You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
big_data/L1 - Introduction to Apache.../L1_interactive_bike_analysi...

121 KiB

Лабораторная 1. Интерактивный анализ данных велопарковок SF Bay Area Bike Share в Apache Spark с использованием Spark SQL и DataFrame API

Описание данных

https://www.kaggle.com/benhamner/sf-bay-area-bike-share

stations.csv схема:

id: station ID number
name: name of station
lat: latitude
long: longitude
dock_count: number of total docks at station
city: city (San Francisco, Redwood City, Palo Alto, Mountain View, San Jose)
installation_date: original date that station was installed. If station was moved, it is noted below.

trips.csv схема:

id: numeric ID of bike trip
duration: time of trip in seconds
start_date: start date of trip with date and time, in PST
start_station_name: station name of start station
start_station_id: numeric reference for start station
end_date: end date of trip with date and time, in PST
end_station_name: station name for end station
end_station_id: numeric reference for end station
bike_id: ID of bike used
subscription_type: Subscriber = annual or 30-day member; Customer = 24-hour or 3-day member
zip_code: Home zip code of subscriber (customers can choose to manually enter zip at kiosk however data is unreliable)
In [1]:
from pyspark import SparkContext, SparkConf 
from pyspark.sql import SparkSession
import pyspark.sql as sql
In [2]:
conf = SparkConf().setAppName("L1_interactive_bike_analysis").setMaster('yarn')
In [3]:
sc = SparkContext(conf=conf)
spark = SparkSession(sc)

Пример чтения csv файлов и работы с дефектными данными

Список опций чтения и записи для CSV файлов https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option

Формат паттерна временной метки Spark SQL отличается от python библиотеки datetime. https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

In [32]:
tripData = spark.read\
.option("header", True)\
.option("inferSchema", True)\
.option("timestampFormat", 'M/d/y H:m')\
.csv("tripd_with_error.csv")

tripData
Out[32]:
DataFrame[id: int, duration: int, start_date: timestamp, start_station_name: string, start_station_id: int, end_date: timestamp, end_station_name: string, end_station_id: int, bike_id: int, subscription_type: string, zip_code: string]
In [34]:
tripData.printSchema()
root
 |-- id: integer (nullable = true)
 |-- duration: integer (nullable = true)
 |-- start_date: timestamp (nullable = true)
 |-- start_station_name: string (nullable = true)
 |-- start_station_id: integer (nullable = true)
 |-- end_date: timestamp (nullable = true)
 |-- end_station_name: string (nullable = true)
 |-- end_station_id: integer (nullable = true)
 |-- bike_id: integer (nullable = true)
 |-- subscription_type: string (nullable = true)
 |-- zip_code: string (nullable = true)

In [35]:
tripData.show(n=5)
+----+--------+-------------------+--------------------+----------------+-------------------+--------------------+--------------+-------+-----------------+--------+
|  id|duration|         start_date|  start_station_name|start_station_id|           end_date|    end_station_name|end_station_id|bike_id|subscription_type|zip_code|
+----+--------+-------------------+--------------------+----------------+-------------------+--------------------+--------------+-------+-----------------+--------+
|4576|      63|               null|South Van Ness at...|              66|2013-08-29 14:14:00|South Van Ness at...|            66|    520|       Subscriber|   94127|
|4607|    null|2013-08-29 14:42:00|  San Jose City Hall|              10|2013-08-29 14:43:00|  San Jose City Hall|            10|    661|       Subscriber|   95138|
|4130|      71|2013-08-29 10:16:00|Mountain View Cit...|              27|2013-08-29 10:17:00|Mountain View Cit...|            27|     48|       Subscriber|   97214|
|4251|      77|2013-08-29 11:29:00|  San Jose City Hall|              10|2013-08-29 11:30:00|  San Jose City Hall|            10|     26|       Subscriber|   95060|
|4299|      83|2013-08-29 12:02:00|South Van Ness at...|              66|2013-08-29 12:04:00|      Market at 10th|            67|    319|       Subscriber|   94103|
+----+--------+-------------------+--------------------+----------------+-------------------+--------------------+--------------+-------+-----------------+--------+
only showing top 5 rows

In [26]:
? tripData.dropna
Signature:  tripData.dropna(how='any', thresh=None, subset=None)
Docstring:
Returns a new :class:`DataFrame` omitting rows with null values.
:func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other.

