|
|
@ -443,16 +443,16 @@ class SRMsbLsbFlipNet(SRNetBase):
|
|
|
|
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
|
|
|
|
self.flip_functions = [
|
|
|
|
self.flip_functions = [
|
|
|
|
lambda x: x,
|
|
|
|
lambda x: x,
|
|
|
|
lambda x: x[:,:,::-1,:],
|
|
|
|
lambda x: torch.flip(x, dims=[-2]),
|
|
|
|
lambda x: x[:,:,:,::-1],
|
|
|
|
lambda x: torch.flip(x, dims=[-1]),
|
|
|
|
lambda x: x[:,:,::-1,::-1],
|
|
|
|
lambda x: torch.flip(x, dims=[-2, -1]),
|
|
|
|
]
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, config=None):
|
|
|
|
def forward(self, x, config=None):
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
b,c,h,w = x.shape
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
x = x.reshape(b*c, 1, h, w)
|
|
|
|
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
|
|
|
|
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
|
|
|
|
for flip_f in self.flips_functions:
|
|
|
|
for flip_f in self.flip_functions:
|
|
|
|
fliped_x = flip_f(x)
|
|
|
|
fliped_x = flip_f(x)
|
|
|
|
fliped_lsb = fliped_x % 16
|
|
|
|
fliped_lsb = fliped_x % 16
|
|
|
|
fliped_msb = fliped_x - fliped_lsb
|
|
|
|
fliped_msb = fliped_x - fliped_lsb
|
|
|
@ -461,7 +461,7 @@ class SRMsbLsbFlipNet(SRNetBase):
|
|
|
|
if not config is None and config.current_iter % config.display_step == 0:
|
|
|
|
if not config is None and config.current_iter % config.display_step == 0:
|
|
|
|
config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
|
|
|
|
output += torch.rot90(output_msb + output_lsb, k=-rotations_count, dims=[2, 3])
|
|
|
|
output += flip_f(output_msb + output_lsb)
|
|
|
|
output /= 4
|
|
|
|
output /= 4
|
|
|
|
x = output
|
|
|
|
x = output
|
|
|
|
x = x.reshape(b, c, h*self.scale, w*self.scale)
|
|
|
|
x = x.reshape(b, c, h*self.scale, w*self.scale)
|
|
|
|