add assignment 2

master
Viktoria Kutikova 4 years ago
parent 3ec44aecf0
commit e24d001813

File diff suppressed because one or more lines are too long

@ -0,0 +1,313 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Лабораторная работа 2\n",
"\n",
"## Полносвязная нейронная сеть\n",
"\n",
"Реализовать нейронную сеть, состоящую из двух полносвязных слоев и решающую задачу классификации на наборе данных из лабораторной работы 1."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from scripts.classifiers.neural_net import TwoLayerNet\n",
"\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = (10.0, 8.0) \n",
"plt.rcParams['image.interpolation'] = 'nearest'\n",
"plt.rcParams['image.cmap'] = 'gray'\n",
"\n",
"\n",
"def rel_error(x, y):\n",
" \"\"\" returns relative error \"\"\"\n",
" return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Добавьте реализации методов класса TwoLayerNet . Проверьте вашу реализацию на модельных данных (Код приведен ниже). "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"input_size = 4\n",
"hidden_size = 10\n",
"num_classes = 3\n",
"num_inputs = 5\n",
"\n",
"def init_toy_model():\n",
" np.random.seed(0)\n",
" return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)\n",
"\n",
"def init_toy_data():\n",
" np.random.seed(1)\n",
" X = 10 * np.random.randn(num_inputs, input_size)\n",
" y = np.array([0, 1, 2, 2, 1])\n",
" return X, y\n",
"\n",
"net = init_toy_model()\n",
"X, y = init_toy_data()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Прямой проход: вычисление выхода сети\n",
"\n",
"Реализуйте первую часть метода TwoLayerNet.loss, вычисляющую оценки классов для входных данных. \n",
"\n",
"Сравните ваш выход сети с эталонными значениями. Ошибка должна быть очень маленькой (можете ориентироваться на значение < 1e-7) ."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"scores = net.loss(X)\n",
"print('Your scores:')\n",
"print(scores)\n",
"print()\n",
"print('correct scores:')\n",
"correct_scores = np.asarray([\n",
" [-0.81233741, -1.27654624, -0.70335995],\n",
" [-0.17129677, -1.18803311, -0.47310444],\n",
" [-0.51590475, -1.01354314, -0.8504215 ],\n",
" [-0.15419291, -0.48629638, -0.52901952],\n",
" [-0.00618733, -0.12435261, -0.15226949]])\n",
"print(correct_scores)\n",
"print()\n",
"\n",
"\n",
"print('Difference between your scores and correct scores:')\n",
"print(np.sum(np.abs(scores - correct_scores)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# Прямой проход: вычисление loss\n",
"\n",
"Реализуйте вторую часть метода, вычисляющую значение функции потерь. Сравните с эталоном. Ошибка должна быть очень маленькой (можете ориентироваться на значение < 1e-12) ."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loss, _ = net.loss(X, y, reg=0.05)\n",
"correct_loss = 1.30378789133\n",
"\n",
"print('Difference between your loss and correct loss:')\n",
"print(np.sum(np.abs(loss - correct_loss)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Обратный проход\n",
"\n",
"Реализуйте третью часть метода loss. Используйте численную реализацию расчета градиента для проверки вашей реализации обратного прохода. Если прямой и обратный проходы реализованы верно, то ошибка будет < 1e-8 для каждой из переменных W1, W2, b1, и b2. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from scripts.gradient_check import eval_numerical_gradient\n",
"\n",
"loss, grads = net.loss(X, y, reg=0.05)\n",
"\n",
"for param_name in grads:\n",
" f = lambda W: net.loss(X, y, reg=0.05)[0]\n",
" param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False)\n",
" print('%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Обучение нейронной сети на смоделированных данных\n",
"\n",
"Реализуйте методы TwoLayerNet.train и TwoLayerNet.predict. Обучайте сеть до тех пор, пока значение loss не будет < 0.02.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"net = init_toy_model()\n",
"stats = net.train(X, y, X, y,\n",
" learning_rate=1e-1, reg=5e-6,\n",
" num_iters=100, verbose=False)\n",
"\n",
"print('Final training loss: ', stats['loss_history'][-1])\n",
"\n",
"\n",
"plt.plot(stats['loss_history'])\n",
"plt.xlabel('iteration')\n",
"plt.ylabel('training loss')\n",
"plt.title('Training Loss history')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Обучение нейронной сети на реальном наборе данных (CIFAR-10, MNIST)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Загрузите набор данных, соответствующий вашему варианту. \n",