.. versionadded:: 1.3.1

Parameters
----------
how : str, optional
    'any' or 'all'.
    If 'any', drop a row if it contains any nulls.
    If 'all', drop a row only if all its values are null.
thresh: int, optional
    default None
    If specified, drop rows that have less than `thresh` non-null values.
    This overwrites the `how` parameter.
subset : str, tuple or list, optional
    optional list of column names to consider.

Examples
--------
>>> df4.na.drop().show()
+---+------+-----+
|age|height| name|
+---+------+-----+
| 10|    80|Alice|
+---+------+-----+
File:      ~/.local/lib/python3.9/site-packages/pyspark/sql/dataframe.py
Type:      method
In [36]:
tripData.dropna().show(n=5)
+----+--------+-------------------+--------------------+----------------+-------------------+--------------------+--------------+-------+-----------------+--------+
|  id|duration|         start_date|  start_station_name|start_station_id|           end_date|    end_station_name|end_station_id|bike_id|subscription_type|zip_code|
+----+--------+-------------------+--------------------+----------------+-------------------+--------------------+--------------+-------+-----------------+--------+
|4130|      71|2013-08-29 10:16:00|Mountain View Cit...|              27|2013-08-29 10:17:00|Mountain View Cit...|            27|     48|       Subscriber|   97214|
|4251|      77|2013-08-29 11:29:00|  San Jose City Hall|              10|2013-08-29 11:30:00|  San Jose City Hall|            10|     26|       Subscriber|   95060|
|4299|      83|2013-08-29 12:02:00|South Van Ness at...|              66|2013-08-29 12:04:00|      Market at 10th|            67|    319|       Subscriber|   94103|
|4927|     103|2013-08-29 18:54:00| Golden Gate at Polk|              59|2013-08-29 18:56:00| Golden Gate at Polk|            59|    527|       Subscriber|   94109|
|4500|     109|2013-08-29 13:25:00|Santa Clara at Al...|               4|2013-08-29 13:27:00|    Adobe on Almaden|             5|    679|       Subscriber|   95112|
+----+--------+-------------------+--------------------+----------------+-------------------+--------------------+--------------+-------+-----------------+--------+
only showing top 5 rows

In [37]:
tripData.describe().show()
+-------+------------------+------------------+--------------------+------------------+--------------------+------------------+------------------+-----------------+-------------------+
|summary|                id|          duration|  start_station_name|  start_station_id|    end_station_name|    end_station_id|           bike_id|subscription_type|           zip_code|
+-------+------------------+------------------+--------------------+------------------+--------------------+------------------+------------------+-----------------+-------------------+
|  count|            985352|            985351|              985352|            985352|              985352|            985352|            985352|           985352|             978484|
|   mean|521401.35102481145|1092.1337716204682|                null|58.060558054380564|                null|58.043319544690625|426.07050779822845|             null|  2008421.845039644|
| stddev|245889.28553182338| 25689.80328664839|                null|16.998928220336474|                null| 17.10456379871572| 155.4614377036669|             null|1.243190730418017E9|
|    min|              4069|                60|       2nd at Folsom|                 2|       2nd at Folsom|                 2|                 9|         Customer|                  0|
|    max|            913460|          17270400|Yerba Buena Cente...|                84|Yerba Buena Cente...|                84|               878|       Subscriber|              v6z2x|
+-------+------------------+------------------+--------------------+------------------+--------------------+------------------+------------------+-----------------+-------------------+

In [39]:
stationData = spark.read\
.option("header", True)\
.option("inferSchema", True)\
.option("timestampFormat", 'M/d/y')\
.csv("stations.csv")

stationData.printSchema()
root
 |-- id: integer (nullable = true)
 |-- name: string (nullable = true)
 |-- lat: double (nullable = true)
 |-- long: double (nullable = true)
 |-- dock_count: integer (nullable = true)
 |-- city: string (nullable = true)
 |-- installation_date: timestamp (nullable = true)

