ptdVWS7Nnz272ulrTLvXq1St97WtfS2eddVaaNGlSOvHEE1OnTp3Suuuum+bPn19v34EDB6Zhw4Y1KOdPPPFEk/GfeuqpVFxcnEpLS9Po0aObvZ6UUnrnnXdS796901prrZWuvPLKNG7cuNSjR4+08cYbp0WLFuUVg7apPeRQc+bMSQMHDky9e/dOP/vZz9KkSZPS8ccfn0pKStKwYcNSdXV13b5jx45NEZH22muvNGHChHTCCSek4uLitNNOO+X1fmgrSKl9lIuU8h+LWtovfvGLumcdL7nkkmavJyXl4quqJTlUvnlAS+rrxrT2ebsscr2zzz47RUSaMGFCvVzr1ltvbfZ6UtI3/ypr6TOrX7ai7vcvn3PYsGF17cCXxwb++Mc/poKCgrTVVlulq6++Ol1zzTVp2223TRGRLrvssmbjd6T73eKL/1U7+JTvAoqUvhg0Ki4uTuedd17ex86fPz/16tWrQQf2wAMPTBUVFemTTz7JefwjjzzSoOP66quvps6dO6cDDzyw3vb333+/ruN93HHH5Sxc06dPTzU1NSmllCoqKlq0+OLdd99NJSUl6bjjjqvbVlNTk7bZZps0YMCAtGTJkrxj0baMGzcuRUS9ya2UUvre976XIqLZ+3WHHXZIXbt2TQsWLMi5X2vLxcKFC9PMmTNTSl8MFOVqyO64444UEemuu+7KGfPYY49NxcXF9Sbs5s2bl1ZfffW06aab5jx26fMsXS98+OGHqXv37nlPbNJ+PPHEEw06pgsWLEhrrbVWGjFiRLPHX3zxxSki0pNPPlm3bdq0aamoqCiddtppOY/96KOPGpTRlFI67LDDUkSk1157rdHjTjnllDR06NC6cpaPqVOnpohIP//5z5vdd+edd079+vVLn3/+ed22SZMmpYhIf/vb3/I6H+1Hvu3Fk08+mSIinXXWWfX2+/GPf5wKCgrS888/n/M8K7K9OOSQQ/IqG1OnTk1z5sypt+3jjz9Oq6yySvrGN77R7PGtrT9om1qSsw8ZMiRtscUWdbl4Sil9/vnnqbKyssHipcasv/76aeONN06LFy+u23bGGWekgoKCNG3atGaPf+utt1JKX7QnuRZfNOb8889PEZEeeeSRum2tLafKRMeyMnOolFKaMWNGqqqqSimlNHr06CYnMFrSN8i3/WhKa8s07cuyjEUtbUX1ubMYi3rppZcaDOguXLgwrbvuumnAgAE5ryclY1EdTWvLyopqL6qrq9OGG26YttxyywYPQ33Zys4BaZta0mdtydh/Y44//vgUEXXna0pr69vZs2enWbNmpZRS+v3vf59z8cXFF1+cSkpKcj4kmFJKu+yyS+rRo0e9B1bee++9VFlZmfbYY4+cx9aepzV1Am1Xe+lfLK25MdrWlnVjtKzMPKolcxctaW/ynedrijzqqymLPOqRRx5JEZGuueaaett//etf53UPtrZdaixn+s1vfpMiIk2aNKne9oEDB+a9gCKlL8rXiBEj0uGHH96iY4855phUVlaW/vvf/9Zte+CBB1JEpIkTJ+Z9ftqW9pJD3XLLLSki0p///Od623/2s5+liEjPPPNMSumLvkFxcXE6+OCD6+139dVXp4jI60tytBW0l3LRkrGoWh988EHq1q1b3bOO+S6+UC6+mlqSQ+WbB+RbXzeltc/bZZHr1S6+yGcBe2P0zb+6WlKGGrOi7velTZgwIfXq1SuddNJJjd7X3/rWt1L//v3TwoUL67YtXrw4rbXWWmmjjTZqNn5Hut8LgwbmzJmT189inXTSSbH77rvHNttsk3fshx56KGbNmhXHHntsve3HHXdczJs3r9mflt9qq62iU6dO9bYNGTIkNthgg5g2bVq97X369ImysrK8rmvgwIHL9HPFERF//OMfY/HixfVeU0FBQRxzzDHx7rvvxmOPPbZMcVn5Zs+eHRFf3EtL69evXxQWFja4F5c2c+bMeOihh2KPPfZo9me2WlsuOnfuHH379s25T63LLrsshg8fHrvvvnvU1NQ0+dOSU6ZMiU022SSGDh1at628vDzGjBkTzzzzTLz22ms5zzN58uTo06dP7LHHHnXbVlllldhnn33ij3/8YyxatCiv66V9mDx5chQVFcVRRx1Vt620tDSOOOKIeOyxx+Kdd95p9vgtttgitthii7pt6667buywww5x55135jy2d+/escEGGzTYvvvuu0dENGgbIiJee+21uPzyy+Oyyy6L4uLinPGXVvtzlo39pPHSZs+eHQ888EAcdNBB0bVr17rt3/ve96KysrLZ10T7k297MWXKlIiI2G+//ertt99++0VKKe64446c51mR7UWt6urqutfXmM022ywqKyvrbevVq1dss802jZa/L2tt/UHb1JKcffbs2bHqqqvWy8W7du0alZWVzebyL7/8crz88stx1FFH1avPjz322EgpxeTJk5u91uZ+qjiXW2+9NQYNGhRbbbVV3bbWllNlomNZmTlURET//v2jpKSk2f2WpW/QXPvRmOVRpmm/8h2LqrUi+9xZjEVtsMEG0bt373rbOnfuHLvssku8++67MWfOnJzHG4vquFpaViJWXHtx//33x0svvRRnn312lJWVxfz586O6urrRfVd2Dkjb1JI+a0vG/huT7xhPa+vbLl26RM+ePZu9npqamrjyyitj9913j+HDh8eSJUti/vz5je47ZcqU2HHHHaNXr1512/r16xfbbbdd/PnPf272J+xbWyfQdrWX/kWtfMZoW1PWjdHyZSs6j2rJ3EVL2pt85/kaI4/66soij8o17xERzcZobbu0/fbbN9iWa+4vIqKqqiqvMnHzzTfHSy+9FOPGjWt236X94Q9/iF133TXWWGONum077rhjrLPOOtqVdqy95FD5lsnHHnsslixZ0uhcZETE7bffnvM82goi2k+5aMlYVK1TTz01hg4dGgcddFCz8WspF19dLcmh8s0DlkcO1Zrn7bLM9VJKMXv27EgpNRt/6fPom391LcszSEtbUfd7rU8++STOPPPMOO+886J79+6N7jN79uzo0aNHdO7cuW5bcXFx9O7du9lzdbT73eKLLznssMOia9euUVpaGiNHjoypU6c2ut/vf//7ePTRR2P8+PEtiv/ss89GRMTmm29eb/tmm20WhYWFdX9viZRSfPDBBw0mrVeUZ599NioqKmK99dart3348OF1f6d9qh3UOeKII+K5556Ld955J+64446YMGFCnHjiiVFRUdHksbfffnvU1NTEgQce2Ox5sigXjZk9e3Y8+eSTscUWW8Tpp58e3bp1i8rKyhg8eHCDyn3RokWNNhjl5eUREfH000/nPNezzz4bm266aRQW1q9mhw8fHvPnz49XX321la+GtuTZZ5+NddZZp17iEPF/9eBzzz3X5LE1NTXxwgsvNLj/a49/4403mn3wqDHvv/9+RESjbcMPf/jDGDlyZOyyyy7Nxpk1a1Z8+OGHMXXq1DjssMMiImKHHXbIecyLL74YS5YsafCaOnXqFMOGDdMufAXl217Udgy+XL+2pG6NyL69qDV//vzo2rVrdOvWLXr27BnHHXdcsw9x1Hr//ffzys1aU3/QvjSVs2+//fZx3333xdVXXx3Tp0+PV155JY477rj4/PPP46STTsoZs6ky0b9//xgwYECm9e2zzz4b06ZNiwMOOCCva8q3nCoTHUtbzKEa09K+wbK2HyuzTLNy5TsWtbSV3efOaizq/fffj/Ly8rry1RRjUR3TspSVFdlePPjggxHxxYTL5ptvHhUVFVFeXh777bdffPLJJ/X2ba85IO1XVVVVfPzxx/HOO+/E3XffHZdeemkMHDgw1l577ZzHraj69uWXX4733nsvNtpoozjqqKOioqIiKioqYqONNoqHHnqo3r65crOqqqp46aWXmjzPiqwTWPHaS/+iVkvGaJeFMVqW1pbyqMbmLvJtb1oyz9cYeRQtUZvTn3XWWfGPf/wjZsyYEQ8//HCMHTs2tthii9hxxx1zHp/FOGeuub9//OMfUV5eHpWVlbHmmmvGlVde2WiMOXPmxCmnnBKnn356ix4UmzFjRnz44YdN1gnKT/vVXnKobbfdNgoLC+Okk06Kxx9/PN599934y1/+EuPGjYvvfve7se6660ZEdnOR2oqOpb2Ui5aMRUVEPPnkk/Gb3/wmrrjiihZ9QbNyQUvygHzr66asqOftliXXGzx4cHTr1i26dOkSBx10UHzwwQfNnkffnFxW9POlZ511VvTt2zd+8IMfNLnP9ttvH//zP/8TZ511Vrz++uvxxhtvxPnnnx9Tp06NsWPH5ozf0e53iy/+V6dOnWLPPfeMK6+8Mv74xz/GBRdcEC+++GJss802DT70BQsWxE9+8pM4+eSTW/xNsTNnzoyioqJYddVVG5y/V69e8d5777X42m+55ZaYMWNG7Lvvvi0+dnmYOXNm9OnTp0FiVrsScFleE23DqFGj4vzzz48HHnggNtlkk1hjjTViv/32ixNOOCEuv/zynMfecsst0a9fv/jmN7/Z7HmyKBeNeeONNyKlFLfffnv8+te/jvHjx8ctt9wSq6yySuy3335x33331e07dOjQeOGFFxp0ev79739HxBeJZXOvqbYMLE25+Gpqzef9ySefxKJFi5br/VJVVRVXXHFFDBo0qN63KURE3HvvvXH//ffHZZddlles1VZbLfr06RNbbLFFPProo3HVVVfFt771rZzHzJw5s971L61fv37u/6+gfNuL2m8Mf+SRR+odX/uLGPnUrSuivYj44l4dO3Zs3HjjjXHbbbfFmDFj4rrrrotRo0Y1+w1xU6ZMicceeyyv3Ex70XE0lbNfddVVsf3228eJJ54YgwYNivXWWy/uvPPO+Pvf/x4jRozIGXNl1re33HJLRESDh35bW06ViY6lreVQTWlJ36A17YccquNpyVjUl63sPncWY1Gvv/563HXXXbHnnntGUVFRzn2NRXUsrSkrK7K9qP0lpH322SfWXXfdmDx5cpxyyinxhz/8Ib7zne/U+0a09poD0n7dddddscoqq8Qaa6wRe+yxRwwYMCDuueeeZn8RdUXVt7Xl5/LLL49//vOfMXHixLjxxhtj4cKFMWrUqHjhhRfq9h06dGg8/vjj9b7Ns6qqKp544omIyD22sCLrBFa89tK/iGj5GO2y0F4Q0fbyqKbmLvJtb1oyz9cY5YKW6N27d9xxxx3x+eefxw477BADBgyI7bffPvr37x//+Mc/8sqjlne7cvHFF0dRUVHstdde9bZvtNFGcc4558Qf/vCH+NWvfhVrrLFG/PCHP4xTTjmlQYzzzjsvysrK4uSTT27RuZsrP7V1Bu1Pe8mh1l9//bjhhhvi5ZdfjhEjRsTqq68eo0ePjh122CF+//vf1+23POYil77+pWkrOo72Ui5aMhaVUooTTjgh9t1332bHnr5MuaAleUC+9XWuc62I8tOSXK9Hjx5x/PHHx8SJE2Py5Mnx/e9/P+64447YZptt6n5BI9frWfr6v/yalJ+ObUU+G/HCCy/ExIkT47LLLss5B3fWWWfFPvvsE+PGjYshQ4bE2muvHRdddFH84Q9/qPcLHY3paPd77h5hB7LVVlvFVlttVff/MWPGxF577RUbbbRRnHbaafUGay666KJYvHhxnH766S0+z4IFC6JTp06N/q20tDQWLFjQoni134o2YsSIOOSQQ1p8PcvDggUL6v3MTK3S0tK6v9N+rbnmmrHtttvGnnvuGb169Yp77703Lrzwwujbt28cf/zxjR7z6quvxtNPPx0nn3xyg5V5jVne5aIptd82O2vWrHj88cdjyy23jIgvyvugQYPiggsuiFGjRkVExDHHHBP33HNP7LvvvjFu3LioqKiI6667ru7bgJq7JuWiY2nN5137t+V5vxx//PHx8ssvx7333luvQ1BVVRUnn3xyHH300bH++uvnFeuvf/1rLFy4MKZNmxa/+93v8vq54uZek/v/qymf9mKXXXaJgQMHxk9+8pMoLy+PzTbbLJ544ok444wzori4OK+6dUW0FxERP//5z+v9f7/99ot11lknzjjjjJg8eXKDnyuu9eGHH8YBBxwQgwYNanbVd4T2oqPIlbOXl5fH0KFDY8CAAbHrrrvGnDlz4vLLL4899tgjpkyZkvObaJurb5sb7FlWNTU1cfvtt8cmm2zS4BsJW1tOlYmOpa3lUE1pSd9gWduPpeOs6DLNytOSsailrew+dxZjUfPnz4+99947ysrK4qKLLmp2f+1Fx7KsZSVixbYXteNOW2yxRfzud7+LiIg999wzysvL47TTTou///3vdd+Y1h5zQNq3kSNHxgMPPBCfffZZ/P3vf4/nn38+7zGeFVl+5syZE88++2ysvvrqERHxzW9+M9Zee+0YP358Xbk69thj45hjjokjjjgixo4dGzU1NXHBBRfUTe61lRySFa+99C+WZYx2WRijJaLt5VFNzV3kW35bMs+3LK9JHsWXrbLKKrHJJpvE8ccfHxtssEE899xzMX78+DjssMOafXhweedRt956a/zqV7+KsWPHxpAhQ+r97U9/+lO9/x922GGx8847x2WXXRYnnHBCDBgwICK+GE+48sor47bbbmv02nLJt05oaVxWvvaSQ0V88aWBw4cPr5tvnDJlSlx11VXRu3fvuPTSSyMiYtNNN40tt9wyLr744lhttdVi5MiRMW3atDjmmGOipKQkrzmKXK9JW9ExtJdy0ZKxqJtuuilefPHFmDx5covPo1zQ0jwgn/o617lWVLuSb6735V8q3nPPPWP48OFx4IEHxnXXXRennnpqk+fQNyeXFXm/n3jiibHzzjvHTjvtlHO/zp07xzrrrBN77bVX7LHHHlFdXR033HBDHHTQQfHAAw/E17/+9SaP7Wj3u8UXOay99tqx2267xV133RXV1dVRVFQU06dPj0suuSSuvfbaqKysbHHMsrKyqKqqavRvCxcubPTnspvy/vvvx+jRo6Nbt24xefLkZr8VMCtlZWWNfovBwoUL6/5O+3T77bfHUUcdFa+++mrdoMwee+wRNTU1ccopp8T+++8fvXr1anBcU9+E3JTlWS6aO09ExKBBg+oGZCMiKisr4zvf+U787ne/iyVLlkRxcXHsvPPOcfXVV8epp54am266aUR8USeMGzcuxo4d22z5Vy46ltZ83rV/W173yyWXXBKTJk2K888/v8FP1l9++eXx8ccfx7nnnpt3vJEjR0ZExM477xy77bZbbLjhhlFZWdnk4qulr7ep1+T+/+rJt70oLS2Ne++9N/bZZ5/Yc889I+KLpHv8+PExbty4vOrWFdFeNOXkk0+Os846Kx588MFGH56dN29e3YNT//73v/PKFbUXX33N5ex77713FBcXxz333FO3bbfddoshQ4bEGWecEXfccUeTsVdWffvwww/HjBkzGv12tNaWU2WiY2lLOVQure0bNNd+1JJDEdH4WNSXrcw+dxZjUdXV1bHffvvFyy+/HH/961+jf//+zR6jvSCfshKxYtuL2jj7779/ve0HHHBAnHbaafHoo4/WTXi3xxyQ9q1Pnz7Rp0+fiIjYa6+94sILL4xvfetb8dprr0Xfvn2bPG5F1be1cb7xjW/ULbyIiFhjjTVi6623jkcffbRu29FHHx3vvPNOXHLJJfGb3/wmIiI233zzGDt2bLNjCyuyTmDFay/9i2UZo10W2guasrLyqFxzF/mW35bM8y3La1IuWNqbb74ZI0eOjN/+9rd18xm77bZbrLnmmnHooYfGX//619j5/7N333F2VeXiuN/pM5lJT0gCgRBakIAEkA4CgggEgiBFlCZNOnqlXBRFgSACUo0QUMECAqJ8UbyiFC8XQXpRLkFACIRAQijpZdr6/cFv5maYmZMzCSuZYZ7n88kf2bPPu/c5Z6292n732XPPTl//UfajHnzwwTj66KPjc5/7XEycOHGZ+5eUlMTXv/71+POf/xz//d//HYceemhEfHDj4Hbbbdf6frpCP+rjq6f0oR566KHYe++945FHHolPfepTERHx+c9/Pvr16xff+9734qijjmpNbP3tb38bBx98cBx11FEREVFWVhb/8R//EQ888ED861//KngcbQURPadeFDsXNXfu3Dj77LPjjDPOaDPm7upx1IveqyvluivX686OtTLqz4r29b70pS/FN77xjbj33nsLJl+oPxSyssr7rbfeGg8//HA899xzy9z35JNPjkceeSSeeuqp1gfAHXTQQTF27Ng47bTTWn99uCO9rbwv+/F4vdyaa64Z9fX1rU+B+s53vhNrrLFG7LzzzjF16tSYOnVqzJgxIyIiZs2aFVOnTo3m5uZO440YMSKampri7bffbrO9vr4+3n333aIWmCMi5syZE3vuuWfMnj077r777qJfl8OIESNixowZbX6uLOL/fkZmVZ4bK+bHP/5xbLbZZq030raYMGFCLFy4sNOfJL755ptjzJgxscUWWxR1nI+qXixLS5yWhcalrbbaatHQ0NDmiW8nn3xyzJw5Mx5++OF44okn4oUXXoj+/ftHRMQGG2xQ8FgjRoxorQNLUy8+nlbk+x40aFBUVVV9JOXlxhtvjLPOOiuOP/74OOecc9r8bc6cOXHBBRfEscceG3Pnzm1tw+bPnx8ppZg6dWq7Ovhh6667bmy22WatN3t1puXnwzp7T8r/x09X2ouxY8fGc889F88991w8+OCD8eabb8axxx4b77zzTlHX1pXRXnSmpqYmBg8eHO+99167v9XX18f+++8f//jHP+LOO++MjTfeuKiY2ouPt2X12V955ZW4++67Y8KECW22Dxo0KHbYYYd2P4v9YavqenvTTTdFaWlpu8nclnNakXqqTvQu3aUPVYwVGRsUaj+Wpg9Fiw/PRX3Yqhpz55qLOvbYY+Ouu+6KG2+8MT7zmc8U9RpzUUQsu65ErNz2orN5p9VWWy0iIt5///2I6Ll9QD5eDjjggJg/f37ceeedBfdbWdfbZc3bttSfFhMnToyZM2fGgw8+GP/4xz/i8ccfb12XKdQ3W9l9SFaunjC++CjmaIulvaCQld2PKrR2EVF8e9PVdb6OjrN03A8fS71gaTfeeGMsXrw49t577zbbW/rxxfTbP4r68+yzz8aECRNi4403jttvv73T5KIPa7m5tmU+6v7774+77747TjvttNb2Z+rUqdHY2BiLFi2KqVOnFnxy+bLqT8s1g56nJ/ShIiImT54cw4YNa72Rt8WECRMipdQmYXuNNdaIv/3tb/Hiiy/G//zP/8Qbb7wRF198cUybNq2otcilz39p2oreo6fUi2Lnoi699NKor6+Pgw8+uPX6/8Ybb7TuM3Xq1E4f3hOhXtC1fkBXrtedHWtl1J8V7etFfNDfsvbHilhZ5f2MM86IAw88MCorK1vbgdmzZ0dExLRp0+LNN9+MiA/WDX/605/G+PHjWxMvIiIqKipizz33jCeeeEJ7sRTJF8vwyiuvRHV1devTkl5//fV4+eWXY5111onRo0fH6NGjW286OvHEE2P06NEFB6Xjxo2LiIgnnniizfYnnngimpubW/9eyOLFi2OfffaJF198Me66666sP0tcjHHjxsXChQtjypQpbba3ZDkV857onmbOnBlNTU3ttjc0NERERGNjY7u/Pfroo/Hyyy8X/QTOiI+mXhRj9dVXj+HDh8f06dPb/e3NN9+M6urq6Nu3b5vttbW1se2228YWW2wRZWVlce+990ZNTU1sv/32BY81bty4eOqpp9olYz366KPRp0+fZQ7q6VnGjRsXL774YrvrfzHXwdLS0thkk03alf+W16+zzjrtymVH7rzzzjjmmGNi//33j0mTJrX7+/vvvx/z58+Piy++uLX9Gj16dPz2t7+NhQsXxujRo+O4445b5nEWLVoUc+bMKbjPxhtvHOXl5e3eU319fTzzzDPahY+hrrYXJSUlMXbs2Nhhhx1i0KBB8de//jWam5tbnwLbmZXVXnRm3rx58c4778TQoUPbbG9ubo7DDz887rvvvrj55ptjp512Kjrmilw/6N6K6bPPnDkzIqLT+tNRX2tpndWJN998M954440s5WfJkiXx29/+NnbeeecOB8crWk/Vid6lO/ShumJ5xwadtR8ftirqNN3Th+eilraqxty55qLOOOOMuOGGG+Lyyy/vMKmvM+aiiChcV1qszPaiJSHqw/NOLQsXLe1AT+wD8vHT8hPvy5rjWVnX20022SQqKio6nbftqB81cODA2GGHHWKTTTaJiIh77703Ro4cGRtuuGGnx1kVfUhWnp4wvvio5miLYY6WQlZmP2pZaxcRxbc3y7PO9+HjROhHUZyZM2dGSqldv73QOvnSPop5zn//+9+xxx57xGqrrRb/9V//VdSvbbd45ZVXIuL/xiGvv/56RHzwq+VLt0HTp0+P+++/P0aPHh0/+9nPOo23xhprxNChQzu8Jjz22GPqTw/WE/pQEct378r6668fO+64YwwfPjyef/75eOutt5Z7LVJb0bv0lHpR7FzU66+/Hu+//36MHTu29fq/4447RkTEhRdeGKNHj47nn3++0+OoF3SlH7A81+ulraz77Va0r9fyAIVlrf0Zm1PIyirv06ZNi5tvvrnNOODKK6+MiIjNN9+89dcp33333WhsbOy0Djc3N3f4txa9rrwnUkopvf322+22PfPMM6mioiJNmDChdduDDz6Y7rjjjjb/zj///BQR6cwzz0x33HFHqq+vTymltGDBgjRlypQ0a9as1tcvXLgwDRo0KO29995tjnXooYemPn36pHfffbfgeTY2NqYJEyak8vLy9Mc//rHo93fSSSelYr/u2tradMQRR3T4t9mzZ6cpU6ak2bNnt26bNm1aqqioSCeddFLrtubm5rTjjjumNdZYIzU2NhZ9nnQve++9d6qsrEz/+te/2mz//Oc/n0pLS9P06dPbvebUU09NEZFefvnlDmPmqBdLe/zxx1NEpBtuuKHDv5922mkpItJf/vKX1m2zZs1K/fr1S3vttVfB2A899FAqKytLJ598cpvtb775ZpoyZUpr3U8ppVtuuSVFRPrNb37T5jgDBgxIBx98cNHvh57hkUceSRGRLrnkktZtixcvTuutt17aeuut2+z72muvpSlTprTZdtFFF6WISI8//njrthdeeCGVlZWls846a5nHf+CBB1J1dXXaZZdd0uLFizvcZ8GCBe3arzvuuCPtsssuqbq6Ot1xxx3pkUceSSml1NDQkN577712MR599NFUVlaWDjvssDbbp0yZkl577bU22/bYY480YsSINHfu3NZtP/nJT1JEpD/96U/LfE/0LMvTXrRYuHBh2nzzzduVl1XZXixatKjNubQ444wzUkSk3/3ud222n3jiiSki0uTJkwsec9asWWnKlClpwYIFrdu6cv2g5yi2z/7222+n0tLStPPOO6fm5ubW7dOmTUt1dXVpjz32aN1WX1+fpkyZkt588802MTbccMO06aabtulzn3POOamkpCQ9//zzRZ/zrFmzUkSkc889t+B+v/vd71JEpJ/+9Kcd/r0r9VSdYFX3oZY2fvz4NGrUqKL372hs0JX2I3edpmcodi5qaatizJ1rLuriiy9OEZG++c1vFoxjLoqu1JVV2V689dZbqaqqKu2www6pqampdfvZZ5+dIiI99thjre+nu/QB6b6WNce5tELX21mzZrUpZy1OPvnkFBHpvvvua92W+3r7m9/8JkVE+utf/9rh3/fdd99UVlbWpg4///zzqaysLJ144okFY7fMxV566aVttue+JtC99ITxRVfmaD9sWX0rc7R0ZFX3o4pZu0ipa+1Nset8+lG910fVj7r00ks7jHPFFVekiEi33HJL67Yc85xvvfVWWmedddLqq6+eXn311U73e/fdd9v1yerr69P222+fKisr01tvvZVS+qCOd9QGDR06NH3qU59Kd9xxR5u5hpdffrnd3MPxxx+fampq0uuvv9667d57700Rka655pplvie6p57Qh0rp/8YwHx5PfO1rX0sR0WkfKqWUmpqa0vjx41OfPn3a9Je0FXSmp9SLYueinnzyyXbX/8mTJ6eISEceeWS64447WucC1Ivea1l9qGL7AV25Xue+3+6j6ut1NK6aNGlSioh02WWXtdlubN57LasOrcry3tE44OCDD04RkX7xi1+k+++/P6X0wXrggAED0gYbbJCWLFnS+vp58+alkSNHpg033LBN3N5e3iVf/P922WWXtNdee6ULLrggXXfddelrX/ta6tOnT+rfv/8yOwl//etf21WCpbd/+AamlovvAQcckK6//vp0+OGHp4hIEydOXOZ5tkwo7bPPPumXv/xlu39Lmzp1ajr//PPT+eefn7beeusUEa3//8UvftFm39///vetf6usrEybbbZZ6/+fffbZ1v1uuOGGDi8SLTeTHHfccen6669P48ePTxGRbrrppmW+J7qvBx54IJWVlaXVVlstnXfeeWnSpElpzz33TBGRjjnmmHb7NzY2pmHDhqVtttmm05g56kVKKV199dXp/PPPTyeccEKKiLT//vu3luGlFwxnzJiRRowYkfr27ZvOPffcdNlll6UNNtgg1dTUpGeeeaZ1v6lTp6atttoqXXDBBeknP/lJ+vrXv55qamrSZptt1u6GqiOOOCJFRJuJr8bGxrTNNtukurq69L3vfS9NmjQpjR07NvXt2ze98MILRb0nepYDDzwwlZeXpzPOOCNNnjw5bbfddqm8vDw98MADbfbbaaed2nV25s6dm9Zdd9202mqrpYsvvjhdfvnlac0110yrr756h534pU2dOjX1798/1dTUpEmTJrVrF5a+hnfkiCOOSLW1tW22vf/++6m2tjYdddRR6Yc//GG69tpr00knnZT69OmTBg0alF588cU2+0dE2mmnndpse/LJJ1NVVVXabLPN0jXXXJO+9a1vperq6rT77rsXPB96pq60FwceeGA67bTT0uTJk9Mll1ySPvGJT6Sqqqp07733ttlvVbYXr776ahowYEA64YQT0pVXXpmuvPLKtNdee6WISHvssUebyavLL788RUTadtttO+ybzZ8/v3Xfc889t8OJhmKvH/QcXemzH3PMMSki0i677JKuvvrqdOGFF6aRI0emsrKyNmXg1VdfTRHRLkn6D3/4QyopKUmf+cxn0nXXXZdOPfXUVFpamo499tiizvUXv/hFOv/881snYnfZZZfWOjF16tR2+3/hC19IVVVVbfpXH1ZsPVUnSGnV9aFSSunZZ59tLe9jxoxJAwYMaP3/73//+9b9ih0bdKX9yFWn6Vm6Ohe1qsbcOeaiWpL51l9//Q5jzpgxo3Vfc1F0pa6syvYipZTOO++8FBHps5/9bJo0aVI67rjjUklJSTrkkEPa7Leq+4B0X8XOcRZ7vb388svTmDFj0llnnZUmT56cLr300vTZz3629bq+tFzX25bz+uIXv5giIh111FGt25b2v//7v6muri6NGDEiff/730/f//7304gRI9LQoUPTG2+80brfAw88kHbdddf0gx/8IP3kJz9JxxxzTCorK0t77LFHamhoaBMzxzWB7q0njC860tEcbUpdW+czR0tHVmU/qqtrF8W2N8Wu8+lH9T4fdT/qnXfeScOHD0+VlZXp1FNPTZMnT05f/epXU1lZWRo7dmybm5FyzHNuuummKeKDB4B+uP4snXx0ww03pHXXXTedddZZ6dprr00XXnhh2njjjVNEpAsvvHCZxxk1alQaP358h9s/fLPv66+/ngYPHpzWXXfddNVVV6ULL7wwDRw4MG2yySYFE6zo/npCH+qFF15ItbW1qa6uLp199tnp2muvTYccckjrGHxpp556ajruuOPSj3/843TllVemrbfeOpWUlLTrP2krKKQn1IuUip+L+rCW8r90gsnS29WL3qPYPlSx/YCuXK9z3G+Xo69XU1OTjjzyyPTDH/4wTZo0KR1yyCGppKQkjRs3rk3ybUrG5r1RsXVoVZb3jrSMYZZ+mFtKKV1wwQUpItJmm22WLr/88nTppZemT3ziEyki0q9+9as2+/b28i754v935ZVXpq222ioNGjQolZeXpxEjRqRDDz00vfTSS8t8bVeTL1JK6brrrktjxoxJlZWVad11102XX355h0+g+rCWTltn/zo6fkf/PlzoWyp3R/+WXmzpbAGmqakpXXjhhWnUqFGpsrIyjR07tl1lo2d69NFH05577pmGDx+eKioq0gYbbJAmTpzYbiErpZTuvvvuFBHpqquu6jRejnqR0gcTQJ2V4Q8/DeTf//532m+//VK/fv1STU1N+sxnPtOa8d3ivffeS/vuu29rR2v06NHprLPO6vBJth01ji0xjj766DR48ODUp0+ftNNOO7XJbOfjZdGiRen0009Pw4cPT1VVVWnLLbdMd999d7v9Ohp8p/TBk50OOOCA1K9fv1RXV5f23nvvLrVBnf1b1hPMO1rYW7JkSTrttNPSJz/5ydSvX79UUVGRRo0alY4++ugOn67TUbuS0ge/FrXddtul6urqNHTo0HTSSSd1WIf4eCi2vfjBD36QNtxww1RdXZ0GDhyYJkyYkJ5++ul28VZle/H++++nQw89NK233nqpT58+qaqqKo0dOzZdeOGFbbLQUyrch/pw29DZAkyx1w96jq702RsaGtLVV1+dxo0bl+rq6lJdXV3aZZddWp8u0KKzyc6UPnhSwbhx41JVVVUaOXJkOuecc9qV1eU51w+X1Tlz5qTq6uq0//77LzNuMfVUnSClVdeHSun/xrcd/Vu6rhU7NuhK+5GrTtOzdHUualWNuXPMRbW0AcW0Qeai6EpdWZXtRUofPKH56quvThtssEGqqKhIa665ZofX8VXdB6T7KnaOs9jr7eOPP54OPPDAtNZaa6WqqqpUW1ubNt9883TZZZe1G6/nut4W24ak9MHi3G677ZZqa2tT375907777tvuISAvv/xy2n333dOQIUNSVVVV2nDDDdP3v//9NoviLXJcE+jeesL4oiOdJV90ZZ3PHC0dWZX9qK6uXXSlvSlmnU8/qvf5qPtRKaX0xhtvpKOOOiqNHj06VVZWphEjRqRjjz223Q1KOeY5C9Wfpc/ziSeeSPvss09aY401UmVlZaqrq0s77LBDuu2224r+3IpNvkgppeeeey7tvvvuqU+fPmnAgAHpy1/+cpsHKNAz9ZQ+1AsvvJAOOOCAtOaaa7auX59++untbny94YYb0qabbto6rth1113bjbdT0lZQWE+pF8XORX1YV5MvUlIvPq66cr9dsf2AYq/XOe63y9HXO+aYY9JGG22U+vbtmyoqKtJ6663X6T2Exua9T7F1aFWX9w/rLPkipZRuuummtNVWW6UBAwakmpqatPXWW6fbb7+93X69vbyXpJRSAAAAAAAAAAAAAAAA0KHSVX0CAAAAAAAAAAAAAAAA3ZnkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAooHxVHXjdSy/LFzzlC13SnC92ypgKk8ryfSglTSX5Ymf8Ll8+8z/yBV8O616cr040V2X8IDNq7teYLXb5rIpssVNZttCRyvN9l6+e9o1ssZfX6Ct/mC12qsx4XVyS77oYOUPnbOMy1ovIeN6vfq371Yv1br0gW+yy8nwfZnl5U7bYSxbnu6b3VDm/y3994TvZYi+vne47PVvspuZ8nfQ+FfXZYjflHFxktKghX32uqWjIFvu+XTKOb5fTuLvOyRa7vCzfNWbhkspssWsq85WB+sZ8nZ2y0oydnYye2Ttfn2V5rP/9fPU0Zeyj51SSr3uWtf9f2pDvA0+l+caJL32re81DRUTs/9AJ2WLXN+ebdh5aNT9b7DcWDMgWe2Tt7Gyx5zRUZ4ud0++2v2ZVn0I7n97n4myxl/TPd3GseSffPGppQ76+yKIh+fr/VXMyNnQZ/ffdZ63qU2jn//1701V9CstlYXNVttj1GTs7taX55gqqM8Ze3JxvLHfgek9mi728Rt98YbbYJRn7pCnjmm5zY765qJKc6yIZ51Fz3rPw6pe/mS/4cthjxEnZYpeU9sx5zqjO1w6lhYuyxc4p53f5p+lXZ4u9vD71p3z1NOccamnGuciynDcAZVSS8bxTxonFZ/c5P1vs5fWNZw7KFruqNN+4OKf5Tfnai4qME8BLMs791ZTlW8u5ZNPfZIu9vLY78NJVfQrLJZXlu36V1edri5oznndpU772oqkyXz/q77d0v/uifvzCztliL0755iMHleVbu5jZ2D9b7L6li7PFzilnO3fsmAeXuU8PHakCAAAAAAAAAAAAAACsHJIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKCA8lV25LTKjrxCGuuas8WumlWWLXb9gJwfeL7YJQ0l2WJ3Nynf159V2aJ839HqD+b7UN7eLFvoaOiT7zpR0tR76kREREm+jzKiPt9n2VyT8cQzXs5LmvN9JiUZP++SHtqn6G2WLK7IFruudnG22PMXVGeL3bgkX1e8qnpRttjdUVVZY7bYcxrzlYGFDZXZYr/5zoBssVcfMjtb7Jwam3vXswfKSvM1kGWl+fo6Q+oWZIvdnPL1R8rLmrLFbspYdhsae+hAdDmUNGYcS5X3zA5p+cJ8n0lD/3yfScp4fSvtRfNQERH1zfn6o33K67PFbkj5rou7DZuSLfZ9b2+YLXZdxZJssXub0oZ815jm8nzXmDmj8425G/vkO+8+M/P1Kytm56sXC9foky12dzS7Kd/7HV4+J1vs2SnfeR/e751ssX+/IN9515bka5/npZpssbujlHGtpiRjlzRlXAPoN3Bhttjz5+ebn0uN+fqWpRU5F7l6j9SYb84lGvJdF9P8fHNcJWUZ5zmrqrKFzvpd9jKV5fnWRCrL831Pfavy9dHfmV+bLfbAPvnW3N7L2Pfrjhoy3hi1oCHf9WtJU745tLVq3ssWe0Tl7Gyxn5w3KlvsUjeA9HrNZfnGLSlj7KaMscvqe9fYYnHKN9e5sClfezG/Kd/YNWcb+n5Dvn5UTqtVzl2lx+9dd58AAAAAAAAAAAAAAAB0keQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAACigfFUduKQ5X+ym6pQt9qBn8+WrDP7Jw9liv3rRttlil9ZnCx1N1flidzepPF+5zamsviRb7MZj38kWu+KBYdli1w/Ld4ErWVCWLXZ31FyZr16ksnyxa6bna17LFmcLHYOfb8gWe9ru+cpuz7x6Lr+q6nzf08A+i7LFnjZtcLbYF255S7bYZ/zzC9liDx80N1vs9xfWZIvdHTWlfH30spJ8V5ldhr+YLfb3NvnfbLF/MXdIttg3TNs+W+zy0oyD0G5oUX1FttjD+uXrkLz27OrZYvd7Kd/YZe76+a4VIzeZkS32nMbeM75orsg4tsg4u1b5fr5y22f7fGPu914clC121YJ87X5jbe8aXQyoXJgtdr/yJdli/9fzY7PFfqxmVLbY+67/z2yxH521drbYGw98K1vs3qYpX/cshv3tvXzBM/rXMQOzxe77Wr5+TvMqW1lbNdatfDtb7BmNA7LFfq+pLlvsDf+2Z7bY+6z3XLbYG9bku6YPr5idLXZ3VJJxfSH10C5p31/2yxZ73i7ZQkfpoHz91uaG3vMczJKKjB2dpqZsoVNpVbbYzTPztZ9lG6ybLXbJvAXZYkdF75mHioiYvyhf+Wqoz9chbZxbmS327EH51iFrqjKuc8/KN26prGrMFrs7Glieby5qflO+OvfFwY9ki33MbSdkiz1403xt0fg18q1DzmnsXevcqSzfGkDO+Yvq9/L10d7aNl/fcp1f5hsXv79VvnsRS5rylZPuqG9pvrXoipJ8ZXf/uinZYg8qy9i3TPk+k2tm51vPqS7J1/8rRu8Z8QMAAAAAAAAAAAAAACwHyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUED5qj6BHEobSrLFbqrMF/vPbz6TLfY6f9kiW+y+z1Zliz1v7eZssbub5pp877Xu5XxVPWW8ivx9099mi73ZXSdmix1lKVvo8vn5rkHdUr6PMvq9lK/wPnvGj7PF/tzq47LFjpJ85at5ny2zxS5d3LtySRsby7LFfuPl1bLF3uCkR7PFPvXXX8wWu652cbbY9U35vsuFC/L1z7qjmvKGbLFff2dgtti7rD8lW+yc7UX/vw3OFrtv5ZJssWcvrskWuzsqKcnXkZq3JN81ZuCY97LFHvSNF7PFXnD+ttliz5pXmy12bXV9ttjdTdV7+fq6C8ctyhZ76F/zjVv++5TbssX+f2PqssW+9D+/nC32jG1715j7hfeGZYv950/+PFvsR6/ZPFvsQT97KlvsH2Sc+91+5jrZYi9qqsgWuzsqbcg3R5tzHrXpf/+VL/hWm2QL/e+Dr80We9vHj88Wu9/LC7LF7o6mNeQbA85o7J8t9gkDXsoW+08HDcgW+38Oyze2OP6CS7LF/sP8jbPF7m1K36zOFvulQ6/JFnvL/z4hW+z1T/57tthL/rJ2ttivvT4kW+xupyzfOk3znLnZYpfW5ZtzyXnvxx7jx2aLnV56JVvs8jVWzxa7OxpYtzBb7KbmfHXukZ1vzxY757rFF6a8nS32D578XLbYaw18P1vs7mh+U761hWmL8q3nvVCT7/o1+j/z9XNytkVnzNgsW+wlzR/L21k7lfPt1rydbw29sS7fvQ4vHJvvnqsd/vHVbLEXD8jXPtfObMoWuzt6vT7fXNT2tfnWi+9ZuHa22DdtODJb7PLRo7LF/uNDd2aLfdbMcdliF6N33a0IAAAAAAAAAAAAAADQRZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACuhS8sUpp5wSDz74YK5zAQAAAAAAAAAAAAAA6Ha6lHwxadKk2HnnnWODDTaIH/zgBzFjxoxc5wUAAAAAAAAAAAAAANAtdCn5IiLiL3/5S+y1115x6aWXxlprrRX77rtv3HXXXdHc3Jzj/AAAAAAAAAAAAAAAAFapLidfbLLJJnHFFVfEm2++Gb/61a9iyZIl8fnPfz7WXHPN+Na3vhUvv/xyjvMEAAAAAAAAAAAAAABYJbqcfNGioqIiDjrooLj77rvjlVdeiWOPPTZuuummGDNmzEd5fgAAAAAAAAAAAAAAAKvUcidfLG2ttdaK7373u/Hqq6/G3Xff/VGEBAAAAAAAAAAAAAAA6Ba6lHwxatSoKCsr6/TvJSUl8dnPfnaFTwoAAAAAAAAAAAAAAKC7KO/Kzq+++mqu8wAAAAAAAAAAAAAAAOiWuvTLFwAAAAAAAAAAAAAAAL2N5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACggPJVduSSfKGby1O+4BlPfPvTvpotdt/Vy7LFXrh6vs+7tCFb6G6ndFG+XKj6/vm+o2FbzcgW+3Orj8sWe/a1jdliR0O+77K5Ilvo7iljiuCCkc3ZYo/+89HZYg//0+xssd/552rZYpctyHcdaq7M2e53P+XlTflirz4vW+zXf7NJttiNC/J1aZ/a6dZssUf/1zHZYlf3X5Itdnc0e3FNtthD+8/PFntxytew7/m/s7PF/vnLG2aLPaDPomyxm1PGQWg3VFqScZyWMfbMmf2zxX78zWeyxd7hH+tki72wPt+1IvWierFkUL5yWzKjKlvsOaPzDYpyjrlf+9522WI3bJ9vLFe+oPfUiYiIkX1nZ4t9+vTds8V+d1y+MnDKC29ki33WzHHZYvetzNf/n9NQnS12d7RkQL52t7ki3zWmYfdPZYtd86+Z2WJ/7vOHZYsd6+ULPXe92nzBu6FBZfnGxfUp39rVvYv6Zos98KFB2WJvV/dAttg5rVP59qo+hZWqJGO3sXFofbbYo+88Llvsn5xzXbbYp3/+wGyxZ79ely12aXW+ufzuJi3O1x8trcvX7qb6fPVtx5Py3ftRW7YgW+yyQQOzxU4Nvejmj4hYuKQyW+x58/OtiWz/j/2zxX73tnz1+aJ7+mSLPWDt2dlivzEn33x4b7Nx3zezxX59yeBssS+b+vdssZ9ckm+89V59vvo8onpOttjdUXNZvsFFKs+3vrBgWL7ylXPtos+2i7PFTmX52ufepq4s3/eU08zGfO36Ns/m60uPrfnvbLEvfGdMttijq2Zli10Mv3wBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAACigfFUdOJVkDJ4x9tz1m7PFnr92vlyYppqmbLFLGvN94GVLchaU7iXn59hckS10vPX08Gyxxz85LVvsf99fli12Ts1VaVWfwsrVlLFeVOb7LEvn5Kt0c18ali1207B8bVxJzqKbtVPRuyxZnK/sVlU3ZIu9JFvkiE88dFi22KXV+fpnNVX12WLz0Tn7f/fLFntI3YJssUcPfDdb7LcX9s0Wu6IsX53rjmoq8113m5rzjV2HDpuTLfa6938lW+z+/RZmi11Znq/s5vwuu5uy+nx9xpx93QUj8wV/5eJts8WOlO+8K+blK7epvJeNuTNa0FSZLfZ2n/pXttgPzhmTLXZteb6Ry5DqfH2/xU2rbAnhY2fgi/nGaYuG5PueZm6xZrbY1e/lu+4OeXp+ttjzR/XJFrs7eq+pLlvs4eX5+v85z/uTfadniz2kYl622NMa+2WL3ZC0Fx+Vssp88/RRlW98ecyfj84WOzL200v7NGaLXdKLli5KSjOO0+rz9aFKKvONW/rc8Wi22KWDB2WLXVJXmy12WpxzNaf7qarId30p7ZdvDLhwSb560dSY7x6NAWvPzhY751z7vMVV2WJ3Rw0pXxmY01iTLfZqlXOzxT5/+vhssftXLMoWe0hVvjH3kubeNbaompevj754UL461/eNfO3c7MMyrl1kVL7E+sJHpU9pvjHA80vWyBa7b+nibLHXr5qZLfZzi0Zmi11VmvGehVX82xO9Z5UdAAAAAAAAAAAAAABgOUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACylf1CeRQtqRkVZ/Ccilpyhk9X55NSXO20JF65lfZ7TT1yfglZfSX/7dVttgltSlb7OaqfLFLGntXpch6fYmMn2W+IhALRzVki126sCxb7JzfZc6vsjtasrgiW+yq6nzlq7ExX/mq7b8oW+yeqqEp3+fdHZWV5rvIVGWMXVe5JFvsOUuqs8VubM43tigtydeIlmf8Lruj+ozX3bLSfN9TQ8bzHjxwfrbYOc+7KWOda2zqPc/kaC7L2EnPeXnJ1/WL8oX5OtJNlRk/bz4yOdvdnP2F2or6bLFfnz8wW+yRtbOzxZ7bkK/v16c83+fd28xdM99FvW5GY7bYw57MF3vRkHxLVEuG5qsXVXOyLuZ0O33L8s27LE756kWf0nxj7jHVb2WLXVGSr87Nbc5XL3Ked3eUMo4BSjIO05qWZJwrGJCvz5Cae+Z6TnNj7xlzp8Z8bWNJTU222NGU77zLR62ZLXZanK+Nyxm7t1nSkLGvmzF2TVW+6/mwQXOzxZ67uCpb7JxrbqmX3RRVkfHGuKrSfP3R6UvyzRetVjUvW+w1qmZni/3a4sHZYteW9a62qLks33WgYmG+gcuiQfnaoqp5+a4VDX0y3kPbZF3ko1Jdku/epbKMi3o557nebazLFruubHG22B9nvWfEDwAAAAAAAAAAAAAAsBwkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAASUppbSqTwIAAAAAAAAAAAAAAKC78ssXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXnZg4cWKUlJTExhtv3Gb71KlTo6SkpNN/xx57bFHxf/rTn8YnPvGJqK6ujvXXXz+uvvrqol73+OOPx8knnxxjx46N2traWGutteKggw6KF198scP9p0yZEnvssUfU1dXFoEGD4rDDDotZs2a12++tt96K4447LkaPHh01NTWx7rrrxn/8x3/Eu+++W9R5zZ49O4477rgYOnRo1NbWxi677BJPPfVUUa+le3vyySdjjz32iH79+kXfvn1j9913j2eeeabdfs3NzXHttdfGuHHjoq6uLoYNGxZ77rlnPPzww0Ufa3nrxfz58+Pcc8+NPfbYIwYNGhQlJSVx4403drp/c3NzXHPNNTFu3LioqamJwYMHx2c+85l49tlnW/d54YUX4swzz4xx48ZF3759Y8SIETF+/Ph44oknin4/S5YsibPOOitWX331qKmpia233jruueeeol9Pz9HVMtiR5b2ONjc3x4033hgTJkyINddcM2pra2PjjTeOCy64IBYvXtxm30WLFsXRRx8dG2+8cfTv3z/q6upi0003jSuvvDIaGhoKHufYY4+NkpKS2HvvvYt+T8W2QfRsRx55ZMG+0fTp0yMiYuHChTFp0qTYfffdY8SIEdG3b9/YbLPN4pprrommpqaij/f73/8+Nt9886iuro611lorzj333GhsbCzqtRMnTowJEybEsGHDoqSkJL773e92uu8tt9zSepyhQ4fG0UcfHe+88067/a655po48MADY6211oqSkpI48sgji34vER/U4YsvvjhGjx4d1dXV8clPfjJ+/etfdykG3U+x9SIiYuedd+5wnz322KPo43WnPlTLfitSro0tepcV7TNPnz49DjrooBgwYED069cv9t1333jllVeKeu1f/vKX1r5RWVlZrL322p3u+/LLL8cBBxwQAwcOjD59+sQOO+wQf/3rXzvct9i60pkVaevomZ566qmYMGFCDBo0KPr06RMbb7xxXHXVVW326Up57Yx+FD3VqhxzR0Q89thjceKJJ8YWW2wRFRUVUVJSUnD/mTNnxle/+tVYY401orq6OtZee+04+uij2+137733xi677BJDhgyJAQMGxFZbbRW//OUvi35PDz/8cOywww7Rp0+fGD58eJx66qkxf/78ol9Pz/LSSy/FF7/4xRg5cmT06dMnNtxwwzjvvPNi4cKFbfa78MILY5tttomhQ4e2jg++9rWvdWk+ZmW1F8XUgRWZy2qhvehdesL44s0334xDDz00xowZE3379m0t/z//+c8jpdRuf+0FxehKf+n666+PnXbaKYYNGxZVVVUxevTo+MpXvhJTp04t+njLW66mTZsW3/ve92KrrbaKgQMHxpAhQ2LnnXeOe++9t8P9i+nD/fd//3fBebiJEycu87y0FT1fsXWgK2tqEat23HrffffFUUcdFRtssEH06dMn1llnnTjmmGPirbfeKvi62bNnx2qrrRYlJSVx++23t/t7sf3KzqxIW0n31RP6UBHFzdF2tZ53Rh+KnlAvCt3DeMstt3Qav6GhITbaaKMoKSmJSy+9tOj3ZO2i9yj2XsGlLasP0pmVsc7dlTHQnDlz4swzz4z1118/ampqYtSoUXH00UfH66+/XtR5uVfw46mraxS33XZbbLPNNjFgwIAYPHhw7LTTTvHHP/6x6OOtjPnZ7373ux22H9XV1W32Mz9bQKKdadOmpT59+qTa2to0duzYNn+bP39++uUvf9nu35e//OUUEem2225bZvxrr702RUT6whe+kK677rp02GGHpYhIF1100TJf+4UvfCENHz48nXLKKen6669P559/fho2bFiqra1N//znP9u9jyFDhqR11103XXnllWnixIlp4MCBadNNN01Llixp3W/evHlp1KhRaciQIek73/lOuv7669PJJ5+cKioq0rhx41JTU1PBc2pqakrbbbddqq2tTd/97nfTj370o7TRRhulvn37phdffHGZ74nu68knn0zV1dVp/fXXT5deemm6+OKL09prr5369euXXnjhhTb7/sd//EeKiHTooYemyZMnpx/84AdpnXXWSeXl5enRRx9d5rFWpF68+uqrKSLSWmutlXbeeecUEemGG27odP8jjjgilZeXp6OOOipdf/316YorrkhHHHFE+stf/tK6zze+8Y00YMCAdPTRR6fJkyeniy++OK277rqprKws3XPPPcs8p5RS+uIXv5jKy8vT6aefniZPnpy23XbbVF5enh588MGiXk/P0dUy+GErch2dN29eioi0zTbbpAsuuCBdd9116Stf+UoqLS1NO++8c2pubm7d9913301bb711OuOMM9KkSZPSNddckw477LBUUlKSDjnkkE6P8fjjj6fy8vJUXV2dxo8fX9R7KrYNoud7+OGH2/WLfvGLX6Q+ffqkjTbaqHW/f/7zn6mkpCTttttu6eKLL07XXntt2m+//VJEpMMPP7yoY/3Xf/1XKikpSbvssku67rrr0imnnJJKS0vT8ccfX9TrIyINHz48fe5zn0sRkc4999wO9/vxj3+cIiLtuuuuadKkSenss89Offr0SZ/85CfTokWL2uw7atSoNGjQoLTHHnuk8vLydMQRRxR1Li3+8z//M0VEOvbYY9N1112Xxo8fnyIi/frXv+5SHLqXYutFSinttNNOaeTIke32v++++4o6VnfrQ6W0YuXa2KL3WZE+87x589L666+fVltttfSDH/wgXXbZZWnNNddMI0eOTO+8884yX3/EEUek6urqtN1226WRI0emUaNGdbjf66+/noYMGZKGDRuWJk6cmK644oq06aabpvLy8vTAAw90GLeYutKRFW3r6Hn+/Oc/p8rKyrT11lunyy67LF133XXprLPOSmeccUab/Yotr53Rj6InW5Vj7pRSOvfcc1NFRUXaYost0gYbbJAKTam//vrrac0110xrrrlmOu+889JPf/rTdP7556d99tmnzX533nlnKikpSdttt126+uqr049+9KP06U9/OkVEuuyyy5Z5Tk8//XSqrq5Om222WbrmmmvSt771rVRVVZX22GOPZX8g9Divv/56GjBgQBo1alT6/ve/nyZPnpyOPPLIFBFpwoQJbfbdf//901e/+tV0+eWXp5/85CfpG9/4RurXr19ab7310vz585d5rJXVXhRbB5Z3Lmtp2ovepSeML5599tm00047pW9+85vp2muvTVdffXWaMGFCioh09tlnt9lXe0GxutJfOuGEE9IRRxyRLr300vTTn/40nXPOOWnYsGFpyJAhafr06cs81oqUq6uvvjrV1NSkQw45JP3oRz9KV1xxRdp8881TRKSf/exnbfYttg83Y8aMDtfud9999xQR6bHHHlvmeWkrer5i60BX1tRSWrXj1i222CKNHj06nXnmmen6669PZ599durbt28aNmxYeuuttzp93SmnnJJqa2tTRKTf/OY3bf7WlX5lR1a0raT76gl9qGLnaLtazzuiD0VKPaNetLR/hxxySLu+0NSpUzuN/8Mf/rC1rbjkkkuWeT4pWbvoTbpyr+DSCvVBOrOy1rmLHQM1NTWlLbfcMtXW1qYzzjgjXX/99emss85Kffv2TWussUaaO3fuMs/LvYIfT10pb1dddVWKiDR+/Ph0zTXXpMsvvzxtuummKSLSb3/722Uea2XNz5577rkpItI111zTpv24+eab2+xnfrZzki86cPDBB6fPfOYzaaeddmqXfNGZXXfdNfXr16/dQvKHLVy4MA0ePLjdzatf/vKXU21tbXrvvfcKvv6hhx5qd9Pqiy++mKqqqtKXv/zlNttPOOGEVFNTk1577bXWbffcc0+KiDR58uTWbTfddFOKiHTXXXe1ef13vvOdFBHpqaeeKnhOt956a7uG8+23304DBgwouoLRPe21115p4MCBbTr/b775Zqqrq0v7779/67aGhoZUU1OTDjjggDavf+WVV1JEpFNPPbXgcVa0XixevLh1kunxxx8v2MC1lNff/e53BWM+8cQTad68eW22vfPOO2no0KFp++23L/jalFJ69NFH2w1UFi1alNZdd9207bbbLvP19CxdKYMdWZHr6JIlS9JDDz3Ubvv3vve9FBFFJQudfPLJKSI6nKxtbm5O2267bTrqqKPSqFGjik6+KLYN4uPpwQcfTBGRJk6c2Lpt1qxZ6bnnnmu371e+8pUUEemll15aZtyNNtoobbrppqmhoaF127e+9a1UUlKSpkyZsszXv/rqq63n0tkgY8mSJWnAgAHp05/+dJsJ2D/84Q8pItJVV13VZv+pU6e27ldbW9ulxZc33ngjVVRUpJNOOql1W3Nzc9pxxx3TyJEjU2NjY9Gx6P46qhcppS6NOT6sO/ahVrRcG1v0LivaZ/7BD37Q7kaKKVOmpLKysnY3LXVk+vTpqb6+PqWU0vjx4ztdwDjxxBNTeXl5m0nlBQsWpDXXXDNtvvnmbfYttq50ZkXbOnqWOXPmpGHDhqX99ttvmQ++KLa8dkY/ip5sVY65U/rghr6FCxemlFI66aSTCiZf7Lnnnmn06NHLXEj/7Gc/m1ZfffW0ePHi1m0NDQ1p3XXXTZ/85CeXeU577rlnGjFiRJozZ07rtuuvvz5FRPrzn/+8zNfTs0ycODFFRLsx9eGHH54iYpn9/ttvv73oxayV0V6ktOJ1oNBc1tK0F71LTxlfdGbvvfdOtbW1bcql9oJirWh/6YknnkgRkb7//e8vc98VKVfPPfdcmjVrVrtz33DDDdPIkSPbbF/RPtx6662X1l9//WXup634eCi2DnR1TW1VjlsfeOCBdnMFDzzwQIqI9K1vfavD1/zzn/9M5eXl6bzzzuvwxscV7VeuaFtJ99RT+lDFztF+FGvn+lD0lHrRcjNwsQkUKaU0c+bM1L9//9a2otjXWrvoPYq9V3Bpy+qDdGRlrnN3pKMx0EMPPZQiIv3oRz9qs+/Pfvazotb+3Cv48dWV8rb++uunLbfcss062Zw5c1JdXV1RCc8ra362Jfniw2P0YpmfTak0aON//ud/4vbbb48rrrii6Ne89dZb8de//jX233//dj+78mF//etf4913340TTzyxzfaTTjopFixYsMyfl9luu+2isrKyzbb1118/xo4dG1OmTGmz/be//W3svffesdZaa7Vu22233WKDDTaI2267rXXb3LlzIyJi2LBhbV4/YsSIiIioqakpeE633357DBs2LPbff//WbUOHDo2DDjoo7rzzzliyZEnB19N9Pfjgg7HbbrvF4MGDW7eNGDEidtppp7jrrrtaf1axoaEhFi1a1K4MrbbaalFaWrrMMrSi9aKqqiqGDx9e1Hu67LLLYquttor99tsvmpubY8GCBR3ut8UWW0RdXV2bbYMHD44dd9yxXV3ryO233x5lZWVx3HHHtW6rrq6Oo48+Ov7+97/HtGnTijpfeoaulMGOrMh1tLKyMrbbbrt22/fbb7+IiKLKa8vPVM6ePbvd3375y1/Gc889V9RPcy+t2DaIj6ebb745SkpK4ktf+lLrtiFDhsTYsWPb7VtsWX3++efj+eefj+OOOy7Ky8tbt5944omRUirqpysL/VRxi+eeey5mz54dBx98cJSUlLRu33vvvaOurq7dT7SOGjWqzX5dceedd0ZDQ0Ob9q+kpCROOOGEeOONN+Lvf//7csWle+qoXiytsbGxyz9Z3R37UCtaro0tepcV7TPffvvtseWWW8aWW27Zum3DDTeMXXfdtaj+xuqrrx4VFRXL3O/BBx+MzTbbLMaMGdO6rU+fPjFhwoR46qmn4qWXXmrdXmxd6chH0dbRs9x8880xc+bMmDhxYpSWlsaCBQuiubm5w32LLa8d0Y+ip1uVY+6ID+ZMlzW3FRHxwgsvxJ/+9Kc444wzYvDgwbF48eJOf3Z77ty5MXDgwKiqqmrdVl5eHkOGDFnmsebOnRv33HNPHHroodGvX7/W7YcffnjU1dUZc38MFZq/Ly0tbbde8GGF5n2WtrLai4gVqwNLH2dZ70l70bv0lPFFZ9Zee+1YuHBh1NfXt27TXlCsFe0vFXtdXdFyNXbs2BgyZEibbVVVVbHXXnvFG2+8EfPmzWvdviJ9uMceeyxefvnl+PKXv1zwfCK0FR8XxdaBrq6prcpx66c//ekoLS1tt23QoEGdrqecdtppsd9++8WOO+7Y4d9XtF+5om0l3VNP6UMVO0e7omvn+lBE9Jx6sbQFCxa0GUt05j//8z9jzJgxceihhxYd29pF71LsvYJLW1YfpCMrc527Ix2NgT6Ke2jdK/jx1JXyNnfu3FhttdXajCP69esXdXV1yyxDK3N+tkVKKebOnRsppS69zvxshOSLpTQ1NcUpp5wSxxxzTGyyySZFv+6WW26J5ubmoiZwnn766YiI+NSnPtVm+xZbbBGlpaWtf++KlFLMnDmzzWTV9OnT4+233253nIiIrbbaqs1xWgbup512WjzyyCPxxhtvxH/913/FxIkT4/Of/3xsuOGGy3xPm2++ebvB/1ZbbRULFy6MF198scvvie5hyZIlHV70+/TpE/X19fHcc89FxAedi6233jpuvPHGuOmmm+L111+Pf/zjH3HkkUfGwIED23QqOpKjXnRk7ty58dhjj8WWW24Z3/zmN6N///5RV1cX66yzTtGD5BkzZrSbGO7I008/HRtssEGbAXnEB/UiIuKZZ57p8vnz8ZXjOjpjxoyIiA7La319fbzzzjsxbdq0uOOOO+LSSy+NUaNGxXrrrddmv3nz5sVZZ50V3/zmN7s0aOlKG8THT0NDQ9x2222x3XbbFdWpL1RWl9ZZW7H66qvHyJEjP7Jy1bJo11H7V1NTE08//XSnN0V21dNPPx21tbXxiU98os32lrZCXfn4WFa9ePHFF6O2tjb69u0bw4cPj29/+9ud3qi3tO7Yh1rRcm1s0busSJ+5ubk5/vGPf3Ta3/j3v//d5qaNFVFoXBQR8eSTT0bEio83VlZbR/dx7733Rr9+/WL69OkxZsyYqKuri379+sUJJ5wQixcv/siOox9Fb7ey+hf33ntvRHywOLfrrrtGTU1N1NTUxJ577hlTp05ts+/OO+8c//u//xvf/va34+WXX45///vfcf7558cTTzwRZ555ZsHj/POf/4zGxsZ2dbqysjLGjRun/H8M7bzzzhERcfTRR8czzzwT06ZNi1tvvTWuueaaOPXUU6O2trbN/imleOedd2LGjBnx4IMPxqmnnhplZWWtcTqzMvsiXa0Dxc5ldfSetBe9R08ZX7RYtGhRvPPOOzF16tT4+c9/HjfccENsu+22bfpS2gtyevfdd+Ptt9+OJ554Ir7yla9ERMSuu+5a8DW5ytWMGTOiT58+rePsiBXrw910000REUWv3WsrKHadoitylK358+fH/PnzOzzP3/zmN/Hwww/HxRdf3Onru9qvXNqqaCtZOXpKH6rYOdrOFFvP9aGI6Dn1osX3vve9qKuri+rq6thyyy3jL3/5S4f7PfbYY/Hzn/88rrjiii4lF1q76F2KvVewRTF9kI6srHXupS1rDPSpT30qamtr49vf/nbcf//9MX369HjggQfizDPPjC233DJ22223gvHdK0jEB33uu+++O66++uqYOnVqvPDCC3HSSSfFnDlz4rTTTiv42lVxvV1nnXWif//+0bdv3zj00ENj5syZHe5nfrY9yRdLufbaa+O1116L888/v0uvu+mmm2LEiBHxmc98Zpn7vvXWW1FWVharrbZam+2VlZUxePDgePPNN7t07JbjT58+PQ4++OA2x4n4v8y7pY0YMSLee++91kXxjTbaKK677rp4/vnnY9ttt40111wzxo8fH7vuumv85je/Keo9dXaciFiu90T3MGbMmHjkkUeiqampdVt9fX08+uijEfHBDdYtfvWrX7VmR48aNSo23XTTeOqpp+Khhx6KddZZp+BxctSLjvz73/+OlFLccsst8bOf/SwuvvjiuOmmm2Lo0KHxxS9+Me6+++6Cr3/wwQfj73//e5u61hn1gq7IUV4uvvji6NevX+y5557t/va73/0uhg4dGmuttVbsv//+MXLkyPjDH/7QJms2IuK8886Lmpqa+PrXv96lY3elDeLj589//nO8++67RS1s1dfXxxVXXBGjR49u8+SPjiyrXH1U19X1118/SkpK4qGHHmqz/V//+lfMmjUrFi1aFO+///5Hcqy33norhg0b1m5yS1vx8VOoXqy77rrxrW99K37961/HL37xi9h6663jggsuKOqJM92xD7Wi5VofqndZke+7pT+xMsrLmDFj4h//+Ee7BZG//e1vEfF/46IVHW+srLaO7uOll16KxsbG2HfffeNzn/tc/Pa3v42jjjoqrr322taJ/4+CfhS93crqX7Q8ZfO4446LysrKuPXWW+Oiiy6Kv/3tb7HbbrvFwoULW/f99re/HQcddFBMnDgx1l9//VhvvfXioosuit/+9rdtnu7c2ftZ+vw//J6U/4+fPfbYI84///y45557YrPNNou11lorvvjFL8Ypp5wSl19+ebv9Z86cGUOHDo0RI0bEpz/96Xj99dfj5ptvXuZDllZm2epqHSh2LuvDtBe9S08ZX7S48sorY+jQoTF69Og48sgjY5tttmn3S2HaC3JaY401YtiwYbHlllvGww8/HFdddVV89rOfLfiaHOXq5Zdfjt/97nfxhS98IcrKytoca3nqZFNTU9x6662x1VZbLfMmkJbjaCsotKa2vHKUrSuuuCLq6+vbrVUvWrQoTj/99Pj6179e8KFYXe1XLm1VtJWsHD2lD1XsHG1niq3n+lBE9Jx6UVpaGrvvvntccskl8fvf/z4uv/zyePvtt2PPPfds96sBKaU45ZRT4uCDD45tt922S8dRL3qXrtwrWGwfpCMra517acsaAw0ZMiRuvfXWmDNnTuy6664xcuTI2HnnnWP11VeP+++/v6h5KH0lrrrqqth5553j1FNPjdGjR8cnPvGJuO222+K+++5b5vV3ZV5vBw4cGCeffHJMnjw5br/99jjmmGPi1ltvjR133LH1V2CWZn62vcLvvBd599134zvf+U58+9vfjqFDhxb9uhdffDGefPLJ+PrXv97uyRsdWbRoUac/11hdXR2LFi0q+tgR0ZoZte2228YRRxzR5jgR0eaniJc+Tss+LX9fY401Yquttoq99torRo0aFQ8++GBcddVVMWTIkLj00kuX+Z6WdRx6phNPPDFOOOGEOProo+PMM8+M5ubmuOCCC1ov9Et/t3379o2xY8fGtttuG7vuumvMmDEjLrroovj85z8fDz74YMEnCHzU9aIzLT999u6778YjjzwSW2+9dURETJgwIUaPHh0XXHBB7LHHHh2+9u23344vfelLMXr06GU+USpCvaBrPurycuGFF8a9994bP/7xj2PAgAHt/r7LLrvEPffcE7Nnz4777rsvnn322ViwYEGbfV588cW48sor49e//nWH51ZIV9sgPl5uvvnmqKioiIMOOmiZ+5588snx/PPPxx//+MdldsiXVa466vwvjyFDhsRBBx0UP//5z+MTn/hE7LfffjF9+vQ45ZRToqKiIhoaGj6ya7i2ovcoVC9++tOftvn/YYcdFscdd1xcf/318fWvfz222WabTuN2xz7UipZr9aJ3WZHvu9j+xkfhhBNOiD/84Q9x8MEHx8SJE6O2tjZ+/OMfxxNPPNHmOCsy3ijmPX1UbR3dx/z582PhwoVx/PHHx1VXXRUREfvvv3/U19fH5MmT47zzzov1119/hY+jH0Vvt7LKS0s7MHz48PjjH//YOlc8cuTIOOSQQ+Lmm2+OY445JiI+qI8bbLBBHHDAAbH//vtHU1NTXHfddXHooYfGPffcs8w+YEuMjt6T8v/xtPbaa8enP/3p+MIXvhCDBw+OP/7xj3HhhRfG8OHD4+STT26z76BBg+Kee+6JxYsXx9NPPx2/+93vWstnISuzL9LVOlDMXFZHtBe9S08ZX7Q45JBD4lOf+lTMmjUr7rrrrpg5c2a7Y2gvyOlPf/pTLF68OKZMmRK/+tWvir6uRnx05WrhwoVx4IEHRk1NTVx00UXtjrU8dfK+++6LmTNnxje/+c2izkFbwbLW1JbXR122/ud//ie+973vxUEHHdTuoaAXXXRRNDQ0FFXuu9Kv/PD7iVi5bSUrR0/pQxU7R9uRrtRzfSgiek69WGutteLPf/5zm22HHXZYbLTRRvGNb3wjxo8f37r9xhtvjH/+859x++23d/k41i56l67cK9iVPsiHrax17qUVMwYaOnRobLbZZnHyySfH2LFj45lnnomLL744vvKVryzzIebGFkR88CsxY8aMiZEjR8bee+8d8+bNi8svvzz233//ePDBBws+JGBlXm8//CscX/jCF2KrrbaKL3/5y/HjH/84/vM//7PN383Ptif54v93zjnnxKBBg+KUU07p0uu68rOlERE1NTVRX1/f4d8WL17c4c82dWbGjBkxfvz46N+/f9x+++1tngbSEqejJ4svXry4zT4PPfRQ7L333vHII4+0/mTN5z//+ejXr19873vfi6OOOio22mijgu+pmOPQ8xx//PExbdq0uOSSS+LnP/95RHzws0ZnnnlmTJw4Merq6iIiorGxMXbbbbfYeeed4+qrr259/W677RZjx46NSy65JH7wgx90epyPsl4U0hJn9OjRrTdCRUTU1dXFPvvsE7/61a+isbGx3Q3ACxYsaG0M//a3v7W+72UdS72gWB9lebn11lvjnHPOiaOPPjpOOOGEDvcZNmxYDBs2LCIiDjjggLjwwgvjs5/9bLz00ksxfPjwiPigk7XddtvFF77wha6+nS61QXy8zJ8/P+6888743Oc+F4MHDy647yWXXBLXX399nH/++bHXXnstM/ayytVHWaYmT57c+pSG008/PSIiDj300Fh33XXjd7/7XVHtQDG0Fb1DV+pFi2984xtx/fXXx7333lvwRoru2Ida0XKtXvQuK/J9r8z+xp577hlXX311/Od//mdsvvnmERGx3nrrxcSJE+PMM89sbReWd7xR7HtS/j9+Wr7TQw45pM32L33pSzF58uT4+9///pEkX+hH0dutrPLSEueggw5q85CeAw88MA477LB4+OGHW5MvTj755HjkkUfiqaeeat33oIMOirFjx8Zpp53W+iS5QsfRXvQet9xySxx33HHx4osvxsiRIyPig2S95ubmOOuss+KQQw5pM9aorKyM3XbbLSIi9t5779h1111j++23j9VWWy323nvvTo+zMstWV+tAMXNZHdFe9C49ZXzRYtSoUTFq1KiI+KA/eNxxx8Vuu+0W//rXv1qPpb0gp1122SUiPhjz7rvvvrHxxhtHXV1dwZuvP8py1dTUFF/84hfj+eefjz/96U+x+uqrtzvW8tTJm266KcrKyor6FfsVOQ4fD8WsqS2vj7JsvfDCC7HffvvFxhtvHD/5yU/a/G3q1KlxySWXxKRJk5Y55u5qv/LD7yfC2t/HUU/pQxU7R/thXa3n+lBE9Jx60ZFBgwbFV77ylbjooovijTfeiJEjR8bcuXPj7LPPjjPOOCPWXHPNLsdUL3qXYu8V7EofpCMra517acsaA73yyiuxyy67xC9+8YvWe6X23XffWHvttePII4+MP/3pTwV/QcnYgogP1gPKy8vjD3/4Q+u2fffdN9Zff/341re+Fbfeemunr13V19svfelL8Y1vfCPuvffedskX5mfbW/ZPNfQCL730Ulx33XVx6qmnxptvvhlTp06NqVOnxuLFi6OhoSGmTp0a7733Xoevvfnmm2PMmDGxxRZbFHWsESNGRFNTU7z99tttttfX18e7777bbmKpM3PmzIk999wzZs+eHXfffXe717X8LEtL1uHS3nrrrRg0aFBrRtHkyZNj2LBhrYkXLSZMmBAppXj44YeX+Z46O05EFP2e6J4mTpwYM2fOjAcffDD+8Y9/xOOPPx7Nzc0REbHBBhtExAdP2njuuediwoQJbV67/vrrxyc+8Yl46KGHCh7jo6oXy9ISp6UhWNpqq60WDQ0N7TLy6uvrY//9949//OMfceedd8bGG29c1LHUC7rioyov99xzTxx++OExfvz4uPbaa4s+/gEHHNB6c3BExP333x933313nHbaaa1t4tSpU6OxsTEWLVoUU6dOLZhN25U2iI+X//f//l8sXLhwmUmpN954Y5x11llx/PHHxznnnFNU7GWVq4/yutq/f/+4884747XXXosHHnggpk6dGr/85S/jrbfeiqFDh35kT78aMWJEzJgxI1JKbbZrKz5eiq0XS2uZ+OxsDNKiO/ahVrRc60P1Livyfbf0J1ZWeTn55JNj5syZ8fDDD8cTTzwRL7zwQvTv3z8i/m9ctDzjjaWtzLaO7qGzMtPyM9vvv//+R3Ic/Sh6u5XVv+isTpeVlcXgwYNb63R9fX389Kc/jfHjx7dJ0qioqIg999wznnjiiU4XHiO0F73Rj3/849hss81ab5BrMWHChFi4cGE8/fTTBV+/3XbbxYgRI1ofJNWZlVW2VrQORLSfy+qM9qJ36Unji44ccMABMW3atPif//mfiNBesHKtu+66sdlmm63UtuLYY4+Nu+66K2688cZ2T/FvOVZX6+SiRYvijjvuiN12263DsXlHtBW91/KuqRXroypb06ZNi9133z369+8f//Vf/xV9+/Zt8/fvfOc7scYaa8TOO+/cup43Y8aMiIiYNWtWTJ06tXVtf0X6ld2hrSSPntSHKmaOdmnLU8/1oYjoWfWiIx9eZ7z00kujvr4+Dj744Na24o033oiID+agp06damxBG8XcK9iVPkhHVtY6d2c6GgPdeOONsXjx4nYPL2m5H7KY+x/1lXq3V155Je6+++5299AOGjQodthhh6LKUMSqvd6uueaay7xPJcL8bITki4iImD59ejQ3N8epp54ao0ePbv336KOPxosvvhijR4+O8847r93rHn300Xj55Ze7dCPVuHHjIiJaf/quxRNPPBHNzc2tfy9k8eLFsc8++8SLL74Yd911V4e/SrHGGmvE0KFD2x0nIuKxxx5rc5yZM2dGU1NTu/0aGhoi4oNfNShk3Lhx8dRTT7VrMB999NHo06dPh4McepaBAwfGDjvsEJtssklERNx7770xcuTI2HDDDSPigzIUEZ2Wo2LKUMSK1YtirL766jF8+PCYPn16u7+9+eabUV1d3WbCqrm5OQ4//PC477774uabb46ddtqp6GONGzcuXnzxxXY3qLc8ieqjek98PHwU19FHH3009ttvv/jUpz4Vt912W6dPVO5Iy094zZkzJyIiXn/99Yj44Gk3S7eL06dPj/vvvz9Gjx4dP/vZzzqN15U2iI+Xm266Kerq6toNJJZ25513xjHHHBP7779/TJo0qejYnbUVb775ZrzxxhtZytVaa60Vn/70p2PUqFExe/bsePLJJ1ufHvpRGDduXCxcuDCmTJnSZru24uOlmHrxYa+88kpEfPCzpoV0xz7UipZrY4veZUX6zKWlpbHJJpt02N949NFHY5111mm3GL2iamtrY9ttt40tttgiysrK4t57742amprYfvvtI6Lr440PWxVtHatWy4M8Plxm3nzzzYhYdjtQLP0oeruV1b/orE7X19fHO++801qn33333WhsbOx0Hq25ubnDv7XYeOONo7y8vF2drq+vj2eeeUb5/xha0fn7iA/WFFrmfTqzstqLFa0DEe3nsjqjvehdetr44sM+XK61F6xsixYtWuZ19aMqV2eccUbccMMNcfnll7f7JcAWy9OH+/3vfx/z5s3r8tq9tqL3WZE1tWJ9FGXr3Xffjd133z2WLFkSf/7zn1tvxlra66+/Hi+//HKss846ret5LfXqxBNPjNGjR7e2jSvSr+wObSV59LQ+1LLmaJc+/vLUc30oInpevfiwD68zvv766/H+++/H2LFjW9uKHXfcMSIiLrzwwhg9enQ8//zzncazdtE7Letewa70QTqysta5C/nwGGjmzJmRUmrXX+rKPbTuFezdct1Du7KutymlmDp1alHrk+ZnIyKRZs2ale644452/8aOHZvWWmutdMcdd6R//OMf7V536qmnpohIL7/8codxFyxYkKZMmZJmzZrVum3hwoVp0KBBae+9926z76GHHpr69OmT3n333YLn2tjYmCZMmJDKy8vTH//4x4L7Hn/88ammpia9/vrrrdvuvffeFBHpmmuuad128sknp4hIf/3rX9u8/mtf+1qKiPTII4+0bnvzzTfTlClTUn19feu2W265JUVE+s1vftO6bdasWWnAgAHp4IMPLniO9Dwt3/ell17auu2JJ55IEZGOOOKINvs++eSTqbS0NB1//PGt23LUi6U9/vjjKSLSDTfc0OHfTzvttBQR6S9/+UvrtlmzZqV+/fqlvfbaq82+J554YoqINHny5ILHnDVrVpoyZUpasGBB67ZHHnkkRUS65JJLWrctXrw4rbfeemnrrbcu+v3Q8yyrDOa4jj7//PNp8ODBaezYsem9997rdL9Zs2al5ubmdttb2oH77rsvpZTSa6+91mG7OHTo0PSpT30q3XHHHW3avpdffrldW1hsG8THx9tvv53Ky8vTYYcd1uk+DzzwQKqurk677LJLWrx4caf71dfXpylTpqQ333yzzfYNN9wwbbrppqmxsbF12znnnJNKSkrS888/X/S5zpo1K0VEOvfcc4t+zfHHH59KS0vTY4891uk+tbW17drCFrNnz05TpkxJs2fPbt02bdq0VFFRkU466aTWbc3NzWnHHXdMa6yxRpv3Sc+0rHoxZ86cdnWhubk5HXzwwSki0pNPPtm6vaf0obpSro0t6Eqf+bXXXktTpkxps+2iiy5KEZEef/zx1m0vvPBCKisrS2eddVaXzmX8+PFp1KhRRe//0EMPpbKysnTyySe32V5sXcnd1tEzPPXUUyki0pe+9KU22w855JBUXl6epk+f3uHrCpVX/Sj9qI+7VTHmXtpJJ52UOptSX7x4cVpttdXSOuuskxYtWtS6ffLkySki0m233ZZS+mB+d8CAAWmDDTZIS5Ysad1v3rx5aeTIkWnDDTdsE3fKlCnptddea7Ntjz32SCNGjEhz585t3faTn/wkRUT605/+1KX3RPe39957p8rKyvSvf/2rzfbPf/7zqbS0tLW9mD9/fpv5yRa33357ioj07W9/u3XbqmwvulIHip3LSkl7Qc8ZX7z99tsdbt9nn31SSUlJeumll1JK2guWX6H+UkNDQ4drCI8++mgqKytrN4eVo1xdfPHFKSLSN7/5zYL7LU8fbsKECalPnz5p3rx5Hf5dW9E7LGvMUOya2oet7HHr/Pnz01ZbbZX69u2bnnjiiU73e/DBB9ut551//vkpItKZZ56Z7rjjjtbxUbH9ypTyt5V0Hz2lD9WRzuZou1LP9aHoSE+pFx2NLd544400cODA9MlPfrJ125NPPtmurWiZrzryyCPTHXfc0dqGWbugIx3dK9iVPsiqXOfuyhjo0ksv7TDOFVdckSIi3XLLLa3b3CvYexUqb2+//XYqLS1NO++8c5s5zWnTpqW6urq0xx57tG5b1et5HbUhkyZNShGRLrvssjZxzM92TPJFATvttFMaO3Zsh39rbGxMw4YNS9tss02nr//rX//aYQFuKaQHHHBAuv7669Phhx+eIiJNnDhxmefUciPHPvvsk375y1+2+7e0119/PQ0ePDitu+666aqrrkoXXnhhGjhwYNpkk03a3OT1wgsvpNra2lRXV5fOPvvsdO2116ZDDjkkRUT67Gc/2ybmEUcckSIivfrqq20+i2222SbV1dWl733ve2nSpElp7NixqW/fvumFF15Y5nui+3rggQfSrrvumn7wgx+kn/zkJ+mYY45JZWVlaY899kgNDQ1t9v3sZz+bIiLtt99+6Zprrknf+c530sCBA1NtbW2bcpCjXqSU0tVXX53OP//8dMIJJ6SISPvvv386//zz0/nnn9/mgj5jxow0YsSI1Ldv33Tuueemyy67LG2wwQappqYmPfPMM637XX755Ski0rbbbtthXZs/f37rvueee26HCUwHHnhgKi8vT2eccUaaPHly2m677VJ5eXl64IEHinpP9CzFlsGP+jo6d+7ctOaaa6bS0tJ00UUXtSurDz/8cOu+l19+eRozZkw666yz0uTJk9Oll17aWnf32WefZb7HUaNGpfHjx3e4/cMD/mLbID4+rr766hQR6e677+7w71OnTk39+/dPNTU1adKkSe3K6rPPPtu676uvvtphUt8f/vCHVFJSkj7zmc+k6667Lp166qmptLQ0HXvssUWd4y9+8Yt0/vnnp7PPPjtFRNpll11a6+nUqVNb9/v+97+fvvzlL6errroq/fjHP0677757ioh0wQUXtIv5+9//vjVGZWVl2myzzVr/v/R7uuGGGzocgJ1xxhkpItJxxx2Xrr/++jR+/PgUEemmm24q6j3RvS2rXvz1r39Nw4cPT1//+tfTpEmT0qWXXpq233771jLx4X17Qh8qpeLLtbEFKRXfZ95pp53a3ew6d+7ctO6666bVVlstXXzxxenyyy9Pa665Zlp99dU7vaFpac8++2xreR8zZkwaMGBA6/9///vft+43derUtNVWW6ULLrgg/eQnP0lf//rXU01NTdpss83aLMClVHxdydXW0fMcddRRKSLSQQcdlCZNmpQOPPDAFBHp7LPPbrNfseVVP0o/6uNqVY25U/qgHWg51tZbb50iovX/v/jFL9rs+/Of/zxFRNpyyy3TVVddlU4//fRUUVGRdtxxxzaLCBdccEGKiLTZZpulyy+/PF166aXpE5/4RIqI9Ktf/apNzIhIO+20U5ttTz75ZKqqqkqbbbZZuuaaa9K3vvWtVF1dnXbfffcufKr0FA888EAqKytLq622WjrvvPPSpEmT0p577pkiIh1zzDGt+z399NNp8ODB6cQTT0xXXXVV+tGPfpSOPPLIVF5entZee+30zjvvtO67qtuLYutAV+aytBek1DPGF6eddlr61Kc+lc4555x03XXXpYsuuihtueWWKSLSKaec0iam9oKuKKa/9P7776fa2tp01FFHpR/+8Ifp2muvTSeddFLq06dPGjRoUHrxxRfbxPyoy9Xvfve7FBFp/fXX73DtbcaMGa37drUP9+6776aKior0xS9+sdPjays+3oqpA11ZU0tp1Y5b99133xQR6aijjmp3nnfccUfB17bMJS+dvJRS8f3KlPK0lXRfPaEPVewcbVfruT4UnekJ9eLII49MO+64Y/rud7+brrvuuvTNb34zDR48OFVWVra7f+nDWuYFlr5JfOnt1i56r67cK/hhnfVBVuU6d1fGQO+8804aPnx4qqysTKeeemqaPHly+upXv5rKysrS2LFj2zwYwb2CvU+xaxTHHHNM67zo1VdfnS688MI0cuTIVFZW1qYcrOr52ZqamnTkkUemH/7wh2nSpEnpkEMOSSUlJWncuHFtkorMz3ZO8kUBhZIv7r777hQR6aqrrur09Z01HCmldN1116UxY8akysrKtO6666bLL7+8wwyhjs4pIjr992HPPfdc2n333VOfPn3SgAED0pe//OU2E1ctXnjhhXTAAQekNddcM1VUVKRRo0al008/vd2TsjpawEwppffeey8dffTRafDgwalPnz5pp512apPBS8/08ssvp9133z0NGTIkVVVVpQ033DB9//vfb9OZaLFw4cJ03nnnpY022ijV1NSk/v37p7333js9/fTTbfbLUS9S+uDm787qxYfL67///e+03377pX79+qWampr0mc98pt0TOFvKejExO+tQLVq0KJ1++ulp+PDhqaqqKm255Zad3nxJz1dsGfyor6MtnbHO/i3dSXv88cfTgQcemNZaa61UVVWVamtr0+abb54uu+yyZQ6SWt5jsckXKRXfBvHxsM0226TVVlut06zklut/Z/+Wbhc6G2SklNIdd9yRxo0bl6qqqtLIkSPTOeec0+aptoUU6kctfQ2/6667Wp8o1adPn7TNNtu0PqX2wwq1F0sPKDobZDQ1NaULL7wwjRo1KlVWVqaxY8e2Wzyn51pWvXjllVfSgQcemNZee+1UXV2d+vTpk7bYYot07bXXtusD9ZQ+VErFl2tjC1Iqvs/c0QJGSh88LeOAAw5I/fr1S3V1dWnvvfdufVLssrRcm5fVh3rvvffSvvvu2zrhOnr06HTWWWe1S7xoUUxdydXW0fPU19en7373u2nUqFGpoqIirbfeeunyyy9vt1+x5VU/Sj/q42pVjblTKjyW+fANGiml9Otf/zptuummqaqqKg0bNiydfPLJHbYZN910U9pqq63SgAEDUk1NTdp6663T7bff3m6/zo7z4IMPpu222y5VV1enoUOHppNOOqnTtome79FHH0177rlnGj58eKqoqEgbbLBBmjhxYpv5nFmzZqXjjjsubbjhhqm2tjZVVlam9ddfP33ta19r82TBlFZ9e5FScXWgK3NZ2gtS6hnji7/85S9p7733TquvvnqqqKhIffv2Tdtvv3264YYbOhzLay8oVjH9pSVLlqTTTjstffKTn0z9+vVrXRM++uij2/WfUvroy1XLelqxbUVX+nDXXnttiog2NyR+mLbi462YOtCVNbWUVu24tdD7WdYvA3R242NKxfUrU8rTVtJ99YQ+VLFztF2t5/pQdKYn1Iubb745ffrTn05Dhw5N5eXlaciQIWm//fZLTz755DKP0dXki5SsXfQWXblX8MO6mnyRUv517q6Ogd5444101FFHpdGjR6fKyso0YsSIdOyxx7abW3OvYO9T7BpFQ0NDuvrqq9O4ceNSXV1dqqurS7vssku6//7728Rb1fOzxxxzTNpoo41S3759W9cnO+pbmZ/tXElKKQUAAAAAAAAAAAAAAAAdKl3VJwAAAAAAAAAAAAAAANCdSb4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgALKV9WB1/7RpfmCp5JsoUuasoWOyHfakSpSttglDRlPPKNXT/vGqj6FNsacd3m22E3V+b7/nBr656tw1TPzXf6ay/N93injVfvlM/8jX/DltPakfG1FqmzOFruksWfmNua8nudshyJj2zz15NPzBV9O6110WbbYqSxb6Kyy9s9y6pmXim7ZXqx7y8RssZub810b+9QuyRZ74YKqbLHLK/JVuobF+To71bX12WK/sP+52WIvr03/8O1ssSvK85WBBYsrs8Wurc5XBhY35Cu7ZSX5+lHNGedP/jnhvGyxl0fWeaicbXq+YUuUZGzjUsZxcdZ5qIyhXz21e81DRUQc9PevZotd35RvcDGwclG22NMX9s8We83a2dliz2mozha7NGM7dNu2k7PFXl5jvptvjrY549xI2eKcczrZQmdV0pAxdsb2ecrEr+cLvpzuf3VMttilGT/M95rqssWuKGnMFru2JN+4pTpjxZjbnK8t2mOd57PFXl6jfn5RttglpRnXmHKuXWQcX2RVnvGinvEzee0rZ2WLvTz2GHxcvuBlPXMivaS2T7bYae78bLGzqszXsbz7rUnZYi+vcXedky32oiX55lDLyvJdFyvKeuaCXs451Jyx/3ff72WLvbyufuEz2WLn7Os2ZZwAnt+Urx9dVZrvM1nSnO+anvO8T9nw/myxl9eJTx66qk9hufQrzzdH+9aSfHO0tWX5xtwLmvK1zyOq5mSLfdGmv80We3md8eyB2WIvac63pjuwfGG22O835htfVPTQm66qSvPNz134yd8tc5+eOVIFAAAAAAAAAAAAAABYSSRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEAB5avsyKkkW+iS5myho7m2KVvssnll2WKnfKGjuSrfB166uPfkBzWXp3yxM37/Ve/lq8tr/He+z+SdTbKFjkWr5Ytdmu8S1D01Z2wr6vNdX1JFvrKbUyrLd94lSzJez0t65ufdHeX8KEsa88Vuqsl34qUN+a5DZYvyxW6o6131orQsX3+0cXFlttjzF9Vmi13+fr6hXuPqi7PFzqmhftUNf1eF0tJ89aKiLF+ndGDtomyxlzTmKwO1VfXZYjc25RvQNTb1njF3SVO+djdFxnY341dUNj/fZ9LUJ1voiHynHSUZ+37dUX3G60uf8oZssZc057ue7z/i6Wyx73r7k9liV5fl+7x7m5KMc2/N+br/ERnbopzj4uaMc2gVGcfcTTXZQndLC1K+cXHfknzjyz4lS7LF3r1PvuvuXxZWZIvdtzTf590QGReiuqOs44ueqbw2X71oXJRxTqcx36CrpCLjTQu9SX2+stW8KN91Mb3zbrbYpdXV2WKX1GTs6GT8LrujkoyLbuXl+QYu/Wry1YvFDfmu5wsXV2WLPbTf/Gyx31/YuwYXDRlvXnu/Md+guyLjZMGIivezxe5Xlq8+P7doZLbYpTlv/OQj078833reW0v6Z4vdL+N55zS3sXe1FznXAOY15OtLN2a8Sff1hQOzxR5ala+vs6gp3zzXatXzssUuRu9ZZQcAAAAAAAAAAAAAAFgOki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoIDyVXXgkqZ8sZtrmrPF7v9cRbbYw65+OFvsl67cJlvsijn5cngaa/N9l91Nylgby5bki53TtMMbssWu+me+utxcnbHcLu5dOXOpqmdeA8rm5/ueyhaXZIs98v76bLFfOShb6ChpyveZdEepLF/spox9qMrZGa9fIxbniz21JlvoJUPzdYjLFvSu9qKsLF/ZLckY+4StHsgW+4xB/84W+xdzh2SLPfHZvbLF7m2WNOTr79ZUNGaL/ea/VssWuyRj1zLnHMfIT87IFvv9hfnaue4mlaV8sfvmqxM1/67KFnvjPf6VLfaTr66VLXbZtOpssRsGZKzM3dDAykXZYg+oWJgt9u//9clssR+//xPZYu+956PZYv/vnBHZYq/X951ssbujnGPuknxNUdbHbA3Ydma22DNn9c8Wu3xKvvaitxleNndVn8Jy+eO8cdli/2j68Gyxj1r9b9liT1s8OFvs9avyjVu6pYzji5KM092pOV/wgX/JN758P18XLZpXzze33LwkY8eiu6nMNw8VkS92aVm+76h5frbQUTpiWLbYaWG+cWJvM39hvv5oU1O+AcCif/fLFnvYxm9ni93cnO8zmf72gGyxq/vkW5/vjvqW5mt3B5Xlu/CuW5mv7B76l+Ozxd553JRssXfo/1K22ItTzn5F99OvPF/b+8k+07LFnvj8ntli/2mL67LF3uXXZ2SLfcxe92aLPW3xoGyxu6OB5fnWFyoyLuruM+DpbLE/vUa20PH7BX2yxX5w3phssUuzTrgXcfxVenQAAAAAAAAAAAAAAIBuTvIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABRQvqpPIIuUL3RDXb7Yf37zmWyx17l962yxyxbny+FpGJDxy+xFyhaXZIu99i9fyxb7j4/9MVvs0XOOyxa78t2ybLFLG/N9l91Sc77QdVPzNYH//NqPs8X+3OrjssXO6qCt8sXOWE66o9KGrNGzRR71nb9ni52zD7Xu/V/JFrv89epssXubpqZ8ZTctytde3D1jbLbY927cN1vsN87eLlvsTfZ6MVvsJ19aO1vs7qi0NF8DOW9xVbbYu2z9XLbYb2wzP1vs176Xr168PTffRERdzZJssbubytkZnz8yvD5b6Mo5+erbbevcly32/xuWr9xOvP+wbLHfyTd91i39a/Zq2WL/aMyvs8X+0/9uky32mhMfzhZ70wPeyBb7X/OGZYs9u6EmW+zuqHxhvtgN/fLNda9z56JssUu+9e9ssf+ecTy/+cMnZIu9eHDvmqN9oX5EttgDyhZki/3lgY9ki33GZvnaoq//+EvZYt++54+yxf7nkpHZYu+cLXL3VDG9Mlvsf33lmmyx9zpjp2yxB944J1vsd/6wQbbY700fkC12b5LmzM0Wu6R/v2yx737tsWyx99ps92yxm2a9my122aAB2WJ3R0P655uLXLgkX1vx9JduzBY75zr36IcHZIv9ZP2a2WKvPiDfNa47mtecb2106uIh2WJ/smp6ttgbHJ+vvbgh45j7ujmrZ4u9pLkiW+ze5va3t8gWe8H0fGvR+/3hjGyxv3H677PF3qR6WrbYv168bbbY3dGbS/pniz2q+r1ssTepyDe5/LnV861FR0m+uc6fvvZgtthnTtsnW+xi+OULAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFNDl5Isf/ehHcfjhh8ctt9wSERG//OUvY6ONNooNN9wwvvnNb0ZjY+NHfpIAAAAAAAD8f+z9eZyd4/04/r9myazZ95CIILZYgqK09qVRSu0UtatddaEtrTVKKGppSNp3daFVWh/da6mqWmsrKkoRW4iIkj2zXb8/fDM/Y2bOnElyZSbm+Xw88kfuc9+v+z5z7uu+1tc5AAAAAABAVynvzM4XXnhhTJo0KXbdddc4/fTT45VXXolLL700Tj/99CgtLY0rrrgievXqFeedd16u6wUAAAAAAAAAAAAAAFihOpV8ccMNN8QNN9wQ++yzT/zrX/+KzTbbLH7yk5/EIYccEhER6667bpxxxhmSLwAAAAAAAAAAAAAAgI+N0s7sPGPGjPjEJz4REREbb7xxlJaWxvjx45tf33TTTWPGjBnL9QIBAAAAAAAAAAAAAAC6UqeSL4YPHx7PPvtsRES88MIL0djY2Pz/iIh///vfMXTo0OV7hQAAAAAAAAAAAAAAAF2ovDM7H3LIIfHFL34x9tprr7j77rvjjDPOiK997Wsxe/bsKCkpiYkTJ8Z+++2X61oBAAAAAAAAAAAAAABWuE4lX5x33nlRXV0dDz74YBx77LHxjW98IzbeeOM444wzYsGCBfG5z30uLrjgglzXCgAAAAAAAAAAAAAAsMJ1KvmitLQ0vvWtb7XYdtBBB8VBBx20XC8KAAAAAAAAAAAAAACguyjt6gsAAAAAAAAAAAAAAADoziRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAWUd9WJU1m+2CVNJfmCZ7TlmSdki107It/fZP7IxmyxSxpXzs+yuynJ9xHFgh/ne4x8ZpXx2WKXXJ3v3qrv15QtduXsjA/P7ijjI2De6g3ZYo/53bHZYvf9f/OyxZ4zs3e22GVz8t27jX0yPuS6oaZe+WKXpHyxX7x0q2yx17oxX+y+a/8vW+yFDVXZYjd1WSu/azQ15sspL6nOV19csdavssXe67pTs8Uum5+vrfOv10Zmi11Slu+6e5o+VYuzxb7nkXHZYr804/pssfd4fkS22NPfHZgtduNKOn6yNOoG5nsGpHers8UuGZAtdNY+98sX5Wuf1X+6Plvs0rk9qxG1Su/3s8W+9u0ds8VeOKYuW+y/zHgyW+wzZ47PFruhyXcsLS8N+YZGsvbnZ2xbmy122RZbZ4u96fn56ov5o7KFjoiMAyjd0Jq93s4W+9+LV80We7uq97LFfv+Pa2WLffaY32aL3b80Xx26RkW++6SnqRucbyxqjVuOzxb7Z4//IFvsYx47PFvsRW/k689FZQ+au2jMuF6gd752Tpo3P1vs3T+1V7bYjWP6ZYtd8u572WL3NO8vyPd8WTAn3/zSJ5/cL1vsxbfnG3d54bF85aL/6PeyxZ7xXt9ssbujmozt0bHVM7PFrsy46Gr8E9lCx5OL883lvF2f794d2mtOttjd0WqVs7PFvvONdbPFfmmffHNunzl5fLbYl+20a7bYB6z/WLbYPU11Wb55oMG95maLffE7+cZRn5+8RbbYh2z1YLbYl83aPlvsUTX51nMVw6wMAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKCA8q6+gBxSWcoWe8GohmyxF44oyRY7VTZlix1N+a67dFHPyQ8qyXdrRUNtvjIx895Vs8Xe8qF3s8V++W/57q2cn2VjVb7PslvK+XbzPboiUr7gdY8PyBa7ZFC+uqKpJmc9lC90d1SSs1xk/FuW5oyd8bk777l8Za4sW+SIpsqeVV80ZWyPlmTsW+z1x1Ozxd5w3KvZYs9aUJst9sy3+2WLXdarZ1UYleWN2WIvbsg3lDB4zXx9gLX+dkS22DU1i/PFrqzLFrsx4/OzuyldnO+9NmV8vNQNyBf8hau2zBY7VeR7BpXOyfcMyjmm2B01NOUbG1nclK+1u/m6L2eLvc9/d8kWe7Xa/2WLPbhqfrbYdRk/y24p4zO9cna+MlffO9/zq75vttDRmLHvWjMj4zNuQM+qL2Y35esDjqt8I1vsW+etli32KWveky12fcr33H2vqSJb7EVNvbLF7o5KMnalUkW+yqikNt9A6uG/OTFb7KbqjM/dmnx/k5LSnlVf5JIWLsoWu6Qi33Mxzc7X/i99c2a+2IMHZoudFuUbP+uOKnvVZ4tdMTDfs2veospssRctytde6Lfa+9lil5flq5vrMs5xdkcLMrZHe5XkG4/81+J866L6lOWr5/46f71ssQeU5xuL6mkenrNGtti7rPpcttjbPr13ttg3vfqzbLH/sfCVbLGfWjAqW+z5jfmen91RZcZFQM8uWCVb7KG95maL/ZPPTMkW+8Z3tsoWu7osX5u4q/Wcle0AAAAAAAAAAAAAAABLQfIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABRQ3tUXkEPponw5JSljukppfb7YTRnzbEoaS7LFzvn37klSxpJe1y9li/3w7zfMFrss49+ksSrf36SkIVvobinr86Us4+dUn++6F61Wly12yeKybLGjId/fpCTyxe6WmjLGzljvpowfU9NK2l5oylgXlWQsc91RaWm+Z3ppWb5CVzY0Xwfg6WmrZYtd2jtjxyWjXhU9qyHV0Jjv4Vhamq9c1DfkezgO6LsgW+ycf+/GpnzP9IbGjO2/biatpG+1qTJfeSuty9iIytdtYTmqKGvMFrsuY2N3cOX8bLFfnT8gW+ycf5M59VXZYvfttShb7G4p46Mx55hh+dx87YWc1122OGM7pzpb6Chb1LP63LUl+Sr2usjXSFu91zvZYtdlbFxWZZwsnJ8qssWuKMnXruiOUsa5i5KMcxdN8/O1R0qHLc4WOzVkrKAz9rmzXnd3U5fv2VVSna+tu7Iq6V2bLXZalK8s9zR1Gcc56+vztUVqqvK1/Sr75HtWLK7vlS12SUm+urkx47hyT1NVku/+mt3YO1vsmtJ8ZW5w+Zxssd+szzeG1rush41FZfTm4n7ZYp+4+t+yxf7CtMOyxf700BezxZ6TcTCqtqxnTbr0yjnGkLHqfbu+T7bYv/nfJ7LF7lWScyFaPk05F6IVQSsOAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFBASUopdfVFAAAAAAAAAAAAAAAAdFd++QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+aIdEydOjJKSkthggw3afL2uri4uuuiiWHfddaOqqiqGDRsWu+++e7z++utFxf/Rj34U6623XlRVVcXYsWPj6quvLuq4efPmxTnnnBMTJkyIgQMHRklJSdxwww3t7v+rX/0qPvnJT0b//v1j0KBBsd1228Uf/vCHFvs899xzccYZZ8T48eOjT58+MWLEiNh9993j0UcfLeqaIiIWL14cZ555ZqyyyipRXV0dW265Zdx5551FH0/39cILL8RBBx0UI0eOjJqamlh33XXj/PPPjwULFrTY74477oijjz46NthggygrK4vVV1+90+f67W9/G5tuumlUVVXFaqutFuecc040NDQUdezEiRNjzz33jGHDhkVJSUmce+65RR23yy67RElJSZx88smtXps5c2YceeSRMXTo0Kiuro5NN900brnllqLfj3LRc/zzn/+Mk08+OcaNGxe1tbWx2mqrxQEHHBDPP/980THee++9OO6442LIkCFRW1sbO+ywQzz++OMdHtfU1BQ33HBD7LnnnjFq1Kiora2NDTbYIC688MJYtGhRi31fe+21OO+882KLLbaIAQMGxODBg2P77bePu+66q1Xcu+++O4466qhYe+21o6amJtZYY4045phj4s033yz6Pb3xxhtxwAEHRP/+/aNv376x1157xUsvvVT08awc/va3v0VJSUmb/x566KF2j3vvvfdi6NChUVJSErfeemvR51vaNlRnyunUqVNju+22i2HDhkVlZWWMGTMmjjzyyJg+fXqL/RYuXNhc9/Xr1y969+4dG2+8cXz/+9+P+vr6oq6rqakpJk2aFGPGjImqqqrYaKON4he/+EVRx9K9PfbYYzFhwoTo27dv9OnTJ3bdddd48sknW+23srShzj333DbLeVVVVat9J0+eHPvvv3+sttpqUVJSEkcccUSn3o9y0bMsa5t5adsbCxYsiGuvvTZ23XXXGDFiRPTp0yc22WSTmDx5cjQ2Nrbaf2nuy/r6+lh//fWjpKQkLrvssqLf07KUaVZOjz/+eOy5554xcODAqKmpiQ022CCuuuqqFvs0NTXFddddF+PHj4/evXvHsGHDYrfddosHHnig6POsiLGoI444os36Yt11122xX3v1ypJ/999/f4fXtbR9KFZOXVVfRHSuvfbmm2/GcccdF2PGjInq6upYc8014ytf+UrMnj27xX7FlpVC1Bc9TzH1RUTEAw88EJ/+9KejpqYmhg8fHqeeemrMmzev6PN0p7mLiIj//ve/sd9++8WAAQOipqYmPv3pT8c999xT9PtRX/QcXTlGGxHxyCOPxIknnhibbbZZ9OrVK0pKSoo67h//+EdzPfDOO++0eO0///lPnH766bH11ltHVVVVlJSUtBqf6si0adNiwoQJ0bt37xg4cGAcdthhMWvWrE7F4OOjo/nvtnS3frd2FG3pTDuk2Od1Z+bU2rMs45ydmacrts8yffr0dvvhv/zlL4u6Lm2rj5/OtuPbsqLaUEu7fqPQmpD2LGu/ipXbylQu2nuuX3zxxQXPoVzQns72rZuammLy5Mkxfvz4qK6ujkGDBsWOO+4Y//rXv4o6X3daK9jV7T+6r86Wi2LHPduzIsrF6quv3m4dMnbs2Bb7vv/++3HGGWfE2LFjo7q6OkaPHh1HH310vPrqq0Vd08d2DW2ilddeey3V1NSk2traNG7cuFav19XVpZ133jnV1NSk0047Lf3oRz9Kl112Wdp///3TM88802H86667LkVE2nfffdOUKVPSYYcdliIiXXzxxR0e+/LLL6eISKuttlrafvvtU0SkH//4x23ue9VVV6WISLvvvnuaPHlyuuKKK9LGG2+cIiL9+te/bt7vq1/9aurfv386+uij0/XXX58mTZqU1lxzzVRWVpbuvPPODq8ppZQOOuigVF5enr72ta+l66+/Pm211VapvLw83XfffUUdT/f06quvpv79+6fRo0en7373u+n6669PRxxxRIqItOeee7bY9/DDD09VVVVp6623TiNHjkyjR4/u1Ln++Mc/ppKSkrTDDjukKVOmpFNOOSWVlpam448/vqjjIyINHz48feYzn0kRkc4555wOj/n1r3+damtrU0Skk046qcVr77//flprrbVSnz590tlnn52uueaatO2226aISDfeeGNR16Rc9Bz77rtvGj58eDrllFPS1KlT0wUXXJCGDRuWamtr09NPP93h8Y2NjWnrrbdOtbW16dxzz03XXHNNWn/99VOfPn3S888/X/DYuXPnpohIn/zkJ9OFF16YpkyZko488shUWlqatt9++9TU1NS879VXX52qq6vTwQcfnK655pp05ZVXpk033TRFRPq///u/FnE322yzNGbMmHTGGWekqVOnpm9+85upT58+adiwYenNN9/s8D3NnTs3jR07Ng0dOjRdcskl6fLLL0+jRo1KI0eOTO+8806Hx7PyuOeee1JEpFNPPTX97Gc/a/Fv1qxZ7R53yimnND+Db7nllqLOtSxtqM6U0xNOOCEdfvjh6bLLLks/+tGP0tlnn52GDRuWBg8enN54443m/WbPnp223HLL9PWvfz1de+21afLkyemwww5LJSUl6eCDDy7qPX3jG99IEZGOPfbYNGXKlLT77runiEi/+MUvijqe7umxxx5LVVVVaezYsemyyy5LkyZNSquvvnrq27dveu6551rsu7K0oc4555wUEWny5MktyvlNN93Uat/Ro0engQMHpgkTJqTy8vJ0+OGHd+o9KRc9y7K0mZelvfH000+nkpKStPPOO6dJkyal6667Lu29994pItIXv/jFVvsvzX35ve99r7muu/TSSzv+Y6RlL9OsfP7yl7+kioqKtOWWW6bLL788TZkyJZ155pnp61//eov9vvKVr6SISIceemi6/vrr0yWXXJLWWGONVF5enh5++OEOz7OixqIOP/zwVFlZ2apd+Nvf/rbFfv/6179a7fOzn/0sjRo1Kg0YMCAtXry44DUtSx+KlVNX1RcpFd9emzt3bho9enQaPHhw+s53vpOmTp2aTj755NSrV680fvz41NjY2CJmMWWlPeqLnqfY+uKJJ55IVVVVaZNNNkmTJ09OZ511VqqsrEwTJkwo6jzdbe7i1VdfTYMHD07Dhg1LEydOTFdeeWXaeOONU3l5ebr33ns7vCb1Rc/SlWO0KX3Qb+7Vq1fabLPN0tprr52KmYJtbGxM48ePb+43fHQs7cc//nEqLS1NG2ywQRo/fnyKiPTyyy93GHeJ1157LQ0ePDitueaa6fvf/36aOHFiGjBgQNp44407bG/x8dPR/HdbumO/WzuKtnSmHVLs87ozc2rtWZZxzs7M0xXbZ1nydzr44INblaHp06d3eE3aVh9PnSk/bVlRbailXb9RaE1Ie5a1X8XKb2UpFyl9MM+3yy67tHquF1q/qFxQSGf71ocffngqLy9PRx11VJo6dWq68sor0+GHH57uuOOODs/V3dYKdnX7j+6rM+Wi2HHP9qyocnHbbbe1qjsuvPDCFBHpxBNPbN6vsbExbb755qm2tjZ9/etfT1OnTk1nnnlm6tOnT1p11VXTnDlzOrymj+saWskXbTjwwAPTjjvumLbbbrs2B58uueSS1KtXr6Imtz9qwYIFadCgQWn33Xdvsf2QQw5JtbW16d133y14/KJFi5o70//85z8LNvDGjh2bNt988xYLb99///3Uu3fvFgvnH3300TR37twWx77zzjtpyJAh6VOf+lSH7+nhhx9utZhk4cKFac0110xbbbVVh8fTfU2cODFFRKtG+Re/+MUUES3u1zfeeCPV1dWllFLafffdO71wcP31108bb7xxqq+vb9521llnpZKSkjRt2rQOj18y4TBr1qyiGlQLFy5Mq6++ejr//PPbbFBNmjQpRUS6++67m7ctqUyGDx/e4cSEctGz3H///a3uieeffz5VVlamQw45pMPjb7755lYL0N9+++3Uv3//DhdwL168ON1///2ttp933nkpIlok0T3zzDOtJvAWLVqU1l133TRy5MgW2++9994WC0OWbIuIdNZZZ3X4ni655JIUEemRRx5p3jZt2rRUVlaWvvnNb3Z4PCuPJckXxSZQpPTBxFt5eXnzM7iYY5e1DbWs5fTRRx9NEZG++93vdrjvySefnCKiw0Sl119/PfXq1atFHdTU1JS22WabNHLkyNTQ0NDhueiePvvZz6YBAwa0mISeMWNG6t27d9pnn31a7LuytKGWJF8USqpaYvr06c19kNra2k4lXygXPcuytpmXpb0xa9asNicfjjzyyBQR6YUXXmjetjT35cyZM1O/fv2a67piky+WtUyzcnn//ffTsGHD0t57792q7f1h9fX1qbq6Ou23334ttr/00kvNSbCFrMixqMMPPzzV1tYWjNeeV199NZWUlKRjjz22w32XpQ/Fyqcr64uUim+v3XjjjSki0u9///sW27/zne+kiEiPP/5487ZlKSspqS96mmLri5RS2m233dKIESPS+++/37xt6tSpKSLSX/7yl4LHdse5ixNPPDGVl5e3SGKfP39+GjVqVNp0000LXk9K6ouepivHaFNK6a233koLFixIKaV00kknFZV8MXny5DRo0KB02mmntdnnnj17dvMk9qWXXtrp5IsTTjghVVdXp1deeaV525133pkiIl1//fVFx+HjoaP577Z0x363dhRt6Uw7pNjndWfm1NqyrOOcnZmnK7bPsmQxcbHjVB+lbfXx1Jny05YV1YZamvUbHa0Jac+y9Kv4eFhZykVKqVP3dkrKBR3rTN96yb3+m9/8ZqnO1d3WCnZ1+4/uqzPlothxz/as6HLxYRdccEGKiBbrEO+///4UEemaa65pse///d//FVX+P85raEuDFv7+97/HrbfeGldeeWWbrzc1NcX3v//92HvvvWOLLbaIhoaGWLBgQdHx77nnnpg9e3aceOKJLbafdNJJMX/+/A5/XqaysjKGDx9e1LnmzJkTQ4cObfHzY3379o3evXtHdXV187bNNtssevfu3eLYQYMGxTbbbBPTpk3r8Dy33nprlJWVxXHHHde8raqqKo4++uh48MEH47XXXivqeul+5syZExERw4YNa7F9xIgRUVpaGhUVFc3bVllllejVq9dSnefZZ5+NZ599No477rgoLy9v3n7iiSdGSiluvfXWDmO09/Op7Zk0aVI0NTXF1772tTZfv++++2LIkCGx4447Nm8rLS2NAw44IN5666249957C8ZXLnqWrbfeukV5iIgYO3ZsjBs3rujn6LBhw2KfffZp3jZkyJA44IAD4vbbb4/Fixe3e2xFRUVsvfXWrbbvvffeEREtzj9u3LgYPHhwi/0qKyvjs5/9bLz++usxd+7c5u3bbrttlJa2bCZsu+22MXDgwKLf0+abbx6bb75587Z11103dtppp/jVr37V4fGsnObOnVvUT92ddtppsffee8c222xTdOxlbUMtazldUs+89957y23f22+/Perr61u8p5KSkjjhhBPi9ddfjwcffLDDc9E93XfffbHzzjvHoEGDmreNGDEitttuu/j973/f4id4V7Y2VEop5syZEymldvcZPXp0wZ9ALkS56FmWtc28LO2NwYMHx7hx41ptb6sNtTT35Te+8Y1YZ5114tBDDy14HR+2PMo0K5ebbropZs6cGRMnTozS0tKYP39+NDU1tdqvvr4+Fi5c2KpvPnTo0CgtLW0xxtOWFTkWtURjY2PzmEKxfvGLX0RKKQ455JAO912WPhQrn66sLyKKb68VGkeLiDbL6tKUFfVFz1NsfTFnzpy4884749BDD42+ffs2b//iF78YvXv37vB+745zF/fdd19ssskmsc466zRvq6mpiT333DMef/zxeOGFFwqeR33Rs3TlGG3EB8//jtplH/buu+/G2WefHeeff37079+/zX0GDhwYffr0KTrmR/3617+OPfbYI1ZbbbXmbTvvvHOsvfbaxmh7mI7mv9vTnfvd2lF8WGfaIcU+rzszp9aWZR3n7Mw83dKMMc+fPz/q6uo6dYy21cfT0oz7fNiKakMtzfqNjtaEtGVZ+1V8PKws5eLDFi5cGIsWLepwP+WCjnSmb3355ZfHFltsEXvvvXc0NTXF/Pnziz5Pd1wr2NXtP7qvzpSLYsc929IV5eLDbrrpphgzZkyLdYhLM+/xYR/nNbSSLz6ksbExTjnllDjmmGNiww03bHOfZ599NmbMmBEbbbRRHHfccVFbWxu1tbWx0UYbxT333NPhOZ544omIiPjEJz7RYvtmm20WpaWlza8vD9tvv338+c9/jquvvjqmT58ezz33XJx00knx/vvvx2mnndbh8W+99VarCqUtTzzxRKy99totGlgREVtssUVERDz55JNLdf10ve233z4iIo4++uh48skn47XXXoubb745Jk+eHKeeemrU1tYul/O0Vy5WWWWVGDly5HItFxERr776alx88cVxySWXtFsBLF68uM3XampqIiLiscceK3gO5YKUUsycObPo5+imm27aahB1iy22iAULFsTzzz/f6fO/9dZbERFFnf+tt96Kmpqa5vu7PfPmzYt58+Z1GLOpqSmeeuqpVmU64oP39OKLL3bYKWHlc+SRR0bfvn2jqqoqdthhh3j00Ufb3O+WW26JBx54ICZNmtSp+DnaUB2V09mzZ8fbb78djz76aBx55JEREbHTTju12q+uri7eeeedeO211+K2226Lyy67LEaPHh1rrbVWh++ptrY21ltvvRbbl9QVy7v+Y8Up1I6oq6uLZ555ZrmcZ0W3oSIi1lhjjejXr1/06dMnDj300Jg5c+Zyja9c9CzL0mbO1d5oqw3V2fvykUceiZ/85Cdx5ZVXdioRqSvKNF3rrrvuir59+8Ybb7wR66yzTvTu3Tv69u0bJ5xwQouJsurq6thyyy3jhhtuiBtvvDFeffXVeOqpp+KII46IAQMGtBiwbMuKHIuKiFiwYEH07ds3+vXrFwMHDoyTTjqpReJhe2688cYYNWpUbLvtth3um6MPRffVHeuLtixZHHXaaafFQw89FK+//nr88Y9/jIkTJ8bnP//5WHfddVvsv7RlRX3R8xRbXzz99NPR0NDQ6t6oqKiI8ePHd3hvdMe5i+UxRqu+6Nm6eoy2kG9/+9sxfPjw+NKXvrRc4y7xxhtvxNtvv91uHai+6DmKmf9uS3fud2tH0ZWKnVPLMc5Z7DxdR84777zo3bt3VFVVxeabbx533HFHUcdpW9GWFXVfdLZvUMyakLYsa78KIlb88/KGG26I2traqK6ujvXXXz9uuummNvdTLlhabfWt58yZE4888khsvvnm8a1vfSv69esXvXv3jjXWWKOohJzuuFawPV3Z/qP7am/MaVnWbHdln/WJJ56IadOmxRe+8IUW2z/xiU9EbW1tfPvb346//vWv8cYbb8S9994bZ5xxRmy++eax8847dxj347qGVvLFh1x33XXxyiuvxAUXXNDuPku+SemKK66Iv/3tb3H99dfHj3/841i0aFFMmDAhnnrqqYLnePPNN6OsrCyGDh3aYntFRUUMGjQoZsyYsexv5P9z1VVXxfbbbx+nnnpqjBkzJtZbb7341a9+FXfffXdstdVWBY+977774sEHH4wDDzyww/O8+eabzZlMH7Zk2/J8T6xYEyZMiAsuuCDuvPPO2GSTTWK11VaLgw46KE455ZS44oorltt53nzzzYiIdu+j5X0PffWrX41NNtkkDjrooHb3WWeddeL111+PV155pcX2++67LyI+mLgoRLngxhtvjDfeeKPLnqOTJk2Kvn37xm677VZwv//+97/xm9/8Jvbdd98oKysruO+VV14ZdXV1Hb6nd999NxYvXqwM9BAVFRWx7777xve///24/fbb48ILL4ynn346ttlmm1YN/4ULF8bXvva1OP300zudbZ2jDdVROV111VVj2LBhsfnmm8cDDzwQV111Veyyyy6t9vvNb34TQ4YMidVWWy322WefGDlyZPzud79rkYne3nsaNmxYq4W5ysnKb5111omHHnooGhsbm7fV1dXFww8/HBEdtyOKtSLbUAMGDIiTTz45rr/++rj11lvjmGOOiZtvvjm22WabTn/LYCHKRc+yLG2gHO2Nurq6uPLKK2PMmDEtvtWzM/dlSilOOeWUOPDAAzvsd3/Uiu4X0fVeeOGFaGhoiL322is+85nPxK9//es46qij4rrrrmtO/Fzi5z//efOvqYwePTo23njjePzxx+P++++PNdZYo+B5VuRY1IgRI+KMM86IH//4x/GLX/wi9txzz/jBD34QEyZMKPgLaf/+97/jqaeeioMPPriopCV97p6lu9UX7Vl//fVjypQp8eyzz8ZWW20Vo0aNit133z122mmnuOWWW1qde2nKSoT6oicqtr5Y1nujO85drLPOOvHUU0+1Wtz7j3/8IyKM0dKxrh6jbc9TTz0V119/fVx++eUdjskurY6eCUvqSD7+ipn/bkt37XdrR9GVOjOnlmOcs9h5uvaUlpbGrrvuGpdeemn89re/jSuuuCLefvvt2G233Tr8lbMIbSvatqLui86u3yhmTUhb1BUsDyvyebn11lvHxIkT4//9v/8XkydPjrKysjjkkENi8uTJrfZVLlhabfWtX3zxxUgpxS9/+cv4v//7v5g0aVLceOONMWTIkDjooIPiz3/+c8GY3XGtYFu6uv1H99XemNOyrNnuyuftjTfeGBHR6tfpBw8eHDfffHO8//77sdNOO8XIkSNj++23j1VWWSX++te/FrUu6uPahyj8znuQ2bNnx3e+85349re/HUOGDGl3vyXfmjF37tx44oknYtSoURERseOOO8Zaa60VkyZNip///OftHr9w4cJWP0GzRFVVVSxcuHAZ3kVLNTU1sc4668TIkSNjjz32iLlz58YVV1wR++yzT9x3333tfhvz22+/HV/4whdizJgxccYZZ3R4noULF0ZlZWWr7VVVVc2vs/JaffXVY9ttt4199903Bg0aFH/4wx/ioosuiuHDh8fJJ5+8XM6x5B5p7z5angv67rnnnvj1r3/dvPixPcccc0xcd911ccABB8QVV1wRw4YNi1/96ldx2223tbjm9igXPduSrNWtttoqDj/88A73X973y0UXXRR33XVX/OAHP2j3J+sjPvh2qP333z+qq6vj4osvLhjz73//e5x33nlxwAEHtPg517Z0VKY/vA8rv6233rrFT87tueeesd9++8VGG20U3/zmN1t0qi+++OKor6+Pb33rW50+z/JuQxVTTv/0pz/FokWLYtq0afHzn/+83Z/J3GGHHeLOO++M9957L+6+++7417/+VdRPaqorPr5OPPHEOOGEE+Loo4+OM844I5qamuLCCy9s7iwvr892RbahPvotDPvuu29sscUWccghh8QPfvCD+MY3vrFczqNc9CzL8nnnaG+cfPLJ8eyzz8Yf/vCHFgNFnbnOG264IZ5++umifvb1o1ZkmaZ7mDdvXixYsCCOP/74uOqqqyIiYp999om6urq4/vrr4/zzz4+xY8dGRESfPn1i3LhxsdVWW8VOO+0Ub731Vlx88cXx+c9/Pu67776C33q5Iseivvvd77b4/0EHHRRrr712nHXWWXHrrbe2O7HR3qBue9QXPUt3qy8KWXXVVWOLLbaIz372szF69Oi477774qqrrorBgwfHZZdd1rzf0paVD1+v+qLnKLa+6OjeKGY8s7vNXZxwwgnxu9/9Lg488MCYOHFi1NbWxg9+8IPmX9s0RkshXT1GW8ipp54au+22W+y6667LLeZHFVsHtvU6Hx/Fzn+3pbv2u7Wj6CqdmVOLWP71Smfm6dqz2mqrxV/+8pcW2w477LBYf/3146tf/WrsvvvuBY/XtqItK+q+6Mz6jWLXhLRlWftVELFin5f3339/i/8fddRRsdlmm8W3vvWtOOKII5q/4V+5YGm117desoZ29uzZ8dBDD8WWW24ZER+sFxkzZkxceOGFMWHChHbjdse1gh/V1e0/uq9CY05Lu2Y7ouv6rE1NTfHLX/4yNtlkk1a/3BIRMWTIkNhkk03i5JNPjnHjxsWTTz4ZkyZNiiOPPLLVF0991Me5XPjli//P2WefHQMHDoxTTjml4H5LGiWf+tSnmhMvIj7oqH7605+OBx54oMPj6+rq2nxt0aJFnf5Zo0L233//ePXVV+OGG26I/fbbL4488sj429/+FnV1dXHWWWe1ecz8+fObC/3tt98evXv37vA81dXVbX47zpKfPF+e74kV65e//GUcd9xx8cMf/jCOPfbY2GeffeJHP/pRHH744XHmmWfG7Nmzl8t5ltwj7d1Hy+seamhoiFNPPTUOO+ywFt+o05aNNtoobrrppnjxxRfjU5/6VKy11lpx1VVXxZVXXhkR0WHZUC56rrfeeit233336NevX9x6661FfXPZ8rxfbr755jj77LPj6KOPjhNOOKHd/RobG+Oggw6KZ599Nm699dZYZZVV2t33ueeei7333js22GCD+OEPf9jhNXRUpj+8Dx9Pa621Vuy1115xzz33NH/z//Tp0+PSSy+NiRMnFtW++Kjl2YYqtpzusMMOsdtuu8VXvvKVuOWWW+K8886La665ptV+w4YNi5133jn222+/mDx5cuyxxx6xyy67xFtvvdXhe1JOPp6OP/74+Na3vhU33XRTjBs3LjbccMN48cUXmxObl6YMtGVFtaHa84UvfCGGDx8ed91113KLqVz0LMvyeS/v9sall14aU6dOjQsuuCA++9nPLtV1zpkzJ775zW/G17/+9RbjBcXq6jLNirfkMz344INbbF/yk74PPvhgRHzQl915552jX79+cc0118Tee+8dJ5xwQtx1113x4osvxqWXXtrheVbUWFRbTj/99CgtLW23vkgpxU033RQbbLBBbLTRRkXFVF/0LN2pvijk/vvvjz322CMmTpwYp512Wnz+85+P733ve3H22WfH5ZdfHs8++2zB4zsqK0uoL3qeYuuLZb03uuPcxW677RZXX311/P3vf49NN9001llnnfjDH/4QEydOjAhjtLSvq8doC7n55pvjgQceiO9973vLJV57jNESUfz8d1u6Y7+7PdpR5NaZObUllme90tl5us4YOHBgHHnkkfGf//wnXn/99YL7alvRlhV1XxS7fqMza0Laoq5geejK52VFRUWcfPLJ8d5778Vjjz0WEcoFS69Q33rJ5z5mzJjmxIuID57Hn/vc5+KRRx4p+Mt03XGt4Id1dfuP7qujMaelWbO9RFc9b++9995444032vyCtJdeeil22GGHOOqoo+Jb3/pW7LXXXnHOOefED37wg7j11lvjT3/6U8HYH+dyIfkiPvjZ7ilTpsSpp54aM2bMiOnTp8f06dNj0aJFUV9fH9OnT4933303IqL5QTps2LBWcYYOHRr/+9//Cp5rxIgR0djYGG+//XaL7XV1dTF79uyiHtTFeOmll+LPf/5z7Lnnni22Dxw4MD796U+3ynxdcg377LNPPPXUU3H77bfHBhtsUNS5RowY0fwtvh+2ZNvyek+seD/4wQ9ik002iZEjR7bYvueee8aCBQviiSeeWC7nWfIzQu3dR8vrHvrpT38a//nPf+JLX/pSczmfPn16RHzwazbTp0+PBQsWNO+/3377xYwZM+KRRx6JBx98MF555ZVYY401IiJi7bXX7vA9KRc9z/vvvx+77bZbvPfee/HnP/+56M95ed0vd955Z3zxi1+M3XffPa677rqC+x577LHx+9//Pm644YaC35Dz2muvxa677hr9+vWLP/7xj9GnT58Or2PgwIFRWVmpDPRwo0aNirq6uuZfgPjOd74Tq666amy//fbNz98lyQmzZs2K6dOnR1NTU7vxllcbamnL6ZprrhmbbLJJ87cyF7LffvvFvHnz4vbbby+434gRI+Ktt96KlFKL7crJx8PEiRNj5syZcd9998VTTz0V//znP5vv8Y7aEcVaUW2oQkaNGtXcV1oelIueZVnaQMuzvXHDDTfEmWeeGccff3ycffbZbV5nMfflZZddFnV1dXHggQc213VLJq3/97//xfTp09td0LjkPB+O+9Fzuf8/ftobYxo6dGhERPMY09///vd45plnWo3xjB07NtZbb702x3g+bEWNRbWnuro6Bg0a1G59cf/998crr7xS9K9eROhz9zTdpb7oyPXXXx/Dhg2LT3ziEy2277nnnpFSKupLewqVlSXUFz1PsfXFst4b3XXu4uSTT46ZM2fGAw88EI8++mg899xz0a9fv4gwRkvbunqMtiNf//rXY//994+KiormfsN7770XER+Mxc6YMWO5nKejZ8KSOpKPr87Mf7elO/a726MdRW7Fzql92PIa51yaebrOWvIlIsWUIW0rPmpF3hfFrN/o7JqQtt7Ph6//o+/JfU4xuvp5+dHnunLB0uiob93RGtr6+vrmtSJt6a5rBZfoyvYf3VdH5WJp1mx/WFc9b2+88cYoLS1t9eU/ER/05xctWhR77LFHi+1L3mMx7+nj2oeQfBERb7zxRjQ1NcWpp54aY8aMaf738MMPx/PPPx9jxoyJ888/PyIiNtxww+jVq1e88cYbreLMmDGjw59sHT9+fERE889iL/Hoo49GU1NT8+vLaubMmRERzd82/WH19fWtMgubmprii1/8Ytx9991x0003xXbbbVf0ucaPHx/PP/98q5+1WfJTTcvrPbHizZw5s917KCIKZqh2RnvlYsaMGfH6668vt3vo1Vdfjfr6+vjUpz7VoqxHfNDYGjNmTNxxxx0tjqmoqIjNN988PvnJT0ZFRUXzt+bsvPPOHb4n5aJnWbRoUXzuc5+L559/Pn7/+9/H+uuvX/Sx48ePj8cff7zVwvOHH344ampqilqk+/DDD8fee+8dn/jEJ+JXv/pVi5/s/qivf/3r8eMf/ziuuOKKNhtOS8yePTt23XXXWLx4cfzlL39pbuR1pLS0NDbccMNWZXrJda6xxhpZBofpXl566aWoqqpq/qaZV199Nf773//GGmus0fz8XXL/nXjiiTFmzJiCP5G3PNpQy1JOIz74ubv333+/qP0iosN9x48fHwsWLIhp06a12K6u+PgYMGBAfPrTn44NN9wwIiLuuuuuGDlyZKy77rrLJf6KakO1J6UU06dP77AP1BnKRc+yLG3m5dXeuP322+OYY46JffbZJ6699tp2r7OY+/LVV1+N//3vfzFu3Ljmum6bbbaJiIiLLrooxowZU/Bbz7u6TLPibbbZZhERrcaYliy4W/J87ewYz0etqLGo9sydOzfeeeedduuLG2+8MUpKSpq/wb0Yy6MPxcqjO9QXxVjWcbSOysoS6ouep9j6YoMNNojy8vJW90ZdXV08+eSTHd4b3XXuIiKitrY2ttpqq9hss82irKws7rrrrqiuro5PfepTBc+lvuh5unqMthivvfZa3HTTTS3mKL7//e9HRMSmm27a6hcBltaqq64aQ4YMabMOfOSRR9QXPUBn5r/b0h373e3RjiKnYufUPmp5jHMu7TxdZ7300ksREUWVIW0rPmpF3xcdrd9YmjUhH7as/SqI6Prn5Uef68oFnVVM33qVVVaJ4cOHt7uGtqqqqmB/oTuvFezK9h/dVzHlItd8Xs4+6+LFi+PXv/51bL/99m0mQsycOTNSSq3eU7HzHh/rNbSJNGvWrHTbbbe1+jdu3Li02mqrpdtuuy099dRTzfvvtddeqaysLE1krPwoAAEAAElEQVSbNq1527PPPpvKysrSiSee2Lxt/vz5adq0aWnWrFnN2xYsWJAGDhyY9thjjxbXcOihh6aampo0e/bsoq/7n//8Z4qI9OMf/7jVa2+//XYqLS1N22+/fWpqamre/tprr6XevXunCRMmtNj/xBNPTBGRrr/++oLnnDVrVpo2bVqaP39+87aHHnooRUS69NJLm7ctWrQorbXWWmnLLbcs+v3Q/eyxxx6poqIi/ec//2mx/fOf/3wqLS1Nb7zxRpvH7b777mn06NFtvlZXV5emTZuWZsyY0WL7uuuumzbeeOPU0NDQvO3ss89OJSUl6dlnny36mmfNmpUiIp1zzjmtXps2bVqbZT0i0mc/+9l02223tbquD3v++edTnz59WpVf5YKGhoa05557pvLy8vSHP/yh4L4zZsxI06ZNS3V1dc3bfvnLX6aISLfcckvztlmzZqX+/funAw88sMPzP/vss2nQoEFp3Lhx6d133y2476RJk1JEpG9961sF95s3b17aYostUp8+fdKjjz5acN9XXnmlRZ2YUkoXX3xxioj0z3/+s3nbc889l8rKytKZZ57ZwTtiZfL222+32vbkk0+mXr16pT333LN523333dfq+XvBBRekiEhnnHFGuu2225rLRY42VLHltL6+vs1y9PDDD6eysrJ02GGHNW+bNWtWi3bWEieffHKKiHT33Xc3b3vvvffStGnT0nvvvde87bXXXku9evVKJ510UvO2pqamtM0226RVV121RZ3Iym/Js/6yyy5rd5/u2oZKqe2yfu2116aISJdffnm7cWtra9Phhx/e5mvKBZ1pM+dob9x7772pqqoq7bDDDmnRokXt7lfsffnYY4+1quuuv/76FBHpiCOOSLfddlvz/Z67TLNyePzxx1NEpC984Qstth988MGpvLy8uc/96KOPpoho9Tx97LHHUmlpaTr++OObt3XlWNTChQvTnDlzWm3/+te/niIi/eY3v2n1Wl1dXRo0aFDaZptt2j1njj4UK5euri8+rFB7bUk/4J577mmx/ctf/nKKiPTQQw+llDpXVtQXpFR8fZFSShMmTEgjRoxocY/98Ic/TBGR/vSnPzVvW5nmLj7q/vvvT2VlZenkk09usV19QVeP0X7YSSedlNqbgm1rjuLAAw9MEZF++tOfpr/+9a9tHnfppZemiEgvv/xym6//97//Tf/9739bbDv++ONTdXV1evXVV5u33XXXXSki0uTJkzv1nlj5dHb+e2Xod2tHUYxC7ZCPKvS8Tqn4ObUc45ydmaf7sEJ9lrbGeF9//fU0YMCAtNFGG7XYrm3VM3VUfrqyDdWWttZvdHZNyLRp09Irr7zSIm6x/Sp6hu5cLtp6rs+ZMyetueaaafDgwWnx4sUpJeWCzulM3/q0005LEZHuuOOO5m2zZs1Kffv2TZ/97Gebt61MawW7sv1H91VsuejMuGdXr/9Y4je/+U2KiPSjH/2ozdcvu+yyNuvBK6+8MkVE+uUvf9ninD1pDa3kiwK22267NG7cuFbb//3vf6fevXunESNGpO9+97vpu9/9bhoxYkQaMmRIev3115v3u+eee9q8gZcsUtpvv/3S1KlT0xe/+MUUEWnixIlFXdfVV1+dLrjggnTCCSekiEj77LNPuuCCC9IFF1zQ4oF+zDHHpIhIO+ywQ7r66qvTRRddlEaOHJnKysrSvffe27zfFVdckSIibbXVVulnP/tZq3/z5s1r3vecc85pcxJx//33T+Xl5enrX/96uv7669PWW2+dysvLW5yHlc+9996bysrK0tChQ9P555+frr322rTbbruliEjHHHNMi33/9a9/Nd+H66yzTurfv3/z/3/729827/fyyy+3uWjkd7/7XSopKUk77rhjmjJlSjr11FNTaWlpOvbYY4u61p/+9KfpggsuSN/85jeb7/sl558+fXrBYyOiRcNnifXWWy995zvfST/84Q/TWWedlQYOHJhGjx7dopynpFzw/+9QfO5zn2vzOfphhx9+eKtJsoaGhvTJT34y9e7dO5133nnp2muvTePGjUt9+vRJzz33XMFzz5kzJ40aNSqVlpamiy++uNW5H3jggeZ9lzSYxo4d2+Z1vvXWW8377rXXXiki0lFHHdVqv9tuu63FNWy33XatOvxLOvVDhw5NkyZNSldccUUaNWpUWmWVVdocBGDltcMOO6TPfvaz6cILL0xTpkxJX/7yl1NNTU3q169fhw3/JW2lDw88fXj78mxDFVtO//e//6Xa2tp01FFHpe9973vpuuuuSyeddFKqqalJAwcOTM8//3zzvldccUVaZ5110plnnpmuv/76dNlll6Vddtml+Twf9uMf/7jNDsmSicHjjjsuTZ06Ne2+++4pItKNN97Y4Xui+7r33nvTTjvtlC655JL0wx/+MB1zzDGprKwsTZgwIdXX17fYd2VpQ1VXV6cjjjgife9730vXXnttOvjgg1NJSUkaP358i85zSin99re/bY5RUVGRNtlkk+b//+tf/2reT7kgpeLbzMu7vTF9+vTUr1+/VF1dna699tpW9cKH79WUlv6+XFJ2Pzyg9OHty7tMs/I56qijUkSkAw44IF177bVp//33TxGRvvnNb7bYb0kbY++9906TJ09O3/nOd9KAAQNSbW1tiz5DV45Fvfzyy6l///7phBNOSN///vfT97///fTZz342RUSaMGFCamxsbBX3d7/7XYqIdN1117V77uXdh2Ll1FX1RUrFt9eee+65VFtbm3r37p2++c1vpuuuuy4dfPDBKSLSLrvs0rxfZ8qK+oIliq0vHnvssVRZWZk22WSTNHny5HTWWWelqqqqtOuuu7bYb2WZu5g+fXraYost0oUXXph++MMfptNPPz1VV1enTTbZpNXiW/UFXTlGm9IH9+uS+33LLbdMEdH8/5/+9KcFj10yx/DhhKiUPljMsSTGhAkTUkSkr371q+mCCy5IV199dYt9R48e3Wqx7auvvpoGDRqU1lxzzXTVVVeliy66KA0YMCBtuOGGBRfC8/HW3vz3ytDv1o6ikGLbIcU+rzszp5ZjnLMz83TF9lmOOOKItM0226Rzzz03TZkyJX3rW99KgwYNShUVFa3mubWtepZiy09Xt6GKXb/RlvbWhERE2m677VpsK7ZfxcfbylAuzjnnnLTxxhuns88+O02ZMiWdd955afTo0amkpCT9/Oc/7/A8ygVt6Uzf+q233kojRoxIffr0Seecc066/PLL09prr52qq6vTk08+2bxfV89zt6Wt+7+r2390X50pF8WOe3aXcrHvvvumysrKFnXbh73zzjtp+PDhqaKiIp166qnp+uuvT1/60pdSWVlZGjduXHOiX0o9bw2t5IsC2ht8SumDRsXOO++camtrU58+fdJee+3VYjFeSu1PYKSU0pQpU9I666yTKioq0pprrpmuuOKKNr85uS2jR49OEdHmvw835urr69PVV1+dxo8fn3r37p169+6ddthhh1bfmrOkIVhMzPYKyMKFC9PXvva1NHz48FRZWZk233zz9Oc//7mo90P39vDDD6fddtstDR8+PPXq1SutvfbaaeLEia0WDi5pVLT178OVRHsVR0offOPT+PHjU2VlZRo5cmQ6++yzW2SHF7JkULitfx+9Xz+qvQ7FQQcdlEaNGpUqKirSKqusko4//vg0c+bMVvspFxS6/z46WdFW5zullN5999109NFHp0GDBqWampq03Xbbtfg2qfYsKVPFlL8l92oxZaVQXfPRSby2JmVS+iBzd7/99kt9+/ZNvXv3TnvssUd64YUXOnxPrFy+//3vpy222CINHDgwlZeXpxEjRqRDDz20qM+6s8kXKS19G6rYcrp48eJ02mmnpY022ij17ds39erVK40ePTodffTRrcrtP//5z7T//vun1VZbLVVWVqba2tq06aabpssvv7zdevKjne/GxsZ00UUXpdGjR6eKioo0bty4ogbD6N7++9//pl133TUNHjw4VVZWpnXXXTd997vfbdHxXGJlaUMdc8wxaf311099+vRJvXr1SmuttVY688wz2/y2wUL9iw+XAeWClIpvMy/v9saSuqa9fx+tg5b2vuxs8kVKy1amWfnU1dWlc889N40ePbr5+XrFFVe02m/BggXp/PPPT+uvv36qrq5O/fr1S3vssUd64oknWuzXlWNR//vf/9Khhx6a1lprrVRTU5MqKyvTuHHj0kUXXdTuPXzQQQelXr16Ffw29eXdh2Ll1FX1RUrFt9dS+iABY7/99kujRo1q7kt87Wtfa5Gs2pmyor5giWLri5Q++OXJrbfeOlVVVaUhQ4akk046qVW7fWWZu3j33XfTXnvt1TzBN2bMmA77IeqLnqsrx2hTKtzH+OjCpY9qL/mi0NjvR8do20q+SCmlZ555Ju26666ppqYm9e/fPx1yyCEtFozQ83Qm+SKl7tXv1o6ikGLbIcU+rzszp5ZjnLMz83TF9lluuummtO2226YhQ4ak8vLyNHjw4LT33nunxx57rNX5ta16lmLLT1e3oYpdv9GWiOIXmadUXL+Kj7eVoVzccccdaZdddmlez9W/f/+06667prvvvruo8ygXtKUzfeuUUnrxxRfT3nvvnfr27Zuqq6vTjjvumB555JEW+3T1PHdb2rr/u7r9R/fVmXJR7LhndygX77//fqqqqkr77LNPwZivv/56Ouqoo9KYMWNSRUVFGjFiRDr22GNbjWP1tDW0JSmlFAAAAAAAAAAAAAAAALSptKsvAAAAAAAAAAAAAAAAoDuTfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABZR31YnX+fX52WI3NZVki93YuHLmq1RW1meLXV/XZbfRMvnvgWd39SW08Ik/fStb7NqKumyxc+pXsShb7HcW1maLnVOvssZsse/d6bJssZfW6KmT8gWvaMoXuyFjXZHxsiNj/RnlKV/sxnzX/cpxX88We2mtd9YV2WKnlbOZEyU5ywWtTJt4eldfQitjbrwoW+ymhfnaugOGz8kW+39v9c0Wu7x3vr5Fw/sV2WJXDlqYLfbz+30nW+ylte5vzssWu7w8X5t00cJ890BtzeJssRcsynfdZWX5KrqU8rWj/rNv9yoXW91xZrbYvUrzfUYL6ntli52zf1nTK19dMXt+TbbY5RnL26O75WuvLK0t//KNbLFzPl8qMt677y2syhZ7SO/52WLPr8tXD5WU5OvPP/yZi7PFXlqrX/29fMEzjo2ULM5X5ppq8j0bS+rzXXdJQ8ZxrozDXC9/+av5gi+l37y4SbbYvUoassV+rW5QttjDe72fLXZONSX5+kTvNvbOFvsLYx/JFntpjbkpX9suZx8w5zx3yjhOn1Npr4x97oxzLi9/Id+88tLYdbNz8wUvWznvrfp+ldli93o33xx6TqmyLFvsOx/4drbYS2vD3+YbG1uccY1OaWm+xm51Zb51Kw2N+e6vxqaM9WfGvsW0vc/NF3wpXf3cjtliV5XkG49clPKN0S5oyjemU1Oar8ytrNd9yrp/zRZ7af2/Fzfu6ktYKhUl+cZo61K+Z3pOOZ8VOZ9xn1/zX9liL62Nf5evbdeQsV6vzdjWWVCX7/7KOZ+Tc34h5zznE7tP7HCflXSJHQAAAAAAAAAAAAAAwIoh+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACijvqhM3NZV01amXycB+87PFnrugKlvs+rp8H3VFZUO22IsW9coWu7upKGvMFrtfxaJssf/z9tBssafPGpYtdtWQhdlirzP07Wyx31lYmy12t5Qy1hX1GfMPc1ZxOdMmK/I9h2JxWb7YLDclTflil2a8vRqq88UuydfMibK6fLEbK/PF7o5Ky1K22E2N+R7qc58bmC12xeJsoaMu498kMn6W9Yu7rPvbJUpK8v0tyzLG7l2br+8yb0G+h2Ntdb6Hen1jvnZUU8a6v7tZWJdxfKGiPlvoml75Yr/+Tv9ssWtq8lVEfaryxX5/QcaGZTfUkPH5UlGeryFd35SvY7zLqP9ki33/zDWyxWb5KcnYd22qzlfxlmQcd6l6M187evHgfH/wrJ9lZb72cHe0qClfO6pXWb76Yo2KfOP0a/b6X7bY/1w0Klvs/uULssXucTI+Bhob87V1SkozjhWU53vwNtZn7BdnnCsq7dWDOt1l+cYLS+ry1RUlC/ON51S9Pitb7DSof7bYTRX52n4lizM20Lqh0oxjqKUZn+dD+87LFnvW3HxrHeoW52uzDh04J1vs9+b3rLGo+pSvTn+7vm+22APK860VHFiWL3ZO/2vKV5575ezQ9zCLUr5nY21pvnH6txr6ZYs9qtfsbLGjBzX/c2vMuF6wPmP/ckFJvjI3d3a+527vgfnGi3Ku/06VXZuD4JcvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFlHfViRsb8+V9VFXVZ4s957HB2WKP/s6D2WK/8Ztx2WLPn1WTLXbVwEXZYnc3vSsWZ4s9Y17fbLH71OT7jIaPnZMtdk6LGvM9WnPeJ91SZWO+2A0Z8w9LU77YDSXZQq/1o3x/7/8enS10RH3PyiVNGd9u6pUvdumCfLEbqvOVuarZ+cpcXf981122IN91d0dl5fmeXw3ZIkfcfdCl2WLXlOS7B15qqMgW+4v/PCpb7MaGsmyxu6P6+nzvtyJjmXvv1f7ZYlcOy1cZzXtuQLbYfdZ7N1vshYvzlefuprysKVvszQa/li32H/6xWbbYLx5wXbbYZ7+9YbbYv3j6E9lir7HKO9lid0d9q/KN6VSX5xuf/fd/V80W+x83Dc0We8jR07PFnjmvT7bYA6szdua6odQr45hOY742etmIhdli/2LvKdliH/J4vvb/wtfzlYueZmDZvGyxB5XNzxb7rJf3zhZ7hyHPZ4u9W5+ns8X+/ZyNs8XeuOaVbLG7pYxDb2UZ+y71C/INAFe9kK9/uXBovr9J+Sr52jo9aSwqleebuEjl+e6tlXV2qW5IbbbYpXX5xv1KmjK2tbuhefOruvoSlsqMR0dkiz1h10ezxX5o5urZYs94Y2C22NX9es6aqIiIXiX5njGb1bycLfbcpupssb/90F7ZYu+5wVPZYo+tnpktNsvPuIq3ssW+8X9bZot9QP9/Zov9/Zk7Z4t95ND7ssV+q6FfttjdUWXGueic1hiQb053izUezxb7tlfzjReVl+brzzemrl0XtbL2JwEAAAAAAAAAAAAAAFYIyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUEB5V19ADr3KGrPFXtC/KVvsv8x4MlvstX7xyWyxo2++v3dZWb6/d3fz7sKabLHX6D87W+z/ferdbLE3eyLf53/RsKeyxV7zr0dmi73asHx/726pIV+OYM1LvbLF/vcpP8gWe5eD891fpf94MlvsOHqzfLGbSvLF7obKF+WLvbgqZYu9yqQHs8XO2YYa8/+Oyxa7z4v5muKNFdlCd0uL5+d7w5WDFmaL/ZkfnpEt9l+OmZQt9rfHbJ4t9vf+e0u22Kf+7ohssbuj8vJ8bel586uyxd7/Uw9ni/3kJtlCx2vf3jpb7LnzqrPFrq5ZnC12d/Pu+7XZYs/o2y9b7LLhC7LFHnfNidliTzzyp9li3/Lqp7PFXjAkXz+xO5o5p0+22J8ZPS1b7OdnrZ4tdv+f5eu3vPz5cdliD+qd71mRc8yyOyqbn28sqmFwfbbYq/w0X5/ozIO3zBb73zNuzBZ7/MX56rk56+SbE+mO/rN4lWyxN61+OVvstfq8ky32XzfM17Z849FtssXeuPa1bLHfqu+fLXZ3VFKabxw1vZav7n350MnZYn/m6PHZYpePGZ0t9uxr8/UBZs7M11fsbkoa8o1DldQ15Iu9OF/sP977m2yxd9/qc9lip975nkFNFR/L5UntGjZwTrbY787L9zk9e0TGumKV8dliN/4u33xx/8HzssWurazLFrs7WtCUr+9675x1s8X+wsCHssUee/jj2WKf+Mr92WI/tDBf+2xmQ89pQ+X2WkP/bLGfmZNvrOCxTfKNRV3y8l3ZYi9K+do6fUszLhTqhhbV5/tblpfm67v8v7F/yRZ7p0OPzhZ74F8fyxZ7vcfyfZZ/fGH9bLGL4ZcvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACijv7AFvvvlmTJ48Of7xj3/Em2++GaWlpbHGGmvE5z//+TjiiCOirKwsx3UCAAAAAAAAAAAAAAB0iU798sWjjz4a6623Xvzxj3+M+vr6eOGFF2KzzTaL2tra+NrXvhbbbrttzJ07N9e1AgAAAAAAAAAAAAAArHCdSr748pe/HKeffno8+uijcd9998UNN9wQzz//fPzyl7+Ml156KRYsWBBnn312rmsFAAAAAAAAAAAAAABY4TqVfPH444/HYYcd1vz/L3zhC/H444/HzJkzY8CAATFp0qS49dZbl/tFAgAAAAAAAAAAAAAAdJVOJV8MHTo03nzzzeb/z5w5MxoaGqJv374RETF27Nh49913l+8VAgAAAAAAAAAAAAAAdKFOJV98/vOfj+OPPz7+/Oc/xz333BOHHHJIbLfddlFdXR0REf/5z39i1VVXzXKhAAAAAAAAAAAAAAAAXaG8MztfeOGF8eabb8bnPve5aGxsjK222ip+/vOfN79eUlIS3/3ud5f7RQIAAAAAAAAAAAAAAHSVTiVf9O7dO26++eZYtGhRNDQ0RO/evVu8vuuuuy7XiwMAAAAAAAAAAAAAAOhqnUq+WKKqqmp5XwcAAAAAAAAAAAAAAEC3VNrVFwAAAAAAAAAAAAAAANCdSb4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACijvqhOXlTVli72orle22DltdNmJ2WKXDk3ZYlcOXJAtdsp32d1ObUVdttj/eWdottinPfdMttjn/fXz2WLP/kRtttgbjpqRLfaMeX2zxe6WMj4DFqy9OFvsNX79pWyxK07K98xtOn7jbLHL3shXNzcOqs8WuztqqMoXu3xBSbbYr567dbbY612XL3bpgHxt1lSWLXSPU1qe73Na/F6+Qvfy8T/IFnv3LQ/KFvvNr66WLfapD26SLXZTbWO22N1RQ0O+71oY0G9+ttj/749bZYv9nxmTs8Xe78XB2WL/67WR2WI3NfWc7+QYM2x2tthvzl85+2kjL3ogW+zTV/tCtthbbf9cttj/fS9fWe6O+lQvyhb7yf/le3bV98tXp/9lxpPZYn/2P6tki/36+/2yxe5TlW/8pDtqrM3XtyipyBd7xraV2WI37vLJbLE3uCpff37+eg3ZYpc05Rs/6Y42rHotW+w/zck3HnnNqg9niz3mx0dni31A7R+yxV6z4u1sseenimyxu6OU8TnQNDTffOGY3x6XLfZPXpqSLfZxj26YLfbimfnu3dJe+er+niSV5RtIL4l87YXPrDI+W+zZR+frbw276/VssWNIvn5Ld/S/+dXZYi98P9+8xaee2idb7JI/Zwsd7z03MFvs/mu+my32O3PyrVvpjgaW5ZtbWNwr33qEzSrztRfe+d3a2WI/ufjlbLHfrB+QLXbvsnxjlt1R/7J8a4AenD82W+zfjs33UF/rsuOzxf793Hz31ydq8pW5OotLlpuBtfnK3LZP750tdu07+erQ129bP1vsd2bk63PVVucbPylGz5llBwAAAAAAAAAAAAAAWAqSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACggPKuOnFqKskWu1dlfbbYpavOyxZ78bCybLFrq+qyxa5vzHfddYu77BZd4ebXVWSL3b9mYbbYlzz9mWyxz9nx/2WL/ZPXtsoWO+dnWVuRryx3S2UpX+z6fPmHJQPyfU7phd7ZYjf0bcoWO/VtzBY752fZHZXk+5iyKstXFWVVOXvlvL+aenX1FaxYTQ0ZP6de+Qrd2J+fkC32lff8OFvsS17cLVvsua8Mzha7tLohW+zuqFevfHXvovp8/bSqce9li73m3Udmi12asd1aXbM4W+zGxpWznlsaM+fma0f3qcr3GVVU5CvLr96yYbbYaw18M1vs52YPzRa7uiLfmGJ3VNeQb0yvsizfvdt3lbnZYq/7j8OyxV514PvZYtdW5huHaGzqOXVFRERJQ755i/R+vo5aQ+98/Zayhfnugfmr52uj9/pfvmdczr93d/RWQ79ssbft/Vy22OfNWj9f7K1uzxb7nYa+2WL3KslX5uZmvE+6o5LSfH3AkoxjUeU1+doMR/72+Gyxm3rnu3dLq/K1W8vKelZ9kUtJY77PqKmmMlvshp02yxZ72F9nZItdt1q+8dmyeT1rnruiPN+9Wz5ofrbY782vzha7bnG+PlHfMe9li12ar5vY4+qKRSnfPTCgPF+5uPa9UdliH7bGI9liz8rYt6gs7VnjqDnl7HNvXP1qttg5y8W0g6/NFvvfdfn6Fm815itzOZ+f3VF5ab768e2M84UDMq7R3ebnT2SLfeMLn8gWu64h37qCnPdJMXrWzAkAAAAAAAAAAAAAAEAnSb4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgAIkXwAAAAAAAAAAAAAAABQg+QIAAAAAAAAAAAAAAKAAyRcAAAAAAAAAAAAAAAAFSL4AAAAAAAAAAAAAAAAoQPIFAAAAAAAAAAAAAABAAZIvAAAAAAAAAAAAAAAACpB8AQAAAAAAAAAAAAAAUIDkCwAAAAAAAAAAAAAAgALKu+rEJaUpW+xFCyuyxc553Y2N+XJhFizK9zdJTSXZYuf8e3c3FWWNXX0JS2X0oHezxf7Ja1tliz2/Ll+ZGFi9IFvseXWV2WJ3Sw35ni850w+b5vXKFrt+5OJssVNdWbbY0Zjxs2Sl0JSvWERJzio0Y1OkKWORy/o36YZKy5u6+hKWStnq87LFPv2WI7PFrh9ely12Tr0qG7r6ElaolPLVvTn7rvX1+R6O1bX57t2Us75oyvf3zhm7u6nqle8ZUN+Y774d0W9OttgL6vM10N5fVJUtdkMPum9zqyjP12hc1JBv2Hlon3xtqPcWVmeLXV6Sr81a15DvOZTz+dkdpfJ8lXrO2KWL8j0bG/rnuwdK6vNdd2NVvr93Sc4xy26oqrQ+W+z6yPf82rjm1Wyx61K+616naka22LMa+2aLnfM+6Y5W1rnRuoX5+gDlw/PNjUXGtk5ODTnnXLqbxoxtqIp8fYtUnq8tUvlWvn5Lw7B+2WKXv78wW+xU1oPKREQsrs937+Ycn62pyjeGWlaWr1+c8+8dka9P1LCS1nFLqz5jO7pP6aJssReljOs/Mv5NemWcMF6ccfK/10q6fq47mtOUb5x+s6rp2WJf/b+x2WKvX/VGttg5xwqqSnpWn7u0NF+bIWeL4X8L8s0v/PS5LbLFLsm5PLM03zO9MeN6iGKYrQQAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFCD5AgAAAAAAAAAAAAAAoADJFwAAAAAAAAAAAAAAAAVIvgAAAAAAAAAAAAAAAChA8gUAAAAAAAAAAAAAAEABki8AAAAAAAAAAAAAAAAKkHwBAAAAAAAAAAAAAABQgOQLAAAAAAAAAAAAAACAAiRfAAAAAAAAAAAAAAAAFFCSUkpdfREAAAAAAAAAAAAAAADdlV++AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+AAAAAAAAAAAAAAAAKEDyBQAAAAAAAAAAAAAAQAGSLwAAAAAAAAAAAAAAAAqQfAEAAAAAAAAAAAAAAFCA5AsAAAAAAAAAAAAAAIACJF8AAAAAAAAAAAAAAAAUIPkCAAAAAAAAAAAAAACgAMkXAAAAAAAAAAAAAAAABUi+aMfEiROjpKQkNthggxbbp0+fHiUlJe3+O/bYY4uK/6Mf/SjWW2+9qKqqirFjx8bVV19d1HHz5s2Lc845JyZMmBADBw6MkpKSuOGGG9rc94gjjmjzGtddd90293/xxRfjC1/4QgwdOjSqq6tj7NixcdZZZxV1Xe+9914cd9xxMWTIkKitrY0ddtghHn/88aKOpfv629/+1u69/tBDD7XYt76+Ps4777xYY401orKyMtZYY4248MILo6GhoejzrYhyERHR1NQUkydPjvHjx0d1dXUMGjQodtxxx/jXv/7VYr8333wzjjvuuBgzZkxUV1fHmmuuGV/5yldi9uzZRV2XctFz/POf/4yTTz45xo0bF7W1tbHaaqvFAQccEM8//3zRMZb2fmlqaoobbrgh9txzzxg1alTU1tbGBhtsEBdeeGEsWrSo1f6TJ0+O/fffP1ZbbbUoKSmJI444os24d999dxx11FGx9tprR01NTayxxhpxzDHHxJtvvln0e3rjjTfigAMOiP79+0ffvn1jr732ipdeeqno41l5/Pvf/479998/1lhjjaipqYnBgwfHtttuG7/73e/a3P+aa66J9dZbLyorK2PVVVeNr3zlKzF//vyiz/fb3/42Nt1006iqqorVVlstzjnnnKLqm+eeey7OOOOMGD9+fPTp0ydGjBgRu+++ezz66KMdHrvLLrtESUlJnHzyya1ee//99+OMM86IsWPHRnV1dYwePTqOPvroePXVV4t6P4sXL44zzzwzVllllaiuro4tt9wy7rzzzqKOpXtqrx2+5N8bb7zRvO8dd9wRRx99dGywwQZRVlYWq6++eqfPtyLKxG9+85s48MADm8v5OuusE1/96lfjvffea7Xv6aefHptuumkMHDgwampqYr311otzzz035s2bV/R7Wtp2ISuXzvQ32rO07Y0FCxbEtddeG7vuumuMGDEi+vTpE5tssklMnjw5GhsbW+0/ceLE2HPPPWPYsGFRUlIS5557bptxb7vttvjMZz4Tq6yySlRWVsbIkSNjv/32i2eeeaao9xMRMW3atJgwYUL07t07Bg4cGIcddljMmjWr6ONZeXS2H9FVbaiI4svAEjfffHNstdVWUVtbG/3794+tt946/vrXv7bab1me99pQPUdX9rkjIh555JE48cQTY7PNNotevXpFSUlJu/vOnDkzjjzyyObx1U033TRuueWWVvt1pm3VHvVFz9GZNtPK0r+IKL4d1957v/jii4t6P+qLj5/OzgesTG2oJYxDsTwt62e+ovrdTU1NMWnSpBgzZkxUVVXFRhttFL/4xS8KnqO+vj7WX3/9KCkpicsuu6zo97Qs5ZqVy2OPPRYTJkyIvn37Rp8+fWLXXXeNJ598stV+F110UXzyk5+MIUOGNPdPv/zlL3eqfd3d6oti+ybtUV98PHWmf92ZvnB7Hnjggfj0pz8dNTU1MXz48Dj11FOLnicodk474oOyvscee8Tw4cOjd+/esdFGG8VVV13Vqr6ZN29efPnLX46RI0dGZWVlrLfeejF58uSi38/S1FV0f7nWG7VnRdQX5557bpv96Kqqqlb7qi8oVmfLSltW1Bjth/3jH/9oLgPvvPNOm/sUO5/RlmWp61h5rCx1hfHZFSzRymuvvZZqampSbW1tGjduXIvX5s2bl372s5+1+nfIIYekiEi/+tWvOox/3XXXpYhI++67b5oyZUo67LDDUkSkiy++uMNjX3755RQRabXVVkvbb799ioj04x//uM19Dz/88FRZWdnqWn/729+22veJJ55I/fr1S+uvv366+OKL09SpU9O3v/3tdMQRR3R4TY2NjWnrrbdOtbW16dxzz03XXHNNWn/99VOfPn3S888/3+HxdF/33HNPioh06qmntrqPZs2a1WLfAw44IJWUlKSjjz46TZ48OR1++OEpItKxxx5b1LlWVLlI6YOyUV5eno466qg0derUdOWVV6bDDz883XHHHc37zJ07N40ePToNHjw4fec730lTp05NJ598curVq1caP358amxsLHhNykXPsu+++6bhw4enU045JU2dOjVdcMEFadiwYam2tjY9/fTTHR6/LPfL3LlzU0SkT37yk+nCCy9MU6ZMSUceeWQqLS1N22+/fWpqamqx/+jRo9PAgQPThAkTUnl5eTr88MPbjLvZZpulMWPGpDPOOCNNnTo1ffOb30x9+vRJw4YNS2+++WaH72nu3Llp7NixaejQoemSSy5Jl19+eRo1alQaOXJkeueddzo8npXLH/7wh/SZz3wmnXvuuWnKlCnpyiuvTNtss02KiHT99de32PeMM85IEZH222+/NHny5HTKKaek8vLytOuuuxZ1rj/+8Y+ppKQk7bDDDmnKlCnplFNOSaWlpen444/v8NivfvWrqX///unoo49O119/fZo0aVJac801U1lZWbrzzjvbPe7Xv/51qq2tTRGRTjrppBavNTY2ps033zzV1tamr3/962nq1KnpzDPPTH369EmrrrpqmjNnTofXddBBB6Xy8vL0ta99LV1//fVpq622SuXl5em+++7r+A9Ct/TAAw+0ajv99Kc/TTU1NWn99ddvse/hhx+eqqqq0tZbb51GjhyZRo8e3alzragyMWjQoLThhhumb3/722nq1Knp1FNPTRUVFWnddddNCxYsaLHvpz71qXTqqaemq666Kk2ZMiWdcMIJqbKyMn3qU5/qsA2V0rK1C1m5dKa/0ZZlaW88/fTTqaSkJO28885p0qRJ6brrrkt77713ioj0xS9+sdX+EZGGDx+ePvOZz6SISOecc06bcc8777x04IEHposvvjj98Ic/TBdeeGFaY401UnV1dXryySc7fE+vvfZaGjx4cFpzzTXT97///TRx4sQ0YMCAtPHGG6fFixd3eDwrl870I7qyDZVS8WUgpZTOOeecVFJSkvbff/903XXXpauvvjp96UtfSj/96U9b7Lesz3ttqJ6jK/vcKX1wT/fq1Sttttlmae21107tDam///77aa211kp9+vRJZ599drrmmmvStttumyIi3XjjjS327Uzbqi3qi56lM22mlaV/0Zl2XESkXXbZpdV7f+aZZ4p6T+qLj5/OzAesTG2oJYxDsbwty2e+Ivvd3/jGN5rnFadMmZJ23333FBHpF7/4Rbvn+N73vtdcXi699NKO/xhp2cs1K4/HHnssVVVVpbFjx6bLLrssTZo0Ka2++uqpb9++6bnnnmux7z777JO+9KUvpSuuuCL98Ic/TF/96ldT375901prrZXmzZvX4bm6W33Rmb5Je9QXH0+d6V8X2xduzxNPPJGqqqrSJptskiZPnpzOOuusVFlZmSZMmFDU8cXOaT/66KOpoqIijRs3Ll1++eXpuuuuS3vttVdzH2qJhoaGtPXWW6eKiop0+umnpx/84AfN+02cOLGoa1qauoruL8d6o/asqPrinHPOSRGRJk+e3KIffdNNN7XYT31BZ3S2rHzUihqj/eg5x48f39xmamvusdj5jLYsa13HymNlqSuMz65Yki/acOCBB6Ydd9wxbbfddq2SL9qz0047pb59+6aFCxcW3G/BggVp0KBBaffdd2+x/ZBDDkm1tbXp3XffLXj8okWLmhe9/vOf/+ww+aK2trbDa29sbEwbbLBB2nLLLYua3Puom2++OUVEuuWWW5q3vf3226l///7p4IMP7nQ8uo8lE3sf/mzb8sgjj6SISN/+9rdbbP/qV7+aSkpK0r/+9a+Cx6/IcrHkfv3Nb35TMOaNN96YIiL9/ve/b7H9O9/5ToqI9Pjjjxc8XrnoWe6///5Wixuef/75VFlZmQ455JAOj1+W+2Xx4sXp/vvvb7X9vPPOSxHRqvE0ffr05oSM2tradgeq7r333lYLZO+9994UEemss87q8D1dcsklKSLSI4880rxt2rRpqaysLH3zm9/s8HhWfg0NDWnjjTdO66yzTvO2GTNmpPLy8nTYYYe12Pfqq69OEdFmguhHrb/++mnjjTdO9fX1zdvOOuusVFJSkqZNm1bw2EcffTTNnTu3xbZ33nknDRkyJH3qU59q85iFCxem1VdfPZ1//vltTmLcf//9KSLSNddc02L7//3f/xVV3zz88MOtJgcXLlyY1lxzzbTVVlsVPJaVy3333dfmIP4bb7yR6urqUkop7b777p1eHLWiysQ999zT6vif/OQnKSLS1KlTO7zOyy67LEVEevDBBwvut6ztQlYuxfY32rMs7Y1Zs2a1OSB05JFHpohIL7zwQovtL7/8cvNxxU6CL/HWW2+l8vLy9KUvfanDfU844YRUXV2dXnnlleZtd955Z5sJjaz8iu1HdHUbKqXiy8CDDz6YSkpK0uWXX14w3rI+77Whepau7HOn9MFzfMmY6UknndTuxN6kSZNSRKS77767eduSRbLDhw9v8R6WtW2lvuhZOtNmWln6F51px7XVFy+W+uLjqdj5gJWpDbWEcSiWt2X9zFdUv/v1119PvXr1anHPNzU1pW222SaNHDkyNTQ0tIozc+bM1K9fv+byUmzyxbKWa1Yen/3sZ9OAAQNaLByaMWNG6t27d9pnn306PP7WW28telF1d6svOtM3aYv64uOrM/3rYvvC7dltt93SiBEj0vvvv9+8berUqSki0l/+8pcOjy92TvvYY49NFRUVafbs2S22b7vttqlv377N///Vr36VIiL96Ec/arHfvvvum6qqqtLMmTMLXs/S1FWsHHKsN2rPiqovliRfdPQlV+oLOqMzZaUtK2qM9sMmT56cBg0alE477bQ2y0Sx8xntWda6jpXHylJXGJ9dsUqDFv7+97/HrbfeGldeeWXRx7z55ptxzz33xD777NPmT3R92D333BOzZ8+OE088scX2k046KebPnx9/+MMfCh5fWVkZw4cPL/raIiIaGxtjzpw57b5+xx13xDPPPBPnnHNOVFdXx4IFC9r8udf23HrrrTFs2LDYZ599mrcNGTIkDjjggLj99ttj8eLFnbpeuqe5c+e2+/NF9913X0REHHTQQS22H3TQQZFSiptvvrlg7BVZLi6//PLYYostYu+9946mpqZ2f158SZkZNmxYi+0jRoyIiIjq6uqC51Euepatt946KioqWmwbO3ZsjBs3LqZNm9bh8ctyv1RUVMTWW2/davvee+8dEdHq/KNHjy7q5/e23XbbKC0tbbVt4MCBRb+nzTffPDbffPPmbeuuu27stNNO8atf/arD41n5lZWVxahRo+K9995r3vbggw9GQ0NDm/VFRMQvf/nLgjGfffbZePbZZ+O4446L8vLy5u0nnnhipJTi1ltvLXj8ZpttFr17926xbdCgQbHNNtu0e19PmjQpmpqa4mtf+1qbry+P+qKsrCyOO+645m1VVVVx9NFHx4MPPhivvfZaweNZedx0001RUlISX/jCF1psX2WVVaJXr15LFXNFlontt9++1fHt1TVtWX311SMiWjwT2rKs7UJWXoX6G+1ZlvbG4MGDY9y4ca22t3dfL7mHl8bQoUOjpqamw/s/IuLXv/517LHHHrHaaqs1b9t5551j7bXX1ob6GCq2H9HVbaiI4svAlVdeGcOHD4/TTjstUkrt/rz2sj7vtaF6lq7sc0d80NbvqF0f8cH42JAhQ2LHHXds3lZaWhoHHHBAvPXWW3Hvvfc2b1/WtpX6oufqqM20svQvlqYdt3Dhwli0aFGn3pP64uOp2PmAlakNtYRxKJa3Zf3MV1S/+/bbb4/6+voW/YOSkpI44YQT4vXXX48HH3ywVZxvfOMbsc4668Shhx5a8Do+bHmUa1Ye9913X+y8884xaNCg5m0jRoyI7bbbLn7/+9+3219dotjxzO5YX3Smb9IW9cXHV2f618X2hdsyZ86cuPPOO+PQQw+Nvn37Nm//4he/GL179y6q31rsnPacOXOiqqoq+vfv32L7iBEjWlx/oTUtixYtittvv73geZamrmLlkGO9UVu6or5IKcWcOXMipdTm6+oLOmNp1qx+2Ioao13i3XffjbPPPjvOP//8VnXEEsXOZ7RledR1rDxWlrrC+OyKJfniQxobG+OUU06JY445JjbccMOij/vlL38ZTU1Nccghh3S47xNPPBEREZ/4xCdabN9ss82itLS0+fXlZcGCBdG3b9/o169fDBw4ME466aRWFcVdd90VER88JD7xiU9EbW1t1NTUxEEHHRTvvvtuh+d44oknYtNNN221SHeLLbaIBQsWxPPPP7/83hBd4sgjj4y+fftGVVVV7LDDDvHoo4+2eH1JA+ijjZyampqIiHjssccKxl9R5WLOnDnxyCOPxOabbx7f+ta3ol+/ftG7d+9YY401WlUaSxaen3baafHQQw/F66+/Hn/84x9j4sSJ8fnPfz7WXXfdDt+TctGzpZRi5syZMXjw4A73zXG/vPXWWxERRZ2/WPPmzYt58+Z1GLOpqSmeeuqpVmU64oP39OKLL8bcuXOX23XRfcyfPz/eeeedePHFF+OKK66IP/3pT7HTTjs1v56rvlhllVVi5MiRS11fvPXWW23e16+++mpcfPHFcckll7TbkV/Sdvr2t78df/3rX+ONN96Ie++9N84444zYfPPNY+edd+7wPa299totOuQRH5SViIgnn3xyqd4T3Ut9fX386le/iq233nqZFnB/1IouE23tF9F2XdPQ0BDvvPNOzJgxI+644444++yzo0+fPs33dntWdH+J7qGj/kZbcrU3llcb6r333otZs2bF008/Hcccc0zMmTOnRZ3YljfeeCPefvvtdt+T+79naKsf0V3bUG25++67Y/PNN4+rrroqhgwZEn369IkRI0bENddcU9Q1Ffu814aiq/vcbVm8eHGb/YZiy2qxdZD6oudamjZTZ6yo/sXStONuuOGGqK2tjerq6lh//fXjpptuKurc6ouebWVqQ0UYhyKPZfnMV2S/+4knnoja2tpYb7312rzOj5a3Rx55JH7yk5/ElVdeWdTC3A+fJ2LFlWu6VqH2eV1dXTzzzDMttqeU4p133om33nor7rvvvjj11FOjrKyszcTpD+uO9cWy9k3UFz1LZ/rXxXr66aejoaGhVbmoqKj4/7F3p+FRFenj9+9OOklnhSQsCYIYdgmrKJsigggICKKAgAgKgiAI+lNgVBAVUBYFAdl1cBzBDWFgXBGHcRhQEERcwGENW9i3ANmT+3nBP/2kSeekG6ikk3w/18ULTlfffU761Km661SdlkaNGl3XenHXXXdJUlKSPPHEE7Jz5045cOCALFiwQFasWCHPP/+8s1xaWpr4+/vnWXziTb3wpq1CyePNfCN3iqIfUq1aNSlTpoyEh4dLv3795Pjx4y6v016gMBX2PLrx48dLTEyMPPHEE/mW8fR+hjuF2dah+PDVtoLxWTNYfJHLggUL5MCBAzJx4kSv3rd06VKJjY11WQman6NHj4q/v79UqFDBZXtgYKBER0dLYmKiV59tJTY2VsaMGSNLliyRDz/8ULp27Srz5s2Tjh07ujwda/fu3SIi0qtXL6lTp44sX75cxo4dK5999pncd999+a6AzX1MOU/VufLzReS6HhMKV2BgoDz44IMya9YsWbVqlUyaNEl+++03adWqlcvFvHbt2iIismHDBpf35zw94MiRI5afU1j1Yu/evaKq8tFHH8lf//pXmTZtmixdulTKly8vvXv3lq+//tpZtm7durJo0SLZsWOHtGjRQqpUqSKdO3eWu+++Wz799NMCP4t6gaVLl8qRI0fkoYceKrCsifNl2rRpEhERIffee6/X783PW2+9Jenp6QUe05kzZyQtLY06UAo9++yzUr58ealRo4Y899xz0r17d5fE9Hq0FyKS77l1NefV+vXr5YcffnB7Xj/77LPSuHHjPE/Bya1cuXLy8ccfy/nz5+Xuu++WypUry1133SWVKlWSf/3rXy6r0d2hvSgdvvnmGzl9+rRHi7W9Udh14kpTp04Vf39/6dGjR57XtmzZIuXLl5cbbrhBOnToIKoqq1evlqioKMuYhZkvoeh5mm+4Y6K/kZ6eLm+99ZbExcW5POXjajRv3lwqVKggDRo0kE8++UTGjRsngwYNsnxPQXU655hRsrnLI3yxD+XO2bNn5dSpU7JhwwYZP368/OUvf5GPP/5YGjVqJE899ZQsXLjQZZ+u5XpPHwpFnXO7U7t2bTl8+LAcOHDAZbunddWqb5Ub7UXpcy19Jm8UVn7hbT+uZcuWMnnyZPnHP/4h8+fPF39/f3n44Ydl/vz5Hh0T7UXpVVz6UDkYh4IJ1/KdF2beffToUalYsWKehRTuPkdV5amnnpKHHnpIWrRo4dXnF3a9RtGqXbu2/Pjjj5KVleXclp6eLps2bRKRvO3A8ePHpXz58hIbGyt33nmnHDx4UJYtW1bgA/l8sb241tyE9qJ08Sa/9lRh1ovBgwfLiBEj5G9/+5vUrVtXbrrpJhkxYoTMnj1bRo0a5SxXu3ZtycrKkh9//NHl/d7UC0/bKpRM3sw3cqcw60VkZKSMGDFCFi5cKMuXL5fHH39cPv74Y2nVqpXz1/REaC9QuArzfPn1119l4cKFMmPGDPH393dbxpv7Ge6QW8AdX2wrGJ81x3oUrhQ5ffq0vPTSSzJ+/HgpX768x+/btWuXbN26VZ555pk8K/PcSUlJybOSOofD4ZCUlBSPP7sgr7/+usv/e/fuLbVq1ZIXX3xRli9f7kzIc34J47bbbpMPPvhAREQefPBBCQkJkeeff16+++47y6flpKSkSFBQUJ7tDofD+TqKp5YtW0rLli2d/+/atav06NFDGjRoIM8//7yzQejUqZNUrVpVnnvuOQkJCZEmTZrIpk2b5MUXXxS73V7gOVBY9SLnXD99+rT8+OOP0qxZM+dxxcXFyaRJk6Rjx47O8jfccIM0bdrUeXzr16+X2bNnS7ly5eSNN94o8JioF6XXn3/+KcOHD5cWLVrIgAEDCix/vc+X1157TdauXSvz5s3L9+fzvPWf//xHXnnlFenVq1eBiw1z9pc6UPo8/fTT0qNHD0lMTJRPPvlEsrKyJD093fn6LbfcIs2aNZOpU6fKDTfcIG3atJGdO3fKsGHDJCAgwKP2QiT/cyv3YJEnTpw4IX379pW4uDgZM2aMy2vr1q2Tzz77zHkjxkr58uWlcePGMmLECImPj5dffvlFpk2bJo899liBC/ZoL0qHZcuWSUBAgPTq1eu6xi3MOnGlZcuWybvvvitjxoyRmjVr5nm9bt268u2338qlS5dk48aNsnbtWo9+qrUw8yUUPU/zDXdM9DdGjBghO3bskC+++KLASUsFWbJkiSQlJcm+fftkyZIlkpKSIllZWZbjBp4ek7vXUTLkl0f4Wh8qP7lz7o8++sg5kNujRw+pX7++TJo0yfmUqWu93tOHKt2KOufOz+OPPy4LFiyQXr16ycyZM6VixYryySefyMqVKwv8nIL6VrnRXpQ+19Jn8kZh5Rfe9uOunDg/cOBAadKkibzwwgvy6KOP5vvE55w4tBelV3HpQ4kwDgVzruU7L8y825v9fO+99+S3336T5cuXe/XZueMURr1G0XvyySdl2LBhMmjQIBkzZoxkZ2fLpEmTnBOarjx/o6Ki5Ntvv5XU1FTZtm2brFixwuPxTBHfai+uJTfJeZ32onTwNr/2VEH14nqeQ/7+/lK9enXp0KGD9OzZUxwOh3z44Yfy1FNPSUxMjNx///0iItK3b1959dVXZeDAgTJ37lypWbOmrFmzRubNm+eyz1bHRL0o3bydb3Slwmwvci88Erk8B7Bp06by8MMPy7x58+Qvf/mLiNBeoHAV5vkycuRIuffee6V9+/b5lvHmfoY7hdnWofjwtbaC8Vmz+OWL/2fcuHESFRUlTz31lFfvW7p0qYiIx0+xDQ4OdpmEmFtqaqrliXg95CwSWbt2rcs+iYj06dPHpWzfvn1FRGTjxo2WMYODg90+TS01NdUlPkqGGjVqSLdu3WTdunXOJ4U4HA754osvJDo6Wh588EG56aabpH///vLSSy9JVFSUhIWFWcYsrHqREycuLs7ZuImIhIWFyX333SebN292/irMhg0bpEuXLjJ58mQZNWqU3H///fLmm2/KuHHjZMaMGbJjx44CP4t6UTodO3ZMOnfuLGXKlJHly5fnu4o6t+t5vnz88cfOJysPGzbM8x238Oeff0r37t2lXr168s477xRYPmd/qQOlT506daRdu3bSv39/+fzzz+XixYt5fkXrs88+k4YNG8rAgQMlLi5O7rvvPunVq5c0btzYo/ZCJP9zy5vz6tKlS9KlSxe5cOGCrFq1yuWzMzMzZeTIkfLII48U+OTzffv2SZs2bWTgwIHywgsvSLdu3WTChAkyb948Wb58uXz11VcFHhN1pWS7ePGirFq1Sjp06CDR0dHXNXZh1YkrrV+/XgYNGiQdOnSQyZMnuy0TEREh7dq1k27dusnUqVPl2WeflW7dusn27dsLPKaizJdQ9NzlG+5c7/7G9OnTZfHixTJx4kTp1KmTl3udV4sWLaRDhw4ybNgw+eabb+SDDz5w+Zl7d+hDlW4F5RG+0ofy5HMCAgJcntzv5+cnDz30kBw+fFgOHjzoLHst13v6UKVXUefcVho0aCDLli2TvXv3yu233y41atSQ2bNny1tvvSUikm9d9aRvlRvtBUQ87zN5o7Dyi2s9hwMDA2XEiBFy7tw52bp1q+V+0F6gOPShGIeCSdfynRdm3u3pfiYlJcnzzz8vo0ePlipVqnj82bk/R8R8vYZvGDp0qLzwwguybNkyiY+Pl/r168vevXudk46ubAcCAwOlXbt20qVLFxk/frzMnTtXBg0aJJ9//rnl5/hie3G1uUkO2ovS4Wrya08V5vV2ypQpMnXqVPnwww+lf//+0qtXL1m5cqXccccdMnz4cOf8j5iYGFm9erWkpaVJ+/btJS4uTkaPHi1z5swREeoFCubNfCOr9xdVP6Rv374SExPjMl+Q9gKFqbDOl48//lg2btwob775ZoH7I+LZ/Qyr95NbIDdfaisYnzWPxRcisnv3blm0aJGMHDlSEhMTJSEhQRISEiQ1NVUyMjIkISFBzpw54/a9y5Ytk9q1a0uTJk08+qzY2FjJysqSEydOuGxPT0+X06dPS6VKla75eKwEBwdLdHS0y/HkfGbFihVdylaoUEFELv/MkpXY2FjnEyJyy9lm+phQ+KpUqSLp6ely6dIl57b4+Hj5/fff5ffff5f169dLYmKiDB48WE6dOiW1atWyjFdY9SK/c13k8vmekZHhPKaFCxdKxYoV5dZbb3Up17VrV1HVAhclUS9Kp/Pnz8u9994r586dk6+//trj7/l6nS/ffvut9O/fXzp37iwLFizwfMctHDp0SNq3by9lypSRL7/8UsLDwwt8T1RUlAQFBVEHID169JCffvpJdu3a5dx2ww03yH//+1/ZtWuX/Oc//5HDhw/LtGnT5NChQx61FyKS77nl6XmVnp4uDzzwgPz666+yatUqqVevnsvr77//vvzvf/+TJ554wtkvTEhIEBGRCxcuSEJCgiQnJ4vI5SetpaamSpcuXVxidO3aVUTyrgB3d0zUlZLtH//4hyQnJ3u8WNsbhVUnctu+fbt07dpV6tWrJ8uXL/f41wEeeOABERH56KOPLMsVdb4E3+Au37jS9exvvPfeezJ27FgZOnSojBs37up22kJkZKS0bdvW+fCG/BRUp3OOGSWPJ3mEL/ShChIVFSUOh0Oio6Pz3LC/cozpWq/39KFKp6LOuT2R80uAmzdvlh9++EEOHDgg1apVExFxW1evpm9Fe4EcnvSZvFFY+cX16MflTLjN775NDtoLFIc+FONQMOlavvPCzLtjY2Pl2LFjLg/xcfc5b7zxhqSnp8tDDz3krCuHDx8Wkcu5RkJCQr6LvHM+J3fcKz+LOlDyTJ48WY4fPy7r16+XX3/9VX766SfJzs4WEff989xatmwpsbGx1zyeUxTthYj3ucmVx0R7UbJdbX7tqcK83s6bN0/atm2bZ5J4165dnfO/ctx5552yb98+2bZtm/z3v/+VI0eOSPPmzUXEs3rhSVuFksub+Ubu+EI/pEqVKnnyaNoLFJbCOl9Gjx4tPXv2lMDAQGd/6dy5cyJyef5TYmKiiHh3P8MdX6jT8D2+0lYwPls4WHwhIkeOHJHs7GwZOXKkxMXFOf9t2rRJdu3aJXFxcfLqq6/med+mTZtkz549Xk2katSokYiIbNmyxWX7li1bJDs72/m6KRcuXJBTp05J+fLlndtyFo4cOXLEpWxOY5O7rDuNGjWSn3/+2TlQkWPTpk0SEhJSYGcMxc++ffvE4XDkSWBtNpvEx8fLHXfcIVFRUbJu3TrJzs6Wdu3aWcYrrHpRqVIliYmJyXOui1w+3x0Oh3Ni+fHjx90+NS4jI0NExHIVogj1ojRKTU2V++67T3bt2iWff/651K1b1+P3Xo/zZdOmTdK9e3e59dZb5ZNPPvF4MqyV06dPS/v27SUtLU2++eYbZyevIH5+flK/fv08dTpnP6tVq+bRIg4Ufzk/D3f+/Pk8r9WsWVNatWolMTExsmPHDjl69OhVtxeJiYly+PBhj9qL7Oxs6d+/v3z33XeybNkyad26dZ4yBw8elIyMDLn99ttd+oYil29wxMXFyZo1a0TkcnuhqnnaDG/ai127duX5ecCcnw033TeEeUuXLpWwsDDnRIjrqbDqRI69e/dKx44dpUKFCvLll18W+MSb3NLS0iQ7O9vt9SC3os6X4Bvyyzdyu179jVWrVsnjjz8uDzzwgMydO/ea9ttKSkpKgef/DTfcIOXLl3d7TJs3b+b8L6G8zSOKqg/lCT8/P2nUqJGcPHkyz4SnK8eYrvV6Tx+q9CnqnNsbgYGBctttt0nz5s0lMDDQ+UTBK+vq1fataC+Qw5M+kzcKK7+4Hv24ffv2iYhn9y5oLyDi230oxqFg0rV854WZdzdq1EiSk5Nl586dlvt58OBBOXv2rMTHxzvrSqtWrURE5LXXXpO4uDjLX64vrHoN3xIZGSl33HGH1K9fX0RE1q5dK5UrV5Y6deoU+N7U1NSrHs8syvYih6e5ibtjor0oua4lv/ZUvXr1xG6356kX6enp8ssvv1zXc8jbeR3+/v7SqFEjuf322yUsLMyreuFJW4WSy5v5Ru4UdT9EVSUhIcFtHk17gcJQWGO0hw4dkmXLlrn0l2bNmiUiIrfccovzV/i8uZ/hTmG2dSg+fKGtYHy2ECn05MmTunLlyjz/4uPj9cYbb9SVK1fqr7/+mud9I0eOVBHRPXv2uI176dIl3blzp548edK5LTk5WaOiorRLly4uZfv166chISF6+vRpj/f7p59+UhHRJUuW5HktJSVFk5KS8mwfPXq0ioiuWLHCue3o0aMaFBSkd9xxh2ZlZTm3P//88yoiunnzZue2xMRE3blzp6anpzu3ffTRRyoi+umnnzq3nTx5UsuWLasPPfSQx8cD33PixIk823755RcNCAjQrl27Wr43OTlZb7nlFo2NjXU5F4uyXqiqjho1SkVE16xZ49x28uRJjYiI0E6dOjm3jRgxQkVE161b5/L+p59+WkVEf/zxR+c26gUyMzO1a9euarfb9YsvvrAsa+J82bFjh0ZHR2t8fLyeOXPG4/0ODQ3VAQMGuH3t4sWL2rRpUw0PD9ctW7ZYxjlw4IDu3LnTZduUKVNURPSnn35ybvvzzz/V399fx44d6/E+ong4fvx4nm3p6el6yy23aHBwsF64cCHf92ZlZWnnzp01JCREDxw44PL+nTt3amJiokv5OnXqaMOGDTUzM9O5bdy4cWqz2XTHjh0F7uuTTz6pIqILFy7Mt8zOnTvd9g1FRDt16qQrV6507tcbb7zhtt156623VET0o48+cm47efKk7ty5Uy9duuTc9uOPP6qI6PTp053bUlNTtUaNGtqsWbMCjwe+7cSJE2q32/WRRx7xqHznzp21atWqbl8ryjqhejlnqFatmlaqVEn379+fb7mzZ8+6tHE5curKu+++69xmul8I3+dNvmGiv/H999+rw+HQNm3aaGpqqkf7fPLkSRURnTBhgtvX3bWJ+/fv1/DwcG3VqpXL9j179uQZTxg6dKgGBwfrwYMHndvWrl2rIqLz58/3aB9RfHiTR1ypsPtQOQqqAzNnzlQR0UWLFjm3paSkaLVq1bRu3brObd5c7+lDoahz7tyGDx+u3gyp79q1S8PDw/Oc6572rVRpL3D1Y7S+nF942o9zd+xJSUlavXp1LVeunKalpTm3016UTgXdD7iSL/ahGIeCSd5850WZdx86dEgDAgJ0+PDhzm3Z2dnaqlUrveGGG5x1cOvWrXnqysKFC1VE9NFHH9WVK1fquXPnVNV8vUbxlJMbvPHGG85tFy9edLlW5li+fLmKiI4fP965rbi0F+7kl5vQXpQuVzsWVVAuvHPnTpe+lapqx44d88wVeeedd1RE9KuvvvJqv63uaderV0+joqL01KlTzm2ZmZnapEkTDQ8Pd3u/IseJEyf0xhtv1AYNGrjMlTp37pzu3LnT2aaoet5WoXi7XvONinqM1l0uPXfuXBURnTFjhmVs2gt4oqC6UpRjtO76Sw899JCKiL7//vv6r3/9y1nW0/sZqubbOhQfvt5WMD5beFh8YaF169YaHx/v9rXMzEytWLGiNm/ePN/3r1u3zm1nJ6dD06NHD128eLH2799fRUQnT57s0X7NmTNHJ06cqMOGDVMR0QceeEAnTpyoEydOdHb+9+/fr2XLltVhw4bprFmzdNasWdqpUycVEe3YsaNL4qCq+uqrr6qI6D333KNz587VIUOGqM1m0z59+riUGzBggIqIy03BzMxMbd68uYaFhekrr7yic+fO1fj4eA0PD9c///zTo2OCb2rTpo126tRJJ02apIsWLdKnn35aQ0JCtEyZMnku5j179tRRo0bpwoULdfr06XrzzTdrUFCQrl271qVcUdYLVdVjx45pbGyshoeH64QJE3TGjBlaq1YtDQ4O1l9++cVZ7s8//9TQ0FANCwvT559/XhcsWKB9+vRx1pPcqBfI6Tjdd999+ve//z3Pv9yu9/mSlJSkVapUUT8/P50yZUqez964caNL+dWrVzvrRmBgoDZu3Nj5/+3btzvLdevWTUVEBw4cmCfmypUrXWK2bt06T2KT09GqUKGCTps2TWfOnKlVqlTRSpUque2YoXi7//77tW3btvryyy/r4sWLdeLEiVqnTh0VEX3zzTddyo4cOVKHDBmi8+bN01mzZmmzZs3UZrPp+++/71Ju//79KiJ5BlP/+c9/qs1m07Zt2+qiRYt05MiR6ufnp4MHDy5wP3OS5xYtWritqxcvXrR8v4i4DKqqqp46dUpjYmI0MDBQR44cqQsXLtQnnnhC/f39NT4+3iXRmDBhgtuFfT179lS73a6jR4/WhQsXasuWLdVut+v3339f4DHBt82ZM0dFRL/++ut8y2zfvt15Ha5du7aWLVvW+f/Vq1c7yxV1nWjYsKGKiI4ZMyZPudwDBytXrtQqVaroM888o/PmzdO33npLH3zwQbXZbHrrrbe61AlT/UIUH97kG9e7v5GQkKBlypTR4OBgnTt3bp7zOne/SFX1/fff14kTJzofUtCmTRtnXU1ISHCWq1Chgvbp00enTp2qixYt0tGjR2tUVJQ6HA7dsGGDS8yqVavmmRB58OBBjY6O1urVq+vs2bP1tdde08jISK1fv77HC0RQfHiTRxRlH0rV8zqQnJys8fHxGhAQoM8995zOnj1bb7vtNvX399cvv/zSJaan13v6UCjKnFv1cpuRc743a9ZMRcT5/yvr4M0336wvvfSSvvPOO/riiy9qVFSUVq1aVQ8fPuxSztO+lSrtBbzrMxWX/MLTftyECRO0YcOGOm7cOF20aJG+8sorWrVqVbXZbPrBBx+4fD7tReni6f2A4tKHcodxKFwvnn7nRZ135zxAcMiQIbp48WLt3LmzioguXbrU8nNy6m/uiRy5t1/veo3i4/vvv9e7775bp06dqu+8844+/vjj6u/vrx07dtSMjAxnuW3btml0dLQ++eSTOnv2bH377bf10UcfVbvdrjfddJPLhO7i0l6oep6b0F6ULt7k197kwiKirVu3dtm2detWDQoK0saNG+v8+fP1xRdfVIfDoe3bt/doXz29p/3BBx+oiGj16tV16tSpOnv2bG3RooWKiE6aNMkl5p133qljx4513susUqWKRkZG5nkY75IlS9xOqrzatgq+73rPNyrq9iI4OFgfffRRffPNN3Xu3Lnap08ftdls2qhRozwLDmkv4A1P60pRj9FeKef8zf1AQFXv7meYaOtQvBSHtoLx2cLF4gsLVosvvv76axURnT17dr7vz28ykarqokWLtHbt2hoYGKjVq1fXmTNnanZ2tkf7VbVqVRURt/9yGq2zZ89qv379tEaNGhoSEqJBQUEaHx+vr732mtuV3dnZ2TpnzhytVauWBgQEaJUqVXTcuHF5yrprHFVVz5w5o4MGDdLo6GgNCQnR1q1bu6yKQvE0a9Ysbdq0qUZFRandbtfY2Fjt16+f7t69O0/ZqVOnap06ddThcGhkZKR27dpVt23blqdcUdaLHHv37tXu3btrRESEBgcHa9u2bV1+4SXHn3/+qT169NAqVapoQECAVq1aVZ977rk8yQj1Ajk3JfL7l9v1Pl9yOmP5/buyk5bz+e7+5R5AsqpTV076cHdTRvXyE0B69OihERERGhYWpl26dHF7/UDx9+GHH2q7du20YsWKarfbNTIyUtu1a6erVq3KU3bJkiXasGFDDQ0N1fDwcL377rtdni6QI79EQ/Xy5O5GjRppUFCQVq5c2W2fxR2r899dvbxSfjcxDh8+rAMHDtS4uDgNDAzU2NhYHTx4cJ7kPb9EIyUlRZ977jmNiYnRoKAgve222ywn66P4aN68uVaoUMHyiUc5g/gFXcOLuk5Ylcs90LRnzx7t37+/VqtWTYODg9XhcGh8fLxOmDAhzwInU/1CFB/e5BvXu7+Rc/7l9+/K89Kqv5f7uj5hwgS99dZbNTIyUu12u1aqVEl79+7t9tc03U2mVVX9/ffftX379hoSEqJly5bVhx9+WI8dO1bgMaH48SaPKMo+VEH7emXf5vjx4zpgwACNiorSoKAgbdasWb59G0+u9/ShUJQ5t6p1m3HlDbfevXtrlSpVNDAwUCtVqqRDhw51+6tInvatVGkv4F2fqbjkF6qe9ePWrFmj99xzj8bExGhAQICWLVtW27dvr999912ez6e9KF08vR9QnPpQV2IcCteLp995UefdWVlZ+tprr2nVqlU1MDBQ4+Pj80zkcMfbxReq11avUXzs2bNH27dvr+XKldOgoCCtU6eOvv766y4L1VQvP511yJAhWqdOHQ0NDdXAwECtWbOmPv3003murcWpvfA0N6G9KF28ya+9yYXdbVNVXb9+vbZs2VIdDoeWL19ehw8f7vJ0cCue3tNWvTx/q3Xr1lquXDkNDAzU+vXr64IFC/LEfOaZZ7RatWoaFBSk5cuX1759++revXvzlMtv8cXVtlXwfdd7vlFRtxePP/641q1bV8PDwzUgIEBr1KihY8eOdVv/aC/gDU/rSlGP0V4pv8UXqp7fzzDR1qF4KQ5tBeOzhcumqioAAAAAAAAAAAAAAAAAAAAAAABwy6+odwAAAAAAAAAAAAAAAAAAAAAAAMCXsfgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMCCvag+eNBPjxqLnanm1pRcygw0Fjs1K8BY7BtDzhqLfS4j2Fhsk5Y1X1zUu+CizopXjMX29882FtskP5sai52R6W8stkkmv8s/upk7B6/WTe9PMRbbLzDLWGzNshmMba6N0wxzsW1BBv/eBvf7wGNjjcW+WnXGzzQWW4vnpVH8Mot6D65Ocf17//nKM0W9C3k0fMpcvRBz3RHJDDMXO/CcuR3PDDbXzvmnmdvvLIP7/dubvlcv4pa9Ziy2v91cu56RYi4vdoSlG4udlmxuv/3s5upFtsF+a0K/543FvhqPbX7MWGy7n7k6cTY9xFjscHuasdjB/hnGYp8x+Dcx+V1+0OxdY7GvVv3VLxmLbbALJeauXCKpaeau5xGhqcZipxkc5/I3OD63/b6JxmJfrWpvzjAWWw226X5p5mpGZhlz10b/i+bOXYOnrojB4fa9Y/7PXPCrNOn3LkW9C1dlf0o5Y7EbhR80Fvt8prm+Thl7srHYR9PLGov9WoMVxmJfreofTTYW28/gfaBsk/cX1OB9EYPXdJNjHNlZ5tq5fX1eMBb7atT4xFy/LiDA3HdkUlz0GWOxdx0rbyy2ScEOc2MFv3V91Vjsq1X7M3P7lJFRPG8wlQk31xdJTTeXz2cazLlNts17e79oLPbVGr29p7HYDj9z15iLmUHGYmcYvGFscow2xeAcxwCbubZ/ZuOPjcW+Wiv2Ni7qXShV0ovpJI1Ag/XigerbjMW+Wjf9/XVjsU3Ou7M7zE1eyko3d+6anOdo8zeX0Nvs5sZP9vctOOfmly8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwIK9qD44U4vnuo/mZfcbi30hy2Es9u5LFYzFjnWcNxb7QHKUsdilSYB/lrHYZ0+HGYtt81NjsU0qG3nJWOzU9ABjsX2RZtmMxc7OMNcOaaa52DZ/c/XCPzTDWOysZHNdDpu9eF4rfJHN4J/SlmkutsEulNiyzcX2TzUX2+TfxBdlG8xq/MxdGiXkmLlKlxVkLLTYU8ztd7bdXNtv8jrki0z2pf0Mxg4MMVfpUs+ZuzgGRqQZi52VZa5v6edvLLTPSckyl0vZDY5xVQo2N+by29lKxmIH+Zu76MYGJxmLfTY92FhsX5SVbe7c9fcz15E2mQHeXW2Xsdg/JN5kLHa2we/SZvC79EV+BvuMmQ6D/bNL5vrRkb+a6zBciDMWWmzmhsQlO7B0jUUlZwcaix3il24s9u1ldhuLfSnbXNJ9OiPUWOwy9mRjsUsbVXPX3axMc9ddf7u5i2O2wdyVv7fvCwgwd6wZGea+o8yT5nLAfb+UMRY7s7q5cSib3Vz/P8XgPRFf5O9v7m+ZnmbupkiVCmeNxT50PNJY7Ox0c9eK8jHmxufOXShdY1Emx2iPpkYYix0XctpY7CyDY8tnDOYWWQb7ZybnuJU26Wru2hhjN3dt3J0WYyz2TYEnjcU+nWVuDmVpowbzS8kwmF/aDd7TPWlufC67grn8QlPNXYdMziv1RPFcAQEAAAAAAAAAAAAAAAAAAAAAAFBIWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYMFeVB98KTPQWOxKweeNxX57613GYtcc8LOx2Lf9ctpY7DVH6hiL3bBcorHYvsbfP9tY7IvJQcZiB4enGYudcjLEWOzIG8xdJ1LTA4zFDrBnGYvti/yDM43Fzk73NxY7pGyKsdiOwAxjsaOmhRqLfeBJc/udmWHuu/RFavBwswPUWOyAdJux2DZzuy32ZHOxU6MN/r0vmft7+ySDS8r9Ms19TydamGvXgw+bS/WyQsz9TRynjIUWMdfd9knZGeYqhskeadYpc7lLrfgjxmIn/FDFWGx7rYvGYqenmstdfE2mmqsTLSL2GYs959e7jMXe1fpvxmIvOl/JWOxlh5oai90o+rCx2L4oJCjdWOxAf3OtxZH95YzF3jOttrHYZV85Zyz2ueRgY7FNjkP4oiyHub6un8m82GB/4eeBfzcWu9qaQcZi+50uPf0c00L8zLUXdYPN9dGf+a6vsdifd5xlLPZdIbuMxZ5w6D5jsZtF7jcW2xfZDA5I2gPM9aNSk8zl3AEnzF131eBYVFClS8Zil6Z7F3aD97lNxk5ymKsTaVHm+n7lyicZi20ylzt7yVze4ouSkxzGYtvs5urFqe/Mjen8d/g0Y7H77+5jLPbeP8z9TfzLmZtv44syDd7obhv5p7HYPyRVNxb7258aGIvdvJG53KJsoLk5McH+pWssKt1gvagVcMJY7KVnmxuL3TNys7HYi0/cZSx273I/Got9OivMWGxf5Bdork+qfubuFzpCzI2hRdY/Zyx2osF7Ln7h5q7pmlm0vz3BL18AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAV7UX1wZra5dR+R9mRjsctGXjIW+5vEX4zFvnnRk+Zit91tLHZpknwpyFjshjceNhb70p0njcW233SjsdhfbFxtLHb1T4Yai+2odtZYbF+UnWmurQjaZ67O/TH0XWOxXzlZ11jsjesDjcXWYY3MxU7zNxbbF9lTzMVOCTcX+6bxG43FNtmHils9xFjs8F3muuIZYcZC+yT7JTUWO6WizVjs6p9kGou9dukiY7E7VGpkLPbuuc2MxY76uXQ9e8DPbq5eZCaZ6zMMvuvfxmJ/3yDYWOyAseZyl+Rkc39vv8AsY7F9jclxqHWnaxmLPaieuT6Uyev5ydW1jcUOtJs7bxNTyhiL7YsuJDuMxY4pm2Qsti3LXP/MtnG7sdiJP7YwFrtS80RjsY+ejTAW2xcFXDB3fqWVN3f9qvJXc/W5Q69GxmKv2D/PWOwhLz9tLPapW7ONxfZFu5MrGIt9a8g+Y7FNthf/d5O5a7rJca7UrABjsZOzzI23+yKbn7nrQMaBUGOx9/ddYCy2yfzC1jjeWOxzk9OMxT5xqvT0o1JSzV1fAgLM9aHCdpnb74lD3jcW+/WJjxiLfbabuVwuNcXcGJcvio0xd1//6LFIY7F/H2Wuj96h0h3GYu9ZEGssdsUap43FTkk3dx0qbf51to6x2CNivjMWO2G4uZv/t+8wd+5mq7nx9t0p5nLQ0iZJzeVpv5ytbCz2r7eYu8c578A3xmL/kW7u3I3wSzUW2xepwTEdTTd3/drR8gNjsTvd9aCx2OGh5ubEX3jdXDuXeCDaWGxPlK7ZJwAAAAAAAAAAAAAAAAAAAAAAAF5i8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAX71bwpPT1d/vGPf8gPP/wgx44dExGRmJgYadmypXTr1k0CAwOv604CAAAAAAAAAAAAAAAAAAAAAAAUFa9/+WLPnj1y8803y4ABA2Tbtm2SnZ0t2dnZsm3bNunfv