| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -7,7 +7,6 @@ from common import lut
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from pathlib import Path
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from . import srlut 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from common import layers
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from itertools import cycle
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from common import losses
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class SRNet(nn.Module):
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -189,6 +188,79 @@ class SRNetR90Y(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return F.mse_loss(pred/255, target/255)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class SRMsbLsbR90Net(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(SRMsbLsbR90Net, self).__init__()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.scale = scale 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.hidden_dim = hidden_dim
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.layers_count = layers_count
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.msb_fn = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=255,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.lsb_fn = layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=15,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward_stage(self, x, scale, percieve_pattern, stage):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = percieve_pattern(x)   
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = stage(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = round_func(x)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h, w, scale, scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.permute(0,1,2,4,3,5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*scale, w*scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def forward(self, x, config=None):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        b,c,h,w = x.shape
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b*c, 1, h, w)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        lsb = x % 16
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        msb = x - lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count in range(4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, msb_fn)           
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, lsb_fn)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = round_func(output_msb_r) * 15 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = round_func(output_lsb_r)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(output_msb_r, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(output_lsb_r, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb /= 4
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if not config is None and config.current_iter % config.display_step == 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = output_msb + output_lsb
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        x = x.reshape(b, c, h*self.scale, w*self.scale)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return x
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_lut_model(self, quantization_interval=16, batch_size=2**10):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        raise NotImplementedError
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_loss_fn(self):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fourier_loss_fn = losses.FocalFrequencyLoss()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        def loss_fn(pred, target):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return fourier_loss_fn(pred, target) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				class SRMsbLsb4R90Net(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        super(SRMsbLsb4R90Net, self).__init__()
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -200,13 +272,17 @@ class SRMsbLsb4R90Net(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=255,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ) for x in range(4)])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self.lsb_fns = nn.ModuleList([layers.UpscaleBlock(
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            in_features=4,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            hidden_dim=hidden_dim,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            layers_count=layers_count,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            upscale_factor=self.scale,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            input_max_value=15,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            output_max_value=15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ) for x in range(4)])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -229,13 +305,13 @@ class SRMsbLsb4R90Net(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_lsb = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count, msb_fn, lsb_fn in zip(range(4), cycle(self.msb_fns), cycle(self.lsb_fns)):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for rotations_count, msb_fn, lsb_fn in zip(range(4), self.msb_fns, self.lsb_fns):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = self.forward_stage(rotated_msb, self.scale, self._extract_pattern_S, msb_fn)           
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = self.forward_stage(rotated_lsb, self.scale, self._extract_pattern_S, lsb_fn)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = round_func((output_msb_r / 255)*16) * 15 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = (output_lsb_r / 255) * 15
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb_r = round_func(output_msb_r) * 15 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb_r = round_func(output_lsb_r)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_msb += torch.rot90(output_msb_r, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				           output_lsb += torch.rot90(output_lsb_r, k=-rotations_count, dims=[2, 3])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        output_msb /= 4
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -253,5 +329,5 @@ class SRMsbLsb4R90Net(nn.Module):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    def get_loss_fn(self):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fourier_loss_fn = losses.FocalFrequencyLoss()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        def loss_fn(pred, target):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return fourier_loss_fn(pred/255, target/255) * 1e8
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            return fourier_loss_fn(pred, target) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        return loss_fn
 |