master
commit
a27bdfbbcd
@ -0,0 +1,28 @@
|
||||
FROM pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime
|
||||
|
||||
ARG USER
|
||||
ARG GROUP
|
||||
ARG UID
|
||||
ARG GID
|
||||
|
||||
RUN groupadd -g ${GID} ${GROUP}
|
||||
RUN useradd -u ${UID} -g ${GROUP} -s /bin/bash -m ${USER}
|
||||
|
||||
RUN mkdir /wd
|
||||
RUN chown ${USER}:${GROUP} /wd
|
||||
WORKDIR /wd
|
||||
|
||||
USER ${UID}:${GID}
|
||||
|
||||
#RUN conda init bash
|
||||
#RUN conda create -n jupyter-env jupyterlab -y
|
||||
#RUN echo "conda activate jupyter-env" >> /home/${USER}/.bashrc
|
||||
|
||||
RUN pip install jupyterlab matplotlib einops scikit-learn
|
||||
|
||||
EXPOSE 9000
|
||||
|
||||
SHELL ["/bin/bash", "--login", "-i", "-c"]
|
||||
ENV SHELL=/bin/bash
|
||||
|
||||
CMD jupyter lab --ip 0.0.0.0 --port 9000
|
File diff suppressed because one or more lines are too long
@ -0,0 +1,8 @@
|
||||
#/bin/bash
|
||||
|
||||
docker build . \
|
||||
-t ${USER}_pytorch \
|
||||
--build-arg USER=${USER} \
|
||||
--build-arg GROUP=${USER} \
|
||||
--build-arg UID=$(id -u ${USER}) \
|
||||
--build-arg GID=$(id -g ${USER})
|
Binary file not shown.
Binary file not shown.
@ -0,0 +1 @@
|
||||
docker run -d --gpus all -p 9000:9000 -v $(pwd):/wd ${USER}_pytorch
|
@ -0,0 +1,100 @@
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def imshow(tensor, figsize=None, title="", **args):
|
||||
figsize = figsize if figsize else (13*0.8,5*0.8)
|
||||
|
||||
if type(tensor) is list:
|
||||
for idx, el in enumerate(tensor):
|
||||
imshow(el, figsize=figsize, title=title, **args)
|
||||
plt.suptitle("{} {}".format(idx, title))
|
||||
return
|
||||
if len(tensor.shape)==4:
|
||||
for idx, el in enumerate(torch.squeeze(tensor, dim=1)):
|
||||
imshow(el, figsize=figsize, title=title, **args)
|
||||
plt.suptitle("{} {}".format(idx, title))
|
||||
return
|
||||
|
||||
tensor = tensor.detach().cpu() if type(tensor) == torch.Tensor else tensor
|
||||
if tensor.dtype == torch.complex64:
|
||||
f, ax = plt.subplots(1, 5, figsize=figsize, gridspec_kw={'width_ratios': [46.5,3,1,46.5,3]})
|
||||
real_im = ax[0].imshow(tensor.real, **args)
|
||||
imag_im = ax[3].imshow(tensor.imag, **args)
|
||||
box = ax[1].get_position()
|
||||
box.x0 = box.x0 - 0.02
|
||||
box.x1 = box.x1 - 0.03
|
||||
ax[1].set_position(box)
|
||||
box = ax[4].get_position()
|
||||
box.x0 = box.x0 - 0.02
|
||||
box.x1 = box.x1 - 0.03
|
||||
ax[4].set_position(box)
|
||||
ax[0].set_title("real");
|
||||
ax[3].set_title("imag");
|
||||
f.colorbar(real_im, ax[1]);
|
||||
f.colorbar(imag_im, ax[4]);
|
||||
f.suptitle(title)
|
||||
ax[2].remove()
|
||||
return f, ax
|
||||
else:
|
||||
f, ax = plt.subplots(1, 2, gridspec_kw={'width_ratios': [95,5]}, figsize=figsize)
|
||||
im = ax[0].imshow(tensor, **args)
|
||||
f.colorbar(im, ax[1])
|
||||
f.suptitle(title)
|
||||
return f, ax
|
||||
|
||||
def perm_roll(im, axis, amount):
|
||||
permutation = torch.roll(torch.arange(im.shape[axis], device=im.device), amount, dims=0)
|
||||
return torch.index_select(im, axis, permutation)
|
||||
|
||||
def shift_left(im):
|
||||
tt = perm_roll(im, axis=-2, amount=-(im.shape[-2]+1)//2)
|
||||
tt = perm_roll(tt, axis=-1, amount=-(im.shape[-1]+1)//2)
|
||||
return tt
|
||||
|
||||
def shift_right(im):
|
||||
tt = perm_roll(im, axis=-2, amount=(im.shape[-2]+1)//2)
|
||||
tt = perm_roll(tt, axis=-1, amount=(im.shape[-1]+1)//2)
|
||||
return tt
|
||||
|
||||
|
||||
def pad_zeros(input, size):
|
||||
h, w = input.shape[-2:]
|
||||
th, tw = size
|
||||
|
||||
if len(input.shape) == 2:
|
||||
gg = torch.zeros(size, device=input.device)
|
||||
x, y = int(th/2 - h/2), int(tw/2 - w/2)
|
||||
gg[x:int(th/2 + h/2),y:int(tw/2 + w/2)] = input[:,:]
|
||||
|
||||
if len(input.shape) == 4:
|
||||
gg = torch.zeros(input.shape[:2] + size, device=input.device)
|
||||
x, y = int(th/2 - h/2), int(tw/2 - w/2)
|
||||
gg[:,:,x:int(th/2 + h/2),y:int(tw/2 + w/2)] = input[:,:,:,:]
|
||||
|
||||
return gg
|
||||
|
||||
def unpad_zeros(input, size):
|
||||
h, w = input.shape[-2:]
|
||||
th, tw = size
|
||||
dx,dy = h-th, w-tw
|
||||
|
||||
if len(input.shape) == 2:
|
||||
gg = input[int(h/2 - th/2):int(th/2 + h/2), int(w/2 - tw/2):int(tw/2 + w/2)]
|
||||
|
||||
if len(input.shape) == 4:
|
||||
gg = input[:,:,dx//2:dx//2+th, dy//2:dy//2+tw]
|
||||
return gg
|
||||
|
||||
def circular_aperture(h, w, r=None, is_inv=False):
|
||||
if r is None:
|
||||
r = min(h//2, w//2)
|
||||
x, y = torch.meshgrid(torch.arange(-h//2, h//2), torch.arange(-w//2, w//2), indexing='ij')
|
||||
circle_dist = torch.sqrt(x**2 + y**2)
|
||||
if is_inv:
|
||||
circle_aperture = torch.where(circle_dist<r, torch.zeros_like(circle_dist), torch.ones_like(circle_dist))
|
||||
else:
|
||||
circle_aperture = torch.where(circle_dist<r, torch.ones_like(circle_dist), torch.zeros_like(circle_dist))
|
||||
return circle_aperture
|
||||
|
||||
def to_class_labels(softmax_distibutions):
|
||||
return torch.argmax(softmax_distibutions, dim=1).cpu()
|
Loading…
Reference in New Issue