main
protsenkovi 5 months ago
parent c3dc32c336
commit 90c9f2869e

@ -25,7 +25,7 @@ class PercievePattern():
return x return x
class UpscaleBlock(nn.Module): class UpscaleBlock(nn.Module):
def __init__(self, in_features=4, hidden_dim = 32, layers_count=4, upscale_factor=1): def __init__(self, in_features=4, hidden_dim = 32, layers_count=4, upscale_factor=1, input_max_value=255, output_max_value=255):
super(UpscaleBlock, self).__init__() super(UpscaleBlock, self).__init__()
assert layers_count > 0 assert layers_count > 0
self.upscale_factor = upscale_factor self.upscale_factor = upscale_factor
@ -39,14 +39,17 @@ class UpscaleBlock(nn.Module):
self.project_channels = nn.Linear(in_features=(layers_count+1)*hidden_dim, out_features=upscale_factor * upscale_factor, bias=True) self.project_channels = nn.Linear(in_features=(layers_count+1)*hidden_dim, out_features=upscale_factor * upscale_factor, bias=True)
self.in_bias = self.in_scale = input_max_value/2
self.out_bias = self.out_scale = output_max_value/2
def forward(self, x): def forward(self, x):
x = (x-127.5)/127.5 x = (x-self.in_bias)/self.in_scale
x = torch.relu(self.embed(x)) x = torch.relu(self.embed(x))
for linear_projection in self.linear_projections: for linear_projection in self.linear_projections:
x = torch.cat([x, torch.relu(linear_projection(x))], dim=2) x = torch.cat([x, torch.relu(linear_projection(x))], dim=2)
x = self.project_channels(x) x = self.project_channels(x)
x = torch.tanh(x) x = torch.tanh(x)
x = x*127.5 + 127.5 x = x*self.out_scale + self.out_bias
return x return x
class RgbToYcbcr(nn.Module): class RgbToYcbcr(nn.Module):

@ -1,5 +1,6 @@
import torch import torch
from torch import nn
class FourierLoss(nn.Module): class FourierLoss(nn.Module):
def __init__(self, weight=None, size_average=True): def __init__(self, weight=None, size_average=True):

