update
parent
5c22148bed
commit
274abed989
@ -1,193 +0,0 @@
|
|||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
import numpy as np
|
|
||||||
import cv2
|
|
||||||
from scipy import signal
|
|
||||||
from skimage.metrics import structural_similarity
|
|
||||||
from PIL import Image
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
import time
|
|
||||||
from datetime import datetime
|
|
||||||
import ray
|
|
||||||
ray.init(num_cpus=16, num_gpus=0, ignore_reinit_error=True, log_to_driver=False)
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("path_to_dataset", type=str)
|
|
||||||
parser.add_argument("--scale", type=int, default=4)
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
def cal_ssim(img1, img2):
|
|
||||||
K = [0.01, 0.03]
|
|
||||||
L = 255
|
|
||||||
kernelX = cv2.getGaussianKernel(11, 1.5)
|
|
||||||
window = kernelX * kernelX.T
|
|
||||||
|
|
||||||
M, N = np.shape(img1)
|
|
||||||
|
|
||||||
C1 = (K[0] * L) ** 2
|
|
||||||
C2 = (K[1] * L) ** 2
|
|
||||||
img1 = np.float64(img1)
|
|
||||||
img2 = np.float64(img2)
|
|
||||||
|
|
||||||
mu1 = signal.convolve2d(img1, window, 'valid')
|
|
||||||
mu2 = signal.convolve2d(img2, window, 'valid')
|
|
||||||
|
|
||||||
mu1_sq = mu1 * mu1
|
|
||||||
mu2_sq = mu2 * mu2
|
|
||||||
mu1_mu2 = mu1 * mu2
|
|
||||||
|
|
||||||
sigma1_sq = signal.convolve2d(img1 * img1, window, 'valid') - mu1_sq
|
|
||||||
sigma2_sq = signal.convolve2d(img2 * img2, window, 'valid') - mu2_sq
|
|
||||||
sigma12 = signal.convolve2d(img1 * img2, window, 'valid') - mu1_mu2
|
|
||||||
|
|
||||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
|
||||||
mssim = np.mean(ssim_map)
|
|
||||||
return mssim
|
|
||||||
|
|
||||||
def PSNR(y_true, y_pred, shave_border=4):
|
|
||||||
target_data = np.array(y_true, dtype=np.float32)
|
|
||||||
ref_data = np.array(y_pred, dtype=np.float32)
|
|
||||||
|
|
||||||
diff = ref_data - target_data
|
|
||||||
if shave_border > 0:
|
|
||||||
diff = diff[shave_border:-shave_border, shave_border:-shave_border]
|
|
||||||
rmse = np.sqrt(np.mean(np.power(diff, 2)))
|
|
||||||
|
|
||||||
return 20 * np.log10(255. / rmse)
|
|
||||||
|
|
||||||
def _rgb2ycbcr(img, maxVal=255):
|
|
||||||
O = np.array([[16],
|
|
||||||
[128],
|
|
||||||
[128]])
|
|
||||||
T = np.array([[0.256788235294118, 0.504129411764706, 0.097905882352941],
|
|
||||||
[-0.148223529411765, -0.290992156862745, 0.439215686274510],
|
|
||||||
[0.439215686274510, -0.367788235294118, -0.071427450980392]])
|
|
||||||
|
|
||||||
if maxVal == 1:
|
|
||||||
O = O / 255.0
|
|
||||||
|
|
||||||
t = np.reshape(img, (img.shape[0] * img.shape[1], img.shape[2]))
|
|
||||||
t = np.dot(t, np.transpose(T))
|
|
||||||
t[:, 0] += O[0]
|
|
||||||
t[:, 1] += O[1]
|
|
||||||
t[:, 2] += O[2]
|
|
||||||
ycbcr = np.reshape(t, [img.shape[0], img.shape[1], img.shape[2]])
|
|
||||||
|
|
||||||
return ycbcr
|
|
||||||