7/Ex8fLnj17TOwrAAAAAAAAAAAAAAAAAAAAAABAofP6ly+GDRsm9evXl23btklERITLa0lJSdK/f38ZPny4fPPNN9dtJwEAAAAAAAAAAAAAAAAAAAAAAIqK14svNmzYIJs3b86z8EJEJCIiQiZOnCjNmjW7LjsHAAAAAAAAAAAAAAAAAAAAAABQ1Py8fUPZsmUlISEh39cTEhKkbNmy17BLAAAAAAAAAAAAAAAAAAAAAAAAvsPrX754/PHHpX///jJ+/Hi5++67pWLFiiIicvz4cfnuu+9k0qRJ8tRTT133HQUAAAAAAAAAAAAAAAAAAAAAACgKXi++ePXVVyU0NFSmT58uzz77rNhsNhERUVWJiYmRsWPHypgxY677jgIAAAAAAAAAAAAAAAAAAAAAABQFrxdfiIiMHTtWxo4dK/v375djx46JiEhMTIzExcVd150DAAAAAAAAAAAAAAAAAAAAAAAoan7X8ua4uDhp0aKFtGjRwrnw4tChQzJw4MDrsnMAAAAAAAAAAAAAAAAAAAAAAABF7ZoWX7hz5swZ+dvf/na9wwIAAAAAAAAAAAAAAAAAAAAAABQJu7dvWL16teXr+/btu+qdAQAAAAAAAAAAAAAAAAAAAAAA8DVeL764//77xWaziarmW8Zms13TTgEAAAAAAAAAAAAAAAAAAAAAAPgKP2/fEBsbKytWrJDs7Gy3/37++WcT+wkAAAAAAAAAAAAAAAAAAAAAAFAkvF580aRJE9m6dWu+rxf0qxgAAAAAAAAAAAAAAAAAAAAAAADFid3bN4wePVouXbqU7+s1atSQdevWXdNOAQAAAAAAAAAAAAAAAAAAAAAA+AqvF1+0atXK8vXQ0FBp3br1Ve8QAAAAAAAAAAAAAAAAAAAAAACAL/F68cX1Eh2UbCx2Qkq0sdgmxa0aYi541TRjoW8MPWssdma2v7HYviYk1Nx39HtirLHY1f4VaCx2hRBz51bX3R2NxQ676byx2Mmp5v7evkgz/MzFrnfBWOya7w8zFjsrJt1Y7IpfnTMWW/9wGIttr5RqLLYvygwxFzvwnM1Y7P1TWhiLXXd+S2Ox7eFqLHaWuWohfpnmYvuirCBz527QaWOhZX83c+16xxtvNRb7Yi9zsSP+NNf2ZwUZC+2Tsg32o8JjzPWjli2921js3xPnGYvdd3+ksdg/7KhhLLYtMMtYbF9jcuwiMaWMsdi7LlU0FjtxTANjsQPEXAPaNnaXsdiHU8sai+2LHIEZxmJfTDPY8Jrr+sk3ib8Yi91ie3VjsRPPmLsOhTjMjUP4ogyDOaD4mYt9/NYAY7FT72tmLPaA2eby+QtNzPVzbJkGL0Q+qEWZvcZiTz9gbpz+126zjMW+7cT/GYs9/Yy5fKtl1D5jsUP8zd3j8kXZWebuX2qMub9l3D8HG4s9a/dSY7Gf29LQWOysM+bG5/z8DfYrfEyww1xukZJqrp+TeaO5/sL8mubGczYlzjcWu9Z75u5xOmonGYvti06ciTAX/IK5qV53/X6/sdgX/mnumhv4q7m2OSXG3HXo4kWDNwt9UKWgc8Zi/5p2g7HYTYPMnQO7ljQxFvtg2lZjsVOyzP1Ngv3N9St8UYzd3ByzTcnmxiO/vfmfxmJXmzXUWOxVF8z1R2oEHTMWO1XN1TlfpFnm7nMHRJjLuev89xFjsavu+s1Y7F0LmhqL7X/aXP/P5ija+9zmzlIAAAAAAAAAAAAAAAAAAAAAAIASgMUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABbsRfXBKVkBxmKXC7poLHbDConGYmeUO24s9k0hp43FvpgVZCz2uYxgY7F9TUaGv7HYwY4MY7F3HapoLPb5Cg5jsS+mmjtvTX6XAQFZxmL7Ir9Ac8ebnhxoLHZwzSRjsdP2hxuLffxSOWOxpUK6udgZpWstqS3bXGw1d/mSgPM2Y7HV4ClgTza336LmQmebu8T5JJvB5tFkvYj8w9z59b85txiLHZpgrtIFXDAW2uh36YtsdnMNRkqyub603y3m8vm4LwYbi22Sf6i5fE7VYDvnYxJTyhiLHW5PMxb7aEqEsdjR7cyNcdUua26MKyE52lhsu1/pyrnTM801jnZ/c+2Qf6S5Ohf3ubm2olyl88ZiO4LMtRVZpaitEBHxTzV3vLZsc3UuI8Jcghl82Nx+X7zR3LUi8Ky5/c4MMzg444MOpplrezvH/GYsdvf/9TQWu/cD/zYWe3tSFWOx74zcZSy2yfPEF/n5m+s3ara5cZfQiuZy7qe/7G8stpQx19fxN3gfys9gn9jXpKSam/uRZTBvsUWau3fVdYe5+RnVPx5qLHbsLeby+aOnzI3N+KIgg3M0tJK52IlnzI1FmWzjwuufMRY70+B++9tL11jUhSxzc4DiQs1dd5843MJY7IcbbzYW26QUMdf2lzZnssKMxa4ddNRY7AXnbjAWe1/PBcZib04z14YeyzTX10kvZTe6bX7mxjozDM4XDAozd++i8o/mrhW7dpjLXbPSDOZzRZxzl67ZigAAAAAAAAAAAAAAAAAAAAAAAF5i8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABXtRfXCAX5ax2KfSwozFNrnfJh1JLWssdka2v7HYpYmfnxqLna02Y7FDI1KNxU7LMHeJysgwd94GBWYai52RWbrqm2YZXCNoM1fnks8FG4ttr2SuzvkZvFZkpZauc9eobHOhbQarXHagudg2c5ddsRns+qnJZdDmLnE+SYvpJSYjzNx1t+IGcydYWhljoY3SIst+i4bN3OklarDPkJESYCy2f2iGsdjFVXaWwRPFxzj8zX3/GQYb9SqhZ43FDrCZ61ieSQ8xFjvT4N872Fa6rhOBdnOd3TSD4xeRZS4Zi50RanC8yG4ucbmYEmQstiOwdNWLLIfBZMpgs2vy8pVc1dy563/J3DU9K8jcd2krRX0oEZEQv3RjsTMMJvRtyu8yFjvZ4EDXrWUSjMU+lRFuLLbJ88QXaba565fNz1w//dJFh7HYQZUM9tHSzQ3q2AzeK8pML6aDlj7GEVw8ry9vftfJWOxytU4bi330lLnB3+L6XV6ttFRz45zZ2eb6o8Eh5r6ndIOnQNJFc/fnHQ5zCVeWwXkrvigly1y9iLCbm0dRNiDFWOwzGaHGYgcb7KNnGr05W7rGotKN/i3Nxa7rOGIs9vQz1Y3Frhl03FhskwJNTlzxRQbn0ZrMAdOTzY0X/WtbXWOxxd/gmLjdYGyDcxY8wS9fAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFFl8AAAAAAAAAAAAAAAAAAAAAAABYYPEFAAAAAAAAAAAAAAAAAAAAAACABRZfAAAAAAAAAAAAAAAAAAAAAAAAWGDxBQAAAAAAAAAAAAAAAAAAAAAAgAUWXwAAAAAAAAAAAAAAAAAAAAAAAFhg8QUAAAAAAAAAAAAAAAAAAAAAAIAFm6pqUe8EAAAAAAAAAAAAAAAAAAAAAACAr+KXLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosv8jF58mSx2WxSr169PK9lZGTIK6+8ItWqVZOgoCCpVq2aTJo0STIzMz2O/+6778rNN98sDodDatasKXPmzPHofRcvXpQJEyZIx44dJSoqSmw2m7z33ntuy9pstnz/3XPPPc5yL7/8smXZDRs2FLhf586dkyFDhkj58uUlNDRU2rRpIz///LNHxwTf5c35tnnzZnnyySelSZMmEhAQIDabzevP27hxo9xxxx0SEhIiMTExMnLkSLl48aJH750/f7707NlTbrzxRrHZbPLoo4/mW3br1q3SpUsXiYmJkbCwMGnQoIHMnj1bsrKyXMpdvHhRnn76aalcubIEBQXJzTffLPPnz/f4eLKzs2XatGkSFxcnDodDGjRoIB9++KHH70fx8/PPP0vXrl0lKipKQkJCpF69ejJ79myP3nvkyBHp1auXlC1bViIiIqRbt26yb9++At+XnJwsc+fOlfbt20tsbKyEh4dL48aNZf78+XnO6T///FPGjBkjjRo1kvDwcImNjZXOnTvLli1b8sRduXKldOjQQSpVqiRBQUFSuXJl6dGjh/z++++e/TFEZOfOndKxY0cJCwuTqKgoeeSRR+TkyZMevx/Fw08//SQjRoyQ+Ph4CQ0NlRtvvFF69eolu3btylPW076JldWrV8stt9wiDodDbrzxRpkwYYJHfTBvzv/8+kYOh8Ol3KFDh+SVV16Rpk2bSmRkpJQrV07uuusuWbt2rUfHIkJbUVpY5RbZ2dmyYMECadSokYSFhUnFihXl3nvvlY0bN3oc/2pzC2/q76OPPuq2XtSpU8ft8Xbt2lUqVqwoNptNXn75ZY+PRUQkLS1Nxo4dK5UqVZLg4GBp1qyZfPvtt17FgO/5448/pGfPnlKtWjUJCQmRcuXKyZ133in//Oc/85QtytzCm2v70aNH5S9/+Yu0adNGwsPDxWazyb///e8CP+PcuXNSoUIFsdlssnz5co+P6WrrOnxXSc25RUTWrl0rbdu2lTJlykh4eLg0adJEPv74Y5cyzzzzjNxyyy3O/Onmm2+Wl19+2eN9EqFelEQmxj6tXG1+IeJdn2ft2rXSpk0bKVeunJQtW1aaNm0qf//73z0+pilTpni0T/SjSqZ///vf+Z4bP/74Y57y6enp8tprr0mdOnXE4XBIxYoVpXPnznL48GGPPs90fpGdnS3vvfeedO3aVapUqSKhoaFSr149mTRpkqSmpuaJe/78eRkzZozUrFlTgoODpWrVqjJo0CA5ePCgR/tFvSh58stPc/4dOXLEWXbNmjUyaNAgqVevnvj7+8tNN93k9ef5WltBnYA3rvX7Loz7FiKej5EuXrxYWrduLRUrVpSgoCCJi4uTxx57TBISEjw+pmvJi1C8lYT5H56O0SYmJkq/fv2kdu3aEh4e7mxX/va3v4mqerRftBelg1W9eO2116R58+ZSvnx553n99NNPe3WvtzDu6f3vf/+TZ555Rlq2bCkOh0NsNlu+7QJjUXDHm/wit8Ie5/emvRC53L+aP3++NGrUSIKDgyU6Olratm0r27dvz/c9S5cuFZvNJmFhYR4fD/MFS5eiyi9EPM/vExIS8q3PH330kUvZor7vgpLFql+VH1+bK7hixQp56KGHnPfza9euLc8++6ycO3fO42MqVXMFFXkcOnRIQ0JCNDQ0VOPj4/O83qtXL7XZbDpo0CCdP3++DhgwQEVEBw8e7FH8BQsWqIjogw8+qIsWLdJHHnlERUSnTJlS4Hv379+vIqI33nij3nXXXSoiumTJErdl//73v+f5N2rUKBURnTZtmrPc9u3b3ZatUqWKRkZGalpamuU+ZWVlacuWLTU0NFRffvllffvtt7Vu3boaHh6uu3bt8uhvAt/kzfk2YcIEDQgI0CZNmmitWrXU28vLtm3b1OFwaOPGjXX+/Pn64osvalBQkHbs2NGj91etWlWjoqK0Y8eOarfbdcCAAW7LbdmyRQMDAzU+Pl5nzJihCxYs0G7duqmI6MiRI53lMjMztWXLlhoYGKjPPPOMzps3z1lu8uTJHu3TX/7yF+e1YdGiRdq5c2cVEf3www89ej+Kl2+++UYDAwO1WbNmOmPGDF20aJGOHTtWR48eXeB7L1y4oDVr1tQKFSro1KlTdcaMGVqlShWtXLmynjp1yvK9v/32m9psNm3Xrp1OmzZNFyxYoN27d1cR0f79+7uUffbZZ7Vs2bI6aNAgXbhwoU6bNk2rV6+u/v7++u2337qUfeWVV/Shhx7SKVOm6DvvvKOTJk3SatWqaXBwsP7yyy8FHtOhQ4e0XLlyWr16dZ01a5ZOnjxZIyMjtWHDhgW2KyheHnzwQY2JidGnnnpKFy9erBMnTtSKFStqaGio/vbbby5lPe2b5OfLL79Um82mbdq00UWLFulTTz2lfn5+OnTo0ALf6835P2HCBBURnT9/vsu+Llu2zKXcnDlzNDg4WPv06aNvv/22vvXWW3rLLbeoiOhf//pXD/56tBWlQUG5xf/93/+piGi/fv104cKFOnXqVK1WrZra7XbdtGlTgfGvJbfwpv4OGDBAg4KC8tTh1atX54krIhoTE6MdOnRQEdEJEyYUuC+59e7dW+12uz733HO6cOFCbdGihdrtdl2/fr1XceBbvvjiC+3QoYO+/PLLumjRIn3rrbe0VatWKiK6cOFCl7JFmVt4c21ft26diojWrFlTW7RooSKi69atK/AznnrqKQ0NDVUR0U8//dSjY7qWug7fVRJzblXVv/71r2qz2bR9+/b69ttv6/z58/Xpp5/W6dOnu5S7/fbbdeTIkTp79mxdtGiRDhs2TIOCgvT222/XrKysAveJelEymRj7zM+15Beqnvd5Vq1apTabTVu2bKlz5szRt99+W++8804VEZ0xY0aemPfcc0+e4/r999892if6USVTTp9j5MiRec6NkydPupRNT0/Xdu3aaUhIiI4aNUrfffddfeONN7Rnz54enUeFkV9cuHBBRUSbN2+ukyZN0kWLFuljjz2mfn5+etddd2l2drazbFZWlt52220aGhqqo0eP1sWLF+vYsWM1PDxcb7jhBk1KSipwv6gXJc/GjRvz1IX3339fQ0JCtG7dui5lBwwYoA6HQ1u2bKmVK1fWqlWrevVZvtZWUCfgrWv5vgvrvoWq52Okw4YN0wEDBugbb7yh7777ro4bN04rVqyo5cqV0yNHjhR4TNeaF6H4KinzPzwdo92+fbu2bt1aX3jhBV2wYIHOmTNHu3btqiKizz//vEfHRHtR8hVULx544AF94okndObMmfrOO+/os88+qxEREVqjRg29ePFigfEL657ekiVL1M/PT+vVq6eNGjVSEdH9+/e7jctYFNzxJr/IrbDH+b1pL1Qvtxl2u10HDhyoixcv1rfeeksHDBiga9ascVv+woULWqlSJQ0NDdXQ0FCPjof5gqVPUeUXqp7n9zl1pU+fPnnqdkJCgkvZor7vgpKjoH6VO744VzA6Olrr16+v48eP18WLF+vIkSM1MDBQ69Spo8nJyR79HUrTXEEWX7jx0EMPadu2bbV169Z5KsPmzZtVRHT8+PEu25999lm12Wy6fft2y9jJyckaHR2tnTt3dtn+8MMPa2hoqJ45c8by/ampqXr06FFVVf3pp58K7ExdadCgQWqz2fTQoUOW5Q4ePKg2m82jAYWPP/44T2fyxIkTWrZsWe3Tp4/H+wbf4835duzYMedFdvjw4V53SO69916NjY3V8+fPO7ctXrxYRUS/+eabAt+fkJDgvDEXGhqa70SQwYMHa2BgoJ4+fdpl+5133qkRERHO/3/yyScqIvruu++6lHvwwQfV4XDo8ePHLffn8OHDGhAQoMOHD3duy87O1latWmnlypU1MzOzwGNC8XH+/HmtWLGidu/e3aOBmStNnTpVRUQ3b97s3LZz50719/cvcBD05MmTbm+eP/bYYyoiunv3bue2LVu26IULF1zKnTp1SsuXL6+33357gft57Ngxtdvt+sQTTxRYdtiwYRocHKwHDhxwbvv222/dTrBE8bZhw4Y8neRdu3ZpUFCQPvzwwwW+39O+iapq3bp1tWHDhpqRkeHc9uKLL6rNZtOdO3davteb8z9n8cWVk1iu9Pvvv+cpk5qaqnXq1NHKlSsXeDy0FaWDVW6RkZGhwcHB2qNHD5ft+/bty7Mw1J1rzS28qb8DBgzweLA158bGyZMnvV58sWnTJhURlwm6KSkpWr16dW3RooXHcVA8ZGZmasOGDbV27dou24syt/Dm2p6UlOTMKz799FOPFl/89ttvarfb9dVXX/X4psy11nX4rpKYc+/fv1+Dg4MLbMPy88Ybb6iI6A8//GBZjnpRchXW2KfqteUXqp73ee655x6tVKmSpqamOrdlZGRo9erVtUGDBi5lRcQlP/AG/aiSK2fxhSf9hqlTp2pAQIBHC7mvVFj5RVpamm7YsCHP+1955RUVEZebfhs2bFAR0bffftul7F//+lcVEV2xYoXlPlEvSo/169e7fXDSkSNHND09XVVVO3fu7PXiC19rK6gT8Ma1ft+Fdd/iWsdIt2zZoiKir7/+eoHHdK15EYqvkjL/w5sxWne6dOmioaGhBdYr2ovSwape5Gf58uUeP0CssO7pnT592rkAdfr06ZaLL9xhLAru5Jdf5CiKcX5v2ouceXwF5Qe5jR07VmvXru3cH08wX7B0Kcr8QtXz/D5n8cWVD4Nyp6jvu6DkuJp+lS/OFXR3n/tvf/ubioguXry4wGMqbXMF/QQu/vOf/8jy5cvlrbfecvv6+vXrRUSkd+/eLtt79+4tqioff/yxZfx169bJ6dOn5cknn3TZPnz4cLl06ZJ88cUXlu8PCgqSmJiYAo7CvbS0NPnss8+kdevWUrlyZcuyH374oaiqPPzwwwXGXb58uVSsWFEeeOAB57by5ctLr169ZNWqVZKWlnZV+4ui5835VrFiRQkODr6qz0lKSpJvv/1W+vXrJxEREc7t/fv3l7CwMPnkk08KjFG1alWPfv4rKSlJHA6HlC1b1mV7bGysy/5b1fXU1FRZtWqV5eesWrVKMjIyXOq6zWaTYcOGyeHDh+WHH34ocF9RfCxbtkyOHz8ukydPFj8/P7l06ZJkZ2d7/P7ly5fLbbfdJrfddptzW506deTuu+8u8PwvV66cxMfH59nevXt3Ebn8c145mjRpkucnIqOjo6VVq1Yu5fJToUIFCQkJ8ejnxD777DPp0qWL3Hjjjc5t7dq1k1q1anlUp1F8tGzZUgIDA1221axZU+Lj4ws8r7zpm+zYsUN27NghQ4YMEbvd7tz+5JNPiqoW+HOuV3P+q6okJSXl+zPc8fHxUq5cOZdtQUFB0qlTJzl8+LBcuHDBcp9oK0q+gnKLjIwMSUlJkYoVK7psr1Chgvj5+RXYt7rW3OJq6m9WVpYkJSVZxs3vZ149sXz5cvH395chQ4Y4tzkcDhk0aJD88MMPcujQoauODd/j7+8vVapUydO3KMrcwptre3h4uERFRXm1f6NGjZLu3btLq1atPH7PtdZ1+K6SmHMvWLBAsrKy5NVXXxURkYsXL+bbl3Inpw0pKOegXpRchTX2ea35hYjnfZ6kpCSJjIyUoKAg5za73S7lypXLt16npKRIamqqR/Fz0I8qHS5cuCCZmZluX8vOzpZZs2ZJ9+7dpWnTppKZmSnJyckexy6s/CIwMFBatmyZ5/3uxrJyco8rc6bY2FgRkQLbRupF6bFs2TKx2WzSt29fl+2VKlWSgICAq4rpi20FdQLeuNbvu7DuW1zrGKmnOcT1yItQPJXE+R+ejNG6c9NNN0lycrKkp6dblqO9KPkKqhf58fSaW5j39KKioiQ8PNzzg7gCY1FwJ7/8IkdRjPN7017MmDFDmjZtKt27d5fs7Gy5dOmSZfndu3fLzJkzZcaMGS51tiDMFyxdijK/ELm6/P7SpUuW/Z6ivu+CkuFq+1W+OFfwrrvu8ihmfkrbXEEWX+SSlZUlTz31lDz++ONSv359t2VyOgZXXnhDQkJERGTr1q2Wn7Ft2zYREbn11ltdtjdp0kT8/Pycr5vw5Zdfyrlz5zxaULF06VKpUqWK3HnnnQWW3bZtm9xyyy3i5+d6OjVt2lSSk5Nl165dV73PKB1+++03yczMzFMvAgMDpVGjRte1Xtx1112SlJQkTzzxhOzcuVMOHDggCxYskBUrVsjzzz/vLJeWlib+/v55bhh6U9dDQ0Pl5ptvdtnetGlT5+soOdauXSsRERFy5MgRqV27toSFhUlERIQMGzaswMkS2dnZ8uuvv+Y5/0Uuny979+4tcAK3O8eOHRMRyTN5ML+y+ZU7d+6cnDx5Un777Td5/PHHJSkpSe6++27LeEeOHJETJ07ke0yc/yWfqsrx48cLPP+86Zvk14eqVKmSVK5c+arPK6vzv1q1alKmTBkJDw+Xfv36yfHjxz2OGRIS4mwz8kNbUbJ5klsEBwdLs2bN5L333pOlS5fKwYMH5ddff5VHH31UIiMjXQav3DGRW1jV3+TkZImIiJAyZcpIVFSUDB8+XC5evOj1Z1jZtm2b1KpVy2WQSuT/rxe//PLLdf08FL5Lly7JqVOnZO/evTJz5kz56quvCuxbeMNUbuHptd3Kp59+Khs3bpRp06Z59b6iHEdAyVCYOffatWulTp068uWXX0rlypUlPDxcoqOjZfz48W4XqGdmZsqpU6ckMTFR1qxZI+PGjZPw8HDndT8/1Au44wv5hTt33XWX/PHHHzJ+/HjZs2eP7N27VyZOnChbtmyRMWPG5Cn/3nvvSWhoqAQHB0vdunVl2bJlHn0O/aiS77HHHpOIiAhxOBzSpk0b2bJli8vrO3bskMTERGnQoIEMGTJEQkNDJTQ0VBo0aCDr1q0rMH5h5xdXcjeWdeutt0poaKiMHz9e/vWvf8mRI0fk+++/lzFjxshtt90m7dq1s4xJvSgdMjIy5JNPPpGWLVte08MAruSLbQV1At64lu+7MO9bXM0Y6enTp+XEiROyZcsWeeyxx0REChxbKMy8CL6jJM7/8GaMNiUlRU6dOiUJCQnyt7/9TZYsWSItWrQocJIh7UXJ5km9yKGqcurUKTl27JisX79eRo4cKf7+/m4n5uVWFPf0PMVYFApSUH7h6+P8SUlJsnnzZrntttvkhRdekDJlykhYWJhUq1Yt34mvTz/9tLRp00Y6derk1WcxX7B08cX8wsorr7wiYWFh4nA45LbbbpM1a9Zc1/jkFxDxrl+Vm6/PFbyamKVxrqDnyxVLgQULFsiBAwdk7dq1+ZapXbu2iIhs2LBB4uLinNtznohw5MgRy884evSo+Pv7S4UKFVy2BwYGSnR0tCQmJl7t7hdo6dKlEhQUJD169LAs98cff8ivv/4qY8aM8eiphkePHnW7SCPnSTuJiYleXVxQ+hw9elRE/v9zJrfY2Fhn/boeBg8eLH/88YcsXLhQ3nnnHRG5/MTdt99+W4YOHeosV7t2bcnKypIff/xR7rjjDud2b+p6xYoV89Sh3PUCJcfu3bslMzNTunXrJoMGDZLXX39d/v3vf8ucOXPk3Llz8uGHH+b73jNnzkhaWlq+57/I5fMlp/3xRHp6urz11lsSFxfnskLWnfXr18sPP/wg48aNc/t68+bN5X//+5+IiISFhcm4ceNk0KBBljELqtM5x5z7SW4oWZYuXSpHjhxxPvHYqpwnfRORgs+rq7mu5nf+R0ZGyogRI6RFixYSFBQk69evl7lz58rmzZtly5YteQYUctuzZ4+sWLFCevbsKf7+/gUeE21FyeVJbiEi8sEHH8hDDz0k/fr1c26rVq2abNiwQapVq2b5XhO5RX71NzY2VsaMGSO33HKLZGdny9dffy3z5s2T7du3y7///W+vnoRj5ejRowW2iSjenn32WVm4cKGIiPj5+ckDDzwgb7/99nWLbyK38Obanp+UlBR57rnn5JlnnpGbbrpJEhISPH5vUY4joGQozJx79+7d4u/vL4899piMGTNGGjZsKCtWrJBJkyZJZmamvP766y7lt2zZIi1atHD+v3bt2rJ69eoCf1WGegF3ijq/yM/48eNl//79MnnyZJk0aZKIXJ7I9dlnn0m3bt1cyrZs2VJ69eolcXFxkpiYKHPnzpWHH35Yzp8/L8OGDbP8HPpRJVdgYKA8+OCD0qlTJylXrpzs2LFD3njjDWnVqpVs3LhRGjduLCKXr8EiIjNnzpSoqChnn+u1116Tjh07yk8//SQNGjTI93MKM79wZ9q0aRIRESH33nuvc1u5cuXk448/lsGDB7tMqu3QoYMsX768wDyEelE6fPPNN3L69GmPFt95wxfbCuoEvHEt33dh3re4mjHSG264wTlhPjo6WmbPni333HOP5ecXZl4E31HS5n94O0Y7a9Ysl4cP3n333bJkyZICP4f2omTz9N6FiMjx48ddzoXKlSvLsmXLpE6dOpbvK8x7et5iLAoFscovisM4/969e0VV5aOPPhK73S7Tpk2TMmXKyKxZs6R3794SEREhHTt2dJb/4osvZM2aNbJ9+3avP4v5gqWLr+UX+fHz85P27dtL9+7d5YYbbpB9+/bJjBkz5N5775XVq1dL586dr/kzRMgvcJk3/arcfH2uYG5Tp04Vf3//Au+7lMa5giy++H9Onz4tL730kowfP17Kly+fb7lOnTpJ1apV5bnnnpOQkBBp0qSJbNq0SV588UWx2+2SkpJi+TkpKSl5nqSfw+FwFPj+q5WUlCRffPGFdOrUScqWLWtZdunSpSIiHg9Up6SkuK0UDofD+TpgJeccye88up7nkL+/v1SvXl06dOggPXv2FIfDIR9++KE89dRTEhMTI/fff7+IiPTt21deffVVGThwoMydO1dq1qwpa9askXnz5rnss9UxUS9Kj4sXL0pycrIMHTpUZs+eLSIiDzzwgKSnp8vChQvl1VdflZo1a7p9b0Hnf+4ynhoxYoTs2LFDvvjiC8sbbidOnJC+fftKXFyc26dtiogsWbJEkpKSZN++fbJkyRJJSUmRrKysPE8vyM3TYypJHSr8//78808ZPny4tGjRQgYMGJBvOW/6JiIFn1fe/sS21fk/atQol/8/+OCD0rRpU3n44Ydl3rx58pe//MVtzOTkZOnZs6cEBwfLlClTCtwH2oqSy9PcQkQkPDxc4uPjpUWLFnL33XfLsWPHZMqUKXL//ffL+vXrLZ8gcL1zC6v6e+Vk2d69e0utWrXkxRdflOXLl0vv3r29+qz8UC9Kvqefflp69OghiYmJ8sknn0hWVpblT/5663rnFt5e2/MzZcoUycjIkBdeeMHr9xbVOAJKjsLMuS9evCjZ2dkyZcoUGTt2rIhc7kudOXNGZs2aJS+88IKEh4c7y9etW1e+/fZbuXTpkmzcuFHWrl3r0a8qUS9wpaLOL6wEBQVJrVq1pEePHvLAAw9IVlaWLFq0SPr16yfffvutNG/e3Fl2w4YNLu8dOHCgNGnSRF544QV59NFHLZ9QSz+q5GrZsqW0bNnS+f+uXbtKjx49pEGDBvL888/L119/LSLivH5euHBBtm3bJlWqVBERkbZt20qNGjVk2rRp8sEHH+T7OYWZX1zptddek7Vr18q8efPy1OHy5ctL48aNZcSIERIfHy+//PKLTJs2TR577DH59NNPLeNSL0qHZcuWSUBAgPTq1eu6xvXVtoI6AU9dy/ddmPctrmY/v/rqK0lNTZWdO3fKBx98IJcuXSrw8wszL4JvKInzP7wdo+3Tp4/ceuutcvLkSfn888/l+PHjHu0P7UXJ5c29CxGRqKgo+fbbbyU1NVW2bdsmK1as8HjcRqRw7ul5i7EoFMQqvygO4/w55/Pp06flxx9/lGbNmonI5bGEuLg4mTRpknPxRXp6ujzzzDMydOhQqVu3rtefRXtRuvhafpGfG2+8Ub755huXbY888ojUrVtXnn322eu2+IL8At72q3Lz9bmCOZYtWybvvvuujBkzJt95jzlK41xBFl/8P+PGjZOoqCh56qmnLMs5HA754osvpFevXvLggw+KyOUTZtq0aTJ58mQJCwuzfH9wcHC+E0tSU1ML/InHq/XZZ59JampqgQsqVFWWLVsm9erVs3wKVm7BwcHOp4vklpqa6nwdsJJzjuR3Hl3Pc2jKlCkya9Ys2b17t7O+9urVS9q0aSPDhw+XLl26iN1ul5iYGFm9erU88sgj0r59exERiYiIkDlz5siAAQM8quvUi9Ij5/vs06ePy/a+ffvKwoUL5Ycffsi3E1LQ+Z+7jCemT58uixcvlokTJ1r+LOSlS5ekS5cucuHCBfnvf/+b7zmd+8kfvXv3dv709xtvvJFv7Ot9TCg+jh07Jp07d5YyZcrI8uXLLZ8O7mnfJMf1bCs8Pf9z69u3rzz77LOydu1at4svsrKypHfv3rJjxw756quvpFKlSgXGpK0ouTzNLTIzM6Vdu3Zy1113yZw5c5zb27VrJ/Hx8TJ9+nSZOnVqvu+/nrmFN/U3xzPPPCPjx4+XtWvXXrfFF9SLkq9OnTrOJ6P1799f2rdvL/fdd59s2rTJo19eLMj1bC+u5truTkJCgkyfPl3mzp3rUZtzpaIaR0DJUZg5d3BwsFy6dClPbtSnTx/5+uuvZdu2bS5PQ4uIiJB27dqJiEi3bt1k2bJl0q1bN/n555+lYcOGlp9DvUBuRZlfFGTEiBHy448/ys8//+x8kEGvXr0kPj5eRo0aJZs2bcr3vYGBgTJixAgZOnSobN261eXXWa9EP6p0qVGjhnTr1k1WrFghWVlZ4u/v7/yOb7/9dufCC5HLN53vuOMO2bhxo2XMosovPv74Y+cvrV75Cy/79u2TNm3ayPvvv++8H9OtWze56aab5NFHH5WvvvrK5Zcy3B0T9aJku3jxoqxatUo6dOgg0dHR1zW2L7YV1Al441q+78K8b3E1+9mmTRsREbn33nulW7duUq9ePQkLC5MRI0bkuw+FWafhG0r6/I8cVmO0VatWlapVq4rI5bx8yJAh0q5dO/nf//5X4DWA9qJk8rRe5AgMDHSO23Tp0kXuvvtuuf3226VChQrSpUuXfN9X1Pf0rDAWBStW+UVxGefPiRMXF+dceCEiEhYWJvfdd5988MEHkpmZKXa7XWbOnCmnTp2SV1555ao/i/ai9PCl/MJbUVFR8thjj8mUKVPk8OHDUrly5WuOSX4Bb/tVufn6XEGRy7+OMWjQIOnQoYNMnjy5wH0o6npeFPJ/bHUpsnv3blm0aJGMHDlSEhMTJSEhQRISEiQ1NVUyMjIkISFBzpw54ywfHx8vv//+u/z++++yfv16SUxMlMGDB8upU6ekVq1alp8VGxsrWVlZcuLECZft6enpcvr06auezFGQpUuXSpkyZSwTIJHLT1c7cOCAVz/PHBsb6/zZmNxytpk6JpQcOT83lN95dD3PoXnz5knbtm3zNB5du3Z11v8cd955p+zbt0+2bdsm//3vf+XIkSPOJ0x5UtePHTsmquqynXpRMuV8nxUrVnTZnvOTkWfPns33vVFRURIUFHRdrqPvvfeejB07VoYOHWr502Dp6enywAMPyK+//iqrVq2SevXqeRQ/MjJS2rZt6/yFpPwUVKdzjhkly/nz5+Xee++Vc+fOyddff13geetp3yTH9Worrvb8FxGpUqWKS58wt8GDB8vnn38u7733nrRt29ajeLQVJZM3ucV//vMf+f3336Vr164uMWrWrCk333xznicfX+l65Rbe1t8cwcHBEh0dnW+9uBrkFqVPjx495KeffpJdu3Zdl3jXM7e4mmu7Oy+99JLccMMNctdddzmvCceOHRMRkZMnT0pCQoJkZ2fn+/6iGkdAyVGYOfe15EYil39BUETko48+sixHvcCViiq/KEh6erq8++670rlzZ5dfkAwICJB7771XtmzZUuAvQOVMoi+oz0U/qvSpUqWKpKenO5/2nd81WOTydbiga3BR5Bfffvut9O/fXzp37iwLFizI8/p7770nqampeep2Tg7lSc5EvSjZ/vGPf0hycrJX97Q85YttBXUC3riW77sw71tc6xhp9erVpXHjxtd834Lzv2QpDfM/cngzRtujRw85dOiQ/Oc//7EsR3tRMnlbL9xp2bKlxMbGFto191ru6XmKsSjkZpVfFJdx/oLGBjIyMuTSpUty/vx5mTRpkgwePFiSkpKcx3Tx4kVRVUlISMizr+6Oifai9PCV/OJqeTrG6inyi9LtWvtVvj5XcPv27dK1a1epV6+eLF++3PKXNHKUxrmCLL4QkSNHjkh2draMHDlS4uLinP82bdoku3btkri4OHn11Vdd3mOz2SQ+Pl7uuOMOiYqKknXr1kl2drZzhXR+GjVqJCIiW7Zscdm+ZcsWyc7Odr5+PR09elTWrVsnDz74YIEn8NKlS8Vms0nfvn09jt+oUSP5+eef83QiN23aJCEhIQUOSAD16tUTu92ep16kp6fLL7/8cl3rxfHjxyUrKyvP9oyMDBG5/ATq3Pz9/aVRo0Zy++23S1hYmKxdu1ZExKO6npycLDt37nTZnvOEKhN1HUWnSZMmInK5PcktMTFRRMTy58X8/Pykfv36ec5/kcvnS7Vq1SQ8PLzAfVi1apU8/vjj8sADD8jcuXPzLZednS39+/eX7777TpYtWyatW7cuMHZuKSkpcv78ecsyN9xwg5QvX97tMW3evJnzvwRKTU2V++67T3bt2iWff/55gT9L6k3fJEd+fajExEQ5fPiwR+fVtZz/OYNM7urz6NGjZcmSJTJz5sw8T3m2QltRMnmTWxw/flxEJN++yZX9kitdj9zC2/qb24ULF+TUqVNe/4ymlUaNGsmuXbvy/Ow49aLkyvkJ0oL6F566XrnF1V7b3Tl48KDs2bNHqlWr5rwm5MR88sknJS4uLs85n1tRjCOgZCnMnPtaciORy0/Eyc7OLvCaQL1AbkWVX3ji9OnTkpmZmW9/Lzs72+1rue3bt09ECq4/9KNKn3379onD4XA+ZKZ+/foSEBCQ5xoscvnc9uQcEim8/GLTpk3SvXt3ufXWW+WTTz5xexPv+PHjoqp56kl+Y7nujol6UbItXbpUwsLC8jzU4HrwxbaCOgFvXMv3XZj3La7HGKkn9y0KMy9C0Svp8z9y82aM1tNxONqLkulq6oU7qampVz1uU1j39LzBWBRys8oviss4f6VKlSQmJibfsQGHwyHh4eFy9uxZuXjxokybNs3lmvDZZ59JcnKyxMXFyZAhQyw/i/mCpYsv5BfXwtMxVk+RX5Ru19qv8uW5gnv37pWOHTtKhQoV5Msvv/T4155K5VxBhZ48eVJXrlyZ5198fLzeeOONunLlSv3111/zfX9ycrLecsstGhsbq0lJSc7tly5d0p07d+rJkyddykZFRWmXLl1cYvTr109DQkL09OnTHu/3Tz/9pCKiS5YssSw3Y8YMFRH97rvvLMulp6drdHS0tmrVKt8yiYmJunPnTk1PT3du++ijj1RE9NNPP3VuO3nypJYtW1Yfeughzw4GPs/T801Vdfjw4Wp1edm5c6ceOHDAZVvHjh3z1KF33nlHRUS/+uorr/Y1NDRUBwwY4Pa1evXqaVRUlJ46dcq5LTMzU5s0aaLh4eEu5/aVTpw4oTfeeKM2aNBAs7KynNvPnTunO3fu1HPnzjm3HTp0SAMCAnT48OHObdnZ2dqqVSu94YYbNDMz06tjgm/7+eefVUS0b9++Ltv79Omjdrtdjxw54tx24MAB3blzp0u5KVOmqIjoTz/95Nz2559/qr+/v44dO7bAz//+++/V4XBomzZtNDU11bLsk08+qSKiCxcutCx3/PjxPNv279+v4eHhedqJPXv26J49e1y2DR06VIODg/XgwYPObWvXrlUR0fnz5xd0SChGMjMztWvXrmq32/WLL77w6D0F9U3S09N1586dmpiY6LK9Tp062rBhQ5dr6Lhx49Rms+mOHTsK/FxPz/8TJ07k2TZ37lwVEZ0xY4bL9mnTpqmI6AsvvGAZk7ai9PAmt9iyZYuKSJ5+y9atW9XPz0+HDh3q3GYit/C0/qakpLj00XKMHj1aRURXrFiR799CRHTChAn5vr5z5069dOmSc9uPP/6oIqLTp093bktNTdUaNWpos2bNLI8Hvs1d3yI9PV1vueUWDQ4O1gsXLrh9X1HkFp5e23P79NNPVUR03bp1eV5bv359nmvCxIkTVUR0zJgxunLlSmceYnocAb6rpOTcK1euzFN/srKy9I477tCoqChnvnL27Fm3+fcbb7yhIqLvvvuucxv1ovS6XmOfpvKLHFZ9nszMTC1btqzWqlVL09LSnNsvXLiglStX1jp16ji3uctDkpKStHr16lquXDmX99OPKl3cnRu//PKLBgQEaNeuXV22d+vWTf39/V3Gnnbs2KH+/v765JNPOrcVZX6Rs0/R0dEaHx+vZ86cybdcTrtw5XXgrbfeUhHRjz76yLmNelH6nDhxQu12uz7yyCMele/cubNWrVrV7WvFpa2gTsAb3nzfRXnfwtMx0oyMDLdtxqZNm9Tf3z/PtcB0XgTfVhLnf3gzRuuu/6iqet9996nNZtPdu3c7t9FelB7e1IuLFy+6nBM5li9friKi48ePd24r6nt6uU2fPl1FRPfv35/nNcaiUJCC8gtfGucvaMxs1KhRKiK6Zs0a57aTJ09qRESEdurUybmP7q4Jbdq0UYfDoStXrtQff/zR+X7mC6Ko84vcrPJ7d/2gw4cPa2RkpDZo0CDfmEV93wXFi7f5RnGZK3j06FGtVq2aVqpUyW1/KjfmCqqy+MJC69atNT4+Ps/2nj176qhRo3ThwoU6ffp0vfnmmzUoKEjXrl3rUm7dunVuB1NzJu/16NFDFy9erP3791cR0cmTJ3u0X3PmzNGJEyfqsGHDVET0gQce0IkTJ+rEiRNdJvTlaNKkiVaqVMllsrg7//znP1VEdMGCBfmWGTBgQJ5kJTMzU5s3b65hYWH6yiuv6Ny5czU+Pl7Dw8P1zz//9OiY4Ls8Pd8SEhKc25s1a6Yi4vz/+++/7xJTRLR169Yu27Zu3apBQUHauHFjnT9/vr744ovqcDi0ffv2Hu3n6tWrnZ8XGBiojRs3dv5/+/btznIffPCBiohWr15dp06dqrNnz9YWLVqoiOikSZNcYt555506duxYXbx4sU6cOFGrVKmikZGReQbjlixZ4jaxyRnsGjJkiC5evFg7d+6sIqJLly716JhQvAwcOFBFRHv16qVz587Vnj17qojo888/71KudevWeTrsOZMpKlSooNOmTdOZM2dqlSpVtFKlSvkOkOZISEjQMmXKaHBwsM6dO1f//ve/u/zLff7PnDlTRURbtGiRp9zf//53vXjxorNshQoVtE+fPjp16lRdtGiRjh49WqOiotThcOiGDRtc9qFq1ap5EpuDBw9qdHS0Vq9eXWfPnq2vvfaaRkZGav369Qvs9KF4yRm8ue+++9yeV+4U1DfZv3+/2wnp//znP9Vms2nbtm110aJFOnLkSPXz89PBgwcXuJ/enP/BwcH66KOP6ptvvqlz587VPn36qM1m00aNGrkMNq9YsUJFRGvWrOk25rFjx5xlaSuQX25xzz33qIho9+7ddf78+frSSy9pZGSkhoaGuvSlTeQWntbf/fv3a9myZXXYsGE6a9YsnTVrlnbq1ElFRDt27JinLr///vs6ceJEff7551VEtE2bNs5+WUJCgrPchAkT3E5W79mzp9rtdh09erQuXLhQW7ZsqXa7Xb///vsCjwm+6/7779e2bdvqyy+/7Oxf16lTR0VE33zzTZeyRZlbeHNtV1XnfvXu3VtFRAcOHOjcZiWnTue+KZF7+/UeR4DvKmk5d3Z2tt59991qs9l0yJAhOnfuXGdbl3tQd+XKlVqlShV95plndN68efrWW2/pgw8+qDabTW+99VaXiYfUi9Lneo99msgvVD3v80yaNElFRBs3bqwzZ87UN954Q2+++WYVEf3ggw+c5SZMmKANGzbUcePG6aJFi/SVV17RqlWrqs1mcymXU5Z+VOnRpk0b7dSpk06aNEkXLVqkTz/9tIaEhGiZMmXyTFr6448/NCwsTGNjY/X111/X119/XWNjY7V8+fJ6+PBhZ7mizC+SkpK0SpUq6ufnp1OmTMlTbuPGjc6yp06d0piYGA0MDNSRI0fqwoUL9YknnlB/f3+Nj493aS+oF6XPnDlzVET066+/zrfM9u3bndfm2rVra9myZZ3/X716tbNccWkrqBPwlqffd1Het1D1bIz07NmzGhoaqgMHDtQ333xTFyxYoMOHD9eQkBCNiorSXbt2ucQ0kReh+CvO8z+8GaMdNWqU3nrrrc7cYsqUKXrbbbepiOhTTz3l8tm0F3BXL7Zt26bR0dH65JNP6uzZs/Xtt9/WRx99VO12u950000uD7os6nt6586dc9aXjh07qojos88+qxMnTtQ5c+Y4yzEWhYJ4kl9cqbDH+T0dMzt27JjGxsZqeHi4TpgwQWfMmKG1atXS4OBg/eWXXyw/Y8CAARoaGup2O/MFUVT5harn+f2jjz6qrVq10pdfflkXLVqkL7zwgkZHR2tgYGCe/k5R33dByZNfvlFc5go2bNjQuajwynK5F/SpMldQlcUXlvKrDFOnTtU6deqow+HQyMhI7dq1q27bti1Pufw6U6qqixYt0tq1a2tgYKBWr15dZ86cqdnZ2R7tV9WqVVVE3P67csXRn3/+qSKi//d//1dg3N69e2tAQIDlalp3nSlV1TNnzuigQYM0OjpaQ0JCtHXr1i6rslB8eXq+5Zzv7v5d2flwt0318krxli1bqsPh0PLly+vw4cPdPsHDnZxz092/Kye6fv3119q6dWstV66cBgYGav369d0uOnrmmWe0WrVqGhQUpOXLl9e+ffvq3r1785TLb0JtVlaWvvbaa1q1alUNDAzU+Pj4PDfLUXKkp6fryy+/rFWrVtWAgACtUaOGzpw5M085dx0q1ctPd+rRo4dGRERoWFiYdunSxeXJM/mxqntXtkFW9eTKOj1hwgS99dZbNTIyUu12u1aqVEl79+7t9klA7jpUqqq///67tm/fXkNCQrRs2bL68MMP55mwiOIv55zO79+VPOmb5DdQq3p5cLRRo0YaFBSklStX1nHjxln+alEOb87/xx9/XOvWravh4eHO+jx27Ng8bVLOTYn8/uVO3mkrkF9ukZycrK+++qrWrVtXg4ODtUyZMtqlS5c8+YWJ3MLT+nv27Fnt16+f1qhRQ0NCQjQoKEjj4+P1tddec1v/rOLmrhf53dhLSUnR5557TmNiYjQoKEhvu+02rwa74Zs+/PBDbdeunVasWFHtdrtGRkZqu3btdNWqVXnKFmVu4c21PefzPW0D3R2jpzdlVK9tHAG+qyTm3BcuXNBRo0Y5JwbWr18/T/9mz5492r9/f61WrZoGBwerw+HQ+Ph4nTBhgstAb+5jp16UHtd77NNEfqHqeZ9HVXXp0qXatGlTLVu2rAYHB2uzZs10+fLlLmXWrFmj99xzj8bExGhAQICWLVtW27dv7/YXPehHlS6zZs3Spk2balRUlNrtdo2NjdV+/frlO260detWbdeunYaGhmp4eLh269Ytz4TUoswvcupkfv+urKuHDx/WgQMHalxcnAYGBmpsbKwOHjzY5QmiqtSL0qh58+ZaoUIFy18OzRmPKehcKy5thSp1At7x9PsuyvsWqp6NkaalpemoUaO0QYMGGhERoQEBAVq1alUdNGiQ2ydymsiLUPwV5/kf3ozRrlmzRrt06aKVKlXSgIAADQ8P19tvv12XLFmSZ59oL+CuXpw8eVKHDBmiderU0dDQUA0MDNSaNWvq008/nafPUdT39Kzyi9z3rxmLQkE8yS+uVNjj/N6Mme3du1e7d++uERERGhwcrG3bttXNmzcX+BneLL5QZb5gaVNU+YWq5/n9smXL9M4779Ty5cur3W7XcuXKaffu3XXr1q15Yhb1fReUPN4svlD1vbmCVuWuPP+ZK6hqU1UVAAAAAAAAAAAAAAAAAAAAAAAAuOVX1DsAAAAAAAAAAAAAAAAAAAAAAADgy1h8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABgwV5UHxy/aoKx2NnZNmOxMzP9zcXOMBe7TESysdgpaYHGYpv0vwdfKupdcNHo83HGYvv7qbHYJmUZrMsm/ybFdb+3dppsLPbVqrpwurngAdnmYqu5c0AyzcW2ZZmLrYHm/t62dHNrSROefM5Y7KtVa+JMY7HV39w1xmawypk8d8VgaC2m7fOucf9X1LuQR73R5uqFLctYaMkMNhc78Ly52Jmh5mL7p5mLnRVkLvYfU58xF/wq3TT3DWOxTbbrfsnm8mKNzDAWW5LMDa9ooMH2Od1cQ5cwwrf6UU9u7VfUu3BVzmWYayyiAi8Zix1gsAE9k2GuIQr0yzQWe/Gt7xuLfbXq/uNlY7H9/My1FdnZ5nLA1NQAY7HLhJsbn03LMLffgXZz9eKXLpOMxb5aN79oLrcwyWTOnV7WXF8kIMlcX8TPYC5n0h9TfC+3qDl5RlHvwlVxnDF3fl2saq7S2S8YHKM111yIf4q5/f7fBN+rF9U/Mnc/xd9u7gKWZfA+t0lq8J6LPcBcX8fkvIJ9vV80FvtqDNg80Fhsu8mOjkGVHWeNxU5IiTYWOy3L3BhX2cAUY7EXNPm7sdhXq/ob5vpQNnOXLrEZvHWVHm2ujfO/ZG6swOR9SJPf5Z6/+N79PJN9KEdwurHYyZfM3WBSg+eXI9Tc3yTN4BiaSfv7vlDUu5DH4v+1Kupd8Dn+Bvt/qdnF89w1ec9lcO31xmJfrap/nWouuMl2PcjcuasG58aJwbmuYnJelME5bgceG1tgGX75AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAssPgCAAAAAAAAAAAAAAAAAAAAAADAAosvAAAAAAAAAAAAAAAAAAAAAAAALLD4AgAAAAAAAAAAAAAAAAAAAAAAwAKLLwAAAAAAAAAAAAAAAAAAAAAAACyw+AIAAAAAAAAAAAAAAAAAAAAAAMACiy8AAAAAAAAAAAAAAAAAAAAAAAAs2Ivqg7OzbUX10dekUtR5Y7FDA9KNxd59vLyx2JHhycZin78UbCx2aRJozzQW+9T5MGOxQ4PTjMW+mBJkLHbZMHN1Ii2jyC7bRUMNxs40t/7QL8VcbA0090dRR5ax2LZUf2Ox1W7yRCldbNnmYvtlmOv7ZYYYPAcMhranmPubZAVRL4oDx2lz31NGuLnzyz/VWGhRc82F2Mw1cz5JAwxeBww+xiE72FxjFHgk0Fjs9HLmci5Rc/XZZN/S16RkBRiLbfczd4GpHnrSWOxt56oYi23STaGnjcW+kOkwFtsXaem5BHjswZt/MRZ7XWJNY7FNfpdZ2aXr+U1+GeZiZ4Sbi+04ZS52+e0Gx5brmWufTcounrt91WzF9H7ehThzfTTHcXPJq8nxufSyNP7FQabB+0D2AHPX9PRUcxdHm5+5c9fk39vPv/QMRtkNXrwy1Vx/9ODFSGOxNx6+yVjshjGJxmKbZHJsxhdlGxyfDUg11z9LizXXVgQfNNhWGByeTalk7npuv1S6cm6TcwUvHjM3d+mmGseNxT5+3txgQcrJEGOxxeDcksAQg4MzpUxytrm5cVUDzd27+F9arLHY1Qzud2KGub5lQGm70Z1lcCzKYGw12M4FnDKXu2bEmpu3LgbnC0oRj1mWrl4cAAAAAAAAAAAAAAAAAAAAAACAl1h8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGCBxRcAAAAAAAAAAAAAAAAAAAAAAAAWWHwBAAAAAAAAAAAAAAAAAAAAAABggcUXAAAAAAAAAAAAAAAAAAAAAAAAFlh8AQAAAAAAAAAAAAAAAAAAAAAAYIHFFwAAAAAAAAAAAAAAAAAAAAAAABZYfAEAAAAAAAAAAAAAAAAAAAAAAGDBXlQfnJ1tbt1HYECmsdgHf///2PvPMLuq+n/8/kzLTGbSCymEhIROKKEXaaEJBFAg9C6KSFUUEcEvUqUJQsAQQAE1CAr6A0VBQFSkClIlECQEAqEkhPQ2Zf0feGfuDJk5M0NYyUzm9bquPMg++7zPPmf22nutvdfnnAHZstf+1lPZsvs9WJEte8qkvtmyuw2Yky27rSkpTtmyZy/I9/fvVrUwW/b0KT2yZQ9Z66Ns2TPmd86WXZHx+NYmdarLFl20oCRbdqdB87Jl9+8xO1t26YW9smW/eUK+Y1ws6li1pKkk32eZMvYMSxbkyy6dV5QtuzjjYXfBavmOcWVz830mbVHKeBgoXpwve8bmtdmyez+X7zw3b0C+/ask4+dd1MG6UUXV+f5OKd/hK8pm59t3v3XAfdmyr//Fl7Jlz1urOlt20cKO049aVJevo7NVt7eyZV/53J7Zst/c7dZs2ePn9M6W/cv3ts2WvWnP97Jlt0VVFflOvGUl+fo5H77cL1v2i4d2ypbd6Q/5PpPI+LesretYY4va8nzZpfPzZc/aLN8+8MI5t2TLXvf2b2TLLs04Li7K2B/uaBYNyNfX3eDcydmy1/xTvntXj783NFt2+QM9smXPHZzx+m8HU9Yp3wWMhR/nu39VVJPvuFuX8Zp4RZ98F65raztWPyqXziX5zhWdS/Nl9++e71xRVZqv79ejLF+ndWZ1ZbbstqhsTr5jQG2+oWsM+lO+64WP3fDTbNkbPnFUtuyuj3XLlj1/QMfqQ9UtzHf9f9fNXs2W/dijG2fLHnpvvrklE4/PuH8tzjjvs0fHuqE3vy7fxajNO+e7d3HD+7tlyz5lwCPZsq95L989l8P7PZMte2p1z2zZbVJZxuNXxmFaSUW+41fJOouyZadJXbJl1/bPuN0Z+xUt0XHusgMAAAAAAAAAAAAAAHwGii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoIDSlfXCtTX56j66dF2ULXtOz+ps2Q9OfSFb9i5f3Spbds+TZmXLXrCoU7bstmbugvJs2TsMnpQt++1vrZ0tu9cTz2TLztneht53YrbsXsM+ypbdJtUWZYuufK8kW/bt+/4sW/YW5fmOi198bES27Dhhi2zRRQvz/S3botJ5+drF/ME12bKHfq99HtOHPfSVbNlV/6nIlr2oR8qW3RaVzsuXPXdIvs9yvXH5NvyB+8dny/7iwBHZsifeuHW27J4vdqzzRSrLt+9WTM13KeHW48Zkyz5/WL7+SPmJ+T7v+QPzXT9JpR3nfNGjbEG27Nvf3jZb9tO7XJ8t+4sDv5At+80f5/tMdv7CK9my35zbJ1t2W7SoOt/xfM78fH3dWD1fe07Vi7NlV4/vly17+Cn52sVjk9bKlt0WlWUcWyzqmS97rV/WZcv+4ldGZMv+0cR845axXx+dLXvK7vmu5bdF5TPzZdeuk++eW+20admy//vNEdmyX/ztbdmyd/zF17Nlzxnasb7vr7gk33G35q0u2bLfOmpstuyc14tqd9k8W/Yn3843r+CTT/L9LduaeTX57l0Nq5qeLfvPr26SLXvdk/PdE/nHRdtlyz54v39my55VnXGc2AYtWq02W3blO/nG8+t/L9/4Mue5ovvh+Y65H+yR71pB6fSybNltUVFZvj7UX1/cIFv2W8dm7EOdMyJbdhyfb67gpuu/ky37pcmrZ8vuaObV5bt+8fqMvtmyL/xCvv7/be/8v2zZd88Zni27V+ncbNltUsbbl8Xz8s0Z+O++N2fLztmPmnNYvnt6M0fn60ctmF+ZLbslOtaVMAAAAAAAAAAAAAAAgFZSfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABXzuxRcffvhhXHjhhZ93LAAAAAAAAAAAAAAAwErxuRdffPDBB3HBBRd83rEAAAAAAAAAAAAAAAArRWlrn/DSSy8VfPz111//zBsDAAAAAAAAAAAAAADQ1rS6+GLEiBFRVFQUKaVlHluyvKio6HPZOAAAAAAAAAAAAAAAgJWt1cUXvXr1iiuuuCJ22223Rh//z3/+E/vtt99ybxgAAAAAAAAAAAAAAEBb0Oriiy222CKmTp0aQ4YMafTxmTNnNvqrGAAAAAAAAAAAAAAAAO1Rq4svTjrppJg3b16Tjw8ePDhuvfXW5dooAAAAAAAAAAAAAACAtqLVxRcHHHBAwcd79uwZxx577GfeIAAAAAAAAAAAAAAAgLak+PMOnDJlSnzlK1/5vGMBAAAAAAAAAAAAAABWis+9+GLGjBlx++23f96xAAAAAAAAAAAAAAAAK0Vpa59w3333FXx80qRJn3ljAAAAAAAAAAAAAAAA2ppWF198+ctfjqKiokgpNblOUVHRcm0UAAAAAAAAAAAAAABAW1Hc2icMGDAgfve730VdXV2j//7973/n2E4AAAAAAAAAAAAAAICVotXFF1tssUU899xzTT7e3K9iAAAAAAAAAAAAAAAAtCelrX3CWWedFfPmzWvy8bXXXjseffTR5dooAAAAAAAAAAAAAACAtqLVxRc77rhjwcerqqpi5513/swbBAAAAAAAAAAAAAAA0Ja0uvji81JeUZ0te/qsLtmyU01Rtuy17jopW3bJDvm2u3txypbdqawmW3Zb07VyYbbsZz9YI1t29x/OypZ98ppvZcs+7K1ds2X3GTQzW/asBRXZstuiosXF2bIXbjI/W/YJV38zW/aC/vmOuYMfeTdbdvlj5dmyF66xOFt2W1TTJd8+UPFhvq7hf6/ZNlv28Ou3z5Zd3KsuW3Z1VbboKFmcr+/XFtV2zpdd+X6+z3LSId2yZe+9dr528clxm2bL7vpGvs+7Nt+pqE0qyngcqF4/Xz/qzO+fki37iak3Zss+5u187fnJvw/Pll3Ts+OMubuVLsiWvXqXfOPiGz/ZIlv2xHFbZctec9j72bIHdf4kW3Zpcb623BaVFOfr63YuzzdOW/hx92zZD059IVv2Di8Ny5b9+OSh2bKrKhdly26Lco7TUmm+8fzMtfJ1dj/ZP994/soL8mXP2infdcWSfN3hNmneoHzni95/zjegn/HHdbNl9z3+vWzZw3739WzZFRuUZMsuSvmOcW1RbU2+zzJWz3e/cOh9J2bLvvj1e7Jl/9+/NsuWXTSnMlt2cUnHaRc9OuUbc0+a1ydb9rB1P8iWvXC/rbNlv37C2GzZWzx3SLbsbfq/ky27LSqbke9ckfEyV/x1Yr4+VOez8/X9Ok/Ld8wtmpvvb1mS77TfJvXsNTdb9uxXe2fLzum9s/Pdz4tO+a7pTPigX7bskrJ8Y9C2aGBZvuvdD83eKFv23zf7Rbbsrc4/M1v2rTPznUT7leW7V1SdMo5B26KMc7RTz3zz1tf66/HZsteO57NlT9s84xyNuRknaazk80W+q88AAAAAAAAAAAAAAACrAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFBA6cp64ZqakmzZVZ0XZcsuLk7ZsqN7vu3uXrUgW/bijH/LxdUrbRdd4aozfo5lpbXZsj+c1TVb9kX/GZUtu6wk32dSU5evrq0849+yLUoVddmy6z4pz5Y9f/t52bLT25XZsic/Oyhbds3A6mzZsbhj1ZIW1RRly64ry9fPKZ+R7+9UW5Fvu4ur833eRRkP6XXlGfusbVBRTb7slLE7Wjk13/712tUbZcuufDvfdpfmG7ZEytfdbpsyvt/a2Z2yZb+/W76D41p3npQtu2RxvnZR0yPjCSPl2+625v1F3bNl96+Yky37mU/WzJY9ZOi0bNkb95yaLfuDRd2yZXc08xbkGxd375LvpF7UOV/nb9jdX8+W3XPoJ9myKyryjblrM17naotKF+ZMz3feXdQrW3T0fTbf+HLuoIzXUfM1uaiuypfdFpXNzvd3mrFRvv2rz/h8DeO/3+qdLbvrG/mOFfMG57vennM/aYtKMt6rqa3N91l27Z9v7PJ/9x+cLTv1WZwtO+e9/5KyjBct25gFtWXZsstL8n2O/TrnaxOX3XBHtuwvvHRMtuy915iQLXvSvD7Zstui2s75ji/zBmaLjuL3K7Jlzx+U7/w5b2jGe4ULc97jzBbdJs2ek2+uQ/Ga+eZoDPttxnsLm87Plt2lc74+1LzZ+XbesoqO04eKiJhZm69dDK98L1v2jz/ePFv2hK//NFv2X+bn67dOremZLXthXb7tbpMy3r5MC/PdRC/umu+6S/d/5rsWVfNaxjl9izJeL1rJt7k71pUwAAAAAAAAAAAAAACAVlJ8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFlK6sFy4ursuWvWBRp2zZpaW12bJrakqyZc9ZUJ4tu65ODc/noagoZctOqShbdpfOi7JlV3VanC171oKKbNkVZTXZsmtqO1h7q8m376aSfG2u5uN8+1fqnW//iuJ8n0ksyrfvFmU8xnU0Rfm6OVFbkW//Ksp4rCiuznh+ztf1i8jYnNuilHNUk/GzrM13uog+z+TbwRZ3yxadVepg3aicfZ3IN5yPokX59t26inwbXleV8fPO2Ncpqu44/ahOxfn60dUZDzBrVn2cLbtLt3zj+fcXdc+WnVNVSb7rEG1RVcZrOvMW5rs+26fPnGzZxX3zHc9LM14Pnzs/X8cy537SFtVk7KO3VzM2ztdfKJuVLTrreKsoY3+4LaorzXdsLM546p2xYb59t2RRvuwFA/J93iXz8213zv2kLarNeK8m5z30+fPyHRw7rTEvW3Z1db5rBUUZP+/qxSttKgYtVFWa70R0+KvHZMvequ872bInzl0tW3b3soXZstuinP2FnPfzaiozjovnZbxfnPMzyXjtt7hjDbmjtjpjH6ok3zm9rP/8bNmL55dly55XnXHeSl3HubeQW3XGSQM5szernJwt+9vvb54te8PKqdmy+RzlnL+WUe28fGPA5/61TrbsyHgPPevfciXvJh1s+gkAAAAAAAAAAAAAAEDrKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAKKUkppZW8EAAAAAAAAAAAAAABAW+WXLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKL5pwySWXRFFRUWy00UbLPFZXVxc33nhjjBgxIrp06RL9+vWLvffeO5544okW5//sZz+LDTbYICoqKmKdddaJMWPGtOh5//rXv+LUU0+N4cOHR1VVVQwePDgOOeSQmDhx4jLr3nzzzbHzzjtHv379ory8PIYOHRrHH398TJ48udHsDz/8ML7+9a/H6quvHhUVFbHmmmvGCSec0KLtWrRoUZx99tkxcODA6Ny5c2yzzTbx0EMPtei5tD/L+/d+77334pBDDokePXpEt27d4ktf+lJMmjSp2efNnz8/brjhhthzzz1jwIAB0bVr19hss81i7NixUVtbu8z6l1xySey///7Rr1+/KCoqih/+8IeN5v7+97+PL37xizFw4MAoLy+PQYMGxejRo+OVV15p8XuaMGFC7LXXXtGlS5fo1atXHH300TFt2rQWP5/2ozXH4aVVV1fHhhtuGEVFRXHVVVe1+PXuu+++2HzzzaOioiIGDx4c559/ftTU1DT7vNdeey2++93vxogRI6Jr164xYMCAGDVqVDz77LPLrNvSNvDxxx/HlVdeGTvttFP07ds3evToEdtuu23cddddLX4/EZ/9HEjbNHfu3Dj//PNjr732il69ekVRUVHcdtttTa5fV1cXY8eOjREjRkTnzp2jd+/eseuuu8aLL77YotdbEW3ihz/8YRQVFS3zr6KiosF6CxYsiBNOOCE22mij6N69e3Tp0iU23XTTuPbaa6O6urpF76euri6uuOKKGDp0aFRUVMQmm2wSv/71r1v0XNqu1p4rfvOb38S2224bPXr0iN69e8fOO+8c999/f4tfry21i0/75z//Wb/u9OnTW/R+jC1WTccdd1yj+9CSf++99179urvsskuj6+y1114tfr3cY+66urq47bbbYv/994811lgjqqqqYqONNoqLL744Fi5c2GDd2267reB7Hz9+fLPbpV2smlrbj1piRY8tIlo+vo6IuPPOO+tfp2/fvnHCCScscw7QLmhKa9vF8l6PWVHtIiLirrvuiu222y6qqqqiR48esf3228df//rXJtfXj2KJv/3tb00eL5966qkG67aHftSntea8Nn78+CgqKoouXbq0+P3MnDkzTjzxxOjbt29UVVXFyJEj49///neLn0/b05o20R7u57VmbLGE+3m0VHu5n9fSa6TPPPNMnHzyybHFFltEWVlZFBUVtfi9LPHEE0/EDjvsEJWVldG/f/84/fTTY+7cua3OoX1qzTmkKZ+1XURE/OUvf6m/p1BSUhJrrrlmo+tNnjy5ye288847G6xbaGy9xx57tGi7lmdcxKqn0FyppqyI88XUqVPjqKOOivXWWy+6du0aPXr0iK233jpuv/32SCk1WNf8D5ZHoTZQXV0dF1xwQQwbNizKy8tj2LBhcfHFF7fqmPlZxxetvWZ2/fXXxwYbbBDl5eWx+uqrx5lnnhnz5s1rdN0333wzjjjiiFhttdWic+fOsc4668S5557bou0y5u5YVtb4IiJPPypi5c1fYdXRHsbdrZkXEhHx8MMPx8iRI6NPnz71fa5f/vKXLX5PHWXcXbqyN6Atevfdd+PSSy+NqqqqRh8/66yz4uqrr46jjjoqTj755Jg5c2aMGzcudt5553j88cdj6623Lpg/bty4OOmkk+Kggw6KM888Mx577LE4/fTTY/78+XH22WcXfO7ll18ejz/+eBx88MGxySabxAcffBDXX399bL755vHUU0816Pw9//zzMXTo0Nh///2jZ8+e8dZbb8XNN98cf/zjH+PFF1+MgQMH1q87ZcqU+MIXvhARESeddFKsvvrqMXXq1HjmmWda9Jkdd9xxcffdd8c3v/nNWGeddeK2226LffbZJx599NHYYYcdWpRB+7E8f++5c+fGyJEjY9asWfH9738/ysrK4pprromdd945Xnjhhejdu3eTz500aVKcdtppsdtuu8WZZ54Z3bp1iwcffDBOPvnkeOqpp+L2229vsP55550X/fv3j8022ywefPDBJnNffvnl6NmzZ5xxxhnRp0+f+OCDD+LnP/95bL311vHkk0/GpptuWvA9vfvuu7HTTjtF9+7d49JLL425c+fGVVddFS+//HI888wz0alTp4LPp31pzXF4aWPGjIl33nmnVa/15z//Ob785S/HLrvsEmPGjImXX345Lr744vjoo49i7NixBZ97yy23xM9+9rM46KCD4uSTT45Zs2bFuHHjYtttt40HHnggdt999/p1W9oGnnzyyTj33HNjn332ifPOOy9KS0vjnnvuicMOOyxeffXVuOCCC5p9T8tzDqRtmj59elx44YUxePDg2HTTTeNvf/tbwfW/8pWvxPjx4+OYY46JU089NebNmxfPP/98fPTRR82+1opqE0uMHTu2wYSOkpKSBo8vWLAg/vOf/8Q+++wTa665ZhQXF8cTTzwR3/rWt+Lpp5+OO+64o9n3dO6558Zll10WX/va12KrrbaKe++9N4444ogoKiqKww47rNnn0za15lwxZsyYOP3002PUqFFx2WWXxcKFC+O2226LfffdN+6555448MADC75WW2sXS6urq4vTTjstqqqqmryg2xhji1XT17/+9WX2qZRSnHTSSbHmmmvG6quv3uCxQYMGxY9+9KMGy5YewxayIsbc8+fPj+OPPz623XbbOOmkk2K11VaLJ598Ms4///