In [40]:
stationData.show(n=5)
+---+--------------------+------------------+-------------------+----------+--------+-------------------+
| id|                name|               lat|               long|dock_count|    city|  installation_date|
+---+--------------------+------------------+-------------------+----------+--------+-------------------+
|  2|San Jose Diridon ...|         37.329732|-121.90178200000001|        27|San Jose|2013-08-06 00:00:00|
|  3|San Jose Civic Ce...|         37.330698|        -121.888979|        15|San Jose|2013-08-05 00:00:00|
|  4|Santa Clara at Al...|         37.333988|        -121.894902|        11|San Jose|2013-08-06 00:00:00|
|  5|    Adobe on Almaden|         37.331415|          -121.8932|        19|San Jose|2013-08-05 00:00:00|
|  6|    San Pedro Square|37.336721000000004|        -121.894074|        15|San Jose|2013-08-07 00:00:00|
+---+--------------------+------------------+-------------------+----------+--------+-------------------+
only showing top 5 rows

In [41]:
stationData.describe().show()
+-------+------------------+--------------------+-------------------+-------------------+-----------------+-------------+
|summary|                id|                name|                lat|               long|       dock_count|         city|
+-------+------------------+--------------------+-------------------+-------------------+-----------------+-------------+
|  count|                70|                  70|                 70|                 70|               70|           70|
|   mean|              43.0|                null|  37.59024338428572|-122.21841616428571|17.65714285714286|         null|
| stddev|24.166091947189145|                null|0.20347253639672502|0.20944604979644524|4.010441857493954|         null|
|    min|                 2|       2nd at Folsom|          37.329732|        -122.418954|               11|Mountain View|
|    max|                84|Yerba Buena Cente...|           37.80477|        -121.877349|               27|     San Jose|
+-------+------------------+--------------------+-------------------+-------------------+-----------------+-------------+

Пример использования DataFrame API

Выполните операцию объединения коллекций по ключу с помощью функции join. Объедините stationsIndexed и tripsByStartTerminals, stationsIndexed и tripsByEndTerminals.

In [42]:
tripData.printSchema()
stationData.printSchema()
root
 |-- id: integer (nullable = true)
 |-- duration: integer (nullable = true)
 |-- start_date: timestamp (nullable = true)
 |-- start_station_name: string (nullable = true)
 |-- start_station_id: integer (nullable = true)
 |-- end_date: timestamp (nullable = true)
 |-- end_station_name: string (nullable = true)
 |-- end_station_id: integer (nullable = true)
 |-- bike_id: integer (nullable = true)
 |-- subscription_type: string (nullable = true)
 |-- zip_code: string (nullable = true)

root
 |-- id: integer (nullable = true)
 |-- name: string (nullable = true)
 |-- lat: double (nullable = true)
 |-- long: double (nullable = true)
 |-- dock_count: integer (nullable = true)
 |-- city: string (nullable = true)
 |-- installation_date: timestamp (nullable = true)

In [45]:
stationsView = stationData.select(stationData['id'], stationData['name'], stationData['lat'], stationData['long'])
stationsView.show()
+---+--------------------+------------------+-------------------+
| id|                name|               lat|               long|
+---+--------------------+------------------+-------------------+
|  2|San Jose Diridon ...|         37.329732|-121.90178200000001|
|  3|San Jose Civic Ce...|         37.330698|        -121.888979|
|  4|Santa Clara at Al...|         37.333988|        -121.894902|
|  5|    Adobe on Almaden|         37.331415|          -121.8932|
|  6|    San Pedro Square|37.336721000000004|        -121.894074|
|  7|Paseo de San Antonio|         37.333798|-121.88694299999999|
|  8| San Salvador at 1st|         37.330165|-121.88583100000001|
|  9|           Japantown|         37.348742|-121.89471499999999|
| 10|  San Jose City Hall|         37.337391|        -121.886995|
| 11|         MLK Library|         37.335885|-121.88566000000002|
| 12|SJSU 4th at San C...|         37.332808|-121.88389099999999|
| 13|       St James Park|         37.339301|-121.88993700000002|
| 14|Arena Green / SAP...|         37.332692|        -121.900084|
| 16|SJSU - San Salvad...|37.333954999999996|        -121.877349|
| 21|   Franklin at Maple|         37.481758|        -122.226904|
| 22|Redwood City Calt...|37.486078000000006|-122.23208899999999|
| 23|San Mateo County ...|37.487615999999996|        -122.229951|
| 24|Redwood City Publ...|         37.484219|        -122.227424|
| 25|Stanford in Redwo...|          37.48537|-122.20328799999999|
| 26|Redwood City Medi...|         37.487682|        -122.223492|
+---+--------------------+------------------+-------------------+
only showing top 20 rows