"\n",
"Разделите данные на обучающую, тестовую и валидационную выборки.\n",
"\n",
"Выполните предобработку данных, как в ЛР 1. \n",
"\n",
"Обучите нейронную сеть на ваших данных. \n",
"\n",
"При сдаче лабораторной работы объясните значения всех параметров метода train."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_size = 32 * 32 * 3\n",
"hidden_size = 50\n",
"num_classes = 10\n",
"net = TwoLayerNet(input_size, hidden_size, num_classes)\n",
"\n",
"stats = net.train(X_train, y_train, X_val, y_val,\n",
" num_iters=1000, batch_size=200,\n",
" learning_rate=1e-4, learning_rate_decay=0.95,\n",
" reg=0.25, verbose=True)\n",
"\n",
"val_acc = (net.predict(X_val) == y_val).mean()\n",
"print('Validation accuracy: ', val_acc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Используя параметры по умолчанию, вы можете получить accuracy, примерно равный 0.29. \n",
"\n",
"Проведите настройку гиперпараметров для увеличения accuracy. Поэкспериментируйте со значениями гиперпараметров, например, с количеством скрытых слоев, количеством эпох, скорости обучения и др. Ваша цель - максимально увеличить accuracy полносвязной сети на валидационном наборе. Различные эксперименты приветствуются. Например, вы можете использовать методы для сокращения размерности признакового пространства (например, PCA), добавить dropout слои и др. \n",
"\n",
"Для лучшей модели вычислите acсuracy на тестовом наборе. \n",
"\n",
"Для отладки процесса обучения часто помогают графики изменения loss и accuracy в процессе обучения. Ниже приведен код построения таких графиков. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.subplot(2, 1, 1)\n",
"plt.plot(stats['loss_history'])\n",
"plt.title('Loss history')\n",
"plt.xlabel('Iteration')\n",
"plt.ylabel('Loss')\n",
"\n",
"plt.subplot(2, 1, 2)\n",
"plt.plot(stats['train_acc_history'], label='train')\n",
"plt.plot(stats['val_acc_history'], label='val')\n",
"plt.title('Classification accuracy history')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Classification accuracy')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from scripts.vis_utils import visualize_grid\n",
"\n",
"def show_net_weights(net):\n",
" W1 = net.params['W1']\n",
" W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)\n",
" plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))\n",
" plt.gca().axis('off')\n",
" plt.show()\n",
"\n",
"show_net_weights(net)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Сделайте выводы по результатам работы. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,2 @@
from scripts.classifiers.k_nearest_neighbor import *
from scripts.classifiers.linear_classifier import *

@ -0,0 +1,183 @@
from builtins import range
from builtins import object
import numpy as np
from past.builtins import xrange
class KNearestNeighbor(object):
""" a kNN classifier with L2 distance """
def __init__(self):
pass
def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data.
Inputs:
- X: A numpy array of shape (num_train, D) containing the training data
consisting of num_train samples each of dimension D.
- y: A numpy array of shape (N,) containing the training labels, where
y[i] is the label for X[i].
"""
self.X_train = X
self.y_train = y
def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data consisting
of num_test samples each of dimension D.
- k: The number of nearest neighbors that vote for the predicted labels.
- num_loops: Determines which implementation to use to compute distances
between training points and testing points.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops)
return self.predict_labels(dists, k=k)
def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data.
Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in range(num_test):
for j in range(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension, nor use np.linalg.norm(). #
#####################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return dists
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in range(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
# Do not use np.linalg.norm(). #
#######################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return dists
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy, #
# nor use np.linalg.norm(). #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return dists
def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point.