|
|
||||||
|
|
||||||
def modcrop(image, modulo):
|
|
||||||
if len(image.shape) == 2:
|
|
||||||
sz = image.shape
|
|
||||||
sz = sz - np.mod(sz, modulo)
|
|
||||||
image = image[0:sz[0], 0:sz[1]]
|
|
||||||
elif image.shape[2] == 3:
|
|
||||||
sz = image.shape[0:2]
|
|
||||||
sz = sz - np.mod(sz, modulo)
|
|
||||||
image = image[0:sz[0], 0:sz[1], :]
|
|
||||||
else:
|
|
||||||
raise NotImplementedError
|
|
||||||
return image
|
|
||||||
|
|
||||||
scale = args.scale
|
|
||||||
|
|
||||||
dataset_path = Path(args.path_to_dataset)
|
|
||||||
hr_path = dataset_path / "HR/"
|
|
||||||
lr_path = dataset_path / f"LR_bicubic/X{scale}/"
|
|
||||||
|
|
||||||
|
|
||||||
print(hr_path, lr_path)
|
|
||||||
|
|
||||||
hr_files = os.listdir(hr_path)
|
|
||||||
lr_files = os.listdir(lr_path)
|
|
||||||
|
|
||||||
@ray.remote(num_cpus=1)
|
|
||||||
def benchmark_image_pair(hr_image_path, lr_image_path, interpolation_function):
|
|
||||||
hr_image = cv2.imread(hr_image_path)
|
|
||||||
lr_image = cv2.imread(lr_image_path)
|
|
||||||
|
|
||||||
hr_image = hr_image[:,:,::-1] # BGR -> RGB
|
|
||||||
lr_image = lr_image[:,:,::-1] # BGR -> RGB
|
|
||||||
|
|
||||||
start_time = datetime.now()
|
|
||||||
upscaled_lr_image = interpolation_function(lr_image, scale)
|
|
||||||
processing_time = datetime.now() - start_time
|
|
||||||
|
|
||||||
hr_image = modcrop(hr_image, scale)
|
|
||||||
upscaled_lr_image = upscaled_lr_image
|
|
||||||
|
|
||||||
psnr = PSNR(_rgb2ycbcr(hr_image)[:,:,0], _rgb2ycbcr(upscaled_lr_image)[:,:,0])
|
|
||||||
cpsnr = PSNR(hr_image, upscaled_lr_image)
|
|
||||||
|
|
||||||
cv2_psnr = cv2.PSNR(cv2.cvtColor(hr_image, cv2.COLOR_RGB2YCrCb)[:,:,0], cv2.cvtColor(upscaled_lr_image, cv2.COLOR_RGB2YCrCb)[:,:,0])
|
|
||||||
cv2_cpsnr = cv2.PSNR(hr_image, upscaled_lr_image)
|
|
||||||
|
|
||||||
ssim = cal_ssim(_rgb2ycbcr(hr_image)[:,:,0], _rgb2ycbcr(upscaled_lr_image)[:,:,0])
|
|
||||||
cv2_ssim = cal_ssim(cv2.cvtColor(hr_image, cv2.COLOR_RGB2YCrCb)[:,:,0], cv2.cvtColor(upscaled_lr_image, cv2.COLOR_RGB2YCrCb)[:,:,0])
|
|
||||||
ssim_scikit, diff = structural_similarity(_rgb2ycbcr(hr_image)[:,:,0], _rgb2ycbcr(upscaled_lr_image)[:,:,0], full=True, data_range=255.0)
|
|
||||||
cv2_scikit_ssim, diff = structural_similarity(cv2.cvtColor(hr_image, cv2.COLOR_RGB2YCrCb)[:,:,0], cv2.cvtColor(upscaled_lr_image, cv2.COLOR_RGB2YCrCb)[:,:,0], full=True, data_range=255.0)
|
|
||||||
|
|
||||||
return ssim, cv2_ssim, ssim_scikit, cv2_scikit_ssim, psnr, cpsnr, cv2_psnr, cv2_cpsnr, processing_time.total_seconds()
|
|
||||||
|
|
||||||
|
|
||||||
def benchmark_interpolation(interpolation_function):
|
|
||||||
psnrs, cpsnrs, ssims = [], [], []
|
|
||||||
cv2_psnrs, cv2_cpsnrs, scikit_ssims = [], [], []
|
|
||||||
cv2_scikit_ssims = []
|
|
||||||
cv2_ssims = []
|
|
||||||
tasks = []
|
|
||||||
for hr_name, lr_name in zip(hr_files, lr_files):
|
|
||||||
