Add files via upload

master
Viktoriia Evdokimova 4 years ago committed by GitHub
parent d28622e5a1
commit e14230eb76
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,262 @@
from __future__ import print_function
from builtins import range
from six.moves import cPickle as pickle
import numpy as np
import os
from imageio import imread
import platform
def load_pickle(f):
version = platform.python_version_tuple()
if version[0] == '2':
return pickle.load(f)
elif version[0] == '3':
return pickle.load(f, encoding='latin1')
raise ValueError("invalid python version: {}".format(version))
def load_CIFAR_batch(filename):
""" load single batch of cifar """
with open(filename, 'rb') as f:
datadict = load_pickle(f)
X = datadict['data']
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")
Y = np.array(Y)
return X, Y
def load_CIFAR10(ROOT):
""" load all of cifar """
xs = []
ys = []
for b in range(1,6):
f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
X, Y = load_CIFAR_batch(f)
xs.append(X)
ys.append(Y)
Xtr = np.concatenate(xs)
Ytr = np.concatenate(ys)
del X, Y
Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
return Xtr, Ytr, Xte, Yte
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000,
subtract_mean=True):
"""
Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
it for classifiers. These are the same steps as we used for the SVM, but
condensed to a single function.
"""
# Load the raw CIFAR-10 data
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
# Subsample the data
mask = list(range(num_training, num_training + num_validation))
X_val = X_train[mask]
y_val = y_train[mask]
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]
# Normalize the data: subtract the mean image
if subtract_mean:
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
# Transpose so that channels come first
X_train = X_train.transpose(0, 3, 1, 2).copy()
X_val = X_val.transpose(0, 3, 1, 2).copy()
X_test = X_test.transpose(0, 3, 1, 2).copy()
# Package data into a dictionary
return {
'X_train': X_train, 'y_train': y_train,
'X_val': X_val, 'y_val': y_val,
'X_test': X_test, 'y_test': y_test,
}
def load_tiny_imagenet(path, dtype=np.float32, subtract_mean=True):
"""
Load TinyImageNet. Each of TinyImageNet-100-A, TinyImageNet-100-B, and
TinyImageNet-200 have the same directory structure, so this can be used
to load any of them.
Inputs:
- path: String giving path to the directory to load.
- dtype: numpy datatype used to load the data.
- subtract_mean: Whether to subtract the mean training image.
Returns: A dictionary with the following entries:
- class_names: A list where class_names[i] is a list of strings giving the
WordNet names for class i in the loaded dataset.
- X_train: (N_tr, 3, 64, 64) array of training images
- y_train: (N_tr,) array of training labels
- X_val: (N_val, 3, 64, 64) array of validation images
- y_val: (N_val,) array of validation labels
- X_test: (N_test, 3, 64, 64) array of testing images.
- y_test: (N_test,) array of test labels; if test labels are not available
(such as in student code) then y_test will be None.
- mean_image: (3, 64, 64) array giving mean training image
"""
# First load wnids
with open(os.path.join(path, 'wnids.txt'), 'r') as f:
wnids = [x.strip() for x in f]
# Map wnids to integer labels
wnid_to_label = {wnid: i for i, wnid in enumerate(wnids)}
# Use words.txt to get names for each class
with open(os.path.join(path, 'words.txt'), 'r') as f:
wnid_to_words = dict(line.split('\t') for line in f)
for wnid, words in wnid_to_words.items():
wnid_to_words[wnid] = [w.strip() for w in words.split(',')]
class_names = [wnid_to_words[wnid] for wnid in wnids]
# Next load training data.
X_train = []
y_train = []
for i, wnid in enumerate(wnids):
if (i + 1) % 20 == 0:
print('loading training data for synset %d / %d'
% (i + 1, len(wnids)))
# To figure out the filenames we need to open the boxes file
boxes_file = os.path.join(path, 'train', wnid, '%s_boxes.txt' % wnid)
with open(boxes_file, 'r') as f:
filenames = [x.split('\t')[0] for x in f]
num_images = len(filenames)
X_train_block = np.zeros((num_images, 3, 64, 64), dtype=dtype)
y_train_block = wnid_to_label[wnid] * \
np.ones(num_images, dtype=np.int64)
for j, img_file in enumerate(filenames):
img_file = os.path.join(path, 'train', wnid, 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
## grayscale file
img.shape = (64, 64, 1)
X_train_block[j] = img.transpose(2, 0, 1)
X_train.append(X_train_block)
y_train.append(y_train_block)
# We need to concatenate all training data
X_train = np.concatenate(X_train, axis=0)
y_train = np.concatenate(y_train, axis=0)
# Next load validation data
with open(os.path.join(path, 'val', 'val_annotations.txt'), 'r') as f:
img_files = []
val_wnids = []
for line in f:
img_file, wnid = line.split('\t')[:2]
img_files.append(img_file)
val_wnids.append(wnid)
num_val = len(img_files)
y_val = np.array([wnid_to_label[wnid] for wnid in val_wnids])
X_val = np.zeros((num_val, 3, 64, 64), dtype=dtype)
for i, img_file in enumerate(img_files):
img_file = os.path.join(path, 'val', 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
img.shape = (64, 64, 1)
X_val[i] = img.transpose(2, 0, 1)
