import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from common.utils import round_func from common import lut from common import layers from pathlib import Path from . import sdylut class SDYNetx1(nn.Module): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetx1, self).__init__() self.scale = scale s_pattern = [[0,0],[0,1],[1,0],[1,1]] d_pattern = [[0,0],[2,0],[0,2],[2,2]] y_pattern = [[0,0],[1,1],[1,2],[2,1]] self.stage1_S = layers.UpscaleBlock(receptive_field_idxes=s_pattern, center=[0,0], window_size=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_D = layers.UpscaleBlock(receptive_field_idxes=d_pattern, center=[0,0], window_size=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_Y = layers.UpscaleBlock(receptive_field_idxes=y_pattern, center=[0,0], window_size=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) def forward(self, x): b,c,h,w = x.shape x = x.view(b*c, 1, h, w) output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) for rotations_count in range(4): rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1]) rb,rc,rh,rw = rotated.shape output += torch.rot90(self.stage1_S(rotated), k=-rotations_count, dims=[-2, -1]) output += torch.rot90(self.stage1_D(rotated), k=-rotations_count, dims=[-2, -1]) output += torch.rot90(self.stage1_Y(rotated), k=-rotations_count, dims=[-2, -1]) output /= 4*3 x = output x = round_func(x) x = x.view(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stageS = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stageD = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stageY = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutx1.init_from_lut(stageS, stageD, stageY) return lut_model class SDYNetx2(nn.Module): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): super(SDYNetx2, self).__init__() self.scale = scale s_pattern = [[0,0],[0,1],[1,0],[1,1]] d_pattern = [[0,0],[2,0],[0,2],[2,2]] y_pattern = [[0,0],[1,1],[1,2],[2,1]] self.stage1_S = layers.UpscaleBlock(receptive_field_idxes=s_pattern, center=[0,0], window_size=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_D = layers.UpscaleBlock(receptive_field_idxes=d_pattern, center=[0,0], window_size=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage1_Y = layers.UpscaleBlock(receptive_field_idxes=y_pattern, center=[0,0], window_size=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=1) self.stage2_S = layers.UpscaleBlock(receptive_field_idxes=s_pattern, center=[0,0], window_size=2, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage2_D = layers.UpscaleBlock(receptive_field_idxes=d_pattern, center=[0,0], window_size=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) self.stage2_Y = layers.UpscaleBlock(receptive_field_idxes=y_pattern, center=[0,0], window_size=3, hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) def forward(self, x): b,c,h,w = x.shape x = x.view(b*c, 1, h, w) output_1 = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device) output_1 += self.stage1_S(x) output_1 += self.stage1_D(x) output_1 += self.stage1_Y(x) for rotations_count in range(1,4): rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1]) output_1 += torch.rot90(self.stage1_S(rotated), k=-rotations_count, dims=[-2, -1]) output_1 += torch.rot90(self.stage1_D(rotated), k=-rotations_count, dims=[-2, -1]) output_1 += torch.rot90(self.stage1_Y(rotated), k=-rotations_count, dims=[-2, -1]) output_1 /= 4*3 x = round_func(output_1) output_2 = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output_2 += self.stage2_S(x) output_2 += self.stage2_D(x) output_2 += self.stage2_Y(x) for rotations_count in range(1,4): rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1]) output_2 += torch.rot90(self.stage2_S(rotated), k=-rotations_count, dims=[-2, -1]) output_2 += torch.rot90(self.stage2_D(rotated), k=-rotations_count, dims=[-2, -1]) output_2 += torch.rot90(self.stage2_Y(rotated), k=-rotations_count, dims=[-2, -1]) output_2 /= 4*3 x = round_func(output_2) x = x.view(b, c, h*self.scale, w*self.scale) return x def get_lut_model(self, quantization_interval=16, batch_size=2**10): stage1_S = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size) stage1_D = lut.transfer_2x2_input_SxS_output(self.stage1_D, quantization_interval=quantization_interval, batch_size=batch_size) stage1_Y = lut.transfer_2x2_input_SxS_output(self.stage1_Y, quantization_interval=quantization_interval, batch_size=batch_size) stage2_S = lut.transfer_2x2_input_SxS_output(self.stage2_S, quantization_interval=quantization_interval, batch_size=batch_size) stage2_D = lut.transfer_2x2_input_SxS_output(self.stage2_D, quantization_interval=quantization_interval, batch_size=batch_size) stage2_Y = lut.transfer_2x2_input_SxS_output(self.stage2_Y, quantization_interval=quantization_interval, batch_size=batch_size) lut_model = sdylut.SDYLutx2.init_from_lut(stage1_S, stage1_D, stage1_Y, stage2_S, stage2_D, stage2_Y) return lut_model