You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

27 lines
3.5 KiB
Markdown

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# БИБЛИОГРАФИЧЕСКИЙ СПИСОК
[назад](README.md)
1. Aizawa A. An information-theoretic perspective of tfidf measures // Information Processing & Management. 2003. Т. 39. №1. P. 45-65.
2. Bakaev V. A., Blagov A. V. The analysis of profiles on social networks // Information Technologies and Nanotechnologies. 2018. P. 1860-1863.
3. Barabasi A.L., Bonabeau E. Scale Free Networks // Scientific American, 2003, P. 50-59.
4. Blagov A. et al. Big data instruments for social media analysis // Proceedings of the 5th International Workshop on Computer Science and Engineering. 2015. P. 179-184.
5. Dean J., Ghemawat S. MapReduce: simplified data processing on large clusters // Communications of the ACM. 2008. Т.51. №1. P. 107-113.
6. Key Trends to Watch in Gartner 2012 Emerging Technologies Hype Cycle. URL: http://www.forbes.com/sites/gartnergroup/2012/09/18/key-trends-to-watch-in-gartner-2012-emerging-technologies-hype-cycle-2.
7. Leskovec J., Faloutsos C. Sampling from large graphs // Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2006. P. 631-636.
8. Liu X., Murata T. Advanced modularity-specialized label propagation algorithm for detecting communities in networks // Physica A: Statistical Mechanics and its Applications, Vol. 389, Issue 7, P. 1493-1500.
9. Newman, M. E. J. Fast algorithm for detecting community structure in networks // Phys. Rev. E. 2004. T.69. P. 576-587.
10. Newman M. E. J., Girvan M. Finding and evaluating community structure in networks // Phys. Rev. E. 2004. T. 69. P. 426-438.
11. Rytsarev I. A., Blagov A. V. Classification of Text Data from the Social Network Twitter // CEUR Workshop Proceedings. 2016. Т. 1638. P. 851-856.
12. Social-network-sourced big data analytics / W. Tan, M.W. Blake, I. Saleh, S. Dustdar // IEEE Internet Computing. 2013. я. 5. P. 62-69.
13. VanBoskirk S., Overby C. S., Takvorian S. US interactive marketing forecast, 2011 to 2016 // Forrester Research. 2011.
14. Xu X. Scan: a structural clustering algorithm for networks // Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2007. P. 824-833.
15. Венгерский алгоритм решения задачи о назначениях. URL: http://e-maxx.ru/algo/assignment_hungary.
16. Гусарова Н. Ф. Анализ социальных сетей. Основные понятия и метрики // Университет ИТМО. СПб., 2016. 70 c.
17. Анализ социальных сетей: методы и приложения / А. Коршунов [и др.] // Труды Института системного программирования РАН. 2014. Т. 26. №. 1.
18. Красников И. А., Никуличев Н. Н. Гибридный алгоритм классификации текстовых документов на основе анализа внутренней связности текста // ИВД. 2013. № 3(26).
19. Сметанин Н. Нечёткий поиск в тексте и словаре. URL: https://habrahabr.ru/post/114997.
20. Рекомендательные системы: LDA. 2014. URL: https://habrahabr.ru/company/surfingbird/blog/150607.
21. Хотилин М. И., Благов А. В. Визуальное представление и кластерный анализ социальных сетей // Материалы Международной конференции ИТНТ. Самара, 2016. С. 1067-1072.
[назад](README.md)