Inputs:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
gives the distance betwen the ith test point and the jth training point.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in range(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# testing point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return y_pred

@ -0,0 +1,139 @@
from __future__ import print_function
from builtins import range
from builtins import object
import numpy as np
from scripts.classifiers.linear_svm import *
from scripts.classifiers.softmax import *
from past.builtins import xrange
class LinearClassifier(object):
def __init__(self):
self.W = None
def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,
batch_size=200, verbose=False):
"""
Train this linear classifier using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
- y: A numpy array of shape (N,) containing training labels; y[i] = c
means that X[i] has label 0 <= c < C for C classes.
- learning_rate: (float) learning rate for optimization.
- reg: (float) regularization strength.
- num_iters: (integer) number of steps to take when optimizing
- batch_size: (integer) number of training examples to use at each step.
- verbose: (boolean) If true, print progress during optimization.
Outputs:
A list containing the value of the loss function at each training iteration.
"""
num_train, dim = X.shape
num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes
if self.W is None:
# lazily initialize W
self.W = 0.001 * np.random.randn(dim, num_classes)
# Run stochastic gradient descent to optimize W
loss_history = []
for it in range(num_iters):
X_batch = None
y_batch = None
#########################################################################
# TODO: #
# Sample batch_size elements from the training data and their #
# corresponding labels to use in this round of gradient descent. #
# Store the data in X_batch and their corresponding labels in #
# y_batch; after sampling X_batch should have shape (batch_size, dim) #
# and y_batch should have shape (batch_size,) #
# #
# Hint: Use np.random.choice to generate indices. Sampling with #
# replacement is faster than sampling without replacement. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
# evaluate loss and gradient
loss, grad = self.loss(X_batch, y_batch, reg)
loss_history.append(loss)
# perform parameter update
#########################################################################
# TODO: #
# Update the weights using the gradient and the learning rate. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
if verbose and it % 100 == 0:
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
return loss_history
def predict(self, X):
"""
Use the trained weights of this linear classifier to predict labels for
data points.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
Returns:
- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
array of length N, and each element is an integer giving the predicted
class.
"""
y_pred = np.zeros(X.shape[0])
###########################################################################
# TODO: #
# Implement this method. Store the predicted labels in y_pred. #
###########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return y_pred
def loss(self, X_batch, y_batch, reg):
"""
Compute the loss function and its derivative.
Subclasses will override this.
Inputs:
- X_batch: A numpy array of shape (N, D) containing a minibatch of N
data points; each point has dimension D.
- y_batch: A numpy array of shape (N,) containing labels for the minibatch.
- reg: (float) regularization strength.
Returns: A tuple containing:
- loss as a single float
- gradient with respect to self.W; an array of the same shape as W
"""
pass
class LinearSVM(LinearClassifier):
""" A subclass that uses the Multiclass SVM loss function """
def loss(self, X_batch, y_batch, reg):
return svm_loss_vectorized(self.W, X_batch, y_batch, reg)
class Softmax(LinearClassifier):
""" A subclass that uses the Softmax + Cross-entropy loss function """
def loss(self, X_batch, y_batch, reg):
return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)

@ -0,0 +1,100 @@
from builtins import range
import numpy as np
from random import shuffle
from past.builtins import xrange
def svm_loss_naive(W, X, y, reg):
"""
Structured SVM loss function, naive implementation (with loops).
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
dW = np.zeros(W.shape) # initialize the gradient as zero
# compute the loss and the gradient
num_classes = W.shape[1]
num_train = X.shape[0]
loss = 0.0
for i in range(num_train):
scores = X[i].dot(W)
correct_class_score = scores[y[i]]
for j in range(num_classes):
if j == y[i]:
continue
margin = scores[j] - correct_class_score + 1 # note delta = 1
if margin > 0:
loss += margin
# Right now the loss is a sum over all training examples, but we want it
# to be an average instead so we divide by num_train.
loss /= num_train
# Add regularization to the loss.
loss += reg * np.sum(W * W)
#############################################################################
# TODO: #
# Compute the gradient of the loss function and store it dW. #
# Rather than first computing the loss and then computing the derivative, #
# it may be simpler to compute the derivative at the same time that the #
# loss is being computed. As a result you may need to modify some of the #
# code above to compute the gradient. #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return loss, dW
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation.
Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0
dW = np.zeros(W.shape) # initialize the gradient as zero
#############################################################################
# TODO: #
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss. #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
#############################################################################
# TODO: #
# Implement a vectorized version of the gradient for the structured SVM #
# loss, storing the result in dW. #
# #
# Hint: Instead of computing the gradient from scratch, it may be easier #
# to reuse some of the intermediate values that you used to compute the #
# loss. #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return loss, dW

@ -0,0 +1,225 @@
from __future__ import print_function
from builtins import range
from builtins import object
import numpy as np
import matplotlib.pyplot as plt
from past.builtins import xrange
class TwoLayerNet(object):
"""
A two-layer fully-connected neural network. The net has an input dimension of
N, a hidden layer dimension of H, and performs classification over C classes.
We train the network with a softmax loss function and L2 regularization on the
weight matrices. The network uses a ReLU nonlinearity after the first fully
connected layer.
In other words, the network has the following architecture:
input - fully connected layer - ReLU - fully connected layer - softmax
The outputs of the second fully-connected layer are the scores for each class.
"""
def __init__(self, input_size, hidden_size, output_size, std=1e-4):
"""
Initialize the model. Weights are initialized to small random values and
biases are initialized to zero. Weights and biases are stored in the
variable self.params, which is a dictionary with the following keys:
W1: First layer weights; has shape (D, H)
b1: First layer biases; has shape (H,)
W2: Second layer weights; has shape (H, C)
b2: Second layer biases; has shape (C,)
Inputs:
- input_size: The dimension D of the input data.
- hidden_size: The number of neurons H in the hidden layer.
- output_size: The number of classes C.
"""
self.params = {}
self.params['W1'] = std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def loss(self, X, y=None, reg=0.0):
"""
Compute the loss and gradients for a two layer fully connected neural
network.
Inputs:
- X: Input data of shape (N, D). Each X[i] is a training sample.
- y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
an integer in the range 0 <= y[i] < C. This parameter is optional; if it
is not passed then we only return scores, and if it is passed then we
instead return the loss and gradients.
- reg: Regularization strength.
Returns:
If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
the score for class c on input X[i].
If y is not None, instead return a tuple of:
- loss: Loss (data loss and regularization loss) for this batch of training
samples.
- grads: Dictionary mapping parameter names to gradients of those parameters
with respect to the loss function; has the same keys as self.params.
"""
# Unpack variables from the params dictionary
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
N, D = X.shape
# Compute the forward pass
scores = None
#############################################################################
# TODO: Perform the forward pass, computing the class scores for the input. #
# Store the result in the scores variable, which should be an array of #
# shape (N, C). #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
# If the targets are not given then jump out, we're done
if y is None:
return scores
# Compute the loss
loss = None
#############################################################################
# TODO: Finish the forward pass, and compute the loss. This should include #
# both the data loss and L2 regularization for W1 and W2. Store the result #
# in the variable loss, which should be a scalar. Use the Softmax #
# classifier loss. #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
# Backward pass: compute gradients
grads = {}
#############################################################################
# TODO: Compute the backward pass, computing the derivatives of the weights #
# and biases. Store the results in the grads dictionary. For example, #
# grads['W1'] should store the gradient on W1, and be a matrix of same size #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return loss, grads
def train(self, X, y, X_val, y_val,
learning_rate=1e-3, learning_rate_decay=0.95,
reg=5e-6, num_iters=100,
batch_size=200, verbose=False):
"""
Train this neural network using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) giving training data.
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that
X[i] has label c, where 0 <= c < C.
- X_val: A numpy array of shape (N_val, D) giving validation data.
- y_val: A numpy array of shape (N_val,) giving validation labels.
- learning_rate: Scalar giving learning rate for optimization.
- learning_rate_decay: Scalar giving factor used to decay the learning rate
after each epoch.
- reg: Scalar giving regularization strength.
- num_iters: Number of steps to take when optimizing.
- batch_size: Number of training examples to use per step.