x45JFH4q9//Wv9JJCddtqp0QtS11xzTbz44oux2267NfuetItVU2v7UUus6LFFRMvH12PHjo2TTz45dtttt7j66qvj3XffjWuvvTaeffbZePrpp+uL9rQLmtKadrG812NWVLuI+F8h64UXXhijR4+O4447Lqqrq+OVV15pUHy4NP0oGnP66afHVltt1WDZ2muvvcx6bb0f9WktPa/NnTs3vvvd7zZ536YxdXV1MWrUqHjxxRfjrLPOij59+sRPf/rT2GWXXeK5556LddZZp8VZtD0taRPt4X5ea8YWEe7n0Trt5X5eS6+R/ulPf4pbbrklNtlkkxg2bFizBX6f9sILL8Ruu+0WG2ywQf145aqrroo33ngj/vznP7cqi/atpf2qT1uedhERcccdd8Rdd90Vm2++eYv6Z4cffnjss88+DZZtt912Df7f2Nj62WefjWuvvTb23HPPZl9jecdFrFqamyvVmBV1vpg+fXq8++67MXr06Bg8eHBUV1fHQw89FMcdd1y8/vrrcemll9ava/4Hn1VzbeCoo46K3/72t/GVr3wlttxyy3jqqafiBz/4Qbzzzjtx0003NZu/POOL1lwzO/vss+OKK66I0aNHxxlnnBGvvvpqjBkzJv7zn/8scw3rhRdeiF122SVWX331+Pa3vx29e/eOd955J6ZMmdLs+zHm7nhW1vgiIk8/KmLlzV9h1dEext2tmRdy3333xZe//OXYbrvt6r+g8ze/+U0cc8wxMX369PjWt75V8D11qHF3YhmHHnpo2nXXXdPOO++chg8f3uCx6urq1Llz5zR69OgGyydNmpQiIp1++ukFs+fPn5969+6dRo0a1WD5kUcemaqqqtKMGTMKPv/xxx9PixYtarBs4sSJqby8PB155JHNvbX07LPPpohIP/rRjxos33vvvdPQoUPT9OnTm834tKeffjpFRLryyivrly1YsCCttdZaabvttmt1Hm3b8v69L7/88hQR6ZlnnqlfNmHChFRSUpLOOeecgs+dNm1aeuWVV5ZZfvzxx6eISG+88UaD5W+99Vb98yIinX/++c1u3xIffPBBKi0tTV//+tebXfcb3/hG6ty5c3r77bfrlz300EMpItK4ceNa/Jq0D5/lOPzhhx+m7t27pwsvvHCZ9lPIhhtumDbddNNUXV1dv+zcc89NRUVFacKECQWf++yzz6Y5c+Y0WDZ9+vTUt2/f9IUvfKHZ126sDUyaNClNnjy5wXp1dXVp1113TeXl5Wnu3LkFM5f3HEjbtHDhwvT++++nlFL617/+lSIi3XrrrY2ue9ddd6WISL/73e8+02utqDZx/vnnp4hI06ZN+0zbeeqpp6aIqP9cmvLuu++msrKydMopp9Qvq6urSzvuuGMaNGhQqqmp+Uyvz8rXmnPFOuusk7baaqtUV1dXv2zWrFmpS5cuaf/992/2tdpyuxg7dmzq3bt3OuOMM1r8XGOLjuWxxx5LEZEuueSSBssbG4u31Ioacy9atCg9/vjjyzz/ggsuSBGRHnrooWa3s2vXrmmPPfZo7i1pF6uw1vSjllgZY4uUWja+XrRoUerRo0faaaedGpzX/vCHP6SISNddd13B19AuSKl17WJ5r8esiHaRUkpPPvlkKioqSldffXWzmUvoR7G0Rx99NEVE+u1vf9vsuu2hH7W01pzXzj777LTeeuvVb09LLLkOsfRn99FHH6UePXqkww8/vEUZtD0tbRPt5X5ea8cW7ufRUu3lfl5rrpF+8MEHaf78+SmllE455ZTU2qkOe++9dxowYECaNWtW/bKbb745RUR68MEHW5VF+9SaflVjlqddpJTSe++9lxYvXpxSSmnUqFFpyJAhja731ltvtWrM/2knnHBCKioqSlOmTGl23eUdF7FqKTRXqikrcv5HY/bdd99UVVXV7D018z9oiUJt4JlnnkkRkX7wgx80WP7tb387FRUVpRdffLFg9vKOL1p6zWzq1KmptLQ0HX300Q2WjxkzJkVEuu++++qX1dbWpo022ihts8029X2s1jDm7lhW5vgipTz9qJU5f4VVQ3sZd7dmXsgee+yRBg4cmBYuXFi/rLq6Oq211lppk002afY9daRxd/HnVMOxyvjHP/4Rd999d/zkJz9p9PHq6upYsGBB9OvXr8Hy1VZbLYqLi6Nz584F8x999NH4+OOP4+STT26w/JRTTol58+bF/fffX/D522+//TJV1Ouss04MHz48JkyYUPC5EVH/k0szZ86sX/baa6/Fn//85zjrrLOid+/esXDhwqiurm42a4m77747SkpK4sQTT6xfVlFRESeccEI8+eSTLaqGpf1Y3r/33XffHVtttVWDbxNZf/31Y7fddovf/OY3BZ/bp0+fGD58+DLLDzjggIiIZdpAUz8x1hKrrbZaVFZWNmgrTbnnnnti3333jcGDB9cv23333WPddddt9j3R/nyW4/D3vve9WG+99eKoo45q8eu8+uqr8eqrr8aJJ54YpaX//x+qOvnkkyOlFHfffXfB52+xxRYNvpk8IqJ3796x4447tuh80VgbGDp0aAwZMqTBekVFRfHlL385Fi1a1OzPni3vOZC2qby8PPr379+ida+++urYeuut44ADDoi6urpWfYPrymgTKaWYPXv2Mj9X3JzG+luNuffee6O6urpBmygqKopvfOMb8e6778aTTz7Zqtel7WjNuWL27Nmx2mqrNfgWy27dukWXLl2aHVu05XYxY8aMOO+88+LCCy+MHj16FFx3acYWHcsdd9wRRUVFccQRRzT6eE1NTat/gnRFjbk7deoU22+//TLPb2ps8ml/+MMfYs6cOXHkkUcWXC9Cu1iVtaYftcTKGFtEtGx8/corr8TMmTPj0EMPbXBe23fffaNLly6N/qT30rQLIlrXLpbnesyKahcRET/5yU+if//+ccYZZ0RKqdlzm34UhcyZMydqamqaXa8t96OW1tLz2htvvBHXXHNNXH311Q3abHPuvvvu6NevX4NfFOzbt28ccsghce+998aiRYtanEXbVKhNtJf7ea0ZW7ifR2u0l/t5rblG2q9fv2bbblNmz54dDz30UBx11FHRrVu3+uXHHHNMdOnSxf28Dqil/aqlLU+7iPjfr5GVlZW16jXnzZsXixcvbvH6ixYtinvuuSd23nnnGDRoUMF1P49xEauO5uZKNWVFzv9ozJprrhnz589vtp2Y/0FzmmsDjz32WEREg1/lWvL/lFLcddddBfOXd3zR0mtmTz75ZNTU1DS6nRHR4BrtX/7yl3jllVfi/PPPj86dO8f8+fOjtra22ddYwpi7Y1mZ44uIPP2olTl/hVVDexl3t2ZeyOzZs6Nnz55RXl5ev6y0tDT69OnT7Hi8o427FV8spba2Nk477bT46le/GhtvvHGj63Tu3Dm22WabuO2222L8+PHxzjvvxEsvvRTHHXdc9OzZs0FDaszzzz8fERFbbrllg+VbbLFFFBcX1z/eGiml+PDDD6NPnz6NPv7xxx/HRx99FM8++2wcf/zxERGx22671T/+8MMPR8T/Lljttttu0blz5+jcuXPsvffeMXny5GZf//nnn4911123QYOJiPqfa37hhRda/Z5ou5bn711XVxcvvfTSMvv/kue/+eabMWfOnFZv0wcffBAR0WQbaKmZM2fGtGnT4uWXX46vfvWrMXv27AZtpTHvvfdefPTRR02+p8/Spml/Ch2Hn3nmmbj99tvjJz/5SYMJSM1p6nwxcODAGDRo0Gfetz744IMm28pnaQNLMiOab4M5zoG0H7Nnz45nnnkmttpqq/j+978f3bt3jy5dusSwYcNa1MFeGW1i2LBh0b179+jatWscddRR8eGHHza63uLFi2P69OkxZcqU+P3vfx9XXXVVDBkypNmfKX/++eejqqoqNthggwbLl5xTtYlVS1Pnil122SUeeOCBGDNmTEyePDlee+21OOWUU2LWrFlxxhlnFMxsy+3iBz/4QfTv3z++/vWvt+q1jS06jurq6vjNb34T22+/faOTVydOnBhVVVXRtWvX6N+/f/zgBz9o0aSilTHmXlpL+0Xjx4+Pzp07N7gp0RTtgiXa2tji05bcTGvs4mvnzp3j+eefj7q6uiafr13QGst7PWZFtYuIiEceeSS22mqruO6666Jv377RtWvXGDBgQFx//fWNrq8fRVOOP/746NatW1RUVMTIkSPj2WefbXS99tKPas157Zvf/GaMHDky9tlnn1a9/vPPPx+bb755FBc3vBW29dZbx/z582PixImtyqNtaa5NtMf7eUtrbGzhfh6t0V7u562oa6Qvv/xy1NTULPOeOnXqFCNGjHAttoNpab9qabnaRSEXXHBBdOnSJSoqKmKrrbaKv/zlL80+509/+lPMnDmzRV9ssCLHRbRtLZkr1ZiVMf9jwYIFMX369Jg8eXLcfvvtceutt8Z2223X6PUo8z9oqZa0gaaufVZWVkZExHPPPVfwNVbUXInWbOeS8UV5eXlsueWWUVVVFZWVlXHYYYfFjBkzmn0tY+6OpS2OLwpprh/VVuev0L60xXbRmnm0jc0L2WWXXeI///lP/OAHP4j//ve/8eabb8ZFF10Uzz77bHz3u98tmNfRxt0t/4qgDuDGG2+Mt99+u75z0ZRf/epXceihhzb4NqZhw4bF448/HsOGDSv43Pfffz9KSkpitdVWa7C8U6dO0bt375g6dWqrt3v8+PHx3nvvxYUXXtjo46uvvnp956p3795x3XXXxR577FH/+BtvvBERESeeeGJstdVWcdddd8U777wTF1xwQey+++7x0ksv1XfCmnpPAwYMWGb5kmWf5T3Rdi3P33vGjBmxaNGiZp+/3nrrtXh7Fi9eHD/5yU9i6NChDaoAP4ttt902Xn/99YiI6NKlS5x33nlxwgknFHzO+++/HxHR5Hta8p6XrgZk1dPUcTilFKeddloceuihsd1227XoBtgSze1bn+XY+thjj8WTTz4Z5513XqOPf5Y2MGPGjLjllltixx13bHRbl5bjHEj78eabb0ZKKe68884oLS2NK664Irp37x7XXnttHHbYYdGtW7fYa6+9mnz+imwTPXv2jFNPPTW22267KC8vj8ceeyxuuOGGeOaZZ+LZZ59dZuD0u9/9Lg4//PD6/2+55Zbx85//vNlv43z//fejX79+y0wy0YdaNTV1rrjuuuti+vTpcfrpp8fpp58eEf8bCD/yyCOx3XbbFcxsq+3ipZdeinHjxsWf/vSnKCkpadXrG1t0HA8++GB8/PHHjd4IXmuttWLkyJGx8cYbx7x58+Luu++Oiy++OCZOnNjst0etjDH30q644oro1q1b7L333k2uM2PGjHjggQfiy1/+cnTt2rXZTO2CiLY3tmjMOuusE0VFRfH444/Xf/lHRMTrr78e06ZNi4iITz75JHr37r3Mc7ULWmt5r8esqHbxySefxPTp0+Pxxx+Pv/71r3H++efH4MGD49Zbb43TTjstysrKGhRZ6EfRmE6dOsVBBx0U++yzT/Tp0ydeffXVuOqqq2LHHXeMJ554IjbbbLP6ddtLP6o157X7778//vKXv8SLL77Y6td///33Y6eddlpm+dLtojWTy2gbWtMm2tv9vKU1NrZwP4/WaC/381bUNdLm+n9Lvs2aVVtrziGflqNdNKW4uDj23HPPOOCAA2L11VePSZMmxdVXXx1777133HfffTFq1Kgmnzt+/PgoLy+P0aNHN/s6K2pcRNvX0rlSn7Yy5n9ce+21cc4559T/f7fddotbb7210SzzP2iplrSBJfvx448/HkOHDq1fvqQP8d577xV8jRU1V2Lp7Rw5cmTB7VwyvjjkkENir732inPOOSdefPHF+NGPfhRTpkyJf/7znwW/LMGYu2Npa+OLprS0H9UW56/Q/rS1dtGaebRNzQv5wQ9+EG+99VZccsklcfHFF0fE/wr47rnnnvjSl75UMLOjjbsVX/z/fPzxx/F///d/8YMf/CD69u1bcN2uXbvG8OHDY7vttovddtstPvjgg7jsssviy1/+cjz22GMFq4YWLFiwzM8ML1FRURELFixo1XYv+Wbc7bbbLo499thG1/nzn/8cCxcujAkTJsSvfvWrZX4iacnPj/fv3z/uv//++orUQYMGxeGHHx533HFHfPWrXy34nhobWFRUVNQ/zqpjef7eSx77PPeXU089NV599dW4//77W/WT84259dZbY/bs2TFp0qS49dZbY8GCBVFbW7tMlfbSWvqeDL5XXYWOw7fddlu8/PLLn+nn5Jrbt2bPnt2qvI8++iiOOOKIGDp0aJOVqK1tA3V1dXHkkUfGzJkzY8yYMc1uw+d9DqR9WdLf+Pjjj+Opp56KbbbZJiIi9t9//xg6dGhcfPHFBQevK7JNfPrXBg466KDYeuut48gjj4yf/vSn8b3vfa/B4yNHjoyHHnooZs6cGY888ki8+OKLLfpJSn2ojqPQuaKysjLWW2+9GDRoUOy7774xZ86cuOaaa+LAAw+Mxx57rOAvqLTVdnH66afH3nvvHXvuuWerXj9Cu+hI7rjjjigrK4tDDjlkmcd+9rOfNfj/0UcfHSeeeGLcfPPN8a1vfSu23XbbJnNXxph7iUsvvTQefvjh+OlPfxo9evRocr277747Fi9e3KJvIIzQLviftjS2aEqfPn3ikEMOidtvvz022GCDOOCAA+K9996rn2BeXV3d5P6qXdBay3s9ZkW1i6XHQXfeeWcceuihERExevTo2HjjjePiiy9uUHyhH0Vjtt9++9h+++3r/7///vvH6NGjY5NNNolzzjknHnjggfrH2ks/qqXntcWLF8e3vvWtOOmkk2LDDTds1etHaBerqta0ifZ2P2+JpsYW7ufRGu3lft6K2i+be0/2/46hNeeQT8vRLpoyePDgePDBBxssO/roo2PDDTeMb3/7200WX8yePTvuv//+2GeffQpem1piRY2LaNtaM1fq01bG/I/DDz88ttxyy5g2bVr88Y9/jA8//LDJ1zD/g5ZoaRvYZ599YsiQIfGd73wnKisrY4sttoinn346zj333CgtLW12X19RcyU233zz2GabbeLyyy+P1VdfPUaOHBkTJkyIb3zjG1FWVtbgdZaML7baaqv41a9+FRH/u/9XWVkZ55xzTjzyyCOx++67F3xPxhcdR1sbXzSlpf2otjZ/hfaprbWLls6jLTQvpLy8PNZdd90YPXp0HHjggVFbWxs33XRTHHXUUfHQQw81e3250Hta1c4LTfcoO5jzzjsvevXqFaeddlrB9WpqamL33XeP7t27x/XXXx8HHHBAfOMb34iHH3443nzzzbjyyisLPr9z586xePHiRh9buHBhoz+F15QPPvggRo0aFd27d4+77767yW9DGzlyZOy9995x5plnxm9/+9u44IILGvys/ZLXPOSQQxoMMg4++OAoLS2NJ554otn3tOSXNT79fpbOZ9WwPH/vJY99XvvLlVdeGTfffHNcdNFFrf7J+cZst9128cUvfjG+8Y1vxIMPPhi/+tWvGnxrQmM+7/dE+1LoODx79uw455xz4qyzzoo11lij1dnN7Vut2a/mzZtXP6H33nvvjS5dujS6XmvbwGmnnRYPPPBA3HLLLbHppps2ux2f5zmQ9mfJ33fo0KH1A9eI/33TzH777RfPPPNM1NTUNPv8FdkmlnbEEUdE//79G/3Gk379+sXuu+8eo0ePjrFjx8a+++4be+yxR/3P+TVFH6pjaK7PfvDBB8c777wTt912W4wePTqOP/74+Nvf/haLFy+Oc889t2B2W2wXd911VzzxxBPx4x//uMWvvTTtomOYO3du3HvvvfHFL36x0W/Ab8y3v/3tiIhmv31tZYy5I/637y/55rRvfOMbBXPHjx8fvXr1KvjrGEvTLmhLY4vmjBs3LvbZZ5/4zne+E2uttVbstNNOsfHGG8d+++0XEdHk+UW7oLWW93rMimoXS3LKysoafPNscXFxHHroofHuu+/GO++8ExH6UbTO2muvHV/60pfi0Ucfjdra2oLrtrV+VGvOa9dcc01Mnz49Lrjggha/9tK0i46jsTbRHu/nRRQeW7ifR2u0l/t5K2q/XJHjItqXlvarVvY94V69esXxxx8fr7/+erz77ruNrnPPPffEwoULW/zFBtoFES2fK9WYlTH/Y8iQIbH77rvH4YcfHuPHj49hw4bF7rvv3uhkPvM/aImWtoGKioq4//77o3fv3nHQQQfFmmuuGcccc0z83//9X/Tq1avZ+2orcq7EPffcE5tuuml85StfiaFDh8Z+++0XhxxySGy22WYNtnPJax5++OENnn/EEUdERBhf0EBbGl+0VmP9qLY0f4X2qy21i5bOo21uXsipp54af/jDH+LOO++Mww47LI488sh4+OGHY8CAAct8YWdr39Oq1i4UX8T/fkbrpptuitNPPz2mTp0akydPjsmTJ8fChQujuro6Jk+eHDNmzIiIiH/84x/xyiuvxP77798gY5111okNNtggHn/88YKvNWDAgKitrY2PPvqowfLFixfHxx9/HAMHDmzRNs+aNSv23nvvmDlzZjzwwAMtft5aa60Vm222WYwfP75+2ZLn9uvXr8G6JSUl0bt37/jkk08KZg4YMKD+J2OWtmRZS7eN9mF5/t69evWK8vLyz2V/ue222+Lss8+Ok046aZmfP/o89OzZM3bdddcGbaUxS34mqan3tOQ9s+pp7jh81VVXxeLFi+PQQw+tP68s6cR/8sknMXny5CYH1xHN71stbSuLFy+OAw88MF566aW49957Y6ONNmrR85prAxdccEH89Kc/jcsuuyyOPvroFmV+XudA2qem+hsREauttlpUV1cX/LWIld0mIiLWWGON+j5hIaNHj66fWFzIgAED4oMPPoiUUoPl+lCrjubOFZMmTYoHHnhgmbFFr169YocddmjR2CKibbWLs846Kw4++ODo1KlT/flv5syZERExZcqUZn9i1diiY/h//+//xfz581t8Izgi6ifmNXccXhlj7oceeiiOOeaYGDVqVNx4440Fc99555147LHH4uCDD46ysrIWbYt2QVsZW7RE9+7d495774233347/v73v8fkyZPjl7/8Zbz//vvRt2/fRr95U7vgs1je6zErql306tUrKioqonfv3stMtF1ttdUiIuqvvepH0VprrLFGLF68uNlfXmxr/aiWntdmzZoVF198cXzta1+L2bNn1687d+7cSCnF5MmTl9nWxt6TdtFxfLpNtMf7ec2NLdzPozXay/28FXWNdEWOi2h/WtKv+jzbxWfVXL9u/Pjx0b1799h3331blKdd0Jq5Uo1pC/M/Ro8eHVOmTIl//OMfBdcz/4PGtLYNDB8+PF555ZV45ZVX4rHHHoupU6fG1772tZg+fXqsu+66BV9rRc6VWH311eOf//xnTJw4Mf7xj3/Eu+++G1dccUVMmTKlwXY2Nb749DWrphhfdCxtZXzxWX26H9VW5q/QvrWVdtHSflRz80IWL14cP/vZz2LUqFENvvSjrKws9t5773j22WfbzP3ItkDxRUS89957UVdXF6effnoMHTq0/t/TTz8dEydOjKFDh8aFF14YEREffvhhRESj33pQXV1dsOItImLEiBEREfHss882WP7ss89GXV1d/eOFLFy4MPbbb7+YOHFi/PGPf2z1z20vWLAgZs2aVf//LbbYIiL+9zksbfHixTF9+vRmf1pwxIgRMXHixGV+Lunpp5+uf5xVx/L8vYuLi2PjjTdeZv9f8vxhw4ZF165dm92Ge++9N7761a/GgQceGDfccEPr3kArfLqtNGb11VePvn37NvqennnmGfv/Kqolx+F33nknPvnkkxg+fHj9eWXHHXeMiP/9bPzQoUPj1VdfbfI1mjpfTJ06Nd59990W7Vt1dXVxzDHHxCOPPBJ33HFH7Lzzzi1/k9F0G7jhhhvihz/8YXzzm9+Ms88+u8V5n8c5kPZr4MCB0b9//2X6GxH/268rKioKngNWdptYMrGjJT+5vOTbdZo7h4wYMSLmz58fEyZMaLBcH2rV0JJzRa6xxcpsF1OmTIk77rijwbjq2muvjYj//dRxc79WZmzRMYwfPz66dOmyzCSoQiZNmhQR0aLxacSKG3M//fTTccABB8SWW24Zv/nNbwr+hGtExK9//etIKbWq8ES7oC2MLVpr8ODBsdNOO8WQIUNi5syZ8dxzzzX5E/XaBZ/F8l6PWVHtori4OEaMGBHTpk1b5qbEkmKKJec2/Shaa9KkSVFRUdHst2u2tX5US89rn3zyScydOzeuuOKKBu3innvuifnz58fQoUPjxBNPbPY9/fvf/466uroGy59++umorKxsdnIM7cun20R7u5/XkrGF+3m0Rnu5n7eirpFutNFGUVpausx7Wrx4cbzwwgv2/w6uJf2qz6tdLI9C/br3338/Hn300TjooINaPDF8ZVwvoG1pzVypxrSF+R8tvSe3ZF3zP1jaZ2kDRUVFMXz48Nhhhx2iV69e8eijj0ZdXV2T1z6XWBlzJdZZZ53Ycccdo3///vHqq6/G+++/32A7mxpffPqaVVOMuTuWtjC+WB6f7ke1hfkrtH9toV20tB/VknkhH3/8cdTU1DR5La2urq7grwV2uHF3Ik2bNi39/ve/X+bf8OHD0+DBg9Pvf//79NJLL6WUUnr22WdTRKRjjz22QcZzzz2XiouL00knnVS/bN68eWnChAlp2rRp9cvmz5+fevXqlfbdd98Gzz/qqKNSZWVl+vjjjwtua01NTdp///1TaWlpuv/++5tcr7q6Os2YMWOZ5U8//XQqKSlJRx99dP2yhQsXptVWWy0NGzYsLViwoH75uHHjUkSk3/zmNw0+qwkTJqR58+bVL3vqqadSRKQrr7yyQebaa6+dttlmm4Lvh/anNX/vt99+O02YMKHBsssuuyxFRPrXv/5Vv+y1115LJSUl6eyzz2729f/+97+nioqKNHLkyLRw4cIWbfO0adNSRKTzzz+/0cc//PDDZZa99dZbqWvXrmnHHXdssPy///1v+u9//9tg2UknnZQ6d+6c3nnnnfplDz/8cIqINHbs2BZtI+1HS4/Dzz333DLnlSXH1eOOOy79/ve/TzNnzkwppbR48eI0YcKENHXq1AYZ66+/ftp0001TTU1N/bLzzjsvFRUVpVdffbXZbT355JNTRKRx48YVXK81beDOO+9MxcXF6cgjj0x1dXVNZuY4B9L2/etf/0oRkW699dZGHz/jjDNSRKS//OUv9cumTZuWunXrlvbZZ5/6ZSu7TXz00UfLLLvhhhtSRKSrr766wbY31g5OPfXUFBHpkUceqV82c+bMNGHChPp2n1JKU6ZMSWVlZemUU06pX1ZXV5d23HHHtPrqqzd4n7QvLT1XfPTRR6m4uDjtsssuDfalKVOmpC5duqS99tqrfll7aReNjasOPfTQFBHpF7/4RfrrX/9av66xRcf00UcfpdLS0gZj0qXNmjVrmX5+XV1d/X703HPP1S9fmWPulFJ69dVXU+/evdPw4cMbHX83ZpNNNkmDBw9ush+lXXRchfpRbWFssURz4+vGnHTSSam4uDg988wzjT6uXdCU5sYXLb0es7LbxTXXXJMiIt100031yxYsWJCGDRuWNtxww/pl+lE0pbG++AsvvJDKysrS/vvvX7+svfSjWnpemzdvXqPtYuTIkamioiL9/ve/T0899VR97tSpU9OECRPS4sWL65fdeeedKSLSb3/72/pl06ZNSz169EiHHnpowfdD29XSNtFe7uel1PKxhft5tEZ7uZ/3Wa+RnnLKKanQVIcJEyakt99+u8GyvfbaKw0YMCDNnj27ftktt9ySIiL9+c9/bvY90f619BySUp52sbRRo0alIUOGtHg733333dSzZ8+0ySabNPqcq6++epn7EkvLPS6ifWrNXKmUVu75orF2kVJK++23XyoqKkpvvPFG/TLzP2ip1raBT5s/f37afPPNl+lf5J4r0dw1s0+rra1No0aNSpWVlQ36R++//34qLy9PO+ywQ6qtra1ffs4556SIaHA915iblT2+WNrn1Y9a2fNXaP9WdrtozTzalswLqampST169EjrrrtuWrRoUf3yOXPmpEGDBqX111+/wfodfdyt+KKAnXfeOQ0fPnyZ5XvssUeKiHTAAQeksWPHpv/7v/9LPXv2TFVVVem1116rX+/RRx9t9MbbkklKo0ePTjfffHM65phjUkSkSy65pNltWnLQ32+//dIvf/nLZf4t8cknn6Sqqqr0la98Jf34xz9ON954YzrllFNSZWVl6tWrV5o4cWKD3Ntvvz1FRNpqq63Sddddl77zne+ksrKytOOOOzY4QZx//vkpItKjjz7a4PkHH3xwKi0tTWeddVYaN25c2n777VNpaWn6+9//3ux7ov1p6d975513XubC5+zZs9Naa62VVltttXTFFVeka665Jq2xxhpp4MCBTQ6Yl5g8eXLq3r176ty5c7rhhhuW2f9ffPHFBuv/4he/SBdddFH9wGDkyJHpoosuShdddFGaPHly/XqrrbZaOvzww9Pll1+ebrrppnTWWWelXr16pYqKivT44483yBwyZMgyHbh33nkn9e7dO6211lrpuuuuS5deemnq2bNn2njjjVtcIEL70dLjcGPeeuutZTpdSy//9I3AP/zhD6moqCjtuuuu6aabbkqnn356Ki4uTl/72tea3c4lkzu22267Rrdz7ty59eu2tA08/fTTqVOnTqlv377p5z//+TKZb775Zv26Oc6BtF1jxoxJF110UfrGN76RIiIdeOCB9cfbpYsNPvjggzRgwIDUtWvXdP7556err746rbvuuqlz587phRdeqF9vZbeJzp07p+OOOy79+Mc/TjfccEM6/PDDU1FRURoxYkSDG9bXXHNNWm+99dLZZ5+dxo0bl6666qr6fuJ+++3X4PVvvfXWRi+CnXXWWSki0oknnphuvvnmNGrUqBQRafz48S356GmjWnOu+OpXv1rfTxkzZky69NJL06BBg1JJSUmDvlV7aReNWTKGWPoi89LLjS06ljFjxqSISA888ECjjz/66KOpf//+6Vvf+la64YYb0lVXXZW+8IUv1B8rP73uyhpzz549O62xxhqpuLg4XXbZZcus98QTTyyT/fLLL6eISN/73veafH3touNpaT/q01bk2CKllo+vf/SjH6UjjzwyXXfddemnP/1p2nPPPVNEpIsvvrjRXO2CxrS0XbT0eszKbhfz589Pw4cPT2VlZek73/lOuu6669JWW22VSkpK0p/+9KeCr6EfRUopjRw5Mu2zzz7p4osvTjfddFP65je/mSorK1P37t0b3MhtL/2oxjR1XmvMsccem6qqqhpdHhHprbfeql9WU1OTtt1229SlS5d0wQUXpBtuuCENHz48de3atcG9HNqXlraJlNrH/bzWji3cz6M12sv9vJZeI508eXJ9f2ubbbZJEVH//1/84hcN1o2ItPPOOzdY9txzz6Xy8vK02WabpbFjx6Zzzz03VVRUpD333LMlHyergNacQz7vdpFSSi+++GL9PrveeuulHj161P//vvvuq1/vuOOOSzvuuGP64Q9/mG666ab0/e9/P/Xu3Tt16tRpmeP6EltssUUaOHBgg8mzS8s1LmLV1NRcqZV5vjjjjDPSlltumc4777x00003pcsuuyxttdVWKSLSaaed1iDX/A+WV1Nt4OCDD05nnHFGGjduXLryyivTBhtskMrLy9PDDz/cYL1ccyVaes3s9NNPTyeeeGL66U9/mq699tq0zTbbpKKiomX6SymldOGFF6aISHvssUe64YYb0oknnpiKiorS4Ycf3mA9Y25SWnnji5Ty9KNW5vwVVh3tYdzdmnkhF198cYqItNlmm6VrNhy4AgABAABJREFUrrkmXXXVVWmDDTZIEZF+9atfNdiGjj7uVnxRQFOdqfnz56cLL7wwbbjhhqlz586pe/fuad99903PP/98g/Wa6kyllNJNN92U1ltvvdSpU6e01lprpWuuuabgN4gvvU0R0eS/JRYtWpTOOOOMtMkmm6Ru3bqlsrKyNGTIkHTCCSc06Agt7de//nXadNNNU3l5eerXr1869dRTG1QgpdT0xdoFCxak73znO6l///6pvLw8bbXVVk1OpqH9a+nfu7GTRkr/+xab0aNHp27duqUuXbqkfffdt8E3ETRlSZtq6t+n21qh9rL0Pnz++eenLbfcMvXs2TOVlpamgQMHpsMOO6zRCvbGBt8ppfTKK6+kPffcM1VWVqYePXqkI488Mn3wwQfNvifan5YehxvT2glSKf3vmy9HjBiRysvL06BBg9J5553X4NsEmrJk8NvUv6XPBS1tA0smjzf1b+lJ5TnOgbRdQ4YMadG+llJKb775ZjrggANSt27dUufOndOuu+66zLcgr+w28dWvfjVtuOGGqWvXrqmsrCytvfba6eyzz16mX/Svf/0rHXzwwWnw4MGpvLw8VVVVpc033zxdffXVqbq6usG6TRVf1NbWpksvvTQNGTIkderUKQ0fPnyZAQvtT2vOFdXV1WnMmDFpxIgRqUuXLqlLly5p5MiRDb7ZOKX20y4a09pJg8YWq7Ztt902rbbaak1+c+WkSZPSwQcfnNZcc81UUVGRKisr0xZbbJFuvPHGZfoLK3PMvaRNNvWvsbb6ve99L0VEwW/K0i46ntb0o5a2IscWKbV8fP3HP/4xbb311qlr166psrIybbvttg2+gfnTtAsa05p20ZLrMSu7XaT0v2/dPPbYY1OvXr1SeXl52mabbVq0v+pHkVJK1157bdp6661Tr169UmlpaRowYEA66qijlrme2l76UY3JVXyRUkozZsxIJ5xwQurdu3eqrKxMO++8c4Nvk6P9aWmbSKl93M/7LGML9/NoqfZyP6+l10gL5X56wkdjy1JK6bHHHkvbb799qqioSH379k2nnHJKi65vsWpozTnk824XKRW+z7b08f6OO+5IO+20U+rbt28qLS1Nffr0SQcccECDXzJb2muvvZYiIp155plNvnaucRGrptYUX6S0Ys4Xf/nLX9K+++6bBg4cmMrKylLXrl3TF77whXTrrbcu0zcz/4Pl1VQbuPzyy9P666+fKioqUs+ePdP++++/zNgipXxzJVp6zezWW29Nm266aaqqqkpdu3ZNu+222zL3HZeoq6tLY8aMSeuuu24qKytLa6yxRqPnAWNuUlp544uU8vWjVtb8FVYd7WHc3Zp5ISmlNH78+LT11lunHj16pM6dO6dtttkm3X333ctsQ0cfdxellFIAAAAAAAAAAAAAAADQqOKVvQEAAAAAAAAAAAAAAABtmeILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAACigdGW98HoXXJMvPOWLLqrLl11cnS+7pirfh1K8uChbdk6vXfitlb0JDQy785Js2e3zLxRRV5dvy4uL87WJjIegrH/LNw87N2P6Z7P25Vdny64ry3myyBhdnS+8KONHkvPzLlmY7zN54/tnZsv+rHK2i5SxLDfn/lVUmy87p1Sysrfgs/nvd9teu8g5tsi5f9VU5msY5Z/kOzZWd8kWHSWL8mXXlufLnviDtjW2iIjY7KR854uazvn2r06z87WL+QPybXfF9HzbXVueb7tLF+bb7n+Pa1vni/V/d8HK3oTPZPHifJfuysvzXYjKOeZetCjfZ1JSkm+7Xz/o/7Jlf1ajnzgpW3Zpxouoi+vydaQ/XliVLXvNrjOyZc+r6ZQtu6p0cbbs27f+ebbsz2rjb+cbW6Sc14syjrkX9ciXXZ6vWWT9THL+LV++pu2NLYafnfF+Xkbln+TbCeYMyRYdnWbn28FyXosqqsmX/Z8r2l67WPuui7Nll5bluxhVU5PvAnBRxmNjyni/MOvnXZ2v0f330POyZX8W33vxoGzZlSX5+qM59Smdky17ek3XbNnza/ONLbpkvPh73kZ/zJb9WQ258cps2UUZj4tRmzG7Z772nOZnnP6W8x7n4nzn5smnfTtb9mc15OYr8oVnvK4XGf9OWeWcE5PzWJFxbubbJ52VL/wzuvzVvVb2JrQ5JRkPvAvryrJllxVnHBhndPaGD6zsTVhG1vNFzn5UecYDWE3G+YLV+c5zKef5uTTf5/32V85udp122jsAAAAAAAAAAAAAAABYMRRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAACigdKW9clppr7xcqrvk2/Daqrps2Z3fL8mWnfMzKVlYlC27Iykprc2WvWhOebbsqp4LsmXP+6RztuxOXRZny66tVTP3eSmqyXd86TQrX3ZdviYX1V3znYdKFmT8TDpli+5wijL2z4qq82XXVmbc8IzRpfPztYvajMeKDidjd7Ti43zhC3vn23nL5uTb7pRxhFpcky+7Laory7jzZuyS1pXly17tuXz99Jlr5+uQFOXrokVtp44z5k4pY3+0Ll92r+7zsmV/PKNLtuy6mnwHii498l0rWLRo5V0qXdXUpPZ5/eKCte7Nlv2HmZtly55T3Ttbdm3G42dbVJSxz1hbmS+787R8/f8B/5ybLfvDrbtmy075bolkzW6T2un9vLmD82V3m5Qvu6YqX/bifE0uijOOW9qkjBdSFy/KNzDuVJ7vIu2CWRXZsos75bvPWZexr1NS0nEaRmVJvmsuOb01v0+27L/PWydb9vZ9Mp6IMlqU8+JvW5RxWFyUcR5N6pOvPZdNyXfzKufQtbpPxoFizpuzbVHGP1Tx7HwDtYohc7JlL5iXr12UTM2XXdMtX/8sSjpYu8ioui7fuXdY+UfZsl+av0a27PU7T82W/dai1bJldy1ZmC27Tcp4vijKeE8v59Gr/P181woWD824f83NOAZYvHLvQ7XPu2AAAAAAAAAAAAAAAAAriOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAACigdGVvQBZF+aKr3ssX3m/M09my3/rRdtmyK9/P95ks7JOyZbc1GXfbWLygLFt2WdXibNm1L3bPlt1ts0+yZc+ZWZktu7SiOlt2W1Rbke8Y0OmTfPWHCzZYmC17oyFTs2UvPrN3tuyJx3TNll2yKOcRtA3K+HZrO+VrcxWz87W5ksUZP5SMXZGF/WuzZZfO6Vg11inj2y3O19WJ+ZsvyJa92n3l2bI/3jhbdFbFNR3rfFFUm+8AVjY3W3QUZ+zuPnrrLdmydz7xxGzZs4bmu3RTsqjjjLmrF+f7HIf0+zhb9vuPDsqW/eUDn8qW/ebcvtmyX5yU7zPp2nN+tuy2qHtZvrFrTo88u1G27Et2nJ4tu9+T+cbFQ6vyHYc+XJRvu9ui2op82Tn7UNO/kK8T9a+Lf5kte8MbTs6WXZrzENdxulAREVGc7/JFzO+X78Nc55o3s2UPuDdfn+Gvr66fLXu1R/PdK5o3sGONuSPle7+VVfkOYHPez3deL+uxKFt2zeKSbNkVlRnvc9Z2rGu0uRRnPPFWlebbb/fs92q27OnV+dryoE757qFPr+mSLbstKl6Y7xhQV1mXLbvnE/nuLfz7/8Zmy/7CSwdmy/74mX7Zshf1zdjZboNK5uZrFz3Xn5Ete+Hf+mTLHvhWvn3gvT1rsmWXzsp3vb2mT8eaFzU348WoravyjYuvnrxntuwz1/xLtuwx7+yWLfuwgf/Klv32onzHoTapNF9fJxXlG8+XVOQ77lZuNidbdtG/880XXDQs3zWONH/llj8Y8QMAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAACihdWS9csjhfdnXXlC27prIoW/aDU1/Ilr3PJr2zZb9x1rrZsss/yfd5tzU1C/I1xy3WnZwte/5J+fat2v+8lC07Z3tb7+ffyJZdsdH8bNltUXF1vmNAxfRs0fGtwx/Iln1i96nZsr/43Ihs2XHMttmiSxZmi26TSubnaxe1q+f7MAed+Xy27JzH9I2fPiJbdudnemTLXti3Llt2W1Q2N1/23PXzDVw2PG9Gtuz7H783W/YXB47Ilj35rk2yZZc90yVbdltU2znf+aL3swuyZT9w58+yZX/xwOOyZXeuzfeZzB2Yb9+tK+04Y+6uXfL9jd55dvVs2W+c8tNs2TmP54v2GZwte+DpH2fLnvp+z2zZbVFV6aJs2Y9OWSdb9v7bPpct+w+/3Cxb9tyrO2XLvvTHP86WfcSEo7Nlt0Wl8/JlV3fNl73mb/Jlf/GEEdmyfzs537571qjjsmVPOiTfNfG2qGxOxntu69Vmy6798KNs2R8v6pct+629bsmWvcftx2fLnr1W52zZbVFpWb59d8HEHtmy3zpqbLbsnOOLmcdsly17wYH5xoqLFubr/7U1c2orsmVv0DnffbFbX8m3bw074oVs2ZMuz7fdVx74y2zZkxd2rD5UXdeabNml08qyZS/cfU627JzniuID+2bLjsPy3YQqer8qW3ZbVFuZ7/7lJ6/1ypb93zPb5zXaboO2z5ZdvGu+e5yzJvfIlt0WFUe+MXdO0+fmO35dt/b62bJ//+7vs2Wf/9E22bLXzDnJrS3KePuy0/R8c3Rf3+/mbNk5zxfvnZ3vfFFUnPEYV7ty73P75QsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAAr4zMUX7777bsydO3eZ5dXV1fGPf/xjuTYKAAAAAAAAAAAAAACgrWh18cX7778fW2+9dQwZMiR69OgRxxxzTIMijBkzZsTIkSM/140EAAAAAAAAAAAAAABYWVpdfPG9730viouL4+mnn44HHnggXn311Rg5cmR88skn9euklD7XjQQAAAAAAAAAAAAAAFhZWl188fDDD8d1110XW265Zey+++7x+OOPx4ABA2LXXXeNGTNmREREUVHR576hAAAAAAAAAAAAAAAAK0Oriy9mzZoVPXv2rP9/eXl5/O53v4s111wzRo4cGR999NHnuoEAAAAAAAAAAAAAAAArU6uLL4YNGxYvvfRSg2WlpaXx29/+NoYNGxb77rvv57ZxAAAAAAAAAAAAAAAAK1uriy/23nvvuOmmm5ZZvqQAY8SIEZFS+lw2DgAAAAAAAAAAAAAAYGUrbe0TLrnkkpg/f37jYaWlcc8998R777233BsGAAAAAAAAAAAAAADQFrT6ly9KS0ujW7duTT7+/vvvxwUXXLBcGwUAAAAAAAAAAAAAANBWtLr4ojkzZsyI22+//fOOBQAAAAAAAAAAAAAAWClKW/uE++67r+DjkyZN+swbAwAAAAAAAAAAAAAA0Na0uvjiy1/+chQVFUVKqcl1ioqKlmujAAAAAAAAAAAAAAAA2ori1j5hwIAB8bvf/S7q6uoa/ffvf/87x3YCAAAAAAAAAAAAAACsFK0uvthiiy3iueeea/Lx5n4VAwAAAAAAAAAAAAAAoD0pbe0TzjrrrJg3b16Tj6+99trx6KOPLtdGAQAAAAAAAAAAAAAAtBWtLr7YcccdCz5eVVUVO++8c7M5NZ1b+8otVzqvKF94RptdenK27NL98/0aSXFNtuioLc+X3daUVS3Olv3CO2tkyy77Yb4d4HdbPZEte5dXjsiWXTtsQbbsefM7UKOIiJKF+bJnbpmvzd116t7Zsn+2eqds2UMffz1bdrc7W/1jWy02e+26bNltUU2XfOf0kikV2bIn3rh1tuzh12+fLXthn3z7V3GPjH/Lhe2zP/xZ1VTmy+78Vr7j7sRvDMyWvc8mu2XL/ujU9bJlF0/IFp11DNoWlc3Nd4x5d7d8H+Y+q2+eLfuQCX/Jln3L5C9ky664tSpb9twBHed8UVSUr03U9s83tvjihH2zZb9x7aBs2dG9Olt0z+pWX85ssYou+f6WbdGs6nzH8837v5st+9/T813nenO3W7Nln7fxxtmyv/n2l7Nlr9nt42zZbVFNvtNu1JXly17QJ9+xccqV22XLPvG722bLnrl/vmtRnWZni26T5mfsMw58JF/2m3eMyJa91tn5rhetffBJ2bK7r5/v8y5elC26TVq8KN9BvXiN+dmyh93z9WzZl77+m2zZ5z6zWbbs0ox/y8g4Dm1rupfkuzc6YUG+a6g7DftvtuznT8rXh3rj6LHZsg/87x7ZsrfrNSlbdltUNK8kW3ZxvssukVK+/sLsI/L1/+eska//v2hWvvunJRnnW7VFxV3z7byd3st3netns/pny56UcdwS7+bri9R83CVbdpR3rPkfQ8qnZ8v+3fQts2U/ssUt2bJ3++ZZ2bJ/MiNfv7Vnab6x3KKcFxbbosX5zuuL++Y7+Q7981ezZa9b9Fy27Lp8l5ajbnG+PnGUrNwxd769FAAAAAAAAAAAAAAAYBWg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAACihdWS9cXJ0vu7Y8X3bJonzZC3vny64bkC+7qDZfdqSM2W1MbU1JtuzSsnx/pIVz8jW4fR74Zrbskq75DkIp435bXNyBGkVE1FTme7+d3ivLlj3p8Hz7V/l7RdmyX/nD+tmyFw6py5ZduiDfZ9IW5Tzv1uVrFlH+Ub7z3OLu7fPYmLM/XNcpX3ZbVFSTLztlbBedZuY7fv13zKBs2UX/zdfmShZmPKZ3sK8eSBk/yvKP82W/f+b22bLHXp1v3+38cb6+zpzV8+28xRmPn23N3Pn5xq4VXfJdLJr4Tr9s2VGWb7+t7LowW/aCRR2so5PRtIVdsmWv3XVatuzqunzHxbX/dly27D3XeS1bdmXp4mzZC2szdojboLK5+foLRXX5OmiLeuRrF2s8nG//+mTdfMf0ihn5/pY1lR3rWlTJgnzZM9fOd71o4F359q8pu+e7vdpjQr59d37/fPtu6fxs0W1SaVm+wVRdbb5jevfBs7Jln/fHQ7NlFw3IN77IeU+vU6eOM+iem3GCRteSfH//yDiv5N//NzZb9lGTd8mWPbL3xGzZ7y/uni27LUoV+a67LC7LePCa3jlb9Cdfnpcte/HCjGPXBfn6rLWV+faTtqhuTr6/04I18p13r/ztAdmya3vm2wdSr3w3o4vm5WsXqVPHahfTarpmyx7eZWq27As/3CVb9ovf/Wm27HvmdsuW/fbiPtmyF+aczNMW5ZwfWZPv2khx53znoqq/59u/FryecfLS4lV3ksaq+84AAAAAAAAAAAAAAAA+B4ovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKAAxRcAAAAAAAAAAAAAAAAFKL4AAAAAAAAAAAAAAAAoQPEFAAAAAAAAAAAAAABAAYovAAAAAAAAAAAAAAAAClB8AQAAAAAAAAAAAAAAUIDiCwAAAAAAAAAAAAAAgAIUXwAAAAAAAAAAAAAAABSg+AIAAAAAAAAAAAAAAKCA0pX1wilj2Udxdb7surJ82ZHyRRcvKsoXzueiqDjfDlBXm6/BlVbUZMuu7LUoW/a8eRXZsktKa7Nl19V1rJq5opp8x66cx/PyqfnCazvnO1Ys7pEvu3R+xvNQxvNnR1Oc7/AVtfkOu1GUcbtLMvahUkm26A7XLlLGUU1Rvq5O1Jbny658oipb9uLu2aIjMp4u6lba6HflqCvL92HmPO6Wz813AMvZ5mYPyXdQz3kcKq7uOCeMoozHl9qMY+7KbguzZVettjhb9sw5nbNl51RWlvEA1wb1rZibLfvd+T2yZW/W571s2V3752tzOU2dn6+D1rN8frbstqimMmMfqi5bdNbx5dQd8l3nqpieLTpqy3MOLvJFt0kZP8rijH3dT9bNNwgszXhoXNA33wdeku+WS977p21QzvtuOe8Xzsl4b6x8zTnZshctyreDFWf8vBdn3O62pizjzYXqjB2driX5+v+j39w9W/YOvf6bLfvdxT2zZef8vNuiouqM9/UzXtJLpRmPi+/nu2+RVUW+Y1zxog42/yNlvO+asWEsGpBv4FK0OGO/cl7GG2MZjxWRcT9pi6pz3sDMOOjevMvb2bKPf2fHbNkbdpmaLZt2IuOpt25+vvb88hNrZ8uObhnvja3CXZ1V+K0BAAAAAAAAAAAAAAAsP8UXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFCA4gsAAAAAAAAAAAAAAIACFF8AAAAAAAAAAAAAAAAUoPgCAAAAAAAAAAAAAACgAMUXAAAAAAAAAAAAAAAABSi+AAAAAAAAAAAAAAAAKEDxBQAAAAAAAAAAAAAAQAGKLwAAAAAAAAAAAAAAAApQfAEAAAAAAAAAAAAAAFBAUUopreyNAAAAAAAAAAAAAAAAaKv88gUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8QUAAAAAAAAAAAAAAEABii8AAAAAAAAAAAAAAAAKUHwBAAAAAAAAAAAAAABQgOILAAAAAAAAAAAAAACAAhRfAAAAAAAAAAAAAAAAFKD4AgAAAAAAAAAAAAAAoADFFwAAAAAAAAAAAAAAAAUovgAAAAAAAAAAAAAAAChA8UUTLrnkkigqKoqNNtqo0cefeOKJ2GGHHaKysjL69+8fp59+esydO7fF+T/72c9igw02iIqKilhnnXVizJgxLXrev/71rzj11FNj+PDhUVVVFYMHD45DDjkkJk6cuMy6xx13XBQVFS3zb/3112+w3tSpU+Ooo46K9dZbL7p27Ro9evSIrbfeOm6//fZIKbVouxYtWhRnn312DBw4MDp37hzbbLNNPPTQQy16Lu3P8v6933vvvTjkkEOiR48e0a1bt/jSl74UkyZNavZ58+fPjxtuuCH23HPPGDBgQHTt2jU222yzGDt2bNTW1jZYtzX79ZprrtloWykqKop11lmnRe9peY8JtB9/+9vfmtxfnnrqqQbrXnrppbHttttG375964/33/zmN2PatGktfr377rsvNt9886ioqIjBgwfH+eefHzU1Nc0+77XXXovvfve7MWLEiOjatWsMGDAgRo0aFc8+++wy677++uvxrW99K7bffvuoqKiIoqKimDx5cpPZc+bMie9+97sxdOjQKC8vj9VXXz1Gjx4d8+fPb3a76urq4oorroihQ4dGRUVFbLLJJvHrX/+62efRPr3xxhtx2GGHxaBBg6KysjLWX3/9uPDCC1u0r0SsmPPF5MmTm2zTd955Z5OvUV1dHRtuuGEUFRXFVVdd1aL3E/HZ2zTty9y5c+P888+PvfbaK3r16hVFRUVx2223Nfu8Fb1fteZc8cMf/rDRdlJRUVHwNf75z3/Wrzt9+vQWvR9ji1VTU+PTJf/ee++9Buu3hzH30pprv//9739j9OjR0bNnz6isrIwddtghHn300Ra/n5kzZ8aJJ54Yffv2jaqqqhg5cmT8+9//bvHzaZtaur/V1dXFbbfdFvvvv3+sscYaUVVVFRtttFFcfPHFsXDhwha/3mdtV1OmTIkLLrggtt566+jZs2f06dMndtlll3j44YeXWfcf//hH/XZWVFRE//79Y6+99orHH398mXXr6urixhtvjBEjRkSXLl2iX79+sffee8cTTzzR4vf0Wds67dO///3v2H///aNXr15RWVkZG220UVx33XUteu5nHVtERPzlL3+JE044ITbaaKMoKSmJNddcs+D6b775ZhxxxBGx2mqrRefOnWOdddaJc889d5n1rr/++thggw3qx9VnnnlmzJs3r0XbFGFs0ZG0ZnxRqL+1xx57tOj12tr4YuzYsXHwwQfH4MGDo6ioKI477rgWvY8lXIta9fznP/+Jgw8+OIYNGxaVlZXRp0+f2GmnneIPf/hDo+v/5je/iW233TZ69OgRvXv3jp133jnuv//+Fr/eimgTn7bHHntEUVFRnHrqqcs89uGHH8bxxx9ff57ZfPPN47e//W2L348xd8fW3P3vxqyoflRrxs0TJkyIvfbaK7p06RK9evWKo48+eoXcd2HVsLLuc0fkG1usrHMdq472MP/j08aPHx9FRUXRpUuXBstX9nU0Vg2tHXM05rNe02/NPtya67a33XZbk9cLPvjggxa9p+Xtg9H+rUr9KOcLPi/toR+1IuaFLK3DtIvEMqZMmZIqKytTVVVVGj58+DKPP//886mioiJtttlmaezYsencc89N5eXlaa+99mpR/o033pgiIh100EHppptuSkcffXSKiHTZZZc1+9yDDjoo9e/fP5122mnp5ptvThdddFHq169fqqqqSi+//HKDdY899thUXl6efvnLXzb4d9999zVY78UXX0w777xz+v73v59uvPHGNGbMmLT//vuniEjnnHNOi97TYYcdlkpLS9N3vvOdNG7cuLTddtul0tLS9Nhjj7Xo+bQvy/P3njNnTlpnnXXSaqutli6//PJ09dVXpzXWWCMNGjQoTZ8+veBzX3755VRUVJR23333dMUVV6Qbb7wxHXDAASki0jHHHNNg3dbs17///e+XaScXX3xxioh08sknN/uelveYQPvy6KOPpohIp59++jL7zbRp0xqse+CBB6avf/3r6Zprrkm33HJL+va3v526deuW1l577TR37txmX+tPf/pTKioqSiNHjkw33XRTOu2001JxcXE66aSTmn3ut7/97dSjR490wgknpHHjxqUrrrgirbXWWqmkpCQ99NBDDda99dZbU3Fxcdpoo43SiBEjUkSkt956q9HcmTNnpk033TT17t07nXPOOelnP/tZuuyyy9KoUaPSjBkzmt2u733veyki0te+9rV00003pVGjRqWISL/+9a+bfS7tyzvvvJN69OiRhgwZkn70ox+lcePGpeOOOy5FRNp///2bff6KOl+89dZbKSLS4Ycfvkybnjx5cpOv8eMf/zhVVVWliEhXXnlliz6T5WnTtC9L9qvBgwenXXbZJUVEuvXWW5t93orer1pzrjj//PNTRKSxY8c2aCd33HFHk/m1tbVpxIgR9e/p0+fJphhbrJqeeOKJZY6zv/jFL1JlZWXacMMNG6zbXsbcSyvUft95553Up0+f1K9fv3TJJZekn/zkJ2nTTTdNpaWl6e9//3uz21RbW5u23377VFVVlX74wx+m66+/Pm244Yapa9euaeLEic1/ILRZLd3f5syZkyIibbvttuniiy9ON910Uzr++ONTcXFx2mWXXVJdXV2zr7U87WrMmDGpc+fO6fDDD0/XX399+slPfpI233zzFBHp5z//eYN1b7755vSlL30pXXzxxemWW25JV155Zdp0001TcXFx+vOf/9xg3TPPPDNFRDrqqKPSuHHj0uWXX56GDRuWSktL09NPP93sdi1PW6f9efDBB1OnTp3SNttsk66++up00003pbPPPjudddZZzT53ecYWKf3vGmtFRUXafvvt06BBg9KQIUOaXPf5559P3bt3TxtuuGG67LLL0s0335x+8IMfpOOOO67Bet/97ndTRKTRo0ensWPHptNOOy2VlpamPffcs9ntScnYoqNpzfji0/2tX/7yl+mMM85IEZGuuOKKZl+rLY4vhgwZknr16pX22muvVFpamo499thmt2VprkWteu6///70xS9+Mf3whz9MN910U/rJT36SdtxxxxQRady4cQ3Wve6661JEpFGjRqWxY8ema665Jm266aYpItI999zT7GutqDaxtHvuuad+bHHKKac0eGzWrFlp7bXXTl27dk3nnXdeuv7669NOO+2UIiKNHz++2W1KyZi7I2vu/ndjVlQ/qjXj5ilTpqQ+ffqktdZaK1177bXpkksuST179kybbrppWrRoUbPbpB/FyrrPnVKescXKPNex6mgP8z8+/ZoDBw5MVVVVqaqqapnHVuZ1NFYNrRlzNGZ5rum3Zh9uzXXbW2+9NUVEuvDCC5e5brBgwYJm39Py9sFYNaxK/SjnCz4v7aEflXteyNI6UrtQfNGIQw89NO26665p5513bvTi0957750GDBiQZs2aVb/s5ptvThGRHnzwwYLZ8+fPT717906jRo1qsPzII49MVVVVzU5cffzxx5fptEycODGVl5enI488ssHyY489dpmBRmvsu+++qaqqKtXU1BRc7+mnn15mgsmCBQvSWmutlbbbbrvP/Pq0Tcv797788stTRKRnnnmmftmECRNSSUlJs8U+06ZNS6+88soyy48//vgUEemNN95o9vVbul9fdNFFKSLS448/3mzm8hwTaH/+P/buOz6Kav//+HvTGzX0HrqgUhQUlKaAUlWk2eGiSLcCV8WKcBFUVATFcsEClgty8YINuVxFVAREUQmiYui9JyH9/P7gl/1myWZ2l3DMJnk9Hw8eD52d+cxM9pw553Nmzmzu5It//etfZ7X9okWL/L7B26xZM9OiRQuTmZnpXvbQQw8Zl8tlEhMTHbddv369OXnypMeyQ4cOmcqVK5vLLrvMY/nhw4fNiRMnjDHGzJgxw3HyxciRI0358uXNtm3bfB7/mXbt2mXCw8M9bhrm5OSYDh06mFq1avmslyhepkyZYiTlu27feuutRpLPPs9f1V7kPsTi74Puxhizf/9+U65cOfPEE08EtG1h6jSKl7S0NLN3715jjDHr1q3za/JFUZSrQNqK3CTb3wkUxhjz0ksvmfj4ePfDXv5sS25RuqxevdpIMlOmTPFYXlxy7ly+6u+oUaNMWFiY2bJli3tZSkqKqV27tmndurXj8RhjzHvvvZev/3ngwAFTvnx5c8MNN/jcHsHL3/KWnp7uNTd9/PHHjSTHh/dyFaZe/fzzz/mu4WlpaaZp06amVq1aPvedkpJiqlataq666ir3sszMTBMdHW369+/vse62bdvck92dFLauo3g5fvy4qVq1qrnuuutMdnZ2wNsXJrcwxpjdu3ebjIwMY4wxvXr1KvDGXnZ2tjn//PPNJZdcYlJTUwuMt2fPHhMWFmZuueUWj+WzZs0ykvK9OMcbcovS5Wzyi7yGDRtmXC6X2blzp891gzG/SEpKct/wjo2NDWjyBWNRpUdWVpZp0aKFadKkicfyRo0amTZt2ng8NHH8+HETFxfn18tB/qo6kevUqVOmXr167tzizMkX06dPN5LMypUr3cuys7NNmzZtTLVq1Xw+9ETOXbr5uv/tzV/Vjwokbx45cqSJjo4227dvdy9bsWKF3w9D0o8q3YryPrcx5z63MKZo2zqUDMXx+Y+JEyeaJk2auMeB8irqcTSUXAXlHN4UZkw/kDIcyLht7uSLdevW+Tx+bwrbB0PxV9L6UbQXOBeKSz/K9nMheZWmesHkizN88cUXJjQ01GzatMnr4NPx48dNWFhYvreqpaenm7i4ODNs2DDH+MuXLzeSzPLlyz2Wf/3110aSeeutt87quFu3bp1v8Cl38kVWVpZHYfbXmDFjjMvl8pnQjx8/3oSGhubbx9SpU40ks2PHjoD3jeBV2O+7TZs2pk2bNvmWd+/e3TRo0OCsjunDDz/0++a0v+X6vPPOMwkJCT7jFfaagOIn7+SLEydOeAxG+mP9+vXuGaJOfvnlFyPJzJ4922P57t27jSQzefLkgI/dmNO/xlGxYsUCP3eafHH06FETFRVlJkyYYIw5Xc7T0tL83vfs2bONJPPLL794LF+4cKGRxNvVSpiJEyd67ZBPnDjRhISE+Pz1l7+qvcg7+SI5OdmvN3MMHTrUtG3b1v1woD8Pyduq0wh+/j4cFUzlyltbkZtkHzhwwBw/ftzn2z4OHz5s4uPjzezZswNK0MktSpeRI0cal8vl0e8oTjl3Ll/194ILLvDapo0ePdpI8vmmqwEDBpiqVavme+B4+PDhJiYmJqD+GIoHp/KW16ZNm4wk88ILLziuZytvzf3lityJ3E5yb3bkSk1N9fpAYXJysgkJCTETJ050jGerriM4vfTSS0aS2bx5szHmdDkJZBLGucwtnG7sffzxx0aS+eijj4wxpx8Y9PZg9+LFi72W34MHDxpJ5sYbb3Q8BnKL0i3QyRdpaWmmfPnypnPnzj7XDeb8Ilegky8YiypdevfubapWreqxrGrVqvkmaxpjTLVq1cygQYMc4xXF+Ozjjz9u6tSpU2BfqU+fPqZy5cr5tssd0/3ss88c903OXXr5uv9dkL+qHxVI3lylShUzYMCAfOs2btzYXHnllY7HQD8KwXSf+1zkFsYEZ1uH4iWY6kUup+c/tm7daiIiIszy5csDeiFtUY+joWTwlnN4Y2NM398ybIz3cdu8ky9OnDgR8MsICtMHQ8kQTO3FuepHeUN7gUAEU73IFchztOdy3NaY0lcvQgS37OxsjR07VrfffrsuuOACr+v89NNPysrK0sUXX+yxPCIiQi1bttTGjRsd95H7+ZnbX3TRRQoJCfG5vTfGGO3fv1+VKlXK91lqaqrKli2rcuXKqWLFiho9erSSk5O9xjl16pQOHTqkpKQkvfHGG5o3b57atWun6Ohon+fUuHFjlS1b1mN527ZtJUk//PBDwOeE4FWY7zsnJ0ebNm3KV/5zt//jjz908uTJgI9p3759kuS1DpxNud64caMSExN14403+tx3Ya8JKL6GDh2qsmXLKioqSl26dNH69eu9rmeM0aFDh7Rv3z6tXr1a48aNU2hoqDp37uwYv6D2okaNGqpVq9ZZl619+/Z5rSv++Oqrr5SWlqaGDRuqf//+iomJUXR0tC677DK/rvUbN25UbGyszjvvPI/ludcP6kvJklvGhw0bph9++EE7d+7Ue++9p5deeknjxo1TbGxsgdsWRXvx+OOPKy4uTlFRUWrTpo0+++wzrzG+++47vfHGG3ruuefkcrn83retOo2SIdjKlVNbUb9+fZUrV05lypTRzTffrP3793td7+GHH1a1atV05513BrRvcovSIzMzU++//77at2+vevXquZcXt5zbn/qbnp7uNf+IiYmRJG3YsMFx/xs3blTr1q0VEuI5hNO2bVulpqZq69at/p4KigGn8nYmp75NXrby1n379ikmJsZdlvM6ceKEDh06pC1btujBBx/Uzz//rCuvvNL9eXR0tC655BLNnz9fCxYs0I4dO7Rp0yYNGTJEFSpU0PDhwx33baOuI3h9/vnnKlu2rHbv3q0mTZooLi5OZcuW1ciRI5WWlua4ra3coqDjlKTIyEhdfPHFio2NVUxMjAYPHqwjR46410tPT5ekfG1DIO2CRG4B/3z00Uc6duyYbrrpJp/rBnN+cbYYiyrZUlJSdOjQIf3xxx+aOXOmPv74Y4/+hnR6fOqTTz7RrFmzlJSUpC1btmj06NE6fvy47rrrLsf4f3Wd2LFjh6ZNm6annnqqwPsX5yK3IOcuffy5/+3NX9mP8rds7969WwcOHCjwmM52zIB+VOkRjPe5vfE3t5CCs61D8RKM9cJpzOvuu+9Wly5d1LNnz3MWMy+e/0Be/uQc3tgY0/e3DOeuW9C4bZcuXVS2bFnFxMSob9+++u2333zGK2wfDCVDMLYX3gTSj/KG9gKBCMZ6EWh7cS7HbUtbvWDyRR4vv/yytm/frsmTJxe4zt69eyVJ1atXz/dZ9erVtWfPHsd97N27V6GhoapSpYrH8oiICMXHx/vc3psFCxZo9+7dGjRoUL7jmTBhgubNm6d33nlHffv21Zw5c3T11VcrKysrX5znn39elStXVkJCgoYMGaJLL71U7777rs/97927t8C/h6SzOicEr8J830eOHFF6evo5LS8ZGRl67rnnlJCQoDZt2uT7/GzK9YIFCyTJr5uShb0moPiJiIjQ9ddfr+eff15Lly7Vk08+qZ9++kkdOnTw2knYv3+/KleurOrVq6tjx47asWOHFi5cqKZNmzrux0bZWr16tb755pt87YW/chPvBx54QDt37tSbb76p2bNn648//tAVV1zhPuaC7N27V1WrVs33YCLtRcl09dVXa/LkyVqxYoVatWqlOnXqaPDgwRo7dqxmzpzpuO1f2V6EhISoe/fumjFjhj788EPNnDlTBw4cUI8ePbR8+XKPGMYYjR07VoMGDVK7du0C2j/tBQoSbOWqoLaiQoUKGjNmjObOnatFixbp9ttv13vvvacOHTroxIkTHutu2rRJc+fO1bPPPqvQ0NCA9k9uUXp8+umnOnz4cL4+d3HKuf2tv02aNNGmTZvyDZB99dVXkk7fuHBCvShdCipv3kyfPl1ly5ZVjx49HNez0V78/vvv+uCDD3T99dd7vdYPHDhQlStX1nnnnadnnnlGd955px5++GGPdd5++201adJEN998s+rWrasWLVro+++/15o1a1S/fn2f53Su6zqC12+//aasrCxdc801uuqqq7R48WL97W9/08svv6yhQ4c6bmsjt3A6Tul0+W/atKkWLVqkiRMnavHixerTp4+MMZJOtwuStGbNGo/tV69eLcm/diHv8edFboEzLViwQJGRkerfv7/PdYM1vygMxqJKtvvuu0+VK1dWw4YNdf/99+u6667Tiy++6LHOCy+8oM6dO2vcuHFKSEjQeeedp/fff18rV670mYP/1eOz9913n1q1aqXBgwcXuH2TJk20a9cubd++PV9cidwC3vlz/9ubv7If5W/e7Kte5h5zQehHIdjucxfE39xCCr62DsVPsNULp+c/li9frs8++0zPPvtsQDGloh1HQ/HlT87hjY1+t79luKBx25iYGA0ZMkSzZ8/WkiVLNGHCBK1cuVLt27fXzp07fZ5P3uPPy58+GEqGYGsvChJIP8ob2gsEItjqha/naPOyMW5b2upFWFEfQLA4fPiwHnnkET388MOqXLlygeudOnVK0unZcWeKiopyf+60fUREhNfP/Nn+TLlvLmjXrp1uu+02j8/+8Y9/ePz/4MGD1bhxYz300ENatGhRvgHcG264QRdffLEOHjyoZcuWaf/+/X4dz6lTpwr8e+R+jpKjMN+3r/rja3tvxowZo82bN2v58uUKC8t/SQu0XOfk5Ojdd99Vq1at8r0RzZvCXhNQ/LRv317t27d3/3/fvn3Vv39/XXjhhXrggQf0ySefeKxfsWJFrVixQmlpadq4caM++OCDAn+BKC9fZSvQG9EHDhzQjTfeqISEBE2YMCGgbXPlHrfL5dLKlSsVFxcnSWrVqpXatWun2bNn68knnyxwe9qL0qdevXrq2LGjrr/+esXHx2v58uWaOnWqqlWrpjFjxhS43V/ZXtSpU0effvqpx7q33HKLmjVrpvvuu0+9evVyL58/f75++uknLVq0KKB95z3ec1WnUXIEU7lyaivOfEva9ddfr7Zt2+qmm27SnDlz9Pe//9392bhx49SjRw917949oP1LtBWlycKFCxUeHq6BAwd6LC9OObe/9XfkyJH6z3/+o0GDBmnKlCmKjY3VnDlz3L+c5s85US9KB6fydqapU6fq888/15w5c1S+fHnHdc913pqamqoBAwYoOjpa06ZN87rOtGnTdN9992nnzp164403lJGRke9FIGXKlFHz5s3Vrl07XXnlldq3b5+mTZuma6+9VqtXr3Z8K8