hr_image_path = str(hr_path / hr_name)
|
|
||||||
lr_image_path = str(lr_path / lr_name)
|
|
||||||
tasks.append(benchmark_image_pair.remote(hr_image_path, lr_image_path, interpolation_function))
|
|
||||||
|
|
||||||
ready_refs, remaining_refs = ray.wait(tasks, num_returns=1, timeout=None)
|
|
||||||
while len(remaining_refs) > 0:
|
|
||||||
print(f"\rReady {len(ready_refs)}/{len(hr_files)}", end=" ")
|
|
||||||
ready_refs, remaining_refs = ray.wait(tasks, num_returns=len(ready_refs)+1, timeout=None)
|
|
||||||
|
|
||||||
for task in tasks:
|
|
||||||
ssim, cv2_ssim, ssim_scikit, cv2_scikit_ssim, psnr, cpsnr, cv2_psnr, cv2_cpsnr, processing_time = ray.get(task)
|
|
||||||
ssims.append(ssim)
|
|
||||||
cv2_ssims.append(cv2_ssim)
|
|
||||||
scikit_ssims.append(ssim_scikit)
|
|
||||||
cv2_scikit_ssims.append(cv2_scikit_ssim)
|
|
||||||
psnrs.append(psnr)
|
|
||||||
cpsnrs.append(cpsnr)
|
|
||||||
cv2_psnrs.append(cv2_psnr)
|
|
||||||
cv2_cpsnrs.append(cv2_cpsnr)
|
|
||||||
processing_times.append(processing_time)
|
|
||||||
|
|
||||||
print()
|
|
||||||
print(f"AVG PSNR: {np.mean(psnrs):.2f} PSNR + _rgb2ycbcr")
|
|
||||||
print(f"AVG PSNR: {np.mean(cv2_psnrs):.2f} cv2.PSNR + cv2.cvtColor")
|
|
||||||
print(f"AVG cPSNR: {np.mean(cpsnrs):.2f} PSNR")
|
|
||||||
print(f"AVG cPSNR: {np.mean(cv2_cpsnrs):.2f} cv2.PSNR ")
|
|
||||||
print(f"AVG SSIM: {np.mean(ssims):.4f} cal_ssim + _rgb2ycbcr")
|
|
||||||
print(f"AVG SSIM: {np.mean(cv2_ssims):.4f} cal_ssim + cv2.cvtColor")
|
|
||||||
print(f"AVG SSIM: {np.mean(scikit_ssims):.4f} structural_similarity + _rgb2ycbcr")
|
|
||||||
print(f"AVG SSIM: {np.mean(cv2_scikit_ssims):.4f} structural_similarity + cv2.cvtColor")
|
|
||||||
print(f"AVG Time s: {np.percentile(processing_times, q=0.9)}")
|
|
||||||
print(f"{np.mean(psnrs):.2f},{np.mean(cv2_psnrs):.2f},{np.mean(cpsnrs):.2f},{np.mean(cv2_cpsnrs):.2f},{np.mean(ssims):.4f},{np.mean(cv2_ssims):.4f},{np.mean(scikit_ssims):.4f},{np.mean(cv2_scikit_ssims):.4f},{np.percentile(processing_times, q=0.9)}")
|
|
||||||
|
|
||||||
def cv2_interpolation(image, scale):
|
|
||||||
scaled_image = cv2.resize(
|
|
||||||
image,
|
|
||||||
None, None,
|
|
||||||
fx=scale, fy=scale,
|
|
||||||
interpolation=cv2.INTER_CUBIC
|
|
||||||
)
|
|
||||||
return scaled_image
|
|
||||||
|
|
||||||
def pillow_interpolation(image, scale):
|
|
||||||
image = Image.fromarray(image[:,:,::-1])
|
|
||||||
width, height = int(image.width * scale), int(image.height * scale)
|
|
||||||
scaled_image = image.resize((width, height), resample=Image.Resampling.BICUBIC)
|
|
||||||
return np.array(scaled_image)[:,:,::-1]
|
|
||||||
|
|
||||||
print("cv2 bicubic interpolation")
|
|
||||||
benchmark_interpolation(cv2_interpolation)
|
|
||||||
print()
|
|
||||||
print("pillow bicubic interpolation")
|
|
||||||
benchmark_interpolation(pillow_interpolation)
|
|
Loading…
Reference in New Issue