- verbose: boolean; if true print progress during optimization.
"""
num_train = X.shape[0]
iterations_per_epoch = max(num_train / batch_size, 1)
# Use SGD to optimize the parameters in self.model
loss_history = []
train_acc_history = []
val_acc_history = []
for it in range(num_iters):
X_batch = None
y_batch = None
#########################################################################
# TODO: Create a random minibatch of training data and labels, storing #
# them in X_batch and y_batch respectively. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
# Compute loss and gradients using the current minibatch
loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
loss_history.append(loss)
#########################################################################
# TODO: Use the gradients in the grads dictionary to update the #
# parameters of the network (stored in the dictionary self.params) #
# using stochastic gradient descent. You'll need to use the gradients #
# stored in the grads dictionary defined above. #
#########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
if verbose and it % 100 == 0:
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
# Every epoch, check train and val accuracy and decay learning rate.
if it % iterations_per_epoch == 0:
# Check accuracy
train_acc = (self.predict(X_batch) == y_batch).mean()
val_acc = (self.predict(X_val) == y_val).mean()
train_acc_history.append(train_acc)
val_acc_history.append(val_acc)
# Decay learning rate
learning_rate *= learning_rate_decay
return {
'loss_history': loss_history,
'train_acc_history': train_acc_history,
'val_acc_history': val_acc_history,
}
def predict(self, X):
"""
Use the trained weights of this two-layer network to predict labels for
data points. For each data point we predict scores for each of the C
classes, and assign each data point to the class with the highest score.
Inputs:
- X: A numpy array of shape (N, D) giving N D-dimensional data points to
classify.
Returns:
- y_pred: A numpy array of shape (N,) giving predicted labels for each of
the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
to have class c, where 0 <= c < C.
"""
y_pred = None
###########################################################################
# TODO: Implement this function; it should be VERY simple! #
###########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return y_pred

@ -0,0 +1,65 @@
from builtins import range
import numpy as np
from random import shuffle
from past.builtins import xrange
def softmax_loss_naive(W, X, y, reg):
"""
Softmax loss function, naive implementation (with loops)
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return loss, dW
def softmax_loss_vectorized(W, X, y, reg):
"""
Softmax loss function, vectorized version.
Inputs and outputs are the same as softmax_loss_naive.
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using no explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
return loss, dW

@ -0,0 +1,262 @@
from __future__ import print_function
from builtins import range
from six.moves import cPickle as pickle
import numpy as np
import os
from imageio import imread
import platform
def load_pickle(f):
version = platform.python_version_tuple()
if version[0] == '2':
return pickle.load(f)
elif version[0] == '3':
return pickle.load(f, encoding='latin1')
raise ValueError("invalid python version: {}".format(version))
def load_CIFAR_batch(filename):
""" load single batch of cifar """
with open(filename, 'rb') as f:
datadict = load_pickle(f)
X = datadict['data']
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")
Y = np.array(Y)
return X, Y
def load_CIFAR10(ROOT):
""" load all of cifar """
xs = []
ys = []
for b in range(1,6):
f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
X, Y = load_CIFAR_batch(f)
xs.append(X)
ys.append(Y)
Xtr = np.concatenate(xs)
Ytr = np.concatenate(ys)
del X, Y
Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
return Xtr, Ytr, Xte, Yte
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000,
subtract_mean=True):
"""
Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
it for classifiers. These are the same steps as we used for the SVM, but
condensed to a single function.
"""
# Load the raw CIFAR-10 data
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
# Subsample the data
mask = list(range(num_training, num_training + num_validation))
X_val = X_train[mask]
y_val = y_train[mask]
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]
# Normalize the data: subtract the mean image
if subtract_mean:
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
# Transpose so that channels come first
X_train = X_train.transpose(0, 3, 1, 2).copy()
X_val = X_val.transpose(0, 3, 1, 2).copy()
X_test = X_test.transpose(0, 3, 1, 2).copy()
# Package data into a dictionary
return {
'X_train': X_train, 'y_train': y_train,
'X_val': X_val, 'y_val': y_val,
'X_test': X_test, 'y_test': y_test,
}
def load_tiny_imagenet(path, dtype=np.float32, subtract_mean=True):
"""
Load TinyImageNet. Each of TinyImageNet-100-A, TinyImageNet-100-B, and
TinyImageNet-200 have the same directory structure, so this can be used
to load any of them.