In [56]:
startTrips = tripData.select(tripData.id, tripData.duration, tripData.start_station_id).withColumnRenamed('id', 'trip_id').join(stationsView, tripData.start_station_id == stationsView.id)
startTrips = startTrips.drop('id')
In [57]:
startTrips.show()
+-------+--------+----------------+--------------------+------------------+-------------------+
|trip_id|duration|start_station_id|                name|               lat|               long|
+-------+--------+----------------+--------------------+------------------+-------------------+
|   4576|      63|              66|South Van Ness at...|         37.774814|        -122.418954|
|   4607|    null|              10|  San Jose City Hall|         37.337391|        -121.886995|
|   4130|      71|              27|Mountain View Cit...|         37.389218|        -122.081896|
|   4251|      77|              10|  San Jose City Hall|         37.337391|        -121.886995|
|   4299|      83|              66|South Van Ness at...|         37.774814|        -122.418954|
|   4927|     103|              59| Golden Gate at Polk|         37.781332|        -122.418603|
|   4500|     109|               4|Santa Clara at Al...|         37.333988|        -121.894902|
|   4563|     111|               8| San Salvador at 1st|         37.330165|-121.88583100000001|
|   4760|     113|              66|South Van Ness at...|         37.774814|        -122.418954|
|   4258|     114|              10|  San Jose City Hall|         37.337391|        -121.886995|
|   4549|     125|              49|     Spear at Folsom|37.790302000000004|-122.39063700000001|
|   4498|     126|               6|    San Pedro Square|37.336721000000004|        -121.894074|
|   4965|     129|              28|Mountain View Cal...|37.394358000000004|-122.07671299999998|
|   4557|     130|              64|   2nd at South Park|         37.782259|        -122.392738|
|   4386|     134|              41|     Clay at Battery|         37.795001|         -122.39997|
|   4749|     138|              47|     Post at Kearney|         37.788975|        -122.403452|
|   4242|     141|              10|  San Jose City Hall|         37.337391|        -121.886995|
|   4329|     142|              67|      Market at 10th|37.776619000000004|-122.41738500000001|
|   5097|     142|              74|   Steuart at Market|         37.794139|        -122.394434|
|   5084|     144|              39|  Powell Street BART|37.783871000000005|        -122.408433|
+-------+--------+----------------+--------------------+------------------+-------------------+
only showing top 20 rows

In [63]:
tripData.printSchema()
stationData.printSchema()
root
 |-- id: integer (nullable = true)
 |-- duration: integer (nullable = true)
 |-- start_date: timestamp (nullable = true)
 |-- start_station_name: string (nullable = true)
 |-- start_station_id: integer (nullable = true)
 |-- end_date: timestamp (nullable = true)
 |-- end_station_name: string (nullable = true)
 |-- end_station_id: integer (nullable = true)
 |-- bike_id: integer (nullable = true)
 |-- subscription_type: string (nullable = true)
 |-- zip_code: string (nullable = true)

root
 |-- id: integer (nullable = true)
 |-- name: string (nullable = true)
 |-- lat: double (nullable = true)
 |-- long: double (nullable = true)
 |-- dock_count: integer (nullable = true)
 |-- city: string (nullable = true)
 |-- installation_date: timestamp (nullable = true)

