use one dense backbone for all nets with linear layers

main
vlpr 7 months ago
parent e9c6248949
commit b63d0f98df

@ -7,6 +7,7 @@ from .utils import round_func
class PercievePattern(): class PercievePattern():
def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2): def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2):
assert window_size >= (np.max(receptive_field_idxes)+1) assert window_size >= (np.max(receptive_field_idxes)+1)
assert len(receptive_field_idxes) == 4
self.receptive_field_idxes = np.array(receptive_field_idxes) self.receptive_field_idxes = np.array(receptive_field_idxes)
self.window_size = window_size self.window_size = window_size
self.center = center self.center = center
@ -32,74 +33,39 @@ class PercievePattern():
x[:,self.receptive_field_idxes[2],:], x[:,self.receptive_field_idxes[2],:],
x[:,self.receptive_field_idxes[3],:] x[:,self.receptive_field_idxes[3],:]
], 2) ], 2)
x = x.reshape(x.shape[0]*x.shape[1], 1, 2, 2)
return x return x
# Huang G. et al. Densely connected convolutional networks //Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. С. 4700-4708. class UpscaleBlock(nn.Module):
# https://ar5iv.labs.arxiv.org/html/1608.06993 def __init__(self, receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2, in_features=4, hidden_dim = 32, layers_count=5, upscale_factor=1):
# https://github.com/andreasveit/densenet-pytorch/blob/63152f4a40644b62717749536ed2e011c6e4d9ab/densenet.py#L40 super(UpscaleBlock, self).__init__()
# refactoring to linear give slight speed up, but require total rewrite to be consistent
class DenseConvUpscaleBlock(nn.Module):
def __init__(self, hidden_dim = 32, layers_count=5, upscale_factor=1):
super(DenseConvUpscaleBlock, self).__init__()
assert layers_count > 0 assert layers_count > 0
self.percieve_pattern = PercievePattern(receptive_field_idxes=receptive_field_idxes, center=center, window_size=window_size)
self.upscale_factor = upscale_factor self.upscale_factor = upscale_factor
self.hidden_dim = hidden_dim self.hidden_dim = hidden_dim
self.embed = nn.Conv2d(1, hidden_dim, kernel_size=(2, 2), padding='valid', stride=1, dilation=1, bias=True) self.embed = nn.Linear(in_features=in_features, out_features=hidden_dim, bias=True)
self.convs = [] self.linear_projections = []
for i in range(layers_count): for i in range(layers_count):
self.convs.append(nn.Conv2d(in_channels = (i+1)*hidden_dim, out_channels = hidden_dim, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True)) self.linear_projections.append(nn.Linear(in_features=(i+1)*hidden_dim, out_features=hidden_dim, bias=True))
self.convs = nn.ModuleList(self.convs) self.linear_projections = nn.ModuleList(self.linear_projections)
for name, p in self.named_parameters(): self.project_channels = nn.Linear(in_features=(layers_count+1)*hidden_dim, out_features=upscale_factor * upscale_factor, bias=True)
if "weight" in name: nn.init.kaiming_normal_(p)
if "bias" in name: nn.init.constant_(p, 0)
self.project_channels = nn.Conv2d(in_channels = (layers_count+1)*hidden_dim, out_channels = upscale_factor * upscale_factor, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True)
self.shuffle = nn.PixelShuffle(upscale_factor)
def forward(self, x): def forward(self, x):
b,c,h,w = x.shape
x = (x-127.5)/127.5 x = (x-127.5)/127.5
x = self.percieve_pattern(x)
x = torch.relu(self.embed(x)) x = torch.relu(self.embed(x))
for conv in self.convs: for linear_projection in self.linear_projections:
x = torch.cat([x, torch.relu(conv(x))], dim=1) x = torch.cat([x, torch.relu(linear_projection(x))], dim=2)
x = self.shuffle(self.project_channels(x)) x = self.project_channels(x)
x = torch.tanh(x) x = torch.tanh(x)
x = x*127.5 + 127.5 x = x*127.5 + 127.5
x = round_func(x) x = round_func(x)
return x x = x.reshape(b, c, h, w, self.upscale_factor, self.upscale_factor)
x = x.permute(0,1,2,4,3,5)
class ConvUpscaleBlock(nn.Module): x = x.reshape(b, c, h*self.upscale_factor, w*self.upscale_factor)
def __init__(self, hidden_dim = 32, layers_count=5, upscale_factor=1): return x
super(ConvUpscaleBlock, self).__init__()
assert layers_count > 0
self.upscale_factor = upscale_factor
self.hidden_dim = hidden_dim
self.embed = nn.Conv2d(1, hidden_dim, kernel_size=(2, 2), padding='valid', stride=1, dilation=1, bias=True)
self.convs = []
for i in range(layers_count):
self.convs.append(nn.Conv2d(in_channels = hidden_dim, out_channels = hidden_dim, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True))
self.convs = nn.ModuleList(self.convs)
for name, p in self.named_parameters():
if "weight" in name: nn.init.kaiming_normal_(p)
if "bias" in name: nn.init.constant_(p, 0)
self.project_channels = nn.Conv2d(in_channels = hidden_dim, out_channels = upscale_factor * upscale_factor, kernel_size = 1, stride=1, padding=0, dilation=1, bias=True)
self.shuffle = nn.PixelShuffle(upscale_factor)
def forward(self, x):
x = (x-127.5)/127.5
x = torch.relu(self.embed(x))
for conv in self.convs:
x = torch.relu(conv(x))
x = self.shuffle(self.project_channels(x))
x = torch.tanh(x)
x = x*127.5 + 127.5
x = round_func(x)
return x
# https://github.com/kornia/kornia/blob/2c084f8dc108b3f0f3c8983ac3f25bf88638d01a/kornia/color/ycbcr.py#L105 # https://github.com/kornia/kornia/blob/2c084f8dc108b3f0f3c8983ac3f25bf88638d01a/kornia/color/ycbcr.py#L105
class RgbToYcbcr(nn.Module): class RgbToYcbcr(nn.Module):
@ -161,4 +127,4 @@ class YcbcrToRgb(nn.Module):
r = y + 1.403 * cr_shifted r = y + 1.403 * cr_shifted
g = y - 0.714 * cr_shifted - 0.344 * cb_shifted g = y - 0.714 * cr_shifted - 0.344 * cb_shifted
b = y + 1.773 * cb_shifted b = y + 1.773 * cb_shifted
return torch.stack([r, g, b], -3) return torch.stack([r, g, b], -3)
Loading…
Cancel
Save