Inputs:
- path: String giving path to the directory to load.
- dtype: numpy datatype used to load the data.
- subtract_mean: Whether to subtract the mean training image.
Returns: A dictionary with the following entries:
- class_names: A list where class_names[i] is a list of strings giving the
WordNet names for class i in the loaded dataset.
- X_train: (N_tr, 3, 64, 64) array of training images
- y_train: (N_tr,) array of training labels
- X_val: (N_val, 3, 64, 64) array of validation images
- y_val: (N_val,) array of validation labels
- X_test: (N_test, 3, 64, 64) array of testing images.
- y_test: (N_test,) array of test labels; if test labels are not available
(such as in student code) then y_test will be None.
- mean_image: (3, 64, 64) array giving mean training image
"""
# First load wnids
with open(os.path.join(path, 'wnids.txt'), 'r') as f:
wnids = [x.strip() for x in f]
# Map wnids to integer labels
wnid_to_label = {wnid: i for i, wnid in enumerate(wnids)}
# Use words.txt to get names for each class
with open(os.path.join(path, 'words.txt'), 'r') as f:
wnid_to_words = dict(line.split('\t') for line in f)
for wnid, words in wnid_to_words.items():
wnid_to_words[wnid] = [w.strip() for w in words.split(',')]
class_names = [wnid_to_words[wnid] for wnid in wnids]
# Next load training data.
X_train = []
y_train = []
for i, wnid in enumerate(wnids):
if (i + 1) % 20 == 0:
print('loading training data for synset %d / %d'
% (i + 1, len(wnids)))
# To figure out the filenames we need to open the boxes file
boxes_file = os.path.join(path, 'train', wnid, '%s_boxes.txt' % wnid)
with open(boxes_file, 'r') as f:
filenames = [x.split('\t')[0] for x in f]
num_images = len(filenames)
X_train_block = np.zeros((num_images, 3, 64, 64), dtype=dtype)
y_train_block = wnid_to_label[wnid] * \
np.ones(num_images, dtype=np.int64)
for j, img_file in enumerate(filenames):
img_file = os.path.join(path, 'train', wnid, 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
## grayscale file
img.shape = (64, 64, 1)
X_train_block[j] = img.transpose(2, 0, 1)
X_train.append(X_train_block)
y_train.append(y_train_block)
# We need to concatenate all training data
X_train = np.concatenate(X_train, axis=0)
y_train = np.concatenate(y_train, axis=0)
# Next load validation data
with open(os.path.join(path, 'val', 'val_annotations.txt'), 'r') as f:
img_files = []
val_wnids = []
for line in f:
img_file, wnid = line.split('\t')[:2]
img_files.append(img_file)
val_wnids.append(wnid)
num_val = len(img_files)
y_val = np.array([wnid_to_label[wnid] for wnid in val_wnids])
X_val = np.zeros((num_val, 3, 64, 64), dtype=dtype)
for i, img_file in enumerate(img_files):
img_file = os.path.join(path, 'val', 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
img.shape = (64, 64, 1)
X_val[i] = img.transpose(2, 0, 1)
