maybe more readable code

main
Vladimir 2 weeks ago
parent bd2e602814
commit 96d18b4873

@ -1,7 +1,5 @@
import os
import sys
# DEVICE_IDX = sys.argv[1]
# os.environ['CUDA_VISIBLE_DEVICES'] = f"{DEVICE_IDX}"
comment = sys.argv[1]
from torch import nn
@ -21,31 +19,7 @@ import torch.nn.functional as F
from typing import Optional
import functools
def save_checkpoint(credit_dataset, encoder, model, optimizer, epoch, loss, rocauc, checkpoints_dir):
checkpoint = {
'encoder': {
'state_dict': encoder.state_dict(),
**{k:v for k,v in encoder.__dict__.items() if k[0] != '_' and k != 'training'}
},
'model': {
'state_dict': model.state_dict(),
**{k:v for k,v in model.__dict__.items() if k[0] != '_' and k != 'training'}
},
'optimizer': {
'state_dict': optimizer.state_dict(),
},
'epoch': epoch,
'loss': loss,
'rocauc': rocauc,
'train_uniq_client_ids_path': credit_dataset.train_uniq_client_ids_path,
'test_uniq_client_ids_path': credit_dataset.test_uniq_client_ids_path
}
path = checkpoints_dir + f"epoch_{epoch}_{rocauc:.4f}.pth"
# if torch.distributed.get_rank() == 0:
torch.save(checkpoint, path)
print(f"\nCheckpoint saved to {path}")
######################################## Dataset #########################################################
######################################## Dataset definition #########################################################
class CreditProductsDataset:
def __init__(self,
@ -140,7 +114,7 @@ class WrapperDataset(Dataset):
cat_inputs, num_inputs, padding_mask, targets = self.credit_dataset.get_train_batch(batch_size=self.batch_size)
return cat_inputs, num_inputs, padding_mask, targets
##################################### Model ###########################################################################################
##################################### Model definition ###########################################################################################
class Encoder(nn.Module):
def __init__(self, cat_columns, num_columns, cat_features_max_id, category_feature_dim=4, out_dim=64, features_dropout_rate=0.0):
@ -230,7 +204,7 @@ class TransformerLayer(nn.Module):
return rearrange(x, '(b n) t h -> b t (n h)', b=B, t=T, n=self.num_heads)
def attention(self, x, padding_mask):
padding_mask = padding_mask.unsqueeze(-1).expand(*padding_mask.shape+(self.num_heads,))
padding_mask = padding_mask.unsqueeze(-1).expand(*padding_mask.shape+(self.num_heads,)) # B, T -> B, T, num_heads
padding_mask = self.split_to_heads(padding_mask, *padding_mask.shape)
q = self.rope(self.split_to_heads(self.q_proj(x), *x.shape))
k = self.rope(self.split_to_heads(self.k_proj(x), *x.shape))
@ -251,7 +225,7 @@ class BertClassifier(nn.Module):
self.__dict__.update({k:v for k,v in locals().items() if k != 'self'})
self.cls_token = nn.Parameter(torch.randn(1,1,h_dim))
self.max_seq_len = max_seq_len + self.cls_token.shape[1]
self.layers = nn.ModuleList([TransformerLayer(h_dim=h_dim, num_heads=num_heads, dropout_rate = dropout_rate, max_seq_len=self.max_seq_len) for _ in range(layers_num)])
self.layers = nn.ModuleList([TransformerLayer(h_dim=h_dim, num_heads=num_heads, dropout_rate=dropout_rate, max_seq_len=self.max_seq_len) for _ in range(layers_num)])
self.classifier_head = nn.Sequential(nn.Linear(h_dim, h_dim), nn.GELU(), nn.Linear(h_dim, class_num))
self.pos_embeds = nn.Parameter(torch.randn(1, self.max_seq_len, h_dim))
@ -274,25 +248,7 @@ class Model(nn.Module):
inputs = self.encoder(cat_inputs, num_inputs)
return self.classifier(inputs, padding_mask)
def test(start_time, epoch, batches_per_epoch, batch_size, model, optimizer, credit_dataset, test_auroc, writer):
model.eval()
optimizer.eval()
with torch.no_grad():
test_iterator = credit_dataset.get_test_batch_iterator(batch_size=batch_size)
for test_batch_id, (test_cat_inputs, test_num_inputs, test_padding_mask, test_targets) in enumerate(test_iterator):
test_cat_inputs = test_cat_inputs.to("cuda", non_blocking=True)
test_num_inputs = test_num_inputs.to("cuda", non_blocking=True)
test_padding_mask = test_padding_mask.to("cuda", non_blocking=True)
test_targets = test_targets.to("cuda", non_blocking=True)
outputs = model(test_cat_inputs, test_num_inputs, test_padding_mask)
test_auroc.update(outputs, test_targets.long())
print(f"\r {test_batch_id}/{len(credit_dataset.test_uniq_client_ids)//batch_size} {test_auroc.compute().item():.5f}", end = " "*20)
if not writer is None:
writer.add_scalar('test_roc_auc', test_auroc.compute().item(), epoch * batches_per_epoch)
print(f"\r {datetime.now() - start_time} {epoch}/{epochs} Test rocauc: {test_auroc.compute().item():.5f}", end = " "*20)
print()
######################################### Training ################################################################
######################################### Training definition ################################################################
h_dim = 64
category_feature_dim = 8
@ -306,7 +262,6 @@ batch_size = 30000
