added kan linear layers to test in the future

main
protsenkovi 7 months ago
parent a0f87f6c40
commit 0f54e2748b

@ -116,3 +116,338 @@ class YcbcrToRgb(nn.Module):
g = y - 0.714 * cr_shifted - 0.344 * cb_shifted g = y - 0.714 * cr_shifted - 0.344 * cb_shifted
b = y + 1.773 * cb_shifted b = y + 1.773 * cb_shifted
return torch.stack([r, g, b], -3) return torch.stack([r, g, b], -3)
class EffKAN(torch.nn.Module):
"""
https://github.com/Blealtan/efficient-kan/blob/605b8c2ae24b8085bd11b96896a17eabe12f6736/src/efficient_kan/kan.py#L6
"""
def __init__(
self,
in_features,
out_features,
grid_size=5,
spline_order=3,
scale_noise=0.1,
scale_base=1.0,
scale_spline=1.0,
enable_standalone_scale_spline=True,
base_activation=torch.nn.SiLU,
grid_eps=0.02,
grid_range=[-1, 1],
):
super(EffKAN, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.grid_size = grid_size
self.spline_order = spline_order
h = (grid_range[1] - grid_range[0]) / grid_size
grid = (
(
torch.arange(-spline_order, grid_size + spline_order + 1) * h
+ grid_range[0]
)
.expand(in_features, -1)
.contiguous()
)
self.register_buffer("grid", grid)
self.base_weight = torch.nn.Parameter(torch.Tensor(out_features, in_features))
self.spline_weight = torch.nn.Parameter(
torch.Tensor(out_features, in_features, grid_size + spline_order)
)
if enable_standalone_scale_spline:
self.spline_scaler = torch.nn.Parameter(
torch.Tensor(out_features, in_features)
)
self.scale_noise = scale_noise
self.scale_base = scale_base
self.scale_spline = scale_spline
self.enable_standalone_scale_spline = enable_standalone_scale_spline
self.base_activation = base_activation()
self.grid_eps = grid_eps
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base)
with torch.no_grad():
noise = (
(
torch.rand(self.grid_size + 1, self.in_features, self.out_features)
- 1 / 2
)
* self.scale_noise
/ self.grid_size
)
self.spline_weight.data.copy_(
(self.scale_spline if not self.enable_standalone_scale_spline else 1.0)
* self.curve2coeff(
self.grid.T[self.spline_order : -self.spline_order],
noise,
)
)
if self.enable_standalone_scale_spline:
# torch.nn.init.constant_(self.spline_scaler, self.scale_spline)
torch.nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline)
def b_splines(self, x: torch.Tensor):
"""
Compute the B-spline bases for the given input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_features).
Returns:
torch.Tensor: B-spline bases tensor of shape (batch_size, in_features, grid_size + spline_order).
"""
assert x.dim() == 2 and x.size(1) == self.in_features
grid: torch.Tensor = (
self.grid
) # (in_features, grid_size + 2 * spline_order + 1)
x = x.unsqueeze(-1)
bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype)
for k in range(1, self.spline_order + 1):
bases = (
(x - grid[:, : -(k + 1)])
/ (grid[:, k:-1] - grid[:, : -(k + 1)])
* bases[:, :, :-1]
) + (
(grid[:, k + 1 :] - x)
/ (grid[:, k + 1 :] - grid[:, 1:(-k)])
* bases[:, :, 1:]
)
assert bases.size() == (
x.size(0),
self.in_features,
self.grid_size + self.spline_order,
)
return bases.contiguous()
def curve2coeff(self, x: torch.Tensor, y: torch.Tensor):
"""
Compute the coefficients of the curve that interpolates the given points.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_features).
y (torch.Tensor): Output tensor of shape (batch_size, in_features, out_features).
Returns:
torch.Tensor: Coefficients tensor of shape (out_features, in_features, grid_size + spline_order).
"""
assert x.dim() == 2 and x.size(1) == self.in_features
assert y.size() == (x.size(0), self.in_features, self.out_features)
A = self.b_splines(x).transpose(
0, 1
) # (in_features, batch_size, grid_size + spline_order)
B = y.transpose(0, 1) # (in_features, batch_size, out_features)
solution = torch.linalg.lstsq(
A, B
).solution # (in_features, grid_size + spline_order, out_features)
result = solution.permute(
2, 0, 1
) # (out_features, in_features, grid_size + spline_order)
assert result.size() == (
self.out_features,
self.in_features,
self.grid_size + self.spline_order,
)
return result.contiguous()
@property
def scaled_spline_weight(self):
return self.spline_weight * (
self.spline_scaler.unsqueeze(-1)
if self.enable_standalone_scale_spline
else 1.0
)
def forward(self, x: torch.Tensor):
assert x.size(-1) == self.in_features
original_shape = x.shape
x = x.view(-1, self.in_features)
base_output = F.linear(self.base_activation(x), self.base_weight)
spline_output = F.linear(
self.b_splines(x).view(x.size(0), -1),
self.scaled_spline_weight.view(self.out_features, -1),
)
output = base_output + spline_output
output = output.view(*original_shape[:-1], self.out_features)
return output
@torch.no_grad()
def update_grid(self, x: torch.Tensor, margin=0.01):
assert x.dim() == 2 and x.size(1) == self.in_features
batch = x.size(0)
splines = self.b_splines(x) # (batch, in, coeff)
splines = splines.permute(1, 0, 2) # (in, batch, coeff)
orig_coeff = self.scaled_spline_weight # (out, in, coeff)
orig_coeff = orig_coeff.permute(1, 2, 0) # (in, coeff, out)
unreduced_spline_output = torch.bmm(splines, orig_coeff) # (in, batch, out)
unreduced_spline_output = unreduced_spline_output.permute(
1, 0, 2
) # (batch, in, out)
# sort each channel individually to collect data distribution
x_sorted = torch.sort(x, dim=0)[0]
grid_adaptive = x_sorted[
torch.linspace(
0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device
)
]
uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size
grid_uniform = (
torch.arange(
self.grid_size + 1, dtype=torch.float32, device=x.device
).unsqueeze(1)
* uniform_step
+ x_sorted[0]
- margin
)
grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
grid = torch.concatenate(
[
grid[:1]
- uniform_step
* torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1),
grid,
grid[-1:]
+ uniform_step
* torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1),
],
dim=0,
)
self.grid.copy_(grid.T)
self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output))
def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0):
"""
Compute the regularization loss.
