add unlutable rc variants

main
Vladimir Protsenko 9 months ago
parent b082a5b4bf
commit 7d28a70226

@ -17,7 +17,9 @@ AVAILABLE_MODELS = {
'RCNetx1': rcnet.RCNetx1, 'RCLutx1': rclut.RCLutx1,
'RCNetx2': rcnet.RCNetx2, 'RCLutx2': rclut.RCLutx2,
'RCNetx2Centered': rcnet.RCNetx2Centered, 'RCLutx2Centered': rclut.RCLutx2Centered,
'SDYNetx1': sdynet.SDYNetx1
'SDYNetx1': sdynet.SDYNetx1,
'RCNetx2Unlutable': rcnet.RCNetx2Unlutable,
'RCNetx2CenteredUnlutable': rcnet.RCNetx2CenteredUnlutable,
}
def SaveCheckpoint(model, path):

@ -389,3 +389,160 @@ class RCNetx2Centered(nn.Module):
output /= 3*4
output = output.view(b, c, h*self.scale, w*self.scale)
return output
class ReconstructedConvRot90Unlutable(nn.Module):
def __init__(self, hidden_dim, window_size=7):
super(ReconstructedConvRot90Unlutable, self).__init__()
self.window_size = window_size
self.projection1 = torch.nn.Parameter(torch.rand((window_size**2, hidden_dim))/window_size)
self.projection2 = torch.nn.Parameter(torch.rand((window_size**2, hidden_dim))/window_size)
def pixel_wise_forward(self, x):
x = (x-127.5)/127.5
out = torch.einsum('bik,ij,ij -> bik', x, self.projection1, self.projection2)
out = torch.tanh(out)
out = out*127.5 + 127.5
return out
def forward(self, x):
original_shape = x.shape
x = F.pad(x, pad=[0,self.window_size-1,0,self.window_size-1], mode='replicate')
x = F.unfold(x, self.window_size)
x = self.pixel_wise_forward(x)
x = x.mean(1)
x = x.reshape(*original_shape)
# x = round_func(x) # quality likely suffer from this
return x
def __repr__(self):
return f"{self.__class__.__name__} projection1: {self.projection1.shape} projection2: {self.projection2.shape}"
class RCBlockRot90Unlutable(nn.Module):
def __init__(self, hidden_dim = 32, window_size=3, dense_conv_layer_count=4, upscale_factor=4):
super(RCBlockRot90Unlutable, self).__init__()
self.window_size = window_size
self.rc_conv = ReconstructedConvRot90Unlutable(hidden_dim=hidden_dim, window_size=window_size)
self.dense_conv_block = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=dense_conv_layer_count, upscale_factor=upscale_factor)
def forward(self, x):
b,c,hs,ws = x.shape
x = self.rc_conv(x)
x = F.pad(x, pad=[0,1,0,1], mode='replicate')
x = self.dense_conv_block(x)
return x
class RCNetx2Unlutable(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(RCNetx2Unlutable, self).__init__()
self.scale = scale
self.hidden_dim = hidden_dim
self.stage1_3x3 = RCBlockRot90Unlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=1, window_size=3)
self.stage1_5x5 = RCBlockRot90Unlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=1, window_size=5)
self.stage1_7x7 = RCBlockRot90Unlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=1, window_size=7)
self.stage2_3x3 = RCBlockRot90Unlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=3)
self.stage2_5x5 = RCBlockRot90Unlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=5)
self.stage2_7x7 = RCBlockRot90Unlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=7)
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
raise NotImplementedError
def forward(self, x):
b,c,h,w = x.shape
x = x.view(b*c, 1, h, w)
output = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device)
for rotations_count in range(4):
rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
output += torch.rot90(self.stage1_3x3(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage1_5x5(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage1_7x7(rotated), k=-rotations_count, dims=[2, 3])
output /= 3*4
x = output
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
for rotations_count in range(4):
rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
output += torch.rot90(self.stage2_3x3(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage2_5x5(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage2_7x7(rotated), k=-rotations_count, dims=[2, 3])
output /= 3*4
output = output.view(b, c, h*self.scale, w*self.scale)
return output
class ReconstructedConvCenteredUnlutable(nn.Module):
def __init__(self, hidden_dim, window_size=7):
super(ReconstructedConvCenteredUnlutable, self).__init__()
self.window_size = window_size
self.projection1 = torch.nn.Parameter(torch.rand((window_size**2, hidden_dim))/window_size)
self.projection2 = torch.nn.Parameter(torch.rand((window_size**2, hidden_dim))/window_size)
def pixel_wise_forward(self, x):
x = (x-127.5)/127.5
out = torch.einsum('bik,ij,ij -> bik', x, self.projection1, self.projection2)
out = torch.tanh(out)
out = out*127.5 + 127.5
return out
def forward(self, x):
original_shape = x.shape
x = F.pad(x, pad=[self.window_size//2]*4, mode='replicate')
x = F.unfold(x, self.window_size)
x = self.pixel_wise_forward(x)
x = x.mean(1)
x = x.reshape(*original_shape)
# x = round_func(x) # quality likely suffer from this
return x
def __repr__(self):
return f"{self.__class__.__name__} projection1: {self.projection1.shape} projection2: {self.projection2.shape}"
class RCBlockCenteredUnlutable(nn.Module):
def __init__(self, hidden_dim = 32, window_size=3, dense_conv_layer_count=4, upscale_factor=4):
super(RCBlockRot90Unlutable, self).__init__()
self.window_size = window_size
self.rc_conv = ReconstructedConvCenteredUnlutable(hidden_dim=hidden_dim, window_size=window_size)
self.dense_conv_block = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=dense_conv_layer_count, upscale_factor=upscale_factor)
def forward(self, x):
b,c,hs,ws = x.shape
x = self.rc_conv(x)
x = F.pad(x, pad=[0,1,0,1], mode='replicate')
x = self.dense_conv_block(x)
return x
class RCNetx2CenteredUnlutable(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(RCNetx2CenteredUnlutable, self).__init__()
self.scale = scale
self.hidden_dim = hidden_dim
self.stage1_3x3 = RCBlockCenteredUnlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=1, window_size=3)
self.stage1_5x5 = RCBlockCenteredUnlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=1, window_size=5)
self.stage1_7x7 = RCBlockCenteredUnlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=1, window_size=7)
self.stage2_3x3 = RCBlockCenteredUnlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=3)
self.stage2_5x5 = RCBlockCenteredUnlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=5)
self.stage2_7x7 = RCBlockCenteredUnlutable(hidden_dim=hidden_dim, dense_conv_layer_count=layers_count, upscale_factor=scale, window_size=7)
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
raise NotImplementedError
def forward(self, x):
b,c,h,w = x.shape
x = x.view(b*c, 1, h, w)
output = torch.zeros([b*c, 1, h, w], dtype=x.dtype, device=x.device)
for rotations_count in range(4):
rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
output += torch.rot90(self.stage1_3x3(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage1_5x5(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage1_7x7(rotated), k=-rotations_count, dims=[2, 3])
output /= 3*4
x = output
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
for rotations_count in range(4):
rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
output += torch.rot90(self.stage2_3x3(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage2_5x5(rotated), k=-rotations_count, dims=[2, 3])
output += torch.rot90(self.stage2_7x7(rotated), k=-rotations_count, dims=[2, 3])
output /= 3*4
output = output.view(b, c, h*self.scale, w*self.scale)
return output
Loading…
Cancel
Save