|  |  |  | @ -5,8 +5,9 @@ import numpy as np | 
		
	
		
			
				|  |  |  |  | from common.utils import round_func | 
		
	
		
			
				|  |  |  |  | from common import lut | 
		
	
		
			
				|  |  |  |  | from pathlib import Path | 
		
	
		
			
				|  |  |  |  | from .srlut import SRLut, SRLutRot90 | 
		
	
		
			
				|  |  |  |  | from common.layers import PercievePattern, DenseConvUpscaleBlock, ConvUpscaleBlock | 
		
	
		
			
				|  |  |  |  | from . import srlut  | 
		
	
		
			
				|  |  |  |  | from common.layers import PercievePattern, DenseConvUpscaleBlock, ConvUpscaleBlock, RgbToYcbcr, YcbcrToRgb | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | class SRNet(nn.Module): | 
		
	
		
			
				|  |  |  |  |     def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): | 
		
	
	
		
			
				
					|  |  |  | @ -26,7 +27,7 @@ class SRNet(nn.Module): | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     def get_lut_model(self, quantization_interval=16, batch_size=2**10): | 
		
	
		
			
				|  |  |  |  |         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage, quantization_interval=quantization_interval, batch_size=batch_size) | 
		
	
		
			
				|  |  |  |  |         lut_model = SRLut.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         lut_model = srlut.SRLut.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         return lut_model | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
	
		
			
				
					|  |  |  | @ -48,7 +49,7 @@ class SRNetDense(nn.Module): | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     def get_lut_model(self, quantization_interval=16, batch_size=2**10): | 
		
	
		
			
				|  |  |  |  |         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage, quantization_interval=quantization_interval, batch_size=batch_size) | 
		
	
		
			
				|  |  |  |  |         lut_model = SRLut.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         lut_model = srlut.SRLut.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         return lut_model | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | class SRNetDenseRot90(nn.Module): | 
		
	
	
		
			
				
					|  |  |  | @ -75,5 +76,40 @@ class SRNetDenseRot90(nn.Module): | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     def get_lut_model(self, quantization_interval=16, batch_size=2**10): | 
		
	
		
			
				|  |  |  |  |         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage, quantization_interval=quantization_interval, batch_size=batch_size) | 
		
	
		
			
				|  |  |  |  |         lut_model = SRLutRot90.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         return lut_model | 
		
	
		
			
				|  |  |  |  |         lut_model = srlut.SRLutRot90.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         return lut_model | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | class SRNetDenseRot90Y(nn.Module): | 
		
	
		
			
				|  |  |  |  |     def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): | 
		
	
		
			
				|  |  |  |  |         super(SRNetDenseRot90Y, self).__init__() | 
		
	
		
			
				|  |  |  |  |         self.scale = scale        | 
		
	
		
			
				|  |  |  |  |         self._extract_pattern_S = PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) | 
		
	
		
			
				|  |  |  |  |         self.stage = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale) | 
		
	
		
			
				|  |  |  |  |         self.rgb_to_ycbcr = RgbToYcbcr() | 
		
	
		
			
				|  |  |  |  |         self.ycbcr_to_rgb = YcbcrToRgb() | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     def forward(self, x): | 
		
	
		
			
				|  |  |  |  |         b,c,h,w = x.shape | 
		
	
		
			
				|  |  |  |  |         x = self.rgb_to_ycbcr(x) | 
		
	
		
			
				|  |  |  |  |         y = x[:,0:1,:,:] | 
		
	
		
			
				|  |  |  |  |         cbcr = x[:,1:,:,:] | 
		
	
		
			
				|  |  |  |  |         cbcr_scaled = F.interpolate(cbcr, size=[h*self.scale, w*self.scale], mode='bilinear') | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |         x = y.view(b, 1, h, w) | 
		
	
		
			
				|  |  |  |  |         output = torch.zeros([b, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) | 
		
	
		
			
				|  |  |  |  |         for rotations_count in range(4): | 
		
	
		
			
				|  |  |  |  |             rx = torch.rot90(x, k=rotations_count, dims=[2, 3]) | 
		
	
		
			
				|  |  |  |  |             _,_,rh,rw = rx.shape | 
		
	
		
			
				|  |  |  |  |             rx = self._extract_pattern_S(rx) | 
		
	
		
			
				|  |  |  |  |             rx = self.stage(rx) | 
		
	
		
			
				|  |  |  |  |             rx = rx.view(b, 1, rh, rw, self.scale, self.scale).permute(0,1,2,4,3,5).reshape(b, 1, rh*self.scale, rw*self.scale) | 
		
	
		
			
				|  |  |  |  |             output += torch.rot90(rx, k=-rotations_count, dims=[2, 3]) | 
		
	
		
			
				|  |  |  |  |         output /= 4 | 
		
	
		
			
				|  |  |  |  |         output = torch.cat([output, cbcr_scaled], dim=1)   | 
		
	
		
			
				|  |  |  |  |         output = self.ycbcr_to_rgb(output)       | 
		
	
		
			
				|  |  |  |  |         return output | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     def get_lut_model(self, quantization_interval=16, batch_size=2**10): | 
		
	
		
			
				|  |  |  |  |         stage_lut = lut.transfer_2x2_input_SxS_output(self.stage, quantization_interval=quantization_interval, batch_size=batch_size) | 
		
	
		
			
				|  |  |  |  |         lut_model = srlut.SRLutRot90Y.init_from_lut(stage_lut) | 
		
	
		
			
				|  |  |  |  |         return lut_model         |