import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class PercievePattern(): def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2): assert window_size >= (np.max(receptive_field_idxes)+1) self.receptive_field_idxes = np.array(receptive_field_idxes) self.window_size = window_size self.center = center self.receptive_field_idxes = [ self.receptive_field_idxes[0,0]*self.window_size + self.receptive_field_idxes[0,1], self.receptive_field_idxes[1,0]*self.window_size + self.receptive_field_idxes[1,1], self.receptive_field_idxes[2,0]*self.window_size + self.receptive_field_idxes[2,1], self.receptive_field_idxes[3,0]*self.window_size + self.receptive_field_idxes[3,1], ] def __call__(self, x): b,c,h,w = x.shape x = F.pad(x, pad=[self.center[0], self.window_size-self.center[0]-1, self.center[1], self.window_size-self.center[1]-1], mode='replicate') x = F.unfold(input=x, kernel_size=self.window_size) x = torch.stack([ x[:,self.receptive_field_idxes[0],:], x[:,self.receptive_field_idxes[1],:], x[:,self.receptive_field_idxes[2],:], x[:,self.receptive_field_idxes[3],:] ], 2) x = x.reshape(x.shape[0]*x.shape[1], 1, 2, 2) return x # Huang G. et al. Densely connected convolutional networks //Proceedings of the IEEE conference on computer vision and pattern recognition. – 2017. – С. 4700-4708. # https://ar5iv.labs.arxiv.org/html/1608.06993 # https://github.com/andreasveit/densenet-pytorch/blob/63152f4a40644b62717749536ed2e011c6e4d9ab/densenet.py#L40 class DenseConvUpscaleBlock(nn.Module): def __init__(self, hidden_dim = 32, layers_count=5, upscale_factor=1): super(DenseConvUpscaleBlock, self).__init__() assert layers_count > 0 self.upscale_factor = upscale_factor self.hidden_dim = hidden_dim self.percieve = nn.Conv2d(1, hidden_dim, kernel_size=(2, 2), padding='valid', stride=1, dilation=1, bias=True) self.convs = [] for i in range(layers_count): self.convs.append(nn.Conv2d(in_channels = (i+1)*hidden_dim, out_channels = hidden_dim, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True)) self.convs = nn.ModuleList(self.convs) for name, p in self.named_parameters(): if "weight" in name: nn.init.kaiming_normal_(p) if "bias" in name: nn.init.constant_(p, 0) self.project_channels = nn.Conv2d(in_channels = (layers_count+1)*hidden_dim, out_channels = upscale_factor * upscale_factor, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True) self.shuffle = nn.PixelShuffle(upscale_factor) def forward(self, x): x = (x-127.5)/127.5 x = torch.relu(self.percieve(x)) for conv in self.convs: x = torch.cat([x, torch.relu(conv(x))], dim=1) x = self.shuffle(self.project_channels(x)) x = torch.tanh(x) x = round_func(x*127.5 + 127.5) return x