import torch import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from datetime import datetime def imshow(tensor, figsize=None, title="", **args): tensor = tensor.cpu().detach() if isinstance(tensor, torch.Tensor) else tensor tensor = list(tensor) if isinstance(tensor, torch.nn.modules.container.ParameterList) else tensor figsize = figsize if figsize else (13*0.8,5*0.8) if type(tensor) is list: outs = [] for idx, el in enumerate(tensor): f, ax = imshow(el, figsize=figsize, title=title, **args) plt.suptitle("{} {}".format(idx, title)) outs.append([f, ax]) return outs if len(tensor.shape)==4: outs = [] for idx, el in enumerate(torch.squeeze(tensor, dim=1)): f, ax = imshow(el, figsize=figsize, title=title, **args) plt.suptitle("{} {}".format(idx, title)) outs.append([f, ax]) return outs if tensor.dtype == torch.complex64: f, ax = plt.subplots(1, 2, figsize=figsize, gridspec_kw={'width_ratios': [46.5,46.5]}) real_im = ax[0].imshow(tensor.real, **args) imag_im = ax[1].imshow(tensor.imag, **args) ax[0].set_title("real"); ax[1].set_title("imag"); divider = make_axes_locatable(ax[0]) cax = divider.append_axes("right", size="5%", pad=0.05) f.colorbar(real_im, cax); divider = make_axes_locatable(ax[1]) cax = divider.append_axes("right", size="5%", pad=0.05) f.colorbar(imag_im, cax); f.suptitle(title) f.tight_layout() return f, ax else: f, ax = plt.subplots(1, 2, gridspec_kw={'width_ratios': [95,5]}, figsize=figsize) im = ax[0].imshow(tensor, **args) f.colorbar(im, ax[1]) f.suptitle(title) return f, ax def perm_roll(im, axis, amount): permutation = torch.roll(torch.arange(im.shape[axis], device=im.device), amount, dims=0) return torch.index_select(im, axis, permutation) def shift_left(im): tt = perm_roll(im, axis=-2, amount=-(im.shape[-2]+1)//2) tt = perm_roll(tt, axis=-1, amount=-(im.shape[-1]+1)//2) return tt def shift_right(im): tt = perm_roll(im, axis=-2, amount=(im.shape[-2]+1)//2) tt = perm_roll(tt, axis=-1, amount=(im.shape[-1]+1)//2) return tt def pad_zeros(input, size): h, w = input.shape[-2:] th, tw = size out = torch.zeros(input.shape[:-2] + size, device=input.device) x, y = int(th/2 - h/2), int(tw/2 - w/2) out[..., x:int(th/2 + h/2),y:int(tw/2 + w/2)] = input[..., :,:] return out def unpad_zeros(input, size): h, w = input.shape[-2:] th, tw = size dx,dy = h-th, w-tw return input[..., int(h/2 - th/2):int(th/2 + h/2), int(w/2 - tw/2):int(tw/2 + w/2)] def to_class_labels(softmax_distibutions): return torch.argmax(softmax_distibutions, dim=1).cpu() def circular_aperture(h, w, r=None, is_inv=False): if r is None: r = min(h//2, w//2) x, y = torch.meshgrid(torch.arange(-h//2, h//2), torch.arange(-w//2, w//2), indexing='ij') circle_dist = torch.sqrt(x**2 + y**2) if is_inv: circle_aperture = torch.where(circle_dist