|
|
|
@ -0,0 +1,108 @@
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
import numpy as np
|
|
|
|
|
from common.utils import round_func
|
|
|
|
|
from common import lut
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
from . import sdylut
|
|
|
|
|
|
|
|
|
|
# Huang G. et al. Densely connected convolutional networks //Proceedings of the IEEE conference on computer vision and pattern recognition. – 2017. – С. 4700-4708.
|
|
|
|
|
# https://ar5iv.labs.arxiv.org/html/1608.06993
|
|
|
|
|
# https://github.com/andreasveit/densenet-pytorch/blob/63152f4a40644b62717749536ed2e011c6e4d9ab/densenet.py#L40
|
|
|
|
|
class DenseConvUpscaleBlock(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 32, layers_count=5, upscale_factor=1):
|
|
|
|
|
super(DenseConvUpscaleBlock, self).__init__()
|
|
|
|
|
assert layers_count > 0
|
|
|
|
|
self.upscale_factor = upscale_factor
|
|
|
|
|
self.hidden_dim = hidden_dim
|
|
|
|
|
self.percieve = nn.Conv2d(1, hidden_dim, kernel_size=(2, 2), padding='valid', stride=1, dilation=1, bias=True)
|
|
|
|
|
self.convs = []
|
|
|
|
|
for i in range(layers_count):
|
|
|
|
|
self.convs.append(nn.Conv2d(in_channels = (i+1)*hidden_dim, out_channels = hidden_dim, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True))
|
|
|
|
|
self.convs = nn.ModuleList(self.convs)
|
|
|
|
|
|
|
|
|
|
for name, p in self.named_parameters():
|
|
|
|
|
if "weight" in name: nn.init.kaiming_normal_(p)
|
|
|
|
|
if "bias" in name: nn.init.constant_(p, 0)
|
|
|
|
|
|
|
|
|
|
self.project_channels = nn.Conv2d(in_channels = (layers_count+1)*hidden_dim, out_channels = upscale_factor * upscale_factor, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True)
|
|
|
|
|
self.shuffle = nn.PixelShuffle(upscale_factor)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = (x-127.5)/127.5
|
|
|
|
|
x = torch.relu(self.percieve(x))
|
|
|
|
|
for conv in self.convs:
|
|
|
|
|
x = torch.cat([x, torch.relu(conv(x))], dim=1)
|
|
|
|
|
x = self.shuffle(self.project_channels(x))
|
|
|
|
|
x = torch.tanh(x)
|
|
|
|
|
x = round_func(x*127.5 + 127.5)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
class PercievePattern():
|
|
|
|
|
def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]]):
|
|
|
|
|
self.receptive_field_idxes = np.array(receptive_field_idxes)
|
|
|
|
|
self.window_size = np.max(self.receptive_field_idxes) + 1
|
|
|
|
|
self.receptive_field_idxes = [
|
|
|
|
|
self.receptive_field_idxes[0,0]*self.window_size + self.receptive_field_idxes[0,1],
|
|
|
|
|
self.receptive_field_idxes[1,0]*self.window_size + self.receptive_field_idxes[1,1],
|
|
|
|
|
self.receptive_field_idxes[2,0]*self.window_size + self.receptive_field_idxes[2,1],
|
|
|
|
|
self.receptive_field_idxes[3,0]*self.window_size + self.receptive_field_idxes[3,1],
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = F.pad(x, pad=[0,self.window_size-1,0,self.window_size-1], mode='replicate')
|
|
|
|
|
x = F.unfold(input=x, kernel_size=self.window_size)
|
|
|
|
|
x = torch.stack([
|
|
|
|
|
x[:,self.receptive_field_idxes[0],:],
|
|
|
|
|
x[:,self.receptive_field_idxes[1],:],
|
|
|
|
|
x[:,self.receptive_field_idxes[2],:],
|
|
|
|
|
x[:,self.receptive_field_idxes[3],:]
|
|
|
|
|
], 2)
|
|
|
|
|
x = x.reshape(x.shape[0]*x.shape[1], 1, 2, 2)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SDYNetx1(nn.Module):
|
|
|
|
|
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
|
|
|
|
|
super(SDYNetx1, self).__init__()
|
|
|
|
|
self.scale = scale
|
|
|
|
|
self._extract_pattern_S = PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]])
|
|
|
|
|
self._extract_pattern_D = PercievePattern(receptive_field_idxes=[[0,0],[2,0],[0,2],[2,2]])
|
|
|
|
|
self._extract_pattern_Y = PercievePattern(receptive_field_idxes=[[0,0],[1,1],[1,2],[2,1]])
|
|
|
|
|
self.stageS = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
self.stageD = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
self.stageY = DenseConvUpscaleBlock(hidden_dim=hidden_dim, layers_count=layers_count, upscale_factor=scale)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.view(b*c, 1, h, w)
|
|
|
|
|
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
|
|
|
|
|
for rotations_count in range(4):
|
|
|
|
|
rotated = torch.rot90(x, k=rotations_count, dims=[-2, -1])
|
|
|
|
|
rb,rc,rh,rw = rotated.shape
|
|
|
|
|
|
|
|
|
|
s = self.stageS(self._extract_pattern_S(rotated))
|
|
|
|
|
s = s.view(rb*rc, 1, rh, rw, self.scale, self.scale).permute(0,1,2,4,3,5).reshape(rb*rc, 1, rh*self.scale, rw*self.scale)
|
|
|
|
|
s = torch.rot90(s, k=-rotations_count, dims=[-2, -1])
|
|
|
|
|
output += s
|
|
|
|
|
|
|
|
|
|
d = self.stageD(self._extract_pattern_D(rotated))
|
|
|
|
|
d = d.view(rb*rc, 1, rh, rw, self.scale, self.scale).permute(0,1,2,4,3,5).reshape(rb*rc, 1, rh*self.scale, rw*self.scale)
|
|
|
|
|
d = torch.rot90(d, k=-rotations_count, dims=[-2, -1])
|
|
|
|
|
output += d
|
|
|
|
|
|
|
|
|
|
y = self.stageY(self._extract_pattern_Y(rotated))
|
|
|
|
|
y = y.view(rb*rc, 1, rh, rw, self.scale, self.scale).permute(0,1,2,4,3,5).reshape(rb*rc, 1, rh*self.scale, rw*self.scale)
|
|
|
|
|
y = torch.rot90(y, k=-rotations_count, dims=[-2, -1])
|
|
|
|
|
output += y
|
|
|
|
|
|
|
|
|
|
output /= 4*3
|
|
|
|
|
output = output.view(b, c, h*self.scale, w*self.scale)
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
|
|
|
|
|
stage_lut = lut.transfer_2x2_input_SxS_output(self.stage, quantization_interval=quantization_interval, batch_size=batch_size)
|
|
|
|
|
lut_model = sdylut.SDYLutx1.init_from_lut(stage_lut)
|
|
|
|
|
return lut_model
|