datasets_per_epoch = 1
num_workers = 10
logs_dir = f'logs/{datetime.now().date()}_{datetime.now().hour:02d}_{datetime.now().minute:02d}_{datetime.now().second:02d}_{comment}/'
writer = SummaryWriter(logs_dir)
checkpoints_dir = f'checkpoints/{datetime.now().date()}_{datetime.now().hour:02d}_{datetime.now().minute:02d}_{datetime.now().second:02d}_{comment}/'
@ -365,34 +320,74 @@ batches_per_epoch = len(training_data)
print(f"Number of batches per epoch: {batches_per_epoch}, Number of datasets per epoch : {datasets_per_epoch}")
test_auroc = AUROC(task='binary')
epoch = -1
loss = torch.tensor([-1])
start_time = datetime.now()
print("Started at:", start_time)
last_display_time = start_time
last_checkpoint_time = start_time
def test(is_tensorboard_logging=False):
model.eval()
optimizer.eval()
with torch.no_grad():
test_iterator = credit_train_dataset.get_test_batch_iterator(batch_size=batch_size)
for test_batch_id, (test_cat_inputs, test_num_inputs, test_padding_mask, test_targets) in enumerate(test_iterator):
test_cat_inputs = test_cat_inputs.to("cuda", non_blocking=True)
test_num_inputs = test_num_inputs.to("cuda", non_blocking=True)
test_padding_mask = test_padding_mask.to("cuda", non_blocking=True)
test_targets = test_targets.to("cuda", non_blocking=True)
outputs = model(test_cat_inputs, test_num_inputs, test_padding_mask)
test_auroc.update(outputs, test_targets.long())
print(f"\r {test_batch_id}/{len(credit_train_dataset.test_uniq_client_ids)//batch_size} {test_auroc.compute().item():.5f}", end = " "*20)
if is_tensorboard_logging:
writer.add_scalar('test_roc_auc', test_auroc.compute().item(), epoch * batches_per_epoch)
print(f"\r {datetime.now() - start_time} {epoch}/{epochs} Test rocauc: {test_auroc.compute().item():.5f}", end = " "*20)
print()
def save_checkpoint():
test(is_tensorboard_logging=False)
checkpoint = {
'encoder': {
'state_dict': encoder.state_dict(),
**{k:v for k,v in encoder.__dict__.items() if k[0] != '_' and k != 'training'}
},
'model': {
'state_dict': model.state_dict(),
**{k:v for k,v in model.__dict__.items() if k[0] != '_' and k != 'training'}
},
'optimizer': {
'state_dict': optimizer.state_dict(),
},
'epoch': epoch,
'loss': loss.item(),
'rocauc': test_auroc.compute().item(),
'train_uniq_client_ids_path': credit_train_dataset.train_uniq_client_ids_path,
'test_uniq_client_ids_path': credit_train_dataset.test_uniq_client_ids_path
}
path = checkpoints_dir + f"epoch_{epoch}_{test_auroc.compute().item():.4f}.pth"
torch.save(checkpoint, path)
print(f"\nCheckpoint saved to {path}")
###################################### Training loop ################################################################################
try:
for epoch in range(epochs):
test(
start_time=start_time,
epoch=epoch,
batches_per_epoch=batches_per_epoch,
batch_size=batch_size,
model=model,
optimizer=optimizer,
credit_dataset=credit_train_dataset,
test_auroc=test_auroc,
writer=writer
)
test(is_tensorboard_logging=True)
for batch_id, (cat_inputs, num_inputs, padding_mask, targets) in enumerate(dataloader):
model.train()
optimizer.train()
optimizer.zero_grad()
outputs = model(
cat_inputs[0].to("cuda"),
num_inputs[0].to("cuda"),
padding_mask[0].to("cuda")
cat_inputs=cat_inputs[0].to("cuda"),
num_inputs=num_inputs[0].to("cuda"),
padding_mask=padding_mask[0].to("cuda")
)
loss = criterion(
input=outputs,
target=targets[0].to("cuda")
)
loss = criterion(outputs, targets[0].to("cuda"))
loss.backward()
optimizer.step()
@ -401,53 +396,13 @@ try:
last_display_time = current_time
writer.add_scalar(f'Loss', loss.item(), epoch*batches_per_epoch+batch_id)
print(f"\r {current_time-start_time} {epoch+1}/{epochs} {batch_id}/{batches_per_epoch} loss: {loss.item():.6f} {comment}", end = " "*2)
if current_time - last_checkpoint_time > timedelta(hours=8):
last_checkpoint_time = current_time
test(
start_time=start_time,
epoch=epoch,
batches_per_epoch=batches_per_epoch,
batch_size=batch_size,
model=model,
optimizer=optimizer,
credit_dataset=credit_train_dataset,
test_auroc=test_auroc,
writer=None
)
rocauc = test_auroc.compute().item()
save_checkpoint(
credit_dataset=credit_train_dataset,
encoder = model.module.encoder,
model=model.module.classifier,
optimizer=optimizer,
epoch=epoch,
loss=loss.item(),
rocauc=rocauc,
checkpoints_dir=checkpoints_dir
)
save_checkpoint()
except KeyboardInterrupt:
print()
finally:
test(
start_time=start_time,
epoch=epoch+1,
batches_per_epoch=batches_per_epoch,
batch_size=batch_size,
model=model,
optimizer=optimizer,
credit_dataset=credit_train_dataset,
test_auroc=test_auroc,
writer=writer
)
rocauc = test_auroc.compute().item()
save_checkpoint(
credit_dataset=credit_train_dataset,
encoder = model.encoder,
model=model.classifier,
optimizer=optimizer,
epoch=epoch,
loss=loss.item(),
rocauc=rocauc,
checkpoints_dir=checkpoints_dir
)
writer.close()
epoch = epoch + 1
save_checkpoint()
writer.close()
Loading…
Cancel
Save