This is a dumb simulation of the original L1 regularization as stated in the
paper, since the original one requires computing absolutes and entropy from the
expanded (batch, in_features, out_features) intermediate tensor, which is hidden
behind the F.linear function if we want an memory efficient implementation.
The L1 regularization is now computed as mean absolute value of the spline
weights. The authors implementation also includes this term in addition to the
sample-based regularization.
"""
l1_fake = self.spline_weight.abs().mean(-1)
regularization_loss_activation = l1_fake.sum()
p = l1_fake / regularization_loss_activation
regularization_loss_entropy = -torch.sum(p * p.log())
return (
regularize_activation * regularization_loss_activation
+ regularize_entropy * regularization_loss_entropy
)
# This is inspired by Kolmogorov-Arnold Networks but using Chebyshev polynomials instead of splines coefficients
class ChebyKANLayer(nn.Module):
"""
https://github.com/SynodicMonth/ChebyKAN/blob/main/ChebyKANLayer.py
"""
def __init__(self, in_features, out_features, degree=5):
super(ChebyKANLayer, self).__init__()
self.inputdim = in_features
self.outdim = out_features
self.degree = degree
self.cheby_coeffs = nn.Parameter(torch.empty(input_dim, output_dim, degree + 1))
nn.init.normal_(self.cheby_coeffs, mean=0.0, std=1 / (input_dim * (degree + 1)))
self.register_buffer("arange", torch.arange(0, degree + 1, 1))
def forward(self, x):
# Since Chebyshev polynomial is defined in [-1, 1]
# We need to normalize x to [-1, 1] using tanh
b,hw,c = x.shape
x = torch.tanh(x)
# View and repeat input degree + 1 times
x = x.view((b, hw, self.inputdim, 1)).expand(
-1, -1, -1, self.degree + 1
) # shape = (batch_size, inputdim, self.degree + 1)
# Apply acos
x = x.acos()
# Multiply by arange [0 .. degree]
x *= self.arange
# Apply cos
x = x.cos()
# Compute the Chebyshev interpolation
y = torch.einsum(
"btid,iod->bto", x, self.cheby_coeffs
) # shape = (batch_size, hw, outdim)
y = y.view(b, hw, self.outdim)
return y
class UpscaleBlockChebyKAN(nn.Module):
def __init__(self, in_features=4, hidden_dim = 32, layers_count=4, upscale_factor=1, input_max_value=255, output_max_value=255):
super(UpscaleBlockChebyKAN, self).__init__()
assert layers_count > 0
self.upscale_factor = upscale_factor
self.hidden_dim = hidden_dim
self.embed = nn.Linear(in_features=in_features, out_features=hidden_dim, bias=True)
self.linear_projections = []
for i in range(layers_count):
self.linear_projections.append(ChebyKANLayer(in_features=hidden_dim, out_features=hidden_dim, bias=True))
self.linear_projections = nn.ModuleList(self.linear_projections)
self.project_channels = nn.Linear(in_features=(layers_count+1)*hidden_dim, out_features=upscale_factor * upscale_factor, bias=True)
self.in_bias = self.in_scale = input_max_value/2
self.out_bias = self.out_scale = output_max_value/2
self.layer_norm = nn.LayerNorm(hidden_dim) # To avoid gradient vanishing caused by tanh
def forward(self, x):
x = (x-self.in_bias)/self.in_scale
x = self.embed(x)
for linear_projection in self.linear_projections:
x = self.layer_norm(linear_projection(x))
x = self.project_channels(x)
x = torch.tanh(x)
x = x*self.out_scale + self.out_bias
return x
class UpscaleBlockEffKAN(nn.Module):
def __init__(self, in_features=4, hidden_dim = 32, layers_count=4, upscale_factor=1, input_max_value=255, output_max_value=255):
super(UpscaleBlockEffKAN, self).__init__()
assert layers_count > 0
self.upscale_factor = upscale_factor
self.hidden_dim = hidden_dim
self.embed = nn.Linear(in_features=in_features, out_features=hidden_dim, bias=True)
self.linear_projections = []
for i in range(layers_count):
self.linear_projections.append(EffKAN(in_features=hidden_dim, out_features=hidden_dim, bias=True))
self.linear_projections = nn.ModuleList(self.linear_projections)
self.project_channels = nn.Linear(in_features=(layers_count+1)*hidden_dim, out_features=upscale_factor * upscale_factor, bias=True)
self.in_bias = self.in_scale = input_max_value/2
self.out_bias = self.out_scale = output_max_value/2
self.layer_norm = nn.LayerNorm(hidden_dim) # To avoid gradient vanishing caused by tanh
def forward(self, x):
x = (x-self.in_bias)/self.in_scale
x = self.embed(x)
for linear_projection in self.linear_projections:
x = self.layer_norm(linear_projection(x))
x = self.project_channels(x)
x = torch.tanh(x)
x = x*self.out_scale + self.out_bias
return x
Loading…
Cancel
Save