Пример использования Spark SQL API

In [65]:
stationData.createOrReplaceTempView("stations")
tripData.createOrReplaceTempView("trips")
In [74]:
endTrips = spark.sql("""
SELECT trips.id as trip_id, trips.end_station_id, trips.duration, stations.name as station_name, stations.lat, stations.long 
FROM trips INNER JOIN stations 
    ON trips.end_station_id==stations.id
""")
In [75]:
endTrips.show()
+-------+--------------+--------+--------------------+------------------+-------------------+
|trip_id|end_station_id|duration|        station_name|               lat|               long|
+-------+--------------+--------+--------------------+------------------+-------------------+
|   4576|            66|      63|South Van Ness at...|         37.774814|        -122.418954|
|   4607|            10|    null|  San Jose City Hall|         37.337391|        -121.886995|
|   4130|            27|      71|Mountain View Cit...|         37.389218|        -122.081896|
|   4251|            10|      77|  San Jose City Hall|         37.337391|        -121.886995|
|   4299|            67|      83|      Market at 10th|37.776619000000004|-122.41738500000001|
|   4927|            59|     103| Golden Gate at Polk|         37.781332|        -122.418603|
|   4500|             5|     109|    Adobe on Almaden|         37.331415|          -121.8932|
|   4563|             8|     111| San Salvador at 1st|         37.330165|-121.88583100000001|
|   4760|            66|     113|South Van Ness at...|         37.774814|        -122.418954|
|   4258|            11|     114|         MLK Library|         37.335885|-121.88566000000002|
|   4549|            54|     125|Embarcadero at Br...|         37.787152|-122.38801299999999|
|   4498|             4|     126|Santa Clara at Al...|         37.333988|        -121.894902|
|   4965|            28|     129|Mountain View Cal...|37.394358000000004|-122.07671299999998|
|   4557|            64|     130|   2nd at South Park|         37.782259|        -122.392738|
|   4386|            56|     134|     Beale at Market|         37.792251|-122.39708600000002|
|   4749|            47|     138|     Post at Kearney|         37.788975|        -122.403452|
|   4242|            10|     141|  San Jose City Hall|         37.337391|        -121.886995|
|   4329|            67|     142|      Market at 10th|37.776619000000004|-122.41738500000001|
|   5097|            50|     142|Harry Bridges Pla...|         37.795392|        -122.394203|
|   5084|            76|     144|       Market at 4th|         37.786305|-122.40496599999999|
+-------+--------------+--------+--------------------+------------------+-------------------+
only showing top 20 rows

Для каждой стартовой станции найдем среднее время поездки.

Рассчитаем среднее время поездки для каждого стартового парковочного места

In [225]:
spark.sql("""
SELECT start_station_name, avg(duration)
FROM trips
GROUP BY trips.start_station_name
ORDER BY avg(duration) DESC
""").show()
+--------------------+------------------+
|  start_station_name|     avg(duration)|
+--------------------+------------------+
|University and Em...| 7230.231034482758|
|Redwood City Medi...|  4764.68287037037|
|San Jose Civic Ce...| 4720.621422376409|
|       Park at Olive| 4686.397612488521|
|California Ave Ca...| 4502.620639534884|
|Redwood City Publ...|3697.0892307692307|
|Rengstorff Avenue...| 3544.797270955166|
|Palo Alto Caltrai...| 3158.331498866947|
|San Mateo County ...|3002.0827067669175|
|South Van Ness at...|2936.8873503613395|
|San Antonio Shopp...| 2508.434736091298|
|Cowper at University| 2493.220572640509|
|    Broadway at Main|2481.2537313432836|
|Redwood City Calt...|  2405.29409190372|
|           Japantown|2297.0913838120105|
|San Antonio Caltr...|2103.7238932071646|
|SJSU 4th at San C...| 1995.366021236727|
|Washington at Kea...|1979.3077445652175|
|          Mezes Park|1918.1354359925788|
|Arena Green / SAP...|1888.3390476190475|
+--------------------+------------------+
only showing top 20 rows

Пример подготовки данных c Spark SQL, pandas, h3 для их визуализации на карте folium

In [ ]:
# ! pip install h3 h3_pyspark pandas folium

Найдём велосипеды, которые ездили в рождество 2014 года. https://spark.apache.org/docs/latest/api/sql/#make_timestamp

In [86]:
# year - the year to represent, from 1 to 9999  
# month - the month-of-year to represent, from 1 (January) to 12 (December)  
# day - the day-of-month to represent, from 1 to 31  
# hour - the hour-of-day to represent, from 0 to 23  
# min - the minute-of-hour to represent, from 0 to 59  
# sec - the second-of-minute and its micro-fraction to represent, from 0 to 60. The value can be either an integer like 13 , or a fraction like 13.123. If the sec argument equals to 60, the seconds field is set to 0 and 1 minute is added to the final timestamp.  
# timezone - the time zone identifier. For example, CET, UTC and etc.

