bugfix, new model

main
protsenkovi 7 months ago
parent ca58e33209
commit b641401ed7

@ -18,6 +18,8 @@ AVAILABLE_MODELS = {
'SDYLutx1': sdylut.SDYLutx1, 'SDYLutx1': sdylut.SDYLutx1,
'SDYNetx2': sdynet.SDYNetx2, 'SDYNetx2': sdynet.SDYNetx2,
'SDYLutx2': sdylut.SDYLutx2, 'SDYLutx2': sdylut.SDYLutx2,
'SRNetY': srnet.SRNetY,
'SRLutY': srlut.SRLutY,
# 'RCNetCentered_3x3': rcnet.RCNetCentered_3x3, 'RCLutCentered_3x3': rclut.RCLutCentered_3x3, # 'RCNetCentered_3x3': rcnet.RCNetCentered_3x3, 'RCLutCentered_3x3': rclut.RCLutCentered_3x3,
# 'RCNetCentered_7x7': rcnet.RCNetCentered_7x7, 'RCLutCentered_7x7': rclut.RCLutCentered_7x7, # 'RCNetCentered_7x7': rcnet.RCNetCentered_7x7, 'RCLutCentered_7x7': rclut.RCLutCentered_7x7,
# 'RCNetRot90_3x3': rcnet.RCNetRot90_3x3, 'RCLutRot90_3x3': rclut.RCLutRot90_3x3, # 'RCNetRot90_3x3': rcnet.RCNetRot90_3x3, 'RCLutRot90_3x3': rclut.RCLutRot90_3x3,

@ -49,7 +49,54 @@ class SRLut(nn.Module):
def __repr__(self): def __repr__(self):
return f"{self.__class__.__name__}\n lut size: {self.stage_lut.shape}" return f"{self.__class__.__name__}\n lut size: {self.stage_lut.shape}"
class SRLutY(nn.Module):
def __init__(
self,
quantization_interval,
scale
):
super(SRLutY, self).__init__()
self.scale = scale
self.quantization_interval = quantization_interval
self.stage_lut = nn.Parameter(torch.randint(0, 255, size=(256//quantization_interval+1,)*4 + (scale,scale)).type(torch.float32))
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
self.rgb_to_ycbcr = layers.RgbToYcbcr()
self.ycbcr_to_rgb = layers.YcbcrToRgb()
@staticmethod
def init_from_numpy(
stage_lut
):
scale = int(stage_lut.shape[-1])
quantization_interval = 256//(stage_lut.shape[0]-1)
lut_model = SRLutY(quantization_interval=quantization_interval, scale=scale)
lut_model.stage_lut = nn.Parameter(torch.tensor(stage_lut).type(torch.float32))
return lut_model
def forward_stage(self, x, scale, percieve_pattern, lut):
b,c,h,w = x.shape
x = percieve_pattern(x)
x = select_index_4dlut_tetrahedral(index=x, lut=lut)
x = round_func(x)
x = x.reshape(b, c, h, w, scale, scale)
x = x.permute(0,1,2,4,3,5)
x = x.reshape(b, c, h*scale, w*scale)
return x
def forward(self, x):
b,c,h,w = x.shape
x = self.rgb_to_ycbcr(x)
y = x[:,0:1,:,:]
cbcr = x[:,1:,:,:]
cbcr_scaled = F.interpolate(cbcr, size=[h*self.scale, w*self.scale], mode='bilinear')
output = self.forward_stage(y, self.scale, self._extract_pattern_S, self.stage_lut)
output = torch.cat([output, cbcr_scaled], dim=1)
output = self.ycbcr_to_rgb(output).clamp(0, 255)
return output
def __repr__(self):
return f"{self.__class__.__name__}\n lut size: {self.stage_lut.shape}"
class SRLutR90(nn.Module): class SRLutR90(nn.Module):
def __init__( def __init__(