# Next load test images
# Students won't have test labels, so we need to iterate over files in the
# images directory.
img_files = os.listdir(os.path.join(path, 'test', 'images'))
X_test = np.zeros((len(img_files), 3, 64, 64), dtype=dtype)
for i, img_file in enumerate(img_files):
img_file = os.path.join(path, 'test', 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
img.shape = (64, 64, 1)
X_test[i] = img.transpose(2, 0, 1)
y_test = None
y_test_file = os.path.join(path, 'test', 'test_annotations.txt')
if os.path.isfile(y_test_file):
with open(y_test_file, 'r') as f:
img_file_to_wnid = {}
for line in f:
line = line.split('\t')
img_file_to_wnid[line[0]] = line[1]
y_test = [wnid_to_label[img_file_to_wnid[img_file]]
for img_file in img_files]
y_test = np.array(y_test)
mean_image = X_train.mean(axis=0)
if subtract_mean:
X_train -= mean_image[None]
X_val -= mean_image[None]
X_test -= mean_image[None]
return {
'class_names': class_names,
'X_train': X_train,
'y_train': y_train,
'X_val': X_val,
'y_val': y_val,
'X_test': X_test,
'y_test': y_test,
'class_names': class_names,
'mean_image': mean_image,
}
def load_models(models_dir):
"""
Load saved models from disk. This will attempt to unpickle all files in a
directory; any files that give errors on unpickling (such as README.txt)
will be skipped.
Inputs:
- models_dir: String giving the path to a directory containing model files.
Each model file is a pickled dictionary with a 'model' field.
Returns:
A dictionary mapping model file names to models.
"""
models = {}
for model_file in os.listdir(models_dir):
with open(os.path.join(models_dir, model_file), 'rb') as f:
try:
models[model_file] = load_pickle(f)['model']
except pickle.UnpicklingError:
continue
return models
def load_imagenet_val(num=None):
"""Load a handful of validation images from ImageNet.
Inputs:
- num: Number of images to load (max of 25)
Returns:
- X: numpy array with shape [num, 224, 224, 3]
- y: numpy array of integer image labels, shape [num]
- class_names: dict mapping integer label to class name
"""
imagenet_fn = 'cs231n/datasets/imagenet_val_25.npz'
if not os.path.isfile(imagenet_fn):
print('file %s not found' % imagenet_fn)
print('Run the following:')
print('cd cs231n/datasets')
print('bash get_imagenet_val.sh')
assert False, 'Need to download imagenet_val_25.npz'
f = np.load(imagenet_fn)
X = f['X']
y = f['y']
class_names = f['label_map'].item()
if num is not None:
X = X[:num]
y = y[:num]
return X, y, class_names

@ -0,0 +1,129 @@
from __future__ import print_function
from builtins import range
from past.builtins import xrange
import numpy as np
from random import randrange
def eval_numerical_gradient(f, x, verbose=True, h=0.00001):
"""
a naive implementation of numerical gradient of f at x
- f should be a function that takes a single argument
- x is the point (numpy array) to evaluate the gradient at
"""
fx = f(x) # evaluate function value at original point
grad = np.zeros_like(x)
# iterate over all indexes in x
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
# evaluate function at x+h
ix = it.multi_index
oldval = x[ix]
x[ix] = oldval + h # increment by h
fxph = f(x) # evalute f(x + h)
x[ix] = oldval - h
fxmh = f(x) # evaluate f(x - h)
x[ix] = oldval # restore
# compute the partial derivative with centered formula
grad[ix] = (fxph - fxmh) / (2 * h) # the slope
if verbose:
print(ix, grad[ix])
it.iternext() # step to next dimension
return grad
def eval_numerical_gradient_array(f, x, df, h=1e-5):
"""
Evaluate a numeric gradient for a function that accepts a numpy
array and returns a numpy array.
"""
grad = np.zeros_like(x)
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
ix = it.multi_index
oldval = x[ix]
x[ix] = oldval + h
pos = f(x).copy()
x[ix] = oldval - h
neg = f(x).copy()
x[ix] = oldval
grad[ix] = np.sum((pos - neg) * df) / (2 * h)
it.iternext()
return grad
def eval_numerical_gradient_blobs(f, inputs, output, h=1e-5):
"""
Compute numeric gradients for a function that operates on input
and output blobs.