spark.sql("""
SELECT bike_id, start_date, end_date 
FROM trips 
WHERE 
    start_date > make_timestamp(2014, 12, 25, 0, 0, 0) 
    AND start_date <  make_timestamp(2014, 12, 26, 0, 0, 0)
""").show()
+-------+-------------------+-------------------+
|bike_id|         start_date|           end_date|
+-------+-------------------+-------------------+
|    379|2014-12-25 22:10:00|2014-12-25 22:18:00|
|    709|2014-12-25 21:21:00|2014-12-25 21:27:00|
|    376|2014-12-25 20:40:00|2014-12-25 20:46:00|
|    541|2014-12-25 20:27:00|2014-12-25 20:32:00|
|    283|2014-12-25 19:56:00|2014-12-25 20:01:00|
|    519|2014-12-25 19:56:00|2014-12-25 20:01:00|
|    583|2014-12-25 19:05:00|2014-12-25 19:07:00|
|    495|2014-12-25 18:42:00|2014-12-25 18:44:00|
|    541|2014-12-25 18:28:00|2014-12-25 18:37:00|
|    585|2014-12-25 18:27:00|2014-12-25 18:37:00|
|    574|2014-12-25 18:12:00|2014-12-25 18:21:00|
|    630|2014-12-25 18:12:00|2014-12-25 18:22:00|
|    583|2014-12-25 18:05:00|2014-12-25 18:22:00|
|    290|2014-12-25 18:01:00|2014-12-25 18:15:00|
|    451|2014-12-25 17:55:00|2014-12-25 18:04:00|
|    630|2014-12-25 17:55:00|2014-12-25 17:59:00|
|    574|2014-12-25 17:54:00|2014-12-25 17:59:00|
|    463|2014-12-25 17:46:00|2014-12-25 17:53:00|
|    628|2014-12-25 17:46:00|2014-12-25 17:53:00|
|     58|2014-12-25 16:32:00|2014-12-25 17:04:00|
+-------+-------------------+-------------------+
only showing top 20 rows

Найдём станции через которые проехал один из велосипедов, найденных ранее.

In [93]:
spark.sql("""
SELECT trips.bike_id, trips.start_date, trips.end_date, stations.name
FROM trips INNER JOIN stations
    ON trips.start_station_id == stations.id
WHERE 
    bike_id == 583 
    AND start_date > make_timestamp(2014, 12, 25, 0, 0, 0) 
    AND start_date <  make_timestamp(2014, 12, 26, 0, 0, 0)
""").show()
+-------+-------------------+-------------------+--------------+
|bike_id|         start_date|           end_date|          name|
+-------+-------------------+-------------------+--------------+
|    583|2014-12-25 19:05:00|2014-12-25 19:07:00|Market at 10th|
|    583|2014-12-25 18:05:00|2014-12-25 18:22:00|Market at 10th|
|    583|2014-12-25 12:14:00|2014-12-25 12:21:00| Market at 4th|
|    583|2014-12-25 19:05:00|2014-12-25 19:07:00|Market at 10th|
|    583|2014-12-25 18:05:00|2014-12-25 18:22:00|Market at 10th|
|    583|2014-12-25 12:14:00|2014-12-25 12:21:00| Market at 4th|
+-------+-------------------+-------------------+--------------+

Найдём все станции, которые попали в ту же клетку h3 координатной сетки что и станции, через которые проехал велосипед 583 25.12.2014.

Отобразим gps координаты станций в координаты h3.

In [96]:
from pyspark.sql import functions as F
import h3_pyspark
import h3
In [205]:
resolution = 8
stationData.withColumn('h3', h3_pyspark.geo_to_h3('lat', 'long', sql.functions.lit(resolution))).createOrReplaceTempView("stations_h3")

Используя вложенный sql запрос найдём h3 координаты станций, через который проехал велосипед 583. А затем отфильтруем поездки в рождество 2014 года, которые стартовали со станций с теми же h3 координатами, что мы нашли.

