flip msblsb model.

main
protsenkovi 6 months ago
parent 221e3dc865
commit 6744b97f59

@ -443,16 +443,16 @@ class SRMsbLsbFlipNet(SRNetBase):
self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2) self._extract_pattern_S = layers.PercievePattern(receptive_field_idxes=[[0,0],[0,1],[1,0],[1,1]], center=[0,0], window_size=2)
self.flip_functions = [ self.flip_functions = [
lambda x: x, lambda x: x,
lambda x: x[:,:,::-1,:], lambda x: torch.flip(x, dims=[-2]),
lambda x: x[:,:,:,::-1], lambda x: torch.flip(x, dims=[-1]),
lambda x: x[:,:,::-1,::-1], lambda x: torch.flip(x, dims=[-2, -1]),
] ]
def forward(self, x, config=None): def forward(self, x, config=None):
b,c,h,w = x.shape b,c,h,w = x.shape
x = x.reshape(b*c, 1, h, w) x = x.reshape(b*c, 1, h, w)
output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device) output = torch.zeros([b*c, 1, h*self.scale, w*self.scale], dtype=x.dtype, device=x.device)
for flip_f in self.flips_functions: for flip_f in self.flip_functions:
fliped_x = flip_f(x) fliped_x = flip_f(x)
fliped_lsb = fliped_x % 16 fliped_lsb = fliped_x % 16
fliped_msb = fliped_x - fliped_lsb fliped_msb = fliped_x - fliped_lsb
@ -461,7 +461,7 @@ class SRMsbLsbFlipNet(SRNetBase):
if not config is None and config.current_iter % config.display_step == 0: if not config is None and config.current_iter % config.display_step == 0:
config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter) config.writer.add_histogram('output_lsb', output_lsb.detach().cpu().numpy(), config.current_iter)
config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter) config.writer.add_histogram('output_msb', output_msb.detach().cpu().numpy(), config.current_iter)
output += torch.rot90(output_msb + output_lsb, k=-rotations_count, dims=[2, 3]) output += flip_f(output_msb + output_lsb)
output /= 4 output /= 4
x = output x = output
x = x.reshape(b, c, h*self.scale, w*self.scale) x = x.reshape(b, c, h*self.scale, w*self.scale)

Loading…
Cancel
Save