|
|
|
@ -113,25 +113,33 @@ class HDBNetBase(SRBase):
|
|
|
|
|
def forward(self, x, script_config=None):
|
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
|
# 1. check equal to bit_plane_slicing(batch_L255, bit_mask='11110000') ok
|
|
|
|
|
# 2. inference in 0,1 to -1,1 range |
|
|
|
|
|
lsb = x % 16
|
|
|
|
|
msb = x - lsb
|
|
|
|
|
output = torch.zeros([b*c, 1, h*self.config.upscale_factor, w*self.config.upscale_factor], dtype=x.dtype, device=x.device)
|
|
|
|
|
output_msb = torch.zeros([b*c, 1, h*self.config.upscale_factor, w*self.config.upscale_factor], dtype=x.dtype, device=x.device)
|
|
|
|
|
output_lsb = torch.zeros([b*c, 1, h*self.config.upscale_factor, w*self.config.upscale_factor], dtype=x.dtype, device=x.device)
|
|
|
|
|
for rotations_count in range(4):
|
|
|
|
|
rotated_msb = torch.rot90(msb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
rotated_lsb = torch.rot90(lsb, k=rotations_count, dims=[2, 3])
|
|
|
|
|
output_msb = self.stage_3H( rotated_msb, self._extract_pattern_3H ) + \
|
|
|
|
|
rotated_output_msb = self.stage_3H( rotated_msb, self._extract_pattern_3H ) + \
|
|
|
|
|
self.stage_3D( rotated_msb, self._extract_pattern_3D ) + \
|
|
|
|
|
self.stage_3B( rotated_msb, self._extract_pattern_3B )
|
|
|
|
|
output_lsb = self.stage_2H( rotated_lsb, self._extract_pattern_2H ) + \
|
|
|
|
|
rotated_output_lsb = self.stage_2H( rotated_lsb, self._extract_pattern_2H ) + \
|
|
|
|
|
self.stage_2D( rotated_lsb, self._extract_pattern_2D )
|
|
|
|
|
output_msb /= 3
|
|
|
|
|
output_lsb /= 2
|
|
|
|
|
rotated_output_msb /= 3
|
|
|
|
|
rotated_output_lsb /= 2
|
|
|
|
|
output_msb += torch.rot90(rotated_output_msb, k=-rotations_count, dims=[2, 3])
|
|
|
|
|
output_lsb += torch.rot90(rotated_output_lsb, k=-rotations_count, dims=[2, 3])
|
|
|
|
|
output_msb /= 4
|
|
|
|
|
output_lsb /= 4
|
|
|
|
|
|
|
|
|
|
if not script_config is None and script_config.current_iter % script_config.display_step == 0:
|
|
|
|
|
script_config.writer.add_histogram('s1_output_lsb', output_lsb.detach().cpu().numpy(), script_config.current_iter)
|
|
|
|
|
script_config.writer.add_histogram('s1_output_msb', output_msb.detach().cpu().numpy(), script_config.current_iter)
|
|
|
|
|
output += torch.rot90(output_msb + output_lsb, k=-rotations_count, dims=[2, 3]).clamp(0, 255)
|
|
|
|
|
output /= 4
|
|
|
|
|
x = output
|
|
|
|
|
|
|
|
|
|
x = nn.Upsample(scale_factor=self.config.upscale_factor, mode='nearest')(x) + (output_msb*16 + output_lsb - 127)
|
|
|
|
|
x = x.clamp(0, 255)
|
|
|
|
|
x = x.reshape(b, c, h*self.config.upscale_factor, w*self.config.upscale_factor)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
@ -144,11 +152,11 @@ class HDBNet(HDBNetBase):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|
super(HDBNet, self).__init__()
|
|
|
|
|
self.config = config
|
|
|
|
|
self.stage_3H.stage = layers.LinearUpscaleBlockNet(in_features=3, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3D.stage = layers.LinearUpscaleBlockNet(in_features=3, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3B.stage = layers.LinearUpscaleBlockNet(in_features=3, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2H.stage = layers.LinearUpscaleBlockNet(in_features=2, input_max_value=15, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2D.stage = layers.LinearUpscaleBlockNet(in_features=2, input_max_value=15, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3H.stage = layers.LinearUpscaleBlockNet(in_features=3, input_max_value=255, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3D.stage = layers.LinearUpscaleBlockNet(in_features=3, input_max_value=255, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_3B.stage = layers.LinearUpscaleBlockNet(in_features=3, input_max_value=255, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2H.stage = layers.LinearUpscaleBlockNet(in_features=2, input_max_value=255, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
self.stage_2D.stage = layers.LinearUpscaleBlockNet(in_features=2, input_max_value=255, output_max_value=15, hidden_dim=self.config.hidden_dim, layers_count=self.config.layers_count, upscale_factor=self.config.upscale_factor)
|
|
|
|
|
|
|
|
|
|
class HDBLut(HDBNetBase):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|