+5rusIbsnJyUpNTdWIESP0wgsvSJL69eunjIwMzZ07V0888YQaNWrkdVsbuYXTcUpSmzZt9Pbbb0s63WeKiYnRAw88oJUrV6pr165q3bq1LrnkEj311FOqWbOmunTposTERI0cOVLh4eF+tQtO50RugVwnTpzQ8uXL1bNnT59thRS8+UVh0I8q2e6++271799fe/bs0fvvv6/s7GxlZGR4rBMTE6MmTZqoVq1a6t27t06ePKmZM2eqX79+Wr16tRo2bFhg/L+yTqxatUqLFy/W2rVrHWPcfvvtevnllzVw4EDNnDlTVatW1fvvv68lS5Z4HHNBqBOlj7/3v735K/tR/ubN/h6Tt8/92Z5+VMkXbPe5C+JvbiEFV1uH4inY6kVB9/MyMjJ0zz33aMSIEWrWrFlAMYtyHA3Fmz85hzfnut/tbxl2GrcdOHCgx/2Ya6+9VldddZU6duyoKVOm6OWXX3Y8H+ns+2AoGYKtvShIIP2oM9FeIFDBVi98PUeby9a4bWmrF/zyxf83adIkVaxYUWPHjnVcL/cnT73N2ExLSyvwp4Dzbl9QR8yf7fPat2+fevXqpXLlymnRokV+vVX2nnvuUUhIiPsnlvKqW7euunbtqhtuuEELFixQ/fr11bVrV5+FPjo6usC/R+7nKDkK8337qj++tj/TjBkz9Oqrr2ry5MkF/qxkoOX6iy++0O7du/361Yu8x3u21wSUDA0bNtQ111yjVatWKTs72+OziIgIde3aVb1799bDDz+s2bNna9iwYVq2bJljzHNZtlJSUtwDrkuXLnVPmghU7j779OnjEePSSy9VQkKCvv76a5/b016UHu+++66GDx+u1157TXfccYf69eun119/XbfddpsmTpyow4cPF7htUbQXeVWsWFFDhw7Vr7/+ql27dkk6/dDKAw88oPHjx6t27dp+7zsX7QW8CaZydTZtxY033qhq1ap55Bbvvfeevv76az3zzDN+7zsv2orSITk5WUuXLtVVV12l+Ph4j8+KS84dSP3t0aOHZs2apS+//FKtW7dWkyZNtHz5ck2ZMkWSfNY36kXpEMgYz3vvvadJkyZp2LBhGjlypM/Y57K9yM7O1uDBg7V582YtWrRINWrU8Lpey5Yt1a1bN/3tb3/TihUr9N1332nIkCHuz7OystS1a1eVK1dOL774oq677jqNHDlSn3/+uf744w/NmDHD5zmdq7qO4Jf7fd5www0ey2+88UZJ0jfffONz27/iOurrOPPmzIsXL1aLFi30t7/9TQkJCerTp48GDhyoVq1a+dUuSOQW8G3x4sVKS0srknHOc5VfFBb9qJKtadOm6tq1q2699VYtW7ZMycnJ+d5iOWDAAO3YsUPz589X//79NXToUP3vf/9TRkaGHnroIcf4f1WdyMrK0rhx43TLLbf4fCvhhRdeqIULF+qPP/7QZZddpoYNG+qFF17Qc889J4ncAvn5e//bm7+yH+Vv3lzYY6IfhWC6z+0kkNwiWNo6FF/BVC+c7ufNnDlThw4d0uOPP+53PKlox9FQ/PmTc3hzLvvd/pZhf8dt87r88st1ySWX+MzD/8o2EMErmNoLJ4H0o/KivcDZCKZ64e9zUTbHbUtbvWDyhU7/3NArr7yicePGac+ePUpKSlJSUpLS0tKUmZmppKQkHTlyRNL//SRK7k+k5LV3716fnZfq1asrOztbBw4c8FiekZGhw4cP+9X5kaTjx4+rR48eOnbsmD755BO/t4uOjlZ8fLz7fJz0799fO3fu1Jdffum4XvXq1Qv8e0jy+9hQPBTm+65YsaIiIyPPSXmZP3++Jk6cqBEjRmjSpEl+bSP5LtcLFixQSEhIvk5YQQp7TUDJUbt2bWVkZCglJcVxvfbt26t69epasGCB43rnqmxlZGSoX79+2rRpk5YuXarzzz/fr+28yd1n1apV831WpUoVHT161HH76tWra9++ffkGI2gvSqY5c+aoVatWqlWrlsfyvn37KjU1VRs3bixw22BoL3IfpM3tMz399NPKyMjQoEGD3H3F3IkZR48eVVJSkuObTmgv4E2wlKvCtBW1a9f2yC3Gjx+vAQMGKCIiwn1Ox44dkyTt3LnT509JkluUDv/+97+Vmprq9UHA4pJzB1p/x4wZo/379+vrr7/W+vXrtWXLFpUrV06S1LhxY5/nRL0o2QIZ41mxYoVuvfVW9erVy/FtZHmdy37IHXfcoWXLlmn+/Pm64oor/NomIiJCffv21QcffOB+EcKXX36pn3/+WX379vVYt1GjRjrvvPO0Zs0ax5jnqq6jeCgoF61SpYokOeai5zK3OJfHWbNmTX311VfaunWrvvzyS+3atUvTp0/Xzp07/WoX8h5/XuQWyGvBggUqV66cevfu7df6wZhfFBZjUaVL//79tW7dOm3dulWStG3bNn3yySf5+hsVK1bU5Zdf7ld/Q7JfJ9588039+uuvuvPOO925RVJSkiTp5MmTSkpKUmpqqsd57tmzR999952++eYbbd++XfXr15dEbgFPgdz/9uav7EdJ/uXNvupl7jEXhH4UguU+ty/+5hbB0taheAuWeuF0P+/48eN68skndccdd+jEiRPuNi05OVnGGCUlJeUbI5KKfhwNJc+ZOUdBzlW/O5AyfDbjtpJ/eXhh+2AoGYKlvfDlbMaSaS9wtoKlXvj7XJTtcdvSVi+YfCFp9+7dysnJ0bhx45SQkOD+t3btWm3dulUJCQl64oknJEnnn3++wsLC3D9zmisjI0M//PCDWrZs6biv3M/P3H79+vXKycnxub10ehZQnz59tHXrVi1btiygn9Q7efKkDh065NdPy+beED9+/Ljjei1bttTWrVvz/exk7s8j+3NOKD4K832HhIToggsuyFf+c7evX7++ypQp4/MYli5dqttvv139+vXT7NmzAzp+p3Kdnp6uxYsXq3Pnzn5f7At7TUDJsW3bNkVFRfk1IzQtLc2va6uUv73Ys2ePdu3a5VfZysnJ0a233qqVK1dq4cKF6tSpk89tnFx00UWSTrebZ9qzZ4/PtqVly5ZKTU1VYmKix3Lai5Jp//79+X4JRpIyMzMlnX6rX0GCob3Ytm2bJLnL9Y4dO3T06FE1b97c3Vfs0KGDpNM/P5mQkKDNmzcXGO9c1GmUPMFQrgrTVuTe1Mh7/d+5c6cWLlzokVc9//zzkqTWrVv7/PUZcovSYcGCBYqLi8t3Y1gqPjn32dTf2NhYtWvXThdddJFCQ0P1+eefKzo6WpdddpnPc/r++++Vk5PjsXzt2rWKiYnx+YAVglsgYzxr167Vddddp4svvljvv/++408G53Wu8tbx48dr3rx5mjlzpt8vLMh16tQpGWN08uRJSaf7ipIK7C869RWlc1PXUXwUlIvmTup0ykXPVW5h6zgbNWqkDh06qFq1atq8ebP27t1b4M/e5yK3gD/27t2rVatW6frrr/f7AYhgzC8Ki7Go0uXMsX9b/Y1zXSd27NihzMxMXXbZZR65tHR6YkZCQoI+++wzj20iIiLUpk0bXXrppYqIiHC/edCfNoScu/QI5P63N39lPyqXr7y5Zs2aqly5stdj+u677856zIB+VOkRDPe5/eFvbhEMbR2Kv2CoF77u5x09elTJycmaPn26R5u2ePFipaamKiEhQcOHD8+3/6IcR0PJFMhzdIUd0w+kDBdm3Hbbtm0+8/DC9sFQMgRDe+GPQMdoaS9QGMFQL/x9LuqvGLctdfXCwBw8eNAsWbIk37/mzZubOnXqmCVLlphNmza517/66qtN9erVzYkTJ9zLXnvtNSPJfPzxx+5lKSkpJjEx0Rw8eNC9LDU11VSsWNH07t3b4xhuvvlmExMTYw4fPux4rFlZWaZv374mLCzMLF++vMD1Tp065XF8ucaPH28kmQ8++MC97MCBA15j9OnTx7hcLvPbb7+5lx08eNAkJiaalJQU97Jvv/3WSDIzZsxwL0tLSzMNGzY0l1xyieP5oPgJ5Pvevn27SUxM9Fg2bdo0I8msW7fOvWzLli0mNDTUTJw40ef+v/jiCxMVFWW6dOli0tLSClwvkHKd64MPPjCSzOuvv15g3MTERLN9+3aPZf5eE1AyeCtbP/zwgwkPDzd9+/Z1L0tOTva4VuZatGiRkWQefvhh97KMjAyTmJho9uzZ47Fu06ZNTYsWLUxWVpZ72aRJk4zL5TKbN2/2eayjRo0ykszcuXP9OjdjjJkxY4aRZP7880+vn7do0cKULVvWo2379NNPjSQzffp097Jjx46ZxMREc+zYMfeynTt3mvDwcDN69Gj3spycHNOhQwdTs2ZNj/NE8de7d28TERFhfv31V4/l1157rQkJCTG7d+92Lwu29mLXrl2mQoUK5sILL3Qv27BhQ76+4ty5c40kM2TIELNkyRJ3ebdVp1E8rVu3zkgy8+bNy/dZMJQrf9sKb3Vl9uzZRpJ59tln3cu85VWDBg0yksybb75p/vvf/7rXJbconQ4cOGDCwsLMLbfcUuA6xSHnDqT+erNmzRoTGhpqxowZ47F8z549JjEx0WRkZLiXvfvuu0aS+de//uVedvDgQVO+fHkzaNAgx/NBcPO3vBljzObNm018fLxp3ry5OXLkiOO6NvLW6dOnG0nmwQcfdFxv//79+ZYdPXrU1K5d29SuXdu9bP369UaSue222zzW3bBhgwkJCTEjRoxwL7NR11G8fP/990aSufHGGz2W33DDDSYsLMx6bpFXr169TN26db1+tnfvXhMZGWkuv/xyk52d7V7+wAMPGEnmu+++KzBudna26dWrl4mJifGov+QWOJNTfpHXs88+aySZlStXev28uOQXZ4qNjc3XduRiLKr08NbfyMjIMK1btzbR0dHm5MmTxpjT5SwkJMR07tzZ5OTkuNfduXOniYuLM1dffbXH9kVVJxITE73m0pJMz549zZIlS/IdV15bt241ZcqUydcvIudGoPe/i7If5U1BefOIESNMdHS02bFjh3vZ559/biSZl156yb2MfhS8Ker73Hmdi9wiGNo6FH9FXS/8uZ+XkpLitU3r0qWLiYqKMkuWLDHffvute/2iHkdD8edvzmGMnTH9QMqwv+O23vLw5cuXG0lm3LhxHst///138/vvv3ss87cPhpKrqNuLvM7VGC3tBQqrqOuFv89FGWNn3La01wsmXzjo1KmTad68eb7lGzZsMJGRkaZVq1bmpZdeMg899JCJiooy3bt391hv1apVRpJ59NFHPZbnFsb+/fubV1991dx6661GkpkyZYrPY7rrrruMJNOnTx/z1ltv5fuX688//zTly5c3I0eONM8//7x5/vnnTc+ePY0kc/XVV3s0LnfddZe5+OKLzaRJk8wrr7xipk2bZtq0aWMkmbFjx3rs/9FHHzWSzKpVqzyWDxgwwISFhZnx48ebuXPnmvbt25uwsDDzxRdf+DwnFD/+ft+dOnUyZ87xOnHihGnQoIGpUqWKmT59upk5c6apXbu2qVGjRoETJnIlJSWZcuXKmejoaDN79ux85f/HH390rxtIuc51/fXXm8jISMeHpCSZTp06eSzz95qAkqFLly6mZ8+e5sknnzSvvPKKufvuu01MTIwpV66cxyDkxo0bTXx8vBk1apR54YUXzIsvvmiGDBliwsLCTL169cyhQ4fc6/75559eHzz6z3/+Y1wul7niiivMK6+8YsaNG2dCQkLMHXfc4fM4Z86caSSZdu3aeW0vkpOT3eseO3bMTJ482UyePNlcffXVRpK57777zOTJk82sWbM84v73v/81oaGhpkmTJubZZ581jz76qClTpoxp3LixxyDDvHnzvD4MkDsJcPjw4ebVV181vXr1MpLMggUL/Pnzoxj54osvTGhoqKlSpYp54oknzOzZs02PHj2MJHP77bd7rFuU7cWQIUNMhw4dzGOPPWZeeeUV8+CDD5r4+HgTERGRr79zpty6mzeRyrv8XNZpFD+zZs0ykydPNiNHjjSSTL9+/dzXWqe+xl9ZrgJpK6Kjo82QIUPMM888Y2bPnm1uuOEG43K5TMuWLb1ONswrN4fI+9Bs3uXkFqXLrFmzjCTzySefFLhOcci5vSmo/iYlJZm2bduaJ5980rz22mvmnnvuMdHR0aZVq1b5Xppw22235ZsIm5WVZS699FITFxdnHn/8cTN79mzTvHlzU6ZMGbNlyxaf54Tg5W95O3HihKldu7YJCQkx06ZNy7fe119/7RH3XOetuS8qaNSokdfj3Ldvn3vd1q1bm759+5opU6aYV1991Tz88MOmVq1aJiQkxONmozHGdOvWzUgy1113nXnppZfMI488YipUqGBiY2M9yraNuo7i529/+5uRZAYOHGhmz55tBgwYYCSZBx54wGO9c51bGGPMjz/+6O7HNWnSxJQvX979/x9++KHHuk888YSRZLp162Zmz55thg8fblwul7nhhhs81hs3bpwZPny4mTNnjnn++efNJZdcYlwul3nzzTc91iO3QK5A84uLLrrI1KhRw+M+QF7FKb/48MMP3ecaERFhWrVq5f7/vPk9Y1Glx7XXXmuuuOIK89hjj5lXX33VTJ482TRt2tRIMs8884zHurfffruRZLp06WJmzZplpk6damrVqmVCQ0M9csyirhPeSPKYOJTrvPPOM4888oh57bXXzEMPPWQqVqxo6tata3bt2uWxHjk3ClLQ/e+i7EcFkjfv2LHDxMfHmwYNGpgXXnjBTJ061VSoUMFccMEFHg+b0I9CQYrqPrcxdnKLomzrUHIUh+c/vLnttttMbGxsvuMpynE0lAyB5Bznekw/kDIcyLhtw4YNzYABA8xTTz1lXn75ZTN8+HATFhZmateu7bGeMcbUrVs334Pt/vbBULKVpH4U7QXOleLQj7I1blva6wWTLxwUNPhkjDGrV6827du3N1FRUaZy5cpm9OjR+QZ/Cro5bIwxr7zyimnSpImJiIgwDRo0MDNnzvR4G4HTMUkq8F+uo0ePmptvvtk0bNjQxMTEmMjISNO8eXMzdepUj9m2xhjz2Wefmd69e5saNWqY8PBwU6ZMGXPZZZeZefPm5TumggZrT506Ze6//35TrVo1ExkZadq0aeP4MA2KN3+/b2+NhjGn37bRv39/U7ZsWRMXF2d69+7t9ZcozpRbpwr6l7euBVKujTHm+PHjJioqyvTr18/xGLw1Gsb4d01AyfD888+btm3bmooVK5qwsDBTvXp1c/PNN+crwwcPHjTDhw83TZs2NbGxsSYiIsI0atTI3H333fkePi1owNOY028Qb9mypYmMjDS1atUykyZNyncd9yY3yS/oX97kP3f/3v55my2+YsUKc+mll5qoqChTsWJFc8stt5i9e/d6rFPQDe/s7GwzdepUU7duXRMREWGaN29u3n77bZ/ng+Jp7dq1pkePHqZatWomPDzcNG7c2EyZMsVkZmZ6rFeU7cXChQtNx44dTeXKlU1YWJipVKmSue6668yGDRt87ifQh+SNOfs6jeKnbt26fl2Dz/RXlqtA2orbb7/dNGvWzJQpU8aEh4ebhg0bmokTJ/rV3wl08gW5Rcl26aWXmipVqvh8y3Cw59zeFFR/jxw5Yq655hpTrVo1ExERYRISEgqsP95u1OTGGDZsmImPjzcxMTGmU6dOHm9BQfHkb3lz6q97axvOdd6ae70u6F/e6/iLL75oLr/8clOpUiUTFhZmKleubPr06WO+/PLLfHFTU1PNE088YZo1a2aio6NNuXLlTO/evc3GjRs91rNR11H8ZGRkmMcee8zUrVvX3ReZOXNmvvXOdW5hzP/lt/7Uv5ycHDNr1izTuHFjEx4ebmrXru21bzZv3jzTokULExsba8qUKWOuvPJKj18Iy0VugVyB5Bdbtmwxksy9995bYLzilF84xc077sRYVOnxzjvvmK5du5qqVauasLAwU6FCBdO1a1ezdOnSfOtmZmaaWbNmmZYtW5q4uDgTFxdnunTpku+aW9R1whvJ++SLwYMHm9q1a5uIiAhTo0YNM2LECK9v5iXnRkECmXxhzF/TjwokbzbGmJ9//tl0797dxMTEmPLly5ubbrop30OD9KNQkKK6z22MndyiKNs6lBzF4fkPb7xNvijqcTSUDIHkHOd6TD+QMhzIuO1DDz1kWrZsacqVK2fCw8NNnTp1zMiRI/P1oYzxPvnCGP/6YCjZSlI/ivYC50px6EfZGrct7fXCZYwxAgAAAAAAAAAAAAAAAAAAAAAAgFchRX0AAAAAAAAAAAAAAAAAAAAAAAAAwYzJFwAAAAAAAAAAAAAAAAAAAAAAAA6YfAEAAAAAAAAAAAAAAAAAAAAAAOCAyRcAAAAAAAAAAAAAAAAAAAAAAAAOmHwBAAAAAAAAAAAAAAAAAAAAAADggMkXAAAAAAAAAAAAAAAAAAAAAAAADph8AQAAAAAAAAAAAAAAAAAAAAAA4CCsqHbc9JGZ1mK7cqyFloy90KHp9mJnxtmLHZJlL7bNv3filHvsBT8LdV+ZUdSHEHRcGS5rsU2kxQuFsXfcNm0fPr6oDyGf8ybZayuyI62FVk6EvYtXaFrxLF854fb+JuHJ9v4mm6cGV1shSQ2eftZabBNqseHNsfc9ubKthZYsVjlTTKdBb7vv3qI+hHwaPmWvXtjsj+ZE2gseccReAcssY++4beYWOeH2Yv8xPvjqxcVD7dWLrGhroRWeai92ajV7F/Wog/bqhc2ya3McYv284KoX9Z99pqgP4ayEZNortzbzFpv9nBCbYwUWjzsY+1A9vxxnLXZcuL0LTHKmvYT+aJq9Rq52mWPWYtv8m9j8Lt9vN9da7LPVcHrxzC1s5q6Z5e0l3eFHQq3Fdln8e9sc/v3978HXXpz3kL0xWpsijtuLnVzHYj5/3GIBsxna4i2XYByjbfbvx6zFjgizNziSmW3vuhseaq+9yMqx11G3edyn0iOsxd7S71Frsc/G0O+GWosdFmLzBoA9lSOSrcU+mGHv4Y+MHHuPEEWHZlqL/fJFb1mLfbbqvfi0veAWO6Q2x+izK9orA0qzmFtkW/x7W7z3v+3e+6zFPlv13pxmL7jFJNBk2CtfNo/bFWbxb2JzjMPiNW77kInWYp+t8T8OKOpDCDqhspdgplvs64SF2Hxo2Z4ZLf5V1IeQT91Xp9sLbnNgL9Ji7mLzuNNs3tSzF1oR9uqcP+1FMX3kCwAAAAAAAAAAAAAAAAAAAAAA4K/B5AsAAAAAAAAAAAAAAAAAAAAAAAAHTL4AAAAAAAAAAAAAAAAAAAAAAABwwOQLAAAAAAAAAAAAAAAAAAAAAAAAB0y+AAAAAAAAAAAAAAAAAAAAAAAAcMDkCwAAAAAAAAAAAAAAAAAAAAAAAAdMvgAAAAAAAAAAAAAAAAAAAAAAAHDA5AsAAAAAAAAAAAAAAAAAAAAAAAAHTL4AAAAAAAAAAAAAAAAAAAAAAABwwOQLAAAAAAAAAAAAAAAAAAAAAAAAB0y+AAAAAAAAAAAAAAAAAAAAAAAAcMDkCwAAAAAAAAAAAAAAAAAAAAAAAAdMvgAAAAAAAAAAAAAAAAAAAAAAAHDA5AsAAAAAAAAAAAAAAAAAAAAAAAAHTL4AAAAAAAAAAAAAAAAAAAAAAABwwOQLAAAAAAAAAAAAAAAAAAAAAAAAB0y+AAAAAAAAAAAAAAAAAAAAAAAAcMDkCwAAAAAAAAAAAAAAAAAAAAAAAAdMvgAAAAAAAAAAAAAAAAAAAAAAAHDA5AsAAAAAAAAAAAAAAAAAAAAAAAAHTL4AAAAAAAAAAAAAAAAAAAAAAABwEFZUO3blFNWeCycrxliLfaqmvT9KzM5Qa7GzYu39TUIyXdZilyph9spWyAl7l5HQGqnWYmfvjbEWOycu21psZZWuOmEsThEMybIXu+w2e7Gzou1dc1Or2ytf4cn2YmdHWgsdlIzNy0COveAhNi+NFuuFXPZihyXbu8jlhFsLHZxs1guLsSMP2ysDqXXsNXQRB+3lFsZihlpcc9CzlRNhL7bNv6Ur2951t8aXKdZiHzkv1lpsm2yWk6BjsRNls5+TWd5e8LAT9q7n4Sn2/t7p8fYuQqHppSvnDrHY1z2WHm0tdliIvTJwW91vrcX+I62Ktdi/HK9uLXZGtr1rRTAKybAXOzvKXuyIo/auX1XW2Yt9+AKL40URFscKeK3ZOWOzH5VSy14ZqPiLtdBKi7cXO9Ni2mLzuwxGIRb7Iymn7A14x0anW4t9dF9Za7FD4zKtxY6Kshc7NLT0DEaFFdOLwO7U8tZif7OnnrXY7WokWYttU3p2kT2eVDQsplIhqRb70RXsXRdjf7XXxtnMt9Kq2LvfYsJK11iUTSbV3jWmYq1j1mKnZ9q7qXtqexlrsU15e9cKVynqQ0lSqOydb3qOvXpRP/qgtdiJKTWsxW4Ss89a7F9Tq1mLHR+RbC12ULI59mYxdQmx+Ixu5K/27rlknW+vfGUes9hJyyjaQVqGiAEAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPkCAAAAAAAAAAAAAAAAAAAAAADAAZMvAAAAAAAAAAAAAAAAAAAAAAAAHDD5AgAAAAAAAAAAAAAAAAAAAAAAwAGTLwAAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPkCAAAAAAAAAAAAAAAAAAAAAADAAZMvAAAAAAAAAAAAAAAAAAAAAAAAHDD5AgAAAAAAAAAAAAAAAAAAAAAAwAGTLwAAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPkCAAAAAAAAAAAAAAAAAAAAAADAAZMvAAAAAAAAAAAAAAAAAAAAAAAAHDD5AgAAAAAAAAAAAAAAAAAAAAAAwAGTLwAAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPkCAAAAAAAAAAAAAAAAAAAAAADAQVhRH0BxE3nUZS12vUfXW4ud9Hhba7Fj9tv7m6RVtBa6VHGdCrUWOyc221rsKh/GWIt9uG+qtdjaa++4c2Ls/b2DUXa0sRY7Zre9a9fJ3snWYk+84FNrsf/VzV5b8dvo2tZih6Tb+y6DkctetVB2VI612JH77LVFIRnWQisk095c5VM1s6zFDjtu7+8djCxWC4VaLF+66Li10HXmxVqLvedya6Flwu19myEZpau9sCk8xd73lB1p73v69IM3rcVuf+8Ia7EzQuz9TWz2K4KNzet5RtVMa7GrrrI3dLe/s72+iKlt728S8Xu0tdiZZUpRpZAUEWKvDNiM/ePXjazFXjxxr7XYBz9sYi12t9q/Wov949Ga1mIHo+woe7HDUu216VHtD1mL/dXY963FTvj3cGuxw07Yy4tLW2Zhsx+VUtPeWFST145Yi3394i+txZ6yrqe12BW/iLQW+1SV0lUzcnLsjRlWKmfv/sKepErWYndv/ZO12BsP1rIWOyvb3nfpKkVJd1aOvXY3MtRebhETZq+Rm37+B9Ziv7DzSmuxLyi/x1rsA+llrMUORiFp9trG7DL2nhmotCbcWux1U+ZYi93m+4HWYmudvfYzraq9a1xQSrE31lk14bC12Me/rWIttsteSqTwC09ai51xwN5zUa5yNm/OBp/Dmfbu6XYpt8Va7Gd/72ot9qgGX1iL/VqSvRvd/Wr9YC32tlOVrcUOSqEWcymLeVpouL0+Wo/rvrUW++Mll1qLbZrZe0Y3K8Vev9Uf/PIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADgIK6odh2Tai50VYy929H5jLfanuzZYi31VjWxrsX+feam12HE7Ss/8oNAUe+dat8Uea7Ej+x+3Fjv7mL3YX86wV9/aPDXWWuzkS9OsxQ5GIRkua7HDTtm7nl9Zb6u12EPKHrAWe0G9ytZiu7KshVZ4sr3YwSgs1V69iGxo749Zc9wv1mJ/uucHa7H7/d7NWuxfP25kLfapmvb6fsEo/KS9ehF68TFrsWuPOGQt9kcbF1iLfVWNltZin/i4gb3YX1a1FjsYZUfaqxeV1p+wFnve0rnWYj+4v7212GWSUq3FPtIs1lpsY6+YBJ2Mivbaxqr/sze89u2Ml63F7tltkLXY2b/8ai32n++0sBY7crO9+haMmpbZby32gvWXWIs9rMcqa7H/GdXZWux6L9pLjJ+a/4O12G12N7YWOxiFWhx6y4y1NxYV+XZFa7Gv6tPSWuytu1+yFvuqoXdai/1nv9Jz30KSwlLslV1T0d7NwuzN9sZoO8f8bi32sK7/tBa72+tDrcU+0SjKWuxgFBFmr13f+5u9cfo/r7eXc9scLzr4anlrsaMrnLIWOyTE3vUz2KRkR1iL3bLMTmuxn113lbXYxy8/bC32vrvqWYt906i11mIvPtnaWuxglB2TYy12+JFQa7EPXWJvDM1mWxHfKtxa7PRHj1qLnfVreWuxg5GJsdeHOvBHvLXY20bMsRbbZr04MMrePZGyvQ5ai31wZwVrsYNRuMteexFiMXZqur3+3ztNa1iL/dWeD6zFvvHPLtZiNyuz11rsYOQKtVd2o/60N36xeeRr1mLbbC9OvZZhLbZS7PXRlFm0N7pL1wgxAAAAAAAAAAAAAAAAAAAAAABAgJh8AQAAAAAAAAAAAAAAAAAAAAAA4IDJFwAAAAAAAAAAAAAAAAAAAAAAAA6YfAEAAAAAAAAAAAAAAAAAAAAAAOCAyRcAAAAAAAAAAAAAAAAAAAAAAAAOmHwBAAAAAAAAAAAAAAAAAAAAAADggMkXAAAAAAAAAAAAAAAAAAAAAAAADsLOZqPDhw9r06ZNatGihSpWrKhDhw7p9ddfV3p6ugYMGKDzzjvvXB8nAAAAAAAAAAAAAAAAAAAAAABAkQh48sV3332n7t2768SJEypfvrxWrFihAQMGKCwsTDk5OZo2bZq++uortW7d2sbxAgAAAAAAAAAAAAAAAAAAAAAA/KVCAt3goYce0oABA3T8+HE9+OCDuvbaa3XllVdq69at+v333zV48GBNnjzZxrECAAAAAAAAAAAAAAAAAAAAAAD85QKefLFhwwbde++9KlOmjO666y7t2bNHd9xxh/vzMWPGaN26def0IAEAAAAAAAAAAAAAAAAAAAAAAIpKwJMvMjIyFB0dLUkKDw9XTEyMKlWq5P68UqVKOnz48Lk7QgAAAAAAAAAAAAAAAAAAAAAAgCIU8OSL2rVra9u2be7/f/fdd1W9enX3/+/du9djMgYAAAAAAAAAAAAAAAAAAAAAAEBxFhboBoMHD9aBAwfc/9+rVy+Pzz/88EO1bdu28EcGAAAAAAAAAAAAAAAAAAAAAAAQBAKefPHoo486fv7QQw8pNDT0rA8IAAAAAAAAAAAAAAAAAAAAAAAgmISc64CHDx/WyJEjz3VYAAAAAAAAAAAAAAAAAAAAAACAInHOJ18cOXJEb7zxxrkOCwAAAAAAAAAAAAAAAAAAAAAAUCTCAt3gww8/dPx827ZtZ30wAAAAAAAAAAAAAAAAAAAAAAAAwSbgyRfXXnutXC6XjDEFruNyuQp1UAAAAAAAAAAAAAAAAAAAAAAAAMEiJNANqlevrg8++EA5OTle/33//fc2jhMAAAAAAAAAAAAAAAAAAAAAAKBIBDz54qKLLtKGDRsK/NzXr2IAAAAAAAAAAAAAAAAAAAAAAAAUJ2GBbjB+/HilpKQU+HnDhg21atWqQh0UAAAAAAAAAAAAAAAAAAAAAABAsAh48kWHDh0cP4+NjVWnTp18xsmKDnTP/gtNsxf7VFWXtditpo6yFjvsb/Z+jSSs4Lk4hWaznASb7DLZ1mJv+72atdh6uoq10H/2fM1a7Is23GAt9vHzsqzF1okIe7GDUHiyvdhHrrDXWPzWJt1a7F7VrrIWe8SXi63FfubhG63FPtjaWuiglFkmx1rsrK1lrcXe+trF1mI3m9PeWuyM8vb+3qaKvdihKQH/wF2xlhVnr6+b/Us5a7F/u9de7F6X9LYWe/fEOtZiZ/xo8VcUy5SuX2gMP2nvfHdeba/sDqlzubXYf757obXY5SbZ61tGvW4vMU6pWnraC1eWvfGc4w3s/R2bfnWLtdhZQ+KsxQ7JamctduZRe+MnOeXs9c+CUVJqvLXYl5y3zVrsVQcaW4v99+4fWov9VduG1mL3/6Ortdi1yx61FjsYZUdZDB5ir39msy3aO6ettditn7eXz6f2tHdNDz9mr18RjE5Vs3e+lVfaG+8+9B977cWwEW2sxd5+jb2/d4VmodZih6WUrnqRcirSWuy42iesxW7w/ghrsRdsm20t9q1rW1iLHRWRaS32qfTSc0+vYkSqtdhrjydYi92i+XZrsY9cY68P9cl9063F7r/5Vmux21TeYS12MHJl2OujuywOX7ii7T3rENq8ibXYO6+0N2advN9eWxHwQ3vFXFikvXG9kF322t33k+2Vr9gvK1uLfeJ7exeLkOOx1mIrrHSN0daNPmQt9sK9l1qL/dHFc63F7nf7eGuxH9xvr3xVjzpuLXZqdunJLSTJpNprIU/VsteuJyy/w1rsxlpnLXbZn+yVrxMt7T1DqZyivc9deu6yAwAAAAAAAAAAAAAAAAAAAAAAnAUmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4CCuqHYdk2oudE24vdmi6vdhpFe3FViWXtdA2/yalSpa970hhxlrokBP2LiPnzR1lLXZ65WxrsS1+kzIWv8tglFHO3vnGbIq2FnvrPy+2Fjtyl71G7h/T61uLndzMXs0IP2ktdFByZdv7W+ZE2atzEfvtld2MCjnWYudE2vubhCXbmwedE1662guXvWbdam4RkmUv9p4X46zFTv/VYt/SYp5obHbSSpmow/bKwIEx7a3FjvvC3nHHJkVai51cy157EWLx+hlsQlPt/R0z4+yVrfBfyliLHX3KWmidqmqvfxZ6yt536copXY3FwVP2+guNyh60Fnvr4crWYj+14Sprsa9otNVa7FRrkUufsBR714GsGGuhlW2vK6Iq34Zai328gbXQijhir73Iji5dOXdomr3YJ+vYq3MV3rJ3023v5faOu/wme7FP2WtCFWaxbxmMYqIyrMXOzLZ33a3e9IC12DctHW0tdky9E9ZiZ2TZu88ZHWmvnASbU9n2BlHLhttriMItDoz8+6VXrMXulniDtdiXV91mLfaBdHtjHMHIRNkrX5lhFt+zm2yvPh+ZYe9vknLQYqf1lL22IqtMKRqglZSVavExxer2bjA99O8brcW2WQZC4u090Jd10uIN1Ah7Y8vB6GhmrLXYDeLsjdFO2t3TWuy1j8+2Fvv1E7Wsxf4jrYq12Ok5RfaYd9EIsTj2ZvE+UFgZezlgua/ircX+7XeLD4BnWuy3FvEDIPzyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4CCuqHZtQe7Fd2fZiZ0fZix2SZS82igGbU6FyXPZCx+RYi51ZLc1abHM8wlpshRh7sS1+l8EoJNPe+WZHWgutMr/YK182j/tYE3tlN+K4tdBy2bsMlTohGRbrXJS98uXKtnfcoan2Yhubbb/FpigY2cwtbPbRcywed9aaitZiu8rbK2DGZlenlL16wGafwWbOHXnUXsOeE2avgB2vH24tdkimvToXkmktdPAppqlUZll7dSKtur3Y4cfsNXI22woTVro6UWUi7I277EitYC12s0r7rcUuX/2UtdhhIfYa0L2nylqLHReebi12MMqKsZm7WgutnHB7x32gvb0Djzhsr73Isdc9K3Vstr02x/WONbCXBNoc60y314Ra7f/nFNkd56KRmW3v+uVy2bumH0mOsRY7vvFha7GTT9kb5IiKsFcxTqVbvBcZZEIsDkinZ9u7wERYHPy9bFM/a7HbV/nTWuzdp8pbix0bVrpyC1eazYeiLI7RWxwbOfxTZWuxQywed3a0vU5r6KlSduPCanJhsQxUs3j9snifOyfZYmIczkMa50q6xWQqLMTe93RBmd3WYvfZ2tta7PPK7rMW2+bf22bsoFRMn6XJSrVXn39Y3dhabFPB4sB1aMm971bKenEAAAAAAAAAAAAAAAAAAAAAAACBYfIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAOXMcYU9UEAAAAAAAAAAAAAAAAAAAAAAAAEK375AgAAAAAAAAAAAAAAAAAAAAAAwAGTLwAAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPkCAAAAAAAAAAAAAAAAAAAAAADAAZMvAAAAAAAAAAAAAAAAAAAAAAAAHDD5AgAAAAAAAAAAAAAAAAAAAAAAwAGTLwAAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPkCAAAAAAAAAAAAAAAAAAAAAADAAZMvAAAAAAAAAAAAAAAAAAAAAAAAHDD5AgAAAAAAAAAAAAAAAAAAAAAAwAGTLwAAAAAAAAAAAAAAAAAAAAAAABww+QIAAAAAAAAAAAAAAAAAAAAAAMABky8AAAAAAAAAAAAAAAAAAAAAAAAcMPni/1u3bp3GjBmj5s2bKzY2VnXq1NHAgQO1detWr+u///77uvTSS1W+fHnFx8erU6dOWr58ud/7+/DDD9W6dWtFRUWpTp06evTRR5WVleVzuy1btmjChAlq2bKlypQpo+rVq6tXr15av359vnUfe+wxuVyufP+ioqIc9/HVV1+51z106JBf55Oenq6JEyeqRo0aio6O1iWXXKIVK1b4tS2Kn8J+37t379bAgQNVvnx5lS1bVtdcc422bdvmc7vU1FTNnj1b3bt3V/Xq1VWmTBm1atVKL730krKzsz3WTUpK8lr+XS6X3n33XY91X331VXXq1ElVq1ZVZGSkEhISNHToUCUlJfl9Tl9//bUuv/xyxcTEqFq1aho3bpySk5P93h7F15QpU+RyuXT++ec7rnfs2DFVqVJFLpdLixYt8jv+66+/rvPOO09RUVFq1KiRZs2a5dd2gbZriYmJuvrqqxUXF6eKFSvqlltu0cGDB/Ot9/vvv6t///6qUKGCYmJidPnll2vVqlV+n8+xY8c0fPhwVa5cWbGxserSpYu+//57v7dH8fHLL79owIABql+/vmJiYlSpUiV17NhR//nPf/yOcbblJScnR/Pnz1ffvn1Vu3ZtxcbG6vzzz9eTTz6ptLS0fOsX1F5MmzbNcT/dunWTy+XSmDFj/D4n2gv89ttvGjx4sGrVqqWYmBg1bdpUTzzxhFJTU/3aPtj6UXllZmaqWbNmcrlcevrpp/06H+nscyMUL0OGDCmwXLlcLu3evVtSYGXVCTk3iquS2If64IMPNGjQIPc5NWnSRPfdd5+OHTvm9zn5m6+gZEpOTtajjz6qq6++WhUrVpTL5dL8+fMDilGYXPS7777TqFGjdNFFFyk8PFwul8vrevPnz3ds6xYsWOBet169egWu16hRI7+Oi9wCjNHmR70oHQJpF/y9hjs523K1c+dOPf7442rbtq0qVKigSpUqqXPnzvr888/zrevUhuzbt6/Affzxxx+KioqSy+XymrN4k5OTo+nTpyshIUFRUVG68MIL9c477/i1LYJXIHmEU3+lW7dufu2vMGM5U6ZMUd++fVW1alW5XC499thjBa77+eefq0uXLqpUqZLKly+vtm3b6q233vL7nHyN7+Yi5y5diqoPJUmfffaZhg0bpvPPP1+hoaGqV69egevu3btXw4cPV0JCgqKjo9WgQQPde++9Onz4sHudQPP4gtCHQnHILc60YMECuVwuxcXF5fuM3ALnQnGoF3v27NHNN9+sJk2aqEyZMu7+0htvvCFjTL7Y/vatCkK9QHHoRxV07y7335o1a9zr0l6gMIryvkUgeUAg41OFOaZcpel+XlhRH0CweOqpp7RmzRoNGDBAF154ofbt26cXX3xRrVu31rfffuvxUO2sWbM0btw49erVS9OmTVNaWprmz5+v3r17a/HixerXr5/jvj7++GNde+216ty5s2bNmqWffvpJTz75pA4cOKCXXnrJcdvXXntNr7/+uq6//nqNGjVKx48f19y5c3XppZfqk08+UdeuXfNt89JLL3kkHKGhoQXGz8nJ0dixYxUbG6uUlBTHY8lryJAhWrRoke6++241atRI8+fPV8+ePbVq1SpdfvnlfsdB8VCY7zs5OVldunTR8ePH9eCDDyo8PFwzZ85Up06d9MMPPyg+Pr7Abbdt26axY8fqyiuv1L333quyZcvq008/1ahRo/Ttt9/qjTfeyLfNDTfcoJ49e3osa9euncf/b9y4UQkJCerbt68qVKigP//8U6+++qqWLVumH3/8UTVq1HA8px9++EFXXnmlzjvvPD377LPatWuXnn76af3222/6+OOPHbdF8bZr1y5NnTpVsbGxPtd95JFH/H6wNtfcuXM1YsQIXX/99br33nu1evVqjRs3TqmpqZo4caLjtoG0a7t27VLHjh1Vrlw5TZ06VcnJyXr66af1008/6bvvvlNERISk0x2ydu3aKTQ0VOPHj1dsbKzmzZun7t27a+XKlerYsaPjMeXk5KhXr1768ccfNX78eFWqVElz5sxR586dtWHDBr8fMEHxsH37dp08eVK33XabatSoodTUVC1evFh9+/bV3LlzNXz4cMftC1NeUlNTNXToUF166aUaMWKEqlSpom+++UaPPvqoVq5cqf/+97/5brZ369ZNt956q8eyVq1aFbiPDz74QN98840ff4n/Q3uBnTt3qm3btipXrpzGjBmjihUrusvmhg0btHTpUsftg7EfldesWbO0Y8cOH38FT4XJjVC83HnnnfnyVWOMRowYoXr16qlmzZqSzq6snomcG8VZSexDDR8+XDVq1NDNN9+sOnXq6KefftKLL76ojz76SN9//72io6Mdz8nffAUl16FDh/TEE0+oTp06atGihf73v/8FtH1hc9GPPvpIr732mi688ELVr1+/wJcadOzY0esN65kzZ+rHH3/UlVde6V723HPP5bsJt337dk2aNEndu3f3eU7kFpAYoz0T9aL0CKRd8PcaXpDClKulS5fqqaee0rXXXqvbbrtNWVlZevPNN9WtWzf985//1NChQ/Nt88QTTyghIcFjWfny5Qvcxz333KOwsDClp6f7fU4PPfSQpk2bpjvuuENt2rTR0qVLdeONN8rlcmnw4MF+x0FwCSSP8NZfWb9+vZ5//nm/+iGFHcuZNGmSqlWrplatWunTTz8tcL0PP/xQ1157rdq1a+d+gOr999/XrbfeqkOHDumee+7xWD/Q8d28yLlLl6LqQ0nSwoUL9d5776l169aOfZvk5GS1a9dOKSkpGjVqlGrXrq0ff/xRL774olatWqUNGzYoJCTkrPL4M9GHglS8covcfU6YMKHAe/TkFjgXikO9OHTokHbt2qX+/furTp06yszM1IoVKzRkyBD9+uuvmjp1qnvdQPtWZ6JeQCoe/ah+/fqpYcOG+ZY/+OCDSk5OVps2bdzLaC9QGEV53yKQPCCQ8anC3kspdffzDIwxxqxZs8akp6d7LNu6dauJjIw0N910k8fyRo0amTZt2picnBz3suPHj5u4uDjTt29fn/tq1qyZadGihcnMzHQve+ihh4zL5TKJiYmO265fv96cPHnSY9mhQ4dM5cqVzWWXXeax/NFHHzWSzMGDB30eU66XXnrJxMfHm7vuusvvbdeuXWskmRkzZriXnTp1yjRo0MC0a9fO732jeCjs9/3UU08ZSea7775zL0tMTDShoaHmgQcecNz24MGD5ueff863fOjQoUaS+e2339zL/vzzz3zHGYj169cbSeYf//iHz3V79Ohhqlevbo4fP+5e9uqrrxpJ5tNPPz2r/aN4GDRokLniiitMp06dTPPmzQtc76effjJhYWHmiSeeMJLMv/71L5+xU1NTTXx8vOnVq5fH8ptuusnExsaaI0eOOG4fSLs2cuRIEx0dbbZv3+5etmLFCiPJzJ07171s1KhRJiwszGzZssW9LCUlxdSuXdu0bt3a5zm99957+c7/wIEDpnz58uaGG27wuT2Kv6ysLNOiRQvTpEkTn+sWprykp6ebNWvW5Fv++OOPG0lmxYoVHsslmdGjR/t5FqfbvXr16rnrtL/b0l5gypQpRlK+/sytt95qJPm8tgdzP2r//v2mXLly7nrh77aFyY1Q/K1evdpIMlOmTHEvC6SsFoScGyVNce9DrVq1Kt+yN954w0gyr776qs/t/c1XUHKlpaWZvXv3GmOMWbdunZFk5s2b5/f2hc1F9+3bZ1JTU40xxowePdoEMqSemppqypQpY7p16+Zz3cmTJxtJXuvhmcgtwBhtftSL0iOQdqEw13BjCleufv7553z9/bS0NNO0aVNTq1Ytj+Xz5s0zksy6dev8PrZPPvnEREREmEmTJvm97a5du0x4eLhHHy4nJ8d06NDB1KpVy2RlZfm9fwS/QPKIYcOGGZfLZXbu3Olz3cKO5fz555/GmNPtiSTz6KOPel2vW7dupkaNGiYtLc29LDMz0zRo0MBceOGFHusGOr6bFzl36VKUfShjjNm9e7fJyMgwxhjTq1cvU7duXa/rLViwwEgyy5Yt81j+yCOPGEnm+++/N8YEnsd7Qx8KxSW3yGvixImmSZMm7vvm/iC3QCCKY73Iq3fv3iY2Ntajfx9I38ob6gWKSz/Kmx07dhiXy2XuuOMOn+vSXsBfRXnfIpA8IJDxqcLeSylt9/NCzm7KRsnTvn37fDNrGjVqpObNmysxMdFj+YkTJ1SlShWPtwSULVtWcXFxPt/Wt3nzZm3evFnDhw9XWNj//fDIqFGjZIzRokWLHLe/6KKL8v1sXnx8vDp06JDvOHMZY3TixAmvPymW15EjRzRp0iQ98cQTjm/SOdOiRYsUGhrq8daUqKgoDRs2TN9884127tzpdywEv8J+34sWLVKbNm08ZpI2bdpUV155pd5//33HbStVqqTmzZvnW37ddddJUoF1ICUlRRkZGY6xz5T782THjh1zXO/EiRNasWKFbr75ZpUtW9a9/NZbb1VcXJzPc0Lx9eWXX2rRokV67rnnfK5711136brrrlOHDh38jr9q1SodPnxYo0aN8lg+evRopaSkaPny5Y7bB9KuLV68WL1791adOnXcy7p27arGjRt7lOHVq1erVatWatKkiXtZTEyM+vbtq++//16//fab4zEtWrRIVatW9fiFqMqVK2vgwIFaunRpQG9oQ/EUGhqq2rVr+7y2SoUrLxEREWrfvn2+5b7ai1OnTvn1U9zTp09XTk6O7r//fp/r5qK9gHS6HEhS1apVPZZXr15dISEhPmf6B3M/6u9//7uaNGmim2++2ee6uQqbG6H4W7hwoVwul2688Ub3srMtq7nIuVESFfc+VOfOnQOOmZe/+QpKrsjISFWrVu2sty9sLlq1alWfY74F+c9//qOTJ0/qpptu8rnuwoULlZCQ4LUe5kVuAYkx2jNRL0qXQNqFwlzDC1uumjdvrkqVKnksi4yMVM+ePbVr1y6dPHnS63YnT55Udna2Y+zMzEzddddduuuuu9SgQQM/z+j02w4zMzM9xpxdLpdGjhypXbt2Bfwrrwhu/uYR6enpWrx4sTp16qRatWo5rnsuxnJyr+2+nDhxQhUqVFBkZKR7WVhYmCpVqlRgvfZ3fDcvcu7SpSj7UJJUo0YNhYeH+1zPaRxZkrsOnG0en3c/9KFQ3HKL3377TTNnztSzzz7r0Rb5Qm6BQBS3enGmevXqKTU11SMHP5u+Vd5tqRcoLv0ob9555x0ZY/wao6W9gL+K8r5FIHlAIONThb2XUtru5zH5woExRvv3789X+Dp37qxPPvlEs2bNUlJSkrZs2aLRo0fr+PHjuuuuuxxjbty4UZJ08cUXeyyvUaOGatWq5f48UPv27ct3nLnq16+vcuXKqUyZMrr55pu1f/9+r+s9/PDDqlatmu68886A9r1x40Y1btzYoyGRpLZt20o6/RNLKDkK833n5ORo06ZN+cp/7vZ//PFHgTccnOzbt0+SvNaBxx9/XHFxcYqKilKbNm302WefFRjn8OHDOnDggNavX+/+SaUrr7zScd8//fSTsrKy8p1TRESEWrZsedZ1GsEtOztbY8eO1e23364LLrjAcd1//etf+vrrrzV9+vSA9lFQe3HRRRcpJCTkrMqWt3Zt9+7dOnDgQIH1Mu9+0tPTvSbeMTExkqQNGzY47n/jxo1q3bq1QkI8ux9t27ZVamqqtm7dGtD5oHhISUnRoUOH9Mcff2jmzJn6+OOPfV5bJTvlxam9mD9/vmJjYxUdHa1mzZpp4cKFXmPs2LFD06ZN01NPPRXQzXvaC0j/9/DpsGHD9MMPP2jnzp1677339NJLL2ncuHEF/kS2FNz9qO+++05vvPGGnnvuOZ8/Y5+XrdwIxUNmZqbef/99tW/f3q8HL5zKal7k3CgpSlofKpCYeQWSrwAFKcpcdMGCBYqOjva4WVHQMSYmJnpMSCwIuQUkxmjPRL2ADbbK1b59+xQTE+MeU82rS5cuKlu2rPuFNwW97Oa5557T0aNHNWnSpID2vXHjRsXGxuq8887zWJ577aCuFH9nk0d89NFHOnbsmF8PIv2VYzmdO3fWL7/8oocffli///67/vjjD02ePFnr16/XhAkT8q1/trkJOXfpEox9KG86duyokJAQ3XXXXfr222+1a9cuffTRR5oyZYquvfZaNW3a1HF7f3Nu+lCQgrNeOJXhu+++W126dFHPnj19xiG3wNkqbvXi1KlTOnTokJKSkvTGG29o3rx5ateunce97ED7VnlRLyAFZ73w14IFC1S7dm117NjR6+e0FygKf/X9PG/rnjk+VZhjKo338/yfBlwKLViwQLt379YTTzzhsfyFF17QoUOHNG7cOI0bN07S6QK7cuVKtWvXzjHm3r17Jf3fWwnyql69uvbs2RPwca5evVrffPNNvkHWChUqaMyYMWrXrp0iIyO1evVqzZ49W999953Wr1/v0Rhu2rRJc+fO1UcffaTQ0NCA9r93794Cz0fSWZ0Tgldhvu8jR44oPT3d5/Z536rvS0ZGhp577jklJCR4zI4NCQlR9+7ddd1116lmzZratm2bnn32WfXo0UMffvihevXqlS9WzZo13TP04uPj9cILL6hbt26O+/dVp1evXu33uaD4ePnll7V9+3Z9/vnnjuudOnVK999/v+655x7Vq1dPSUlJfu9j7969Cg0NVZUqVTyWR0REKD4+/qyurd7aNV9lOLfeRkZGqkmTJlq9erVOnjypMmXKuNf76quvJJ3uSPk6J2/JTN7672syC4qf++67T3PnzpV0+trcr18/vfjiiz63s1Fepk+frrJly6pHjx4ey9u3b6+BAwcqISFBe/bs0ezZs3XTTTfp+PHjGjlyZL7zadWqlQYPHhzQvmkvIElXX321Jk+erKlTp+rDDz90L3/ooYf05JNPOm4brP0oY4zGjh2rQYMGqV27dgG3dXmP/8xzIo8o2T799FMdPnzYr4c7Ciqr3pBzo6QoaX2oMz311FMKDQ1V//79fZ5P3uPP68x8BShIUeWiR44c0SeffKJrr73WI4f2ZsGCBZLkV7tIbgGJMdozUS9gg41y9fvvv+uDDz7QgAEDPPKCmJgYDRkyxD35YsOGDXr22WfVvn17ff/996pdu7Z73X379mny5Ml6+umn8z304s85Va1aNd+LE8gtSo6zySMWLFigyMhIn31z6a8dy3n44Yf1559/asqUKe5xs5iYGC1evFjXXHONx7qFyU3IuUuXYOtDFaRZs2Z65ZVXdP/993s8f3Lbbbfptdde87l9QXn8mehDQQq+euE0Frx8+XJ99tln+vHHH/2KRW6Bs1Wc6oUkPf/883rggQfc/3/llVdq3rx5HusE0rc6E/UCUvDVC3/98ssv2rRpkyZMmFDgSwRpL1AU/sr7eWcqaHyqMMdUGu/nMfmiALm/ZtGuXTvddtttHp/FxMSoSZMmqlWrlnr37q2TJ09q5syZ6tevn1avXq2GDRsWGPfUqVOS5LUQRUVFuX9C0l8HDhzQjTfeqISEhHwzUc/8FY7rr79ebdu21U033aQ5c+bo73//u/uzcePGqUePHurevXtA+5dOn1NB55P7OUqOwnzfvsq/r+29GTNmjDZv3qzly5d7/KxknTp19Omnn3qse8stt6hZs2a67777vN7Y+/jjj5WWlqbExES9/fbbSklJ8bl/X+dE+S95Dh8+rEceeUQPP/ywKleu7LjutGnTlJmZqQcffDDg/Zw6dUoRERFePzubslVQu+ZvvYyMjNTIkSP1n//8R4MGDdKUKVMUGxurOXPmaP369R6xnM6J9qL0ufvuu9W/f3/t2bNH77//vrKzsz1+4rQg57q8TJ06VZ9//rnmzJmj8uXLe3y2Zs0aj///29/+posuukgPPvighgwZ4n4ryKpVq7R48WKtXbs2oH3nPV7aC9SrV08dO3bU9ddfr/j4eC1fvlxTp05VtWrVNGbMmAK3C9Z+1Pz58/XTTz9p0aJFAe077/Geq9wIxcvChQsVHh6ugQMH+ly3oLLqDTk3SoqS1Ic608KFC/X6669rwoQJatSokeP+A8lXgIIU1XV00aJFysjI8DmhIicnR++++65atWqV703k3pBbQGKMNtBzol7gbJzrcpWamqoBAwYoOjpa06ZN8/hs4MCBHrnRtddeq6uuukodO3bUlClT9PLLL7s/mzhxourXr6/bb789oP1L5BalQaB5xIkTJ7R8+XL17NkzX3/fm79yLCcyMlKNGzdW//791a9fP2VnZ+uVV17RzTffrBUrVujSSy91r3u2uYlEvShtgq0P5aRmzZpq27atevbsqbp162r16tV64YUXVKlSJT399NMFbueUx5+JPhSk4KsXBeUWGRkZuueeezRixAg1a9bMr1jkFjhbxaVe5Lrhhht08cUX6+DBg1q2bJn279+fbx+B9K0CPSfqRekQbPXCX/689Ib2AkXhr7yfl5fT+NRfUc9L0v08Jl94sW/fPvXq1UvlypXTokWL8r2VcsCAAQoLC9N//vMf97JrrrlGjRo10kMPPaT33nuvwNi5gzu5s+XySktLcxz8OVNKSop78sdXX32luLg4n9vceOONuu+++/T555+7HwR577339PXXX+vnn3/2e995RUdHF3g+uZ+j5CjM9+2r/Pva/kwzZszQq6++qsmTJ/v1s5IVK1bU0KFDNW3aNO3atUu1atXy+LxLly6SpB49euiaa67R+eefr7i4OMcHIc9lnUbxMGnSJFWsWFFjx451XC8pKUkzZszQ7Nmz/bo+nyk6OrrAmyKBli2ndi2QetmjRw/NmjVLf//739W6dWtJUsOGDTVlyhRNmDDB53nSXpROTZs2df8E9q233qru3burT58+Wrt2bYFvFpDObXl57733NGnSJA0bNsznm86k078wM2bMGI0YMUIbNmzQ5ZdfrqysLI0bN0633HKLz7eue0N7AUl69913NXz4cG3dutXdD+nXr59ycnI0ceJE3XDDDYqPj/e6bTD2o06cOKEHHnhA48eP93gLp7+oF6VXcnKyli5dqquuuqrAMp8r0LJKzo2SoqT0oc60evVqDRs2TFdddZWmTJniM+a5bv9QOhXVdXTBggWqWLGiz7dMffHFF9q9e7fuuecev+LSh4LEGG2g50S9wNk4l+UqOztbgwcP1ubNm/Xxxx+rRo0aPre5/PLLdckll3j8+vK3336rt956SytXrlRISIjf+89FblHyBZpHLF68WGlpaX79+pb0115vx4wZo2+//Vbff/+9u7wPHDhQzZs311133eX4ghx/cpNc1IvSJZj6UE7WrFmj3r1769tvv9XFF18s6fTEvLJly+rxxx/X3/72N68Pnweax9OHghRc9cIpt5g5c6YOHTqkxx9/3O945BY4W8WlXuSqW7eu6tatK+n0RIzhw4era9eu+vXXX937KkzfinoBKbjqhb+MMVq4cKHOP/98XXjhhQWuR3uBolAU9/N8jU8Vx3pelAIfmSvhjh8/rh49eujYsWP65JNP8hWwbdu26ZNPPlHfvn09llesWFGXX355vjdrnCn3Z1Vyf2Ylr7179/o14CqdntXdr18/bdq0SUuXLtX555/v13aSVLt2bR05csT9/+PHj9eAAQMUERGhpKQkJSUl6dixY5KknTt3+vw51erVqxd4PpL8PicUD4X5vitWrKjIyMhzUl7mz5+viRMnasSIEZo0aZJf20hyPxiYtw5406BBA7Vq1co9A7Yg56pOo3j47bff9Morr2jcuHHas2eP+5qZlpamzMxMJSUlucvWI488opo1a6pz587u9fbt2ydJOnjwoJKSkpSTk1PgvqpXr67s7GwdOHDAY3lGRoYOHz7sd9ny1a75KsO59TbXmDFjtH//fn399ddav369tmzZonLlykmSGjdu7HgstBeQpP79+2vdunXaunWr43rnqrysWLFCt956q3r16uXxlkBfzmwv3nzzTf3666+688473XU6KSlJknTy5EklJSUpNTXV8XzyHv+Z50T5Lx3mzJmjVq1a5Xu4qG/fvkpNTdXGjRsL3DYY+1FPP/20MjIyNGjQIHed2LVrlyTp6NGjSkpKcny7IvWi9Pr3v/+t1NRUnw93nE1ZJedGSVVc+1B5/fjjj+rbt6/OP/98LVq0yOcv2UiB5yuAN0VxHd2xY4dWr16tAQMGKDw83HHdBQsWKCQkRDfccINfselDQWKM9kzUC9hwLsvVHXfcoWXLlmn+/Pm64oor/N7uzNxiwoQJ6tChgxISEty5xaFDh9zHtGPHDsd41atX1759+2SMyXc+ErlFSeQrj1iwYIHKlSun3r17+xXvr7reZmRk6PXXX1evXr08JhqFh4erR48eWr9+vc9fBvS3rSHnLl2CpQ/ly9y5c1W1alX3xItcffv2lTFGX3/9db5tziaPpw8FKXjqhVNucfz4cT355JO64447dOLECXc/KDk5WcYYJSUl5bunfiZyCwSiONQLJ/3799fOnTv15ZdfSip834p6ASl46kUg1qxZo+3bt/s92VyivcBfpyju5/kanyrMMZXG+3lMvsgjLS1Nffr00datW7Vs2TKvbwvYv3+/pNOzgM6UmZmprKwsx320bNlSkrR+/XqP5Xv27NGuXbvcnzvJycnRrbfeqpUrV2rhwoXq1KmTz21y5SYelStXdi/buXOnFi5cqISEBPe/559/XpLUunVrn2+ratmypbZu3Zrvp2RzZ8X6c04oPgrzfYeEhOiCCy7IV/5zt69fv77KlCnj8xiWLl2q22+/Xf369dPs2bMDOv5t27ZJkkcdKMipU6d0/Phxx3XOP/98hYWF5TunjIwM/fDDD5T/Emb37t3KycnRuHHjPK6Za9eu1datW5WQkKAnnnhC0ukHLX7//XfVr1/fvV7ugxSjRo1SQkKC409wF9RerF+/Xjk5OX6VLX/atZo1a6py5cpe6+V3333ndT+xsbFq166dLrroIoWGhurzzz9XdHS0LrvsMsfjadmypb7//vt8k07Wrl2rmJgYn5M3UDLk/tScr+vruSgva9eu1XXXXaeLL75Y77//vl8P+OU6s73YsWOHMjMzddlll3nUf+n0xIyEhAR99tlnBcajvYB0OpcoKI+Q5JhLBGM/aseOHTp69KiaN2/urhMdOnSQdPpnLRMSErR58+YC452L3AjF04IFCxQXF5fvpQZ5nW1ZJedGSVVc+1C5/vjjD1199dWqUqWKPvroI79/HfBs8hXgTEWRi77zzjsyxvi8sZeenq7Fixerc+fOft9MIbeAxBjtmagXsOFclavx48dr3rx5mjlzpt8T7XJt27bNo57s2LFDX375pUduMX78eEmnH8h1epOndPrakJqaqsTERI/l5BYll1MesXfvXq1atUrXX3+93w9A/FVjOYcPH1ZWVlaB42g5OTleP8vL37aGnLt0CYY+lD8CHUc+2zyePhSk4KgXvnKLo0ePKjk5WdOnT/foBy1evFipqalKSEjQ8OHDfe6H3AL+Kg71wsmZfcDC9q2oF5CCo14EasGCBXK5XLrxxhsD2o72An+Fv/p+nj/jU4U5plJ5P8/AGGNMVlaW6du3rwkLCzPLly8vcL0DBw6YkJAQ07lzZ5OTk+NevnPnThMXF2euvvpq97KMjAyTmJho9uzZ4xGjadOmpkWLFiYrK8u9bNKkScblcpnNmzf7PNZRo0YZSWbu3LmO6x04cCDfstmzZxtJ5tlnn3UvW7JkSb5/gwYNMpLMm2++af773/+61z148KBJTEw0KSkp7mXffvutkWRmzJjhXpaWlmYaNmxoLrnkEp/ng+IlkO97+/btJjEx0WPZtGnTjCSzbt0697ItW7aY0NBQM3HiRJ/7/+KLL0xUVJTp0qWLSUtLK3A9b+V/165dpkKFCubCCy90L8vMzDRHjhzJt+7atWtNaGioueWWWzyWJyYmmu3bt3ssu/rqq0316tXNiRMn3Mtee+01I8l8/PHHPs8JxcfBgwe9XjObN29u6tSpY5YsWWI2bdpkjDFm9erV+dabPHmykWQmTJhglixZYjIyMowxxqSkpJjExERz8OBB975SU1NNxYoVTe/evT2O4eabbzYxMTHm8OHDjsfqb7tmjDEjRoww0dHRZseOHe5ln3/+uZFkXnrpJcdt16xZY0JDQ82YMWM8lu/Zs8ckJia6z9EYY959910jyfzrX/9yLzt48KApX768GTRokON+UPzs378/37KMjAzTunVrEx0dbU6ePOlebqO8bN682cTHx5vmzZt7vc7n8tZenDhxwjRo0MBUqlTJpKenG2NOX/+91X9JpmfPnmbJkiUefT7aC3jTu3dvExERYX799VeP5ddee60JCQkxu3fvdi8rDv2oDRs25KsTc+fONZLMkCFDzJIlS8yxY8eMMfZyIxQ/Bw4cMGFhYfn62Xn5W1bJucm5S6KS1ocyxpi9e/ea+vXrmxo1apg///zTcf+///67+f333z2WFSZfQcmzbt06I8nMmzfP6+e2c9HRo0cbf4bUL7zwQlOnTh2P8WNvPvjgAyPJvP766wWuQ24BbxijpV7gNF/tQl6+ruE2ytX06dONJPPggw86ruetrixfvtxIMuPGjXMv+/TTT/PlFmPHjjWSzNNPP22WLVvmXvfYsWMmMTHRnZcbc/peZnh4uBk9erR7WU5OjunQoYOpWbOmRw6F4iWQPCLXs88+aySZlStXeo1peyzn4MGDRpJ59NFH832WlZVlypcvbxo3buyRW5w8edLUqlXLNG3a1L0skNyEnBtF3YfKq1evXqZu3bpePxszZoyRZFatWuWx/O677zaSzLfffute5m8ebwx9KHhX1PXCn9wiJSXF6xhrly5dTFRUlFmyZIm7XpBb4FwoDvXCGO/9IGOM6dOnj3G5XOa3334zxgTWtzKGegHvirpe5OXUj8qVkZFh4uPjTYcOHbx+TnuBc6ko7lsEkgf4Oz4VyDFxP88YlzFn/LZsKXX33Xfr+eefV58+fTRw4MB8n998883u/77jjjv02muvqUuXLurXr59OnjypOXPmaO/evfrvf/+rjh07SpKSkpKUkJCg2267TfPnz3dvv2zZMvXt21ddunTR4MGD9fPPP+vFF1/UsGHD9Morrzge53PPPad77rlH7dq106hRo/J9ft111yk2NlaSFBMTo0GDBumCCy5QVFSUvvrqK7377rtq0aKF1qxZo5iYmAL389hjj+nxxx/XwYMHValSpXzLV61apc6dO7uXDxw4UEuWLNE999yjhg0b6o033tB3332nlStXuv8eKDn8/b47d+6sL774wuMnrE+ePKlWrVrp5MmTuv/++xUeHq5nn31W2dnZ+uGHHxzfQLN9+3a1aNFCGRkZevrpp1W2bFmPzy+88EL3m52GDh2qP/74Q1deeaVq1KihpKQkzZ07VydPntSnn37qLr/Hjh1TrVq1NGjQIDVv3lyxsbH66aefNG/ePEVFRenbb79Vo0aN3PtwuVzq1KmT/ve//7mXff/992rfvr2aNWum4cOHa9euXXrmmWfUsWNHffrpp4X5U6OY6Ny5sw4dOqSff/7Zcb3//e9/6tKli/71r3+pf//++ZY/+uijeuyxx9zL58yZo9GjR6t///666qqrtHr1ar355puaMmWKHnzwQcd9BdKu7dy5U61atVL58uV11113KTk5WTNmzFCtWrW0bt0691uvtm/froEDB6pv376qVq2afvnlF7388stq2rSpvvjiC4+Z6EOGDNEbb7yhP//8U/Xq1ZN0+lejLr/8cv38888aP368KlWqpDlz5mjHjh1at26dmjRp4nhOKF6uu+46nThxQh07dlTNmjW1b98+LViwQFu2bNEzzzyje++9173uuS4vJ0+eVPPmzbV7925NnTpVNWvW9Pi8QYMGateunaTTfZt///vf6tOnj+rUqaO9e/fqn//8p3bs2KG33nrL55tqXS6XRo8erRdffDHfctoLnOnLL7/UFVdcofj4eI0ZM0bx8fFatmyZPv74Y91+++169dVX3esWh36UN7k50IwZM3T//ffnW34ucyMUTy+++KLGjh2rTz75RFdddVW+zwMpq+Tc5NwlUUnsQ7Vs2VI//vijJkyYoAsuuMAjZtWqVdWtWzf3/+eeR1JSknuZv/kKSrYXX3xRx44d0549e/TSSy+pX79+atWqlSRp7NixKleunCQ7uej27dv11ltvSTrdxqxdu1aTJ0+WJNWtW1e33HKLx/o///yzLrjgAv3973/XP/7xD8fY/fv317Jly7R//373OZyJ3AIFYYyWelGa+dsuBHINP9flasmSJerXr58aNWqkRx55JN/n3bp1U9WqVSVJjRo1UqtWrXTxxRerXLly+v777/XPf/5T1atX17p169zreTN//nwNHTpU69at08UXX5xv+bx58zRkyBD38gkTJmjGjBkaPny42rRpo3//+99avny5FixYEPDbQBE8Askjcl188cXau3evdu7cqZCQkHyf2xrLeeutt7R9+3alpqbqH//4h7p06aIrrrhCknTLLbeobt26kqQpU6Zo0qRJatWqlW699VZlZ2fr9ddfV2Jiot5++213zhFIbkLODano+lCStGnTJn344YeSpLffflv79+/XfffdJ0lq0aKF+vTpI0n69ddfddFFF8nlcmns2LGqW7euvvjiC73zzjvq1q2b+1e4A8njJfpQKFhxyC28GTJkiBYtWqTk5GT3MnILnCvFoV7cfffdWrNmja6++mrVqVNHR44c0eLFi7Vu3TqNHTtWL7zwgns7f/tWEvUCBSsO/ahcy5YtU58+ffTyyy/rzjvvzBeP9gLnQlHdtwgkDwhkfCqQY+J+nvjli1ydOnUykgr8l1dmZqaZNWuWadmypYmLizNxcXGmS5cuHm+rNMaYP//800gyt912W779LVmyxLRs2dJERkaaWrVqmUmTJnnMbCrIbbfd5niced8gePvtt5tmzZqZMmXKmPDwcNOwYUMzceJEj9l2BXn00UeNJI+3sOddfuZbFk6dOmXuv/9+U61aNRMZGWnatGljPvnkE5/7QfHk7/edW6/OtHPnTtO/f39TtmxZExcXZ3r37u2ece1k1apVjuU/79txFi5caDp27GgqV65swsLCTKVKlcx1111nNmzY4BEzPT3d3HXXXebCCy80ZcuWNeHh4aZu3bpm2LBhXt/IKcl06tQp3/LVq1eb9u3bm6ioKFO5cmUzevRov+oaSoZOnTqZ5s2b+1wvtwznnSGad7m3Nzy98sorpkmTJiYiIsI0aNDAzJw50+ebM3OPyd92zRhjfv75Z9O9e3cTExNjypcvb2666Sazb98+j3WOHDlirrnmGlOtWjUTERFhEhISCmxXcturM+vRkSNHzLBhw0x8fLyJiYkxnTp18pjZjpLjnXfeMV27djVVq1Y1YWFhpkKFCqZr165m6dKl+dY91+Ultw9W0L+8fbPPPvvMdOvWzVSrVs2Eh4eb8uXLm+7duxf4xrczSfJ4W2De5bQX8Gbt2rWmR48e7jLXuHFjM2XKFJOZmemxXnHoR3mTW//yvvUk7/JzmRuheLr00ktNlSpVCnyjaiBllZybnLskKol9KKeYZ/aX6tat6/WNVf7kKyjZ6tat69e12UYu6tQ2eevz//3vfzeS3L+MWZDjx4+bqKgo069fP8f1yC1QEMZoO+VbTr0oPfxtFwK5hp/rcpXbty/oX94+/0MPPWRatmxpypUrZ8LDw02dOnXMyJEj/ervzJs3z0jK167lLj/zrYvZ2dlm6tSppm7duiYiIsI0b97cvP322z73g+AWSB5hzOk3zEoy9957b4ExbY3lON27ODMXXrBggWnbtq0pX768iY6ONpdccolZtGiRxzqB5Cbk3DCm6PpQxvzftdlXzm3M6Xrav39/U7t2bXff6P777/f45ZZA8nhj6EOhYMUht/DmtttuM7GxsR7LyC1wrhSHevHZZ5+Z3r17mxo1apjw8HBTpkwZc9lll5l58+Z5fabEn76VMdQLFKy49KOMMWbw4MEmPDzcHD582Gs82gucC0V13yKQPCCQ8alAjon7efzyBQAAAAAAAAAAAAAAAAAAAAAAgKP8vyEKAAAAAAAAAAAAAAAAAAAAAAAANyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAg7Ci2nGjKc9aix2S7bIW29gLrbBT9mJnljHWYruyLP5RLNr68D1FfQgeEp5/xlpsY3GalSvHXuzQNHtlKyvW3oG7copnnfhz3H1FfQj5NHzKXluRY7EFzImxV75CUu1VaBNqr62QxWoRftJe8K2T7rUW+2zVn2mxvQi1Flqy2F64LPb95LJXL2y2zzb9eXfwtRcNnrbXXtgsu9nR9spX5GF7BcxmbhGSbS20csLsHfe2e4OvXlxys732IivK3nU3NN3e95RS3V69iDlg77ht9lvD0uwd99q3g6te1Jtlr07YzItDMu3Vt5wIm/0ci22Fxb+Jzf7Zn3cFV52QpE4r77cWOz4qxVrsA6llrMU+lRluLXbl2GRrsZMzIq3FjotItxb7k07PW4t9thJesNheWOzrWs0vK9srA6599squTTbHT4KxvWgw3eb9PGuhFZZir8+QWjvLWuzwYxYLmM1bFxaHln+fGHxjtHXfmGYtdki4vQQjJ9NegxEenWktdnaWvXoRYjF3yTplL6HfPnSitdhn48pV9uppqM2k26Iq0SetxT5wyl5OlJljr75FhtprP4Myt7D5/IfFe7pWx6IqZViLbSxec10W/yYhafba5m33BWEf6rXp9oJbfE7H5nNxNsdRVUyf/7D5XW4fPt5a7LN147d3WIudY/NB12Iqy+IgWoTFQQ6b3+W77V6xFvts1f3nU/aCZ9krA65oe/3dUItjBVnHIqzFlsVnNFyR9upc0i0P+FynmD7yBQAAAAAAAAAAAAAAAAAAAAAA8Ndg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4YPIFAAAAAAAAAAAAAAAAAAAAAACAAyZfAAAAAAAAAAAAAAAAAAAAAAAAOGDyBQAAAAAAAAAAAAAAAAAAAAAAgAMmXwAAAAAAAAAAAAAAAAAAAAAAADhg8gUAAAAAAAAAAAAAAAAAAAAAAIADJl8AAAAAAAAAAAAAAAAAAAAAAAA4CCuqHbuMvdgmxF7w7AhroZVZP81a7Mgt0dZiZ5ax9/d25VgLXbqE2vuOQlPszeEKb3LCWmz9VtZa6KwYewXXleWyFjsYGYtTBEMz7MUu/6u9A8+OslcGUmpaCy1Xtr3YWTEWOxVByFi8DNj8npRj78Bzouxdd43FNjTsZKi12CasdNULm4y9r0lRB+21F1nNU6zFDtkeYy223Wtc6epHZYfbO1+b7UVYmr3rV50P9liLfbRNNWuxc8LsfZdZFvuWwcZmuQ2xmKdlVcy0FtuVaq+RizxkL3Z6VXtfpiu99NQJSQqxOEC7O7mctdhxEfYS+iblD1iLXTHCXv/sx6P2Evr07CK7hVAkQixeB3Ii7NW5iGP2cosKayOtxT58gcU2NNZiXlzK7lvYvJ9n82+ZWivLWuxK6+z1dVJq2KsXmXH2vswQe3/uoBQSbq/w5iSHW4sdWtZePyr8xzhrsbOr2vt7Z5WzmHNZLCfBJrSY3tQ/nBprLfavSdWtxW5Sb6+12DbzxMwci4PtQcjm/aWQdIv3ouPsjbtU+MZebpFewV4f6lQ1i/chS9v9PItDbyFp9upF2YRj1mK7LF53UzZVtBY7o5LFAfeI4tmvOFvhIfb+ljbH9erHHrIWe2tyFWux68YcsRY78YS9e4VVo05aix2UbP6kQJjF5zot9v+iN9h7RsPV4ai12CcO2cu5TGbR/vYEv3wBAAAAAAAAAAAAAAAAAAAAAADggMkXAAAAAAAAAAAAAAAAAAAAAAAADph8AQAAAAAAAAAAAAAAAAAAAAAA4IDJFwAAAAAAAAAAAAAAAAAAAAAAAA6YfAEAAAAAAAAAAAAAAAAAAAAAAOCAyRcAAAAAAAAAAAAAAAAAAAAAAAAOmHwBAAAAAAAAAAAAAAAAAAAAAADggMkXAAAAAAAAAAAAAAAAAAAAAAAADph8AQAAAAAAAAAAAAAAAAAAAAAA4IDJFwAAAAAAAAAAAAAAAAAAAAAAAA6YfAEAAAAAAAAAAAAAAAAAAAAAAOCAyRcAAAAAAAAAAAAAAAAAAAAAAAAO/h97fx5eR1n/j/+vk6Rt0nSlLV0olLJKy1JACq2yyl5E2UVAQBDZcUNEUUTANyACglCWtx9ABBFFBMU3myIiKGsFlCIIlLWlpdB9yXb//vDb/JommSSF2ybN43FdvS6YnHnOnJN5zT1zn/PK0XwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAECBilW9AzmU1ZayZTdUpGzZGxwxJVv2KxdNyJZdOSvf610zIN/r3enkexmjbEnGmuiRLTrWPX1htuwXz8u34z1ersqWXduvG9VERNRXNWTLrppWni17s2Ofy5Z9/ToPZ8ve9bOfz5b96qd6ZsuO7lUWUcr4fHPWXO838l12Lhmab5yrnJnvXLF47dps2eXz8u13Z5RyXkfV5cuu23RBtuyht+W7HpmxbbboqK/Odx4qX9C9/vZAQ8a7/ar38v2eFozId/76y19+ky17q++dkC27ck6+wb+uV8YTaCdTnvG+uHZovjF9wFP5rqMXDc93bKVN52fLrnilT7bs+spudnORUZ+eNdmyX3tiZLbsinPfy5b9wBUfzZb9qS3+ni37sZmjsmV3RjmvRyvm57seHb3TtGzZv//i77Nlb/H4odmyF7zSP1t2zrn8zqh8ab4nvGSdfOPFejfnG9d/dv0l2bL3fPoL2bJ7PDQwW/biNbvXdVRDbb5zer9h+a6la/6e7xj45ylXZcv+2LP7Z8uePnNAtuyelfnuFTub+pSvJnqVZ5ygzejFPa7Jlr3ZI0dlyx631lvZsmcs7JctuzMqW5qvLuoH5ju/rPlQvs9RPHbh5GzZOe8tek3JN34uGdY1z3Erq2xBvvn/ARvkm9Op+fPgbNkLNshXz/02nZMtu+7VfPfcDeXd695i1pJ8890T13glW/bPX946W/bRG/4tW/Z1Uz+WLXuf9f+RLful+Wtmy+6MSuX55mhTfb6xqDzjfj/71Xz33GOvODFbdu+Pzs2WvWhuvs/EtEf3+vQJAAAAAAAAAAAAAABAB2m+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAoULGqNlxWW8qWXdsnZcve4JY52bL/7+2/Z8vec1TPbNkv/b+x2bKr/16VLbuz6TE3Xy/U2h9/I1t22a5vZsuuS/lq+ZkdHs+WvfP/nZYte9ZuNdmyO6OypfnqYuka+Y6vx363WbbscfPyZc89rDZbdsXsfON+xeJ82Z1Rj/n56mLEpu9ky6468dVs2fdmvIa6df7AbNnfv/bQbNnzN6zLlt0Z9ZyT7zyw5o5vZ8vufcjcbNm//+eD2bL3GDEuW3avh4Zly3753vWyZXdG9ZX56qLf0/nq4vbLb82WHVGdLXn4b1/Llj39k6OyZfdckO+auLOpW2tptuzh/5dvzuXRS67Klr3eA5/Plr3hwc9ly573f+tny57z16HZsjujHYb8O1v2zb/fMVv2N/e7PVv2z78xIlv2+jc1ZMu+bM8ns2Vv9NKYbNmdUdnifPfctQPrs2WnL/XPlr3HM+OyZT/z9s+zZe/y42OyZU/7XPe5hoqIqFiYL3vY8PezZVf84eVs2cMr+mTLfmZ816yLVw/uXn/vr7xXvnP6ohcGZMv+9mduy5adc75o6yfzvc95z5R89wA1a2WL7nQW1/bIlj1x8CvZsm/9yw7ZsvfZZ+ts2f0/l28c2ukb/8qWfcPcCdmyO6P66nxjRa+38s1Fvbv74mzZOceKkaMWZMteeF2+12T6E8OzZXdGDX3y1cXcf62RLfvfX843R5uzLhYeuG227L7HzsyWPf2FNbNld0YVpXxzhv0rFmXLXjAn32c67920X7bsqW/flC3748/uny177BrTs2V3RhU9M15HPVeZLfvKE6/Llp1zvPjUlL9ky/7FnyZmy46qfOfP9uheM2EAAAAAAAAAAAAAAAAdpPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAIfWvPFeuutFy+99NKHFQcAAAAAAAAAAAAAANApVHR0hcsvv7zF5a+//npcf/31MWzYsIiIOPXUUz/YngEAAAAAAAAAAAAAAHQCHW6++NKXvhRrrbVWVFQ0XbWhoSF++tOfRo8ePaJUKmm+AAAAAAAAAAAAAAAAVgsdbr447rjj4rHHHotbbrklNtlkk8blPXr0iPvuuy/GjBnzoe4gAAAAAAAAAAAAAADAqlTW0RWuvvrq+M53vhN77LFH/PjHP86xTwAAAAAAAAAAAAAAAJ1Gh5svIiL222+/+Otf/xp33HFH7LXXXjFjxowPe78AAAAAAAAAAAAAAAA6hZVqvoiIWGutteKBBx6IHXbYIbbccstIKX2Y+wUAAAAAAAAAAAAAANApVHyQlUulUpx55pmx++67x1/+8pcYPnz4h7VfAAAAAAAAAAAAAAAAncJKf/PF8rbeeus47bTTYuDAgfHGG2/E5z//+Q8jFgAAAAAAAAAAAAAAYJX7UJovlvfee+/FjTfe+GHHAgAAAAAAAAAAAAAArBIVHV3hrrvuKvz5K6+8stI7AwAAAAAAAAAAAAAA0Nl0uPni05/+dJRKpUgptfqYUqn0gXYKAAAAAAAAAAAAAACgsyjr6ArDhw+PX//619HQ0NDiv6effjrHfgIAAAAAAAAAAAAAAKwSHW6+2HrrreOpp55q9edtfSsGAAAAAAAAAAAAAABAV1LR0RVOP/30WLhwYas/32CDDeLBBx/8QDsFAAAAAAAAAAAAAADQWXS4+WL77bcv/Hl1dXXsuOOObebUVeX7doweC0rZsl/6XP9s2Rv+7IRs2X2+kO81Se81ZMuu6d99vkWlZmB9tuxXnlsrW3bD5OHZsl/d99ps2Ts8d0i27NmbZ4uOmNMjY3jn0+u9fOeuvtvPzJbdf+9/Z8vO6aE3/5ote/czv5Ite9Z2+c6fnVFN/3zj7vS/D8uWXXfd4GzZY66amC27rne+a5H6tfP9Lsvnl2fL7oxq++b7Pb39dL5rnfLTRmTLnrR1r2zZr5+9XrbsuscyXv/36z73FhERvebkO8e8fsja2bKPWPtj2bLf+/yEbNmDbno9W3a/H9Zly14wosPTQl1WWpjvub6/cYe/WLbd9pi6T7bs9dealS3735duly274bV857eygfmyO6Mpc/Kdz9f66NvZsq9+ZYds2Uc9n++++JJn8t277v2vvbNlrzVobrbszqihV77zQGlpvvHipSPyvW/R41P57rnXvy3jeHFgxnvuWfl+l53RouEZX8v/G5ote9unXsuWveekw7Jlv/ntbNFR2jLfXEH5vO51HVU/r2e27LKRS7JlX3LVwdmyT5n662zZ59//qWzZ5aMWZ8tOGY+TzqZfr3zH7YMzNsqWPeSj72TLLtv0I9myLzz7mmzZX3zy8GzZY4dPz5bdGZXq873PXd8r31x32fTKbNnlgwdly56+98hs2e+/lm9+tqJ7vZ0XUZHvmrFqZr7P0jxbk2+cG/rXftmy//ZQvnvX+nfzzUM09Oxe9xZDq+Zly/7569tky/7VTpOzZZ94xGnZso9+vW+27GHV+X6XC+vy3c93RrVz8z3f2o/UZMs+8g9fyJa9UTyRLfv+K/K9P592WpotO2pW7Rxt95ohBgAAAAAAAAAAAAAA6CDNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABSpW1YbLl5ayZTdkfFa93s3Xr1LTP2XLXrRWvuyec/P9LiNlzO5kymoz1kSvjL//WeXZsrf8/onZshesk+81iYyHbamh+9RERMTSQQ3Zshv+tma27MW/6ZEte8GCymzZO10wMVv2gk3z1Vz5/G7WS5rx9FXfO1/N9Xg33wVa1nNFVb7s8vn5xtDUI+OB0gnlHB3rM15HNeQ7BGL+DVXZsmuez1cXZRnvE7MeKJ1QWV2+7F6z89XFrOMnZMuu6Z/vIKj/zpBs2YvWzzeGljIeJ51N+eJ814y1ffLVxLRH186W3XN+xhPjsIxjxZJ8v8tSfbboTundxdXZsjccMCtb9l9fXzdb9oV/npQte7NNXs+WvbC2Z7bsirJ89dwZVSzId46p65vx3Fibb7+rp+cb5+p75xuLyhfnu+Fq6Nm97rlzvp+3aES+1/IvV2+TLXv2ifkupHs/kW9ueengjHO0i7vXTXdZn9ps2Q0Zz+m1O87Nln3JT/fPll222aJs2XWL891zl/eryZbd2dRmnOjs12tJtuyGjJ9F+P19v86Wvfnjh2bL3nLkm9myZy3uky27M8r5Pk1dv3wTGKX6fHXR8/Z859w5r2Y85y7Kd46r69/NJqOW5nstF66T77U86GdfzpZdV53x/nKtfGNompNvLioqutc9d03GD7oOrlqYLfubr+S7/r/9/B9ky77u/W2zZb9Un+9zaDU5P1jQGVVknJPOeK1TPSTfvevGT+abL7rnpXz7HUszfph/FX+2vJt9WhEAAAAAAAAAAAAAAKBjNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABSoWFUbbqhI2bJLDaVs2XV98u13+dJ8+51VKd9rksryZXc2qTxfdqmma9bE3FFLs2WX3u2ZLTvr77I+X3anlDIeu70znl+mDMwW3TPjbs/ZrDZbdsWcVXbJsdrJOOxG1HbNmivLd+hG+cJ8vcqpPOMvs/tcQkVE1uEiypfkC895zTD7T8OzZZf1z3iA5bwl6qK3WyurtjrfEy7PeN7tuSDf8VU1uyFb9ntjqrJl5xznyrrb/UUmKeMcV22/bNFRM6wuW3bF+/mu/3NeQzX0yBbdKfWqyHcMTF+U7+Bdd/B72bL7jViSLbu6oiZb9uK6fAdveSnf+NkZ1VVnvHddku/+sr5Xvv1+b/t8x27ZrIxztDmv/7vbnzXL+VpmvL2cu0G+7J7v5LvWqcl4z53zlJ662XVUQ22+E0Ep43uji+ZVZsvuscWCbNn1C/ONFxVV+a6J6xZ2n8LIec24tD7fOTfnfm/4p6OyZW+5zhvZsmcszHcvV1mRcZKrEypblPH9pR5d802gFx5aL1t2Wb7p2WioyneuKFvc3W4u8sn5+bLakfnui1PGci57t1e27JSxLvJ+IKLzWViX71q3T498n7sb0XtutuwD/3FUtux1+r2fLbtnxjfdKqJ7zdFmnXvLeIpZOCffBck9L340W3btoHz3xZHzc1GrmKs4AAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKlFJKaVXvBAAAAAAAAAAAAAAAQGflmy8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApov/j8LFiyIs88+O/bcc89YY401olQqxQ033NDq46dOnRp77rln9OnTJ9ZYY4044ogjYtasWe3e3l133RVbbbVVVFZWxjrrrBNnn3121NXVtbneCy+8EF//+tdj3Lhx0bdv3xg+fHhMmjQpnnzyyWaP/e53vxulUqnZv8rKysJt/OUvf2l87Lvvvtuu57N06dI444wzYsSIEVFVVRXbbrtt3H///e1al67ng/6+33rrrTj44INjwIAB0a9fv/jUpz4Vr7zySpvrLVq0KK688srYfffdY/jw4dG3b9/YcsstY/LkyVFfX9/ksdOmTWvx+C+VSnHrrbe2uo3a2toYM2ZMlEqluPjii9v9nFa2plk9nX/++VEqlWLTTTdt9zr/jbpYtm/77rtvDB06NEqlUnz3u99tMfeOO+6IPfbYI0aMGBG9evWKkSNHxoEHHhj/+Mc/2v2cPuhYSddnvGjOeNG9HXXUUa0eb6VSKd566602M9QFXdUTTzwRJ598cowdOzaqq6tjnXXWiYMPPjhefPHFFh/f0NAQkydPjnHjxkVVVVUMGjQodtlll3jmmWfatT333HRlrqGaM1awquoiIuK+++6LY445JjbddNMoLy+Pddddt9XH/vvf/44DDzwwBg4cGL17946Pf/zj8eCDDzZ7XNE14W677dau/VIXGC+aUxfdW0ff52vJnDlz4rjjjoshQ4ZEdXV17LzzzvH000+3uV5DQ0PccMMNse+++8baa68d1dXVsemmm8Z5550XS5Ysafb41uriggsuKNzObrvtFqVSKU4++eR2P6dHH300Pv7xj0fv3r1j2LBhceqpp8aCBQvavT5dQ0fmnBoaGuLqq6+OcePGRZ8+fWLo0KGx1157xaOPPtru7f3kJz+JTTbZJCorK2PDDTeMK664ol3rtXduoCM1tXjx4sZrtf79+0efPn1iiy22iB/96EdRW1vbrv1qaGiIiy66KEaPHh2VlZWx+eabx89//vP2vRh0OV3hGqoj81Prrrtuq7W/4YYbtus5GSvoCnWxoptvvjlKpVL06dOn2c8ef/zxOPHEE2PrrbeOHj16RKlUavdzWUZd0BXq4u23347DDz88Nt544+jbt28MGDAgxo8fHzfeeGOklJpl33rrrY33zEOGDIljjjmm3e9RRKgLVq852o7ex7dGXbC8zvx5weUVXUdFRNx2222x3XbbxYABA2LQoEGx4447xt13393u59Rt5mgTKaWUXn311RQRaZ111kk77bRTioh0/fXXt/jYN954Iw0ePDitv/766Uc/+lE6//zz08CBA9MWW2yRli5d2ua2fv/736dSqZR23nnndO2116ZTTjkllZWVpeOPP77Ndb/61a+mAQMGpGOOOSZdc8016aKLLkrrr79+Ki8vT/fff3+Tx5599tkpItLkyZPTTTfd1PjvlltuaTW/vr4+jRs3LlVXV6eISLNmzWpzn1JK6TOf+UyqqKhIX/va19I111yTJkyYkCoqKtLDDz/crvXpWj7I73v+/Plpww03TGuuuWa68MIL0yWXXJLWXnvtNHLkyPTuu+8Wrvvcc8+lUqmUdt1113TRRRelq6++Ou23334pItLnPve5Jo9dVtOHHnpok+P/pptuStOmTWt1Gz/84Q8bj/8f/OAH7Xo9PkhNs/p54403Uu/evVN1dXUaO3Zsu9b5b9VFSilFRBo2bFjaY489UkSks88+u8Xcc845Jx1yyCHpggsuSP/7v/+bzjvvvLTeeuulqqqq9Pe//71dr8MHGStZPRgvmjJe8OijjzY7zn7605+m3r17pzFjxrS5vrqgKzvggAPSsGHD0imnnJKuu+66dO6556ahQ4em6urq9NxzzzV7/JFHHpkqKirS5z//+XTdddelyy67LB155JHpvvvua3Nb7rnp6lxDNWWsIKVVVxcp/WdMqqysTBMnTkwjR45Mo0aNavFxr7/+eho8eHAaOnRoOv/889Nll12Wtthii1RRUZEeeuihJo9dsW5uuummdNppp6WISBdddFGb+6QuSMl4sSJ1QUfe52tJfX19mjhxYqqurk7f/e53049//OM0ZsyY1Ldv3/Tiiy8Wrjt//vwUEWm77bZL5513Xrr22mvT0UcfncrKytJOO+2UGhoamjw+ItJuu+3WrC7+8Y9/tLqN22+/vbEuTjrppHY9pylTpqTKysq05ZZbpsmTJ6dvfetbqVevXmnPPfds1/p0HR2Zc/rKV76SIiIdfvjh6ZprrkkXXnhhWm+99VJFRUV67LHH2tzW1VdfnSIiHXDAAenaa69NRxxxRIqIdMEFF7S5bnvnBjpSU7Nnz07bbrttOv3009OVV16ZJk+enI444ohUKpXSoYce2q7X7xvf+EaKiPSFL3whXXvttWnSpEkpItLPf/7zdq1P19IVrqE6Mj91xx13NKv/8847L0VEOvHEE9t8TsYKUuoadbHiNkeMGJGqq6tTdXV1s5+fffbZqUePHmnrrbdOG220UeroR+PUBSl1jbp45pln0o477pi++c1vpquvvjpdccUVad99900Rkc4888wmj73qqqtSRKRPfOIT6corr0xnnnlm6t27d9p8883T4sWL23xO6oKUVq852o7ex7dEXbC8zv55weW3WXQddfnll6eISJMmTUqTJ09Ol156adpiiy1SRKTbb7+9zefUneZoNV/8f5YsWZKmT5+eUkrpiSeeKJyUPeGEE1JVVVV67bXXGpfdf//9KSLSNddc0+a2xowZk7bYYotUW1vbuOxb3/pWKpVKaerUqYXrPvnkk2n+/PlNlr377rtpyJAh6WMf+1iT5cs+CNLeD3OklNLkyZPToEGDGt/sa8+6jz32WLM3QRYvXpzWX3/9NGHChHZvm67hg/6+L7zwwhQR6fHHH29cNnXq1FReXt7s4n9Fs2bNavHNh6OPPjpFRHrppZcaly17o6W9b86llNI777yT+vfvn773ve91aN0PUtOsfg455JC0yy67pB133LHdF1P/rbpI6T+1sWy9ouaLlsyYMSNVVFSkL37xi20+9oOOlXR9xovmjBe05OGHH04Rkc4///w2H6su6MoeeeSRZg2YL774YurVq1c67LDDmiz/xS9+kSIi/frXv16pbbnnpitzDdWcsYJVWRcppfTWW2+lmpqalFJKkyZNavWNvRNPPDFVVFSkF154oXHZwoUL09prr5222mqrNrdzzDHHpFKplN544402H6suMF40py7oyPt8LVl2H/LLX/6ycdnMmTPTgAED2vwA99KlS9MjjzzSbPk555yTIqLZB2U70kCR0n/qe911122si/auu9dee6Xhw4enuXPnNi677rrrUkSke++9t93bp2tqac6ptrY2VVVVpQMPPLDJY1955ZUUEenUU08tzFy0aFEaNGhQmjRpUpPlhx12WKqurk7vvfde4frtnRvoaE215OSTT04R0XheaM2bb76ZevTo0aSuGhoa0vbbb59GjhyZ6urq2twWXUdXuYbqyPxUS84999wUES3W0YqMFXSVuljeGWeckTbeeOPG8WdFM2bMSIsWLUoppXTSSSd1uPlCXdAV62J5++yzT6qurm68jlm6dGkaMGBA2mGHHZp8oPy3v/1tioh0+eWXt5mpLljd5mg/jHsOdcHyOvvnBZdp6zpqww03TNtss02T8WLu3LmpT58+ad99923zOXWnOVrNFy1oa1J2zTXXTAcddFCz5RtttFH6xCc+UZj9z3/+M0VEuvLKK5ssf+utt1JEpHPPPXel9nn//fdPa6yxRpNlyz4IMnPmzDR37tw2O/Jmz56dBg0alK688soOfYjk9NNPT+Xl5U0GkpRS+v73v58iIr3++usdf0J0Wh/0973NNtukbbbZptny3XffPa2//vortU933XVXioh01113NS5b/o29BQsWtOsv7R999NFp/PjxjZPM7XljL1dN0zU99NBDqby8PD377LMdupj6b9XF8lam+aKhoSH169cvHXLIIW0+9oOMlawejBdNGS9ozQknnJBKpVJjc1wRdcHqaKuttmr2gdRtt902jR8/PqX0n78+u2DBgnbnueemq3MN1ZSxgpQ6V10UvbG32WabtbidZR/0KPqr6UuWLEkDBgxIO+20U5v7oC5IqXPVxTLGCzqTlWm+OOigg9LQoUNTfX19k+XHHXdc6t27d1qyZEmH9+PZZ59t8cNMyxooFi1a1K6/MnvOOeekddZZJy1atKjdzRdz585NFRUV6fTTT2+yfOnSpalPnz7pmGOO6diToctpac6ptWNowYIFqaysLJ1xxhmFmXfffXeKiHT33Xc3Wf7oo4+miEg33XTTSu1rS3MDLWmtplpy8cUXp4ho88MdV155ZYqI9M9//rPJ8ltuuSVFhG+cXM10lWuo1rQ0P9WSTTbZJI0ePbrNxxkrSKnr1cWLL76Yevbsme6+++505JFHtvihweV1tPlCXZBS16uLFZ188smpVCo1NiE99dRTLd4zp5RSnz590sSJEwvz1AUpda66yDVHm1L77znUBcvrKp8XbM911NChQ5v9wYWUUho2bFibnxfsbnO0ZUGHvPXWWzFz5sz46Ec/2uxn48ePjylTphSuv+znK64/YsSIGDlyZJvrt2bGjBkxePDgFn+23nrrRf/+/aNv375x+OGHxzvvvNPi47797W/HsGHD4otf/GKHtj1lypTYaKONol+/fk2Wjx8/PiIi/v73v3coj87tg/y+Gxoa4tlnn221fl5++eWYP39+h/dpxowZEREt1sA555wTffr0icrKythmm23ivvvuazHj8ccfjxtvvDEuu+yyKJVK7d52rpqm66mvr49TTjkljj322Nhss83avd6qqIuOmDNnTsyaNSuee+65OPbYY2PevHnxiU98onCdDzpWsnowXjRlvKAltbW1cdttt8XEiRNj3XXXLXysumB1lFKKd955p8nxN2/evHj88cdjm222iW9+85vRv3//6NOnT6y33npx2223tZnpnpuuzjVUU8YKIjpnXbRk6dKlUVVV1Wx57969IyLiqaeeanXd3//+9zFnzpw47LDD2tyOuiCic9aF8YKubsqUKbHVVltFWVnTt07Hjx8fixYtihdffLHDmUV1ccMNN0R1dXVUVVXFmDFj4pZbbmkx4/XXX48LLrggLrzwwhbHmdY899xzUVdX16wuevbsGePGjVMXq7nW5pyqqqpi2223jRtuuCFuvvnmeP311+PZZ5+No446KgYOHBjHHXdcYW5r59utt946ysrKVuq4amluoDVFNVVTUxPvvvtuvPHGG3HHHXfExRdfHKNGjYoNNtigMHPKlClRXV0dm2yySZPly8ZUtbJ66WrXUC09tq3HTZkyJaZOnRqf/exn28wzVhDR9eriS1/6Uuy8886x9957dzi3PdQFEV2vLhYvXhzvvvtuTJs2LW688ca4/vrrY8KECY33D0uXLo2IaPF+oqqqKqZMmRINDQ2tbltdENE566IlH2SONqL912bqgmW60ucF23MdtdNOO8U999wTV1xxRUybNi1eeOGFOOmkk2Lu3Llx2mmnFW67u83Rar7ooOnTp0dExPDhw5v9bPjw4fHee+81XrSszPpvv/12h/fp4Ycfjr/+9a9xyCGHNFk+cODAOPnkk+Oaa66JX/3qV3HsscfGL37xi9h+++1j3rx5TR777LPPxjXXXBOXXHJJlJeXd2j706dPb/X5RMRKPSc6rw/y+15WHx/m8VJTUxOXXXZZjB49OrbZZpvG5WVlZbH77rvHD37wg7jrrrvi0ksvjZkzZ8Zee+0Vd999d5OMlFKccsopccghh8SECRM6tP0cNU3XdPXVV8drr70W5557bofW+2/WxcrYbrvtYs0114zNN988brvttjjrrLPimGOOKVzng46VrB6MF00ZL2jJvffeG7Nnz27Xh+zUBaujm2++Od56660m97Ivv/xypJTi1ltvjf/3//5fXHTRRXHzzTfHkCFD4jOf+Uzcc889hZnuuenqXEM1ZawgovPVRWs23njjePbZZ5u9IfKXv/wlIv7zhwpac/PNN0evXr3iwAMPbHM76oKIzlcXxgtWBzmuuy+66KLo169f7LXXXk2WT5w4Mc4///z4zW9+E5MnT47y8vI47LDDYvLkyc0yvvrVr8aWW24Zn/nMZzq0bXXRvRXNOf3sZz+LjTfeOA4//PAYNWpUbLHFFvH000/HI488Euutt15h7vTp06O8vDzWXHPNJst79uwZgwYNWqnjqqW5gda0VlMREb/+9a9jyJAhsc4668T+++8fI0eOjN/+9rdRUVFRmDl9+vQYOnRos6Y/99yrp65yDdWS1uanVnTzzTdHRLRrztlYQUTXqou777477rvvvrjkkks6lNkR6oKIrlUXERE/+tGPYsiQITF69Og46qijYrvttotbb7218ecbbrhhlEqleOSRR5qs969//StmzZoVixcvjvfff7/V7asLIjpfXbTmg8zRRhTfcyxPXbBMV/m8YHuvoy6//PLYaaed4tRTT43Ro0fHJptsErfddlv84Q9/aHPOtrvVRfFsA80sXrw4IiJ69erV7GeVlZWNj2np5+1Zf8UPaLRl5syZ8dnPfjZGjx4dX//615v8bMVOowMOOCDGjx8fhx12WFx11VXxjW98o/Fnp556auy1116x++67d2j7Ea0/3+VfD1YfH+T33d766YiTTz45nn/++bj77rubTKCus846ce+99zZ57BFHHBFjxoyJr371qzFp0qTG5TfccEM899xz8atf/apD215+fz+smqZrmj17dnznO9+Jb3/72zFkyJAOrfvfrIuVcf3118e8efPilVdeieuvvz4WL14c9fX1zf4C3PI+6FjJ6sF40ZTxgpbccsst0aNHjzj44IPbfKy6YHWz7K9kTJgwIY488sjG5QsWLIiI/1xf/e1vf4ttt902IiL23XffGD16dJx33nmx5557tprrnpuuzjVUU8YKIjpfXbTmhBNOiN/+9rdxyCGHxPnnnx/V1dVx1VVXxZNPPlm4nXnz5sXdd98de++9dwwYMKDN7agLIjpfXRgvWB182Nfd3//+9+OBBx6Iq666qtn5fcUPPX3+85+PrbfeOr75zW/GUUcd1fhXOh988MG4/fbb47HHHuvQtpff39aek/uI1VvRnFPfvn1j7NixMWHChPjEJz4RM2bMiAsuuCA+/elPx8MPP1z4F14XL14cPXv2bPFnK3NctTY30JKimoqI2HnnneP++++POXPmxB/+8Id45plnYuHChW3ug3vu7qWrXEOtqGh+ankNDQ1x6623xpZbbtns21xaYqwgouvURU1NTXz5y1+O448/PsaMGdOhzI5QF0R0nbpY5tBDD42PfvSjMWvWrPjd734X77zzTpNtDB48OA4++OC48cYbY5NNNon99tsv3nrrrTjllFOiR48eUVtb+4Gek7roHjpbXbRmZedoI9q+51ieuiCi63xesCPXUb17946NN944Ro4cGfvss0/Mnz8/Lr300th///3j4YcfLvx2ye42R+ubLzpoxa/kWt6SJUuaPGZl1u/IVwYvXLiw8QC/8847o0+fPm2u89nPfjaGDRsWDzzwQOOyX/ziF/Hoo4/GD3/4w3Zve3lVVVUr/XrQ9XyQ3/cHrZ8V/eAHP4jrrrsuzj333HZ9reQaa6wRRx99dPzrX/+KN998MyL+8wb3mWeeGaeffnqsvfba7d72Mh9mTdN1nXXWWbHGGmvEKaec0uF1V3VdtGXChAmxxx57xAknnBD33ntv/OxnP4szzzyzcJ0P+znRNRkvmjJesKIFCxbEnXfeGXvssUcMGjSozcerC1YnM2bMiEmTJkX//v3jV7/6VZNvglj2ex89enRj40VERJ8+feKTn/xkPP7441FXV9dqtntuujrXUE0ZK4joXHVRZK+99oorrrgi/vznP8dWW20VG2+8cdx9991x/vnnR0S0Oo7cfvvtsWTJknb9Zdrl91dddG+dqS6MF6wuPszr7l/84heN3yB8wgkntPn4nj17xsknnxxz5syJp556KiIi6urq4tRTT40jjjhipb7dWF10X0VzTnV1dbHrrrtG//7948c//nHst99+ccIJJ8QDDzwQL7/8cvzgBz8ozK6qqoqampoWf9bR46pobmBF7ampoUOHxq677hoHHnhgTJ48OfbZZ5/YbbfdYsaMGW0+J/fc3UdXvIbqyPzUQw89FG+99ZZ7Czqkq9TFpZdeGu+++26cc8457c5bGeqCiK5TF8uMGjUqdt111zj00EPj5ptvjvXWWy923XXXJh/aveaaa2LvvfeOr33ta7H++uvHDjvsEJtttll88pOfjIjW563a85zURffQmeqiyMrO0Xb0Pl5dENF1Pi/Ykeuogw46KF5//fW44YYb4sADD4yjjz46/vSnP0VNTU1861vfKly3u9WF5osOWvaVKMu+ImV506dPjzXWWKPwL3m3tf6IESPatR81NTWx//77x7PPPht33nlnbLrppu1aLyJi7bXXjvfee6/x/08//fQ46KCDomfPnjFt2rSYNm1azJkzJyIi3njjjTa/7mX48OGtPp+IaPdzomv4IL/vZfXxYRwvN9xwQ5xxxhlx/PHHx1lnndWudSKi8c27ZTVw8cUXR01NTRxyyCGNx/+yN/3ef//9mDZtWqsTyREfXk3Tdb300ktx7bXXxqmnnhpvv/1243G0ZMmSqK2tjWnTpjU5566oM9RFew0cODB22WWXxq8sbs0HHStZPRgvmjJesKLf/OY3sWjRona/EaYuWF3MnTs39tprr5gzZ07cc889zX7Py/5/6NChzdZdc801o7a2tvAvV7rnpqtzDdWUsYKIzlMX7XHyySfHO++8E48++mg8+eST8cILL0T//v0jImKjjTZqcZ2bb745+vfvH/vss0+7tqEuiOg8dWG8YHXyYV1333///fG5z30uJk2aFFdffXW7t79iXfz0pz+Nf/3rX/HFL36xsS6mTZsWERHz58+PadOmxaJFiwqfz/L7v+JzUherr6I5pz//+c/xj3/8I/bdd98myzfccMPYZJNNmn0ry4qGDx8e9fX1MXPmzCbLa2pqYvbs2e0+rtqaG1jeytbUgQce2NiIUmT48OExY8aMSCk1We6ee/XU1a6hOjo/dfPNN0dZWVkceuih7doPYwURXaMu5s6dG+edd1584QtfiHnz5jVeFy1YsCBSSjFt2rRmY9PKUhdEdI26KHLggQfGG2+8EX/+858bl/Xv3z/uvPPOeO211+Khhx6KadOmxU033RTTp0+PIUOGFP6Vf3VBROepi/bo6BztytxzqAu6yucFO3Id9corr8Q999zTbM5gjTXWiI9//OPtmjNYfv9XfE6rW11ovuigtdZaK4YMGdL4VUTLe/zxx2PcuHGF6y/7+Yrrv/322/Hmm2+2uX7Ef74u8nOf+1z84Q9/iFtuuSV23HHH9u5+Y8Es/zU3b7zxRtxyyy0xevToxn8/+tGPIiJiq622avOvVY0bNy5efPHFZl8Ls+xrkNvznOg6Psjvu6ysLDbbbLMW6+exxx6L9dZbL/r27dvmPtx5551x7LHHxv777x9XXnllh/b/lVdeiYhorIHXX3893n///Rg7dmzj8b/99ttHxH++Tmz06NHx/PPPt5r3YdQ0Xdtbb70VDQ0NceqppzY5jz722GPx4osvxujRo+N73/teq+t3hrroiMWLF8fcuXMLH/NBx0pWD8aLpowXrOjmm2+OPn36NLtxbY26YHWwZMmS+OQnPxkvvvhi/O53v2vxa01HjBgRw4YNi7feeqvZz95+++2orKwsPNbdc9PVuYZqylhBROeoi46orq6OCRMmxNZbbx3l5eXxwAMPRFVVVXzsYx9r9tjp06fHgw8+GAcccEC7/0iBuiCic9SF8YLVzbhx4+Lpp5+OhoaGJssfe+yx6N27d6tNdCs+dr/99ouPfvSjcdttt0VFRUW7t99SXdTW1sbHPvaxJvcSEf9pzBg9enTcd999reZtuummUVFR0awuampq4u9//7u6WI0VzTm98847ERFRX1/f7Ge1tbWF3zQZ0fr59sknn4yGhoZ2HVftmRtY5oPU1LK/9NzW+xnjxo2LRYsWxdSpU5tte9nPWX10pWuojs5PLV26NG6//fbYaaed2v2hJmMFEV2jLt5///1YsGBBXHTRRU2ui26//fZYtGhRjB49Oo477rg2t9Me6oKIrlEXRYqug9ZZZ53YYYcdYtSoUY3fvLfrrrsW5qkLIjpHXXREe+doV/aeQ13QVT4v2JHrqFxzBqvtHG2imSeeeCJFRLr++utb/Pnxxx+fqqqq0uuvv9647IEHHkgRkSZPnty4rKamJk2dOjW9/fbbTdb/yEc+krbYYotUV1fXuOyss85KpVIpPf/8823u34knnpgiIl1zzTWFj5s5c2azZVdeeWWKiHTJJZc0Lrvjjjua/TvkkENSRKSf/vSn6Y9//GPjY2fNmpWmTp2aFi5c2Ljsb3/7W4qI9IMf/KBx2ZIlS9IGG2yQtt122zafD11LR37fr732Wpo6dWqTZRdccEGKiPTEE080LnvhhRdSeXl5OuOMM9rc/kMPPZQqKyvTzjvvnJYsWdLq41o6/t988800cODAtPnmmzcue+qpp5od/9dcc02KiHTUUUelO+64I82ZMyellK+m6dpmzZrV4nl07NixaZ111kl33HFHevbZZxsfvyrrYsX9joh09tlnt/jzd955p9myV199NfXt2zdtv/32TZb/+9//Tv/+97+bLGvvWMnqy3hhvKB1M2fOTBUVFemII45o9THqQl2sburq6tK+++6bKioq0t1331342NNOOy1FRLrvvvsal82aNSv169cv7b333o3L3HO7514duYYyVtDcqq6L5U2aNCmNGjWq3Y9/5JFHUnl5eTr55JNb/Pkll1ySIiL94Q9/aPHn6oLWrOq6MF7Q2bX1Pt/bb7+dpk6dmmpqahqX3XrrrSki0i9/+cvGZbNmzUoDBgxIhxxySJvbfP7559OgQYPS2LFj03vvvdfq41qqi3nz5qX1118/DR48OC1dujSllNLUqVNbvJeIiLT33nunO+64o0kdTJ06Nb322mtNcvfcc880fPjwNG/evMZl//u//5siIv3f//1fm8+JrqetOacnn3wyRUQ68sgjmyx/6qmnUllZWTr++OMbly1cuDBNnTo1zZo1q3HZokWL0hprrJH22WefJusffvjhqXfv3mn27NmF+9eRuYH21tSsWbNSQ0NDs+Unn3xys+usOXPmpKlTpzaOKSml9MYbb6QePXqkk046qXFZQ0ND2n777dNaa63VZFyh6+sq11AptX9+aplf//rXKSLST37yk1YfY6ygJV2hLhYuXNjiddHOO++cKisr0x133JH+9re/tbjuSSedlIo+GqcuaElXqIuUWr63SCmlT37yk6lUKqWXXnqpcDvHH398KisrS48//niT5eqClqzquljehzVH2957jpTUBc11lc8LduQ6aubMmamsrCzttNNOTe6z33jjjdSnT5+05557Ni4zR5uS5ovlXHHFFencc89NJ5xwQoqItP/++6dzzz03nXvuuU0mYV5//fU0aNCgtP7666fLL788ff/7308DBw5Mm222WZOD+NVXX21xAuu3v/1tKpVKaZdddknXXnttOvXUU1NZWVn6whe+0OY+XnrppSki0oQJE9JNN93U7N+CBQsaH1tVVZWOOuqo9MMf/jBdeeWV6dBDD02lUimNGzeuyQc5WnL22WeniGgyobb88gcffLDJ8oMOOihVVFSk008/PV1zzTVp4sSJqaKiIj300ENtPie6nvb+vnfcccdmN7LL3kRYc80100UXXZQuvfTStPbaa6cRI0a0emOwzLRp01L//v1TVVVVuvLKK5sd/88880zjY4866qi0/fbbp+9+97vp2muvTd/85jfToEGDUs+ePZsdvytaVrvLXzAuv/zDrGlWXzvuuGMaO3Zsi8tXVV2klNJPf/rTdO6556YzzzwzRUTaeeedG8e6adOmNT5uzTXXTIceemi68MIL07XXXptOP/30tMYaa6TKysr0yCOPNMkcNWpUsxub9o6VrN6MF0c2WW68YJkrrrgiRUS65557Wn2MulAXq5tlDRWf/OQnW7yXXd6MGTPS8OHDU9++fdPZZ5+dLrnkkrTRRhulqqqq9Pe//73xce653XOvrlxDHdlkubGClFZdXaSU0jPPPNN437zxxhunAQMGNP7/XXfd1fi4adOmpfHjx6fzzjsv/e///m/68pe/nKqqqtKWW27Z5A245W299dZpxIgRqb6+vsWfqwuKGC+ObLJcXZBS+9/nO/LII1NEpFdffbVxWV1dXdpuu+1Snz590jnnnJOuvPLKNHbs2NS3b9/0wgsvFG533rx5ae21105lZWXpggsuaFYXjz76aONjzz777LTFFluks846K1177bXpnHPOSaNGjUqlUin97Gc/a/M5RkSTD4kvv3zHHXdssuypp55KvXr1SltuuWWaPHly+ta3vpUqKyvT7rvv3uZ26JraM+e02267pYhI++23X5o8eXL6zne+kwYOHJiqq6ubHOsPPvhgi3/AadkfHTjwwAPTddddlz73uc+liEjnn39+m/vX3rmBjtTUpZdemjbeeON0xhlnpGuuuSZdfPHFjc/xk5/8ZJPtX3/99S02Zp1++ukpItJxxx2XrrvuujRp0qQUEenmm29u8znR9XSFa6iOzE8tc8ABB6RevXo1Ge9WZKygNV2hLlpy5JFHpurq6hZzl10DbrvttikiGv//pz/9aZPHqgta0xXq4rTTTksf/ehHG+8tLrjggrTNNtukiEinnHJKk9z/+Z//SYcddli6/PLL01VXXZV23333FBHpvPPOa7YP6oLWrE5ztB2550hJXdB+nfXzgitq7Trq2GOPbfw84RVXXJG+//3vp5EjR6by8vImtW6OVvNFE6NGjUoR0eK/5SdgU0rpH//4R9p9991T796904ABA9Jhhx2WZsyY0eQxrR1gKf3nL1+OGzcu9erVK40cOTKdddZZTf7CTmuWTQi3Zz+PPfbYNGbMmNS3b9/Uo0ePtMEGG6Qzzjij1Tf7ltfRD4IsXrw4fe1rX0vDhg1LvXr1Sttss03hxB5dW3t/3y0NGin9pxvuwAMPTP369Ut9+vRJ++yzT5sd1yn9/yd6W/u3/ATwLbfcknbYYYc0ZMiQVFFRkQYPHpz222+/9NRTT7W5nY6+sZfSytc0q6+OXEyl9N+pi+W339K/5c/tZ599dvroRz+aBg4cmCoqKtKIESPSZz7zmSZducu01HyRUvvGSlZvxosjm61jvCCllLbbbru05pprFv7lPHWhLlY3RdcgLR3rL7/8ctpvv/1Sv379UlVVVdpll12a/fUl99zuuVdXrqGObLaOsYJVVRcp/f8/pNfSv+WP1/feey996lOfSsOGDUs9e/ZMo0ePLhwXXnjhhRQR6Stf+Uqr21YXFDFeHNlsHXVBe9/na6n5IqX/nMuPOeaYNGjQoNS7d++04447Nvnrg61Zdly2Z7y477770m677ZaGDRuWevTokQYMGJB23333Vr8FaUUR7W++SCmlhx9+OE2cODFVVlamIUOGpJNOOqld9yx0Te2Zc1q0aFH63ve+l8aMGZOqqqpS//790z777JOmTJnS5HGtNV+klNK1116bNt5449SzZ8+0/vrrp0svvbTFb59YUXvnBjpSU0888UQ66KCD0jrrrJN69eqVqqur01ZbbZUuueSSVFtb22T7rTVf1NfXp+9///tp1KhRqWfPnmns2LHtaoaia+oK11AdmZ9KKaW5c+emysrKtP/++xfug7GC1nSFumhJax8aLMpdsQbUBa3pCnVx3333pX322SeNGDEi9ejRI/Xt2zd97GMfS9dff32za7Pf/e53afz48alv376pd+/eabvttku33XZbi/ugLmjN6jRH25F7jpTUBe3XWT8vuKLWrqNqa2vTFVdckcaNG5f69OmT+vTpk3beeef0xz/+scnjzNGmVEoppQAAAAAAAAAAAAAAAKBFZat6BwAAAAAAAAAAAAAAADozzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFKhYVRte75IfZssu1ZWyZUfG6IpF+cJr+6Rs2aV80Vm9/LWvrOpdaGK9S/PVREPGSi815Mvu+X6+/rCla9Zny476fLWc8/V+9bSv5gtfSaOuvzBfeMbzeZ+Bi7JlL5xfmS27vCLfAdaQsS4aFuU7yb32ha9ny15Zoy/PN16ksozXCw0Zz421+bJTjy56oZPRq6d2vvFivR9eki0757Vufa984VUzMl5HDc43XpQyjhc5z3GvfKXz1cXG3700W3ZDxmO3lPEyvWaNfMdujzkZ/7ZFxuvW8ozzEC+c++Vs2Stj3SsvzpZdVpPxOifnebE8Xy3nPE+ULc35mmSL7pTXUGN+891s2X0ql2bLfm9udbbshpTv+OrdO99rUlOT7764Z8+6bNn/2Pd72bJXVtbxYkm+64WGnvnOu+VDlmTLbpiZb56rq84VdMbxIud7FzmvdSoW5stesm6+c3rFrJ7ZsiPjHEeqyHjP/eXOVxfjj8hXF/W98h27ZfmG9ViyRr797rGwa87RVizKt9+P39S56mLUDRnfz8sp4+Rvj8p8BVe7JOOb/xnH5px/Gva1o87IF76SRl+W8fMflfnmOcuW5vtFlYbmu7eoX9gjW3ZkvLcoX5Tv9e6M71uMuu6ifOEZ53Ry3s/nvI7OmR0Z55ZzjkWvHXd6tuyVNf6eM7Nl55zrLMt4HVVelm+cW1yTb7zoWZHvTc6cr8lfd+981/LrX5zx8x8ZP3vZkPG82zC4Nlt2jzfyzUWljLcuDRnnaNtzHeWbLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAAClSssi2nUr7oipQvuzxbdAwZNyNb9jtPDMuWXdcn5+udL7uzSTlbocryvY7li/Pt+Do7vp4t+9Un1s6WXV+Z8bjNd+rslMp61mfLbljYI1t2/ZMDsmX3qMp3fNUObMiWnUr59rtiQE227O6m1JDvJFPKV87RUJnx2O2ZL7t8XsZL8Yxjf2eU8RST9Xq0aka+66jSNnOzZccrffNl57yMqu9eF1INPfK9mGVL872WPRZmi46hj+d7Td7fKN9rUjMg337nvJ/vbEp1Oa9z8mU3DF+SL3txvmuR6pfz3W8tXLcuW3appnv9nZqGjNf/787pky178IAF2bJLGS8sh/bOt9+vzRmYLXtp7ap7C2FVqFiY7zyQc/631+x84UPvzXdOf+ej+fZ76eB8ExFltd3r3iJyzhflG9Zj6fr5rqOG/V/PbNlzMt5b1Ga8/s95vd0Z1fXO93wr3883H7m0X77z7lo3v5Qte+lm62TLXjgi43tFvbpXXWSTc/J3cb4Pf/R4qVe27Nr1Mr4v5rD90OT83FLFgnzHbn1VvnFoyO8rs2UvWjPfGLdorYzvQ3avW+6s55iyjJ9dGrTh7GzZZRnHuTlPrJktuybjPXfqnfFGsRMqL8t3jomGfHUxuHe+N/TentcvW/Z6A/PV8wuzhmbLXqN6Ubbszqg+42eAuurnokb8Nt9Fw9ufWpotO+bku+cuq1m1Ny/d6x1FAAAAAAAAAAAAAACADtJ8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQoGJV70AOFYtK2bJr1qnJll2157Rs2bWXDc2W3WNevte7vne26O4l5YvuNTvf7z92fStbdK9f98uW3fD4gGzZS4Y2ZMvujMor8j3fsrnl2bKvPuaqbNk7VGaLji0uOjFb9rxN842fKWU8D3VGGc/pDf3qsmX3+VfPbNkLN12SLbvy5XxFt2R4vte7bEn36rFOZRkLI2P04mH5xrm+f+6fLbtn32zRsXjt2mzZPd5bLW9/W9WQ77QbVbPyZc/dLN8x8OxXr8uWvdFDR2bLrvpbdbbsJUMynuQ6mR7zM84Vrbs0W3bV81XZsitnZ/z9f/LdbNE1/xyULbuhR/epiYi891K9e+eri3deWyNb9pjvvZ4t+7kzRmfL3niLfPv90vQ1s2V3RrUD6rNl93w331zUqJ1ey5Z9z/F3Z8s+fcaW2bJ/+9sJ2bJr+3ezOdp80y5R2nhBtuzRV+e7Kbrvpnzzvzv/44Bs2XPvGZ4te9Hw7nUdVbE43/OdOzrfeLHWH+dmy/79M/dny97ohhOyZQ9+Jt/vcska3ei9i7p8z7WsKt/1WSztkS36nyfnGys2uDlfTcRai7NF18/LOGHZCZVnfJ8mrZXvAm3AX/K9L/a3iyZnyx7718OyZZdeyvfZkvqM7812RuXz8l3nDN10ZrbsJb/O95m7sZ//R7bsf2yd7zw0++V883NR273e5563ON95d4uhb2fLnjJ9rWzZp415MFv2Rb/7VLbs7T42NVv2czPz3c93RqX6fPcXOd8vrM/4mb6/XHF1tuwJXzs+W/aM3fK991+atWrvL7rXaAUAAAAAAAAAAAAAANBBmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApUrKoNl1K+7KUja7Nlb3TUU9my733779myt/v6ttmyyw9/J1v2vD8My5bd2VS9k68XaqtP/SNb9junzsuWndNz296SLXvHnxyXLXvGuCXZsjuj2sU9smWP3XZatuwLd5iULfv8N9/Klv3VF27Lln32n/bPlt0wuzxbdmfU691848Xm41/Jlv3+Me9ly855DbVgl3zn3Z3O+XK27NkTa7Jld0Y5r6M23vfFbNkL91iULfv//v1otuw9RozLlj30r/2yZT9956bZsjujVJ7vprvfa/XZsh88/UfZsiN6Z0te9/Js0fHSUfnmOHpPy3e93dmUj81377r2DdXZsh+65qps2VNr8o1DX1p3YrbssRnHiqfu6l5jxc7rvpQt+28/2TJb9qvfmZwte48TxmXL3uCWIdmyv7Pvb7NlH/bMSdmyO6Me7+ebY6hfb3G27NI+72fL3mPRuGzZ9749JVv2c78dmy37la91r79r1uv9Urbsj4/ONxa9/Md8czrlpXzHwJ83uyNb9l6nfyZb9svf7JktuzOq75mvLvq82ZAte/YW+a6lx0w+MVv2gO1mZcseeHm+e8WaSetly+506vLVxJBB87NlL/1bVbbsnHOoww7Md54Y8aU3smU/+fcNsmV3RnUD6rJlV72Q79gt7f1utuycdbHOFvnqonTZa9myX/3TutmyO6P6Qfnmumc+OzRb9kvfzTgXlbEu+uz5kWzZa3/z5WzZzz6xfrbszqhHeb733IZXzs2W/dRzY7Jl337Amtmy//12vnoefc+x2bI3GJXv87mdUcOAfONFv2fyzV80ZPz42l4bb58t+5rnLsuWfdiVX8mWvWRIxiaEduheM8QAAAAAAAAAAAAAAAAdpPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAIVHzQgpRR/+tOf4t///ncMHz489thjj+jRo8eHsW8AAAAAAAAAAAAAAACrXIebL/bee+/4+c9/Hv3794/33nsv9t5773j88cdj8ODBMXv27Nhoo43iz3/+cwwZMiTH/gIAAAAAAAAAAAAAAPxXlXV0hXvuuSeWLl0aERFnnXVWzJ8/P15++eWYOXNmvPbaa1FdXR3f+c53PvQdBQAAAAAAAAAAAAAAWBU63HyxvD/+8Y/xP//zPzF69OiIiBg5cmRceOGFce+9934oOwcAAAAAAAAAAAAAALCqrVTzRalUioiI999/P9Zff/0mP9tggw3i7bff/uB7BgAAAAAAAAAAAAAA0AlUrMxKRx11VPTq1Stqa2vj1VdfjbFjxzb+bMaMGTFgwIAPa/8AAAAAAAAAAAAAAABWqQ43Xxx55JGN//2pT30qFi1a1OTnt99+e4wbN+4D7xgAAAAAAAAAAAAAAEBn0OHmi+uvv77w52effXaUl5ev9A4BAAAAAAAAAAAAAAB0JmUfduB7770XJ5544ocdCwAAAAAAAAAAAAAAsEpkab648cYbP+xYAAAAAAAAAAAAAACAVaKioyvcddddhT9/5ZVXVnpnAAAAAAAAAAAAAAAAOpsON198+tOfjlKpFCmlVh9TKpU+0E4BAAAAAAAAAAAAAAB0FmUdXWH48OHx61//OhoaGlr89/TTT+fYTwAAAAAAAAAAAAAAgFWiw80XW2+9dTz11FOt/rytb8UAAAAAAAAAAAAAAADoSio6usLpp58eCxcubPXnG2ywQTz44IMfaKcAAAAAAAAAAAAAAAA6iw43X2y//faFP6+uro4dd9yxzZz6Xvm+HaPHzB7Zsl/66VbZss+aWZ8te9GaHf6Sk3abP31gtuyKId3nW1QWjcz3+//LE5tky07XNWTLfnXSddmyvzo9Xy3P2K48W3btrKps2Z1R+ex85/M1Nmm9kfCDmjV4ZLbsNGpItuw9qx/Jln3xix2+5Gi3pdsuyJbdGS0dnO+8+9QjG2fLrv9xvv3e4sKJ2bLremeLjiVj8r0mFbN6ZsvujJYMynfN+MxfN8yW3fsLpWzZe4xcmi371e+Pz5b98qP5fpelgd3n3iIiomJhvnvAN3fJFh37HX9atuxedz+RLftjz+TLfueGnbJlLxrafepi0czqbNmzx+S71r3kvfWyZe/a5/ls2S/fvGW27JeeyHedU1oz3/VZZ/TYjHWyZb8/vjZb9maPfTZb9s3T/l+27M9ene++5YTnDsuWXbbmkmzZnVFdn3zngbK3K7Nlv3Dp2GzZ6/8837z1+Cn57rfePTrf2F/2Rr5r7c5owboZ37u4Nd88/Tf/9fNs2XuOyndfXH/P0GzZM3dZI1t23ax8x0ln1GtevvFi0ZB855ghk/+aLXvBd/Nd6ww4P98k7fT9BmfLrn6nG91fVOZ7ru+8nu/cFZvVZYsePqB/tuzBp0zLlv33v2yULbu0Vve6t4iGfPP/tX3zzemlJ/KdF8sHvZste8G6fbNlv/VWvnu5st7dZ342IiLq8l3nVM7MV3Pv1uf7bEnN/aOyZb/9WL556+kzhmXLbsi3251SVc9886i/f3VMtuwvH/KbbNk//9ukbNlbP5XvWmeNIfOyZS+uzff5uc6o4p187wPN3iLf2Fu+ON9YNGj+/GzZp554SrbshZPyzReVZXy927X9Vbp1AAAAAAAAAAAAAACATk7zBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAgYpVtuFFpXzhGaMrX6rMln3LvInZssuHpmzZPWb0zJbdsMqO0P++siX5Dtz66oZs2ZVv9ciWPeFrx2fLnr15vtc7ZTxuS3UZT3CdUP3gmmzZjzw2Jlv2tlf+K1t2VXlttuwdf3J6tuwlG9Vly44F+cahTinjaaCub3227B5zy7Nlz98w336nqnzZ5XPyDRj1vfJd+3U39VX5rqPmb5QtOtb+45rZsuuey/ealC/O9/cBUjf70wPlS/Jl95ifbzB6a/t858Zex4zNln3Xlf2yZdcMzxYdZfkuLTudsqX5TgI1A/KNu9fevme27Jtm5ssuG5nvNWnom28cKi3tXvfcCxf3ypa9xpB52bLnvLxGtuzPPPmVbNm1my/Klr10Yb4568qqfHMznVGPefnGi9oB+c5fPWfmu4aaPSbf/O+iKfnOQ+X5djvr3ExnVKrP94QXDct3zXDRpZ/Jlr3k5/OzZcefMt5bjMx4P7+oe9101/bO93x7zs9XF++cmu+96LXvW5gt+90temfLrnwv3+u9eGD3qotcSlX53l8qq8j3+//Sk49myz7+7mOyZZetnW9SsWFxvveJOqOc11A537dI5fn2u/dv8p0Xp/473/t5pffzvRdd1z/ffndK+Q7dWDgq32s58aavZcuuHZhvv6s+ku++ZcmM6mzZqbJ71UXP8nzPt6ws37XO5Bd3yJZ93o9vypZ90zv57olemTMoW3ZdQze7t8j4dHN+9rJu5NJs2SP/1idb9h//me9cUVqQ7/XOeb3dHt2sKgEAAAAAAAAAAAAAADpG8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQIGKVbXhhp4pY3gpW/TSQQ3ZsssX5euFKeV8uXP+LjNGdzapPF92+cJ8x1Zt33w1MWe/hdmy69+szpYd+U5BUarPl90ZlfXId3w19K/Nlv3Xf2yQLbvi/XxDd6/N52bLLlvYM1t2Q1036yXNODaWLc33WtZV56vnssX59jvV5Tupp2526GaV8bWsWJDx+Mq436/eOzpbdvnAfCeilPM6qhvdW0RE1FXne8Kl+ny/qB5LskVH2V/6Z8uet16+17u8JuPvshvVRc57qbo++a5zcl771ayb756obP8gSokAAEEnSURBVGavbNml2nznoIZeGX+X3UzKOKhXr5vv3rXH+vlOFgN71GXLXlzTI1t2Td0qewthlajtl3H+P+O9RW3/fPs9b92abNkx23jRFZQyzo3kvCCd+5Fs0VH+777Zshsy1nMp4/un5rk+PKks3++p57x8Nff+R3pny+41J99+Lx2QcY5jYTe66c4oZXwPqD7fJXqc8vNjs2WXrZdvAq1+Ycbr/4ruVROlpRmvRyvzXS/kHIeev2+jbNk9Ms6H1/bLN1dQPj/jB4W6mZTxHFM3cmm27Ix3W1EzrU+27JRzTjzni9IJLa7NN6/XvyrfNUOP8nznxtMe/0y27P59F2XLrsw4/1tb373Gi1TeNT9bXjYz32fjHnt+82zZPfpnHEN7Z/xsySqeizIVBgAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAgVJKKa3qnQAAAAAAAAAAAAAAAOisfPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzRRuWLl0aZ5xxRowYMSKqqqpi2223jfvvv7/d67/11ltx8MEHx4ABA6Jfv37xqU99Kl555ZU211u0aFFceeWVsfvuu8fw4cOjb9++seWWW8bkyZOjvr6+yWOnTZsWpVKpxX+33nprq9uora2NMWPGRKlUiosvvrjdz+muu+6KrbbaKiorK2OdddaJs88+O+rq6tq9Pl2fumhOXaAumlMXqIvm1AXqojl10b2piebURPf2xBNPxMknnxxjx46N6urqWGeddeLggw+OF198sd0Zc+bMieOOOy6GDBkS1dXVsfPOO8fTTz/d5noNDQ1xww03xL777htrr712VFdXx6abbhrnnXdeLFmypNnjW6uLCy64oHA7u+22W5RKpTj55JPb/ZweffTR+PjHPx69e/eOYcOGxamnnhoLFixo9/qsXs4///wolUqx6aabtnud/8Z4saKbb745SqVS9OnTp8Wf33bbbbHddtvFgAEDYtCgQbHjjjvG3Xff3e7nZLzo3owXLTNe4P6iOeNF9/CnP/2p1ePqb3/7W7PH19TUxPe///34yEc+EpWVlTF06NCYNGlSvPnmm+3a3k9+8pPYZJNNorKyMjbccMO44oor2rXeyo5fbR3/06dPj+OOOy5Gjx4dVVVVsf7668dXvvKVmD17drv2a2XHRLqm1W2suO6662LHHXeMoUOHRq9evWL06NFx9NFHx7Rp09r9nFxD0RXqYkVF99xHHXVUi/XzkY98pN3PyTUUXaEu3n777Tj88MNj4403jr59+8aAAQNi/PjxceONN0ZKqcX8X/ziFzFhwoSorq6OAQMGxMSJE+OPf/xju56T8YKuUBcR/5k/3nfffWPo0KFRKpXiu9/9bqvZDzzwQOy8884xePDgxhq66aab2v2c1AVdoS7MRWWSKPSZz3wmVVRUpK997WvpmmuuSRMmTEgVFRXp4YcfbnPd+fPnpw033DCtueaa6cILL0yXXHJJWnvttdPIkSPTu+++W7juc889l0qlUtp1113TRRddlK6++uq03377pYhIn/vc55o89tVXX00RkQ499NB00003Nfk3bdq0Vrfxwx/+MFVXV6eISD/4wQ/a9Xr8/ve/T6VSKe28887p2muvTaecckoqKytLxx9/fLvWZ/WgLppSF6SkLlakLkhJXaxIXZCSuliRukBNNKUmOOCAA9KwYcPSKaeckq677rp07rnnpqFDh6bq6ur03HPPtbl+fX19mjhxYqqurk7f/e53049//OM0ZsyY1Ldv3/Tiiy8Wrjt//vwUEWm77bZL5513Xrr22mvT0UcfncrKytJOO+2UGhoamjw+ItJuu+3WrC7+8Y9/tLqN22+/vbEuTjrppHa9JlOmTEmVlZVpyy23TJMnT07f+ta3Uq9evdKee+7ZrvVZvbzxxhupd+/eqbq6Oo0dO7Zd6/y3xosVtzlixIhUXV2dqqurm/388ssvTxGRJk2alCZPnpwuvfTStMUWW6SISLfffnubz8l4gfGiOeMFKbm/WJHxovt48MEHU0SkU089tdlxNWvWrCaPrampSbvuumvq3bt3Ou2009JPfvKTdPHFF6eDDjqo8Ny8zNVXX50iIh1wwAHp2muvTUcccUSKiHTBBRe0ue7Kjl9Fx//8+fPTqFGj0uDBg9N3vvOddN1116WTTz459ejRI40bNy7V19cX7tMHGRPpmla3seKEE05IRx55ZLr44ovTT37yk3TWWWeloUOHpsGDB6e33nqrzefkGoqUukZdrLjNonvuI488MvXq1atZ/dx1111tvxjJNRT/0RXq4plnnkk77rhj+uY3v5muvvrqdMUVV6R99903RUQ688wzm2WfffbZqVQqpYMOOqjx8V/84hfTT3/60zafk/GClLpGXaT0n7moYcOGpT322CNFRDr77LNbzL3zzjtTqVRKEydOTFdccUX68Y9/nHbYYYcUEemSSy5p8zmpC1LqGnVhLioPzRcFHnvssWYHzuLFi9P666+fJkyY0Ob6F154YYqI9Pjjjzcumzp1aiovL2/xImd5s2bNanGC6+ijj04RkV566aXGZcuKo70HeEopvfPOO6l///7pe9/7XofWHTNmTNpiiy1SbW1t47JvfetbqVQqpalTp7Z7+3Rd6qI5dYG6aE5doC6aUxeoi+bURfemJppTEzzyyCNp6dKlTZa9+OKLqVevXumwww5rc/1f/OIXKSLSL3/5y8ZlM2fOTAMGDEiHHnpo4bpLly5NjzzySLPl55xzToqIdP/99zdZ3pEPxKb0n/ped911G+uivevutddeafjw4Wnu3LmNy6677roUEenee+9t9/ZZPRxyyCFpl112STvuuGO7my/+W+PF8s4444y08cYbp8MOO6zFD4JsuOGGaZtttmnyIfW5c+emPn36pH333bfN52S8wHjRnPEC9xfNGS+6j2XNF8uf11tz4YUXph49eqTHHnusw9tZtGhRGjRoUJo0aVKT5cuued57773C9Vdm/Grr+L/55ptTRKTf/e53TZZ/5zvfSRGRnn766cJ9+iBjIl3P6jxWLO/JJ59MEZH+53/+p83Huoaiq9TF8tq65z7yyCNbXN5erqHoinWxvH322SdVV1enurq6xmV//etfU6lUatcHyltivKAr1cWrr77auF5R88Vuu+2WRowYkZYsWdK4rLa2Nq2//vpp8803b/M5qQu6Sl2Yi8qjLGjVr371qygvL4/jjjuucVllZWUcc8wx8de//jXeeOONNtffZpttYptttmlc9pGPfCQ+8YlPxG233Va47uDBg2Ps2LHNlu+3334RETF16tQW11u4cGHU1NQUZkdEfOMb34iNN944Dj/88DYfu8zzzz8fzz//fBx33HFRUVHRuPzEE0+MlFL86le/ancWXZe6aEpdEKEuVqQuiFAXK1IXRKiLFakL1ERTaoKIiIkTJ0bPnj2bLNtwww1j7NixrR6Xy/vVr34VQ4cOjf33379x2ZAhQ+Lggw+OO++8M5YuXdrquj179oyJEyc2W95WXSxevDiWLFnS5r5ddNFF0dDQEF/72tfafOwy8+bNi/vvvz8OP/zw6NevX+Pyz33uc9GnT582a53Vy5///Of41a9+FZdddlmH1vtvjxcvvfRSXHrppXHJJZc0OZ8vb968ebHmmmtGqVRqXNavX7/o06dPVFVVFe6T8YII48WKjBdEuL9YkfGi+5o/f37U1dW1+LOGhob40Y9+FPvtt1+MHz8+6urqYtGiRe3OfvDBB2P27Nlx4oknNll+0kknxcKFC+Puu+8uXH9lxq+2jv958+ZFRMTQoUObLB8+fHhERJvXVh9kTKTrWZ3HiuWtu+66ERExZ86cwse5hiKi69VFe+65l6mvr28cJ9rLNRQRXa8uVrTuuuvGokWLmowfl112WQwbNixOO+20SCnFggUL2sxZxnhBRNeqi2XXQm2ZN29eDBw4MHr16tW4rKKiIgYPHtzmfYS6IKJr1cUy5qI+PJovCkyZMiU22mijJifIiIjx48dHRMTf//73VtdtaGiIZ599Nj760Y82+9n48ePj5Zdfjvnz53d4n2bMmBER/ymeFZ1zzjnRp0+fqKysjG222Sbuu+++FjMef/zxuPHGG+Oyyy5r8gZfW6ZMmRIR0ew5jRgxIkaOHNn4c1Zv6qIpdUGEuliRuiBCXaxIXRChLlakLlATTakJWpNSinfeeafF43JFU6ZMia222irKyppO+Y0fPz4WLVoUL774Yoe3X1QXN9xwQ1RXV0dVVVWMGTMmbrnllhYzXn/99bjgggviwgsvbPNNi+U999xzUVdX16wuevbsGePGjVMX3Uh9fX2ccsopceyxx8Zmm23W7vVWxXjxpS99KXbeeefYe++9W11/p512invuuSeuuOKKmDZtWrzwwgtx0kknxdy5c+O0004r3LbxgtYYL4wX3Z37i6aMF93T0UcfHf369YvKysrYeeed48knn2zy8+effz7efvvt2HzzzeO4446L6urqqK6ujs033zwefPDBNvNbO6623nrrKCsrW6njqmj8as/xv8MOO0RZWVmcdtpp8be//S3efPPN+P3vfx/nn39+fPrTn46PfOQjbT6nD3tMpPNaXceKiIjZs2fHzJkz48knn4yjjz46IiI+8YlPFG7bNRQRXa8u2nPPHRGxaNGi6NevX/Tv3z/WWGONOOmkk9r1YXPXUER0vbpYvHhxvPvuuzFt2rS48cYb4/rrr48JEyY0ua/+wx/+ENtss01cfvnlMWTIkOjbt28MHz48fvzjH7e5beMFEV2vLtpjp512in/+85/x7W9/O/7973/Hyy+/HOeee248+eST8fWvf71wXXVBRNerC3NRHy7NFwWmT5/e+Fcxlrds2dtvv93quu+9914sXbp0pddvSU1NTVx22WUxevToJt1OZWVlsfvuu8cPfvCDuOuuu+LSSy+NmTNnxl577dXsL4yklOKUU06JQw45JCZMmNCh7U+fPr3J/q/4nDr6fOia1EVT6oIIdbEidUGEuliRuiBCXaxIXaAmmlITtObmm2+Ot956Kw455JA2H/tB6qo1F110UfTr1y/22muvJssnTpwY559/fvzmN7+JyZMnR3l5eRx22GExefLkZhlf/epXY8stt4zPfOYzHdq2umCZq6++Ol577bU499xzO7Tef3O8iIi4++6747777otLLrmkMOPyyy+PnXbaKU499dQYPXp0bLLJJnHbbbfFH/7whzbHD3VBa4wX6qK7c3/RlLroXnr27BkHHHBA/OhHP4o777wzzjvvvHjuuedi++23b/LhhpdeeikiIi699NL405/+FNdcc01cf/31sWTJkthzzz3j2WefLdzO9OnTo7y8PNZcc81m2x80aNBKHVetjV/tPf7HjBkT1157bTz//PMxYcKEWHvttWPSpEnxiU98In75y1+2uf0cYyKd1+o4Viyz1lprxdChQ2ObbbaJRx99NC6//PLYbbfdCrdvrCCi69RFRPvvuYcPHx5f//rX4/rrr4+f//znse+++8ZVV10Ve+65Z6vfDrWMuiCia9VFRMSPfvSjGDJkSIwePTqOOuqo2G677eLWW29t/Pn7778f7777bjzyyCPx7W9/O77xjW/EL37xixg3blyccsopcc011xRuX10Q0fXqoj2+/e1vx8EHHxznn39+bLjhhrHBBhvEBRdcELfffnuTb8ZribogouvUhbmoPIq/g62bW7x4cZOvFVqmsrKy8edF60bESq/fkpNPPjmef/75uPvuu5t8Lcs666wT9957b5PHHnHEETFmzJj46le/GpMmTWpcfsMNN8Rzzz23Ul/h0tZz6ujX9dE1qYum1AUR6mJF6oIIdbEidUGEuliRukBNNKUmaMmyv4Y/YcKEOPLII9t8/Aepq5Z8//vfjwceeCCuuuqqGDBgQJOfPfLII03+//Of/3xsvfXW8c1vfjOOOuqoxr+s9uCDD8btt98ejz32WIe2vfz+tvacOvp86Jpmz54d3/nOd+Lb3/52DBkypEPr/jfHi5qamvjyl78cxx9/fIwZM6Ywo3fv3rHxxhvHyJEjY5999on58+fHpZdeGvvvv388/PDDscEGG6z0czJedE/GC+MF7i9WZLzoXiZOnBgTJ05s/P999903DjzwwNh8883jzDPPjHvuuSciovEvfs+fPz+mTJkSa6+9dkRE7LLLLrHBBhvERRddFD/72c9a3c7ixYujZ8+eLf5sZc63ReNXR47/tdZaK8aPHx977713jPr/tXfnYXZVZb6A16khVUkqA5lIIhAyNA1EIMh4BQzxohBmNFykBaMM0soQ9ULzILltIwg8iNKAtBDblgZpUNC0goKgRpurEiVIc5VA0KSAJBAyD1Wp1LTuHzwpqVTVTgr4TBX1vs+TP3LqnN/ZZ5/97bX2OuerGjcuPf744+mWW25JI0aMSDfeeGPhY9/uMZGe7Z04Vmz18MMPp4aGhrRw4cL07W9/O9XV1W33+c2hSKn31EV3rrmvu+66dv//yEc+kvbaa6905ZVXpgceeKCw2dscipR6T11sdeaZZ6aDDz44rVy5Mj300ENpxYoV7Z5j6xxw9erV6b777mtrep0xY0bab7/90jXXXJMuuOCCN/2ajBd9Q2+rix1RVVWV9tprrzRjxoz0oQ99KLW0tKQ5c+aks846Kz322GPp8MMP7/Kx6oKUek9dWIuK4S9fFOjfv3/asmVLh9sbGhrafl702JTSm378tr785S+nb3zjG+nqq6/e7p/PSymlYcOGpU984hPp+eefT0uXLk0ppbRhw4Z0xRVXpMsuu6xtMa07tveauvN66L3URXvqgpTUxbbUBSmpi22pC1JSF9tSF6iJ9tQE23r11VfTCSeckIYMGZIeeOCBVF5evt3HvJW62tZ3vvOdNHv27HTuueemT33qU9u9f79+/dJFF12U1q1blxYsWJBSSqm5uTldcskl6eyzz35Tv31KXZBSSrNnz07Dhg1LF198cbcf+9ccL2666aa0atWqdNVVV2035/TTT08vvfRSuvPOO9OMGTPSJz7xifSLX/wiNTY2piuvvLLwseqCbRkv1AWvc33Rnrpg0qRJ6ZRTTknz5s1LLS0tKaW/HBdHHHFEu+Nqjz32SEceeWT69a9/XZjZv3//1NjY2OnPuntcFY1f3Tn+f/WrX6UTTzwxfelLX0qzZs1Kp556avrKV76SZs+enb761a+mZ599druv6e2qfXq+d9pY8UbTpk1L06dPT5/73OfS/fffn6666qr0ta99rTDTWEFKvacuunPN3ZnPfvazqaysLP30pz8tvJ+6IKXeUxdbjRs3Lh1zzDHpzDPPTPfcc0+aMGFCOuaYY9q+BLv1+SorK9OMGTPaHldWVpbOOOOMtHTp0vTSSy+96dekLvqG3lYXO+Kiiy5KDz74YLrvvvvSRz7ykfTRj340/fSnP01jxoxJs2bNKnysuiCl3l0X1qLeOs0XBcaMGdP2p1DeaOttY8eO7fKxw4YNS1VVVW/68W905513pssvvzz9/d//fZo9e/YOPSal1FYAa9asSSmldOONN6bGxsZ0xhlnpNra2lRbW9tWOGvXrk21tbVdLpil9Jc/B9PVa9rR10Pvpi7aUxekpC62pS5ISV1sS12QkrrYlrpATbSnJnij9evXp+nTp6d169alRx55ZIff/7dSV2/02GOPpY997GPphBNOSLfffvsOb/e2dXHXXXel559/Pl1wwQVtdVFbW5tSev237dbW1qb6+vrC1/PG7d/2NamLd74XXnghzZkzJ11yySVp+fLlbcdQQ0NDampqSrW1tW3HW2f+WuPF+vXr0zXXXJPOP//8tGHDhrbt3LRpU8o5p9ra2vTaa6+llFJavHhxeuSRR9LJJ5/cYVuPPPLIDn8lYFvqgjcyXvzl9bxx+7d9Teqib3B90Z66IKXXj6vGxsa234C/9X3fddddO9x31KhRae3atYV5Y8aMSS0tLW3zmq0aGxvT6tWrd/i42t741Z3j/4477ki77rprOvjgg9tlnHzyySnnvN2GkrdrTKR3eKeNFV2ZOHFiOvDAA9M999xTeD9jBSn1jrrozjV3V/r375+GDx++3fpRF6TUO+qiyIwZM9LLL7+c/uu//qttm6qrq9Pw4cM7/MKGUaNGpZRS4TxQXZBS76+LbTU2NqZvfvOb6YQTTkhlZX/5CnVlZWWaPn16evLJJ11zs129vS6sRb01mi8KTJkyJS1atKjDnzvZ+mevp0yZ0uVjy8rK0n777ZeefPLJDj+bP39+mjBhQho0aNB2t+EHP/hBOu+889KHPvShdNttt3Vr+xcvXpxSSmnkyJEppZReeumltHbt2jR58uQ0fvz4NH78+HTUUUellF7/s+Djx48v/O0fW1/vtq9p+fLlaenSpYX7g3cOddGeuiAldbEtdUFK6mJb6oKU1MW21AVqoj01wVYNDQ3ppJNOSosWLUoPPfRQ2nfffXf4sVOmTElPPfVUam1tbXf7/Pnz04ABA9Jee+213Yz58+en0047LR188MHpu9/9brf+ZHdnddHU1JSOOOKItroYP358Sun1L9qOHz8+Pfroo13mvfvd704VFRUd6qKxsTE9/fTT6qIPWLZsWWptbU2XXHJJu2No/vz5adGiRWn8+PHpi1/8YpeP/2uNF2vXrk2bNm1KN9xwQ7vt/N73vpfq6+vT+PHj0yc/+cmUUkorVqxIKaW230D9Rk1NTam5ublwW4wXbGW8+AvjBSm5vtiW8YKUXj+uqqurU01NTUoppf322y9VVlamZcuWdbjv8uXL246/rnR1XD355JOptbV1h46rHRm/unP8r1ixost5VUpph+ZWb3VMpPd4p40VRTZv3pzWr19feB9zKFLqHXXRnWvurmzcuDGtWrXqTY915lB9S2+oiyJb/+LF1nGgrKwsTZkyJa1cubLDl2aXL1+eUioeW4wXpNT762Jbq1evTs3NzV1eS7S2tnb6s63UBSn1/rqwFvUWZbr0xBNP5JRS/vKXv9x2W0NDQ540aVI+7LDD2t33xRdfzAsXLmx32/XXX59TSvl3v/td223PPfdcLi8vz5dffvl2n/+Xv/xlrq6uztOmTcsNDQ1d3u+1117rcNvSpUvzLrvskvfff/+22xYsWJDnzp3b7t8dd9yRU0r54x//eJ47d25et25dzjnnxsbGvHDhwrx8+fJ2uXvvvXc+4IADcnNzc9tts2fPzqVSKT/77LPbfU30fupCXdCRulAXdKQu1AUdqQt1QXtqQk3QUXNzcz755JNzRUVF/tGPflR43+XLl+eFCxfmxsbGttvuu+++nFLK999/f9ttK1euzEOHDs1nnHHGdp//2WefzcOHD8+TJ0/Oa9as6fJ+ndXFhg0b8sSJE/OIESPyli1bcs45L1y4sENdzJ07N6eU8vHHH5/nzp3brg4WLlyYX3zxxXa5xx13XB4zZkzesGFD223/+q//mlNK+eGHH97ua6J3W7lyZafH0OTJk/Mee+yR586dm5955pm2+++s8aKurq7T7Zw2bVqurq7Oc+fOzU888UTO+fX6KSsry0cffXRubW1ty3j55ZdzTU1NPu6449puM17QFeOF8YKOXF8YL/qyzo6rp59+OldWVuaTTz653e2nnHJKLi8vb1cDzz77bC4vL8+f/vSn226rq6vLCxcuzCtXrmy7rb6+Pg8bNiyfeOKJ7TLPOuusPGDAgLx69erC7dzR8as7x/9FF12UU0p53rx57TI+85nP5JRS2xws55gxkd7lnTZWNDU1dToXmz9/fi4vL89nn312u9vNoehMb6iL7lxzb968ud3xvNVll12WU0r5+9//fttt5lB0pTfURc6djxc553zSSSflUqmUX3jhhbbbbrrpppxSynPmzGm7bfPmzXnChAl53333bfd44wWd6S118UYrV67MKaX8hS98ocPPmpub89ChQ/Nee+3Vtj6Vc84bN27Mu+22W957773b3V9d0JneUhfWomJovtiO008/PVdUVOTLLrss33HHHfm9731vrqioyL/85S/b3W/q1Kl5216WrR8ijBo1Kt9www35pptuyrvvvnseO3ZslxOgrWpra/OQIUNy//7982233Zbvvvvudv/++7//u+2+H//4x/NRRx2V/+mf/inPmTMnf/7zn8/Dhw/P/fr167DQtK0lS5Z0OAG88faZM2e2u/3BBx/MpVIpv//9789z5szJl1xySS4rK8vnn39+4fPwzqIuZra7XV2Qs7pQF3RGXcxsd7u6IGd1oS7YlpqY2e52NcGsWbNySimfdNJJHY7Lu+++u919Z86cmVNKecmSJW23NTc358MPPzzX1NTkq666Kt9222158uTJedCgQfm5554rfO4NGzbk3XffPZeVleXrr7++w3P/+te/brvvF77whXzAAQfk2bNn5zlz5uSrrroqjxs3LpdKpfztb397u68zpZQvvPDCTm+fOnVqu9sWLFiQq6qq8oEHHpi//vWv5yuvvDJXV1fnD37wg9t9Ht65pk6dmidPntzp7TtrvOjMzJkz88CBAzvcft555+WUUp42bVq+9dZb87XXXpt32223XF5e3m4MNF7QFeOF8YLOub6Y2e5240XfMW3atHz88cfna665Js+ZMyd/5jOfyQMGDMhDhgzp8OWGP/7xj7mmpiaPGTMmX3fddfm6667LY8aMySNHjsxLly5tu9+8efM6/aLSbbfdllNKecaMGfkb3/hG/tjHPpZTSvlLX/rSdrezO+PXtro6/p977rk8cODAXFNTk6+44op8++235zPPPDOnlPIHPvCBdvd9u8dEeqd30lixdu3aPHDgwHzOOefkr3zlK/n222/PF154YR4wYEAeNmxYXrRoUbttMIeiK72hLjrT2TX3kiVL8tChQ/OnPvWpfPPNN+ebb745H3/88TmllI877rjc0tLS7r7mUHSlN9TFrFmz8sEHH9x2zX399dfnQw45JKeU8sUXX9wut76+Pk+ePDlXVlbmSy+9NN9yyy35kEMOyeXl5fnHP/5xu/saL+hKb6iLnHO+66678tVXX52vuOKKtjXYq6++Ol999dW5tra27X7XXHNNTinlAw88MN900035xhtvzPvss09OKXVYt1IXdKU31IW1qBiaL7Zj8+bN+dJLL82jR4/OVVVV+ZBDDsmPPPJIh/t1Vhw5v/4by2bMmJEHDx6ca2pq8oknntius7QrWxe0uvr3xoWu//iP/8jve9/78siRI3NFRUUeMWJEPu200/KCBQu2+zzdLY6cc547d26eMmVKrqqqyrvttluePXt2u98QwjufupjZ4THqAnUxs8Nj1AXqYmaHx6gL1MXMDo9RF32bmpjZ4TFqom/beqx39e+NOvviUM45r1mzJp977rl5+PDhecCAAXnq1KntfmtOV7Yel139e+Px+uijj+YPfOADefTo0bmysjIPHTo0f/CDH8w/+9nPduh1dufLtDnn/Pjjj+f3vve9ubq6Oo8cOTJfeOGFnf4WQ/qO7jRf5PzXGS8601XzRVNTU7711lvzlClTck1NTa6pqcnTpk3LP//5z9vdz3hBV4wXxgs65/piZofHGC/6hptvvjkfeuihediwYbmioiKPGTMmn3XWWV0evwsWLMjHHHNMHjhwYB40aFA+5ZRTOnxJu6vmi5xznjNnTv7bv/3b3K9fvzxx4sR80003tfuLXl3pzvi1ra6O/5xfb8CYMWNG3n333XNlZWUeN25cvvTSS3NdXV27+73dYyK90ztprNiyZUueNWtW3n///fPgwYPbjv9zzz23w3GeszkUXesNddGZzq65165dm88666w8adKkPGDAgFxVVZUnT56cr7322g5zIHMoivSGunj00UfziSeemMeOHZsrKyvzoEGD8hFHHJG/9a1vdTo3W7FiRZ45c2YeNmxYrqqqyocddlinr8l4QVd6Q1288fk7+7ftF83vueeefOihh+ahQ4fm/v3758MOOyw/8MADHbZBXdCV3lAX1qJilHLOOQEAAAAAAAAAAAAAANCpsp29AQAAAAAAAAAAAAAAAD2Z5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAAhU764n3vO3GuPDWUlh0qTUsOlXUxW13a+A73TIwcKcEvpe1F//vsOw3Y8JNXwnLbu2Xw7Ij36PBf47rD1u/b3NYdqk5bp+UNcRlL/5cz6qJlFL6m2u/Gpbd2i8sOuV3NYRlt66qCsvOVXHn8/JNcfUcWXN//ofPhWW/WeNviRsvctyuTGVNcdmRG97aP64uSk2BOzwwesklPW+8GH9zXF1E7svWwPPu4EVxFwAbJ7SEZZc1Bu7wQIs/2/PqIvT6ojru+iKXx2WX1cQNRq11gRfdgeNcxfrysOw/X9az5lGRc6iyLYHnrsDL+UgtNYHXFvVx1xa5LG6H98Rr7j1vjauLyDXUfmvjjoHWyrhjoKU6LDrlit45NtdedGlY9pu159fiPreInOu2DI6bo1cEzqGaN1aGZZdvipvnRK63117Y8+pi0g2Ba7Rxb1Oq3Bi4XjR5U1h2y8sDwrLLAteimgPnfz2xLg46N64uGgf3zs+5N4+OOzdWrQ783C1w3bp8S9w++f3tfeeauxQ3zUmtVYHz6MC13xR4Pi9rCPw8L3CX9MRr7sj12Rw4h4r87Kpst/qw7JYV/cOyW6sDPyvcEldzPe07USmltOe/xF1z54GB3wHaGLf+H7mmE/kZZ4rc7sDvf7x4wWVh2W/WnndfF5ZdClzXyy2Bn11VxdVz0/q471yVqgM/Q6+MG4sWf+TKsOw3a2LgWlTkuTFyvjt0/1Vh2Rt/OzIsO3J/R36mt2j29q+5/eULAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKVOy0Z24thUWXNYdFp1wel33y8U+EZf/gJ4eHZUe+l7m6JSy7p2kNrMayxsD3KLCF6+iZvw3L/vFjh4Rl57DklFpqWgPTe57GYXHngKqVcUU36GfVYdkNw+PquaU6rqBLgWNz/bjA8B4ocl+2Bp5jSpvjJlG5Mu7MGzkXKTXFnYcij5OeKHKu09I/ri6qX407BpqO2BCWndf0D8su1QfWReQkrQdqGRh37Fa9FndOr9wQV89VawPHosDruY3j47KbRjTFhfcwpcDlhVwRd4IpjWkIy25pjpv/1/x33DXRpnGBb2bgul9PFDmHihx3G8bGTXYHj94Ylr3hlUFh2eWbAse4PvbrmyLroqw5Lrvfy5Vh2Xs8vDks+5WjBoRl1+0WNx8ua+hbhdE8IG5fVm6M25eV71kblj3y1rhjd/mRcfukeUDcAF22Je4c1xNt2SXw2nVd3PsU+VnkxBufC8veOG2vsOzNw+NqrqVfH6qLwI8vWwPX/ysCx6GhT8Zlr9s7LDp0f7dW97EF2kDVK+KOr/o94q65R/0g7rOFLUPizrl1YwM/yxnUt77/kcsCzwOB313bZXzctcWaZUPDskuB6xCpJfB7aFV9qy4ilVcErqUHXls0vxY3Xuw1eVlY9qIXxoZl57K+83leSik1D+6d3xmuXBe3Tr/LVXGfu6381Jaw7Mr+ccdurh0Ylr0j+tYKMQAAAAAAAAAAAAAAQDdpvgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKFCxs54492sNy65YF/ey8t6bwrKfOSgsOpX/n1JYdvOguPey1FAelt3TlG8OfI+GNYdl7/m9HJa98LNx2z3owdVh2flHw8Oy1+0bFt0jlZrj6qJqbVh0+qfPfyss+/N/OC0se8uzQ8Oyyxvi3svSlr7VS1pqjduX5YMbw7Irlw0Iy27aZ3NYdtpYGRZdagmLTq3948bnHimuLFIeEPdG9VsSN9etq60Jyx69ICw6bTx9Q1h243ODw7J7pIq467T+K+KuuQed/EpY9n/tNzcs+84No8Ky/+W6D4dlr/wffWce1W9t3Gste8/6sOzWp4aEZY/7VUNc9nXPhGU//vP9wrJz31mGel0pbs7YPCRuDjV0141h2WM+uSYse8MX4+ZnLUPi1tD6BY77PVFLTdwcqt+yuH3ZMCnunP7ID78dl11fFZb9j1efE5a96uC446Qnql4ZN0AOPGxVWPbIfwiLTg8+9o2w7A//aXpY9rI7J4Rlr9k/LLpH6rc+bh61eWTcQteo38et/9769INh2cc8/Lmw7F0fj3svG4YFLlr2MGVNgZ9zD4gbd8vWhUWn31779bDsCQ9cEJYd+etbKzb1nXWolFIqtcTVxdCpr4Zl51+NDsv+9Vf/JSx7/I/OD8suHxB3zd3ah74TlVJKlRviXu+EQ5eFZbdcFbf+/5HbfhaW/fUnjw7LzoHf5Yn83Lcnyk1x4+PwUXVh2XVb+oVl33j8vWHZV9xwXlj2QWe/EJa94E/jwrJ7ooqNcePFgFfjTjJNcV+LSj/5z7vDso899eyw7MWfiXsvKwK/i7gj+tbVDQAAAAAAAAAAAAAAQDdpvgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKFCxs564bEtc38fA96wKyx5x0qKw7J8sfzose0v+bVj2aYtOCctePnfPsOyeZvCSuOzTjn88LPvxT1aHZUdacNB3w7Kn/5+/C8tOx7fEZfdAVWvKw7JnnvdIWPYtk/YOyx6dFoZlR45D+9zx6bDsAa/0rV7S/itKYdmnHfu7sOwn/q4yLDvy2I105MUXhGWv+PCWsOyeKLIuDnrf82HZy8/fFJb9k2W/D8s+7srDwrIP+d+tYdnzfnNIWHaP1Bg3PpZvyWHZ8979vbDsyN8/8dVvzAjLHnTmq2HZA38xOiy7pxlx1Cth2VXXDA3Lfuw7/xKWneKm6OnYsVPCss//w6Nh2XfdeWxYdk9UOa4uLHv8LXHLzo99576w7GNXTAnL3vcLcXPWv/nR6rDsX37r0LDsnqjmz3HH7sBpr4Vl73HKS2HZxzZNCct+aNmCsOxbfxa3T5o/XBOW3RMNqo2b/3/2rMfCsr/17Liw7Ej/+Tc/Ccue/t0jwrJr/m5EWHZP1FIdN643DYqruY3vilujnVgZd26ce+ytYdmfv+K4sOz6c/YJy+5pSnGHbaocErfWXXp1YFh25HXxmNPDotNBlz8Vlv3YQ31rfbZ5WFNY9or/t2tY9ruebg7LjqyLv/358rDsF5aNCsse/Id+Ydk9UdmEuM/FXn4sbv7/x3vj1mgj62LS/4ir53H//Kew7F/O2z8suycqVcRNpMYM3BCWXfvDSWHZXzl1clj2guVfD8s+4MtxH7oMmro2LLsnGjo5br27dfHwsOzR//xEWPaxX5oSlv3QsjvDst/zzxeHZW8aHzfO7Yi+9W1FAAAAAAAAAAAAAACAbtJ8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAECBbjdfLF26NK1atart/48//nj66Ec/mo466qh01llnpd/85jdv6wYCAAAAAAAAAAAAAADsTN1uvvjwhz+cnnjiiZRSSj/4wQ/S0UcfnTZt2pSOOOKIVF9fn6ZOnZoeeuiht31DAQAAAAAAAAAAAAAAdoaK7j7gj3/8Y5o8eXJKKaXrrrsuXXvttenyyy9v+/nXvva19I//+I/pxBNPfPu2EgAAAAAAAAAAAAAAYCfp9l++qKioSBs3bkwppbRkyZI0ffr0dj+fPn16ev7559+erQMAAAAAAAAAAAAAANjJut18MXXq1HTvvfemlFI68MAD0y9+8Yt2P583b15617ve9bZsHAAAAAAAAAAAAAAAwM5W0d0HXH/99emoo45Ky5cvT0ceeWS68sor0+9+97u0zz77pOeffz595zvfSbfffnvEtgIAAAAAAAAAAAAAAPzVdbv5Yp999knz589Ps2fPTjfccEOqq6tL99xzT6qoqEiHHHJIuu+++9Kpp54asKkAAAAAAAAAAAAAAAB/fd1uvkgppYkTJ6Z777035ZzTa6+9llpbW9OIESNSZWXl2719AAAAAAAAAAAAAAAAO1XZW3lwqVRKu+66axozZkxb48XLL7+czjnnnLdl4wAAAAAAAAAAAAAAAHa2t9R80Zk1a9akf//3f3+7YwEAAAAAAAAAAAAAAHaKiu4+4Ic//GHhzxcvXvymNwYAAAAAAAAAAAAAAKCn6XbzxamnnppKpVLKOXd5n1Kp9JY2CgAAAAAAAAAAAAAAoKco6+4DxowZk77//e+n1tbWTv899dRTEdsJAAAAAAAAAAAAAACwU3S7+eKggw5KCxYs6PLn2/urGAAAAAAAAAAAAAAAAL1JRXcfcNlll6W6uroufz5p0qQ0b968t7RRAAAAAAAAAAAAAAAAPUW3my+OOuqowp8PHDgwTZ06dbs5uTzur2Ns/OPwsOy67+4Xll3f+tuw7MO/+pmw7PqD68OyS7v1nb+isuaAlrDsb/7qfWHZ6etx0UtOmROW/b1Ng8Oyl35waFj2pleawrJ7oopNcdkPvhJ3Pu+/6+aw7BfPnRSWfdeGpWHZQ19oDct+9X1x2T1R3e5xr/euXx0Rll31xfKw7Pd//OCw7NcO7BeWXT81buwvragOy+6J6kfHzRl/8ft9wrJHnR1XF8eOjdsnL37xPWHZzz/VHJZdPrpvjRelllJY9uqD4s5fR1766bDswfc+EZZ99JO/C8v+6dxDwrI3j+871xdLXxgVlj3kgLjz+TONDWHZ+1RWhmUf+4cNYdn/dvdxYdn1gXPtnmjLKwPCslceGFcXp75wbFj2kP8bNxdZ+J8T47J/s2dYdkXgvLIn2jQx7hioXzQiLHvlDXHZe135TFj2vRt3Dcv+8/njwrIba+Pmwz3RykPjxsdr55wZlv31xV8Lyz7+XXHXxXvMHxiWvXH6u8Oyl70QOF78z7joN6uiPu71ljXHXc8P+9avw7InHHRBWPbE+xvDspfO6h+WPXhx35lHtVTHvdbyJXHXLa0Vge9RKa6W157R9S9Lfat+fn/cOtSWPfrWHKpsQ7e/jrXDqtbGHV9DLn0pLHtDc9zxNeDiuLWowdfGffZfN7JvfZ7XuDluPbJseNx1y/9aHDchffGLe4Vl91sXd65oWBe33t5S1XfmUCmllFvj3qdnXt4tLHvvM2rDslvvHRKWPf7h88Ky07vjrlvK6/rWeLF2Ydz3v8v3CItO6ZOHh0WPmBP3OfdJp8wMy9706bi66PdK3LxiR5Tt1GcHAAAAAAAAAAAAAADo4TRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAUqNhZT1y2pbSznvotqVgwKCx78uqLwrL77ZLDsstq+4dlN+3SEpbd05Q1xvVCtVa3hmX3W10eln3MR88Jy37x2Kqw7NKwuHorbelbPXONgeeuNT9+V1j2kLteCcueOuypsOx/vvn0sOwte8aN++Ube+ec4s0qa4x7va3VYdGppV9c9ksfbw7Lbm2OG0PT2ridUgrc7J6oLHDK2FIeNxatPb4uLHv4J8aGZW95Pm6HV6yLu0TNfWu4CL3mLtXHzUlXHBl3Ajv9yg1h2d/8j+PCspsGB15fBF6H9jSRNVE/Ju49OuPfPheWPfSFuHrbtHvcsVU3sSksu2L9Tlsq3SnKG+Lep827xtVF7QMTw7IrN8Vtd+vosOhUtSpufa5xSN+6uKhYF7cvW2ri9mXFxrh6fmnWlLDs6++Oy96ye9xaQeXauOOkJ8qVcefG+tFx2Zdcf2FY9qBH49Z//++P4q7nmw8NvLaIXEPrYwYsj3ufll7x3rDsXZ6J2+5XD4v7LHrwn+O2u3Fw31mMKgWuzzYNDQzvF3fu+oc/PROW/fffOzwsu3VM3D4p9dLvCL1ZZc1xrzcHTkf//JMJYdmbz9gSlp0bhoRlV/8+br2oeVjf+U5USinl+rh92TqqMSz7qfl/E5Y9cP91Ydk11XE19/KfR4Zll4bFvZc9UUV13PpFc2DNLXw5brHz4l/NC8te+kLcNXfdpsAv3JTirlt6pMDX2zgsbr67fs+4z69Ou3BzWPa//yHuXFFaGfj9j538MXff+ZQdAAAAAAAAAAAAAADgTdB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQQPMFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAEABzRcAAAAAAAAAAAAAAAAFNF8AAAAAAAAAAAAAAAAU0HwBAAAAAAAAAAAAAABQoGJnPXFrdQ7LbilrDctu2iVuu8s2l4dlt1aGRafmXZrDssvq4/ZJT1NqKoVlV2yJ248t/cKi06bLNoRlt/xpeFh2WeB7Wbalb/XMNQ5rCctuqY7bl/W/Hx2Wvfn5uOy1h8edz0vNcfu7fFPfqouW/nHznFLgOaZlYNx2V7zUPyy7tSZuu8sa48aL1qq47e6JWqri5uiVq+IumfLauOyXfl8Tll0+Im5/57K47BRXcj1Sa2BdlG0Ji05lDXFv1J3/dlxYdv2kwHlUS9w+KTX3ncKIvOZuHBH3/pdviBsrVp+8OSy7ZUXc/Cxy/SyXB45DPVDkHKplYFx209Cw6JQGBp7P18Yt0OZ+gcduHxorUkqppX/gtcX6uGvuxrGNYdlNwwLXXQLnOf1WB66JB54/e6J+qyL3ZVh0WvvuuLWRut+MDctuHB64FtUUFp3KN/etNdqmQYHXaXEfi6TKurjsyOOr/4q48+7mUXHvZeWmvjNe5MBTQFlDXHgp8Nx12Y2fDMtuPiDuRFFeF7dPct/56kdKKaWW6rgxvbUy8Ny1Ie4YqFwW9+WSirq4fVK/R+BaQeCaZY8UODTmwOvLvGvchyIblw6Oyw7cJ5FraGlj4Jcce6DWwPepanDcsdu4Oe59uuWncZ/npaFxa2jllXFjf0tj35pIRX73MrLmSi9Xh2Xf/9v3h2VXxn21JLWMibt2yaWdO4/qWythAAAAAAAAAAAAAAAA3aT5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACggOYLAAAAAAAAAAAAAACAApovAAAAAAAAAAAAAAAACmi+AAAAAAAAAAAAAAAAKKD5AgAAAAAAAAAAAAAAoIDmCwAAAAAAAAAAAAAAgAKaLwAAAAAAAAAAAAAAAApovgAAAAAAAAAAAAAAACig+QIAAAAAAAAAAAAAAKCA5gsAAAAAAAAAAAAAAIACmi8AAAAAAAAAAAAAAAAKaL4AAAAAAAAAAAAAAAAooPkCAAAAAAAAAAAAAACgQCnnnHf2RgAAAAAAAAAAAAAAAPRU/vIFAAAAAAAAAAAAAABAAc0XAAAAAAAAAAAAAAAABTRfAAAAAAAAAAAAAAAAFNB8AQAAAAAAAAAAAAAAUEDzBQAAAAAAAAAAAAAAQAHNFwAAAAAAAAAAAAAAAAU0XwAAAAAAAAAAAAAAABTQfAEAAAAAAAAAAAAAAFBA8wUAAAAAAAAAAAAAAECB/w8YQH8qu+bLYAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a = m2.stage1_S.stage.lut_kan_layers[0].lut.detach()\n", "a = a.view(7,7, a.shape[1], a.shape[2])\n", "f, ax = plt.subplots(a.shape[3], 16, figsize=(16*2,a.shape[3]*2))\n", "\n", "for i in range(16):\n", " ax[0,i].imshow(a[:,:,i,0])\n", " ax[0,i].set_title(f\"{i}\\n{a[:,:,i,0].min()} {a[:,:,i,0].max()}\")\n", " ax[0,0].set_ylabel(0)\n", " ax[0,i].xaxis.set_ticks([])\n", " ax[0,i].yaxis.set_ticks([])\n", " ax[0,i].spines['top'].set_visible(False)\n", " ax[0,i].spines['right'].set_visible(False)\n", " ax[0,i].spines['bottom'].set_visible(False)\n", " ax[0,i].spines['left'].set_visible(False)\n", "\n", "for j in range(1, a.shape[3]):\n", " for i in range(16):\n", " ax[j,i].imshow(a[:,:,i,j])\n", " ax[j,i].set_title(f\"{a[:,:,i,j].min()} {a[:,:,i,j].max()}\")\n", " ax[j,i].xaxis.set_ticks([])\n", " ax[j,i].yaxis.set_ticks([])\n", " ax[j,i].spines['top'].set_visible(False)\n", " ax[j,i].spines['right'].set_visible(False)\n", " ax[j,i].spines['bottom'].set_visible(False)\n", " ax[j,i].spines['left'].set_visible(False)\n", " ax[j,0].set_ylabel(j)\n", " ax[j,0].xaxis.set_ticks([])\n", " ax[j,0].yaxis.set_ticks([])\n", "\n", "\n", "f.tight_layout()\n", "f.savefig(\"layer0_kan_response.png\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(0., grad_fn=) tensor(255., grad_fn=)\n", "tensor(40.1250, grad_fn=) tensor(255., grad_fn=)\n", "tensor(15.0820, grad_fn=) tensor(255., grad_fn=)\n", "tensor(28.8976, grad_fn=) tensor(113.0898, grad_fn=)\n" ] }, { "data": { "text/plain": [ "(tensor([[[[3.2703, 0.8327, 0.0000, 0.0000],\n", " [2.3942, 0.2477, 0.0000, 0.0000],\n", " [2.1219, 0.4743, 0.0000, 0.0000],\n", " [1.0222, 0.0000, 0.0000, 0.0000]]]], grad_fn=),\n", " tensor([[[[ 73.1828, 52.9904, 58.2204, 82.1313],\n", " [ 70.1781, 47.5996, 46.5503, 69.2304],\n", " [ 86.4780, 60.9516, 45.3540, 44.3884],\n", " [113.0898, 83.6535, 48.8901, 28.8976]]]], grad_fn=))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_inputs = torch.rand(1,1,1,1)*0\n", "m1(test_inputs), m2(test_inputs)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from common.transferer import TRANSFERER\n", "m3 = TRANSFERER.transfer(m1, quantization_interval=16, batch_size=1)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(0.) tensor(0.)\n", "tensor(123.8163, grad_fn=) tensor(130.0612, grad_fn=)\n" ] }, { "data": { "text/plain": [ "tensor([[[[129.7551, 123.9184, 123.8163, 130.0612],\n", " [123.9388, 126.4898, 126.4694, 124.4082],\n", " [124.0612, 126.5918, 126.5510, 124.1429],\n", " [130.0612, 123.8571, 123.8163, 129.8163]]]], grad_fn=)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m3(test_inputs)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(240.) tensor(240.)\n", "tensor(240.7835, grad_fn=) tensor(241.0111, grad_fn=)\n" ] }, { "data": { "text/plain": [ "(tensor([[[240.8836, 240.9921, 240.9105, 240.8179, 240.9391, 241.0111, 240.9476,\n", " 240.8635, 240.8910, 240.9602, 240.9307, 240.8593, 240.8460, 240.9522,\n", " 240.8667, 240.7835]]], grad_fn=),\n", " tensor([[[125.4082, 128.1429, 128.1020, 125.0816, 128.0816, 120.6327, 120.3673,\n", " 128.2449, 128.3265, 120.4694, 120.5714, 127.7959, 124.9592, 128.4898,\n", " 128.2857, 125.3265]]], grad_fn=))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_inputs2 = torch.rand(1,1,49)*0+240\n", "m1.stage1_S.stage(test_inputs2), m3.stage1_S.stage(test_inputs2)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[[0.6722, 0.1377, 0.4164, 0.1504, 0.1376, 0.7989, 0.6800, 0.6141,\n", " 0.4306, 0.7024, 0.9200, 0.4104, 0.2442, 0.5429, 0.4224, 0.7128],\n", " [0.4108, 0.4489, 0.9809, 0.2111, 0.1657, 0.5533, 0.1441, 0.7416,\n", " 0.7417, 0.3129, 0.9356, 0.6075, 0.0329, 0.8363, 0.9527, 0.1054],\n", " [0.4969, 0.6650, 0.0000, 0.4890, 0.2263, 0.8471, 0.0000, 0.0000,\n", " 0.2930, 0.0000, 0.0000, 0.0000, 0.3835, 0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.6993, 0.0000, 0.0000, 0.0461],\n", " [0.1760, 0.0000, 0.2333, 0.2441, 0.0000, 0.0000, 0.2091, 0.1063,\n", " 0.0000, 0.0000, 0.0000, 0.7203, 0.0000, 0.0000, 0.0000, 0.8384],\n", " [0.5135, 0.0329, 0.3967, 0.3820, 0.6470, 0.3009, 0.0617, 0.2916,\n", " 0.7006, 0.9806, 0.5691, 0.5479, 0.9729, 0.1562, 0.4560, 0.3695],\n", " [0.5022, 0.1042, 0.9647, 0.3208, 0.2266, 0.9884, 0.3845, 0.5333,\n", " 0.3925, 0.1374, 0.4092, 0.8392, 0.2055, 0.1301, 0.5333, 0.5663],\n", " [0.3497, 0.6171, 0.6584, 0.4817, 0.4036, 0.8855, 0.5863, 0.3237,\n", " 0.2317, 0.9650, 0.5656, 0.4133, 0.2735, 0.7307, 0.3159, 0.0518],\n", " [0.0000, 0.2588, 0.8914, 0.7568, 0.9747, 0.2842, 0.8174, 0.6318,\n", " 0.5989, 0.4867, 0.0000, 0.0000, 0.4167, 0.3044, 0.0000, 0.4346],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.7958, 0.0000, 0.0000, 0.3507, 0.0306, 0.2425, 0.4835, 0.1547],\n", " [0.0000, 0.0908, 0.3045, 0.0000, 0.0000, 0.3609, 0.4379, 0.0000,\n", " 0.7399, 0.9746, 0.7350, 0.9307, 0.2475, 0.0000, 0.0000, 0.4985],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.4366, 0.0000, 0.0000, 0.7517, 0.2181, 0.3729, 0.2305, 0.4425],\n", " [0.4332, 0.5343, 0.6441, 0.0000, 0.7823, 0.6739, 0.3343, 0.8877,\n", " 0.7821, 0.0000, 0.3058, 0.1680, 0.0495, 0.0000, 0.6836, 0.6308],\n", " [0.0348, 0.2468, 0.0576, 0.7055, 0.4148, 0.2110, 0.6543, 0.2030,\n", " 0.7097, 0.3630, 0.8386, 0.0811, 0.8817, 0.6664, 0.8729, 0.1178],\n", " [0.2961, 0.9734, 0.6378, 0.4701, 0.9111, 0.5343, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.2279, 0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.4520, 0.6736, 0.0000, 0.0000, 0.0000, 0.0185,\n", " 0.0000, 0.0000, 0.0000, 0.2810, 0.0000, 0.0000, 0.4084, 0.9674],\n", " [0.0000, 0.0000, 0.2466, 0.0000, 0.0000, 0.9487, 0.0000, 0.0000,\n", " 0.8464, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.6125, 0.0000, 0.0000, 0.3030],\n", " [0.0000, 0.5659, 0.0000, 0.0000, 0.0000, 0.0000, 0.7572, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.2609, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.2868, 0.0497, 0.0000, 0.0000, 0.7559, 0.0000, 0.0000, 0.0000,\n", " 0.1917, 0.0000, 0.0000, 0.0000, 0.0204, 0.1034, 0.0000, 0.0000],\n", " [0.2382, 0.1573, 0.0408, 0.3846, 0.0000, 0.0000, 0.7960, 0.3550,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0498],\n", " [0.0000, 0.0000, 0.0000, 0.2499, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5159],\n", " [0.0000, 0.0000, 0.3935, 0.0032, 0.7075, 0.5832, 0.2526, 0.0000,\n", " 0.9097, 0.7706, 0.8156, 0.0000, 0.0000, 0.0000, 0.0803, 0.7401],\n", " [0.0000, 0.0000, 0.0000, 0.9449, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7977],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.4089, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.7921, 0.0000, 0.0000, 0.0000],\n", " [0.2273, 0.6521, 0.0000, 0.0000, 0.0000, 0.0060, 0.6751, 0.9290,\n", " 0.0000, 0.2945, 0.4466, 0.1266, 0.0611, 0.0657, 0.0000, 0.0000],\n", " [0.3081, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.1701, 0.0000, 0.0000, 0.0000],\n", " [0.1086, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.7070, 0.2841, 0.0000, 0.0000, 0.4438, 0.5361, 0.2663, 0.9531],\n", " [0.0000, 0.0000, 0.2566, 0.5715, 0.0000, 0.0000, 0.0000, 0.6083,\n", " 0.0000, 0.0000, 0.0000, 0.4444, 0.0000, 0.0000, 0.4120, 0.0906],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.8127, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0596, 0.0000, 0.0000, 0.0000, 0.0000, 0.1016, 0.0000],\n", " [0.8690, 0.0000, 0.0000, 0.9061, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5353,\n", " 0.0000, 0.0000, 0.4593, 0.0000, 0.0000, 0.4546, 0.0000, 0.0000],\n", " [0.4065, 0.7290, 0.0000, 0.0000, 0.6343, 0.0000, 0.0000, 0.0000,\n", " 0.6270, 0.0000, 0.0000, 0.0000, 0.6073, 0.3154, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000, 0.9734, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.8947, 0.1228, 0.0811, 0.8784, 0.2793, 0.6607],\n", " [0.8072, 0.6458, 0.1267, 0.7030, 0.9421, 0.7564, 0.4206, 0.4848,\n", " 0.8272, 0.4322, 0.5038, 0.0025, 0.2292, 0.3923, 0.8585, 0.4199],\n", " [0.2977, 0.6549, 0.0000, 0.2704, 0.8387, 0.0249, 0.0000, 0.1873,\n", " 0.0626, 0.3997, 0.8920, 0.3745, 0.0000, 0.0985, 0.1126, 0.1238],\n", " [0.4395, 0.4940, 0.8465, 0.1466, 0.5212, 0.0000, 0.0000, 0.7892,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.8501, 0.0000, 0.0000, 0.7833, 0.1838, 0.6636, 0.2131, 0.9799,\n", " 0.0000, 0.9580, 0.1177, 0.0000, 0.0000, 0.9383, 0.3223, 0.0000],\n", " [0.1583, 0.8782, 0.4745, 0.3904, 0.3330, 0.0000, 0.0000, 0.5825,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.8354, 0.0000, 0.0889, 0.0141, 0.0000, 0.0000, 0.7021, 0.3644,\n", " 0.5472, 0.1322, 0.7792, 0.3580, 0.0508, 0.0495, 0.8838, 0.0000],\n", " [0.0334, 0.5270, 0.6346, 0.6241, 0.2527, 0.5065, 0.0205, 0.6612,\n", " 0.6735, 0.5285, 0.3001, 0.8136, 0.8219, 0.8771, 0.1332, 0.8032],\n", " [0.4282, 0.5112, 0.7973, 0.0497, 0.3550, 0.5418, 0.8575, 0.3800,\n", " 0.9358, 0.8495, 0.4402, 0.8308, 0.9614, 0.0280, 0.1194, 0.2608],\n", " [0.9476, 0.6247, 0.7688, 0.0196, 0.5618, 0.6885, 0.9856, 0.5183,\n", " 0.2875, 0.6465, 0.6579, 0.3071, 0.8558, 0.2664, 0.8220, 0.3757],\n", " [0.5331, 0.0000, 0.0000, 0.0000, 0.9957, 0.0000, 0.0000, 0.0000,\n", " 0.5290, 0.1361, 0.0000, 0.0000, 0.1158, 0.8422, 0.0000, 0.1277],\n", " [0.1913, 0.0000, 0.0000, 0.5215, 0.0000, 0.0000, 0.0000, 0.0000,\n", " 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000, 0.7272, 0.0000, 0.0000, 0.0000, 0.1788,\n", " 0.0000, 0.0000, 0.0694, 0.2645, 0.6355, 0.0000, 0.3095, 0.8499],\n", " [0.2193, 0.4251, 0.3396, 0.0534, 0.0785, 0.7442, 0.2651, 0.2338,\n", " 0.7126, 0.9560, 0.2592, 0.7539, 0.5478, 0.4819, 0.2148, 0.4741],\n", " [0.9638, 0.0283, 0.3226, 0.4681, 0.3048, 0.8545, 0.7745, 0.2745,\n", " 0.7192, 0.3271, 0.9137, 0.5894, 0.9006, 0.2812, 0.2180, 0.9792]]]],\n", " grad_fn=)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hh = m1.stage1_S.stage.kan_layers[0].forward_all_to_all(test_inputs2) - m3.stage1_S.stage.lut_kan_layers[0].forward_all_to_all(test_inputs2)\n", "hh" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[ 14.4436, 146.0529, 144.9745, -1.3100, 145.1672, -220.2434,\n", " -234.9705, 152.4140, 159.4297, -229.3029, -223.1717, 129.3506,\n", " -8.2089, 162.5913, 152.4927, 11.4619]]],\n", " grad_fn=)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(m1.stage1_S.stage.kan_layers[0].forward_all_to_all(test_inputs2)-128).sum(dim=2)+128" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[[125.4082, 128.1429, 128.1020, 125.0816, 128.0816, 120.6327, 120.3673,\n", " 128.2449, 128.3265, 120.4694, 120.5714, 127.7959, 124.9592, 128.4898,\n", " 128.2857, 125.3265]]], grad_fn=)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m3.stage1_S.stage.lut_kan_layers[0].forward_all_to_all(test_inputs2).sum(dim=2) / 49" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([ 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208,\n", " 224, 240, 256]),\n", " tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,\n", " 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,\n", " 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,\n", " 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,\n", " 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,\n", " 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,\n", " 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,\n", " 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,\n", " 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,\n", " 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,\n", " 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,\n", " 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,\n", " 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,\n", " 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,\n", " 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209,\n", " 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,\n", " 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,\n", " 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,\n", " 252, 253, 254]))" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def select_index_1dlut_linear(index, lut):\n", " b, hw, c = index.shape\n", " L = lut.shape[0]\n", " Q = 256/(L-1)\n", " msbA = torch.floor_divide(index, Q).type(torch.int64)\n", " msbB = msbA + 1\n", " msbA = msbA.flatten() \n", " msbB = msbB.flatten() \n", " lsb = index % Q\n", " outA = lut[msbA].reshape((b, hw, c))\n", " outB = lut[msbB].reshape((b, hw, c))\n", " lsb_coef = (lsb / Q).reshape((b, hw, c))\n", " out = outA + lsb_coef*(outB-outA) \n", " return out\n", "\n", "lut = torch.arange(0, 257, 16) \n", "index = torch.arange(0, 255, 1)\n", "lut, index" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,\n", " 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23.,\n", " 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35.,\n", " 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47.,\n", " 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,\n", " 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71.,\n", " 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83.,\n", " 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95.,\n", " 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107.,\n", " 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119.,\n", " 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131.,\n", " 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142., 143.,\n", " 144., 145., 146., 147., 148., 149., 150., 151., 152., 153., 154., 155.,\n", " 156., 157., 158., 159., 160., 161., 162., 163., 164., 165., 166., 167.,\n", " 168., 169., 170., 171., 172., 173., 174., 175., 176., 177., 178., 179.,\n", " 180., 181., 182., 183., 184., 185., 186., 187., 188., 189., 190., 191.,\n", " 192., 193., 194., 195., 196., 197., 198., 199., 200., 201., 202., 203.,\n", " 204., 205., 206., 207., 208., 209., 210., 211., 212., 213., 214., 215.,\n", " 216., 217., 218., 219., 220., 221., 222., 223., 224., 225., 226., 227.,\n", " 228., 229., 230., 231., 232., 233., 234., 235., 236., 237., 238., 239.,\n", " 240., 241., 242., 243., 244., 245., 246., 247., 248., 249., 250., 251.,\n", " 252., 253., 254.])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "select_index_1dlut_linear(index.view(1,1,-1), lut).squeeze()" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 2 }