We assume that f accepts several input blobs as arguments, followed by a
blob where outputs will be written. For example, f might be called like:
f(x, w, out)
where x and w are input Blobs, and the result of f will be written to out.
Inputs:
- f: function
- inputs: tuple of input blobs
- output: output blob
- h: step size
"""
numeric_diffs = []
for input_blob in inputs:
diff = np.zeros_like(input_blob.diffs)
it = np.nditer(input_blob.vals, flags=['multi_index'],
op_flags=['readwrite'])
while not it.finished:
idx = it.multi_index
orig = input_blob.vals[idx]
input_blob.vals[idx] = orig + h
f(*(inputs + (output,)))
pos = np.copy(output.vals)
input_blob.vals[idx] = orig - h
f(*(inputs + (output,)))
neg = np.copy(output.vals)
input_blob.vals[idx] = orig
diff[idx] = np.sum((pos - neg) * output.diffs) / (2.0 * h)
it.iternext()
numeric_diffs.append(diff)
return numeric_diffs
def eval_numerical_gradient_net(net, inputs, output, h=1e-5):
return eval_numerical_gradient_blobs(lambda *args: net.forward(),
inputs, output, h=h)
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-5):
"""
sample a few random elements and only return numerical
in this dimensions.
"""
for i in range(num_checks):
ix = tuple([randrange(m) for m in x.shape])
oldval = x[ix]
x[ix] = oldval + h # increment by h
fxph = f(x) # evaluate f(x + h)
x[ix] = oldval - h # increment by h
fxmh = f(x) # evaluate f(x - h)
x[ix] = oldval # reset
grad_numerical = (fxph - fxmh) / (2 * h)
grad_analytic = analytic_grad[ix]
rel_error = (abs(grad_numerical - grad_analytic) /
(abs(grad_numerical) + abs(grad_analytic)))
print('numerical: %f analytic: %f, relative error: %e'
%(grad_numerical, grad_analytic, rel_error))

@ -0,0 +1,73 @@
from builtins import range
from past.builtins import xrange
from math import sqrt, ceil
import numpy as np
def visualize_grid(Xs, ubound=255.0, padding=1):
"""
Reshape a 4D tensor of image data to a grid for easy visualization.
Inputs:
- Xs: Data of shape (N, H, W, C)
- ubound: Output grid will have values scaled to the range [0, ubound]
- padding: The number of blank pixels between elements of the grid
"""
(N, H, W, C) = Xs.shape
grid_size = int(ceil(sqrt(N)))
grid_height = H * grid_size + padding * (grid_size - 1)
grid_width = W * grid_size + padding * (grid_size - 1)
grid = np.zeros((grid_height, grid_width, C))
next_idx = 0
y0, y1 = 0, H
for y in range(grid_size):
x0, x1 = 0, W
for x in range(grid_size):
if next_idx < N:
img = Xs[next_idx]
low, high = np.min(img), np.max(img)
grid[y0:y1, x0:x1] = ubound * (img - low) / (high - low)
# grid[y0:y1, x0:x1] = Xs[next_idx]
next_idx += 1
x0 += W + padding
x1 += W + padding
y0 += H + padding
y1 += H + padding
# grid_max = np.max(grid)
# grid_min = np.min(grid)
# grid = ubound * (grid - grid_min) / (grid_max - grid_min)
return grid
def vis_grid(Xs):
""" visualize a grid of images """
(N, H, W, C) = Xs.shape
A = int(ceil(sqrt(N)))
G = np.ones((A*H+A, A*W+A, C), Xs.dtype)
G *= np.min(Xs)
n = 0
for y in range(A):
for x in range(A):
if n < N:
G[y*H+y:(y+1)*H+y, x*W+x:(x+1)*W+x, :] = Xs[n,:,:,:]
n += 1
# normalize to [0,1]
maxg = G.max()
ming = G.min()
G = (G - ming)/(maxg-ming)
return G
def vis_nn(rows):
""" visualize array of arrays of images """
N = len(rows)
D = len(rows[0])
H,W,C = rows[0][0].shape
Xs = rows[0][0]
G = np.ones((N*H+N, D*W+D, C), Xs.dtype)
for y in range(N):
for x in range(D):
G[y*H+y:(y+1)*H+y, x*W+x:(x+1)*W+x, :] = rows[y][x]
# normalize to [0,1]
maxg = G.max()
ming = G.min()
G = (G - ming)/(maxg-ming)
return G
Loading…
Cancel
Save