# Next load test images
# Students won't have test labels, so we need to iterate over files in the
# images directory.
img_files = os.listdir(os.path.join(path, 'test', 'images'))
X_test = np.zeros((len(img_files), 3, 64, 64), dtype=dtype)
for i, img_file in enumerate(img_files):
img_file = os.path.join(path, 'test', 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
img.shape = (64, 64, 1)
X_test[i] = img.transpose(2, 0, 1)
y_test = None
y_test_file = os.path.join(path, 'test', 'test_annotations.txt')
if os.path.isfile(y_test_file):
with open(y_test_file, 'r') as f:
img_file_to_wnid = {}
for line in f:
line = line.split('\t')
img_file_to_wnid[line[0]] = line[1]
y_test = [wnid_to_label[img_file_to_wnid[img_file]]
for img_file in img_files]
y_test = np.array(y_test)
mean_image = X_train.mean(axis=0)
if subtract_mean:
X_train -= mean_image[None]
X_val -= mean_image[None]
X_test -= mean_image[None]
return {
'class_names': class_names,
'X_train': X_train,
'y_train': y_train,
'X_val': X_val,
'y_val': y_val,
'X_test': X_test,
'y_test': y_test,
'class_names': class_names,
'mean_image': mean_image,
}
def load_models(models_dir):
"""
Load saved models from disk. This will attempt to unpickle all files in a
directory; any files that give errors on unpickling (such as README.txt)
will be skipped.
Inputs:
- models_dir: String giving the path to a directory containing model files.
Each model file is a pickled dictionary with a 'model' field.
Returns:
A dictionary mapping model file names to models.
"""
models = {}
for model_file in os.listdir(models_dir):
with open(os.path.join(models_dir, model_file), 'rb') as f:
try:
models[model_file] = load_pickle(f)['model']
except pickle.UnpicklingError:
continue
return models
def load_imagenet_val(num=None):
"""Load a handful of validation images from ImageNet.
Inputs:
- num: Number of images to load (max of 25)
Returns:
- X: numpy array with shape [num, 224, 224, 3]
- y: numpy array of integer image labels, shape [num]
- class_names: dict mapping integer label to class name
"""
imagenet_fn = 'cs231n/datasets/imagenet_val_25.npz'
if not os.path.isfile(imagenet_fn):
print('file %s not found' % imagenet_fn)
print('Run the following:')
print('cd cs231n/datasets')
print('bash get_imagenet_val.sh')
assert False, 'Need to download imagenet_val_25.npz'
f = np.load(imagenet_fn)
X = f['X']
y = f['y']
class_names = f['label_map'].item()
if num is not None:
X = X[:num]
y = y[:num]
return X, y, class_names

@ -0,0 +1,4 @@
# Get CIFAR10
wget http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -O cifar-10-python.tar.gz
tar -xzvf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz

@ -0,0 +1,129 @@
from __future__ import print_function
from builtins import range
from past.builtins import xrange
import numpy as np
from random import randrange
def eval_numerical_gradient(f, x, verbose=True, h=0.00001):
"""
a naive implementation of numerical gradient of f at x
- f should be a function that takes a single argument
- x is the point (numpy array) to evaluate the gradient at
"""
fx = f(x) # evaluate function value at original point
grad = np.zeros_like(x)
# iterate over all indexes in x
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
# evaluate function at x+h
ix = it.multi_index
oldval = x[ix]
x[ix] = oldval + h # increment by h
fxph = f(x) # evalute f(x + h)
x[ix] = oldval - h
fxmh = f(x) # evaluate f(x - h)
x[ix] = oldval # restore
# compute the partial derivative with centered formula
grad[ix] = (fxph - fxmh) / (2 * h) # the slope
if verbose:
print(ix, grad[ix])
it.iternext() # step to next dimension
return grad
def eval_numerical_gradient_array(f, x, df, h=1e-5):
"""
Evaluate a numeric gradient for a function that accepts a numpy
array and returns a numpy array.
"""
grad = np.zeros_like(x)
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
ix = it.multi_index
oldval = x[ix]
x[ix] = oldval + h
pos = f(x).copy()
x[ix] = oldval - h
neg = f(x).copy()
x[ix] = oldval
grad[ix] = np.sum((pos - neg) * df) / (2 * h)
it.iternext()
return grad
def eval_numerical_gradient_blobs(f, inputs, output, h=1e-5):
"""
Compute numeric gradients for a function that operates on input
and output blobs.
We assume that f accepts several input blobs as arguments, followed by a
blob where outputs will be written. For example, f might be called like:
f(x, w, out)
where x and w are input Blobs, and the result of f will be written to out.
