|
|
@ -57,8 +57,9 @@ image_gt = cv2.imread(str(config.hr_image_path))[:,:,::-1].copy()
|
|
|
|
|
|
|
|
|
|
|
|
input_image = torch.tensor(lr_image).type(torch.float32).permute(2,0,1)[None,...].cuda()
|
|
|
|
input_image = torch.tensor(lr_image).type(torch.float32).permute(2,0,1)[None,...].cuda()
|
|
|
|
|
|
|
|
|
|
|
|
net_prediction = net_model(input_image).cpu().type(torch.uint8).squeeze().permute(1,2,0).numpy().copy()
|
|
|
|
with torch.inference_mode():
|
|
|
|
lut_prediction = lut_model(input_image).cpu().type(torch.uint8).squeeze().permute(1,2,0).numpy().copy()
|
|
|
|
net_prediction = net_model(input_image).cpu().type(torch.uint8).squeeze().permute(1,2,0).numpy().copy()
|
|
|
|
|
|
|
|
lut_prediction = lut_model(input_image).cpu().type(torch.uint8).squeeze().permute(1,2,0).numpy().copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_gt = cv2.putText(image_gt, 'GT', org=(20, 50) , fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,255,255), thickness=2, lineType= cv2.LINE_AA)
|
|
|
|
image_gt = cv2.putText(image_gt, 'GT', org=(20, 50) , fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,255,255), thickness=2, lineType= cv2.LINE_AA)
|
|
|
|