import cv2 import numpy as np from scipy import signal import torch import os PIL_CONVERT_COLOR = { 'RGB': lambda pil_image: pil_image.convert("RGB") if pil_image.mode != 'RGB' else pil_image, 'full_YCbCr': lambda pil_image: pil_image.convert("YCbCr") if pil_image.mode != 'YCbCr' else pil_image, 'full_Y': lambda pil_image: pil_image.convert("YCbCr").getchannel(0) if pil_image.mode != 'YCbCr' else pil_image.getchannel(0), 'sdtv_Y': lambda pil_image: _rgb2ycbcr(np.array(pil_image))[:,:,0] if pil_image.mode == 'RGB' else NotImplementedError(f"{pil_image.mode} to Y"), 'sdtv2_Y': lambda pil_image: rgb2y(np.array(pil_image)) if pil_image.mode == 'RGB' else NotImplementedError(f"{pil_image.mode} to Y"), 'L': lambda pil_image: pil_image.convert("L") if pil_image.mode != 'L' else pil_image, } def _rgb2ycbcr(img, maxVal=255): O = np.array([[16], [128], [128]]) T = np.array([[0.256788235294118, 0.504129411764706, 0.097905882352941], [-0.148223529411765, -0.290992156862745, 0.439215686274510], [0.439215686274510, -0.367788235294118, -0.071427450980392]]) if maxVal == 1: O = O / 255.0 t = np.reshape(img, (img.shape[0] * img.shape[1], img.shape[2])) t = np.dot(t, np.transpose(T)) t[:, 0] += O[0] t[:, 1] += O[1] t[:, 2] += O[2] ycbcr = np.reshape(t, [img.shape[0], img.shape[1], img.shape[2]]) return ycbcr def rgb2y(im): """ this impl: 0.301, 0.586, 0.113 = 77/256, 150/256, 29/256 -0.172, -0.340, 0.512 = -44/256, -87/256, 131/256 0.512, -0.430, -0.082 = 131/256, -110/256, -21/256 ycbcr 601 sdtv spec[1]: 0.299, 0.587, 0.114 -0.172, -0.339, 0.511 0.511, -0.428, -0.083 ycbcr 601 sdtv spec[2]: 0.299, 0.587, 0.114 -0.169, -0.331, 0.5 0.5, -0.419, -0.081 [1] Video Demystified A Handbook for the Digital Engineer 4th ed - keith Jack, Chapter 3 [2] Color Space Conversions Adrian Ford, Alan Roberts """ im = im.astype(np.float32) R, G, B = im[:,:,0], im[:,:,1], im[:,:,2] Y = 77/256*R + 150/256*G + 29/256*B # [1] Note that 8-bit YCbCr and R'G'B' data should be saturated a return Y.clip(0,255).astype(np.uint8) def rgb2yuv(im): """ this impl: 0.301, 0.586, 0.113 = 77/256, 150/256, 29/256 -0.172, -0.340, 0.512 = -44/256, -87/256, 131/256 0.512, -0.430, -0.082 = 131/256, -110/256, -21/256 ycbcr 601 sdtv spec[1]: 0.299, 0.587, 0.114 -0.172, -0.339, 0.511 0.511, -0.428, -0.083 ycbcr 601 sdtv spec[2]: 0.299, 0.587, 0.114 -0.169, -0.331, 0.5 0.5, -0.419, -0.081 [1] Video Demystified A Handbook for the Digital Engineer 4th ed - keith Jack, Chapter 3 [2] Color Space Conversions Adrian Ford, Alan Roberts """ im = im.astype(np.float32) R, G, B = im[:,:,0], im[:,:,1], im[:,:,2] Y = 77/256*R + 150/256*G + 29/256*B U = -44/256*R - 87/256*G + 131/256*B V = 131/256*R - 110/256*G - 21/256*B Y, U, V = Y, U + 128, V + 128 # [1] Note that 8-bit YCbCr and R'G'B' data should be saturated at the 0 and 255 levels to avoid underflow and overflow return np.stack([Y,U,V], axis=-1).clip(0,255).astype(np.uint8) def yuv2rgb(im): """ this impl: 1, 0, 1.406 = 1, 0, 360/256 1, -0.344, -0.719 = 1, -88/256, -184/256 1, 1.777, 0 = 1, 455/256, 0 ycbcr 601 sdtv spec[1]: 1, 0, 1.371 1, -0.336, -0.698 1, 1.732, 0 ycbcr 601 sdtv spec[2]: 1, 0, 1.403 1, -0.344, -0.714 1, 1.773, 0 [1] Video Demystified A Handbook for the Digital Engineer 4th ed - keith Jack, Chapter 3 [2] Color Space Conversions Adrian Ford, Alan Roberts """ im = im.astype(np.float32) Y, Ud, Vd = im[:,:,0], im[:,:,1]-128, im[:,:,2]-128 R = Y + 360/256*Vd G = Y - 88/256*Ud - 184/256*Vd B = Y + 455/256*Ud # [1] Note that 8-bit YCbCr and R'G'B' data should be saturated at the 0 and 255 levels to avoid underflow and overflow return np.stack([R, G, B], axis=-1).clip(0,255).astype(np.uint8)