In [166]:
christmas_583_contacts = spark.sql("""
SELECT trips.bike_id, trips.start_date, stations_h3.h3, stations_h3.lat, stations_h3.long, stations_h3.name
FROM trips INNER JOIN stations_h3
    ON trips.start_station_id == stations_h3.id
WHERE 
    stations_h3.h3 in (SELECT stations_h3.h3
                            FROM trips INNER JOIN stations_h3
                                ON trips.start_station_id == stations_h3.id
                            WHERE 
                                bike_id == 583 
                                AND start_date > make_timestamp(2014, 12, 25, 0, 0, 0) 
                                AND start_date <  make_timestamp(2014, 12, 26, 0, 0, 0))
    AND start_date > make_timestamp(2014, 12, 25, 0, 0, 0)
    AND start_date < make_timestamp(2014, 12, 26, 0, 0, 0)
ORDER BY trips.start_date
""")
christmas_583_contacts.cache()
christmas_583_contacts.show()
+-------+-------------------+---------------+------------------+-------------------+--------------+
|bike_id|         start_date|             h3|               lat|               long|          name|
+-------+-------------------+---------------+------------------+-------------------+--------------+
|    439|2014-12-25 01:40:00|8828308281fffff|37.776619000000004|-122.41738500000001|Market at 10th|
|    439|2014-12-25 01:40:00|8828308281fffff|37.776619000000004|-122.41738500000001|Market at 10th|
|    659|2014-12-25 09:49:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    465|2014-12-25 09:49:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    659|2014-12-25 09:49:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    465|2014-12-25 09:49:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    583|2014-12-25 12:14:00|88283082abfffff|         37.786305|-122.40496599999999| Market at 4th|
|    583|2014-12-25 12:14:00|88283082abfffff|         37.786305|-122.40496599999999| Market at 4th|
|    479|2014-12-25 12:22:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    331|2014-12-25 12:22:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    479|2014-12-25 12:22:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    331|2014-12-25 12:22:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    330|2014-12-25 12:27:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    438|2014-12-25 12:27:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    330|2014-12-25 12:27:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    438|2014-12-25 12:27:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    428|2014-12-25 12:35:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    428|2014-12-25 12:35:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    214|2014-12-25 12:38:00|88283082abfffff|37.781752000000004|-122.40512700000001| 5th at Howard|
|    292|2014-12-25 12:38:00|88283082abfffff|         37.786305|-122.40496599999999| Market at 4th|
+-------+-------------------+---------------+------------------+-------------------+--------------+
only showing top 20 rows

In [167]:
import pandas as pd
import h3

h3_places = christmas_583_contacts.select('lat','long', 'name', 'h3').toPandas()
In [215]:
# source code from https://nbviewer.org/github/uber/h3-py-notebooks/blob/master/notebooks/usage.ipynb
import folium 

def init_map(hexagons, width=1100, height=900):
    lats = []
    longs = []
    for hexagon in hexagons:
        lat, long = h3.h3_to_geo(hexagon)
        lats.append(lat)
        longs.append(long)
    return folium.Map(location=[sum(lats)/len(lats), sum(longs)/len(longs)], zoom_start=15, tiles='cartodbpositron', width=width, height=height)

def visualize_hexagons(folium_map, hexagons, color="red"):
    """
    hexagons is a list of hexcluster. Each hexcluster is a list of hexagons. 
    eg. [[hex1, hex2], [hex3, hex4]]
    """
    polylines = []
    lat = []
    lng = []
    for hex in hexagons:
        polygons = h3.h3_set_to_multi_polygon([hex], geo_json=False)
        # flatten polygons into loops.
        outlines = [loop for polygon in polygons for loop in polygon]
        polyline = [outline + [outline[0]] for outline in outlines][0]
        lat.extend(map(lambda v:v[0], polyline))
        lng.extend(map(lambda v:v[1], polyline))
        polylines.append(polyline)
    
    for polyline in polylines:
        my_PolyLine = folium.PolyLine(locations=polyline, weight=8, color=color)
        folium_map.add_child(my_PolyLine)
        
    return folium_map

def visualize_stations(folium_map, stations, color="red"):
    """
    stations is a dataframe with columns: lat, long, station_name
    """
    for idx, lat, long, station_name in stations.itertuples():
        folium_map.add_child(folium.map.Marker(location=(lat, long)))
        folium_map.add_child(folium.map.Marker(location=(lat, long), 
                        icon=folium.features.DivIcon(
                          icon_size=(500,36),
                          icon_anchor=(-17,37),
                          html=f'<div style="display: inline-block;font-size: 10pt; background: rgba(255, 255, 255, 0.8)">{station_name}</div>',
        )))
    return folium_map
In [217]:
m = init_map(h3_places.h3.unique())
visualize_hexagons(m, h3_places.h3.unique(), color="black")
visualize_stations(m, h3_places.loc[:, ['lat', 'long', 'name']])
display(m)
Make this Notebook Trusted to load map: File -> Trust Notebook
In [152]:
sc.stop()