Inputs:
- f: function
- inputs: tuple of input blobs
- output: output blob
- h: step size
"""
numeric_diffs = []
for input_blob in inputs:
diff = np.zeros_like(input_blob.diffs)
it = np.nditer(input_blob.vals, flags=['multi_index'],
op_flags=['readwrite'])
while not it.finished:
idx = it.multi_index
orig = input_blob.vals[idx]
input_blob.vals[idx] = orig + h
f(*(inputs + (output,)))
pos = np.copy(output.vals)
input_blob.vals[idx] = orig - h
f(*(inputs + (output,)))
neg = np.copy(output.vals)
input_blob.vals[idx] = orig
diff[idx] = np.sum((pos - neg) * output.diffs) / (2.0 * h)
it.iternext()
numeric_diffs.append(diff)
return numeric_diffs
def eval_numerical_gradient_net(net, inputs, output, h=1e-5):
return eval_numerical_gradient_blobs(lambda *args: net.forward(),
inputs, output, h=h)
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-5):
"""
sample a few random elements and only return numerical
in this dimensions.
"""
for i in range(num_checks):
ix = tuple([randrange(m) for m in x.shape])
oldval = x[ix]
x[ix] = oldval + h # increment by h
fxph = f(x) # evaluate f(x + h)
x[ix] = oldval - h # increment by h
fxmh = f(x) # evaluate f(x - h)
x[ix] = oldval # reset
grad_numerical = (fxph - fxmh) / (2 * h)
grad_analytic = analytic_grad[ix]
rel_error = (abs(grad_numerical - grad_analytic) /
(abs(grad_numerical) + abs(grad_analytic)))
print('numerical: %f analytic: %f, relative error: %e'
%(grad_numerical, grad_analytic, rel_error))

@ -0,0 +1,73 @@
from builtins import range
from past.builtins import xrange
from math import sqrt, ceil
import numpy as np
def visualize_grid(Xs, ubound=255.0, padding=1):
"""
Reshape a 4D tensor of image data to a grid for easy visualization.
Inputs:
- Xs: Data of shape (N, H, W, C)
- ubound: Output grid will have values scaled to the range [0, ubound]
- padding: The number of blank pixels between elements of the grid
"""
(N, H, W, C) = Xs.shape
grid_size = int(ceil(sqrt(N)))
grid_height = H * grid_size + padding * (grid_size - 1)
grid_width = W * grid_size + padding * (grid_size - 1)
grid = np.zeros((grid_height, grid_width, C))
next_idx = 0
y0, y1 = 0, H
for y in range(grid_size):
x0, x1 = 0, W
for x in range(grid_size):
if next_idx < N:
img = Xs[next_idx]
low, high = np.min(img), np.max(img)
grid[y0:y1, x0:x1] = ubound * (img - low) / (high - low)
# grid[y0:y1, x0:x1] = Xs[next_idx]
next_idx += 1
x0 += W + padding
x1 += W + padding
y0 += H + padding
y1 += H + padding
# grid_max = np.max(grid)
# grid_min = np.min(grid)
# grid = ubound * (grid - grid_min) / (grid_max - grid_min)
return grid
def vis_grid(Xs):
""" visualize a grid of images """
(N, H, W, C) = Xs.shape
A = int(ceil(sqrt(N)))
G = np.ones((A*H+A, A*W+A, C), Xs.dtype)
G *= np.min(Xs)
n = 0
for y in range(A):
for x in range(A):
if n < N:
G[y*H+y:(y+1)*H+y, x*W+x:(x+1)*W+x, :] = Xs[n,:,:,:]
n += 1
# normalize to [0,1]
maxg = G.max()
ming = G.min()
G = (G - ming)/(maxg-ming)
return G
def vis_nn(rows):
""" visualize array of arrays of images """
N = len(rows)
D = len(rows[0])
H,W,C = rows[0][0].shape
Xs = rows[0][0]
G = np.ones((N*H+N, D*W+D, C), Xs.dtype)
for y in range(N):
for x in range(D):
G[y*H+y:(y+1)*H+y, x*W+x:(x+1)*W+x, :] = rows[y][x]
# normalize to [0,1]
maxg = G.max()
ming = G.min()
G = (G - ming)/(maxg-ming)
return G
Loading…
Cancel
Save