@ -17,7 +17,7 @@ class SRNet(nn.Module):
layers_count=layers_count, layers_count=layers_count,
upscale_factor=self.scale upscale_factor=self.scale
) )
self._unfold_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
def forward_stage(self, x, scale, percieve_pattern, stage): def forward_stage(self, x, scale, percieve_pattern, stage):
b,c,h,w = x.shape b,c,h,w = x.shape
@ -32,7 +32,7 @@ class SRNet(nn.Module):
def forward(self, x): def forward(self, x):
b,c,h,w = x.shape b,c,h,w = x.shape
x = x.reshape(b*c, 1, h, w) x = x.reshape(b*c, 1, h, w)
x = self.forward_stage(x, self.scale, self._unfold_pattern_S, self.stage1_S) x = self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
x = x.reshape(b, c, h*self.scale, w*self.scale) x = x.reshape(b, c, h*self.scale, w*self.scale)
return x return x
@ -41,6 +41,47 @@ class SRNet(nn.Module):
lut_model = srlut.SRLut.init_from_numpy(stage_lut) lut_model = srlut.SRLut.init_from_numpy(stage_lut)
return lut_model return lut_model
class SRNetY(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(SRNetY, self).__init__()
self.scale = scale
self.stage1_S = layers.UpscaleBlock(
hidden_dim=hidden_dim,
layers_count=layers_count,
upscale_factor=self.scale
)
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
self.rgb_to_ycbcr = layers.RgbToYcbcr()
self.ycbcr_to_rgb = layers.YcbcrToRgb()
def forward_stage(self, x, scale, percieve_pattern, stage):
b,c,h,w = x.shape
x = percieve_pattern(x)
x = stage(x)
x = round_func(x)
x = x.reshape(b, c, h, w, scale, scale)
x = x.permute(0,1,2,4,3,5)
x = x.reshape(b, c, h*scale, w*scale)
return x
def forward(self, x):
b,c,h,w = x.shape
x = self.rgb_to_ycbcr(x)
y = x[:,0:1,:,:]
cbcr = x[:,1:,:,:]
cbcr_scaled = F.interpolate(cbcr, size=[h*self.scale, w*self.scale], mode='bilinear')
x = y.view(b, 1, h, w)
output = self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
output = torch.cat([output, cbcr_scaled], dim=1)
output = self.ycbcr_to_rgb(output).clamp(0, 255)
return output
def get_lut_model(self, quantization_interval=16, batch_size=2**10):
stage_lut = lut.transfer_2x2_input_SxS_output(self.stage1_S, quantization_interval=quantization_interval, batch_size=batch_size)
lut_model = srlut.SRLutY.init_from_numpy(stage_lut)
return lut_model
class SRNetR90(nn.Module): class SRNetR90(nn.Module):
def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4): def __init__(self, hidden_dim = 64, layers_count = 4, scale = 4):
super(SRNetR90, self).__init__() super(SRNetR90, self).__init__()
@ -50,7 +91,7 @@ class SRNetR90(nn.Module):
layers_count=layers_count, layers_count=layers_count,
upscale_factor=self.scale upscale_factor=self.scale
) )
self._unfold_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
def forward_stage(self, x, scale, percieve_pattern, stage): def forward_stage(self, x, scale, percieve_pattern, stage):
b,c,h,w = x.shape b,c,h,w = x.shape
@ -66,10 +107,10 @@ class SRNetR90(nn.Module):
b,c,h,w = x.shape b,c,h,w = x.shape
x = x.reshape(b*c, 1, h, w) x = x.reshape(b*c, 1, h, w)
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
output += self.forward_stage(x, self.scale, self._unfold_pattern_S, self.stage1_S) output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
for rotations_count in range(1,4): for rotations_count in range(1,4):
rotated = torch.rot90(x, k=rotations_count, dims=[2, 3]) rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
output += torch.rot90(self.forward_stage(x, self.scale, self._unfold_pattern_S, self.stage1_S), k=-rotations_count, dims=[2, 3]) output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_S, self.stage1_S), k=-rotations_count, dims=[2, 3])
output /= 4 output /= 4
output = output.reshape(b, c, h*self.scale, w*self.scale) output = output.reshape(b, c, h*self.scale, w*self.scale)
return output return output
@ -89,7 +130,7 @@ class SRNetR90Y(nn.Module):
layers_count=layers_count, layers_count=layers_count,
upscale_factor=self.scale upscale_factor=self.scale
) )
self._unfold_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
self.rgb_to_ycbcr = layers.RgbToYcbcr() self.rgb_to_ycbcr = layers.RgbToYcbcr()
self.ycbcr_to_rgb = layers.YcbcrToRgb() self.ycbcr_to_rgb = layers.YcbcrToRgb()
@ -112,10 +153,10 @@ class SRNetR90Y(nn.Module):
x = y.view(b, 1, h, w) x = y.view(b, 1, h, w)
output = torch.zeros([b, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output = torch.zeros([b, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
output += self.forward_stage(x, self.scale, self._unfold_pattern_S, self.stage1_S) output += self.forward_stage(x, self.scale, self._extract_pattern_S, self.stage1_S)
for rotations_count in range(1,4): for rotations_count in range(1,4):
rotated = torch.rot90(x, k=rotations_count, dims=[2, 3]) rotated = torch.rot90(x, k=rotations_count, dims=[2, 3])
output += torch.rot90(self.forward_stage(rotated, self.scale, self._unfold_pattern_S, self.stage1_S), k=-rotations_count, dims=[2, 3]) output += torch.rot90(self.forward_stage(rotated, self.scale, self._extract_pattern_S, self.stage1_S), k=-rotations_count, dims=[2, 3])
output /= 4 output /= 4
output = torch.cat([output, cbcr_scaled], dim=1) output = torch.cat([output, cbcr_scaled], dim=1)
output = self.ycbcr_to_rgb(output).clamp(0, 255) output = self.ycbcr_to_rgb(output).clamp(0, 255)

Loading…
Cancel
Save