@ -7,7 +7,6 @@ from common import lut
from pathlib import Path from pathlib import Path
from . import srlut from . import srlut
from common import layers from common import layers
from itertools import cycle
from common import losses from common import losses
class SRNet(nn.Module): class SRNet(nn.Module):
@ -189,6 +188,79 @@ class SRNetR90Y(nn.Module):
return F.mse_loss(pred/255, target/255) return F.mse_loss(pred/255, target/255)
return loss_fn return loss_fn
class SRMsbLsbR90Net(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(SRMsbLsbR90Net, self).__init__()
self.scale = scale
self.hidden_dim = hidden_dim
self.layers_count = layers_count
self.msb_fn = layers.UpscaleBlock(
in_features=4,
hidden_dim=hidden_dim,
layers_count=layers_count,
upscale_factor=self.scale,
input_max_value=255,
output_max_value=15
)
self.lsb_fn = layers.UpscaleBlock(
in_features=4,
hidden_dim=hidden_dim,
layers_count=layers_count,
upscale_factor=self.scale,
input_max_value=15,
output_max_value=15
)
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
def forward_stage(self, x, scale, percieve_pattern, stage):
b,c,h,w = x.shape
x = percieve_pattern(x)
x = stage(x)
x = round_func(x)
x = x.reshape(b, c, h, w, scale, scale)
x = x.permute(0,1,2,4,3,5)
x = x.reshape(b, c, h*scale, w*scale)
return x
def forward(self, x, config=None):
b,c,h,w = x.shape
x = x.reshape(b*c, 1, h, w)
lsb = x % 16
msb = x - lsb
output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
for rotations_count in range(4):
rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
output_msb_r = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, msb_fn)
output_lsb_r = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, lsb_fn)
output_msb_r = round_func(output_msb_r) * 15
output_lsb_r = round_func(output_lsb_r)
output_msb += torch.rot90(output_msb_r, k=-rotations_count, dims=[2, 3])
output_lsb += torch.rot90(output_lsb_r, k=-rotations_count, dims=[2, 3])
output_msb /= 4
output_lsb /= 4
if not config is None and config.current_iter % config.display_step == 0:
config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
x = output_msb + output_lsb
x = x.reshape(b, c, h*self.scale, w*self.scale)
return x
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
raise NotImplementedError
def get_loss_fn(self):
fourier_loss_fn = losses.FocalFrequencyLoss()
def loss_fn(pred, target):
return fourier_loss_fn(pred, target)
return loss_fn
class SRMsbLsb4R90Net(nn.Module): class SRMsbLsb4R90Net(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(SRMsbLsb4R90Net, self).__init__() super(SRMsbLsb4R90Net, self).__init__()
@ -200,13 +272,17 @@ class SRMsbLsb4R90Net(nn.Module):
in_features=4, in_features=4,
hidden_dim=hidden_dim, hidden_dim=hidden_dim,
layers_count=layers_count, layers_count=layers_count,
upscale_factor=self.scale upscale_factor=self.scale,
input_max_value=255,
output_max_value=15
) for x in range(4)]) ) for x in range(4)])
self.lsb_fns = nn.ModuleList([layers.UpscaleBlock( self.lsb_fns = nn.ModuleList([layers.UpscaleBlock(
in_features=4, in_features=4,
hidden_dim=hidden_dim, hidden_dim=hidden_dim,
layers_count=layers_count, layers_count=layers_count,
upscale_factor=self.scale upscale_factor=self.scale,
input_max_value=15,
output_max_value=15
) for x in range(4)]) ) for x in range(4)])
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
@ -229,13 +305,13 @@ class SRMsbLsb4R90Net(nn.Module):
output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
for rotations_count, msb_fn, lsb_fn in zip(range(4), cycle(self.msb_fns), cycle(self.lsb_fns)): for rotations_count, msb_fn, lsb_fn in zip(range(4), self.msb_fns, self.lsb_fns):
rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3]) rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3]) rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
output_msb_r = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, msb_fn) output_msb_r = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, msb_fn)
output_lsb_r = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, lsb_fn) output_lsb_r = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, lsb_fn)
output_msb_r = round_func((output_msb_r / 255)*16) * 15 output_msb_r = round_func(output_msb_r) * 15
output_lsb_r = (output_lsb_r / 255) * 15 output_lsb_r = round_func(output_lsb_r)
output_msb += torch.rot90(output_msb_r, k=-rotations_count, dims=[2, 3]) output_msb += torch.rot90(output_msb_r, k=-rotations_count, dims=[2, 3])
output_lsb += torch.rot90(output_lsb_r, k=-rotations_count, dims=[2, 3]) output_lsb += torch.rot90(output_lsb_r, k=-rotations_count, dims=[2, 3])
output_msb /= 4 output_msb /= 4
@ -253,5 +329,5 @@ class SRMsbLsb4R90Net(nn.Module):
def get_loss_fn(self): def get_loss_fn(self):
fourier_loss_fn = losses.FocalFrequencyLoss() fourier_loss_fn = losses.FocalFrequencyLoss()
def loss_fn(pred, target): def loss_fn(pred, target):
return fourier_loss_fn(pred/255, target/255) * 1e8 return fourier_loss_fn(pred, target)
return loss_fn return loss_fn

@ -113,7 +113,6 @@ if __name__ == "__main__":
model = AVAILABLE_MODELS[config.model]( quantization_interval = 2**(8-config.quantization_bits), scale = config.scale) model = AVAILABLE_MODELS[config.model]( quantization_interval = 2**(8-config.quantization_bits), scale = config.scale)
model = model.to(torch.device(config.device)) model = model.to(torch.device(config.device))
optimizer = AdamWScheduleFree(model.parameters(), lr=1e-2, betas=(0.9, 0.95)) optimizer = AdamWScheduleFree(model.parameters(), lr=1e-2, betas=(0.9, 0.95))
# optimizer = optim.AdamW(model.parameters(), lr=1e-4, betas=(0.9, 0.95))
print(optimizer) print(optimizer)
prepare_experiment_folder(config) prepare_experiment_folder(config)

Loading…
Cancel
Save