import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from common.utils import round_func from common import lut from common import layers from pathlib import Path from . import sdylut from models.base import SRNetBase class SDYNetx1(SRNetBase): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetx1, self).__init__() self.scale = scale self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3) self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3) self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) def forward(self, x, config=None): b,c,h,w = x.shape x = x.reshape(b*c, 1, h, w) output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S) output += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage1_D) output += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage1_Y) output /= 3 x = output x = x.reshape(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stageS = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stageD = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stageY = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutx1.init_from_numpy(stageS, stageD, stageY) return lut_model def get_loss_fn(self): def loss_fn(pred, target): return F.mse_loss(pred/255, target/255) return loss_fn class SDYNetx2(SRNetBase): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetx2, self).__init__() self.scale = scale self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3) self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3) self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage2_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage2_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage2_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) def forward(self, x, config=None): b,c,h,w = x.shape x = x.reshape(b*c, 1, h, w) output = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device) output += self.forward_stage(x, 1, self._extract_pattern_S, self.stage1_S) output += self.forward_stage(x, 1, self._extract_pattern_D, self.stage1_D) output += self.forward_stage(x, 1, self._extract_pattern_Y, self.stage1_Y) output /= 3 x = output output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage2_S) output += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage2_D) output += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage2_Y) output /= 3 x = output x = x.reshape(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stage1_S = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stage1_D = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stage1_Y = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) stage2_S = lut.transfer_2x2_input_SxS_output(self.stage2_S, quantization_interval=quantization_interval, batch_size=batch_size) stage2_D = lut.transfer_2x2_input_SxS_output(self.stage2_D, quantization_interval=quantization_interval, batch_size=batch_size) stage2_Y = lut.transfer_2x2_input_SxS_output(self.stage2_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutx2.init_from_numpy(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y) return lut_model def get_loss_fn(self): def loss_fn(pred, target): return F.mse_loss(pred/255, target/255) return loss_fn class SDYNetx3(SRNetBase): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetx3, self).__init__() self.scale = scale self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3) self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3) self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage2_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage2_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage2_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage3_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage3_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage3_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) def forward(self, x, config=None): b,c,h,w = x.shape x = x.reshape(b*c, 1, h, w) output = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device) output += self.forward_stage(x, 1, self._extract_pattern_S, self.stage1_S) output += self.forward_stage(x, 1, self._extract_pattern_D, self.stage1_D) output += self.forward_stage(x, 1, self._extract_pattern_Y, self.stage1_Y) output /= 3 x = output output = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device) output += self.forward_stage(x, 1, self._extract_pattern_S, self.stage2_S) output += self.forward_stage(x, 1, self._extract_pattern_D, self.stage2_D) output += self.forward_stage(x, 1, self._extract_pattern_Y, self.stage2_Y) output /= 3 x = output output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage3_S) output += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage3_D) output += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage3_Y) output /= 3 x = output x = x.reshape(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stage1_S = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stage1_D = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stage1_Y = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) stage2_S = lut.transfer_2x2_input_SxS_output(self.stage2_S, quantization_interval=quantization_interval, batch_size=batch_size) stage2_D = lut.transfer_2x2_input_SxS_output(self.stage2_D, quantization_interval=quantization_interval, batch_size=batch_size) stage2_Y = lut.transfer_2x2_input_SxS_output(self.stage2_Y, quantization_interval=quantization_interval, batch_size=batch_size) stage3_S = lut.transfer_2x2_input_SxS_output(self.stage3_S, quantization_interval=quantization_interval, batch_size=batch_size) stage3_D = lut.transfer_2x2_input_SxS_output(self.stage3_D, quantization_interval=quantization_interval, batch_size=batch_size) stage3_Y = lut.transfer_2x2_input_SxS_output(self.stage3_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutx3.init_from_numpy(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y, stage3_S, stage3_D, stage3_Y) return lut_model def get_loss_fn(self): def loss_fn(pred, target): return F.mse_loss(pred/255, target/255) return loss_fn class SDYNetR90x1(nn.Module): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetR90x1, self).__init__() self.scale = scale self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3) self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3) self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) def forward_stage(self, x, scale, percieve_pattern, stage): b,c,h,w = x.shape x = percieve_pattern(x) x = stage(x) x = round_func(x) x = x.reshape(b, c, h, w, scale, scale) x = x.permute(0,1,2,4,3,5) x = x.reshape(b, c, h*scale, w*scale) return x def forward(self, x, config=None): b,c,h,w = x.shape x = x.reshape(b*c, 1, h, w) output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S) output += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage1_D) output += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage1_Y) for rotations_count in range(1, 4): rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1]) output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_S, self.stage1_S), k=-rotations_count, dims=[-2, -1]) output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_D, self.stage1_D), k=-rotations_count, dims=[-2, -1]) output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_Y, self.stage1_Y), k=-rotations_count, dims=[-2, -1]) output /= 4*3 x = output x = x.reshape(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stageS = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stageD = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stageY = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutR90x1.init_from_numpy(stageS, stageD, stageY) return lut_model def get_loss_fn(self): def loss_fn(pred, target): return F.mse_loss(pred/255, target/255) return loss_fn class SDYNetR90x2(SRNetBase): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetR90x2, self).__init__() self.scale = scale self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_D = layers.PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]], center=[0,0], window_size=3) self._extract_pattern_Y = layers.PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]], center=[0,0], window_size=3) self.stage1_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage2_S = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage2_D = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage2_Y = layers.UpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) def forward(self, x, config=None): b,c,h,w = x.shape x = x.view(b*c, 1, h, w) output_1 = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device) output_1 += self.forward_stage(x, 1, self._extract_pattern_S, self.stage1_S) output_1 += self.forward_stage(x, 1, self._extract_pattern_D, self.stage1_D) output_1 += self.forward_stage(x, 1, self._extract_pattern_Y, self.stage1_Y) for rotations_count in range(1,4): rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1]) output_1 += torch.rot90(self.forward_stage(rotated, 1, self._extract_pattern_S, self.stage1_S), k=-rotations_count, dims=[-2, -1]) output_1 += torch.rot90(self.forward_stage(rotated, 1, self._extract_pattern_D, self.stage1_D), k=-rotations_count, dims=[-2, -1]) output_1 += torch.rot90(self.forward_stage(rotated, 1, self._extract_pattern_Y, self.stage1_Y), k=-rotations_count, dims=[-2, -1]) output_1 /= 4*3 x = output_1 output_2 = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output_2 += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage2_S) output_2 += self.forward_stage(x, self.scale, self._extract_pattern_D, self.stage2_D) output_2 += self.forward_stage(x, self.scale, self._extract_pattern_Y, self.stage2_Y) for rotations_count in range(1,4): rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1]) output_2 += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_S, self.stage2_S), k=-rotations_count, dims=[-2, -1]) output_2 += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_D, self.stage2_D), k=-rotations_count, dims=[-2, -1]) output_2 += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_Y, self.stage2_Y), k=-rotations_count, dims=[-2, -1]) output_2 /= 4*3 x = output_2 x = x.view(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stage1_S = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stage1_D = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stage1_Y = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) stage2_S = lut.transfer_2x2_input_SxS_output(self.stage2_S, quantization_interval=quantization_interval, batch_size=batch_size) stage2_D = lut.transfer_2x2_input_SxS_output(self.stage2_D, quantization_interval=quantization_interval, batch_size=batch_size) stage2_Y = lut.transfer_2x2_input_SxS_output(self.stage2_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutR90x2.init_from_numpy(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y) return lut_model def get_loss_fn(self): def loss_fn(pred, target): return F.mse_loss(pred/255, target/255) return loss_fn